WO2023093316A1 - 低频辐射单元、天线、多频共用天线及融合天线架构 - Google Patents

低频辐射单元、天线、多频共用天线及融合天线架构 Download PDF

Info

Publication number
WO2023093316A1
WO2023093316A1 PCT/CN2022/124214 CN2022124214W WO2023093316A1 WO 2023093316 A1 WO2023093316 A1 WO 2023093316A1 CN 2022124214 W CN2022124214 W CN 2022124214W WO 2023093316 A1 WO2023093316 A1 WO 2023093316A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
low
frequency
frequency radiation
metal
Prior art date
Application number
PCT/CN2022/124214
Other languages
English (en)
French (fr)
Inventor
廖瑞康
卜力
邵特
王荣理
孔胜伟
熊锡刚
刘水平
高翔
孙磊
李名定
林志滨
付灿
李占富
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP22897401.0A priority Critical patent/EP4425704A1/en
Publication of WO2023093316A1 publication Critical patent/WO2023093316A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas

Definitions

  • Embodiments of the present disclosure relate to the field of antennas, and in particular, to a low-frequency radiation unit, an antenna, a multi-frequency shared antenna, and a fusion antenna architecture.
  • Embodiments of the present disclosure provide a low-frequency radiation unit, an antenna, a multi-frequency shared antenna, and a fusion antenna architecture to at least solve the problem of the array element balun of the second antenna system 4G and the embedded first antenna system 5G in the related art.
  • the coupling between array elements is strong, which seriously affects the radiation performance indicators of 5G antennas such as wave width, front-to-back ratio, and sidelobe, as well as the circuit performance indicators of standing waves and isolation.
  • a low-frequency radiation unit which is arranged on the side of a metal reflector, including: a PCB dielectric board 10, a dielectric support frame 70, a coaxial cable 80, and the PCB dielectric board 10
  • Metal radiators are set on the front and back of the , wherein,
  • the dielectric support frame 70 is connected to the metal radiator for supporting the metal radiator;
  • the coaxial cable 80 is arranged on the dielectric support frame 70, connected with the metal radiator, and feeds the metal radiator.
  • the metal radiator includes two pairs of radiating oscillators 20 with orthogonal polarizations, a feeding sheet 31 and a loading line 60 for expanding the bandwidth;
  • the two pairs of radiation oscillators 20 are arranged on the opposite side of the PCB dielectric board 10;
  • the feeder 31 is disposed on the front and back of the PCB dielectric board 10 , wherein the feeder 31 is connected to the coaxial cable 80 by welding.
  • one end of the feed sheet 31 is provided with a metallized via hole 30 , wherein the metallized via hole 30 is connected to the coaxial cable 80 by welding.
  • the two pairs of radiation oscillators 20 are printed on the reverse side of the PCB dielectric board 10 through a photolithography process to form ⁇ 45° dual-polarized radiation characteristics;
  • the two pairs of radiating oscillators 20 have a grid-shaped structure; and/or
  • Two pairs of radiating oscillators 20 are spaced apart to form cross-shaped gaps 50 .
  • the two pairs of radiation oscillators 20 are respectively a first radiation oscillator 21, a second radiation oscillator 22, a third radiation oscillator 23, and a fourth radiation oscillator 24, wherein the first radiation oscillator 21
  • the third radiation oscillator 23 is in the same polarization
  • the second radiation oscillator 22 is in the same polarization as the fourth radiation oscillator 24 .
  • the medium support frame 70 includes an annular support seat 71 and a fixing frame 72, the annular support seat (71) is located directly below the metal radiator, and the annular support seat 71 and The metal radiator is connected.
  • the fixing frame 72 is provided with a guide groove 74 and a clamping groove 75, and the clamping groove 75 is used for fixing with the side of the metal reflector;
  • the coaxial cable 80 is connected to the metal radiator after passing through the guide slot 74 .
  • the annular support seat 71 is provided with a positioning post 73, and the positioning post 73 fixes the PCB dielectric board 10 and the metal radiator through the through hole 40 provided on the PCB dielectric board 10. body.
  • one end of the dielectric support frame 70 is located directly below the metal radiator, and the L-shaped broken line segment extending to the side of the metal radiator at the other end is aligned with the metal reflector. Side fixed.
  • one end of the coaxial cable 80 is used to feed power by welding with the feed sheet 31 , and the other end is used to connect to an input port of a phase shifter of a 4G system.
  • the fixing frame 72 is L-shaped.
  • the fixing frame 72 is composed of a plurality of broken line segments, wherein the connection between the coaxial cable 80 routed on the fixing frame 72 and the metal radiator on the PCB dielectric board 10 with a set interval between them.
  • an antenna including a metal reflector 100 and at least two of the above-mentioned low-frequency radiation units, and the low-frequency radiation units are arranged on the metal reflector 100 .
  • the low-frequency radiation unit is fixed on the side 101 of the metal reflector 100 through the clamping groove 75 of the medium support frame 70 , and the coaxial cable 80 passes through the guide groove 74 Wires are routed on the side 101 of the metal reflector 100 .
  • a multi-frequency sharing antenna including a metal reflector 100, a plurality of high-frequency radiation units 200 all arranged on the metal reflector 100, and at least two of the above-mentioned low-frequency radiation units , the low frequency radiation unit is disposed on the side of the metal reflector 100 .
  • the plurality of high-frequency radiation units 200 are arranged in a plurality of arrays.
  • At least one high-frequency radiation unit 200 is covered under the low-frequency radiation unit.
  • a fusion antenna architecture including an independently detachable 5G active antenna unit and a 4G passive antenna, wherein, the antenna of the 5G active antenna unit is provided with There are at least two low-frequency radiation units above, and the reflection surface of the low-frequency radiation unit shares the reflection surface of the antenna of the 5G active antenna unit.
  • the low-frequency radiation unit of the embodiment of the present disclosure is arranged on the side of the metal reflector, including: a PCB dielectric board 10, a dielectric support frame 70, a coaxial cable 80, and the front and back of the PCB dielectric board 10.
  • Metal radiator wherein, the dielectric support frame 70 is connected with the metal radiator to support the metal radiator; the coaxial cable 80 is arranged on the dielectric support frame 70, connected to the metal radiator, and the metal radiator Feed can solve the strong coupling between the 4G element balun of the second antenna system and the 5G element of the first antenna system nested in the related technology, which seriously affects the wave width, front-to-back ratio and sidelobe of the 5G antenna
  • the problem of radiation performance index and circuit performance index of standing wave and isolation has realized that the 4G low-frequency antenna can be flexibly placed above the 5G high-frequency antenna, avoiding the interference of the balun on the 5G high-frequency antenna, and low mutual coupling, saving the interior of the antenna space.
  • FIG. 1 is a schematic diagram of a low-frequency radiation unit according to an embodiment of the present disclosure
  • FIG. 2 is a schematic front view of a metal radiator according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of the reverse side of a metal radiator according to an embodiment of the present disclosure.
  • FIG. 4 is an exploded schematic diagram of a low-frequency radiation unit (top view) according to an embodiment of the present disclosure
  • FIG. 5 is an exploded schematic diagram of a low frequency radiation unit (viewed from above) according to an embodiment of the present disclosure
  • Fig. 6 is a schematic structural diagram of a low-frequency radiation unit according to another embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of other structures included in the medium support frame according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of an antenna using a low-frequency radiation unit according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a multi-frequency shared antenna using a low-frequency radiation unit according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of another example multi-frequency shared antenna using a low-frequency radiation unit according to an embodiment of the present disclosure
  • Fig. 11 is a schematic diagram of a 4G and 5G network standard fusion architecture using a low-frequency radiation unit according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of the low-frequency radiation unit according to the embodiment of the disclosure. As shown in FIG. 1 , it is arranged on the side of the metal reflector, including: PCB dielectric board 10 , a dielectric support frame 70, a coaxial cable 80, and a metal radiator provided on the front and back surfaces of the PCB dielectric board 10, wherein,
  • the dielectric support frame 70 is connected to the metal radiator and used to support the metal radiator;
  • the coaxial cable 80 is arranged on the dielectric support frame 70, connected with the metal radiator, and feeds the metal radiator.
  • the low-frequency radiation unit of the embodiment of the present disclosure is arranged on the side of the metal reflector, including: a PCB dielectric board 10, a dielectric support frame 70, a coaxial cable 80, and the front and back of the PCB dielectric board 10.
  • Metal radiator wherein, the dielectric support frame 70 is connected with the metal radiator to support the metal radiator; the coaxial cable 80 is arranged on the dielectric support frame 70, connected to the metal radiator, and the metal radiator Feed can solve the strong coupling between the 4G array element balun of the second antenna system and the 5G array element of the first antenna system nested in the related technology, which seriously affects the wave width, front-to-back ratio and sidelobe of the 5G antenna
  • the problem of radiation performance index and circuit performance index of standing wave and isolation has realized that the 4G low-frequency antenna can be flexibly placed above the 5G high-frequency antenna, avoiding the interference of the balun on the 5G high-frequency antenna, and low mutual coupling, saving the interior of the antenna space.
  • Fig. 2 is a schematic front view of a metal radiator according to an embodiment of the present disclosure.
  • the above-mentioned metal radiator includes a feeding sheet 31 and a loading circuit 60 for expanding bandwidth;
  • Fig. 3 is a metal radiator according to an embodiment of this disclosure
  • the schematic diagram of the reverse side of the radiator, as shown in Figure 3, the above-mentioned metal radiator also includes two pairs of radiation oscillators 20 arranged orthogonally in polarization, and the two pairs of radiation oscillators 20 are arranged on the reverse side of the PCB dielectric board 10; the feed sheet 31 is arranged On the front and back of the PCB dielectric board 10 , the feeder 31 and the coaxial cable 80 are connected by welding.
  • one end of the feed sheet 31 is provided with a metallized via hole 30 , wherein the metallized via hole 30 is connected to the coaxial cable 80 by welding.
  • one end of the coaxial cable 80 is used to feed power by welding with the feed sheet 31 , and the other end is used to connect to the input port of the phase shifter of the 4G system.
  • the outer conductor of the coaxial cable 80 is welded to the metal radiator on the opposite side to realize the grounding of the other arm of the half-wave oscillator.
  • the metal feeding sheet 31 exists on both the front and back sides of the PCB dielectric board 10, and one feeding sheet on the front part feeds one of the half-wave oscillators; the other feeding sheet passes through the metallization process.
  • the hole is connected to the feed sheet on the reverse side of the PCB dielectric board to feed another half-wave vibrator. This structure not only facilitates the assembly and welding of the radiation unit, but also effectively reduces the isolation between the radiation unit and the antenna.
  • two pairs of radiation oscillators 20 are printed on the reverse side of the PCB dielectric board 10 by photolithography to form ⁇ 45° dual polarization radiation characteristics;
  • the radiation unit is miniaturized; on the other hand, it is beneficial to the transmission of the 5G system multi-antenna covered under the radiation sheet, and reduces the mutual coupling between the 4G and 5G system networks; and/or two pairs of radiation oscillators 20 are spaced apart to form Cross-shaped gap 50.
  • the two pairs of radiation oscillators 20 are respectively the first radiation oscillator 21, the second radiation oscillator 22, the third radiation oscillator 23 and the fourth radiation oscillator 24, wherein the first radiation oscillator 21 and the third radiation oscillator 23 are in the same pole Polarization, the second radiating oscillator 22 and the fourth radiating oscillator 24 have the same polarization.
  • the four radiation oscillators 20 are spaced two by two to form cross-shaped slots 50 , and the cross-shaped slots 50 improve port isolation between the radiation oscillators 20 .
  • Fig. 4 is an exploded schematic diagram of a low-frequency radiation unit (top view) according to an embodiment of the present disclosure.
  • the dielectric support frame 70 includes an annular support seat 71 and a fixed frame 72, and the annular support seat (71) is located on the metal radiator.
  • the annular support base 71 is connected to the metal radiator.
  • Fig. 5 is an exploded schematic diagram of a low-frequency radiation unit (viewed from above) according to an embodiment of the present disclosure.
  • a guide groove 74 and a clamping groove 75 are arranged on the fixing frame 72, and the clamping groove 75 is used for connecting with the metal reflector The sides are fixed; the coaxial cable 80 passes through the guide groove 74 and is connected to the metal radiator.
  • the annular support seat 71 is provided with a positioning column 73, and the positioning column 73 fixes the PCB dielectric board 10 and the metal radiator through the through hole 40 provided on the PCB dielectric board 10, so as to fix the PCB dielectric board 10 and The effect of the radiator printed on it.
  • one end of the dielectric support frame 70 is located directly below the metal radiator, and the other end is fixed to the side of the metal reflector by an L-shaped folded line segment extending to the side of the metal radiator.
  • FIG. 6 is a schematic structural diagram of a low-frequency radiation unit according to another embodiment of the present disclosure. As shown in FIG. 6 , the fixing frame 72 may specifically be L-shaped.
  • the fixing frame 72 is composed of multiple broken line segments, wherein there is a set interval between the coaxial cable 80 routed on the fixing frame 72 and the metal radiator on the PCB dielectric board 10 .
  • a section of height 721 is added to the dielectric support frame 70, which ensures that there is a certain distance between the coaxial cable 80 and the radiator on the PCB dielectric board 10, which can reduce the influence of the high-frequency current of the coaxial cable 80 on the low-frequency radiation unit, and realize the solution. coupling, compatible with higher frequency bandwidths.
  • One end of the L-shaped dielectric support frame (70) is located directly below the radiating surface, and the L-shaped broken line segment extending to the side of the radiating surface at the other end is fixed to the side of the metal reflector, thereby not occupying the lower space of the low-frequency radiation unit. It can better realize multi-frequency antenna sharing.
  • the annular support seat 71 on the medium support frame 70 is not limited to the ⁇ shape, but can also be a ⁇ shape, a ⁇ shape, etc.
  • the medium support The L-shaped fixing frame 72 on the frame 70 can also be bent multiple times according to actual needs, and these improvements and modifications should also be regarded as the scope of protection of the present invention, and will not be described in detail here.
  • FIG. 8 is a schematic diagram of an antenna using a low-frequency radiation unit according to an embodiment of the disclosure. As shown in FIG. 8 , it includes a metal reflector 100 and at least two of the above-mentioned low-frequency radiation units , the low frequency radiation unit is arranged on the metal reflector 100 . Further, the above-mentioned low-frequency radiation unit is fixed on the side 101 of the metal reflector 100 through the clamping groove 75 of the medium support frame 70, and the coaxial cable 80 runs on the side 101 of the metal reflector 100 through the guide groove 74. line, further saving the lower space of the low-frequency radiation unit.
  • FIG. 9 is a schematic diagram of a multi-frequency shared antenna using a low-frequency radiation unit according to an embodiment of the present disclosure.
  • a metal reflector 100 is included, and A plurality of high-frequency radiation units 200 on the metal reflector 100 , at least two of the above-mentioned low-frequency radiation units, the low-frequency radiation units are arranged on the side of the metal reflector 100 . Further, multiple high-frequency radiation units 200 are arranged in multiple arrays. At least one high-frequency radiation unit 200 is covered under the above-mentioned low-frequency radiation unit.
  • the multi-frequency shared antenna of the present invention has the characteristics of small size and low cost.
  • four high-frequency radiation units are embedded in each low-frequency radiation unit.
  • Fig. 10 is a schematic diagram of another example of a multi-frequency shared antenna using a low-frequency radiation unit according to an embodiment of the present disclosure.
  • the L-shaped fixing frame 72 on the dielectric support frame 70 can also be based on the actual situation. It needs to be bent multiple times and set on the side of the metal reflector.
  • FIG. 11 is a schematic diagram of a fusion architecture of 4G and 5G network standards using a low-frequency radiation unit according to an embodiment of the disclosure. As shown in FIG. 11 , it includes an independent and detachable A 5G active antenna unit and a 4G passive antenna, wherein at least two of the above-mentioned low-frequency radiation units are arranged above the antenna of the 5G active antenna unit, and the reflection surface of the low-frequency radiation unit shares the 5G active antenna unit. reflective surface of the antenna.
  • the low-frequency radiation unit in the embodiment of the present disclosure is installed and fixed on the side of the metal reflector, so that the lower space of the low-frequency radiation unit is not occupied, the mutual coupling between the 4G system and the 5G system can be effectively reduced, and multi-frequency can be better realized.
  • the 4G and 5G antennas are integrated into a smaller size, so that the performance of the 4G and 5G network systems can reach the level of individual 4G antennas and 5G antennas, thereby deriving a multi-standard network integration architecture to realize network site resources. Optimal configuration and miniaturization of multi-standard network base stations.
  • each module or each step of the above-mentioned disclosure can be realized by a general-purpose computing device, and they can be concentrated on a single computing device, or distributed in a network composed of multiple computing devices In fact, they can be implemented in program code executable by a computing device, and thus, they can be stored in a storage device to be executed by a computing device, and in some cases, can be executed in an order different from that shown here. Or described steps, or they are fabricated into individual integrated circuit modules, or multiple modules or steps among them are fabricated into a single integrated circuit module for implementation. As such, the present disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种低频辐射单元、天线、多频共用天线及融合天线架构,该低频辐射单元,设置于金属反射板的侧边上,包括:PCB介质板(10)、介质支撑架(70)、同轴线缆(80),PCB介质板(10)的正面与反面上设置有金属辐射体,介质支撑架(70)与金属辐射体连接,用于支撑该金属辐射体;同轴线缆(80)设置于介质支撑架(70)上,与该金属辐射体连接,对该金属辐射体进行馈电,可以解决相关技术中第二天线系统4G的阵元巴伦与嵌套其内的第一天线系统5G阵元之间的耦合较强,严重影响5G天线波宽、前后比和副瓣等辐射性能指标以及驻波和隔离度的电路性能指标的问题,实现了4G低频天线灵活置于5G高频天线上方,避免巴伦对5G高频天线的干扰,且低互耦,节约天线内部空间。

Description

低频辐射单元、天线、多频共用天线及融合天线架构
相关申请的交叉引用
本公开基于2021年11月23日提交的发明名称为“低频辐射单元、天线、多频共用天线及融合天线架构”的中国专利申请CN202111398163.6,并且要求该专利申请的优先权,通过引用将其所公开的内容全部并入本公开。
技术领域
本公开实施例涉及天线领域,具体而言,涉及一种低频辐射单元、天线、多频共用天线及融合天线架构。
背景技术
随着通信行业的发展,在当前4G和5G网络共存的大环境下,多频天线的需求越来越多,对性能指标的要求也越来越高,兼容4G及5G则成为了多频天线技术发展的潮流及必然趋势。此外为了优化资源配置,节省站址和天馈资源,低剖面、小型化的多频天线能更好地满足市场需求。
相关技术提出将4G低频基站天线与5G高频基站天线嵌套,即将位于下端的第二天线系统4G的部分阵元嵌套在第一天线系统5G Massive MIMO天线阵列中,但是在实现上述方案的过程中,第二天线系统4G的阵元巴伦与嵌套其内的第一天线系统5G阵元之间的耦合较强,严重影响5G天线波宽、前后比和副瓣等辐射性能指标以及驻波和隔离度的电路性能指标。
针对相关技术中第二天线系统4G的阵元巴伦与嵌套其内的第一天线系统5G阵元之间的耦合较强,严重影响5G天线波宽、前后比和副瓣等辐射性能指标以及驻波和隔离度的电路性能指标的问题,尚未提出解决方案。
发明内容
本公开实施例提供了一种低频辐射单元、天线、多频共用天线及融合天线架构,以至少解决相关技术中第二天线系统4G的阵元巴伦与嵌套其内的第一天线系统5G阵元之间的耦合较强,严重影响5G天线波宽、前后比和副瓣等辐射性能指标以及驻波和隔离度的电路性能指标的问题。
根据本公开的一个实施例,提供了一种低频辐射单元,设置于金属反射板的侧边上,包括:PCB介质板10、介质支撑架70,同轴线缆80,所述PCB介质板10的正面与反面上设置的金属辐射体,其中,
所述介质支撑架70与所述金属辐射体连接,用于支撑所述金属辐射体;
所述同轴线缆80设置于所述介质支撑架70上,与所述金属辐射体连接,对所述金属辐射体进行馈电。
在一示例性实施例中,所述金属辐射体包括极化正交设置的两对辐射振子20,馈电片31以及用于拓展带宽的加载线路60;
所述两对辐射振子20设置于所述PCB介质板10的反面;
所述馈电片31设置于所述PCB介质板10的正面与反面,其中,所述馈电片31与所述同轴电缆80通过焊接的方式连接。
在一示例性实施例中,所述馈电片31的一端设置有金属化过孔30,其中,所述金属化过孔30与所述同轴电缆80通过焊接的方式连接。
在一示例性实施例中,所述两对辐射振子20通过光刻工艺印刷在所述PCB介质板10的反面,形成±45°双极化辐射特性;和/或
所述两对辐射振子20为田字形结构;和/或
所述两对辐射振子20之间两两相间隔形成十字型缝隙50。
在一示例性实施例中,所述两对辐射振子20分别为第一辐射振子21、第二辐射振子22、第三辐射振子23以及第四辐射振子24,其中,所述第一辐射振子21和所述第三辐射振子23在同一极化,所述第二辐射振子22与所述第四辐射振子24在同一极化。
在一示例性实施例中,所述介质支撑架70包括环形支撑座71和固定架72,所述环形支撑座(71)位于所述金属辐射体的垂直正下方,所述环形支撑座71与所述金属辐射体连接。
在一示例性实施例中,所述固定架72上设置有导向槽74与卡夹槽75,所述卡夹槽75用于与所述金属反射板的侧边固定;
所述同轴线缆80穿过所述导向槽74后与所述金属辐射体连接。
在一示例性实施例中,所述环形支撑座71开设有定位柱73,所述定位柱73通过所述PCB介质板10上设置的通孔40固定所述PCB介质板10与所述金属辐射体。
在一示例性实施例中,所述介质支撑架70的一端位于所述金属辐射体的正下方,另一端向所述金属辐射体的侧边延伸的L形折线段与所述金属反射板的侧边固定。
在一示例性实施例中,所述同轴线缆80的一端用于通过与所述馈电片31焊接的方式进行馈电,另一端用于连接4G系统的移相器的输入口。
在一示例性实施例中,所述固定架72为L形。
在一示例性实施例中,所述固定架72由多个折线段组成,其中,所述固定架72上走线的所述同轴电缆80与所述PCB介质板10上的金属辐射体之间具有设定的间隔。
根据本公开的另一个实施例,还提供了一种天线,包括金属反射板100及至少两个上述的低频辐射单元,所述低频辐射单元设置在所述金属反射板100上。
在一示例性实施例中,所述低频辐射单元通过所述介质支撑架70的卡夹槽75固定在所述金属反射板100的侧边101上,所述同轴线缆80通过导向槽74在金属反射板100的侧边101上走线。
根据本公开的另一个实施例,还提供了一种多频共用天线,包括金属反射板100,均设于金属反射板100上的多个高频辐射单元200,至少两个上述的低频辐射单元,所述低频辐射单元设置于所述金属反射板100的侧边上。
在一示例性实施例中,所述多个高频辐射单元200以多个阵列的方式进行排列。
在一示例性实施例中,所述低频辐射单元下方至少覆盖一个所述高频辐射单元200。
根据本公开的另一个实施例,还提供了一种融合天线架构,包括一个独立可拆卸的5G有源天线单元和一个4G无源天线,其中,所述5G有源天线单元的天线上方设置有至少两个上述的低频辐射单元,且所述低频辐射单元的反射面共用所述5G有源天线单元的天线的反射面。
本公开实施例的低频辐射单元,设置于金属反射板的侧边上,包括:PCB介质板10、介 质支撑架70,同轴线缆80,所述PCB介质板10的正面与反面上设置的金属辐射体,其中,介质支撑架70与金属辐射体连接,用于支撑该金属辐射体;同轴线缆80设置于介质支撑架70上,与该金属辐射体连接,对该金属辐射体进行馈电,可以解决相关技术中第二天线系统4G的阵元巴伦与嵌套其内的第一天线系统5G阵元之间的耦合较强,严重影响5G天线波宽、前后比和副瓣等辐射性能指标以及驻波和隔离度的电路性能指标的问题,实现了4G低频天线灵活置于5G高频天线上方,避免巴伦对5G高频天线的干扰,且低互耦,节约天线内部空间。
附图说明
图1是根据本公开实施例的低频辐射单元的示意图;
图2是本公开实施例的金属辐射体的正面示意图;
图3是本公开实施例的金属辐射体的反面示意图;
图4是根据本公开实施例的低频辐射单元(俯视)的分解示意图;
图5是根据本公开实施例的低频辐射单元(仰视)的分解示意图;
图6根据本公开另一实施例的低频辐射单元的结构示意图;
图7是根据本公开实施例的介质支撑架包含的其他结构示意图;
图8是根据本公开实施例的采用低频辐射单元的天线的示意图;
图9是根据本公开实施例的采用低频辐射单元的多频共用天线的示意图;
图10是根据本公开实施例的采用低频辐射单元的另一种实例多频共用天线的示意图;
图11是根据本公开实施例的采用低频辐射单元的4G、5G网络制式融合架构的示意图。
图中,10-PCB介质板,70-介质支撑架,80-同轴线缆,60-加载线路,20-两对辐射振子,21-第一辐射振子,22-第二辐射振子,23-第三辐射振子,24-第四辐射振子,31-馈电片,30-金属化过孔,50-十字型缝隙,71-环形支撑座,72-固定架,73-定位柱,74-导向槽,75-卡夹槽,100-金属反射板,101-侧边以及200-高频辐射单元。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开的实施例。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本公开实施例,提供了一种低频辐射单元,图1是根据本公开实施例的低频辐射单元的示意图,如图1所示,设置于金属反射板的侧边上,包括:PCB介质板10、介质支撑架70,同轴线缆80,PCB介质板10的正面与反面上设置的金属辐射体,其中,
介质支撑架70与该金属辐射体连接,用于支撑该金属辐射体;
同轴线缆80设置于介质支撑架70上,与该金属辐射体连接,对该金属辐射体进行馈电。
本公开实施例的低频辐射单元,设置于金属反射板的侧边上,包括:PCB介质板10、介质支撑架70,同轴线缆80,所述PCB介质板10的正面与反面上设置的金属辐射体,其中,介质支撑架70与金属辐射体连接,用于支撑该金属辐射体;同轴线缆80设置于介质支撑架70上,与该金属辐射体连接,对该金属辐射体进行馈电,可以解决相关技术中第二天线系统4G的阵元巴伦与嵌套其内的第一天线系统5G阵元之间的耦合较强,严重影响5G天线波宽、 前后比和副瓣等辐射性能指标以及驻波和隔离度的电路性能指标的问题,实现了4G低频天线灵活置于5G高频天线上方,避免巴伦对5G高频天线的干扰,且低互耦,节约天线内部空间。
图2是本公开实施例的金属辐射体的正面示意图,如图2所示,上述的金属辐射体包括馈电片31以及用于拓展带宽的加载线路60;图3是本公开实施例的金属辐射体的反面示意图,如图3所示,上述的金属辐射体还包括极化正交设置的两对辐射振子20,两对辐射振子20设置于PCB介质板10的反面;馈电片31设置于PCB介质板10的正面与反面,其中,馈电片31与同轴电缆80通过焊接的方式连接。进一步的,馈电片31的一端设置有金属化过孔30,其中,金属化过孔30与同轴电缆80通过焊接的方式连接。可选的,同轴线缆80的一端用于通过与馈电片31焊接的方式进行馈电,另一端用于连接4G系统的移相器的输入口。同轴电缆80的外导体则焊接在反面的金属辐射体上,实现半波振子的另一臂的接地。值得注意的是,金属馈电片31在PCB介质板10的正、反两面都存在,正面的部分的一个馈电片为其中的一个半波振子馈电;另一个馈电片通过金属化过孔与PCB介质板反面的馈电片连接为另一个半波振子馈电。该结构不仅有利于辐射单元的装配焊接还能有效降低辐射单元以及天线的隔离度。
如图3所示,两对辐射振子20通过光刻工艺印刷在PCB介质板10的反面,形成±45°双极化辐射特性;和/或两对辐射振子20为田字形结构,一方面利于所述辐射单元小型化;另一方面利于覆盖于辐射片下方的5G系统多天线的透射,降低4G和5G系统网络间的互耦;和/或两对辐射振子20之间两两相间隔形成十字型缝隙50。进一步的,两对辐射振子20分别为第一辐射振子21、第二辐射振子22、第三辐射振子23以及第四辐射振子24,其中,第一辐射振子21和第三辐射振子23在同一极化,第二辐射振子22与第四辐射振子24在同一极化。四个辐射振子20之间两两相间隔形成十字型缝隙50,该十字型缝隙50改善辐射振子20间的端口隔离度。
图4是根据本公开实施例的低频辐射单元(俯视)的分解示意图,如图4所示,介质支撑架70包括环形支撑座71和固定架72,环形支撑座(71)位于金属辐射体的垂直正下方,环形支撑座71与金属辐射体连接。
图5是根据本公开实施例的低频辐射单元(仰视)的分解示意图,如图5所示,固定架72上设置有导向槽74与卡夹槽75,卡夹槽75用于与金属反射板的侧边固定;同轴线缆80穿过导向槽74后与金属辐射体连接。
如图4-5所示,环形支撑座71开设有定位柱73,定位柱73通过PCB介质板10上设置的通孔40固定PCB介质板10与金属辐射体,起到固定PCB介质板10以及印刷在上面的辐射体的作用。进一步的,介质支撑架70的一端位于金属辐射体的正下方,另一端向金属辐射体的侧边延伸的L形折线段与金属反射板的侧边固定。图6根据本公开另一实施例的低频辐射单元的结构示意图,如图6所示,固定架72具体可以为L形。进一步的,固定架72由多个折线段组成,其中,固定架72上走线的同轴电缆80与PCB介质板10上的金属辐射体之间具有设定的间隔。介质支撑架70增加了一段高度721,即保证了同轴电缆80与PCB介质板10上辐射体间有一定的间隔,可以降低同轴电缆80外皮的高频电流对低频辐射单元影响,实现解耦作用,兼容较高的频率的带宽。所述L形介质支撑架(70)一端位于辐射面的正下方,另一端向辐射面侧边延伸的L形折线段与金属反射板的侧边固定,从而没有占用低频辐射单元的下部空间,能更好实现多频天线共用。
以上所述仅是本发明的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,图7是根据本公开实施例的介质支撑架包含的其他结构示意图,如图7所示,介质支撑架70上的环形支撑座71不限于○型,还可以为◇型、△型等,为了便于布局,介质支撑架70上的L形固定架72也可以根据实际需求多次折弯,这些改进和润饰也应视为本发明的保护范围,这里不再做具体说明。
本公开实施例,还提供了一种天线,图8是根据本公开实施例的采用低频辐射单元的天线的示意图,如图8所示,包括金属反射板100及至少两个上述的低频辐射单元,该低频辐射单元设置在金属反射板100上。进一步的,上述的低频辐射单元通过介质支撑架70的卡夹槽75固定在金属反射板100的侧边101上,同轴线缆80通过导向槽74在金属反射板100的侧边101上走线,进一步节省低频辐射单元的下部空间。
本公开实施例,还提供了一种多频共用天线,图9是根据本公开实施例的采用低频辐射单元的多频共用天线的示意图,如图9所示,包括金属反射板100,均设于金属反射板100上的多个高频辐射单元200,至少两个上述的低频辐射单元,该低频辐射单元设置于金属反射板100的侧边上。进一步的,多个高频辐射单元200以多个阵列的方式进行排列。上述的低频辐射单元下方至少覆盖一个高频辐射单元200。在本实施方式由于采用上述低频辐射单元,本发明的多频共用天线具有体积小、成本低的特点。本实例中,所述每个低频辐射单元中嵌入四个所述高频辐射单元。图10是根据本公开实施例的采用低频辐射单元的另一种实例多频共用天线的示意图,如图10所示,为了便于布局,介质支撑架70上的L形固定架72也可以根据实际需求多次折弯,设置于金属反射板的侧边上。
本公开实施例,还提供了一种融合天线架构,图11是根据本公开实施例的采用低频辐射单元的4G、5G网络制式融合架构的示意图,如图11所示,包括一个独立可拆卸的5G有源天线单元和一个4G无源天线,其中,该5G有源天线单元的天线上方设置有至少两个上述的低频辐射单元,且该低频辐射单元的反射面共用该5G有源天线单元的天线的反射面。5G AAU的天线上方至少存在两个上述的低频辐射单元,且其反射面共用AAU天线反射面;通过合理的阵列布局以及利用本发明提供的无巴伦低频辐射单元,使4G和5G融合在一个较小尺寸里面,使4G和5G网络系统的性能都能达到单独4G天线和5G天线的水平。
采用本公开实施例中的低频辐射单元,安装固定在金属反射板的侧边,从而没有占用低频辐射单元的下部空间,能够有效降低4G系统和5G系统间的互耦,能更好实现多频天线共用。使4G和5G天线融合在一个较小尺寸里面,使4G和5G网络系统的性能都能达到单独4G天线和5G天线的水平,从而衍生出一种多制式网络融合架构,实现网络站址资源的优化配置和多制式网络基站的小型化。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者 将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (18)

  1. 一种低频辐射单元,设置于金属反射板的侧边上,包括:PCB介质板(10)、介质支撑架(70),同轴线缆(80),所述PCB介质板(10)的正面与反面上设置的金属辐射体,其中,
    所述介质支撑架(70)与所述金属辐射体连接,用于支撑所述金属辐射体;
    所述同轴线缆(80)设置于所述介质支撑架(70)上,与所述金属辐射体连接,对所述金属辐射体进行馈电。
  2. 根据权利要求1所述的低频辐射单元,其中,
    所述金属辐射体包括极化正交设置的两对辐射振子(20),馈电片(31)以及用于拓展带宽的加载线路(60);
    所述两对辐射振子(20)设置于所述PCB介质板(10)的反面;
    所述馈电片(31)设置于所述PCB介质板(10)的正面与反面,其中,所述馈电片(31)与所述同轴电缆(80)通过焊接的方式连接。
  3. 根据权利要求2所述的低频辐射单元,其中,
    所述馈电片(31)的一端设置有金属化过孔(30),其中,所述金属化过孔(30)与所述同轴电缆(80)通过焊接的方式连接。
  4. 根据权利要求2所述的低频辐射单元,其中,
    所述两对辐射振子(20)通过光刻工艺印刷在所述PCB介质板(10)的反面,形成±45°双极化辐射特性;和/或
    所述两对辐射振子(20)为田字形结构;和/或
    所述两对辐射振子(20)之间两两相间隔形成十字型缝隙(50)。
  5. 根据权利要求2所述的低频辐射单元,其中,
    所述两对辐射振子(20)分别为第一辐射振子(21)、第二辐射振子(22)、第三辐射振子(23)以及第四辐射振子(24),其中,所述第一辐射振子(21)和所述第三辐射振子(23)在同一极化,所述第二辐射振子(22)与所述第四辐射振子(24)在同一极化。
  6. 根据权利要求1所述的低频辐射单元,其中,
    所述介质支撑架(70)包括环形支撑座(71)和固定架(72),所述环形支撑座(71)位于所述金属辐射体的垂直正下方,所述环形支撑座(71)与所述金属辐射体连接。
  7. 根据权利要求6所述的低频辐射单元,其中,
    所述固定架(72)上设置有导向槽(74)与卡夹槽(75),所述卡夹槽(75)用于与所述 金属反射板的侧边固定;
    所述同轴线缆(80)穿过所述导向槽(74)后与所述金属辐射体连接。
  8. 根据权利要求6所述的低频辐射单元,其中,
    所述环形支撑座(71)开设有定位柱(73),所述定位柱(73)通过所述PCB介质板(10)上设置的通孔(40)固定所述PCB介质板(10)与所述金属辐射体。
  9. 根据权利要求1所述的低频辐射单元,其中,
    所述介质支撑架(70)的一端位于所述金属辐射体的正下方,另一端向所述金属辐射体的侧边延伸的L形折线段与所述金属反射板的侧边固定。
  10. 根据权利要求2所述的低频辐射单元,其中,
    所述同轴线缆(80)的一端用于通过与所述馈电片(31)焊接的方式进行馈电,另一端用于连接4G系统的移相器的输入口。
  11. 根据权利要求6所述的低频辐射单元,其中,所述固定架(72)为L形。
  12. 根据权利要求6所述的低频辐射单元,其中,所述固定架(72)由多个折线段组成,其中,所述固定架(72)上走线的所述同轴电缆(80)与所述PCB介质板(10)上的金属辐射体之间具有设定的间隔。
  13. 一种天线,包括金属反射板(100)及至少两个权利要求1至12中任一项所述的低频辐射单元,所述低频辐射单元设置在所述金属反射板(100)上。
  14. 根据权利要求13所述的天线,其中,所述低频辐射单元通过所述介质支撑架(70)的卡夹槽(75)固定在所述金属反射板(100)的侧边(101)上,所述同轴线缆(80)通过导向槽(74)在金属反射板(100)的侧边(101)上走线。
  15. 一种多频共用天线,包括金属反射板(100),均设于金属反射板(100)上的多个高频辐射单元(200),至少两个上述权利要求1至12中任一项所述的低频辐射单元,所述低频辐射单元设置于所述金属反射板(100)的侧边上。
  16. 根据权利要求15所述的多频共用天线,其中,
    所述多个高频辐射单元(200)以多个阵列的方式进行排列。
  17. 根据权利要求15所述的多频共用天线,其中,所述低频辐射单元下方至少覆盖一个所述高频辐射单元(200)。
  18. 一种融合天线架构,包括一个独立可拆卸的5G有源天线单元和一个4G无源天线,其中,所述5G有源天线单元的天线上方设置有至少两个权利要求1至12中任一项所述的低频辐射单元,且所述低频辐射单元的反射面共用所述5G有源天线单元的天线的反射面。
PCT/CN2022/124214 2021-11-23 2022-10-09 低频辐射单元、天线、多频共用天线及融合天线架构 WO2023093316A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22897401.0A EP4425704A1 (en) 2021-11-23 2022-10-09 Low-frequency radiation unit, antenna, multi-frequency common antenna, and fusion antenna architecture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111398163.6 2021-11-23
CN202111398163.6A CN116154455A (zh) 2021-11-23 2021-11-23 低频辐射单元、天线、多频共用天线及融合天线架构

Publications (1)

Publication Number Publication Date
WO2023093316A1 true WO2023093316A1 (zh) 2023-06-01

Family

ID=86353150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124214 WO2023093316A1 (zh) 2021-11-23 2022-10-09 低频辐射单元、天线、多频共用天线及融合天线架构

Country Status (3)

Country Link
EP (1) EP4425704A1 (zh)
CN (1) CN116154455A (zh)
WO (1) WO2023093316A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117276860B (zh) * 2023-11-07 2024-05-17 福州岱云科技有限公司 隧道基站天线系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070080884A1 (en) * 2005-10-07 2007-04-12 Kathrein-Werke Kg, Feed network, and/or antenna having at least one antenna element and a feed network
CN202839949U (zh) * 2012-08-13 2013-03-27 佛山市健博通电讯实业有限公司 一种lte宽带双极化天线振子
CN205335424U (zh) * 2016-01-27 2016-06-22 上海安费诺永亿通讯电子有限公司 一种低剖面双极化天线
CN210576472U (zh) * 2019-05-24 2020-05-19 中兴通讯股份有限公司 一种天线振子、天线单元、天线及通信设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070080884A1 (en) * 2005-10-07 2007-04-12 Kathrein-Werke Kg, Feed network, and/or antenna having at least one antenna element and a feed network
CN202839949U (zh) * 2012-08-13 2013-03-27 佛山市健博通电讯实业有限公司 一种lte宽带双极化天线振子
CN205335424U (zh) * 2016-01-27 2016-06-22 上海安费诺永亿通讯电子有限公司 一种低剖面双极化天线
CN210576472U (zh) * 2019-05-24 2020-05-19 中兴通讯股份有限公司 一种天线振子、天线单元、天线及通信设备

Also Published As

Publication number Publication date
CN116154455A (zh) 2023-05-23
EP4425704A1 (en) 2024-09-04

Similar Documents

Publication Publication Date Title
KR102582264B1 (ko) 안테나 모듈 및 전자 장치
EP3968458B1 (en) Radiating structure and array antenna
CN107210541B (zh) 移动基站天线
US9112262B2 (en) Planar array feed for satellite communications
US12046813B2 (en) Antenna filter unit, and radio unit
US20060232490A1 (en) Antenna element, feed probe; dielectric spacer, antenna and method of communicating with a plurality of devices
JP2020519136A (ja) 二重偏波放射素子及びアンテナ
CN111585006B (zh) 辐射单元及阵列天线
CN110197950B (zh) 一种双极化天线
CN101714701A (zh) 双频双极化阵列天线
WO2023093316A1 (zh) 低频辐射单元、天线、多频共用天线及融合天线架构
CN111029767A (zh) 一种小型化低剖面基站天线单元
WO2024087593A1 (zh) 共口径辐射单元及天线
CN113871842A (zh) 辐射元件、天线组件和基站天线
CN113725596A (zh) 天线与辐射单元
US11831085B2 (en) Compact antenna radiating element
EP4205230A1 (en) Antenna device, array of antenna devices, and base station with antenna device
WO2021223118A1 (zh) 天线、天线阵列和通信装置
CN117477213A (zh) 一种贴壁天线
CN211376931U (zh) 天线组件和基站天线
CN110931951A (zh) 一种压铸辐射装置及基站阵列天线
CN218548782U (zh) 振子安装座及天线组件
CN210926325U (zh) 一种小型化低剖面基站天线单元
KR20120086842A (ko) 다중 밴드의 다이폴 소자 배열을 갖는 기지국 안테나
US20230133099A1 (en) Base station antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897401

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022897401

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022897401

Country of ref document: EP

Effective date: 20240528

NENP Non-entry into the national phase

Ref country code: DE