WO2023035391A1 - 双频双极化天线和双频双极化天线阵列 - Google Patents

双频双极化天线和双频双极化天线阵列 Download PDF

Info

Publication number
WO2023035391A1
WO2023035391A1 PCT/CN2021/128540 CN2021128540W WO2023035391A1 WO 2023035391 A1 WO2023035391 A1 WO 2023035391A1 CN 2021128540 W CN2021128540 W CN 2021128540W WO 2023035391 A1 WO2023035391 A1 WO 2023035391A1
Authority
WO
WIPO (PCT)
Prior art keywords
dual
radiation
frequency
unit
patch group
Prior art date
Application number
PCT/CN2021/128540
Other languages
English (en)
French (fr)
Inventor
章秀银
杨圣杰
姚树锋
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2023035391A1 publication Critical patent/WO2023035391A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation

Definitions

  • the present application relates to the technical field of antennas, in particular to a dual-frequency dual-polarization antenna and a dual-frequency dual-polarization antenna array.
  • millimeter wave frequency bands are usually used to improve the capacity and transmission quality of wireless channels.
  • the working frequency bands of global 5G communication systems are generally two millimeter wave frequency bands, 24.25-29.5GHz and 37-43.5GHz.
  • the design requirements of the antennas in the two millimeter wave frequency bands are also increasingly tending to the miniaturization, integration and multi-polarization of the antennas.
  • the existing dual-frequency dual-polarization antenna is used more and more in 5G communication systems because it can simultaneously realize multi-band operation and dual-polarization operation.
  • the dual-frequency dual-polarization antenna is usually adjusted by parameter to make a
  • the antenna patch can work in multiple different frequency bands; for example: if you want to realize two frequency bands of 24.25-29.5GHz and 37-43.5GHz at the same time, you can adjust the parameters to make the dual-band dual-polarized antenna work at 24.25-29.5 GHz and 37-43.5GHz two frequency bands; however, in the prior art, only part of these two frequency bands can be realized through parameter adjustment, and the working bandwidth is narrow, that is, it cannot completely cover 24.25-29.5GHz and 37- 43.5GHz two frequency bands.
  • a dual-frequency dual-polarization antenna includes: a parasitic unit, a radiation unit, and a balun structure; the radiation unit includes a first radiation patch group and a second The radiation patch group; the first radiation patch group and the second radiation patch group are respectively connected to the metal ground through a balun structure;
  • the parasitic unit stack is arranged on the side of the radiation unit away from the metal ground, corresponding to the position of the radiation unit;
  • the first radiating patch group and the balun structure are used to generate a low-frequency passband, and the second radiating patch group and the parasitic unit are used to generate a high-frequency passband; in the second polarization direction, The second radiation patch group and the balun structure are used to generate a low-frequency passband, and the first radiation patch group and the parasitic unit are used to generate a high-frequency passband.
  • the first radiation patch group and the second radiation patch group are provided with a defect structure, and the defect structure is used to form the first radiation in the stop band between the high frequency passband and the low frequency passband. zero.
  • the defect structure is a slot structure; the size of the slot structure is related to the position of the first radiation zero point in the stop band.
  • the slot structure is a U-shaped slot structure, and the notch of the U-shaped slot structure faces the inner side of the radiation unit.
  • the defect structure is a concave structure; the notch of the concave structure faces the outside of the radiation unit.
  • the first radiating patch group includes two radiating patches arranged oppositely, and the second radiating patch group includes two radiating patches arranged oppositely; each radiating patch passes through a balun structure Connect to metal ground;
  • the parasitic unit includes 4 parasitic patches, which correspond to the positions of the radiation patches respectively; the parasitic patches are used to form a second radiation zero in the stop band between the high-frequency passband and the low-frequency passband, and the size of the parasitic patches is the same as The position of the second radiation null within the stop band is dependent.
  • the two radiating patches of the first radiating patch group and the two radiating patches of the second radiating patch group are provided with inner cut corners at the orthogonal positions, and the inner cut corners are used to gather each radiation patch.
  • the balun structure is a folded balun structure formed by multilayer metal pillars and metal patches arranged between two adjacent layers of metal pillars; the multilayer metal pillars are vertically arranged between the radiation patch and the metal patch. between the ground.
  • the dual-frequency dual-polarized antenna further includes a feed structure
  • the feed structure includes a first polarized feed unit and a second polarized feed unit, the first radiation patch group is used to couple the signal of the first polarized feed unit; the second radiation patch group is used to couple the second Polarize the signal of the feed unit.
  • the first polarized feeding unit and the second polarized feeding unit are an inverted L-shaped feeding structure, and the inverted L-shaped feeding structure includes a short-circuit column and a feeding line;
  • the short-circuit column is connected to the external feed unit through the via hole on the metal ground, and the short-circuit column passes through the area surrounded by the radiation patches to connect with the feed line, and the feed line and the parasitic unit are in the same plane.
  • the first feeder line of the first polarized feeder unit is arranged orthogonally to the second feeder line of the second polarized feeder unit; at the intersection of the first feeder line and the second feeder line, Polarization isolation is achieved through layer-changing connections.
  • a side of the parasitic unit close to the metal ground is vertically connected to the metal structure; the metal structure is composed of at least one vertical metal column.
  • a dual-frequency dual-polarization antenna array in the second aspect, includes N ⁇ M dual-frequency dual-polarization antennas in any embodiment of the first aspect above; wherein, the phase The dual-frequency dual-polarization antennas in two adjacent columns are arranged symmetrically in mirror images.
  • the dual-frequency dual-polarization antenna includes a parasitic unit, a radiation unit, and a balun structure;
  • the radiation unit includes an orthogonally arranged first radiation patch group and a second Two radiation patch groups;
  • the first radiation patch group and the second radiation patch group are respectively connected to the metal ground through a balun structure;
  • the parasitic unit stack is arranged on the side of the radiation unit away from the metal ground, corresponding to the position of the radiation unit ;
  • the first radiating patch group and the balun structure are used to generate a low-frequency passband, and the second radiating patch group and the parasitic unit are used to generate a high-frequency passband;
  • the second radiating patch group and the balun structure are used to generate a low-frequency passband, and the first radiating patch group and the parasitic unit are used to generate a high-frequency passband; that is, the dual-frequency dual-polar
  • the two sets of radiation patches work in different working modes to generate two different frequency bands to realize Radiation characteristics of dual-frequency dual-polarization; compared to the way in which the bandwidth of the antenna is increased by adding multiple multi-band antenna patches in the prior art, the dual-frequency dual-polarization antenna in the embodiment of the application only needs to pass two
  • the orthogonal radiation patch combined with the parasitic unit and the balun structure can realize the wide-bandwidth dual-frequency dual-polarization radiation characteristics, that is, the bandwidth of the dual-frequency dual-polarization antenna is widened by the parasitic unit, and the dual-frequency dual-polarization antenna is greatly reduced.
  • the overall size of the polarized antenna is conducive to the miniaturization of the antenna.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a dual-frequency dual-polarization antenna provided in an embodiment of the present application;
  • FIG. 2 is a schematic diagram of a side-view structure of a dual-frequency dual-polarized antenna provided in an embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of a parasitic patch provided by an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a radiation patch provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a dual-frequency radiation mode provided by an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of another radiation patch provided by the embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of another radiation patch provided by the embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of another radiation patch provided by the embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a parasitic unit and a radiation unit provided by an embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of another parasitic unit and a radiation unit provided by the embodiment of the present application.
  • FIG. 11 is a schematic diagram of a three-dimensional structure of a balun structure provided by the embodiment of the present application.
  • Fig. 12 is a three-dimensional schematic diagram of another balun structure provided by the embodiment of the present application.
  • FIG. 13 is a schematic perspective view of a feed structure provided in an embodiment of the present application.
  • FIG. 14 is a schematic perspective view of another feed structure provided by the embodiment of the present application.
  • FIG. 15 is a schematic perspective view of another feed structure provided by the embodiment of the present application.
  • Fig. 16 is a schematic diagram of the three-dimensional structure of another parasitic patch provided by the embodiment of the present application.
  • FIG. 17 is a schematic three-dimensional structural diagram of another dual-frequency dual-polarization antenna provided by the embodiment of the present application.
  • FIG. 18 is a schematic side-view structure diagram of another dual-frequency dual-polarization antenna provided by the embodiment of the present application.
  • Fig. 19 is the return loss and polarization isolation curve simulation result figure of two ports of a kind of dual-frequency dual-polarized antenna provided by the embodiment of the present application;
  • FIG. 20 is a simulation result diagram of gain curves of two ports of a dual-frequency dual-polarized antenna provided in an embodiment of the present application;
  • FIG. 21 is a schematic diagram of a three-dimensional structure of another dual-frequency dual-polarized antenna provided by an embodiment of the present application.
  • Fig. 22 is a schematic side view structural diagram of another dual-frequency dual-polarization antenna provided by the embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of a 2 ⁇ 2 antenna array provided by an embodiment of the present application.
  • Figure 24 is a diagram of the active return loss simulation results of a 2 ⁇ 2 antenna array provided by the embodiment of the present application.
  • FIG. 25 is a simulation result diagram of a gain curve of a 2 ⁇ 2 antenna array provided in an embodiment of the present application.
  • FIG. 26 is a beam scanning simulation result diagram of a 2 ⁇ 2 antenna array at 27 GHz provided by the embodiment of the present application.
  • FIG. 27 is a simulation result diagram of beam scanning at 40 GHz for a 2 ⁇ 2 antenna array provided in an embodiment of the present application.
  • 135 the third-layer metal column; 151: the first polarized feeding unit; 152: the second polarized feeding unit;
  • 161 short-circuit column
  • 162 feeder line
  • 1621 first feeder line of the first polarized feeder unit
  • 1622 second feeder line of the second polarized feeder unit; 163: stripline; 164: feeder interface.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • connection In this embodiment of the application, unless otherwise clearly specified and limited, the terms “installation”, “connection”, “connection”, “fixation” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a fixed connection. Disconnected connection, or integrated; may be mechanically connected, may also be electrically connected; may be directly connected, may also be indirectly connected through an intermediary, may be an internal communication between two components or an interactive relationship between two components, unless otherwise There are clear limits. Those of ordinary skill in the art can understand the specific meanings of the above terms in the embodiments of the present application according to specific situations.
  • the first feature may be in direct contact with the first feature or the first feature and the second feature may pass through the middle of the second feature.
  • Media indirect contact Moreover, “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • the dual-frequency dual-polarized antenna 10 includes: a parasitic unit 11, a radiation unit 12, and a balun structure 13; the radiation unit 12 includes a first radiation patch group 121 and a second radiation patch group 122 arranged orthogonally; A radiation patch group 121 and a second radiation patch group 122 are respectively connected to the metal ground 14 through the balun structure 13; the parasitic unit 11 is stacked on the side of the radiation unit 12 away from the metal ground 14, and the position of the radiation unit 12 Correspondingly; in the first polarization direction, the first radiation patch group 121 and the balun structure 13 are used to generate a low-frequency passband, and the second radiation patch group 122 and the parasitic unit 11 are used to generate a high-frequency passband; In the polarization direction, the second radiating patch group 122 and the balun structure 13 are
  • the first radiation patch group 121 may include at least two radiation patches
  • the second radiation patch group 122 may also include at least two radiation patches
  • the number of radiation patches in the radiation patch group 122 is the same, that is, the first radiation patch group 121 and the second radiation patch group 122 are orthogonally symmetrical; each radiation patch can be connected to the metal ground 14 through a balun structure 13
  • the balun structure 13 may include a row of metal pillars (the row of metal pillars includes at least one metal pillar), and the row of metal pillars is electrically connected to the inner edge of the radiation patch near the orthogonal position; for
  • the parasitic unit 11 may include the same number of parasitic patches as the radiating unit 12, and the stack is arranged on the side of each radiating patch away from the metal ground 14.
  • the parasitic patches in FIG. 1 and FIG. 2 may be arranged at intervals of a certain height Above the radiation patch; wherein, the parasitic patch can widen the bandwidth of the antenna, increase the gain in the high-frequency passband of the antenna, and reduce the overall size of the antenna.
  • the parasitic patch may be a rectangular patch, as shown in FIG. 3 ;
  • the embodiment does not limit this, and it can be flexibly set according to antenna design requirements in practical applications, as long as the parasitic unit composed of the parasitic patches is orthogonally symmetrical.
  • the radiation patch can be a rectangular patch, or a hexagonal structural patch with inner cut corners formed by cutting off the corners on both sides of the edge near the orthogonal point in the rectangle, as shown in Figure 4 shown; it can also be slices of any shape with or without inner cut corners of other shapes, which are not limited in the embodiment of the present application, and can be flexibly set according to antenna design requirements in practical applications, as long as the The radiation unit formed by the radiation patch only needs to be orthogonally symmetrical.
  • the first radiating patch group 121 and the second radiating patch group 122 can be arranged orthogonally according to different antenna polarization directions, for example: 0° and 90° orthogonal setting, +45° and -45° Orthogonal settings, etc.; in different polarization directions, the first radiating patch group 121 and the second radiating patch group 122 work in different working modes, for generating two different passbands; for example: as shown 5, the first radiating patch group 121 can be two radiating patches arranged up and down, and the second radiating patch group 122 can be two radiating patches arranged left and right;
  • the first radiation patch group 121 (upper and lower radiation patches) and the balun structure together form a dipole antenna working mode, which is equivalent to a dipole antenna, and is used to generate a low-frequency passband.
  • the low-frequency passband It can be in the 24.25-29.5GHz frequency band.
  • the upper and lower radiation patches are used as low-frequency radiation patches, which are radiated by the current on the upper and lower radiation patches;
  • the second radiation patch group 122 (the left and right radiation patches Patch) and the parasitic unit together form a stacked patch antenna working mode, which is equivalent to a patch antenna and is used to generate a high-frequency passband.
  • the high-frequency passband can be in the 37-43.5GHz frequency band.
  • the left and right two The radiation patch is used as a high-frequency radiation patch, which is radiated by the tangential current on the left and right radiation patches.
  • the second radiation patch group 122 (two left and right radiation patches) and the Balun structure together form a dipole antenna working mode, which is equivalent to a dipole
  • the antenna is used to generate a low-frequency passband, and the low-frequency passband may be in the 24.25-29.5GHz frequency band.
  • the two left and right radiation patches are used as low-frequency radiation patches, and are radiated by the current on the left and right radiation patches;
  • the first radiating patch group 121 (upper and lower radiating patches) and the parasitic unit together form a stacked patch antenna working mode, which is equivalent to a patch antenna, and is used to generate a high-frequency passband.
  • the high-frequency passband can be 37-43.5GHz frequency band, at this time, the upper and lower radiation patches are used as high-frequency radiation patches, which are radiated by the tangential current on the upper and lower radiation patches.
  • the dual-frequency dual-polarized antenna includes a parasitic unit, a radiation unit, and a balun structure;
  • the radiation unit includes a first radiation patch group and a second radiation patch group arranged orthogonally; the first radiation patch group and the second radiation patch group are respectively connected to the metal ground through a balun structure;
  • the parasitic unit stack is arranged on the side of the radiation unit away from the metal ground, corresponding to the position of the radiation unit; in the first polarization direction, the first radiation
  • the patch group and the balun structure are used to generate a low-frequency passband, and the second radiating patch group and the parasitic unit are used to generate a high-frequency passband; in the second polarization direction, the second radiating patch group and the balun structure are used for To generate a low-frequency passband, the first radiation patch group and the parasitic unit are used to generate a high-frequency passband; that is, the dual-frequency dual-polarized antenna in the embodiment of the present application can
  • the chip combines the parasitic unit and the
  • the two groups of radiation patches work in different working modes to generate two different frequency bands and realize the radiation characteristics of dual frequency and dual polarization;
  • the bandwidth of the antenna is increased by adding multiple multi-band antenna patches.
  • the dual-frequency dual-polarized antenna in the embodiment of the present application only needs to combine the parasitic unit and the balun through two sets of orthogonal radiation patches.
  • the dual-frequency dual-polarization radiation characteristics of wide bandwidth can be achieved, that is, the bandwidth of the dual-frequency dual-polarization antenna is widened by the parasitic unit, and the overall size of the dual-frequency dual-polarization antenna is greatly reduced, which is conducive to the miniaturization of the antenna. change.
  • a defect structure 123 may also be provided on the first radiating patch group 121 and the second radiating patch group 122.
  • the first radiation zero point is formed in the stop band between the pass bands; optionally, the defect structure 123 can be a slot structure on the radiation patch, that is, the slot structure 123 can be a rectangular slot, an arc slot, a U-shaped slot, V-shaped slot or any non-closed slot structure, etc.
  • the size of the slot structure 123 is related to the position of the first radiation zero point in the stop band, that is, by adjusting the size of the slot structure, the first radiation zero point can be controlled in the stop band. It should be noted that the embodiment of the present application does not limit the shape and size of the slit structure, nor does it limit the position and direction of the slit structure on the radiation patch.
  • the first radiation zero point can be formed in the stop band between the high-frequency passband and the low-frequency passband.
  • a radiation zero point can reduce the gain of the electromagnetic wave signal at each frequency point in the stop band, improve the out-of-band suppression capability, and further improve the band stop filtering effect of the antenna.
  • the above-mentioned slot structure 123 can be a U-shaped slot structure, and the notch of the U-shaped slot structure faces the inner side of the radiation unit; adding the U-shaped slot structure on the radiation patch can be Extend the current path on the radiation patch to generate additional resonant modes and increase the antenna bandwidth; in addition, the length of the U-shaped slot (that is, L1+2L2 in Figure 7) can be 1/2 of the frequency corresponding to the first radiation zero point The equivalent electrical length of a wavelength, by adjusting the aspect ratio of the U-shaped slit (that is, L1/L2 in Figure 6), the position of the first radiation zero point in the stop band can be adjusted, that is, the gain curve frequency selection can be adjusted performance and out-of-band rejection.
  • the above-mentioned defect structure 123 can also be a concave structure; the notch of the concave structure faces the outside of the radiation unit; that is, the radiation patch can also be a U-shaped structure with a concave structure,
  • the radiation patch can also be a V-shaped structure with a concave structure, or other shapes with a concave structure, such as: C-shaped structure, the specific shape of the radiation patch with a concave structure in the embodiment of the present application Not limited.
  • the radiating patch with a concave structure may also be a radiating patch with two inner cut corners, so as to gather the radiating patches and further reduce the overall size of the antenna.
  • the impedance matching of the antenna can be realized by using a radiation patch with a concave structure, and the notch of the concave structure faces the outside of the radiation unit, that is, the antenna can be adjusted directly by adjusting the shape of the concave structure and the size of the concave structure.
  • the impedance matching of the antenna can avoid adding an additional impedance matching structure, simplify the structure of the antenna, and improve the efficiency of the antenna impedance matching.
  • the first radiation patch group 121 includes two oppositely arranged radiation patches
  • the second radiation patch group 122 includes two oppositely arranged radiation patches
  • each radiation patch passes through a balun
  • the structure 13 is connected to the metal ground 14
  • the parasitic unit 11 includes 4 parasitic patches, which correspond to the positions of the radiation patches respectively, and are fed through the radiation patches
  • the second radiation zero point is formed in the stop band between them, and the size of the parasitic patch is related to the position of the second radiation zero point in the stop band.
  • each parasitic patch in the parasitic unit 11 is a rectangular patch
  • the radiating unit 12 Each radiation patch in the antenna is a hexagonal patch with an inner cut angle and a U-shaped slot structure.
  • the antenna can work in 0° and 90° polarization directions to achieve dual-frequency dual-polarization radiation performance.
  • each parasitic patch in the parasitic unit 11 is a hexagonal patch
  • Each radiation patch in 12 is a U-shaped patch with an inner cut angle and a U-shaped concave structure.
  • the antenna can work in +45° and -45° polarization directions to achieve dual-frequency dual-polarization radiation performance.
  • properly adjusting the size of the parasitic patch can control the position of the second radiation zero in the stop band, the closer the second radiation zero is to the pass band, the better the frequency selectivity of the gain curve , the farther the second radiation zero point is from the passband, the better the out-of-band suppression performance of the gain curve; optionally, the larger the parasitic patch is, the more the position of the second radiation zero point moves to the low frequency direction; in addition, the parasitic patch
  • the distance and relative position to the radiation patch can also affect the matching at the high frequency of the antenna, that is to say, better antenna matching can be achieved by adjusting the distance and relative position between the parasitic patch and the radiation patch, Improve the performance of the antenna.
  • the first radiation patch group includes two oppositely arranged radiation patches
  • the second radiation patch group includes two oppositely arranged radiation patches
  • each radiation patch passes through a balun structure and metal ground connection
  • the parasitic unit includes 4 parasitic patches, corresponding to the position of the radiation patch respectively
  • the parasitic patch is used to form the second radiation zero point in the stop band between the high frequency passband and the low frequency passband
  • the size of is related to the position of the second radiation zero point in the stop band; that is, in the embodiment of the present application, by combining four radiation patches arranged orthogonally with four parasitic patches, wide bandwidth dual-frequency dual-polarization can be realized radiation performance, and is conducive to the miniaturization of the antenna.
  • the above-mentioned balun structure 13 may be a folded balun structure formed by multilayer metal pillars and metal patches arranged between two adjacent layers of metal pillars; the multilayer metal pillars are vertically arranged on the radiation patch Between the chip and the metal ground, each layer of metal pillars is folded by the metal patch.
  • the folded balun structure under the same height condition (that is, the height between the radiation patch and the metal ground), the current flow path can be increased.
  • the path flowing on the metal patch then by properly adjusting the width of the metal patch to design the horizontal distance, the current path can be extended, and the height between the radiation patch and the metal ground can be reduced, that is, the low profile design of the antenna can be realized .
  • each layer of metal pillars may include a plurality of metal pillars (the metal pillars may also be referred to as metallized vias), the multiple metal pillars of each layer are located on the same axis, and the axes of the metal pillars of different layers There is a certain distance between them, wherein the axis can be parallel or perpendicular to one side of the metal patch.
  • the balun structure can adopt a two-layer folded balun structure, including a first layer of metal pillars 131, a metal patch 132 and a second layer of metal pillars 133, wherein the first layer of metal pillars 131 is arranged above the metal patch 132, the second layer of metal pillars 133 is arranged under the metal patch 132, the first layer of metal pillars 131 is electrically connected with the radiation patch, and the second layer of metal pillars 133 is arranged under the metal patch 132.
  • the second-layer metal pillar 133 is electrically connected to the metal ground 14 .
  • FIG. 1 In another optional balun structure of this embodiment, as shown in FIG. The second layer of metal pillars 133, the second metal patch 134 and the third layer of metal pillars 135, wherein the first layer of metal pillars 131 are arranged above the first metal patch 132, and the second layer of metal pillars 133 are arranged on the first metal Between the patch 132 and the second metal patch 134, the third layer of metal pillars 135 is arranged under the second metal patch 134, the first layer of metal pillars 131 are electrically connected to the radiation patch, and the third layer of metal pillars 135 is connected to the radiation patch.
  • the metal ground 14 is electrically connected.
  • the balun structure is a folded balun structure formed by multi-layer metal columns and metal patches arranged between two adjacent layers of metal columns.
  • the multi-layer metal columns are vertically arranged between the radiation patch and the metal ground.
  • the height between the radiation patch and the metal ground can be reduced, the low profile of the antenna can be realized, and the size of the antenna can be further reduced.
  • the aforementioned dual-frequency dual-polarized antenna further includes a feed structure 15; the feed structure 15 includes a first polarized feed unit 151 and a second polarized feed unit 152,
  • the first polarized feed unit 151 and the second polarized feed unit 152 can be an inverted L-shaped feed structure, and the inverted L-shaped feed structure includes a short-circuit column 161 and a feed line 162; the short-circuit column 161 is connected to the external feed unit through the via hole on the metal ground 14, and the short-circuit column 161 is connected to the feed line 162 through the area surrounded by each radiation patch, and the feed line 162 is coplanar with the parasitic unit 11; optionally, the The external power supply unit can be a coaxial cable, that is to say, the short-circuit column 161 is connected to the inner core of the coaxial cable through the via hole on the metal ground 14, so that the external power supply device can feed the coaxial cable through the coaxial cable. Shorting column feed.
  • the feeder line 162 of the first polarized feeder unit 151 and the feeder line 162 of the second polarized feeder unit 152 are arranged orthogonally, and the feeder line 162 of the first polarized feeder unit 151 and the second polarized feeder unit 151 are arranged orthogonally.
  • the feeding lines 162 of the two-polarized feeding unit 152 are arranged up and down at a certain distance to achieve polarization isolation.
  • a feeder with adjustable width may be added at the end of the feeder 162 to form a T-shaped feeder structure.
  • the dual-frequency dual-polarized antenna also includes a feed structure; the feed structure includes a first polarized feed unit and a second polarized feed unit, and the first radiation patch group is used to couple the first The signal of the polarized feed unit, the second radiation patch group is used to couple the signal of the second polarized feed unit; the first polarized feed unit and the second polarized feed unit are inverted L-shaped feed structures,
  • the inverted L-shaped feed structure includes a short-circuit column and a feeder line; the short-circuit column is connected to the external feed unit through a via hole on the metal ground, and the short-circuit column is connected to the feeder line through the area surrounded by each radiation patch, and the feeder line is connected to the parasitic
  • the units are coplanar; the dual-frequency dual-polarized antenna in the embodiment of this application uses an inverted L-shaped feed structure to flow the current signal input from the external feed unit to the feeder through the short-circuit column, and then through the feeder and the radiation patch The coupling effect between the
  • the first feeder 1621 of the first polarized feeder unit 151 and the second feeder 1622 of the second polarized feeder unit 152 are arranged orthogonally;
  • the intersection position of the electric wire 1621 and the second feeder line 1622 realizes polarization isolation through a layer-changing connection;
  • an air bridge can be established through two short-circuit columns and a feeder line at the crossing position, so that Part of the feeding lines at the crossing position of the feeding lines are located on different layers, so as to realize polarization isolation between the two feeding lines;
  • An air bridge is established by two short-circuit columns and one feeder line, so as to avoid the overlapping of the first feeder line 1621 and the second feeder line 1622 at the orthogonal position, and improve the polarization isolation of the antenna.
  • a feeder with adjustable width may be added at the end of the feeder 162 to form a T-shaped feeder structure.
  • the first feeder line of the first polarized feeder unit is arranged orthogonally to the second feeder line of the second polarized feeder unit, and at the intersection of the first feeder line and the second feeder line, through Layer-changing connection realizes polarization isolation, which can improve polarization isolation, that is, achieve high polarization isolation.
  • the feed structure 15 may further include an external feed interface unit, the external feed interface unit includes a strip line 163 connected to the end of the short-circuit column 161 away from the feed line 162 and
  • the feed interface 164 the form of the feed interface 164 is not limited in the embodiment of the present application; an external power supply device can be connected to the feed interface 164 through a coaxial cable, and the current signal is input through the feed interface 164, and the The strip line 163 transmits the current signal to the short-circuit column 161 , and then to the feeder 162 , and the feeder 162 feeds the radiation patch through coupling with the radiation patch.
  • the side of the parasitic unit close to the metal ground is vertically connected to the metal structure;
  • the metal structure is composed of at least one vertical metal column (that is, a metallized via); that is, for Each parasitic patch in the parasitic unit is vertically connected to a metal structure on the side close to the metal ground; optionally, in order to meet AIP processing requirements, it can be electrically connected to the parasitic patch through a metallized via hole, and It is electrically connected to the four symmetrical metallized vias below; it should be noted that the vertical metal structure is not limited to metal vias, and may also include other metal structures that widen the wave width by generating vertical current.
  • the antenna wave width (that is, the beam width of the antenna) can be further broadened, and the beam scanning capability of the antenna in the array can be enhanced; in addition, the vertical metal structure can also stabilize
  • the pattern of the antenna unit improves the consistency of the patterns of different frequencies, that is, in view of the problem in the prior art that the larger the frequency, the narrower the beam, the vertical metal structure in the embodiment of the application can increase the beam width of different frequencies, so that The beam widths of different frequencies are basically consistent; in addition, since the vertical metal structure can increase the current path, the length of the parasitic patch can be reduced under the same current path, which is more conducive to the miniaturization design of the antenna.
  • FIG. 17 it is a schematic diagram of a three-dimensional structure of an optional dual-frequency dual-polarization antenna.
  • the antenna structure is the antenna structure composed of the above-mentioned FIG. 9 , FIG. 11 and FIG. 14 .
  • the common impedance bandwidth of the two ports is 24-30GHz, 37-45GHz, The return loss is below -10dB; the isolation between the two ports in the passband is good, and the polarization isolation is always kept above 20dB.
  • the gain curve of this antenna structure is shown in Figure 20. It can be seen from the figure that the antenna gain is stable in the working frequency band, the low-frequency gain is above 5.9dBi, and the high-frequency gain is above 4.9dBi; The two radiation zeros are respectively introduced by the parasitic unit and the U-shaped slot structure, thereby achieving better gain suppression capability in the stop band.
  • the dual-frequency dual-polarized antenna in this embodiment is simple in structure, low in cost, and does not require additional filter circuits, and realizes band-stop filter characteristics by loading parasitic patches and slot structures, thereby avoiding the introduction of additional insertion loss , to achieve a better dual-band effect, the radiation pattern in the passband is stable, and the gain suppression effect outside the passband is obvious;
  • the dual-frequency dual-polarization antenna has the characteristics of low profile, miniaturization, wide bandwidth, and high gain.
  • the optimized antenna can reduce the height of the antenna by folding the balun structure, widen the high-frequency bandwidth of the antenna and reduce the size of the antenna by loading the parasitic patch;
  • the dual-frequency dual-polarization antenna realizes dual-polarization radiation characteristics, and has high polarization isolation, stable pattern lobes, and low cross-polarization of the antenna;
  • the dual-frequency dual-polarized antenna has only horizontal and vertical structures, without the addition of inclined structures, which greatly reduces the difficulty of processing, conforms to the AIP processing technology, and has high antenna stability;
  • the overall structure of the antenna array composed of the dual-frequency dual-polarization antennas in this embodiment adopts the AIP process packaging design, which has low cost and high reliability, and the antenna array has strong beam scanning capability.
  • FIG. 21 it is a schematic diagram of another optional dual-frequency dual-polarization antenna.
  • An antenna array can be formed by the dual-frequency dual-polarized antenna in this embodiment, for example, A 2 ⁇ 2 antenna array is formed by the dual-frequency and dual-polarized antennas in this embodiment, as shown in Figure 23, where the arrangement of unit 2 is mirror-symmetrical to that of unit 1, and the arrangement of unit 4 is a mirror image of unit 3 Symmetrical, the antenna placement interval is 4.8mm, and the overall size of the array is 9.6mm ⁇ 9.6mm.
  • FIG. 24 it is the active S parameter diagram of the 2 ⁇ 2 antenna array, where: Active S(1:1), Active S(4:1), Active S(6:1), Active S( 7:1) represent the active return loss of ports 1, 4, 6, and 7 respectively. It can be seen from Fig. 24 that the common impedance bandwidth of the two polarization directions (+45° and -45°) is 24- 30GHz and 37-43.5GHz, the active return loss is below -10dB.
  • the gain curve of the 2 ⁇ 2 antenna array As shown in Figure 25, it is the gain curve of the 2 ⁇ 2 antenna array. It can be seen from Figure 25 that the gain of the antenna array is stable in the working frequency band, the low-frequency gain is above 8.3dBi, and the high-frequency gain is above 11.5dBi ; There is a radiation zero point in the stop band 30-37GHz, which is introduced by the parasitic unit, thus achieving better gain suppression capability in the stop band.
  • the beam scanning gain curve of the 2 ⁇ 2 antenna array at 27GHz is the beam scanning gain curve of the 2 ⁇ 2 antenna array at 27GHz. It can be seen from Figure 26 that the gain of the antenna is 7.85dBi when the yoz plane beam scans to -45°, which is different from When scanning the antenna, the gain drops by 1.3dB, and the antenna array is in the entire low-frequency passband (24GHz ⁇ 30GHz), when the antenna beam is scanned to ⁇ 45°, compared with the antenna when not scanning, the gain drop is within 2dB .
  • the beam scanning gain curve of the 2 ⁇ 2 antenna array at 40 GHz is the beam scanning gain curve of the 2 ⁇ 2 antenna array at 40 GHz. It can be seen from Figure 27 that the gain of the antenna is 7.3dBi when the yoz surface beam scans to ⁇ 45°, compared with For the scanning antenna, the gain drops by 5.1dB, and the antenna array is in the entire high-frequency passband (37GHz-43.5GHz), when the antenna beam is scanned to ⁇ 45°, compared with the antenna without scanning, the gain drop is at Within 5.5dB.
  • the vertical metal structure on the parasitic patch can increase the passband bandwidth of the antenna by 15-20°, thereby enhancing the beam of the 2 ⁇ 2 antenna array Scanning ability; in addition, loading a vertical metal structure on the parasitic patch can also stabilize the antenna pattern, improve the consistency of the pattern of different frequencies, and reduce the length of the parasitic patch, which is conducive to the miniaturization design of the antenna.
  • the dual-frequency dual-polarized antenna in this embodiment can achieve dual-frequency radiation performance and high polarization isolation with highly selective band-stop filtering, and can ensure that the profile height is reduced while realizing broadband, and the dual-frequency pass There is a stable radiation pattern within the band.
  • a dual-frequency dual-polarization antenna array is provided, and the dual-frequency dual-polarization antenna array includes N ⁇ M above-mentioned dual-frequency dual-polarization antennas;
  • the polarized antennas are arranged mirror-symmetrically; for example, as shown in FIG. 23 , it is a 2 ⁇ 2 dual-frequency dual-polarized antenna array composed of the dual-frequency dual-polarized antennas in FIG. 21 .

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本申请涉及一种双频双极化天线和双频双极化天线阵列,该双频双极化天线包括寄生单元、辐射单元、巴伦结构;辐射单元包括正交设置的第一辐射贴片组和第二辐射贴片组;第一辐射贴片组和第二辐射贴片组分别通过巴伦结构与金属地连接;寄生单元叠层设置于辐射单元远离金属地的一侧,与辐射单元的位置对应;在第一极化方向上,第一辐射贴片组与巴伦结构用于产生低频通带,第二辐射贴片组与寄生单元用于产生高频通带;在第二极化方向上,第二辐射贴片组与巴伦结构用于产生低频通带,第一辐射贴片组与寄生单元用于产生高频通带;能够实现宽带宽的双频双极化辐射特性,大大缩小了该双频双极化天线的整体尺寸,有利于天线的小型化。

Description

双频双极化天线和双频双极化天线阵列 技术领域
本申请涉及天线技术领域,特别是涉及一种双频双极化天线和双频双极化天线阵列。
背景技术
在5G通信系统中,通常采用毫米波频段来提高无线信道的容量和传输质量,目前,全球5G通信系统的工作频段普遍为24.25-29.5GHz和37-43.5GHz两个毫米波频段,而对于工作在这两个毫米波频段的天线的设计要求也越来越趋向于天线的小型化、集成化以及多极化。
现有的双频双极化天线由于能够同时实现多频段工作和双极化工作,在5G通信系统中的应用越来越多,该双频双极化天线通常是通过参数调整的方式使得一个天线贴片可以工作在多个不同的频段;例如:如果要同时实现24.25-29.5GHz和37-43.5GHz两个频段,那么可以通过调整参数使得该双频双极化天线能够工作在24.25-29.5GHz和37-43.5GHz两个频段;但是,现有技术中通过参数调整的方式仅能实现这两个频段中的部分频段,工作带宽较窄,也就是无法完整覆盖24.25-29.5GHz和37-43.5GHz两个频段。
然而,为了扩展该双频双极化天线的带宽,通常需要多个这样的天线贴片,导致该双频双极化天线的尺寸较大,不利于天线的小型化设计。
发明内容
基于此,有必要针对上述技术问题,提供一种能够在展宽双频双极化天线带宽的同时,缩小该双频双极化天线尺寸的双频双极化天线和双频双极化天线阵列。
第一方面,提供了一种双频双极化天线,该双频双极化天线包括:寄生单元、辐射单元、巴伦结构;辐射单元包括正交设置的第一辐射贴片组和第二辐射贴片组;第一辐射贴片组和第二辐射贴片组分别通过巴伦结构与金属地连接;
寄生单元叠层设置于辐射单元远离金属地的一侧,与辐射单元的位置对应;
在第一极化方向上,第一辐射贴片组与巴伦结构用于产生低频通带,第二辐射贴片组与寄生单元用于产生高频通带;在第二极化方向上,第二辐射贴片组与巴伦结构用于产生低频通带,第一辐射贴片组与寄生单元用于产生高频通带。
在其中一个实施例中,第一辐射贴片组和第二辐射贴片组上设置有缺陷结构,该缺陷结构用于在高频通带和低频通带之间的阻带内形成第一辐射零点。
在其中一个实施例中,该缺陷结构为缝隙结构;该缝隙结构的尺寸与第一辐射零点在阻带内的位置相关。
在其中一个实施例中,该缝隙结构为U形缝隙结构,该U形缝隙结构的凹口朝向辐射单元的内侧。
在其中一个实施例中,该缺陷结构为凹陷结构;该凹陷结构的凹口朝向辐射单元的外侧。
在其中一个实施例中,第一辐射贴片组包括两个相对设置的辐射贴片,第二辐射贴片组包括两个相对设置的辐射贴片;每个辐射贴片分别通过一个巴伦结构与金属地连接;
寄生单元包括4个寄生贴片,分别与辐射贴片位置对应;该寄生贴片用于在高频通带和低频通带之间的阻带内形成第二辐射零点,寄生贴片的大小与第二辐射零点在阻带内的位置相关。
在其中一个实施例中,第一辐射贴片组的两个辐射贴片和第二辐射贴片组的两个辐射贴片在正交处设置有内侧切角,该内侧切角用于聚拢各辐射贴片。
在其中一个实施例中,巴伦结构为多层金属柱,以及设置于相邻两层金属柱之间的金属贴片形成的折叠巴伦结构;多层金属柱垂直设置于辐射贴片与金属地之间。
在其中一个实施例中,双频双极化天线还包括馈电结构;
馈电结构包括第一极化馈电单元和第二极化馈电单元,第一辐射贴片组用于耦合第一极 化馈电单元的信号;第二辐射贴片组用于耦合第二极化馈电单元的信号。
在其中一个实施例中,第一极化馈电单元和第二极化馈电单元为倒L型馈电结构,该倒L型馈电结构包括短路柱和馈电线;
短路柱通过金属地上的过孔与外部馈电单元连接,短路柱穿过各辐射贴片围成的区域与馈电线连接,馈电线与寄生单元共面。
在其中一个实施例中,第一极化馈电单元的第一馈电线与第二极化馈电单元的第二馈电线正交设置;在第一馈电线与第二馈电线的交叉位置,通过换层连接实现极化隔离。
在其中一个实施例中,寄生单元靠近金属地的一侧垂直连接金属结构;该金属结构由至少一个垂直金属柱组成。
第二方面,提供了一种双频双极化天线阵列,该双频双极化天线阵列包括N×M个上述第一方面中任一实施例中的双频双极化天线;其中,相邻两列的双频双极化天线之间呈镜像对称设置。
上述双频双极化天线和双频双极化天线阵列,该双频双极化天线包括寄生单元、辐射单元、巴伦结构;该辐射单元包括正交设置的第一辐射贴片组和第二辐射贴片组;第一辐射贴片组和第二辐射贴片组分别通过巴伦结构与金属地连接;寄生单元叠层设置于辐射单元远离金属地的一侧,与辐射单元的位置对应;在第一极化方向上,第一辐射贴片组与巴伦结构用于产生低频通带,第二辐射贴片组与寄生单元用于产生高频通带;在第二极化方向上,第二辐射贴片组与巴伦结构用于产生低频通带,第一辐射贴片组与寄生单元用于产生高频通带;也就是说,本申请实施例中的双频双极化天线能够通过正交对称设置的两组辐射贴片结合寄生单元和巴伦结构,在同一极化方向上,两组辐射贴片分别工作在不同的工作模式,以产生两个不同的频段,实现双频双极化的辐射特性;相比于现有技术中通过增加多个多频段天线贴片来增加天线的带宽的方式,本申请实施例中的双频双极化天线仅需通过两组正交的辐射贴片结合寄生单元和巴伦结构,就能实现宽带宽的双频双极化辐射特性,即通过寄生单元展宽双频双极化天线带宽的同时,大大缩小了该双频双极化天线的整体尺寸,有利于天线的小型化。
附图说明
图1为本申请实施例提供的一种双频双极化天线的立体结构示意图;
图2为本申请实施例提供的一种双频双极化天线的侧视结构示意图;
图3为本申请实施例提供的一种寄生贴片的结构示意图;
图4为本申请实施例提供的一种辐射贴片的结构示意图;
图5为本申请实施例提供的一种双频辐射模式原理图;
图6为本申请实施例提供的另一种辐射贴片的结构示意图;
图7为本申请实施例提供的另一种辐射贴片的结构示意图;
图8为本申请实施例提供的另一种辐射贴片的结构示意图;
图9为本申请实施例提供的一种寄生单元和辐射单元的结构示意图;
图10为本申请实施例提供的另一种寄生单元和辐射单元的结构示意图;
图11为本申请实施例提供的一种巴伦结构的立体结构示意图;
图12为本申请实施例提供的另一种巴伦结构的立体结构示意图;
图13为本申请实施例提供的一种馈电结构的立体结构示意图;
图14为本申请实施例提供的另一种馈电结构的立体结构示意图;
图15为本申请实施例提供的另一种馈电结构的立体结构示意图;
图16为本申请实施例提供的另一种寄生贴片的立体结构示意图;
图17为本申请实施例提供的另一种双频双极化天线的的立体结构示意图;
图18为本申请实施例提供的另一种双频双极化天线的的侧视结构示意图;
图19为本申请实施例提供的一种双频双极化天线的两个端口的回波损耗与极化隔离曲 线仿真结果图;
图20为本申请实施例提供的一种双频双极化天线的两个端口的增益曲线仿真结果图;
图21为本申请实施例提供的另一种双频双极化天线的立体结构示意图;
图22为本申请实施例提供的另一种双频双极化天线的侧视结构示意图;
图23为本申请实施例提供的一种2×2天线阵列的结构示意图;
图24为本申请实施例提供的一种2×2天线阵列的有源回波损耗仿真结果图;
图25为本申请实施例提供的一种2×2天线阵列的增益曲线仿真结果图;
图26为本申请实施例提供的一种2×2天线阵列在27GHz处的波束扫描仿真结果图;
图27为本申请实施例提供的一种2×2天线阵列在40GHz处的波束扫描仿真结果图。
附图标记说明:
10:双频双极化天线;11:寄生单元;12:辐射单元;13:巴伦结构;
14:金属地;15:馈电结构;121:第一辐射贴片组;
122:第二辐射贴片组;123:辐射贴片上的缺陷结构;131:第一层金属柱;
132:第一金属贴片;133:第二层金属柱;134:第二金属贴片;
135:第三层金属柱;151:第一极化馈电单元;152:第二极化馈电单元;
161:短路柱;162:馈电线;1621:第一极化馈电单元的第一馈电线;
1622:第二极化馈电单元的第二馈电线;163:带状线;164:馈电接口。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。在下面的描述中阐述了很多具体细节以便于充分理解本申请实施例。但是本申请实施例能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请实施例内涵的情况下做类似改进,因此本申请实施例不受下面公开的具体实施例的限制。
在本申请实施例的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请实施例的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请实施例中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请实施例中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是 直接连接到另一个元件或者可能同时存在居中元件。本申请实施例所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
本申请实施例提供一种双频双极化天线,其立体结构图如图1所示,侧视结构图如图2所示。其中,该双频双极化天线10包括:寄生单元11、辐射单元12、巴伦结构13;辐射单元12包括正交设置的第一辐射贴片组121和第二辐射贴片组122;第一辐射贴片组121和第二辐射贴片组122分别通过巴伦结构13与金属地14连接;寄生单元11叠层设置于辐射单元12远离金属地14的一侧,与辐射单元12的位置对应;在第一极化方向上,第一辐射贴片组121与巴伦结构13用于产生低频通带,第二辐射贴片组122与寄生单元11用于产生高频通带;在第二极化方向上,第二辐射贴片组122与巴伦结构13用于产生低频通带,第一辐射贴片组121与寄生单元11用于产生高频通带。
可选地,该第一辐射贴片组121可以包括至少两个辐射贴片,该第二辐射贴片组122也可以包括至少两个辐射贴片,且第一辐射贴片组121和第二辐射贴片组122的辐射贴片数量一致,即第一辐射贴片组121和第二辐射贴片组122正交对称;对于每一个辐射贴片可以通过一个巴伦结构13与金属地14连接,可选地,该巴伦结构13可以包括一排金属柱(该一排金属柱中包括至少一个金属柱),该一排金属柱与辐射贴片靠近正交处的内边缘电连接;对于寄生单元11可以包括与辐射单元12相同数量的寄生贴片,叠层设置在每一个辐射贴片远离金属地14的一侧,例如图1和图2中的寄生贴片可以间隔一定高度设置在辐射贴片的上方;其中,该寄生贴片能够展宽天线的带宽,增加天线高频通带内的增益,并使天线整体尺寸有所减少。
可选地,该寄生贴片可以为矩形贴片,如图3所示;也可以为其他形状的贴片,例如圆形、扇形、三角形、四边形、五边形或者六边形等,本申请实施例对此并不做限定,实际应用中可根据天线设计需求灵活设置,只要由该寄生贴片组成的寄生单元为正交对称即可。
可选地,该辐射贴片可以为矩形贴片,也可以为将矩形中靠近正交处的边缘的两侧角切除后形成的具有内侧切角的六边形结构贴片,如图4所示;还可以为其他形状的具有内侧切角或者不具有内侧切角的任意形状的切片等,本申请实施例对此并不做限定,实际应用中可根据天线设计需求灵活设置,只要由该辐射贴片组成的辐射单元为正交对称即可。
可选地,该第一辐射贴片组121和第二辐射贴片组122可以根据不同的天线极化方向正交设置,例如:0°和90°正交设置、+45°和-45°正交设置等;在不同的极化方向上,该第一辐射贴片组121和第二辐射贴片组122工作在不同的工作模式,用于产生两个不同的通带;例如:如图5所示,第一辐射贴片组121可以为上下设置的两个辐射贴片,第二辐射贴片组122可以为左右设置的两个辐射贴片;在第一(如0°)极化方向上,该第一辐射贴片组121(上下两个辐射贴片)与巴伦结构共同形成偶极子天线工作模式,相当于偶极子天线,用于产生低频通带,该低频通带可以为24.25-29.5GHz频段,此时,该上下两个辐射贴片作为低频辐射贴片,由该上下两个辐射贴片上的电流辐射;该第二辐射贴片组122(左右两个辐射贴片)与寄生单元共同形成叠层贴片天线工作模式,相当于贴片天线,用于产生高频通带,该高频通带可以为37-43.5GHz频段,此时,该左右两个辐射贴片作为高频辐射贴片,由该左右两个辐射贴片上的切向电流辐射。
相反的,在第二(如90°)极化方向上,该第二辐射贴片组122(左右两个辐射贴片)与巴伦结构共同形成偶极子天线工作模式,相当于偶极子天线,用于产生低频通带,该低频通带可以为24.25-29.5GHz频段,此时,该左右两个辐射贴片作为低频辐射贴片,由该左右两个辐射贴片上的电流辐射;该第一辐射贴片组121(上下两个辐射贴片)与寄生单元共同形成叠层贴片天线工作模式,相当于贴片天线,用于产生高频通带,该高频通带可以为37-43.5GHz频段,此时,该上下两个辐射贴片作为高频辐射贴片,由该上下两个辐射贴片上的切向电流辐射。
本实施例中,双频双极化天线包括寄生单元、辐射单元、巴伦结构;该辐射单元包括正交设置的第一辐射贴片组和第二辐射贴片组;第一辐射贴片组和第二辐射贴片组分别通过巴伦结构与金属地连接;寄生单元叠层设置于辐射单元远离金属地的一侧,与辐射单元的位置对应;在第一极化方向上,第一辐射贴片组与巴伦结构用于产生低频通带,第二辐射贴片组与寄生单元用于产生高频通带;在第二极化方向上,第二辐射贴片组与巴伦结构用于产生低频通带,第一辐射贴片组与寄生单元用于产生高频通带;也就是说,本申请实施例中的双频双极化天线能够通过正交对称设置的两组辐射贴片结合寄生单元和巴伦结构,在同一极化方向上,两组辐射贴片分别工作在不同的工作模式,以产生两个不同的频段,实现双频双极化的辐射特性;相比于现有技术中通过增加多个多频段天线贴片来增加天线的带宽的方式,本申请实施例中的双频双极化天线仅需通过两组正交的辐射贴片结合寄生单元和巴伦结构,就能实现宽带宽的双频双极化辐射特性,即通过寄生单元展宽双频双极化天线带宽的同时,大大缩小了该双频双极化天线的整体尺寸,有利于天线的小型化。
在一个实施例中,如图6所示,上述第一辐射贴片组121和第二辐射贴片组122上还可以设置有缺陷结构123,该缺陷结构123用于在高频通带和低频通带之间的阻带内形成第一辐射零点;可选地,该缺陷结构123可以为该辐射贴片上的缝隙结构,即缝隙结构123可以为矩形缝隙、弧形缝隙、U形缝隙、V形缝隙或者任意非闭合形的缝隙结构等,该缝隙结构123的尺寸与第一辐射零点在阻带内的位置相关,即通过调整该缝隙结构的尺寸,可以控制该第一辐射零点在阻带内的位置;需要说明的是,本申请实施例对该缝隙结构的形状和尺寸大小并不做限定,以及对该缝隙结构在该辐射贴片上位置和方向也并不做限定。
本实施例中,通过在第一辐射贴片组和第二辐射贴片组上设置有缺陷结构,能够在高频通带和低频通带之间的阻带内形成第一辐射零点,该第一辐射零点能够降低阻带内各频率点的电磁波信号的增益,提高带外抑制能力,进而提高天线的带阻滤波效果。
在一个实施例中,如图7所示,上述缝隙结构123可以为U形缝隙结构,该U形缝隙结构的凹口朝向辐射单元的内侧;在辐射贴片上增加该U形缝隙结构,可以延长辐射贴片上的电流路径,产生附加谐振模式,增加天线带宽;另外,该U形缝隙的长度(即图7中的L1+2L2)可以为该第一辐射零点对应的频率的二分之一波长的等效电长度,通过调节该U形缝隙的长宽比(即图6中的L1/L2),可以调节该第一辐射零点在阻带内的位置,即可以调节增益曲线频率选择性和带外抑制能力。
本实施例中,通过在每个辐射贴片上增加U形缝隙结构,并将该U形缝隙结构的凹口朝向辐射单元的内侧,便于通过调整该U形缝隙结构的长宽比,灵活调整第一辐射零点在阻带内的位置,提高操作便捷性,进而增强天线的带阻滤波效果。
在一个实施例中,如图8所示,上述缺陷结构123还可以为凹陷结构;该凹陷结构的凹口朝向辐射单元的外侧;即该辐射贴片还可以为具有凹陷结构的U形结构,可选地,该辐射贴片还可以为具有凹陷结构的V形结构,或者具有凹陷结构的其他形状等,例如:C形结构,本申请实施例中对具有凹陷结构的辐射贴片的具体形状并不做限定。可选地,该具有凹陷结构的辐射贴片还可以为具有两个内侧切角的辐射贴片,以聚拢各辐射贴片,进一步缩小天线的整体尺寸。
本实施例中,通过采用具有凹陷结构,且该凹陷结构的凹口朝向辐射单元外侧的辐射贴片,能够实现天线的阻抗匹配,即可以直接通过调整凹陷结构的形状以及凹陷结构的尺寸进行天线的阻抗匹配,从而能够避免增加额外的阻抗匹配结构,能够简化天线的结构,提高天线阻抗匹配的效率。
在一个实施例中,第一辐射贴片组121包括两个相对设置的辐射贴片,第二辐射贴片组122包括两个相对设置的辐射贴片;每个辐射贴片分别通过一个巴伦结构13与金属地14连接;寄生单元11包括4个寄生贴片,分别与辐射贴片位置对应,通过辐射贴片耦合馈电;该寄生贴片用于在高频通带和低频通带之间的阻带内形成第二辐射零点,寄生贴片的大小与第二辐射零点在阻带内的位置相关。
在本实施例的一个可选的天线结构中,该寄生单元和辐射单元的形状可以如图9所示,其中,该寄生单元11中的每一个寄生贴片为矩形贴片,该辐射单元12中的每一个辐射贴片为具有内侧切角和U形缝隙结构的六边形贴片,该天线可以工作在0°和90°极化方向上,实现双频双极化辐射性能。
在本实施例的另一个可选的天线结构中,该寄生单元和辐射单元的形状可以如图10所示,该寄生单元11中的每一个寄生贴片为六边形贴片,该辐射单元12中的每一个辐射贴片为具有内侧切角和U形凹陷结构的U形贴片,该天线可以工作在+45°和-45°极化方向上,实现双频双极化辐射性能。
可选地,在上述两种天线结构中,适当调节寄生贴片的大小,可以控制阻带内第二辐射零点的位置,该第二辐射零点越靠近通带时,增益曲线频率选择性越好,该第二辐射零点越远离通带时,增益曲线带外抑制性能越好;可选地,寄生贴片越大,该第二辐射零点的位置越向低频方向移动;另外,该寄生贴片与辐射贴片之间的距离和相对位置还可以影响天线高频处的匹配,也就是说,通过调整寄生贴片与辐射贴片之间的距离和相对位置,能够实现更好的天线匹配,提高天线的性能。
本实施例中,第一辐射贴片组包括两个相对设置的辐射贴片,第二辐射贴片组包括两个相对设置的辐射贴片;每个辐射贴片分别通过一个巴伦结构与金属地连接;寄生单元包括4个寄生贴片,分别与辐射贴片位置对应;该寄生贴片用于在高频通带和低频通带之间的阻带内形成第二辐射零点,寄生贴片的大小与第二辐射零点在阻带内的位置相关;即本申请实施例中,通过正交设置的四个辐射贴片结合四个寄生贴片,能够实现宽带宽的双频双极化的辐射性能,且有利于天线的小型化。
在一个实施例中,上述巴伦结构13可以为多层金属柱,以及设置于相邻两层金属柱之间的金属贴片形成的折叠巴伦结构;该多层金属柱垂直设置于辐射贴片与金属地之间,每一层金属柱被金属贴片折叠,通过该折叠巴伦结构,在同样高度条件下(即辐射贴片和金属地之间的高度),电流的流通路径可以增加在金属贴片上流动的路径,那么通过适当调节该金属贴片的宽度来设计水平距离,可以延长电流路径,进行能够降低辐射贴片和金属地之间的高度,即实现天线的低剖面设计。
可选地,每一层金属柱可以包括多个金属柱(金属柱也可以称之为金属化过孔),每一层的多个金属柱位于同一轴线上,不同层的金属柱的轴线之间存在一定的间隔距离,其中,该轴线可以与金属贴片的一个边平行或者垂直。
在本实施例的一个可选的巴伦结构中,如图11所示,该巴伦结构可以采用两层折叠巴伦结构,包括第一层金属柱131、金属贴片132和第二层金属柱133,其中,第一层金属柱131设置在该金属贴片132的上方,第二层金属柱133设置在金属贴片132的下方,第一层金属柱131与辐射贴片电连接,第二层金属柱133与金属地14电连接。
在本实施例的另一个可选的巴伦结构中,如图12所示,该巴伦结构可以采用三层折叠巴伦结构,包括第一层金属柱131、第一金属贴片132、第二层金属柱133、第二金属贴片134和第三层金属柱135,其中,第一层金属柱131设置在第一金属贴片132的上方,第二层金属柱133设置在第一金属贴片132和第二金属贴片134之间,第三层金属柱135设置在第二金属贴片134的下方,第一层金属柱131与辐射贴片电连接,第三层金属柱135与金属地14电连接。
需要说明的是,上述图11和图12只是作为对折叠巴伦结构的两种举例说明,并不用于对该折叠巴伦结构的限定,在实际天线结构设计中,可以根据天线的性能需求和工艺要求灵活设置该巴伦结构。
本实施例中,巴伦结构为多层金属柱,以及设置于相邻两层金属柱之间的金属贴片形成的折叠巴伦结构,该多层金属柱垂直设置于辐射贴片与金属地之间;通过多层折叠巴伦结构,能够降低辐射贴片和金属地之间的高度,实现天线的低剖面,进一步降低天线的尺寸。
在一个实施例中,如图13所示,上述双频双极化天线还包括馈电结构15;该馈电结构 15包括第一极化馈电单元151和第二极化馈电单元152,第一辐射贴片组121用于耦合第一极化馈电单元151的信号;第二辐射贴片组122用于耦合第二极化馈电单元152的信号。
可选地,该第一极化馈电单元151和第二极化馈电单元152可以为倒L型馈电结构,该倒L型馈电结构包括短路柱161和馈电线162;该短路柱161通过金属地14上的过孔与外部馈电单元连接,短路柱161穿过各辐射贴片围成的区域与馈电线162连接,馈电线162与寄生单元11共面;可选地,该外部馈电单元可以为同轴线缆,也就是说,该短路柱161通过金属地14上的过孔与同轴线缆的内芯连接,以便外部供电设备可以通过该同轴线缆向该短路柱馈电。
可选地,该第一极化馈电单元151的馈电线162和第二极化馈电单元152的馈电线162正交设置,且该第一极化馈电单元151的馈电线162和第二极化馈电单元152的馈电线162间隔一定距离上下设置,以实现极化隔离。
可选地,为了提高天线的阻抗匹配(50Ω的阻抗匹配)性能,在馈电线162的末端还可以增加宽度可调的馈电线,构成T形馈电线结构。
本实施例中,该双频双极化天线还包括馈电结构;该馈电结构包括第一极化馈电单元和第二极化馈电单元,第一辐射贴片组用于耦合第一极化馈电单元的信号,第二辐射贴片组用于耦合第二极化馈电单元的信号;第一极化馈电单元和第二极化馈电单元为倒L型馈电结构,该倒L型馈电结构包括短路柱和馈电线;短路柱通过金属地上的过孔与外部馈电单元连接,短路柱穿过各辐射贴片围成的区域与馈电线连接,馈电线与寄生单元共面;本申请实施例中的双频双极化天线,通过倒L型馈电结构,将外部馈电单元输入的电流信号通过短路柱流至馈电线,接着通过馈电线和辐射贴片之间的耦合作用,将电流信号耦合至辐射贴片,能够提高天线馈电的可靠性;另外,本申请中的馈电结构,通过馈电线与辐射贴片间隔设置形成耦合,还可以在一定程度上展宽天线的阻抗带宽,实现宽带宽的双频双极化辐射性能。
在一个实施例中,如图14所示,上述第一极化馈电单元151的第一馈电线1621与第二极化馈电单元152的第二馈电线1622正交设置;在第一馈电线1621与第二馈电线1622的交叉位置,通过换层连接实现极化隔离;可选地,对于其中一条馈电线,在交叉位置,可以通过两个短路柱和一条馈电线建立空气桥,使得该馈电线的交叉位置的部分馈电线位于不同层,实现两条馈电线之间的极化隔离;例如:对于第一极化馈电单元151的第一馈电线1621,在交叉位置,通过两个短路柱和一条馈电线建立空气桥,以避免第一馈电线1621和第二馈电线1622在正交位置重叠,提高天线的极化隔离度。
可选地,为了提高天线的阻抗匹配(50Ω的阻抗匹配)性能,在馈电线162的末端还可以增加宽度可调的馈电线,构成T形馈电线结构。
本实施例中,第一极化馈电单元的第一馈电线与第二极化馈电单元的第二馈电线正交设置,并在第一馈电线与第二馈电线的交叉位置,通过换层连接实现极化隔离,能够提高极化隔离度,即实现高极化隔离度。
在一个实施例中,如图15所示,上述馈电结构15还可以包括外部馈电接口单元,该外部馈电接口单元包括与短路柱161远离馈电线162的一端连接的带状线163和馈电接口164,本申请实施例中对馈电接口164的形式并不做限定;外部供电设备可以通过同轴线缆连接该馈电接口164,通过该馈电接口164输入电流信号,并通过带状线163将该电流信号传输至短路柱161,进而传输至馈电线162,馈电线162通过与辐射贴片之间的耦合作用,向辐射贴片馈电。
本实施例中,通过在馈电结构的短路柱下方连接带状线和馈电接口,相当于为该双频双极化天线提供可连接的馈电接口,以便于外部供电设备通过该馈电接口为该天线进行馈电,提高了为天线馈电的便捷性。
在一个实施例中,如图16所示,上述寄生单元靠近金属地的一侧垂直连接金属结构;该金属结构由至少一个垂直金属柱(也即金属化过孔)组成;也就是说,对于寄生单元中的每一个寄生贴片在靠近金属地的一侧均垂直连接一金属结构;可选地,为了满足AIP加工要 求,可以通过一根金属化过孔与寄生贴片电性连接,并与下方对称的四根金属化过孔电性连接;需要说明的是,该垂直金属结构不局限于金属过孔,也可以包括通过产生垂直电流拓宽波宽的其他金属结构。进一步地,在该垂直金属结构产生的垂直化电流的作用下,能进一步展宽天线波宽(即天线的波束宽度),增强天线在阵列中的波束扫描能力;此外,该垂直金属结构还能稳定天线单元方向图,改善不同频率方向图的一致性,即针对现有技术中频率越大,波束越窄的问题,通过本申请实施例中的垂直金属结构,能够增加不同频率的波束宽度,使得不同频率的波束宽窄基本保持一致;另外,由于该垂直金属结构能够增加电流路径,因此,在相同电流路径下,可以减少寄生贴片的长度,从而更有利于天线的小型化设计。
在一个实施例中,如图17所示,为一种可选的双频双极化天线的立体结构示意图,该天线结构为由上述图9、图11和图14组成的天线结构,其侧视结构图如图18所示;该天线结构的天线高度H=0.9mm,天线宽度L=4.9mm;该天线结构的散射(Scatter,简称S)参数图如图19所示,其中,S11表示端口1的回波损耗,S22表示端口2的回波损耗,S21表示端口1到端口2的传输系数,从图19中可以看到,两端口共有的阻抗带宽为24-30GHz、37-45GHz,回波损耗均在-10dB以下;通带内两端口的隔离较好,极化隔离始终保持在20dB以上。
该天线结构的增益曲线图如图20所示,从图中可以看到,在工作频带内天线增益平稳,低频增益在5.9dBi以上,高频增益在4.9dBi以上;在阻带30-37GHz有两个辐射零点,分别由寄生单元和U形缝隙结构引入,从而在阻带实现了较好的增益抑制能力。
本实施例中的双频双极化天线,具有如下优点:
(1)本实施例中的双频双极化天线结构简单,成本低廉,无需额外的滤波电路,通过加载寄生贴片、缝隙结构的方式实现了带阻滤波特性,从而避免引入额外的插损,实现了较好的双频效果,通带内辐射方向图稳定,通带外增益抑制效果明显;
(2)该双频双极化天线具有低剖面、小型化、宽带宽、高增益的特点,克服了目前双频双极化天线设计不能兼顾低剖面和宽带宽的难点,该双频双极化天线能够通过折叠巴伦结构降低天线高度,通过加载寄生贴片扩宽天线高频带宽、减少了天线尺寸;
(3)该双频双极化天线实现了双极化辐射特性,且极化隔离度高,方向图波瓣稳定,天线的交叉极化低;
(4)该双频双极化天线只有水平与垂直结构,没有倾斜结构的加入,大大减少了加工难度,符合AIP加工工艺,天线稳定性较高;
(5)通过本实施例中的双频双极化天线组成的天线阵列,整体结构采用AIP工艺封装设计,成本低,可靠性强,并且天线阵列具有较强的波束扫描能力。
在一个实施例中,如图21所示,为另一种可选的双频双极化天线的立体结构示意图,该天线结构为由上述图10、图12、图15和图16组成的天线结构,其侧视结构图如图22所示;该天线结构的天线高度H=0.838mm,天线宽度L=4.6mm;通过本实施例中的双频双极化天线可以组成天线阵列,例如,通过本实施例中的双频双极化天线组成2×2的天线阵列,如图23所示,其中,单元2的摆放与单元1成镜像对称,单元4的摆放与单元3成镜像对称,天线摆放间隔为4.8mm,阵列整体尺寸为9.6mm×9.6mm。
如图24所示,为该2×2的天线阵列的有源S参数图,其中:Active S(1:1)、Active S(4:1)、Active S(6:1)、Active S(7:1)分别表示端口1、4、6、7的有源回波损耗,从图24中可以看到,两个极化方向(+45°和-45°)共有的阻抗带宽为24-30GHz和37-43.5GHz,有源回波损耗均在-10dB以下。
如图25所示,为该2×2的天线阵列的增益曲线图,从图25中可以看到,在工作频带内天线阵列增益平稳,低频增益在8.3dBi以上,高频增益在11.5dBi以上;在阻带30-37GHz存在一个辐射零点,由寄生单元引入,从而在阻带内实现了较好的增益抑制能力。
如图26所示,为该2×2的天线阵列在27GHz处的波束扫描增益曲线图,从图26中可以看到,天线在yoz面波束扫描到-45°时增益为7.85dBi,对比不扫描时的天线,增益下降 了1.3dB,并且,该天线阵列在整个低频通带(24GHz~30GHz)内,天线波束扫描到±45°时,对比不扫描时的天线,增益下降均在2dB以内。
如图27所示,为该2×2的天线阵列在40GHz处的波束扫描增益曲线图,从图27中可以看到,天线在yoz面波束扫描到±45°时增益为7.3dBi,对比不扫描时的天线,增益下降了5.1dB,并且,该天线阵列在整个高频通带(37GHz~43.5GHz)内,天线波束扫描到±45°时,对比不扫描时的天线,增益下降均在5.5dB以内。
进一步地,本申请实施例中的双频双极化天线,其寄生贴片上的垂直金属结构能够增加该天线的通带内波宽15-20°,从而能够增强2×2天线阵列的波束扫描能力;此外,在寄生贴片上加载垂直金属结构还可以稳定天线方向图,改善不同频率方向图的一致性,并可减少寄生贴片长度,利于天线的小型化设计。
本实施例中的双频双极化天线,可以实现具有高选择性带阻滤波的双频辐射性能和高极化隔离度,又可以保证在实现宽带的同时降低剖面高度,并在双频通带内具有稳定的辐射方向图。
在一个实施例中,提供了一种双频双极化天线阵列,该双频双极化天线阵列包括N×M个上述双频双极化天线;其中,相邻两列的双频双极化天线之间呈镜像对称设置;例如:如图23所示,为采用图21的双频双极化天线组成的2×2的双频双极化天线阵列。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种双频双极化天线,其特征在于,包括:寄生单元、辐射单元、巴伦结构;所述辐射单元包括正交设置的第一辐射贴片组和第二辐射贴片组;所述第一辐射贴片组和所述第二辐射贴片组分别通过所述巴伦结构与金属地连接;
    所述寄生单元叠层设置于所述辐射单元远离所述金属地的一侧,与所述辐射单元的位置对应;
    在第一极化方向上,所述第一辐射贴片组与所述巴伦结构用于产生低频通带,所述第二辐射贴片组与所述寄生单元用于产生高频通带;在第二极化方向上,所述第二辐射贴片组与所述巴伦结构用于产生低频通带,所述第一辐射贴片组与所述寄生单元用于产生高频通带。
  2. 根据权利要求1所述的双频双极化天线,其特征在于,
    所述第一辐射贴片组和所述第二辐射贴片组上设置有缺陷结构,所述缺陷结构用于在所述高频通带和所述低频通带之间的阻带内形成第一辐射零点。
  3. 根据权利要求2所述的双频双极化天线,其特征在于,所述缺陷结构为缝隙结构;所述缝隙结构的尺寸与所述第一辐射零点在所述阻带内的位置相关。
  4. 根据权利要求3所述的双频双极化天线,其特征在于,
    所述缝隙结构为U形缝隙结构,所述U形缝隙结构的凹口朝向所述辐射单元的内侧。
  5. 根据权利要求2所述的双频双极化天线,其特征在于,所述缺陷结构为凹陷结构;所述凹陷结构的凹口朝向所述辐射单元的外侧。
  6. 根据权利要求1所述的双频双极化天线,其特征在于,
    所述第一辐射贴片组包括两个相对设置的辐射贴片,所述第二辐射贴片组包括两个相对设置的辐射贴片;每个辐射贴片分别通过一个所述巴伦结构与金属地连接;
    所述寄生单元包括4个寄生贴片,分别与所述辐射贴片位置对应;所述寄生贴片用于在所述高频通带和所述低频通带之间的阻带内形成第二辐射零点,所述寄生贴片的大小与所述第二辐射零点在所述阻带内的位置相关。
  7. 根据权利要求6所述的双频双极化天线,其特征在于,
    所述第一辐射贴片组的两个辐射贴片和所述第二辐射贴片组的两个辐射贴片在正交处设置有内侧切角,所述内侧切角用于聚拢各所述辐射贴片。
  8. 根据权利要求1至7任意一项所述的双频双极化天线,其特征在于,
    所述巴伦结构为多层金属柱,以及设置于相邻两层金属柱之间的金属贴片形成的折叠巴伦结构;所述多层金属柱垂直设置于所述辐射贴片与所述金属地之间。
  9. 根据权利要求1至7任意一项所述的双频双极化天线,其特征在于,所述双频双极化天线还包括馈电结构;
    所述馈电结构包括第一极化馈电单元和第二极化馈电单元,所述第一辐射贴片组用于耦合所述第一极化馈电单元的信号;所述第二辐射贴片组用于耦合所述第二极化馈电单元的信号。
  10. 根据权利要求9所述的双频双极化天线,其特征在于,
    所述第一极化馈电单元和所述第二极化馈电单元为倒L型馈电结构,所述倒L型馈电结构包括短路柱和馈电线;
    所述短路柱通过所述金属地上的过孔与外部馈电单元连接,所述短路柱穿过各所述辐射贴片围成的区域与所述馈电线连接,所述馈电线与所述寄生单元共面。
  11. 根据权利要求10所述的双频双极化天线,其特征在于,
    所述第一极化馈电单元的第一馈电线与所述第二极化馈电单元的第二馈电线正交设置;在所述第一馈电线与所述第二馈电线的交叉位置,通过换层连接实现极化隔离。
  12. 根据权利要求1至7任意一项所述的双频双极化天线,其特征在于,
    所述寄生单元靠近金属地的一侧垂直连接金属结构;所述金属结构由至少一个垂直金属柱组成。
  13. 一种双频双极化天线阵列,其特征在于,所述双频双极化天线阵列包括N×M个上 述权利要求1至12任一项所述的双频双极化天线;其中,相邻两列的所述双频双极化天线之间呈镜像对称设置。
PCT/CN2021/128540 2021-09-07 2021-11-04 双频双极化天线和双频双极化天线阵列 WO2023035391A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111041166.4A CN113540765B (zh) 2021-09-07 2021-09-07 双频双极化天线和双频双极化天线阵列
CN202111041166.4 2021-09-07

Publications (1)

Publication Number Publication Date
WO2023035391A1 true WO2023035391A1 (zh) 2023-03-16

Family

ID=78122997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128540 WO2023035391A1 (zh) 2021-09-07 2021-11-04 双频双极化天线和双频双极化天线阵列

Country Status (2)

Country Link
CN (1) CN113540765B (zh)
WO (1) WO2023035391A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116487885A (zh) * 2023-06-21 2023-07-25 西南科技大学 一种复合结构的双陷波双极化基站天线

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540765B (zh) * 2021-09-07 2022-01-07 华南理工大学 双频双极化天线和双频双极化天线阵列
CN117638467A (zh) * 2022-08-17 2024-03-01 西安电子科技大学 天线模组、天线阵列及电子设备
CN117638466A (zh) * 2022-08-17 2024-03-01 西安电子科技大学 天线模组、天线阵列及电子设备
CN115954649B (zh) * 2023-03-10 2023-05-16 微网优联科技(成都)有限公司 一种多谐振点宽带±45°双极化天线

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016133244A1 (ko) * 2015-02-17 2016-08-25 주식회사 감마누 다중대역 복사소자
CN107994322A (zh) * 2017-11-10 2018-05-04 杭州睿达汽车科技有限公司 超宽频带双极化辐射单元
US20180191075A1 (en) * 2016-12-30 2018-07-05 Radio Frequency Systems, Inc. Compact multi-band dual slant polarization antenna
CN109904593A (zh) * 2019-02-27 2019-06-18 东南大学 一种频带增强双极化基站天线
CN112038758A (zh) * 2020-09-23 2020-12-04 广东曼克维通信科技有限公司 超宽频双极化辐射单元、天线及天线阵列
CN112216961A (zh) * 2019-07-10 2021-01-12 联发科技股份有限公司 用于多宽带以及多极化通信的天线
CN113540765A (zh) * 2021-09-07 2021-10-22 华南理工大学 双频双极化天线和双频双极化天线阵列

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029756A (zh) * 2019-12-31 2020-04-17 华南理工大学 一种紧凑型高隔离双频双极化滤波天线
CN111211413A (zh) * 2020-02-25 2020-05-29 华南理工大学 一种具有陷波特性的双极化基站天线

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016133244A1 (ko) * 2015-02-17 2016-08-25 주식회사 감마누 다중대역 복사소자
CN107251318A (zh) * 2015-02-17 2017-10-13 伽马纽股份公司 多频段辐射元件
US20180191075A1 (en) * 2016-12-30 2018-07-05 Radio Frequency Systems, Inc. Compact multi-band dual slant polarization antenna
CN107994322A (zh) * 2017-11-10 2018-05-04 杭州睿达汽车科技有限公司 超宽频带双极化辐射单元
CN109904593A (zh) * 2019-02-27 2019-06-18 东南大学 一种频带增强双极化基站天线
CN112216961A (zh) * 2019-07-10 2021-01-12 联发科技股份有限公司 用于多宽带以及多极化通信的天线
CN112038758A (zh) * 2020-09-23 2020-12-04 广东曼克维通信科技有限公司 超宽频双极化辐射单元、天线及天线阵列
CN113540765A (zh) * 2021-09-07 2021-10-22 华南理工大学 双频双极化天线和双频双极化天线阵列

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAO YUNFEI: "5G Filtering Antenna and Array in Sub-6 Ghz and Millimeter-wave Frequency Band", BULLETIN OF NATIONAL NATURAL SCIENCE FOUNDATION OF CHINA, vol. 34, no. 2, 30 April 2020 (2020-04-30), pages 154 - 162, XP055921052, DOI: 10.16262/j.cnki.1000-8217.2020.02.006 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116487885A (zh) * 2023-06-21 2023-07-25 西南科技大学 一种复合结构的双陷波双极化基站天线
CN116487885B (zh) * 2023-06-21 2023-08-25 西南科技大学 一种复合结构的双陷波双极化基站天线

Also Published As

Publication number Publication date
CN113540765A (zh) 2021-10-22
CN113540765B (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
WO2023035391A1 (zh) 双频双极化天线和双频双极化天线阵列
US10854994B2 (en) Broadband phased array antenna system with hybrid radiating elements
KR101982028B1 (ko) 편파 공용 안테나
US6288679B1 (en) Single element antenna structure with high isolation
CN109478720B (zh) 用于双频带、宽带和双极性操作的高性能平板天线
CN109830802B (zh) 一种毫米波双极化贴片天线
US20220407231A1 (en) Wideband electromagnetically coupled microstrip patch antenna for 60 ghz millimeter wave phased array
CN112838360B (zh) 一种双极化微带相控阵天线单元及其阵列
CN114156659B (zh) Sub-6GHz和毫米波频段的宽带共口径偶极子阵列
WO2022242069A1 (zh) 双极化滤波天线单元和双极化滤波天线阵列
CN113497356B (zh) 一种双带双极化滤波天线
WO2022007248A1 (zh) 5g 毫米波双极化天线单元、天线阵列及终端设备
CN114824779B (zh) 一种单层低剖面宽带双极化贴片天线
CN115732925A (zh) 一种毫米波双频分别馈电的双极化天线阵列
WO2023045282A1 (zh) 高频辐射单元与多频基站天线
WO2024104087A1 (zh) 天线辐射单元和天线
EP4109676A1 (en) Antenna, antenna module and wireless network device
CN114267940A (zh) 一种基于基片集成波导的毫米波端射宽带圆极化双环阵列
CN115207613B (zh) 一种宽带双极化天线单元及天线阵列
CN115313028B (zh) 应用于2g/3g/4g/5g频段的超宽带天线
WO2023035390A1 (zh) 滤波天线及无线通信设备
CN113497357B (zh) 一种宽带双极化滤波天线
CN115621748A (zh) 宽带宽角扫描圆极化毫米波相控阵天线单元及阵列
KR100561627B1 (ko) 송/수신용 광대역 마이크로스트립 패치 안테나 및 이를배열한 배열 안테나
CN111864345A (zh) 一种基站mimo天线单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE