WO2021232820A1 - 基站天线及其高频辐射单元 - Google Patents

基站天线及其高频辐射单元 Download PDF

Info

Publication number
WO2021232820A1
WO2021232820A1 PCT/CN2020/141557 CN2020141557W WO2021232820A1 WO 2021232820 A1 WO2021232820 A1 WO 2021232820A1 CN 2020141557 W CN2020141557 W CN 2020141557W WO 2021232820 A1 WO2021232820 A1 WO 2021232820A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation unit
frequency radiation
feeding
frequency
dielectric substrate
Prior art date
Application number
PCT/CN2020/141557
Other languages
English (en)
French (fr)
Inventor
郑之伦
贾飞飞
刘亮
余行阳
Original Assignee
京信通信技术(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信技术(广州)有限公司 filed Critical 京信通信技术(广州)有限公司
Publication of WO2021232820A1 publication Critical patent/WO2021232820A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

Definitions

  • This application relates to the field of mobile communication technology, and in particular to a high-frequency radiation unit and a base station antenna adopting the high-frequency radiation unit.
  • the arrays of different frequency bands are arranged extremely compactly, which leads to the phenomenon of mutual coupling.
  • a low-frequency radiating unit will generate a certain excitation signal to its neighboring high-frequency radiating unit, thereby generating parasitic radiation, resulting in distortion of the pattern of the low-frequency signal, and a sharp drop in the performance of the low-frequency signal.
  • the existing solutions are generally to increase the spacing between the high and low frequency radiating elements, or to design a complex radiating element to achieve the decoupling function, which is not conducive to the miniaturization of the antenna, but also improves the antenna manufacturing cost.
  • the primary purpose of this application is to provide a high-frequency radiation unit that has a simple and compact structure and can effectively reduce low-frequency parasitic radiation.
  • Another object of the present application is to provide a base station antenna using the above-mentioned high-frequency radiation unit.
  • this application relates to a high-frequency radiation unit, including a feeding balun and a dielectric substrate arranged on the top of the feeding balun, and two pairs of orthogonal polarizations that can be performed by the feeding balun.
  • a power-fed radiator, the radiator comprising a radiating sheet and a decoupling circuit electrically connected to the radiating sheet and used to reduce low-frequency parasitic radiation, the radiating sheet and the decoupling circuit are separately arranged opposite to the dielectric substrate On both sides.
  • the decoupling circuit includes a coupling disk equivalent to a capacitor and a transmission line equivalent to an inductance, and both ends of the transmission line are connected to the coupling disk and the radiating sheet, respectively.
  • the center of the coupling plate is provided with a connection hole for electrical connection with the feeding balun.
  • the radiating sheet is provided on the side of the dielectric substrate close to the feeding balun, and the radiating sheet is provided with a avoiding hole at the position of the connecting hole, and the diameter of the avoiding hole is larger than that of the connecting hole.
  • the diameter of the connecting hole is large.
  • the radiator further includes a connecting wire arranged on the dielectric substrate and used for connecting the radiating sheet and the decoupling circuit.
  • the height of the feeding balun is 0.15 to 0.2 times the wavelength of the center frequency of the high-frequency radiation unit.
  • the feeding balun includes a supporting seat, a feeding piece and a feeding post all arranged on the supporting seat, the feeding piece is electrically connected to the radiating piece, and the feeding post is electrically connected to the radiating piece.
  • the decoupling circuit is electrically connected.
  • the support base is integrally formed.
  • the radiating sheet is arranged on a side of the dielectric substrate close to the feeding balun
  • the feeding balun further includes a supporting column arranged on the supporting seat and used for supporting the dielectric substrate, so The diameter of the supporting column is larger than the diameter of the feeding column, and the feeding column is arranged on the top of the supporting column coaxially with respect to the supporting column.
  • the present application also relates to a base station antenna, including a reflector, a low-frequency radiation unit all provided on the reflector, and the above-mentioned high-frequency radiation unit.
  • the high-frequency radiation unit provided by the present application is provided with a decoupling circuit on the dielectric substrate.
  • the decoupling circuit can effectively suppress the coupling signal of the low-frequency radiation unit adjacent to the high-frequency radiation unit and reduce parasitic radiation Therefore, the distance between the high and low frequency radiating units can be reduced under the premise of ensuring good low frequency electrical performance, and the miniaturization of the antenna can be realized.
  • the decoupling circuit and the radiating sheet are separately arranged on the opposite sides of the dielectric substrate, the structure is simple and compact and is beneficial to cost control.
  • the equivalent electrical length of the feeding balun is increased due to the decoupling circuit, and the height of the feeding balun is 0.15 to the wavelength of the center frequency of the high-frequency radiation unit 0.2 times can achieve good impedance matching, and the height of the existing high-frequency radiation unit is generally one-fourth of the center frequency wavelength, and the reduction in height is more conducive to the miniaturization of the antenna.
  • the decoupling circuit is provided on the dielectric substrate, so that the supporting seat of the feeding balun can be integrally formed, thereby reducing solder joints , Improve the stability of intermodulation and reduce production costs.
  • FIG. 1 is a three-dimensional view of a high-frequency radiation unit provided by an embodiment of the application
  • Fig. 2 is an exploded view of the high-frequency radiation unit shown in Fig. 1;
  • FIG. 3 is a schematic diagram of the assembly structure of the radiating sheet and the dielectric substrate in the high-frequency radiation unit shown in FIG. 1;
  • FIG. 4 is a schematic diagram of the assembly structure of the decoupling circuit and the dielectric substrate in the high-frequency radiation unit shown in FIG. 1;
  • FIG. 5 is a schematic diagram of the assembly structure of the radiator in the high-frequency radiation unit shown in FIG. 1, in which the solid line represents the structure on the front of the dielectric substrate, and the dashed line represents the structure on the back of the dielectric substrate;
  • Fig. 6 is a simulation result diagram of the return loss and isolation of the high-frequency radiating unit shown in Fig. 1;
  • FIG. 7 is a directional diagram of a low-frequency signal of a base station antenna provided by an embodiment of the application.
  • Fig. 8 is a directional diagram of a low-frequency signal of a base station antenna using an existing high-frequency radiating unit.
  • Figures 1 to 8 together show the high-frequency radiation unit provided by the embodiments of the present application, which is a dual-polarization broadband radiation unit, the working frequency band is 1700MHz-2690MHz, the relative bandwidth is about 45%, and the high-frequency radiation unit uses It is installed on the reflector of the base station antenna to radiate and receive communication signals.
  • the high-frequency radiation unit has a simple and compact structure and can effectively reduce the parasitic radiation to the adjacent low-frequency radiation unit. It is used in the base station antenna. Time is conducive to miniaturizing the antenna and improving antenna performance.
  • the high-frequency radiation unit 1 includes a feeding balun 11, a dielectric substrate 12, and a radiator 13.
  • the dielectric substrate 12 is arranged on the top of the feeding balun 11 and is fed by the The balun 11 is supported overhead, the radiator 13 is provided with two pairs, which are orthogonally polarized on the dielectric substrate 12 and are used to radiate signals.
  • the feeding balun 11 includes a supporting base 111 and a feeding piece 112.
  • the supporting base 111 is provided with a card slot 1111 for embedding the feeding piece 112, and the feeding piece 112 Embedded in the card slot 1111 and electrically connected to the radiator 13, and the feeding piece 112 is used to feed the radiator 13.
  • the feeding mode can be direct feeding or coupling feeding. Electricity.
  • the radiator 13 is provided with two pairs, there are two corresponding feeding pieces 112, and each pair of the radiator 13 is fed through one feeding piece 112, and the feeding piece 112 The crossing position with the other feeding piece 112 avoids each other through a bending structure.
  • FIG. 3 shows the structure on the side of the dielectric substrate 12 close to the feeding balun 11, and FIG. 4 shows that the dielectric substrate 12 is far away from the feeding balun 11.
  • the structure on one side of the electric balun 11 shows the assembly structure of the radiator 13 on the front and back sides of the dielectric substrate 12 in FIG. 5.
  • Each of the radiators 13 includes a radiation plate 131 and a decoupling circuit 132 electrically connected to the radiation plate 131.
  • the decoupling circuit 132 is used to reduce low-frequency parasitic radiation.
  • the radiation plate 131 is connected to the decoupling circuit 132.
  • the coupling circuits 132 are separately arranged on two opposite sides of the dielectric substrate 12.
  • the decoupling circuit 132 includes a coupling disk 1321 equivalent to a capacitor and a transmission line 1322 equivalent to an inductance.
  • the two ends of the transmission line 1322 are respectively connected to the coupling disk 1321 and the radiating sheet 131, namely
  • the decoupling circuit 132 is composed of a capacitor and an inductance arranged in parallel.
  • the coupling signal of the low frequency radiating unit adjacent to the high frequency radiating unit 1 can be suppressed. Reduce low-frequency parasitic radiation.
  • the decoupling circuit 132 and the radiating sheet 131 are separately arranged on two opposite surfaces of the dielectric substrate 12, the overall structure is simple and compact, which is beneficial to control cost and realizes miniaturization of the antenna.
  • the size of the coupling plate 1321 and the length and width of the transmission line 1322 can be adjusted to make the decoupling
  • the circuit 132 is better adapted to the high-frequency radiation unit 1 and can effectively suppress low-frequency coupling signals. Specifically, it can be adjusted in conjunction with the structure of the simulation test to ensure that the return loss and isolation can reach the preset values.
  • the radiation sheet 131 is provided on a side of the dielectric substrate 12 close to the feeding balun 11.
  • the radiation sheet 131 may also be provided on the side of the dielectric substrate 12 away from the feeding balun 11.
  • the decoupling circuit 132 will be provided on the dielectric substrate 12 close to One side of the feeding balun 11, and the radiation performance of the structure is equivalent to the performance of the high-frequency radiation unit 1 provided in this embodiment.
  • the center of the coupling plate 1321 is provided with a connecting hole 1323 for electrically connecting with the feeding balun 11
  • the dielectric substrate 12 is provided with a through hole 121 at a position corresponding to the connecting hole 1323, and the radiation
  • the sheet 131 is provided with an escape hole 1311 at the position of the connecting hole 1323, and the diameter of the escape hole 1311 is larger than the diameter of the connecting hole 1323.
  • the feeding balun 11 further includes a supporting pillar 113 and a feeding pillar 114 arranged on the supporting seat 111, and the diameter of the supporting pillar 113 is larger than the diameter of the feeding pillar 114.
  • the diameter of the support column 113 is smaller than the diameter of the escape hole 1311.
  • the feed column 114 is coaxially arranged on the top of the support column 113 relative to the support column 113.
  • the support column 113 There are four feed posts 114 and four, and the positions corresponding to the four radiators 13 are arranged in a rectangular array.
  • the dielectric substrate 12 abuts against the end surface of the support column 113 and is supported by the support column 113 on the support base 111, and the feed column 114 sequentially passes through the escape hole 1311, the through hole 121, and the connection After the hole 1323 is electrically connected to the coupling plate 1321, the radiating sheet 131 is insulated from the feeding column 114 through the avoiding hole 1311.
  • the radiator 13 further includes a connecting wire 133 arranged on the dielectric substrate 12 and used to connect the radiating sheet 131 and the decoupling circuit 132, and the connecting wire 133 is radiated by the The sheet 131 extends out, the end of the transmission line 1322 away from the coupling plate 1321 is connected to the end of the connecting line 133 away from the radiation sheet 131, and the connection between the two is provided for passing through the dielectric substrate 12 Metallized vias for connection.
  • the height of the feeding balun 11 is 0.17 times the wavelength of the center frequency of the high-frequency radiation unit 1, and the height of the existing and existing high-frequency radiation unit is generally a quarter of the wavelength of the center frequency. one. Since the decoupling circuit 132 is provided, the equivalent electrical length of the feeding balun 11 is increased, and the feeding balun 11 is still ensured to have good impedance matching after the height of the feeding balun 11 is reduced. When in the high-frequency antenna, it will not have a large coupling effect with the adjacent low-frequency radiating unit, which is beneficial to realize the miniaturization of the antenna.
  • the specific height of the feeding balun 11 can be adjusted between 0.15 and 0.2 times the wavelength of the center frequency of the high-frequency radiation unit 1.
  • the support base 111 is integrally formed, specifically, it can be made by die casting. Since the radiating sheet 132 and the decoupling circuit 132 are both provided on the dielectric substrate 12, there is no need to provide a related circuit structure on the feeding balun 11, which can greatly simplify the feeding balun 11 Therefore, the support base 111 can be integrally formed, the solder joints are reduced, the intermodulation stability of the high-frequency radiation unit 1 is improved, and the production cost can be reduced.
  • Figure 6 shows the simulation results of the return loss and isolation of the high-frequency radiating unit 1
  • line S11 and line S22 show the return loss of the high-frequency radiating unit 1 in two polarization directions.
  • the line S21 is used to show the isolation between the two polarization directions of the high-frequency radiation unit 1. It can be seen from FIG. 6 that the return loss and isolation of the high-frequency radiation unit 1 are both at a normal level, and its radiation performance can be better achieved when used in an antenna.
  • the present application also relates to a base station antenna (not shown in the figure, the same below), which includes a reflector, a low-frequency radiation unit all provided on the reflector, and the above-mentioned high-frequency radiation unit 1.
  • the structure of the frequency radiation unit 1 is compact and can effectively reduce the parasitic radiation to the adjacent low frequency radiation unit, so that the layout of the base station antenna can be more compact and miniaturization can be achieved.
  • Figure 7 shows the pattern of the low-frequency signal when the base station antenna adopts the high-frequency radiation unit 1
  • Figure 8 shows that the base station antenna adopts the existing high-frequency signal.
  • the parameters of the base station antenna provided in this embodiment are all normal, but when the existing high-frequency radiation unit is used, the pattern of the base station antenna is obviously distorted, and the performance is not good. guarantee.
  • the base station antenna provided in this embodiment adopts the high-frequency radiation unit 1, it can effectively avoid the coupling effect between high and low frequencies while achieving miniaturization, ensuring good electrical performance, and improving product competitiveness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本申请提供一种基站天线及其高频辐射单元,其中,所述高频辐射单元包括馈电巴伦和设于所述馈电巴伦顶部的介质基板,以及两对极化正交并可由所述馈电巴伦进行馈电的辐射器,所述辐射器包括辐射片和与所述辐射片电连接并用于减小低频寄生辐射的去耦电路,所述辐射片与所述去耦电路分设于所述介质基板相对的两面上。本申请提供的高频辐射单元在介质基板上设有去耦电路,通过所述去耦电路可有效抑制与所述高频辐射单元相邻的低频辐射单元的耦合信号,减小寄生辐射,从而可在保证低频电气性能良好的前提下缩小高低频辐射单元的间距,实现天线小型化。其次,由于将所述去耦电路与辐射片分设于介质基板相对的两面上,结构简单紧凑并有利于控制成本。

Description

基站天线及其高频辐射单元 技术领域
本申请涉及移动通信技术领域,尤其涉及一种高频辐射单元和采用所述高频辐射单元的基站天线。
背景技术
随着移动通信技术的快速发展,在当前多网共存的环境下,基站天线的数量需求成倍增加,基站天线选址困难、安装不便等问题日益显现。为节省站址和天馈资源,多频化、小型化成为基站天线的主要发展方向。
然而,在多频天线系统中,为满足小型化的需求,不同频段的阵列排布极为紧凑,导致出现互耦现象。例如,低频辐射单元会对其邻近的高频辐射单元产生一定的激励信号,从而产生寄生辐射,导致低频信号的方向图发生畸形,使低频信号的性能急剧下降。针对该问题,现有的解决方案一般是增大高低频辐射单元之间的间距,或者设计结构复杂的辐射单元来实现去耦合功能,其并不利于实现天线的小型化,还会提高天线制造成本。
发明内容
本申请的首要目的旨在提供一种结构简单紧凑并可有效减小低频寄生辐射的高频辐射单元。
本申请的另一目的在于提供一种采用上述高频辐射单元的基站天线。
为了实现上述目的,本申请提供以下技术方案:
作为第一方面,本申请涉及一种高频辐射单元,包括馈电巴伦和设于所述馈电巴伦顶部的介质基板,以及两对极化正交并可由所述馈电巴伦进行馈电的辐射器,所述辐射器包括辐射片和与所述辐射片电连接并用于减小低频寄生辐射的去耦电路,所述辐射片与所述去耦电路分设于所述介质基板相对的两面上。
优选地,所述去耦电路包括等效为电容的耦合盘和等效为电感的传输线,所述传输线的两端分别与所述耦合盘和所述辐射片连接。
优选地,所述耦合盘的中心开设有用于与所述馈电巴伦电连接的连接孔。
更优地,所述辐射片设于所述介质基板靠近所述馈电巴伦的一面,所述辐射片于所述连接孔的位置处开设有避让孔,所述避让孔的直径比所述连接孔的直径大。
进一步地,所述辐射器还包括设于所述介质基板上并用于连接所述辐射片与所述去耦电路的连接线。
优选地,所述馈电巴伦的高度为该高频辐射单元的中心频率波长的0.15~0.2倍。
进一步地,所述馈电巴伦包括支撑座、均设于所述支撑座上的馈电片和馈电柱,所述馈电片与所述辐射片电连接,所述馈电柱与所述去耦电路电连接。
优选地,所述支撑座一体成型。
优选地,所述辐射片设于所述介质基板靠近所述馈电巴伦的一面,所述馈电巴伦还包括设于所述支撑座上并用于支撑所述介质基板的支撑柱,所述支撑柱的直径比所述馈电柱的直径大,所述馈电柱相对所述支撑柱同轴地设于所述支撑柱的顶部。
作为第二方面,本申请还涉及一种基站天线,包括反射板、均设于所述反射板上的低频辐射单元和上述高频辐射单元。
相比现有技术,本申请的方案具有以下优点:
1.本申请提供的高频辐射单元在介质基板上设有去耦电路,通过所述去耦电路可有效抑制与所述高频辐射单元相邻的低频辐射单元的耦合信号,减小寄生辐射,从而可在保证低频电气性能良好的前提下缩小高低频辐射单元的间距,实现天线小型化。其次,由于将所述去耦电路与辐射片分设于介质基板相对的两面上,结构简单紧凑并有利于控制成本。
2.本申请提供的高频辐射单元中,由于设有去耦电路增加了馈电巴伦的等效电长度,其馈电巴伦的高度为该高频辐射单元的中心频率波长的 0.15~0.2倍便能够实现良好的阻抗匹配,而现有高频辐射单元的高度一般为中心频率波长的四分之一,高度的降低更有利于实现天线的小型化。
3.本申请提供的高频辐射单元中,由于将去耦电路设于介质基板上,可极大地简化馈电巴伦的结构,使馈电巴伦的支撑座能够一体成型,从而减少焊点,提升互调稳定性并可降低生产成本。
本申请附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请实施例提供的高频辐射单元的立体图;
图2为图1所示的高频辐射单元的分解图;
图3为图1所示的高频辐射单元中辐射片与介质基板的装配结构示意图;
图4为图1所示的高频辐射单元中去耦电路与介质基板的装配结构示意图;
图5为图1所示的高频辐射单元中辐射器的装配结构示意图,其中实线表示位于介质基板正面的结构,虚线表示位于介质基板背面的结构;
图6为图1所示的高频辐射单元的回波损耗及隔离度的仿真结果图;
图7为本申请实施例提供的基站天线的低频信号的方向图;
图8为采用现有高频辐射单元的基站天线的低频信号的方向图。
具体实施方式
图1至图8共同示出了本申请实施例提供的高频辐射单元,其属于双极化宽频辐射单元,工作频段为1700MHz~2690MHz,相对带宽约为45%,所述高频辐射单元用于安装在基站天线的反射板上进行通信信号的辐射与接收,所述高频辐射单元的结构简单紧凑并可有效减小对与其相邻的低频辐射单元的寄生辐射,在应用于基站天线内时有利于实现天线小型化, 提升天线性能。
如图1所示,所述高频辐射单元1包括馈电巴伦11、介质基板12和辐射器13,所述介质基板12设于所述馈电巴伦11的顶部并由所述馈电巴伦11支撑架空,所述辐射器13设有两对,其呈极化正交地设于所述介质基板12上并均用于辐射信号。
如图2所示,所述馈电巴伦11包括支撑座111和馈电片112,所述支撑座111开设有用于嵌设所述馈电片112的卡槽1111,所述馈电片112嵌设于所述卡槽1111内并与所述辐射器13电连接,且所述馈电片112用于对所述辐射器13进行馈电,其馈电方式可为直接馈电或者耦合馈电。
进一步地,由于所述辐射器13设有两对,所述馈电片112对应设有两个,每对所述辐射器13通过一个馈电片112进行馈电,且所述馈电片112与另一馈电片112的交叉位置处通过弯折结构相互避让。
请结合图3至图5,在图3中示出了所述介质基板12靠近所述馈电巴伦11的一面上的结构,在图4中示出了所述介质基板12远离所述馈电巴伦11的一面上的结构,在图5中示出了所述辐射器13于所述介质基板12正反两面上的装配结构。每个所述辐射器13均包括辐射片131和与所述辐射片131电连接的去耦电路132,所述去耦电路132用于减小低频寄生辐射,所述辐射片131与所述去耦电路132分设于所述介质基板12相对的两面上。
具体地,所述去耦电路132包括等效为电容的耦合盘1321和等效为电感的传输线1322,所述传输线1322的两端分别与所述耦合盘1321和所述辐射片131连接,即所述去耦电路132由并联设置的电容和电感组成,所述辐射片131连接所述去耦电路132后便能够实现抑制与所述高频辐射单元1相邻的低频辐射单元的耦合信号,减小低频寄生辐射。并且由于将所述去耦电路132与所述辐射片131分设于所述介质基板12相对的两面上,使得整体结构简单紧凑,有利于控制成本,实现天线小型化。
在实际应用中,对于不同结构、尺寸的辐射单元,以及天线内不同的排布结构,可通过调整所述耦合盘1321的大小及所述传输线1322的长度、宽度等参数,使所述去耦电路132更好地适配所述高频辐射单元1,能够 有效抑制低频耦合信号。具体可结合仿真测试的结构进行调整,确保回波损耗及隔离度均能达到预设值。
应当理解的是,在本实施例中,所述辐射片131设于所述介质基板12靠近所述馈电巴伦11的一面上。在其他实施方式中,所述辐射片131也可设于所述介质基板12远离所述馈电巴伦11的一面上,对应地,所述去耦电路132将设于所述介质基板12靠近所述馈电巴伦11的一面,且该结构的辐射性能与本实施例提供的高频辐射单元1的性能等效。
优选地,所述耦合盘1321的中心开设有用于与所述馈电巴伦11电连接的连接孔1323,所述介质基板12对应所述连接孔1323的位置开设有通孔121,所述辐射片131于所述连接孔1323的位置处开设有避让孔1311,所述避让孔1311的直径比所述连接孔1323的直径大。
在图2中示出,所述馈电巴伦11还包括设于所述支撑座111上的支撑柱113和馈电柱114,所述支撑柱113的直径比所述馈电柱114的直径大,且所述支撑柱113的直径比所述避让孔1311的直径小,所述馈电柱114相对所述支撑柱113同轴地设于所述支撑柱113的顶部,所述支撑柱113和馈电柱114均设有四个,其对应四个辐射器13的位置呈矩形阵列设置。所述介质基板12抵接所述支撑柱113的端面并由所述支撑柱113支撑于所述支撑座111上,所述馈电柱114依次穿过所述避让孔1311、通孔121和连接孔1323后实现与所述耦合盘1321的电连接,所述辐射片131通过所述避让孔1311相对所述馈电柱114绝缘。
如图5所示,所述辐射器13还包括设于所述介质基板12上并用于连接所述辐射片131与所述去耦电路132的连接线133,所述连接线133由所述辐射片131延伸而出,所述传输线1322远离所述耦合盘1321的一端与所述连接线133远离所述辐射片131的一端连接,且二者的连接处均设有用于穿过所述介质基板12进行连接的金属化过孔。
优选地,所述馈电巴伦11的高度为所述高频辐射单元1的中心频率波长的0.17倍,而现有的而现有高频辐射单元的高度一般为中心频率波长的四分之一。由于设有所述去耦电路132,增加了所述馈电巴伦11的等效电长度,在降低所述馈电巴伦11的高度之后依然保证其具有良好的 阻抗匹配,在应用于多频天线内时不会与相邻的低频辐射单元产生较大的耦合影响,有利于实现天线的小型化。
在其他实施方式中,根据不同的参数需求,所述馈电巴伦11的具体高度可在所述高频辐射单元1的中心频率波长的0.15~0.2倍之间调整。
优选地,所述支撑座111一体成型,具体可采用压铸方式制成。由于将所述辐射片132和所述去耦电路132均设于所述介质基板12上,无需在所述馈电巴伦11上设置相关电路结构,可极大地简化所述馈电巴伦11,从而使所述支撑座111能够一体成型,减少焊点,提升所述高频辐射单元1的互调稳定性并可降低生产成本。
在图6中示出了所述高频辐射单元1的回波损耗及隔离度的仿真结果,线条S11和线条S22展示出所述高频辐射单元1在两个极化方向上的回波损耗,线条S21用于展示所述高频辐射单元1的两个极化方向之间的隔离度。从图6中可看出,所述高频辐射单元1的回波损耗及隔离度均处于正常水平,在应用于天线内时能够较好地实现其辐射性能。
作为第二方面,本申请还涉及一种基站天线(图未示,下同),包括反射板、均设于所述反射板上的低频辐射单元和上述高频辐射单元1,由于所述高频辐射单元1的结构紧凑并可有效减小对与其相邻的低频辐射单元的寄生辐射,使所述基站天线的布局可更加紧凑,实现小型化。
请结合图7和图8,在图7中示出了所述基站天线采用所述高频辐射单元1时的低频信号的方向图,在图8示出了所述基站天线采用现有高频辐射单元时的低频信号的方向图。如图所示,在相同的紧凑布局下,本实施例提供的基站天线的各项参数均表现正常,而当采用现有高频辐射单元的时,基站天线的方向图明显发生畸变,性能无法保证。
综上,本实施例提供的基站天线由于采用所述高频辐射单元1,在实现小型化的同时可有效避免高低频之间的耦合影响,保证电气性能良好,提升产品竞争力。

Claims (10)

  1. 一种高频辐射单元,其特征在于,包括馈电巴伦和设于所述馈电巴伦顶部的介质基板,以及两对极化正交并可由所述馈电巴伦进行馈电的辐射器,所述辐射器包括辐射片和与所述辐射片电连接并用于减小低频寄生辐射的去耦电路,所述辐射片与所述去耦电路分设于所述介质基板相对的两面上。
  2. 根据权利要求1所述的高频辐射单元,其特征在于,所述去耦电路包括等效为电容的耦合盘和等效为电感的传输线,所述传输线的两端分别与所述耦合盘和所述辐射片连接。
  3. 根据权利要求2所述的高频辐射单元,其特征在于,所述耦合盘的中心开设有用于与所述馈电巴伦电连接的连接孔。
  4. 根据权利要求3所述的高频辐射单元,其特征在于,所述辐射片设于所述介质基板靠近所述馈电巴伦的一面,所述辐射片于所述连接孔的位置处开设有避让孔,所述避让孔的直径比所述连接孔的直径大。
  5. 根据权利要求1所述的高频辐射单元,其特征在于,所述辐射器还包括设于所述介质基板上并用于连接所述辐射片与所述去耦电路的连接线。
  6. 根据权利要求1所述的高频辐射单元,其特征在于,所述馈电巴伦的高度为该高频辐射单元的中心频率波长的0.15~0.2倍。
  7. 根据权利要求1所述的高频辐射单元,其特征在于,所述馈电巴伦包括支撑座、均设于所述支撑座上的馈电片和馈电柱,所述馈电片与所述辐射片电连接,所述馈电柱与所述去耦电路电连接。
  8. 根据权利要求7所述的高频辐射单元,其特征在于,所述支撑座一体成型。
  9. 根据权利要求7所述的高频辐射单元,其特征在于,所述辐射片设于所述介质基板靠近所述馈电巴伦的一面,所述馈电巴伦还包括设于所述支撑座上并用于支撑所述介质基板的支撑柱,所述支撑柱的直径比所述馈电柱的直径大,所述馈电柱相对所述支撑柱同轴地设于所述支撑柱的顶 部。
  10. 一种基站天线,包括反射板、均设于所述反射板上的高频辐射单元和低频辐射单元,其特征在于,所述高频辐射单元为权利要求1至9中任意一项所述的高频辐射单元。
PCT/CN2020/141557 2020-05-22 2020-12-30 基站天线及其高频辐射单元 WO2021232820A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010443566.7A CN113708048A (zh) 2020-05-22 2020-05-22 基站天线及其高频辐射单元
CN202010443566.7 2020-05-22

Publications (1)

Publication Number Publication Date
WO2021232820A1 true WO2021232820A1 (zh) 2021-11-25

Family

ID=78646449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141557 WO2021232820A1 (zh) 2020-05-22 2020-12-30 基站天线及其高频辐射单元

Country Status (2)

Country Link
CN (1) CN113708048A (zh)
WO (1) WO2021232820A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114597646A (zh) * 2022-04-11 2022-06-07 湖南迈克森伟电子科技有限公司 一种辐射单元
CN115051142A (zh) * 2022-06-16 2022-09-13 华南理工大学 一种多频基站天线单元及通信设备
CN116191026A (zh) * 2023-02-01 2023-05-30 广东工业大学 一种多频段双极化天线
WO2023207343A1 (zh) * 2022-04-24 2023-11-02 华为技术有限公司 天线、通信设备及基站

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105406188A (zh) * 2015-12-23 2016-03-16 安谱络(苏州)通讯技术有限公司 新型天线辐射单元及多频天线
CN105896071A (zh) * 2016-04-27 2016-08-24 上海安费诺永亿通讯电子有限公司 双极化振子单元、天线及多频天线阵列
CN105960737A (zh) * 2015-12-03 2016-09-21 华为技术有限公司 一种多频通信天线以及基站
CN206893796U (zh) * 2017-05-26 2018-01-16 华南理工大学 高异频隔离宽带双频基站天线阵列
US20180191075A1 (en) * 2016-12-30 2018-07-05 Radio Frequency Systems, Inc. Compact multi-band dual slant polarization antenna
CN108539383A (zh) * 2018-05-24 2018-09-14 南京澳博阳射频技术有限公司 多频基站天线和天馈系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105960737A (zh) * 2015-12-03 2016-09-21 华为技术有限公司 一种多频通信天线以及基站
CN105406188A (zh) * 2015-12-23 2016-03-16 安谱络(苏州)通讯技术有限公司 新型天线辐射单元及多频天线
CN105896071A (zh) * 2016-04-27 2016-08-24 上海安费诺永亿通讯电子有限公司 双极化振子单元、天线及多频天线阵列
US20180191075A1 (en) * 2016-12-30 2018-07-05 Radio Frequency Systems, Inc. Compact multi-band dual slant polarization antenna
CN206893796U (zh) * 2017-05-26 2018-01-16 华南理工大学 高异频隔离宽带双频基站天线阵列
CN108539383A (zh) * 2018-05-24 2018-09-14 南京澳博阳射频技术有限公司 多频基站天线和天馈系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114597646A (zh) * 2022-04-11 2022-06-07 湖南迈克森伟电子科技有限公司 一种辐射单元
CN114597646B (zh) * 2022-04-11 2023-07-18 湖南迈克森伟电子科技有限公司 一种辐射单元
WO2023207343A1 (zh) * 2022-04-24 2023-11-02 华为技术有限公司 天线、通信设备及基站
CN115051142A (zh) * 2022-06-16 2022-09-13 华南理工大学 一种多频基站天线单元及通信设备
CN115051142B (zh) * 2022-06-16 2023-08-22 华南理工大学 一种多频基站天线单元及通信设备
CN116191026A (zh) * 2023-02-01 2023-05-30 广东工业大学 一种多频段双极化天线
CN116191026B (zh) * 2023-02-01 2024-02-27 广东工业大学 一种多频段双极化天线

Also Published As

Publication number Publication date
CN113708048A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
WO2021232820A1 (zh) 基站天线及其高频辐射单元
WO2022021824A1 (zh) 低频辐射单元及基站天线
CN103311651B (zh) 一种超宽带多频双极化天线
TWI420742B (zh) 用於一多輸入多輸出無線通訊系統之多重天線
WO2012088837A1 (zh) 一种移动终端的阵列天线及其实现方法
WO2020168778A1 (zh) 一种辐射装置和多频段阵列天线
WO2021082935A1 (zh) 电子设备
CN110957569B (zh) 一种宽频辐射单元及天线
US11171411B2 (en) Base station antenna
WO2019062445A1 (zh) 多极化辐射振子及天线
CN109980329A (zh) 一种宽带双极化天线
WO2020010941A1 (zh) 天线及通信设备
TWI761872B (zh) 用於多寬頻以及多極化通訊之天線
WO2024088133A1 (zh) 双频共口径辐射单元及天线
WO2023045282A1 (zh) 高频辐射单元与多频基站天线
US11532887B2 (en) Radiation element for antenna and antenna including the radiation element
CN114639956A (zh) 一种结合mimo技术的微波与毫米波大频比共口径天线
WO2021212277A1 (zh) 双频双极化天线
CN112310630A (zh) 宽频带高增益印刷天线
CN219123474U (zh) 一种双极化天线
CN116053776A (zh) 双宽带双极化磁电偶极子基站天线及通信设备
CN113036404B (zh) 低剖面超宽带双极化天线振子、天线阵列及基站设备
CN103296423A (zh) 天线装置以及阵列天线
CN108172993B (zh) 一种双极化频率可重构天线
CN201741806U (zh) 一种用于射频前端系统的ltcc电小集成天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936870

Country of ref document: EP

Kind code of ref document: A1