WO2024087593A1 - 共口径辐射单元及天线 - Google Patents

共口径辐射单元及天线 Download PDF

Info

Publication number
WO2024087593A1
WO2024087593A1 PCT/CN2023/094824 CN2023094824W WO2024087593A1 WO 2024087593 A1 WO2024087593 A1 WO 2024087593A1 CN 2023094824 W CN2023094824 W CN 2023094824W WO 2024087593 A1 WO2024087593 A1 WO 2024087593A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
feeding
low
frequency radiator
radiator
Prior art date
Application number
PCT/CN2023/094824
Other languages
English (en)
French (fr)
Inventor
刘正贵
张强
潘利君
Original Assignee
中信科移动通信技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中信科移动通信技术股份有限公司 filed Critical 中信科移动通信技术股份有限公司
Publication of WO2024087593A1 publication Critical patent/WO2024087593A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • the present disclosure relates to the technical field of communication antennas, and in particular to a common aperture radiation unit and an antenna.
  • a common aperture radiation unit comprising: a base, provided with a first through hole and a second through hole;
  • the first frequency band unit includes a low-frequency radiator and a first feeding group.
  • the low-frequency radiator is supported and arranged on a base.
  • the low-frequency radiator includes at least one symmetrical dipole binary array.
  • the first feeding group includes at least one first feeding element, the first feeding element is arranged corresponding to the polarized low-frequency binary array, the first feeding element includes a first connecting section and a first feeding section, the first connecting section is penetrated through the first through hole, and is used to access an external signal, and the first feeding section is coupled and connected with the corresponding low-frequency binary array, and is used to couple and feed the input signal of the low-frequency radiator;
  • the second frequency band unit is nested in the first frequency band unit, and the second frequency band unit includes a high-frequency radiator and a second feeding group.
  • the high-frequency radiator is supported and arranged on the base.
  • the high-frequency radiator includes at least one polarization composed of a symmetrical dipole binary array.
  • the second feeding group includes at least one second feeding element.
  • the second feeding element is arranged corresponding to the polarized high-frequency binary array.
  • the second feeding element includes a second connecting section and a second feeding section.
  • the second connecting section is penetrated through the second through hole for accessing an external signal.
  • the second feeding section is coupled and connected to the corresponding high-frequency binary array for coupling and feeding the input signal of the high-frequency radiator.
  • the low-frequency radiator includes two polarizations arranged orthogonally, the first feeding group includes two of the first feeding elements, and the two first feeding elements are arranged in a one-to-one correspondence with the two polarizations of the low-frequency radiator.
  • the low-frequency radiator and the base are separately arranged; the low-frequency radiator and the base are coupled and connected, or the low-frequency radiator and the base are rigidly connected by metal fasteners.
  • the high-frequency radiator and the base are separately arranged; the high-frequency radiator and the base are coupled and connected, or the high-frequency radiator and the base are rigidly connected by metal fasteners.
  • a first metal support and a second metal support are arranged at the bottom of the base, a first through hole is penetrated through the first metal support, a second through hole is penetrated through the second metal support, and the first metal support and the second metal support are both used to connect the external conductor of the external unit; a first metal via hole and a second metal via hole are opened at the bottom of the low-frequency radiator, the first metal via hole and the first through hole are arranged correspondingly, and the first connecting section passes through the first metal via hole and the first through hole to be electrically connected to the internal conductor of the external unit; the second metal via hole and the second through hole are opened The holes are arranged correspondingly, and the second connecting section passes through the second metal via hole and the second through hole to be electrically connected to the internal conductor of the external unit.
  • the first feeding component is one of a sheet metal component, a die casting component or a printed circuit component
  • the second feeding component is one of a sheet metal component, a die casting component or a printed circuit component
  • the first feeder is an integrally formed part; and/or the second feeder is an integrally formed part.
  • the common-aperture radiation unit further includes a guide plate, which is arranged on a side of the high-frequency radiator away from the base, and the guide plate is spaced apart from the high-frequency radiator.
  • an antenna comprising any one of the above-mentioned co-aperture radiating units.
  • the antenna includes a plurality of co-aperture radiating units, and the plurality of co-aperture radiating units are a combination of same-frequency units or at least a partial combination of different-frequency units.
  • FIG1 is a schematic diagram of the exploded structure of a common aperture radiation unit according to an embodiment of the present disclosure
  • FIG2 is a schematic diagram of the structure of a first frequency band unit according to an embodiment of the present disclosure
  • FIG3 is a schematic structural diagram of a first feeding group according to an embodiment of the present disclosure.
  • FIG4 is a schematic diagram of the structure of a second frequency band unit according to an embodiment of the present disclosure.
  • FIG5 is a schematic structural diagram of a second feeding group according to an embodiment of the present disclosure.
  • FIG6 is a schematic structural diagram of a base according to an embodiment of the present disclosure.
  • FIG7 is a schematic diagram of assembling the first feeding group and the base according to an embodiment of the present disclosure.
  • FIG8 is a schematic diagram of assembling a second feeding group and a base according to an embodiment of the present disclosure
  • FIG9 is a graph showing a standing wave ratio of a first frequency band unit according to an embodiment of the present disclosure.
  • FIG. 10 is a graph showing a standing wave ratio of a second frequency band unit according to an embodiment of the present disclosure.
  • first frequency band unit 21: low frequency radiator; 211: low frequency dipole; 212: first connection hole; 213: first metal via; 214: second metal via; 22: first feeding group; 220: first feeding element; 221: first connection section; 222: first feeding section; 223: avoidance portion;
  • 3 second frequency band unit; 31: high frequency radiator; 32: second feeding group; 320: second feeding element; 321: second connecting section; 322: second feeding section; 323: rubber coating; 33: guide plate;
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, an electrical connection, or communication with each other; it can be a direct connection, or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • connection can be a fixed connection, a detachable connection, or an integral connection
  • connection can be a mechanical connection, an electrical connection, or communication with each other
  • it can be a direct connection, or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • connection can be a fixed connection, a detachable connection, or an integral connection
  • connection can be a mechanical connection, an electrical connection, or communication with each other
  • it can be a direct connection, or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless
  • the common-aperture radiation unit provided by the present disclosure includes a base 1, a first frequency band unit 2 and a second frequency band unit 3, the base 1 is provided with a first through hole 11 and a second through hole 12;
  • the first frequency band unit 2 includes a low-frequency radiator 21 and a first feeding group 22, the low-frequency radiator 21 is supported and arranged on the base 1, the low-frequency radiator 21 includes at least one polarization composed of a symmetrical dipole binary array,
  • the first feeding group 22 includes at least one first feeding element 220, one first feeding element 220 corresponds to a polarized low-frequency binary array arrangement, the first feeding element 220 includes a first connecting section 221 and a first feeding section 222, the first connecting section 221 is penetrated through the first through hole 11 for accessing an external signal, and the first feeding section 222 is coupled and connected to the corresponding low-frequency binary array for A polarized input signal of the low-frequency radiator 21 is coupled and fed;
  • the second frequency band unit 3 is nested in the first
  • the frequency of the low-frequency radiator 21 is lower than the frequency of the high-frequency radiator 31 , that is, the radiation frequency of the first frequency band unit 2 is lower than the radiation frequency of the second frequency band unit 3 .
  • a dual-frequency common aperture radiation unit is formed to achieve dual-frequency characteristics.
  • the low-frequency radiator 21 and the high-frequency radiator 31 are both supported and arranged on the base 1.
  • the base 1 is a common part of the first frequency band unit 2 and the second frequency band unit 3.
  • the base 1 realizes the support and electrical connection of the low-frequency radiator 21 and the high-frequency radiator 31 at the same time; the base 1 is also used to connect with the external unit 500.
  • the first connecting section 221 of the first feeder 220 is a connecting part, and the first feeding section 222 is a feeding part.
  • the first connecting section 221 is penetrated through the first through hole 11 of the base 1, so that the first connecting section 221 can pass through the base 1 and connect with the external unit 500.
  • the first feeding section 222 corresponds to a low-frequency binary array coupling arrangement of a polarization of the low-frequency radiator 21.
  • the input signal is coupled and fed to a polarization input signal of the low-frequency radiator 21 through the first feeding section 220 through the external unit 500, so as to realize the signal input to the low-frequency radiator 21.
  • the second connecting section 321 of the second feeding element 320 is a connecting part, and the second feeding section 322 is a feeding part.
  • the second connecting section 321 is passed through the second through hole 12 of the base 1, so that the second connecting section 321 can pass through the base 1 to be connected with the external unit 500.
  • the second feeding section 322 corresponds to a polarized high-frequency binary array coupling arrangement of the high-frequency radiator 31.
  • the input signal is coupled and fed to a polarized input signal of the high-frequency radiator 31 through the external unit 500 through the second feeding element 320, thereby realizing signal input to the high-frequency radiator 31.
  • the common-aperture radiation unit disclosed in the present invention has a compact structure by nesting the first frequency band unit 2 and the second frequency band unit 3 and the common base 1, and realizes miniaturization of the radiation unit, which can further reduce the windward area of the antenna; by adopting coupled feeding to realize signal input to the low-frequency radiator 21 and the high-frequency radiator 31, the terminal and the oscillator line are removed on the basis of the traditional radiation unit, which can reduce the hole position of the reflector, improve the intermodulation stability, reduce the intermodulation risk caused by welding operation, improve reliability, and achieve low cost; and the low-frequency radiator 21 and the high-frequency radiator 31 have no electrical connection with other parts, do not need electroplating, save electroplating cost, and further reduce the cost; at the same time, the beam deformation of the common-aperture radiation unit is improved, and the performance is improved, so that on the basis of realizing the miniaturization of the antenna, multi-band and multi-mode radiation can be realized.
  • the fusion of the modes ensures that the indicators of each frequency band
  • each polarized low-frequency binary array of the low-frequency radiator 21 includes two low-frequency dipoles 211, and the two low-frequency dipoles 211 are symmetrically arranged; to accommodate the two low-frequency dipoles 211 of each polarization, the first feeder 220 has two first feed segments 222, and the two first feed segments 222 are respectively coupled and connected with the two low-frequency dipoles 211 of the same polarization to feed external signals to the radiation arms of the two low-frequency dipoles 211; a part of the first feed segment 222 is at the bottom of the low-frequency radiator 21, and the other part is bent upward to match the coupling connection with the low-frequency dipole 211.
  • One end of the first connection segment 221 connects the two first feed segments 222, and the other end is inserted into the first through hole 11 of the base 1 to access external signals.
  • the low frequency radiator 21 includes two polarizations arranged orthogonally, and the first feeding group 22 includes two first feeding elements 220 , which are arranged in one-to-one correspondence with the two polarizations of the low frequency radiator 21 .
  • the low-frequency radiator 21 is composed of two symmetrical dipole binary arrays with two polarizations, and the two polarizations are arranged orthogonally, for example, at ⁇ 45°; a feeding structure is provided corresponding to the symmetrical dipole binary array of each polarization, that is, the first feeding group 22 includes two polarized first feeding elements 220, so as to realize the two polarized signal input to the low-frequency radiator 21.
  • the low-frequency dipole 211 is a half-wave bowl-shaped radiating oscillator
  • the low-frequency radiator 21 is a binary array composed of two half-wave bowl-shaped radiating oscillators placed at ⁇ 45°, so that an installation space is enclosed within the low-frequency radiator 21; the second frequency band unit 3 is nested and installed in the installation space of the low-frequency radiator 21.
  • the first feeding sections 222 of the two first feeding members 220 corresponding to the two polarizations overlap at the bottom of the low-frequency radiator 21.
  • the first feeding section 222 of one of the first feeding members 220 is provided with an avoidance portion 223 at the overlapping portion, and the avoidance portion 223 is bent in a direction away from the bottom of the low-frequency radiator 21, thereby avoiding the first feeding section 222 of the other first feeding member 220 from overlapping.
  • a feeding section 222 cross-contacts to ensure that the two first feeding elements 220 of the first feeding group 22 are fed independently from each other.
  • the high-frequency radiator 31 is composed of two symmetrical dipole binary arrays with two polarizations, and the two polarizations are arranged orthogonally; correspondingly, the second feeding group 32 includes two polarization feeding structures, that is, the second feeding group 32 includes two second feeding elements 320, and the two second feeding elements 320 are arranged in a one-to-one correspondence with the two polarizations of the high-frequency radiator 31 to realize the input of two polarization signals to the high-frequency radiator 31.
  • the second connecting section 321 of each polarization second feeding element 320 is a feeding matching part, and the second feeding section 322 has an open-circuit branch.
  • the second feeder 320 also includes a rubber coating 323, which is wrapped around the outside of the second connecting section 321.
  • the rubber coating 323 is located between the second connecting section 321 and the inner wall of the second through hole 12, thereby preventing the second feeder 320 from contacting the base 1, thereby protecting the second feeder 320 and preventing the second feeder 320 from contacting the high-frequency radiator 31, thereby ensuring the coupled feeding effect and improving the intermodulation stability.
  • the high-frequency radiator 31 is an integrated structure with simple structure and good consistency.
  • the second frequency band unit 3 further includes a guide plate 33 , which is disposed on a side of the high-frequency radiator 31 away from the base 1 , and the guide plate 33 is spaced apart from the high-frequency radiator 31 .
  • the antenna beam focusing effect can be achieved, the horizontal plane beam width and gain and other indicators can be improved, the radiation performance of the second frequency band unit 3 can be improved, and the reliability can be improved.
  • the low-frequency radiator 21 is provided separately from the base 1.
  • the low-frequency radiator 21 does not need to be electroplated, which reduces costs and is more environmentally friendly.
  • the low-frequency radiator 21 is coupled to the base 1 to avoid contact with each other, thereby improving intermodulation stability.
  • the low-frequency radiator 21 is rigidly connected to the base 1 through a metal fastener.
  • the metal fastener is a metal screw. The rigid connection is more firm and stable, ensuring reliability.
  • a first connecting hole 212 is provided at the bottom of the low-frequency radiator 21, and a second connecting hole 13 is correspondingly provided on the base 1.
  • Metal fasteners are passed through the first connecting hole 212 and the second connecting hole 13, thereby rigidly fixing the low-frequency radiator 21 and the base 1.
  • the first connecting hole 212 is a metal hole, and the number of the first connecting hole 212 and the second connecting hole 13 can be multiple, for example, three, and the three first connecting holes 212 are not collinear, so that the connection between the low-frequency radiator 21 and the base 1 is more firm, stable and reliable.
  • the high-frequency radiator 31 is provided separately from the base 1.
  • the high-frequency radiator 31 does not need to be electroplated, which reduces costs and is more environmentally friendly.
  • the high-frequency radiator 31 is coupled to the base 1 to avoid contact with each other, thereby improving intermodulation stability.
  • the high frequency radiator 31 is rigidly connected to the base 1 by a metal fastener.
  • the metal fastener is a metal screw. The rigid connection is more firm and stable, ensuring reliability.
  • the bottom of the base 1 is provided with a first metal support 14 and a second metal support 15, the first through hole 11 is penetrated through the first metal support 14, the second through hole 12 is penetrated through the second metal support 15, and the first metal support 14 and the second metal support 15 are both used to connect the outer conductor 501 of the external unit 500;
  • the bottom of the low-frequency radiator 21 is provided with a first metal via 213 and a second metal via 214, the first metal via 213 and the first through hole 11 are provided correspondingly, and the first feeding member 220 has a first metal via 213 and a second metal via 214.
  • the connecting section 221 passes through the first metal via 213 and the first through hole 11 to be electrically connected to the internal conductor of the external unit 500; the second metal via 214 and the second through hole 12 are arranged correspondingly, and the second connecting section 321 of the second feeding member 320 passes through the second metal via 214 and the second through hole 12 to be electrically connected to the internal conductor of the external unit 500.
  • the base 1 is connected to the external unit 500 through the first metal support 14 and the second metal support 15 provided at the bottom, the first metal support 14 is provided with a first through hole 11, and the second metal support 15 is provided with a second through hole 12; at the same time, the bottom of the low-frequency radiator 21 is provided with a first metal via 213 and a second metal via 214 corresponding to the first through hole 11 and the second through hole 12, respectively, so that the first connection section 221 of the first feeder 220 provided in the low-frequency radiator 21 can be inserted into the first metal via 213 and the first through hole 11 to connect with the external unit 500; similarly, the second connection section 321 of the second feeder 320 can be inserted into the second metal via 214 and the second through hole 12 to connect with the external unit 500.
  • the base 1 can realize the support and electrical connection of the low-frequency radiator 21 and the high-frequency radiator 31, and can also realize the connection of the first feeder 220 and the second feeder 320 with the external unit 500, and the structure is compact, which is conducive to miniaturization of the antenna.
  • the first metal support 14 of the base 1 passes through the first metal via 213 of the low-frequency radiator 21, and the second metal support 15 of the base 1 passes through the second metal via 214 of the low-frequency radiator 21, so that the base 1 can be connected to the low-frequency radiator 21; at the same time, the first connecting section 221 of the first feeding member 220 is inserted into the first metal via 213 and the first through hole 11 in the first metal support 14, and the external signal is connected through the external unit 500; the second connecting section 321 of the second feeding member 320 is inserted into the second metal via 214 and the second through hole 12 in the second metal support 15, and the external signal is connected through the external unit 500.
  • first metal support 14 and the second metal support 15 are metal columns, and a welding notch 16 is further provided at the bottom of the metal column to facilitate welding of the metal column with the outer conductor 501 of the external unit 500 .
  • the external unit 500 may be a radio frequency transmission component, such as a coaxial cable.
  • the low-frequency radiator 21 and the high-frequency radiator 31 both include two polarizations
  • the first feed group 22 includes two first feed members 220
  • the second feed group 32 includes two second feed members 320
  • the bottom of the low-frequency radiator 21 is provided with a total of 7 metal circular holes, namely, two first metal vias 213, two second metal vias 214, and three first connection holes 212.
  • the bottom of the base 1 is provided with four metal pillars, two of which are first metal supports 14 for connecting to the first frequency band unit 2, and the other two are second metal supports 15 for connecting to the second frequency band unit 3.
  • the first feeder 220 is a sheet metal part, a die casting, or a printed circuit part; and/or the second feeder 320 is a sheet metal part, a die casting, or a printed circuit part.
  • the first feeder 220 and the second feeder 320 are made of sheet metal parts, die castings, or printed circuits, which have a simple structure, are easy to form, and have a low cost.
  • the first feeder 220 is an integrally formed part; and/or the second feeder 320 is an integrally formed part.
  • the first feeder 220 and the second feeder 320 adopt an integrally formed structure, which has a simple structure, good consistency, longer service life and lower cost.
  • a standing wave ratio curve of the first frequency band unit of the co-aperture radiating unit provided in the embodiment of the present disclosure is provided.
  • the horizontal axis is frequency, in MHz, and the vertical axis is standing wave ratio;
  • the solid line represents the standing wave ratio-frequency curve of the +45° polarization of the first frequency band, and the dotted line represents the standing wave ratio-frequency curve of the -45° polarization of the first frequency band.
  • the standing wave ratio of the low-frequency part of the co-aperture radiating unit disclosed in the present disclosure is less than 1.4, and the impedance matching degree is high, which can effectively reduce the energy loss in the low-frequency part, which is beneficial to reduce the input power of the antenna, has high reliability and low cost.
  • FIG. 10 it is a standing wave ratio curve of the second frequency band unit of the common aperture radiation unit provided by the embodiment of the present disclosure.
  • the horizontal axis is frequency, unit MHz, and the vertical axis is standing wave ratio;
  • the solid line represents the standing wave ratio-frequency curve of the second frequency band with +45° polarization, and
  • the dotted line represents the standing wave ratio-frequency curve of the second frequency band with -45° polarization.
  • the common-aperture radiation unit disclosed in the present invention has a standing wave ratio in the low-frequency part and the high-frequency part that is within a normal range, has good impedance matching, ensures that the indicators of each frequency band do not deteriorate, has good intermodulation stability, high reliability and low cost.
  • the present disclosure also provides an antenna, comprising a co-aperture radiation unit provided by any of the above embodiments.
  • the antenna includes a plurality of co-aperture radiating units, and the plurality of co-aperture radiating units are a combination of same-frequency units, or at least partially a combination of different-frequency units.
  • the common-aperture radiation units can be appropriately arranged to obtain a multi-band fusion base station antenna, which improves intermodulation stability and has a lower cost, thereby solving the reliability and cost problems of multi-frequency multi-port array antennas in the prior art.
  • the antenna can adopt a combination of same-frequency units, that is, the working frequency bands of multiple co-aperture radiation units are the same, and the antenna can simultaneously receive/send signals from multiple devices in the same frequency band.
  • the antenna may also adopt at least a partial heterodyne combination, that is, at least one of the multiple common-aperture radiating units is different from the other operating frequency bands, so that the antenna can simultaneously receive/send signals of multiple devices in more frequency bands.
  • the antenna of the disclosed embodiment is more convenient and flexible to use and meets various usage requirements.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本公开涉及通信天线技术领域,提供一种共口径辐射单元及天线,共口径辐射单元包括底座、第一频段单元和第二频段单元,第一频段单元包括低频辐射器和第一馈电组,低频辐射器支撑于底座,低频辐射器包括至少一个极化,第一馈电组包括至少一个第一馈电件,第一馈电件用以对低频辐射器耦合馈电;第二频段单元嵌套设置于第一频段单元内,第二频段单元包括高频辐射器和第二馈电组,高频辐射器支撑设置于底座,高频辐射器包括至少一个极化,第二馈电组包括至少一个第二馈电件,第二馈电件用以对高频辐射器耦合馈电。

Description

共口径辐射单元及天线
相关申请的交叉引用
本公开要求于2022年10月24日在中国知识产权局提交的申请号为No.202211305985X,标题为“共口径辐射单元及天线”的中国专利申请的优先权,通过引用将该中国专利申请公开的全部内容并入本文。
技术领域
本公开涉及通信天线技术领域,尤其涉及一种共口径辐射单元及天线。
背景技术
随着5G通信技术的发展,4G/5G融合天线成为主流天线。然而,多频融合对天线的要求也增多,既要实现天线尺寸小型化,又要实现多频段、多制式之间的融合,保证每个频段指标不恶化;同时,成本和重量也是天线的重要考核指标,因而天线的小型化、高性能、低成本成为设计者开发的目标。
传统的高低频共口径辐射单元,采用振子线加端子方案,互调稳定性较差,可靠性较低,而且需要对辐射单元的辐射体进行电镀,生产成本较高。
发明内容
根据本公开的第一方面,提供了一种共口径辐射单元,包括:底座,设置有第一通孔和第二通孔;
第一频段单元,包括低频辐射器和第一馈电组,该低频辐射器支撑设置于底座,该低频辐射器包括由对称偶极子二元阵构成的至少一 个极化,该第一馈电组包括至少一个第一馈电件,第一馈电件对应于极化的低频二元阵设置,第一馈电件包括第一连接段和第一馈电段,第一连接段穿设于第一通孔,用以接入外部信号,第一馈电段与对应的低频二元阵耦合连接,用以对低频辐射器的输入信号耦合馈电;
第二频段单元,嵌套设置于第一频段单元内,第二频段单元包括高频辐射器和第二馈电组,高频辐射器支撑设置于底座,高频辐射器包括由对称偶极子二元阵构成的至少一个极化,第二馈电组包括至少一个第二馈电件,第二馈电件对应于极化的高频二元阵设置,第二馈电件包括第二连接段和第二馈电段,第二连接段穿设于第二通孔,用以接入外部信号,第二馈电段与对应的高频二元阵耦合连接,用以对高频辐射器的输入信号耦合馈电。
根据本公开提供的共口径辐射单元,低频辐射器包括正交布置的两个极化,第一馈电组包括两个所述第一馈电件,两个第一馈电件与低频辐射器的两个极化一一对应设置。
根据本公开提供的共口径辐射单元,低频辐射器与底座分体设置;低频辐射器与底座耦合连接,或者,低频辐射器与底座通过金属紧固件刚性连接。
根据本公开提供的共口径辐射单元,高频辐射器与底座分体设置;高频辐射器与底座耦合连接,或者,高频辐射器与底座通过金属紧固件刚性连接。
根据本公开提供的共口径辐射单元,底座的底部设置有第一金属支撑和第二金属支撑,第一通孔贯设于第一金属支撑,第二通孔贯设于第二金属支撑,第一金属支撑和第二金属支撑均用于连接外接单元的外导体;低频辐射器的底部开设有第一金属过孔和第二金属过孔,第一金属过孔和第一通孔相对应设置,第一连接段穿过第一金属过孔和第一通孔,以与外接单元的内导体电连接;第二金属过孔和第二通 孔相对应设置,第二连接段穿过第二金属过孔和第二通孔,以与外接单元的内导体电连接。
根据本公开提供的共口径辐射单元,第一馈电件为钣金件、压铸件或印刷电路制件中的一种;和/或,第二馈电件为钣金件、压铸件或印刷电路制件中的一种。
根据本公开提供的共口径辐射单元,第一馈电件为一体成型件;和/或,第二馈电件为一体成型件。
根据本公开提供的共口径辐射单元,共口径辐射单元还包括引向片,引向片设置于高频辐射器的背离底座的一侧,且引向片与高频辐射器间隔布置。
根据本公开的第二方面,提供了一种天线,包括如上述任一种的共口径辐射单元。
根据本公开提供的天线,天线包括多个共口径辐射单元,多个共口径辐射单元为同频单元组合或者至少部分异频单元组合。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开实施例的共口径辐射单元的分解结构示意图;
图2是根据本公开实施例的第一频段单元的结构示意图;
图3是根据本公开实施例的第一馈电组的结构示意图;
图4是根据本公开实施例的第二频段单元的结构示意图;
图5是根据本公开实施例的第二馈电组的结构示意图;
图6是根据本公开实施例的底座的结构示意图;
图7是根据本公开实施例的第一馈电组与底座的装配示意图;
图8是根据本公开实施例的第二馈电组与底座的装配示意图;
图9是根据本公开实施例的第一频段单元的驻波比曲线图;
图10是根据本公开实施例的第二频段单元的驻波比曲线图。
附图标记:
1:底座;11:第一通孔;12:第二通孔;13:第二连接孔;14:第一金属支撑;15:第二金属支撑;16:焊接缺口;
2:第一频段单元;21:低频辐射器;211:低频偶极子;212:第一连接孔;213:第一金属过孔;214:第二金属过孔;22:第一馈电组;220:第一馈电件;221:第一连接段;222:第一馈电段;223:避让部;
3:第二频段单元;31:高频辐射器;32:第二馈电组;320:第二馈电件;321:第二连接段;322:第二馈电段;323:包胶;33:引向片;
500:外接单元;501:外导体。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合本公开中的附图,对本公开中的技术方案进行清楚地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
需要说明的是,“垂直方向”、“水平方向”、“+45°或-45°方向”、“上”、“中”、“下”以及类似的表述只是为了说明的目的,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、 “连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
下面结合图1-图8描述本公开的共口径辐射单元及天线。
如图1至图8所示,本公开提供的共口径辐射单元,包括底座1、第一频段单元2和第二频段单元3,底座1设置有第一通孔11和第二通孔12;第一频段单元2包括低频辐射器21和第一馈电组22,低频辐射器21支撑设置于底座1,低频辐射器21包括由对称偶极子二元阵构成的至少一个极化,第一馈电组22包括至少一个第一馈电件220,一个第一馈电件220对应于一个极化的低频二元阵设置,第一馈电件220包括第一连接段221和第一馈电段222,第一连接段221穿设于第一通孔11,用以接入外部信号,第一馈电段222与对应的低频二元阵耦合连接,用以对低频辐射器21的一个极化的输入信号耦合馈电;第二频段单元3嵌套设置于第一频段单元2内,第二频段单元3包括高频辐射器31和第二馈电组32,高频辐射器31支撑设置于底座1,高频辐射器31包括由对称偶极子二元阵构成的至少一个极化,第二馈电组32包括至少一个第二馈电件320,一个第二馈电件320对应于一个极化的高频二元阵设置,第二馈电件320包括第二连接段321和第二馈电段322,第二连接段321穿设于第二通孔12,用以接入外部信号,第二馈电段322与对应的高频二元阵耦合连接,用以对高频辐射器31的一个极化的输入信号耦合馈电。
其中,低频辐射器21的频率低于高频辐射器31的频率,即第一频段单元2的辐射频率低于第二频段单元3的辐射频率。
在本实施例中,通过将第二频段单元3嵌套于第一频段单元2内,形成双频共口径辐射单元,实现双频特性。低频辐射器21和高频辐射器31均支撑设置于底座1上,底座1为第一频段单元2和第二频段单元3的共用件,底座1实现同时对低频辐射器21和高频辐射器31的支撑及电气连接;底座1还用于与外接单元500连接。第一馈电件220的第一连接段221为连接部分,第一馈电段222为馈电部分,第一连接段221穿设于底座1的第一通孔11,从而第一连接段221能够穿过底座1与外接单元500连接,第一馈电段222对应低频辐射器21的一个极化的低频二元阵耦合布置,输入信号通过外接单元500经过第一馈电件220对低频辐射器21的一个极化的输入信号耦合馈电,实现对低频辐射器21的信号输入。第二馈电件320的第二连接段321为连接部分,第二馈电段322为馈电部分,第二连接段321穿设于底座1的第二通孔12,从而第二连接段321能够穿过底座1与外接单元500连接,第二馈电段322对应高频辐射器31的一个极化的高频二元阵耦合布置,输入信号通过外接单元500经过第二馈电件320对高频辐射器31的一个极化的输入信号耦合馈电,实现对高频辐射器31的信号输入。
本公开的共口径辐射单元,通过嵌套设置第一频段单元2和第二频段单元3以及共用底座1,结构紧凑,实现辐射单元小型化,可以使得天线迎风面积进一步减小;通过采用耦合馈电实现对低频辐射器21和高频辐射器31的信号输入,在传统辐射单元基础上实现去端子和去振子线,可以减少反射板孔位,提升互调稳定性,减少焊接操作造成的互调隐患,提升可靠性,实现低成本;而且低频辐射器21和高频辐射器31与其他部分无电气连接,无需电镀,节省电镀成本,使得成本进一步降低;同时共口径辐射单元的波束变形得到改善,性能得到提升,从而在实现天线小型化的基础上,实现对多频段、多制 式之间的融合,保证每个频段的指标不会恶化,解决现有技术中多频融合天线的互调稳定性较差、可靠性较低和成本较高的缺陷。
替代地,如图2所示,低频辐射器21的每一极化的低频二元阵均包括两个低频偶极子211,两个低频偶极子211对称设置;适应每一极化的两个低频偶极子211,第一馈电件220具有两个第一馈电段222,两个第一馈电段222与同一极化的两个低频偶极子211分别耦合连接,以将外部信号馈电至该两个低频偶极子211的辐射臂;第一馈电段222的一部分在低频辐射器21的底部,另一部分向上弯曲配合低频偶极子211耦合连接。第一连接段221的一端连接两个第一馈电段222,另一端穿插进入底座1的第一通孔11,用来接入外部信号。
在一个实施例中,如图2和图3所示,低频辐射器21包括正交布置的两个极化,第一馈电组22包括两个第一馈电件220,两个第一馈电件220与低频辐射器21的两个极化一一对应设置。
在本实施例中,低频辐射器21由两个对称偶极子二元阵组成两个极化,两个极化正交布置,例如以±45°放置;对应于每一个极化的对称偶极子二元阵均设置馈电结构,即第一馈电组22包括两个极化的第一馈电件220,实现对低频辐射器21的两个极化的信号输入。
在一个具体实施例中,如图2所示,低频偶极子211为半波碗状辐射振子,低频辐射器21由两个半波碗状辐射振子组成的二元阵±45°放置,从而低频辐射器21内围成安装空间;第二频段单元3嵌套安装于低频辐射器21的安装空间内。
替代地,如图3所示,由于低频辐射器21的两个极化正交布置,对应于两个极化的两个第一馈电件220的第一馈电段222在低频辐射器21的底部存在重叠的部分。其中一个第一馈电件220的第一馈电段222在该重叠的部分设置有避让部223,避让部223朝向远离低频辐射器21底部的方向弯曲,从而避免与另一个第一馈电件220的第 一馈电段222交叉接触,确保第一馈电组22的两个第一馈电件220相互独立馈电。
在一个实施例中,如图4和图5所示,高频辐射器31由两个对称偶极子二元阵组成两个极化,两个极化正交布置;对应地,第二馈电组32包括两个极化的馈电结构,即第二馈电组32包括两个第二馈电件320,两个第二馈电件320与高频辐射器31的两个极化一一对应设置,实现对高频辐射器31的两个极化的信号输入。其中,每个极化的第二馈电件320的第二连接段321为馈电匹配部分,第二馈电段322具有开路枝节。
替代地,如图4所示,第二馈电件320还包括包胶323,包胶323包裹于第二连接段321的外部,第二连接段321穿设于第二通孔12中时,包胶323位于第二连接段321与第二通孔12的内壁之间,避免第二馈电件320与底座1接触,可以保护第二馈电件320,并避免第二馈电件320与高频辐射器31相接触,保证耦合馈电效果,提高互调稳定性。
在一个具体实施例中,高频辐射器31为一体成型结构,结构简单,一致性好。
在一个实施例中,如图1和图4所示,第二频段单元3还包括引向片33,引向片33设置于高频辐射器31的背离底座1的一侧,且引向片33与高频辐射器31间隔布置。
在本实施例中,通过设置引向片33,引向片33位于高频辐射器31上方,能够实现天线聚波束作用,改善水平面波束宽度和增益等指标,提升第二频段单元3的辐射性能,提升可靠性。
替代地,如图1所示,低频辐射器21与底座1分体设置。通过低频辐射器21和底座1采用分体结构,低频辐射器21无需电镀,降低成本,而且生产更环保。
在一个实施例中,低频辐射器21与底座1耦合连接,相互之间避免接触,可以提高互调稳定性。
在另一个实施例中,低频辐射器21与底座1通过金属紧固件刚性连接。例如,金属紧固件为金属螺钉。采用刚性连接更加牢固稳定,保障可靠性。
替代地,如图1、图2和图6所示,低频辐射器21的底部开设有第一连接孔212,底座1上对应设置有第二连接孔13,金属紧固件穿设于第一连接孔212和第二连接孔13,从而将低频辐射器21和底座1刚性固定连接。
其中,第一连接孔212为金属孔,第一连接孔212和第二连接孔13的数量可以为多个,例如三个,且三个第一连接孔212不共线,低频辐射器21和底座1连接更加牢固,稳定可靠。
替代地,如图1所示,高频辐射器31与底座1分体设置。通过高频辐射器31和底座1采用分体结构,高频辐射器31无需电镀,降低成本,而且生产更环保。
在一个实施例中,高频辐射器31与底座1耦合连接,相互之间避免接触,可以提高互调稳定性。
在另一个实施例中,高频辐射器31与底座1通过金属紧固件刚性连接。例如,金属紧固件为金属螺钉。采用刚性连接更加牢固稳定,保障可靠性。
替代地,如图1、图2、图6、图7和图8所示,底座1的底部设置有第一金属支撑14和第二金属支撑15,第一通孔11贯设于第一金属支撑14,第二通孔12贯设于第二金属支撑15,第一金属支撑14和第二金属支撑15均用于连接外接单元500的外导体501;低频辐射器21的底部开设有第一金属过孔213和第二金属过孔214,第一金属过孔213和第一通孔11相对应设置,第一馈电件220的第一 连接段221穿过第一金属过孔213和第一通孔11,以与外接单元500的内导体电连接;第二金属过孔214和第二通孔12相对应设置,第二馈电件320的第二连接段321穿过第二金属过孔214和第二通孔12,以与外接单元500的内导体电连接。
在本实施例中,底座1通过底部设置的第一金属支撑14和第二金属支撑15与外接单元500连接,第一金属支撑14内设置第一通孔11,第二金属支撑15内设置第二通孔12;同时,低频辐射器21的底部对应于第一通孔11和第二通孔12分别开设有第一金属过孔213和第二金属过孔214,从而设置于低频辐射器21内的第一馈电件220的第一连接段221能够穿插进入第一金属过孔213和第一通孔11与外接单元500连接;同样地,第二馈电件320的第二连接段321能够穿插进入第二金属过孔214和第二通孔12与外接单元500连接。从而底座1既能实现低频辐射器21和高频辐射器31的支撑和电气连接,也能实现第一馈电件220和第二馈电件320与外接单元500的连接,而且结构紧凑,有利于天线小型化。
在一个实施例中,底座1的第一金属支撑14穿过低频辐射器21的第一金属过孔213,底座1的第二金属支撑15穿过低频辐射器21的第二金属过孔214,可以将底座1与低频辐射器21相连接;同时第一馈电件220的第一连接段221穿插进入第一金属过孔213和第一金属支撑14内的第一通孔11,并通过外接单元500接入外部信号;第二馈电件320的第二连接段321穿插进入第二金属过孔214和第二金属支撑15内的第二通孔12,并通过外接单元500接入外部信号。
替代地,第一金属支撑14和第二金属支撑15为金属柱,金属柱的底部还设置有焊接缺口16,方便金属柱与外接单元500的外导体501焊接。
可选地,外接单元500可以是射频传输件,例如同轴电缆。
在一个具体实施例中,低频辐射器21和高频辐射器31均包括两个极化,第一馈电组22包括两个第一馈电件220,第二馈电组32包括两个第二馈电件320;低频辐射器21的底部共开设有7个金属圆孔,分别是两个第一金属过孔213、两个第二金属过孔214和三个第一连接孔212。底座1的底部设置有四个金属柱,其中两个是第一金属支撑14,用来和第一频段单元2相连接,另两个是第二金属支撑15,用来和第二频段单元3相连接。
在一个实施例中,第一馈电件220为钣金件、压铸件或印刷电路制件中的一种;和/或,第二馈电件320为钣金件、压铸件或印刷电路制件中的一种。在本实施例中,第一馈电件220和第二馈电件320采用钣金件、压铸件或印刷电路制造,结构简单易成型,成本较低。
替代地,第一馈电件220为一体成型件;和/或,第二馈电件320为一体成型件。第一馈电件220和第二馈电件320采用一体成型结构,结构简单,一致性好,使用寿命更长,成本较低。
在一个具体实施例中,如图9所示,为本公开实施例提供的共口径辐射单元的第一频段单元的驻波比曲线图。图中,横轴为频率,单位MHz,竖轴为驻波比;实线表示第一频段的+45°极化的驻波比-频率曲线,虚线表示第一频段的-45°极化的驻波比-频率曲线。可以看出,本公开的共口径辐射单元的低频部分驻波比小于1.4,阻抗匹配程度高,能够有效降低在低频部分的能量损耗,有利于降低天线的输入功率,可靠性高,成本较低。
如图10所示,为本公开实施例提供的共口径辐射单元的第二频段单元的驻波比曲线图。图中,横轴为频率,单位MHz,竖轴为驻波比;实线表示第二频段的+45°极化的驻波比-频率曲线,虚线表示第二频段的-45°极化的驻波比-频率曲线。可以看出,本公开的共口径辐射单元的高频部分驻波比小于1.25,阻抗匹配程度高,能够有效 降低在高频部分的能量损耗,有利于降低天线的输入功率,可靠性高,成本较低。
本公开的共口径辐射单元,在低频部分和高频部分的驻波比均处于正常范围内,阻抗匹配性好,保证每个频段指标不恶化,互调稳定性好,可靠性较高,成本较低。
另一方面,本公开还提供一种天线,包括由上述任一实施例提供的共口径辐射单元。
在一个实施例中,天线包括多个共口径辐射单元,多个共口径辐射单元为同频单元组合,或者,至少部分异频单元组合。
在本实施例中,共口径辐射单元通过适当的布局,可以得到多频段融合基站天线,提升互调稳定性,成本较低,解决现有技术中多频多端口阵列天线的可靠性和成本问题。
其中,天线可以采用同频单元组合,即多个共口径辐射单元的工作频段均相同,天线能够同时接收/发送同一频段的多个设备的信号。
天线也可以采用至少部分异频组合,即多个共口径辐射单元中的至少一个与其他的工作频段不同,从而天线能够同时接收/发送更多个频段的多个设备的信号。
本公开实施例的天线,使用更加方便灵活,满足多种使用需求。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (10)

  1. 一种共口径辐射单元,包括:
    底座,设置有第一通孔和第二通孔;
    第一频段单元,包括低频辐射器和第一馈电组,所述低频辐射器支撑设置于所述底座,所述低频辐射器包括由对称偶极子二元阵构成的至少一个极化,所述第一馈电组包括至少一个第一馈电件,所述第一馈电件对应于极化的低频二元阵设置,所述第一馈电件包括第一连接段和第一馈电段,所述第一连接段穿设于所述第一通孔,用以接入外部信号,所述第一馈电段与对应的所述低频二元阵耦合连接,用以对所述低频辐射器的输入信号耦合馈电;
    第二频段单元,嵌套设置于所述第一频段单元内,所述第二频段单元包括高频辐射器和第二馈电组,所述高频辐射器支撑设置于所述底座,所述高频辐射器包括由对称偶极子二元阵构成的至少一个极化,所述第二馈电组包括至少一个第二馈电件,所述第二馈电件对应于极化的高频二元阵设置,所述第二馈电件包括第二连接段和第二馈电段,所述第二连接段穿设于所述第二通孔,用以接入外部信号,所述第二馈电段与对应的所述高频二元阵耦合连接,用以对所述高频辐射器的输入信号耦合馈电。
  2. 根据权利要求1所述的共口径辐射单元,其中,所述低频辐射器包括正交布置的两个极化,所述第一馈电组包括两个所述第一馈电件,两个所述第一馈电件与所述低频辐射器的两个极化一一对应设置。
  3. 根据权利要求1所述的共口径辐射单元,其中,所述低频辐射器与所述底座分体设置;
    所述低频辐射器与所述底座耦合连接,或者,所述低频辐射器与所述底座通过金属紧固件刚性连接。
  4. 根据权利要求1所述的共口径辐射单元,其中,所述高频辐射器与所述底座分体设置;
    所述高频辐射器与所述底座耦合连接,或者,所述高频辐射器与所述底座通过金属紧固件刚性连接。
  5. 根据权利要求1所述的共口径辐射单元,其中,所述底座的底部设置有第一金属支撑和第二金属支撑,所述第一通孔贯设于所述第一金属支撑,所述第二通孔贯设于所述第二金属支撑,所述第一金属支撑和所述第二金属支撑均用于连接外接单元的外导体;
    所述低频辐射器的底部开设有第一金属过孔和第二金属过孔,所述第一金属过孔和所述第一通孔相对应设置,所述第一连接段穿过所述第一金属过孔和所述第一通孔,以与外接单元的内导体电连接;所述第二金属过孔和所述第二通孔相对应设置,所述第二连接段穿过所述第二金属过孔和所述第二通孔,以与外接单元的内导体电连接。
  6. 根据权利要求1至5任一项所述的共口径辐射单元,其中,所述第一馈电件为钣金件、压铸件或印刷电路制件中的一种;和/或,所述第二馈电件为钣金件、压铸件或印刷电路制件中的一种。
  7. 根据权利要求6所述的共口径辐射单元,其中,所述第一馈电件为一体成型件;和/或,所述第二馈电件为一体成型件。
  8. 根据权利要求1至5任一项所述的共口径辐射单元,其中,所述共口径辐射单元还包括引向片,所述引向片设置于所述高频辐射器的背离所述底座的一侧,且所述引向片与所述高频辐射器间隔布置。
  9. 一种天线,包括如权利要求1至8任一项所述的共口径辐射单元。
  10. 根据权利要求9所述的天线,其中,所述天线包括多个所述共口径辐射单元,多个所述共口径辐射单元为同频单元组合或者至少部分异频单元组合。
PCT/CN2023/094824 2022-10-24 2023-05-17 共口径辐射单元及天线 WO2024087593A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211305985.XA CN115663460A (zh) 2022-10-24 2022-10-24 共口径辐射单元及天线
CN202211305985.X 2022-10-24

Publications (1)

Publication Number Publication Date
WO2024087593A1 true WO2024087593A1 (zh) 2024-05-02

Family

ID=84991505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094824 WO2024087593A1 (zh) 2022-10-24 2023-05-17 共口径辐射单元及天线

Country Status (2)

Country Link
CN (1) CN115663460A (zh)
WO (1) WO2024087593A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663460A (zh) * 2022-10-24 2023-01-31 中信科移动通信技术股份有限公司 共口径辐射单元及天线
CN117791132A (zh) * 2023-09-28 2024-03-29 中信科移动通信技术股份有限公司 辐射单元及基站天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2950385A1 (en) * 2014-05-28 2015-12-02 Alcatel Lucent Multiband antenna
CN109980329A (zh) * 2019-03-12 2019-07-05 广东司南通信科技有限公司 一种宽带双极化天线
CN111342199A (zh) * 2020-03-20 2020-06-26 摩比天线技术(深圳)有限公司 多频超宽带振子及天线
CN112821045A (zh) * 2020-12-31 2021-05-18 京信通信技术(广州)有限公司 辐射单元及基站天线
CN115663460A (zh) * 2022-10-24 2023-01-31 中信科移动通信技术股份有限公司 共口径辐射单元及天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2950385A1 (en) * 2014-05-28 2015-12-02 Alcatel Lucent Multiband antenna
CN109980329A (zh) * 2019-03-12 2019-07-05 广东司南通信科技有限公司 一种宽带双极化天线
CN111342199A (zh) * 2020-03-20 2020-06-26 摩比天线技术(深圳)有限公司 多频超宽带振子及天线
CN112821045A (zh) * 2020-12-31 2021-05-18 京信通信技术(广州)有限公司 辐射单元及基站天线
CN115663460A (zh) * 2022-10-24 2023-01-31 中信科移动通信技术股份有限公司 共口径辐射单元及天线

Also Published As

Publication number Publication date
CN115663460A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
WO2024087593A1 (zh) 共口径辐射单元及天线
WO2022021824A1 (zh) 低频辐射单元及基站天线
US6734828B2 (en) Dual band planar high-frequency antenna
WO2024088133A1 (zh) 双频共口径辐射单元及天线
CN107808998B (zh) 多极化辐射振子及天线
CN110957569B (zh) 一种宽频辐射单元及天线
US20070200764A1 (en) Multilayer planar array antenna
WO2021258705A1 (zh) 高频辐射单元、多频共轴辐射装置及天线
WO2022001068A1 (zh) 小型化天线
WO2021232820A1 (zh) 基站天线及其高频辐射单元
CN104966899A (zh) 一种全向天线和全向天线阵列
US20230223709A1 (en) Antenna device, array of antenna devices, and base station with antenna device
WO2023045282A1 (zh) 高频辐射单元与多频基站天线
CN210430092U (zh) 一种移动通信天线的单元结构及阵列结构
WO2023093316A1 (zh) 低频辐射单元、天线、多频共用天线及融合天线架构
CN116417786A (zh) 一种移动宽频段室内分布双极化定向挂墙天线
EP4340124A1 (en) Radiation unit and base station antenna
CN213242793U (zh) 低频辐射单元及宽频基站天线
CN210142716U (zh) 耦合辐射单元及天线
WO2021223118A1 (zh) 天线、天线阵列和通信装置
CN210926308U (zh) 一种双极化双工振子和天线
JP2003249818A (ja) 2周波共用マイクロストリップアンテナ
CN110556624A (zh) 一种移动通信天线的单元结构及阵列结构
TW565967B (en) Dual band planar high-frequency antenna
CN114267943B (zh) 双极化天线单元与辐射组件

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023833296

Country of ref document: EP

Effective date: 20240110

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024000559

Country of ref document: BR