WO2022242069A1 - 双极化滤波天线单元和双极化滤波天线阵列 - Google Patents

双极化滤波天线单元和双极化滤波天线阵列 Download PDF

Info

Publication number
WO2022242069A1
WO2022242069A1 PCT/CN2021/131269 CN2021131269W WO2022242069A1 WO 2022242069 A1 WO2022242069 A1 WO 2022242069A1 CN 2021131269 W CN2021131269 W CN 2021131269W WO 2022242069 A1 WO2022242069 A1 WO 2022242069A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric layers
via hole
dual
layer
antenna unit
Prior art date
Application number
PCT/CN2021/131269
Other languages
English (en)
French (fr)
Inventor
章秀银
姚树锋
杨圣杰
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2022242069A1 publication Critical patent/WO2022242069A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration

Definitions

  • the present application relates to the technical field of antennas, in particular to a dual-polarization filtering antenna unit and a dual-polarization filtering antenna array.
  • the dual-frequency dual-polarization antenna is a multi-band miniaturization and dual-polarization design.
  • the multi-frequency antenna enables the antenna to work in multiple frequency bands at the same time, so that one multi-frequency antenna can replace multiple single-frequency antennas, further improving the communication system.
  • the level of integration meets the requirements of 5G communication systems.
  • base station antennas are developing in the direction of broadband, and the wider the bandwidth of the antenna, the larger its size.
  • the present application provides a dual-polarization filtering antenna unit and a dual-polarization filtering antenna array.
  • the first aspect of the present application relates to a dual-polarization filter antenna unit, including a metal substrate and a radiation layer oppositely arranged, a plurality of dielectric layers are arranged between the metal substrate and the radiation layer, and a metal layer is arranged between adjacent dielectric layers ,
  • Each of the plurality of dielectric layers includes a first via hole and a second via hole, the axes of the first via holes of the plurality of dielectric layers are parallel or coincident, the axes of the second via holes of the plurality of dielectric layers are parallel or coincident, and the first via holes and the second via hole is used to accommodate the metal post, and the metal post is used to transmit the current signal;
  • the first via holes of the adjacent dielectric layers are electrically connected through the metal layer between the adjacent dielectric layers
  • the second via holes of the adjacent dielectric layers are electrically connected through the metal layer between the adjacent dielectric layers
  • the plurality of dielectric layers The first via hole of the first dielectric layer and the second via hole of the first dielectric layer are electrically connected through the metal substrate, and the first via hole of the second dielectric layer among the multiple dielectric layers is connected to the second via hole of the second dielectric layer.
  • the via holes are respectively electrically connected to the radiation layer, the first dielectric layer is the dielectric layer closest to the metal substrate among the plurality of dielectric layers, and the second dielectric layer is the dielectric layer closest to the radiation layer among the plurality of dielectric layers;
  • the first via holes of each of the plurality of dielectric layers form a first sub-via
  • the second via holes of each of the plurality of dielectric layers form a second sub-via
  • the first sub-via and the The second sub-path generates resonance to form a radiation zero point, thereby realizing filtering.
  • the second aspect of the present application relates to a dual-polarization filter antenna array, which includes a dual-polarization filter antenna unit arranged in an array, and the dual-polarization filter antenna unit is the above-mentioned dual-polarization filter antenna unit.
  • FIG. 1 is a schematic diagram of an exploded structure of a dual-polarization filtering antenna unit provided in an embodiment of the present application
  • FIG. 2 is a schematic diagram of an exploded structure of another dual-polarization filtering antenna unit provided in an embodiment of the present application;
  • FIG. 3 is a schematic diagram of an exploded structure of another dual-polarization filtering antenna unit provided in an embodiment of the present application;
  • FIG. 4 is a schematic diagram of an exploded structure of another dual-polarization filtering antenna unit provided in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an exploded structure of another dual-polarization filtering antenna unit provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a signal path of a dual-polarization filtering antenna unit provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of electric field cancellation of a dual-polarization filter antenna unit provided in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an exploded structure of another dual-polarization filter antenna unit provided in an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a radiation layer of a dual-polarization filtering antenna unit provided in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an exploded structure of another dual-polarization filtering antenna unit provided in an embodiment of the present application.
  • Fig. 11 is a schematic diagram of electric field cancellation of another dual-polarization filter antenna unit provided by the embodiment of the present application.
  • FIG. 12 is a schematic diagram of an exploded structure of another dual-polarization filtering antenna unit provided in an embodiment of the present application.
  • FIG. 13 is a schematic diagram of an exploded structure of another dual-polarization filter antenna unit provided in an embodiment of the present application.
  • FIG. 14 is a schematic diagram of an exploded structure of another dual-polarization filter antenna unit provided in an embodiment of the present application.
  • FIG. 15 is a schematic top view of the dual-polarization filtering antenna unit shown in FIG. 14;
  • FIG. 16 is a schematic diagram of the exploded structure of the dual-polarization filter antenna unit in Example 1 provided by the embodiment of the present application;
  • FIG. 17 is a schematic top view of the dual-polarization filtering antenna unit in Example 1 provided by the embodiment of the present application;
  • Figure 18 is a schematic diagram of the magnetic dipole structure in Example 1 provided by the embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of metallized vias in Example 1 provided by the embodiment of the present application.
  • Figure 20 is a schematic diagram of the feed structure in Example 1 provided by the embodiment of the present application.
  • FIG. 21 is a simulation result diagram of return loss and polarization isolation curves in Example 1 provided by the embodiment of the present application.
  • FIG. 22 is a simulation result diagram of the gain curve in Example 1 provided by the embodiment of the present application.
  • Fig. 23 is a schematic top view structural diagram of the dual-polarization filtering antenna unit in Example 2 provided by the embodiment of the present application;
  • FIG. 24 is a schematic structural diagram of the metallized via hole of the dual-polarization filter antenna unit in Example 2 provided by the embodiment of the present application;
  • FIG. 25 is a simulation result diagram of return loss and polarization isolation curves in Example 2 provided by the embodiment of the present application.
  • FIG. 26 is a simulation result diagram of the gain curve in Example 2 provided by the embodiment of the present application.
  • the current millimeter-wave frequency band communication has attracted the attention of many experts and institutions at home and abroad due to its wide available bandwidth and high information transmission rate advantages.
  • the antenna is an indispensable and important part of the millimeter-wave wireless communication system.
  • Miniaturized, low-profile antennas can not only reduce manufacturing costs, but also help improve the integration of 5G systems.
  • the embodiment of the present application provides a dual-polarization filter antenna unit, the dual-polarization filter antenna unit includes a metal substrate and a radiation layer, and the metal substrate and the radiation layer are arranged between A plurality of dielectric layers, each of which is provided with a first via hole and a second via hole, wherein the first via hole and the second via hole are used to accommodate metal posts, and the metal posts are used to transmit current signals, and the plurality of dielectric layers
  • the axes of the first via holes are parallel or coincident, and the first via holes of adjacent dielectric layers are electrically connected through the metal layer between adjacent dielectric layers, so that when the current signal is transmitted between the metal substrate and the radiation layer, the current The signal circulation path is longer than the current signal circulation path in the prior art, thereby realizing a low profile and reducing the size of the antenna.
  • FIG. 1 shows a dual-polarization filter antenna unit provided by an embodiment of the present application.
  • the dual-polarization filter antenna unit includes a metal substrate 102 and a radiation layer 101 oppositely arranged, and the metal substrate 102 and the radiation layer 101 A plurality of dielectric layers 103 are disposed between them, and a metal layer 104 is disposed between adjacent dielectric layers 103 .
  • each dielectric layer 103 includes a first via hole 1031 and a second via hole 1032 . Both the first via hole 1031 and the second via hole 1032 penetrate the dielectric layer 103 in the thickness direction. Among them, vias are also called metallized vias. In double-sided boards and multilayer boards, in order to connect the printed wires between the layers, a common hole is drilled at the intersection of the wires that need to be connected in each layer.
  • the first via hole 1031 and the second via hole 1032 are used to accommodate the metal column, and the metal column is used to transmit the current signal, and the first via hole of the dielectric layer passes through the dielectric layer and the adjacent dielectric layer The metal layer 104 between them is electrically connected, and the second via hole of the dielectric layer is electrically connected to the metal layer 104 between the adjacent dielectric layer through the dielectric layer.
  • the dotted line represents the axis of the first via hole 1031 and the second via hole 1032
  • the axes of the first via hole 1031 of the plurality of dielectric layers are parallel and separated by a preset distance
  • the second of the plurality of dielectric layers Axes of the via holes 1032 are parallel and separated by a predetermined distance.
  • the axis of the via hole refers to a virtual straight line where the hole axis of the hole is located.
  • the axis of the first via hole of each dielectric layer is separated from the axis of the first via hole of the adjacent dielectric layer by a preset distance, and each dielectric layer
  • the axes of the second via holes in one layer are spaced apart from the axes of the second via holes in adjacent dielectric layers by a predetermined distance.
  • the axes of the first via holes of some adjacent dielectric layers coincide, and are parallel to and spaced apart from the axes of the first via holes of the remaining adjacent dielectric layers. preset distance.
  • the axes of the second via holes in some adjacent dielectric layers are coincident, and are separated from the axes of the second via holes in the rest of the dielectric layers by a preset distance.
  • the adjacent dielectric layers represent the two dielectric layers closest to each other in the dual-polarization filtering antenna unit.
  • adjacent dielectric layers may represent two adjacent dielectric layers up and down.
  • axes of the first via holes of two adjacent dielectric layers are separated by a preset distance.
  • the axes of the second via holes of two adjacent dielectric layers are separated by a preset distance.
  • the axis of the first via hole of any dielectric layer coincides with the axis of the first via hole of the second closest dielectric layer, and the axis of the second via hole of any dielectric layer coincides with the second via hole of the second closest dielectric layer axes coincide.
  • the preset distance H between the axes of the first via holes 1031 of the plurality of dielectric layers may be the same or different.
  • the preset distance H between the axes of the second via holes 1032 of the plurality of dielectric layers may be the same or different.
  • the diameters of the first via hole and the second via hole in the same dielectric layer are the same, and the first via hole in the same dielectric layer is opposite to the first via hole in the adjacent dielectric layer.
  • the positional relationship is the same as the relative positional relationship between the second via hole in the dielectric layer and the second via hole in the adjacent dielectric layer.
  • the diameters of the first via holes (or second via holes) in adjacent dielectric layers may be the same or different.
  • the embodiment of the present application provides a dual-polarization filtering antenna unit, which includes M dielectric layers 103, wherein the first via holes 1301 of the N dielectric layers 103 close to the metal substrate
  • the aperture is larger than the aperture of the first via holes 1301 of the M-N dielectric layers away from the metal substrate 102 .
  • the diameter of the second via holes 1302 of N dielectric layers 103 close to the metal substrate is greater than the diameter of the second via holes 1302 of M-N dielectric layers far away from the metal substrate 102, M and N are positive integers, and N is smaller than M.
  • the first via hole of the first dielectric layer among the multiple dielectric layers is electrically connected to the second via hole of the first dielectric layer through the metal substrate, and the first via hole of the second dielectric layer among the multiple dielectric layers
  • the via hole and the second via hole of the second dielectric layer are respectively electrically connected to the radiation layer
  • the first dielectric layer is the dielectric layer closest to the metal substrate among the plurality of dielectric layers
  • the second dielectric layer is the dielectric layer closest to the radiation layer among the plurality of dielectric layers the nearest medium layer.
  • the thick solid line in FIG. 6 shows the metal column contained in the first via hole of the dielectric layer, the metal layer between adjacent dielectric layers, and the second via hole of the dielectric layer.
  • the signal path formed by the metal post contained in the hole, the path length of the signal path is longer than the signal path in the usual dual-polarization filter antenna unit, so in the case of the same size of the antenna unit, the present application provides The bandwidth of the signal path is wider, that is, the size of the antenna unit provided by the embodiment of the present application can be reduced under the condition that the bandwidth is kept constant.
  • the length of the signal path formed by the first via holes and the second via holes of the plurality of dielectric layers is the same as the half wavelength of the signal to be filtered of the dual-polarization filtering antenna unit.
  • the length of the signal path formed by the first via hole and the second via hole of the plurality of dielectric layers is determined by the vertical height of the metal column contained in the first via hole of the plurality of dielectric layers and the first via hole of the plurality of dielectric layers.
  • the spacing distance between the axes of the holes is determined.
  • the vertical height of the metal post is limited by the hardware size of the antenna and is not easy to change, while the distance between the axes of the first via holes in multiple dielectric layers is adjustable, as shown in Figure 6, The thick solid line in FIG.
  • the distance H between the axes of the first via holes of the multiple dielectric layers can affect the first via holes and the second via holes of the multiple dielectric layers.
  • the signal path formed by the first via holes of multiple dielectric layers is defined as the first sub-path
  • the signal path formed by the second via holes of multiple dielectric layers is defined as the second sub-path.
  • the sub-vias, the first sub-via and the second sub-via are electrically connected through the metal substrate.
  • the current signal flows in from the first sub-path, represented by a cross, and flows out from the second sub-path, represented by a dot.
  • the first sub-path and the second sub-path will cause resonance , generating a new radiation pattern at low frequencies, shifting the antenna's working frequency band to low frequencies.
  • the resonance between the first sub-path and the second sub-path will form a radiation zero point.
  • the signal cannot be radiated out and thus is filtered out.
  • the half-wavelength of the filtered signal is equal to the length of the signal path formed by the first via holes and the second via holes in the plurality of dielectric layers.
  • the radiation layer 101 includes a plurality of radiation sheets 1011 , and the plurality of radiation sheets 1011 are arranged at intervals.
  • a first via hole 1031 and a second via hole 1032 are provided in a region of each dielectric layer corresponding to each radiation sheet 1011 .
  • the area corresponding to the medium layer and the radiation sheet refers to the area of the medium layer covered by the orthographic projection of the radiation sheet on the medium layer.
  • each dielectric layer includes a plurality of via groups, each via group includes a first via and a second via, and all the vias in each via group are located on the same radiation sheet.
  • the first via hole and the second via hole in the same via hole group of the first dielectric layer among the plurality of dielectric layers are electrically connected through the metal substrate.
  • the shape of the radiation sheet may be circular, rectangular, triangular or fan-shaped.
  • multiple radiation sheets can be arranged in matrix.
  • the length of the signal path formed by the first via hole and the second via hole in the multiple dielectric layers is equal to the half wavelength of the signal to be filtered by the dual polarization filter antenna unit same.
  • the area corresponding to the radiation sheet refers to the area of each layer covered by the orthographic projection of the radiation sheet on each layer of the dual-polarization filter antenna unit.
  • the radiation layer 101 includes four radiation sheets 1011 , and each radiation sheet is respectively located in four quadrants with the center of the metal substrate as the origin.
  • This application does not use an additional filter circuit structure.
  • feeding holes are provided in areas corresponding to reserved areas between each dielectric layer and adjacent radiation sheets, and the feeding holes are used for accommodating metal pillars, and the metal pillars are used for transmitting current signals.
  • the axes of the feeding holes of the multiple dielectric layers coincide, wherein the feeding holes of the first dielectric layer are connected to the first feeding line, and the feeding holes of the second dielectric layer are connected to the second feeding line.
  • the radiating layer 101 includes a plurality of radiating sheets 1011 , and a reserved area is provided between adjacent radiating sheets, and the reserved area is shown in a dashed box in FIG. 10 .
  • the first via hole 1031 and the second via hole 1032 are arranged correspondingly to the two radiating sheets respectively, that is, the first via hole of each dielectric layer is arranged in the area corresponding to the first radiating sheet of the two radiating sheets, and each The second via hole of the dielectric layer is arranged in a region corresponding to the second radiation sheet of the two radiation sheets.
  • the area corresponding to the reserved area between the plurality of dielectric layers and two adjacent radiation sheets is provided with a third via hole 1033, and the axes of the third via holes 1033 of the plurality of dielectric layers are parallel and separated by a preset distance.
  • the three via holes 1033 are used to accommodate metal pillars, and the third via hole 1033 of the first dielectric layer is electrically connected with the first via hole 1031 of the first dielectric layer and the second via hole 1032 of the first dielectric layer through the metal substrate, respectively.
  • the third via hole 1033 adjacent to the dielectric layer is electrically connected through the metal layer between the adjacent dielectric layers.
  • the multiple dielectric layers include a target dielectric layer and a non-target dielectric layer, the target dielectric layer of the multiple dielectric layers includes the third via hole, and the non-target dielectric layer does not include the third via hole.
  • the target medium layer includes the first medium layer.
  • the target medium layer is multiple adjacent medium layers. In other words, the third via hole may only be provided in the target dielectric layer.
  • the third via hole is located on the symmetry line of two adjacent radiating sheets.
  • the following defines the signal path formed by the third via holes of multiple dielectric layers as the third sub-path, and defines the signal path formed by the first via holes of multiple dielectric layers
  • the via is the first sub-via
  • the signal path formed by the second via holes of the multiple dielectric layers is defined as the second sub-via
  • the third sub-via is respectively electrically connected to the first sub-via and the second sub-via through the metal substrate.
  • the first sub-path, the second sub-path and the third sub-path interact to produce two radiation zeros at the edge of the high-frequency passband, so that the high-frequency passband of the antenna has a good band pass filter effect.
  • the radiation layer includes four radiation sheets, and each radiation sheet is respectively located in four quadrants with the center of the metal substrate as the origin.
  • a third via hole is provided in a region of the plurality of dielectric layers corresponding to the reserved region between two adjacent radiating sheets.
  • FIG. 12 shows a combination of A/B/C/D four groups of via holes.
  • each combination of via holes includes a first via hole, a second via hole and a third via hole, wherein the first via hole and the second via hole are respectively located at adjacent radiating sheets.
  • the third via hole is located between the first via hole and the second via hole.
  • the sum of the path lengths from the third sub-via to the first sub-via and to the second sub-via in each via group combination may be the same or different.
  • the signal can be filtered out.
  • the radiation layer 101 includes a first radiation sheet 1301 and a second radiation sheet 1302, and the first radiation sheet 1301 and the second radiation sheet 1302 are arranged on the symmetry line of the metal substrate. sides.
  • the first via hole 1031 and the second via hole 1032 are provided in the area corresponding to the first radiation sheet 1301 and the second radiation sheet 1302 in the plurality of dielectric layers, the plurality of dielectric layers and the first radiation sheet 1301
  • the corresponding area is provided with a fourth via hole 1034 and a fifth via hole 1035.
  • the fourth via hole 1034 is connected to the fifth via hole 1035.
  • the axes of the fourth via holes 1034 of the multiple dielectric layers are parallel and separated by a preset distance.
  • the axes of the fifth via hole 1035 of the first dielectric layer are parallel and separated by a predetermined distance, the fourth via hole 1034 and the fifth via hole 1035 are used to accommodate metal posts, and the fourth via hole 1034 of the adjacent dielectric layer passes through the adjacent dielectric layer
  • the metal layers between the adjacent dielectric layers are electrically connected, and the fifth via hole 1035 of the adjacent dielectric layer is electrically connected through the metal layer between the adjacent dielectric layers.
  • a sixth via hole 1036 and a seventh via hole 1037 are provided in the area corresponding to the second radiating sheet in multiple dielectric layers, and the sixth via hole 1036 and the seventh via hole 1037 are connected.
  • the axes of the seventh via holes of the plurality of dielectric layers are parallel and separated by a preset distance, and the sixth via hole 1036 and the seventh via hole 1037 are used to accommodate metal posts.
  • the fourth via hole 1034 of the first dielectric layer is electrically connected to the sixth via hole 1036 or the seventh via hole 1037 through the metal substrate, and the fifth via hole 1035 of the first dielectric layer among the multiple dielectric layers
  • the sixth via hole 1036 or the seventh via hole 1037 is electrically connected through the metal substrate
  • the sixth via hole 1036 of the adjacent dielectric layer is electrically connected through the metal layer between the adjacent dielectric layers
  • the seventh via hole of the adjacent dielectric layer 1037 are electrically connected through metal layers between adjacent dielectric layers.
  • the structure and relative relationship of the fourth via hole and the fifth via hole, the structure and relative relationship of the sixth via hole and the seventh via hole can refer to the structure and relative relationship of the first via hole and the second via hole in the above embodiment. Relative relationship, no more details.
  • the length of the signal path formed by the fourth via hole and the sixth via hole of the multiple dielectric layers It is the same as the half-wavelength of the resonance point frequency of the low-frequency passband, so as to achieve the purpose of miniaturization of the antenna.
  • the length of the signal path formed by the fourth via hole and the seventh via hole of the multiple dielectric layers It is the same as the half-wavelength of the resonance point frequency of the low-frequency passband, so as to achieve the purpose of miniaturization of the antenna.
  • the length of the signal path formed by the fifth via hole and the sixth via hole of the multiple dielectric layers It is the same as the half-wavelength of the resonance point frequency of the low-frequency passband, so as to achieve the purpose of miniaturization of the antenna.
  • the length of the signal path formed by the fifth via hole and the seventh via hole of the multiple dielectric layers It is the same as the half-wavelength of the resonance point frequency of the low-frequency passband, so as to achieve the purpose of miniaturization of the antenna.
  • the radiation layer includes a first radiation sheet and a second radiation sheet, and the first radiation sheet and the second radiation sheet are formed of a metal substrate The center is the origin and the distribution is rotationally symmetrical.
  • the first short-circuit column structure includes first adjustment vias arranged in each dielectric layer, the first adjustment vias are used to accommodate metal columns, the metal columns are used to transmit current signals, and the first adjustment vias of adjacent dielectric layers Vias are electrically connected through metal layers between adjacent dielectric layers.
  • a plurality of dielectric layers are provided with a plurality of second short-circuit column structures connected to each other in the area corresponding to the second radiation sheet.
  • the second short-circuit column structure includes a second adjustment via hole arranged in each dielectric layer, and the second adjustment via hole is used for
  • the metal pillars are used to accommodate the metal pillars, and the metal pillars are used to transmit current signals, and the second adjustment via holes of the adjacent dielectric layers are electrically connected through the metal layer between the adjacent dielectric layers.
  • the plurality of first short-circuit column structures connected to each other and the plurality of second short-circuit column structures connected to each other may be equivalent to metal walls.
  • the axes of the adjustment via holes of multiple dielectric layers may coincide.
  • the axes of the adjustment via holes of the multiple dielectric layers are parallel and separated by a preset distance.
  • the current signal flows from the multiple short-circuit column structures corresponding to the first radiation piece through the metal substrate to the multiple short-circuit column structures corresponding to the second radiation piece, and generates resonance, thereby generating a new radiation mode at low frequency and greatly expanding the antenna bandwidth.
  • the length of the signal path formed by the two short-circuit column structures and the metal substrate that generate resonance is half of the wavelength corresponding to the frequency of the resonance point.
  • the first via hole in the area corresponding to the first radiation sheet in the multiple dielectric layers forms the first sub-signal path
  • the first via hole in the area corresponding to the first radiation sheet in the multiple dielectric layers forms the first sub-signal path
  • the first via hole in the area corresponding to the first radiation sheet in the multiple dielectric layers forms the second sub-signal path
  • the metal wall in the region corresponding to the first radiation sheet in the plurality of dielectric layers forms the third sub-signal path.
  • the first sub-signal path, the second sub-signal path and the third sub-signal path The channel interaction produces resonance, thereby forming a radiation zero point, so that the antenna has a good band-stop filtering effect.
  • the radiation layer includes four radiation sheets, and each radiation sheet is respectively located in four quadrants with the center of the metal substrate as the origin.
  • a plurality of adjustment via holes are respectively provided in the regions corresponding to the edge regions of the four quadrants of the metal substrate in the plurality of dielectric layers, the adjustment via holes are used to accommodate the metal pillars, the metal pillars are used to transmit current signals, and the first medium Multiple adjustment via holes in the same quadrant of the layer are electrically connected through the metal substrate.
  • a dual-polarization filtering antenna array in one embodiment of the present application, includes a dual-polarization filtering antenna unit arranged in an array, and the dual-polarization filtering antenna unit is the above-mentioned embodiment The dual-polarization filter antenna unit described in .
  • FIG 16 and Figure 17 it shows a miniaturized dual-frequency dual-polarized millimeter-wave filter antenna unit, including an electric dipole structure 1, a magnetic dipole structure 2, a metallized via hole 3, a feeder The electric structure 4 and the metal substrate 5, and between the electric dipole structure 1 and the metal substrate 5, a plurality of dielectric layers are arranged.
  • the electric dipole structure 1 includes four radiating sheets 11 arranged in an array, and the structure of the radiating sheets is not limited to circular, rectangular, triangular or fan-shaped.
  • the magnetic dipole structure 2 includes a metal strip 22, the metal strip 22 forms a closed area, each dielectric layer is provided with a metallized via hole 3 in the area corresponding to the closed area, and the multiple dielectric layers Axes of the metallized via holes 3 are parallel and separated by a preset distance. Wherein, by adjusting the relative positions of the metallized via hole 3 and the metal strip 22, the path length of the current signal can be extended, thereby realizing a low-profile design.
  • the aperture diameter of the metallized via holes in some dielectric layers is larger than the aperture diameter of the other part of the metallized via holes.
  • the plurality of dielectric layers include M dielectric layers, wherein the The aperture diameter of the metallized via holes of the basic N dielectric layers is larger than the aperture diameter of the metallized via holes of the M-N dielectric layers far away from the metal substrate.
  • first via holes 311 and second via holes 312 with a certain gap are provided on each dielectric layer, loaded on the four quadrants of the metal substrate, with the center of the metal substrate Rotationally symmetrical distribution; when the antenna works in the 0° polarization direction, the first signal path formed by the first via holes 311 of multiple dielectric layers and the first signal path formed by the multiple dielectric layers are oppositely arranged in the 0° polarization direction
  • the second signal path formed by the second via hole 312 causes resonance, generates a new radiation mode at low frequency, and moves the antenna working frequency band to low frequency; further, the first signal path and the second signal path work together to not only expand the
  • the antenna has a low-frequency bandwidth, and generates resonance to form a radiation zero point, so that the antenna has a good band-stop filtering effect; further, the sum of the lengths of the first signal path and the second signal path and the paths of the current signals on the metal substrate between them , is the half wavelength length
  • two pairs of orthogonal third via holes 32 are loaded on the two polarization directions with the center of the metal substrate as the origin in each dielectric layer; when the antenna works in the 0° polarization direction, the 0°
  • the third signal path which is arranged oppositely in the polarization direction and is composed of a plurality of third via holes 32 in the dielectric layer, interacts with the first signal path and the second signal path next to it, the third signal path and the first signal path,
  • the second signal path generates resonance, which produces two radiation zero points at the edge of the high-frequency passband, so that the high-frequency passband of the antenna has a good band-pass filtering effect; when the antenna works in the 90° polarization direction, the two working modes interact with each other easy.
  • the feed structure 4 includes two sets of inverted ⁇ -shaped feed lines placed orthogonally, the inverted ⁇ -shaped structure is formed by vertical short-circuit columns 41, horizontal feed lines 42 and metallized via holes 43, and the electric dipole Structure 1.
  • the magnetic dipole structure 2 is arranged at intervals to form coupling; further, the metallized via hole 43 adjusts the distance between the metal substrate and the equivalent capacitance and inductance component, which can expand the antenna bandwidth to a certain extent; the feed structure 4 The end is fed through the stripline.
  • the two orthogonally placed horizontal feeders 42 are located on different layers, thereby achieving a higher degree of polarization isolation. It should be noted that if the lower horizontal feeder is raised, the antenna will be at this The impedance matching in the polarization direction will perform better, but the polarization isolation of the antenna will be worse. In order to make the antenna polarization isolation and matching within an acceptable range, the distance between two horizontal feeders is selected here to be 0.1mm .
  • the size of the antenna unit is 3.2mm*3.2mm*0.84mm, which realizes the miniaturization design of the antenna.
  • FIG. 21 it is the S-parameter diagram of a miniaturized dual-frequency dual-polarization millimeter-wave filter antenna provided by the embodiment of the present application. It can be seen from the figure that the impedance matching shared by the two ports of the antenna is 25.7-30GHz, 36.2- 45GHz, covering the n257, n259 and n260 frequency bands that are currently used most, the return loss is below -10dB, and the polarization isolation in the dual-band passband is always above 20dB.
  • FIG 22 it is a gain curve diagram of a miniaturized dual-frequency dual-polarization millimeter-wave filter antenna provided by the embodiment of the present application. It can be seen from the figure that the gain is stable in the dual-frequency passband. Two radiation zero points are introduced at the edge, resulting in a decrease in gain at the edge of the high-frequency passband. However, the antenna gain is above 4.3dBi in the 26.5-29.5GHz and 37-43.5GHz frequency bands currently used by 5G. If the floor size is increased to 6.5mm, Gain can be increased to 7dBi.
  • the embodiment of the present application does not use an additional filter circuit structure, and three radiation zero points are generated at the edge of the passband, which is mainly realized by loading a short-circuit column structure at a specific position, and the joint effect of the three zero points is realized.
  • the antenna has a good band-stop filtering effect, and at the same time, the high-frequency passband of the antenna realizes a good band-pass filtering effect.
  • the structure of this application is simple. On the basis of the traditional magnetoelectric dipole antenna, the first signal path and the second signal path are formed by setting metallized via holes in the dielectric layer, and the rest of the metal substrates work together to expand the antenna bandwidth. , to achieve antenna miniaturization, multi-band design.
  • This application does not use an additional filter circuit structure, by setting the first via hole and the second via hole in the four quadrants of the multiple dielectric layers and the metal substrate, thereby forming the first signal path in each quadrant and the second signal path, the first signal path and the second signal path in the four quadrants are combined to generate resonance, the current is concentrated to the four quadrants, and the electric fields of each other cancel each other, thereby generating a radiation zero point in the stop band, so that the antenna forms Bandstop filter effect.
  • the first signal path and the second signal path interact to generate two radiation zero points in the high frequency passband of the antenna, so that the high frequency passband of the antenna forms a bandpass filter effect.
  • HDI High Density Interconnector
  • Chinese High Density Interconnect Technology
  • the antenna unit realizes excellent dual-polarization radiation characteristics, low antenna cross-polarization, wide beam width, and stable radiation pattern.
  • this embodiment provides another miniaturized dual-frequency dual-polarized millimeter-wave filter antenna, which includes an electric dipole structure 10, a magnetic dipole structure 20, short-circuit column structures 301 and 302, The feed structure 40 and the metal substrate 50 .
  • the short-circuit column structure 302 includes multiple short-circuit columns connected to each other, which can be further equivalent to metal walls, distributed in four quadrants of the metal ground 50 , and distributed rotationally symmetrically around the center of the metal ground.
  • the antenna works in the 0° polarization direction, along the 0° polarization direction, the current flows from one side of the short-circuit column through the metal ground to the other side of the short-circuit column, resulting in resonance, thereby generating a new radiation mode at low frequencies, greatly Broaden the bandwidth of the antenna; further, the length of the current path between the two short-circuit columns and the metal ground is half of the wavelength corresponding to the frequency of the resonance point.
  • the antenna works in the 90° polarization direction, the working modes of the two are reciprocal.
  • the short-circuit column structure 301 includes two short-circuit columns with a certain gap in each quadrant of the metal ground, which are spaced apart from the short-circuit column 302; further, the two short-circuit columns in each quadrant work together, Resonance is generated, thereby forming a radiation zero point, so that the antenna has a good band-stop filtering effect; the sum of the current path lengths on the two short-circuit columns and the middle metal ground is half the wavelength length corresponding to the radiation zero point.
  • two pairs of short-circuit posts in the same polarization direction work together to generate a new radiation mode at low frequencies, thereby expanding the low-frequency bandwidth of the antenna and realizing the miniaturization design of the antenna.
  • FIG. 25 it is the S-parameter diagram of a miniaturized dual-frequency dual-polarization millimeter-wave filter antenna provided by the embodiment of the present application. It can be seen from the figure that both ports of the antenna can cover 24-30GHz and 37-43.5GHz , the return loss is below -10dB, and the polarization isolation of the antenna is kept above 20dB in these two frequency bands.
  • FIG. 26 it is a gain curve diagram of a miniaturized dual-frequency dual-polarization millimeter-wave filter antenna provided by the embodiment of the present application. It can be seen from the figure that the gain of the antenna is stable in the frequency band used by 5G, and the low-frequency gain is maintained at 3.86 Above dBi, the high-frequency gain is kept above 3.5dBi. Relatively, if the antenna floor size is increased to 6.5mm, the high-frequency gain of the antenna can reach 7dBi. In addition, there is a radiation zero point in the antenna stop band, which passes through each quadrant A pair of short-circuit columns 301 are resonantly generated, thereby achieving a good band-stop filtering effect.
  • this application does not require additional filter circuit structure, achieves good band-stop filter effect, and covers two wide frequency bands while ensuring miniaturization, and has better dual-frequency and dual-polarization radiation performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请涉及一种双极化滤波天线单元、双极化滤波天线阵列,涉及天线技术领域。该双极化滤波天线单元包括金属基板和辐射层,金属基板和辐射层之间设置多个介质层,每个介质层上设置第一过孔和第二过孔,其中,第一过孔和第二过孔用于容纳金属柱,金属柱用于传输电流信号,多个介质层的第一过孔的轴线平行或重合,相邻的介质层的第一过孔通过相邻的介质层之间的金属层电连接。

Description

双极化滤波天线单元和双极化滤波天线阵列
相关申请的交叉引用
本申请要求2021年05月18日递交的、标题为“双极化滤波天线单元、双极化滤波天线阵列”、申请号为2021105377926的中国申请的优先权,其公开内容通过引用全部结合在本申请中。
技术领域
本申请涉及天线技术领域,特别是涉及一种双极化滤波天线单元和双极化滤波天线阵列。
背景技术
双频双极化天线是多频段小型化、双极化设计,天线的多频化使天线能同时在多个频段下工作,从而一个多频天线可代替多个单频天线,进一步提高通信系统的集成度,满足5G通信系统需求。
目前,基站天线朝着宽频带的方向发展,天线的带宽越宽,尺寸越大。而在实际设计中,受限于天线的应用场景对天线尺寸的限制,常常需要为了缩小天线尺寸而简化天线结构,这样导致天线的带宽变窄。
发明内容
本申请提供一种双极化滤波天线单元和双极化滤波天线阵列。
本申请的第一方面涉及一种双极化滤波天线单元,包括相对设置的金属基板和辐射层,金属基板和辐射层之间设置有多个介质层,相邻介质层之间设置有金属层,
各多个介质层包括第一过孔和第二过孔,多个介质层的第一过孔的轴线平行或重合,多个介质层的第二过孔的轴线平行或重合,第一过孔和第二过孔用于容纳金属柱,金属柱用于传输电流信号;
其中,相邻介质层的第一过孔通过相邻介质层之间的金属层电连接,相邻介质层的第二过孔通过相邻介质层之间的金属层电连接,多个介质层中的第一介质层的第一过孔与第一介质层的第二过孔通过金属基板电连接,多个介质层中的第二介质层的第一过孔与第二介质层的第二过孔分别与辐射层电连接,第一介质层为多个介质层中距离金属基板最近的介质层,第二介质层为多个介质层中距离辐射层最近的介质层;
其中,各所述多个介质层的所述第一过孔形成第一子通路,各所述多个介质层的所述第二过孔形成第二子通路,所述第一子通路和所述第二子通路产生谐振形成辐射零点,从而实现滤波。
本申请的第二方面涉及一种双极化滤波天线阵列,包括阵列排布的双极化滤波天线单元,该双极化滤波天线单元为上述双极化滤波天线单元。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、 目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
图1为本申请实施例提供的一种双极化滤波天线单元的分解结构示意图;
图2为本申请实施例提供的另一种双极化滤波天线单元的分解结构示意图;
图3为本申请实施例提供的另一种双极化滤波天线单元的分解结构示意图;
图4为本申请实施例提供的另一种双极化滤波天线单元的分解结构示意图;
图5为本申请实施例提供的另一种双极化滤波天线单元的分解结构示意图;
图6为本申请实施例提供的一种双极化滤波天线单元的信号通路的示意图;
图7为本申请实施例提供的一种双极化滤波天线单元的电场抵消的示意图;
图8为本申请实施例提供的另一种双极化滤波天线单元的分解结构示意图;
图9为本申请实施例提供的一种双极化滤波天线单元的辐射层的结构示意图;
图10为本申请实施例提供的另一种双极化滤波天线单元的分解结构示意图;
图11为本申请实施例提供的另一种双极化滤波天线单元的电场抵消的示意图;
图12为本申请实施例提供的另一种双极化滤波天线单元的分解结构示意图;
图13为本申请实施例提供的另一种双极化滤波天线单元的分解结构示意图;
图14为本申请实施例提供的另一种双极化滤波天线单元的分解结构示意图;
图15为图14中示出的双极化滤波天线单元的俯视示意图;
图16为本申请实施例提供的实例1中的双极化滤波天线单元的分解结构示意图;
图17为本申请实施例提供的实例1中的双极化滤波天线单元的俯视结构示意图;
图18为本申请实施例提供的实例1中的磁偶极子结构的示意图;
图19为本申请实施例提供的实例1中的金属化过孔的结构示意图;
图20为本申请实施例提供的实例1中的馈电结构示意图;
图21为本申请实施例提供的实例1中的回波损耗和极化隔离曲线仿真结果图;
图22为本申请实施例提供的实例1中的增益曲线仿真结果图;
图23为本申请实施例提供的实例2中的双极化滤波天线单元的俯视结构示意图;
图24为本申请实施例提供的实例2中的双极化滤波天线单元的金属化过孔的结构示意图;
图25为本申请实施例提供的实例2中的回波损耗和极化隔离曲线仿真结果图;
图26为本申请实施例提供的实例2中的增益曲线仿真结果图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
随着移动通信设备的普及率越来越高,微波频段频谱资源越发的拥挤,导致可分配的带宽越来越窄,这样导致信号传输速度受到影响而无法进一步提高,难以满足人们日常对通信速度越来越高的需求。
基于此,目前毫米波频段通信凭借其较宽的可用带宽和较高的信息传输速率优势,吸引国内外众多专家和学者的关注,其中,天线是毫米波无线通信系统中不可缺少的重要一部分。
在5G通信系统的发展推动下,天线技术也不断进步,使天线设计朝着小型化、低剖面、多频段、多极化等方向发展。小型化、低剖面的天线不仅能降低制造成本,也有助于提高5G系统的集成度。而在实际设计中,受限于天线的应用场景对天线尺寸的限制,常常需要为了缩小天线尺寸而简化天线结构,这样导致天线的带宽变窄。
因此,提供一种既能缩小天线尺寸,又能保证天线带宽的双极化天线成为本领域的重点研究话题。
鉴于上述多种现有技术存在诸多不足之处,本申请实施例提供了一种双极化滤波天线单元,该双极化滤波天线单元包括金属基板和辐射层,金属基板和辐射层之间设置多个介质层,每个介质层上设置第一过孔和第二过孔,其中,第一过孔和第二过孔用于容纳金属柱,金属柱用于传输电流信号,多个介质层的第一过孔的轴线平行或重合,相邻的介质层的第一过孔通过相邻的介质层之间的金属层电连接,这样电流信号在金属基板和辐射层之间传输时,电流信号的流通路径比现有技术中电流信号的流通路径延长,从而实现了低剖面,缩小了天线尺寸。通过加载第一过孔和第二过孔,从而扩展天线带宽,实现了天线小型化,多频带设计的目的。
请参考图1,其示出了本申请实施例提供的一种双极化滤波天线单元,该双极化滤波天线单元包括相对设置的金属基板102和辐射层101,金属基板102和辐射层101之间设置有多个介质层103,相邻的介质层103之间设置有金属层104。
其中,每个介质层103包括第一过孔1031和第二过孔1032。第一过孔1031和第二过孔1032均在介质层103的厚度方向上穿透介质层。其中,过孔也称金属化过孔,在双面板和多层板中,为连通各层之间的印制导线,在各层需要连通的导线的交汇处钻上一个公共孔。本申请实施例中,第一过孔1031和第二过孔1032用于容纳金属柱,金属柱用于传输电流信号,介质层的第一过孔通过该介质层和与之相邻的介质层之间的金属层104电连接,介质层的第二过孔通过该介质层和与之相邻的介质层之间的金属层104电连接。
如图1所示,虚线表示第一过孔1031和第二过孔1032的轴线,该多个介质层的第一过孔1031的轴线平行且间隔预设距离,该多个介质层的第二过孔1032的轴线平行且间隔预设距离。在本文中,过孔的轴线是指该孔的孔轴所在的虚拟直线。
可选的,如图2所示,该多个介质层中,每个介质层的第一过孔的轴线与相邻的介质层的第一过孔的轴线均间隔预设距离,每个介质层的第二过孔的轴线与相邻的介质层的第二过孔的轴线均间隔预设距离。
可选的,如图3所示,该多个介质层中,部分相邻的介质层的第一过孔的轴线重合,并与其余相邻的介质层的第一过孔的轴线平行且间隔预设距离。部分相邻的介质层的第二过孔的轴线重合,并与其余介质层的第二过孔的轴线间隔预设距离。其中,相邻的介质层表示在双极化滤波天线单元中与距离最接近的两个介质层。例如,在图1-6中,相邻的介质层可以表示上下相邻的两个介质层。
可选的,如图4所示,该多个介质层中,两个相邻的介质层的第一过孔的轴线间隔预设距离。该多个介质层中,两个相邻的介质层的第二过孔的轴线间隔预设距离。任一介质层的第一过孔的轴线与其第二接近的介质层的第一过孔的轴线重合,任一介质层的第二过孔的轴线与其第二接近的介质层的第二过孔的轴线重合。
可选的,如图2所示,该多个介质层的第一过孔1031的轴线之间的间隔预设距离H可以相同也可以不相同。该多个介质层的第二过孔1032的轴线之间的间隔预设距离H可以相同也可以不相同。
可选的,如图5所示,同一介质层的第一过孔和第二过孔的孔径相同,且同一介质层中第一过孔与相邻的介质层中的第一过孔的相对位置关系与该介质层中第二过孔与相邻的介质层中第二过孔的相对位置关系相同。
可选的,本申请实施例中,如图5和图2所示,相邻的介质层的第一过孔(或第二过孔)的孔径可以相同也可以不相同。
可选的,本申请实施例提供一种双极化滤波天线单元,该双极化滤波天线单元包括M个介质层103,其中,靠近金属基板的N个介质层103的第一过孔1301的孔径大于远离金属基板102的M-N个介质层的第一过孔1301的孔径。靠近金属基板的N个介质层103的第二过孔1302的孔径大于远离金属基板102的M-N个介质层的第二过孔1302的孔径,M、N为正整数,N小于M。
本申请实施例中,多个介质层中的第一介质层的第一过孔与第一介质层的第二过孔通过金属基板电连接,多个介质层中的第二介质层的第一过孔与第二介质层的第二过孔分别与辐射层电连接,第一介质层为多个介质层中距离金属基板最近的介质层,第二介质层为多个介质层中距离辐射层最近的介质层。
其中,如图6所示,图6中的粗实线示出了由介质层的第一过孔内容纳的金属柱,相邻的介质层之间的金属层,以及介质层的第二过孔容纳的金属柱所形成的信号通路,该信号通路的路径长度相比于通常的双极化滤波天线单元中的信号通路更长,因此在天线单元的尺寸相同的情况下,本申请提供的信号通路的带宽更宽,也就是说,在保证带宽不变的情况下,本申请实施例提供的天线单元的尺寸可以缩小。
在本申请的一个实施例中,多个介质层的第一过孔和第二过孔形成的信号通路的长度与双极化滤波天线单元的待滤除的信号的半波长相同。
其中,多个介质层的第一过孔和第二过孔形成的信号通路的长度由多个介质层的第一过孔内容纳的金属柱的竖直高度和多个介质层的第一过孔的轴线之间的间隔距离确定。其中,金属柱的竖直高度受限于天线的硬件尺寸的影响而不便于改动,而多个介质层的第一过孔的轴线之间的间隔距离是可调节的,如图6所示,图6中粗实线也用于表示电流信号的传输路径,其中,多个介质层的第一过孔的轴线之间的间隔距离H的大小可以影响多个介质层的第一过孔和第二过孔形成的信号通路的长度。
本申请实施例中,为便于叙述,下面定义由多个介质层的第一过孔形成的信号通路为第一子通路,定义由多个介质层的第二过孔形成的信号通路为第二子通路,第一子通路和第二子通路通过金属基板电连接。其中,如图7所示,例如电流信号从第一子通路流入, 用叉号表示,从第二子通路流出,用圆点表示,此时,第一子通路和第二子通路会引起谐振,在低频产生一个新的辐射模式,将天线的工作频带往低频移动。与此同时,第一子通路和第二子通路产生谐振会形成一个辐射零点,这种情况下,信号无法辐射出去,从而被滤除。其中,被滤除的信号的半波长等于多个介质层的第一过孔和第二过孔形成的信号通路的长度。
在本申请的一个实施例中,如图8所示,辐射层101包括多个辐射片1011,多个辐射片1011间隔设置。每个介质层与每个辐射片1011对应的区域内设置有一个第一过孔1031和一个第二过孔1032。介质层与辐射片对应的区域是指辐射片在介质层上的正投影所涵盖的介质层的区域。
可选的,每个介质层上包括多个过孔组,每个过孔组包括一个第一过孔和一个第二过孔,每个过孔组中的所有过孔都在同一辐射片在介质层上的正投影所涵盖的区域中,多个介质层中的第一介质层的同一过孔组内的第一过孔和第二过孔通过金属基板电连接。
可选的,辐射片的形状可以为圆形、矩形、三角形或者扇形。
可选的,多个辐射片可以矩阵排列。
可选的,同一辐射片对应的区域内的,多个介质层中的第一过孔和第二过孔形成的信号通路的长度与双极化滤波天线单元的待滤除的信号的半波长相同。辐射片对应的区域是指辐射片在双极化滤波天线单元的各个层上的正投影所涵盖的各个层的区域。
可选的,如图9所示,辐射层101包括四个辐射片1011,各辐射片分别位于以金属基板的中心为原点的四个象限内。
本申请没有使用额外的滤波电路结构,通过在金属基板的四个象限分别加载多个第一过孔和第二过孔,四个象限内各自组合产生谐振,将电流集中到四个象限,彼此电场相互抵消,从而在阻带内产生辐射零点,使天线形成带阻滤波效果。
在本申请的一个实施例中,各个介质层与相邻的辐射片之间的预留区域对应的区域设置有馈电孔,馈电孔用于容纳金属柱,金属柱用于传输电流信号。多个介质层的馈电孔的轴线重合,其中,第一介质层的馈电孔与第一馈线连接,第二介质层的馈电孔与第二馈线连接。
在本申请的一个实施例中,如图10所示,辐射层101包括多个辐射片1011,相邻的辐射片之间设置有预留区域,预留区域如图10中虚线框所示。第一过孔1031、第二过孔1032分别与两个辐射片对应设置,即每个介质层的第一过孔设置在两个辐射片中的第一个辐射片对应的区域内,每个介质层的第二过孔设置在两个辐射片中的第二个辐射片对应的区域内。
其中,多个介质层与相邻两个辐射片之间的预留区域对应的区域设置有第三过孔1033,多个介质层的第三过孔1033的轴线平行且间隔预设距离,第三过孔1033用于容纳金属柱,第一介质层的第三过孔1033分别与第一介质层的第一过孔1031和第一介质层的第二过孔1032通过金属基板电连接,相邻介质层的第三过孔1033通过相邻介质层之间的金属层电连接。
可选的,多个介质层包括目标介质层和非目标介质层,多个介质层中目标介质层包括第三过孔,非目标介质层不包括第三过孔。其中,目标介质层包括第一介质层。可选的,目标介质层为多个相邻的介质层。换言之,第三过孔可以仅设置在目标介质层中。
可选的,第三过孔位于相邻两个辐射片的对称线上。
可选的,本申请实施例中,为便于表述,下面定义由多个介质层的第三过孔形成的信号通路为第三子通路,定义由多个介质层的第一过孔形成的信号通路为第一子通路,定义由多个介质层的第二过孔形成的信号通路为第二子通路,第三子通路分别与第一子通路和第二子通路通过金属基板电连接。
其中,如图11所示,其中,第一子通路、第二子通路和第三子通路相互作用,在高频通带边缘产生两个辐射零点,从而使天线高频通带具有良好的带通滤波效果。
可选的,辐射层包括四个辐射片,各辐射片分别位于以金属基板的中心为原点的四个象限内。多个介质层与相邻两个辐射片之间的预留区域对应的区域设置有第三过孔。如图12所示,其示出了A/B/C/D四组过孔组的组合。在一个介质层中,每一个过孔组的组合包括一个第一过孔、一个第二过孔和一个第三过孔,其中第一过孔和第二过孔分别位于相邻的辐射片所对应的区域,第三过孔位于第一过孔和第二过孔之间。可选的,每一个过孔组的组合中的第三子通路到第一子通路和到第二子通路的路径长度之和可以相同也可以不相同。
当信号的半波长与该四组组合的任一组合对应的路径长度之和相同时,即可将该信号滤除。
在本申请的一个实施例中,如图13所示,辐射层101包括第一辐射片1301和第二辐射片1302,第一辐射片1301和第二辐射片1302设置于金属基板的对称线的两侧。
其中,多个介质层在第一辐射片1301和第二辐射片1302对应的区域内设置有第一过孔1031和第二过孔1032的前提条件下,多个介质层与第一辐射片1301对应的区域设置有第四过孔1034和第五过孔1035,第四过孔1034与第五过孔1035连接,多个介质层的第四过孔1034的轴线平行且间隔预设距离,多个介质层的第五过孔1035的轴线平行且间隔预设距离,第四过孔1034和第五过孔1035用于容纳金属柱,相邻介质层的第四过孔1034通过相邻介质层之间的金属层电连接,相邻介质层的第五过孔1035通过相邻介质层之间的金属层电连接。
多个介质层与第二辐射片对应的区域设置有第六过孔1036和第七过孔1037第六过孔1036和第七过孔1037连接,多个介质层的第六过孔1036的轴线平行且间隔预设距离,多个介质层的第七过孔的轴线平行且间隔预设距离,第六过孔1036和第七过孔1037用于容纳金属柱。其中,多个介质层中第一介质层的第四过孔1034与第六过孔1036或者第七过孔1037通过金属基板电连接,多个介质层中第一介质层的第五过孔1035与第六过孔1036或者第七过孔1037通过金属基板电连接,相邻介质层的第六过孔1036通过相邻介质层之间的金属层电连接,相邻介质层的第七过孔1037通过相邻介质层之间的金属层电连接。
其中,第四过孔和第五过孔的结构以及相对关系、第六过孔和第七过孔的结构以及相 对关系可以参考上述实施例中的第一过孔和第二过孔的结构以及相对关系,不再赘述。
可选的,多个介质层中第一介质层的第四过孔与第六过孔通过金属基板电连接时,多个介质层的第四过孔和第六过孔形成的信号通路的长度与低频通带谐振点频率的半波长相同,从而实现天线小型化的目的。
可选的,多个介质层中第一介质层的第四过孔与第七过孔通过金属基板电连接时,多个介质层的第四过孔和第七过孔形成的信号通路的长度与低频通带谐振点频率的半波长相同,从而实现天线小型化的目的。
可选的,多个介质层中第一介质层的第五过孔与第六过孔通过金属基板电连接时,多个介质层的第五过孔和第六过孔形成的信号通路的长度与低频通带谐振点频率的半波长相同,从而实现天线小型化的目的。
可选的,多个介质层中第一介质层的第五过孔与第七过孔通过金属基板电连接时,多个介质层的第五过孔和第七过孔形成的信号通路的长度与低频通带谐振点频率的半波长相同,从而实现天线小型化的目的。
在本申请的另一个实施例中,本申请实施例提供的双极化滤波天线单元中,辐射层包括第一辐射片和第二辐射片,第一辐射片和第二辐射片以金属基板的中心为原点呈旋转对称分布。
其中,如图14所示,多个介质层在第一辐射片对应的区域内设置有多个彼此相连的第一短路柱结构1401,该多个彼此相连的第一短路柱结构的俯视示意图如图15所示,第一短路柱结构包括设置在各个介质层的第一调整过孔,第一调整过孔用于容纳金属柱,金属柱用于传输电流信号,相邻介质层的第一调整过孔通过相邻介质层之间的金属层电连接。
多个介质层在第二辐射片对应的区域内设置有多个彼此相连的第二短路柱结构,第二短路柱结构包括设置在各个介质层的第二调整过孔,第二调整过孔用于容纳金属柱,金属柱用于传输电流信号,相邻介质层的第二调整过孔通过相邻介质层之间的金属层电连接。其中,该多个彼此相连的第一短路柱结构、多个彼此相连的第二短路柱结构可以等效为金属壁。
可选的,多个介质层的调整过孔的轴线可以重合。
可选的,多个介质层的调整过孔的轴线平行且间隔预设距离。
其中,电流信号从第一辐射片对应的多个短路柱结构通过金属基板流向第二辐射片对应的多个短路柱结构,并产生谐振,从而在低频产生一个新的辐射模式,大幅拓宽天线带宽;产生谐振的两个短路柱结构和金属基板形成的信号通路的长度为谐振点频率对应的波长的一半。
可选的,本申请实施例中,多个介质层中第一辐射片对应的区域内的第一过孔形成第一子信号通路,多个介质层中第一辐射片对应的区域内的第二过孔形成第二子信号通路,多个介质层中第一辐射片对应的区域内的金属壁形成第三子信号通路,该第一子信号通路、第二子信号通路和第三子信号通路相互作用产生谐振,从而形成辐射零点,使天线具有良好的带阻滤波效果。
在一种可选的实现方式中,如图14和图15所示,辐射层包括四个辐射片,各辐射片 分别位于以金属基板的中心为原点的四个象限内。且,多个介质层的与金属基板的四个象限的边缘区域对应的区域内分别设置有多个调整过孔,调整过孔用于容纳金属柱,金属柱用于传输电流信号,第一介质层的位于同一象限内的多个调整过孔通过金属基板电连接。
在本申请的一个实施例中,提供一种双极化滤波天线阵列,该双极化滤波天线阵列包括阵列排布的双极化滤波天线单元,所述双极化滤波天线单元为上述实施例中所述的双极化滤波天线单元。
实例1
如图16和图17所示,其示出了一种小型化双频双极化毫米波滤波天线单元,包括电偶极子结构1、磁偶极子结构2、金属化过孔3、馈电结构4和金属基板5,电偶极子结构1与金属基板5之间设置有多个介质层。
其中,如图9所示,电偶极子结构1包括四个辐射片11,四个辐射片呈阵列分布,辐射片的结构不限于圆形、矩形、三角形或者扇形等。
如图15和图18所示,磁偶极子结构2包括金属条22,金属条22形成封闭区域,各个介质层与封闭区域对应的区域内设置有金属化过孔3,多个介质层的金属化过孔3的轴线平行且间隔预设距离。其中,通过调节金属化过孔3和金属条22的相对位置,可以延长电流信号的路径长度,从而实现低剖面设计。
如图18所示,多个介质层中,部分介质层的金属化过孔的孔径大于另一部分金属化过孔的孔径,可选的,多个介质层包括M个介质层,其中,靠近金属基本的N个介质层的金属化过孔的孔径大于远离金属基板的M-N个介质层的金属化过孔的孔径.。
如图19所示,本申请实施例中,各个介质层上设置有多对具有一定间隙的第一过孔311和第二过孔312,加载在金属基板的四个象限,以金属基板的中心呈旋转对称分布;当天线工作在0°极化方向上时,0°极化方向上相对设置的,由多个介质层的第一过孔311构成的第一信号通路和由多个介质层的第二过孔312构成的第二信号通路引起谐振,在低频产生一个新的辐射模式,将天线工作频带往低频移动;进一步地,第一信号通路和第二信号通路共同作用,不仅扩展了天线低频带宽,而且产生谐振,形成一个辐射零点,使天线具有良好的带阻滤波效果;进一步地,第一信号通路和第二信号通路以及它们中间金属基板上的电流信号的路径的长度之和,为辐射零点对应的半个波长长度;天线工作在90°极化方向上时,两者工作模式互易。
如图18所示,各介质层中以金属基板的中心为原点的两个极化方向上加载两对正交的第三过孔32;当天线工作在0°极化方向上时,0°极化方向上相对设置的,由多个介质层的第三过孔32构成的第三信号通路与旁边的第一信号通路和第二信号通路相互作用,第三信号通路和第一信号通路、第二信号通路产生谐振,在高频通带边缘产生两个辐射零点,从而使天线高频通带具有良好的带通滤波效果;天线工作在90°极化方向上时,两者工作模式互易。
如图20所示,馈电结构4包括两组正交放置的倒Г形馈电线,由垂直短路柱41、水平馈电线42和金属化过孔43构成倒Г形结构,与电偶极子结构1、磁偶极子结构2间隔 设置,形成耦合;进一步地,金属化过孔43通过调整与金属基板间距,从而调整等效电容电感分量,一定程度上可扩展天线带宽;馈电结构4末端通过引出带状线馈电。
如图20所示,两个正交放置的水平馈电线42位于不同的叠层,从而实现较高的极化隔离度,需要说明的是,如果抬高较低的水平馈电线,天线在这个极化方向上的阻抗匹配会表现得更好,但天线的极化隔离会变差,为了使天线极化隔离和匹配都在可接受范围内,这里选择两个水平馈电线相隔距离为0.1mm。
本申请实施例中采用多层HDI工艺设计,天线稳定性较强,天线单元尺寸为3.2mm*3.2mm*0.84mm,实现了天线的小型化设计。
如图21所示,是本申请实施例提供的一种小型化双频双极化毫米波滤波天线的S参数图,从图中可见,天线两端口共有的阻抗匹配为25.7-30GHz、36.2-45GHz,覆盖了目前使用较多的n257、n259和n260频段,回波损耗均在-10dB以下,在双频通带内极化隔离度始终保持都在20dB以上。
如图22所示,是本申请实施例提供的一种小型化双频双极化毫米波滤波天线的增益曲线图,从图中可见,在双频通带内增益平稳,由于高频通带边缘引入了两个辐射零点,导致高频通带边缘增益降低,但在目前5G使用的26.5-29.5GHz和37-43.5GHz频带内天线增益在4.3dBi以上,如果增大地板尺寸到6.5mm,增益可提高至7dBi。
如图22所示,本申请实施例没有使用额外的滤波电路结构,在通带边缘产生了3个辐射零点,主要通过在特定位置加载短路柱结构实现,在3个零点的共同作用下实现了天线良好的带阻滤波效果,同时使天线高频通带实现了良好的带通滤波效果。
本申请实施具有如下优点:
(1)本申请结构简单,在传统磁电偶极子天线基础上,通过在介质层设置金属化过孔,形成第一信号通路和第二信号通路,其余金属基板共同作用,扩展了天线带宽,实现了天线小型化、多频带设计。
(2)本申请没有使用额外的滤波电路结构,通过在多个介质层与金属基板的四个象限内分别设置第一过孔和第二过孔,从而在每个象限内形成第一信号通路和第二信号通路,四个象限内的第一信号通路和第二信号通路各自组合产生谐振,将电流集中到四个象限,彼此电场相互抵消,从而在阻带内产生辐射零点,使天线形成带阻滤波效果。多个介质层与以金属基板的中心为原点的两个极化方向上分别加载一对第三过孔,多个介质层的第三过孔形成的第三信号通路与四个象限中较近的第一信号通路和第二信号通路相互作用,从而在天线高频通带产生两个辐射零点,使天线的高频通带形成带通滤波效果。
(3)本申请基于HDI(英文:High Density Interconnector,中文:高密度互连技术)工艺加工封装,成本较低,可靠性强。
(4)该天线单元实现了性能优良的双极化辐射特性,天线交叉极化较低,波束宽度较宽,辐射方向图稳定。
实例2
如图23所示,本实施例提供了另一种小型化双频双极化毫米波滤波天线,该天线包括电偶极子结构10、磁偶极子结构20、短路柱结构301和302、馈电结构40和金属基板50。
如图23和图24所示,短路柱结构302包括多个彼此相连的短路柱,可进一步等效为金属墙,分布在金属地50的四个象限,以金属地中心呈旋转对称分布。当天线工作在0°极化方向上时,沿着0°极化方向,电流从一侧短路柱通过金属地流向另一侧短路柱,产生谐振,从而在低频产生一个新的辐射模式,大幅拓宽天线带宽;进一步地,两个短路柱及金属地上的电流路径长度为谐振点频率对应的波长的一半。当天线工作于90°极化方向上时,两者工作模式互易。
如图22所示,所述短路柱结构301在金属地每个象限内包括两个具有一定间隙的短路柱,与短路柱302间隔设置;进一步地,每个象限中两个短路柱共同作用,产生谐振,从而形成辐射零点,使天线具有良好的带阻滤波效果;在两个短路柱及中间金属地上电流路径长度之和为辐射零点对应的半个波长长度。
本实施例中,通过在天线四周加载短路柱结构,同一极化方向上两对短路柱共同作用,在低频产生新的辐射模式,从而拓展了天线低频带宽,实现了天线的小型化设计。
如图25所示,是本申请实施例提供的一种小型化双频双极化毫米波滤波天线的S参数图,从图中可见,天线两端口均可覆盖24-30GHz、37-43.5GHz,回波损耗在-10dB以下,在这两个频段内天线极化隔离度保持在20dB以上。
如图26所示,是本申请实施例提供的一种小型化双频双极化毫米波滤波天线的增益曲线图,从图中可见,天线在5G所用频段内增益平稳,低频增益保持在3.86dBi以上,高频增益保持在3.5dBi以上,相对地,如果增加天线地板尺寸到6.5mm,天线高频增益可达7dBi,;此外,在天线阻带存在一个辐射零点,该零点通过每个象限中一对短路柱301谐振产生,由此实现了良好的带阻滤波效果。
综上所述,本申请无需额外的滤波电路结构,实现了良好的带阻滤波效果,又在保证小型化的同时覆盖了两个宽频带,具备较佳的双频双极化辐射性能。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (17)

  1. 一种双极化滤波天线单元,包括相对设置的金属基板和辐射层,所述金属基板和所述辐射层之间设置有多个介质层,相邻所述介质层之间设置有金属层,
    各所述多个介质层包括第一过孔和第二过孔,所述多个介质层的所述第一过孔的轴线平行或重合,所述多个介质层的所述第二过孔的轴线平行或重合,所述第一过孔和所述第二过孔用于容纳金属柱,所述金属柱用于传输电流信号;
    其中,相邻介质层的所述第一过孔通过所述相邻介质层之间的所述金属层电连接,所述相邻介质层的所述第二过孔通过所述相邻介质层之间的所述金属层电连接,所述多个介质层中的第一介质层的第一过孔与所述第一介质层的第二过孔通过所述金属基板电连接,所述多个介质层中的第二介质层的第一过孔与所述第二介质层的第二过孔分别与所述辐射层电连接,所述第一介质层为所述多个介质层中距离所述金属基板最近的介质层,所述第二介质层为所述多个介质层中距离所述辐射层最近的介质层;
    其中,各所述多个介质层的所述第一过孔形成第一子通路,各所述多个介质层的所述第二过孔形成第二子通路,所述第一子通路和所述第二子通路产生谐振形成辐射零点,从而实现滤波。
  2. 根据权利要求1所述的双极化滤波天线单元,其中,所述辐射层包括多个辐射片,所述第一过孔、所述第二过孔分别与两个所述辐射片对应设置,
    所述多个介质层与相邻两个所述辐射片之间的预留区域对应的区域设置有第三过孔,所述多个介质层的所述第三过孔的轴线平行或重合,所述第三过孔用于容纳金属柱,所述第一介质层的第三过孔分别与所述第一介质层的第一过孔和所述第一介质层的第二过孔通过所述金属基板电连接,相邻介质层的所述第三过孔通过所述相邻介质层之间的所述金属层电连接。
  3. 根据权利要求2所述的双极化滤波天线单元,其中,所述多个介质层包括目标介质层和非目标介质层,所述第三过孔仅设置在所述多个介质层中的目标介质层中,所述目标介质层包括所述第一介质层。
  4. 根据权利要求3所述的双极化滤波天线单元,其中,所述目标介质层为多个相邻的介质层。
  5. 根据权利要求2所述的双极化滤波天线单元,其中,所述第三过孔位于所述相邻两个所述辐射片的对称线上。
  6. 根据权利要求1所述的双极化滤波天线单元,其中,
    所述多个介质层包括M个介质层,靠近所述金属基板的N个介质层的第一过孔的孔径大于远离所述金属基板的M-N个介质层的第一过孔的孔径;靠近所述金属基板的N个介质层的第二过孔的孔径大于远离所述金属基板的M-N个介质层的第二过孔的孔径,M、N为整数,N小于M。
  7. 根据权利要求1所述的双极化滤波天线单元,其中,同一介质层中的所述第一过孔和所述第二过孔的孔径相同。
  8. 根据权利要求1所述的双极化滤波天线单元,其中,所述第一子通路和所述第二子通路的长度之和与所述双极化滤波天线单元的待滤除的信号的半波长相同。
  9. 根据权利要求1所述的双极化滤波天线单元,其中,所述辐射层包括多个辐射片,每个介质层与每个辐射片对应的区域内设置有一个所述第一过孔和一个所述第二过孔。
  10. 根据权利要求2或9所述的双极化滤波天线单元,其中,所述多个辐射片呈矩阵排列。
  11. 根据权利要求1所述的双极化滤波天线单元,其中,所述辐射层包括第一辐射片和第二辐射片,所述第一辐射片和所述第二辐射片设置于所述金属基板的对称线的两侧,
    所述多个介质层与所述第一辐射片对应的区域设置有第四过孔和第五过孔,所述第四过孔与所述第五过孔连接,所述多个介质层的所述第四过孔轴线平行或重合,所述多个介质层的所述第五过孔的轴线平行或重合,所述第四过孔与所述第五过孔用于容纳金属柱,相邻介质层的所述第四过孔通过所述相邻介质层之间的所述金属层电连接,相邻介质层的所述第五过孔通过所述相邻介质层之间的所述金属层电连接;
    所述多个介质层与所述第二辐射片对应的区域设置有第六过孔和第七过孔,所述第六过孔和所述第七过孔连接,所述多个介质层的所述第六过孔轴线平行或重合,所述多个介质层的所述第七过孔的轴线平行或重合,所述第六过孔和所述第七过孔用于容纳金属柱,相邻介质层的所述第六过孔通过所述相邻介质层之间的所述金属层电连接,相邻介质层的所述第七过孔通过所述相邻介质层之间的所述金属层电连接;
    其中,所述多个介质层中的第一介质层的所述第四过孔与所述第六过孔或者所述第七过孔通过所述金属基板电连接,所述多个介质层中的第一介质层的所述第五过孔与所述第六过孔或者所述第七过孔通过所述金属基板电连接。
  12. 根据权利要求2所述的双极化滤波天线单元,其中,
    所述多个介质层与相邻两个所述辐射片之间的预留区域对应的区域设置有馈电孔,所述馈电孔用于容纳金属柱,
    所述天线单元还包括第一馈线和第二馈线,所述第一馈线与所述第一介质层的馈电孔连接,所述第二馈线与所述第二介质层的馈电孔连接。
  13. 根据权利要求1所述的双极化滤波天线单元,其中,所述多个介质层的所述第一过孔的轴线之间的间隔的距离相同,所述多个介质层的第二过孔的轴线之间的间隔的距离相同。
  14. 根据权利要求1所述的双极化滤波天线单元,其中,部分相邻的介质层的第一过孔的轴线重合,其余相邻的介质层的第一过孔的轴线平行且间隔相同的预设距离。
  15. 根据权利要求1所述的双极化滤波天线单元,其中,所述辐射层包括四个辐射片,各所述辐射片分别位于以所述金属基板的中心为原点的四个象限内。
  16. 根据权利要求2所述的双极化滤波天线单元,其中,
    所述辐射片形状为圆形、矩形、三角形或者扇形。
  17. 一种双极化滤波天线阵列,其中,包括阵列排布的双极化滤波天线单元,所述双极化滤波天线单元为权利要求1-16中任一项所述的双极化滤波天线单元。
PCT/CN2021/131269 2021-05-18 2021-11-17 双极化滤波天线单元和双极化滤波天线阵列 WO2022242069A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110537792.6A CN112968281B (zh) 2021-05-18 2021-05-18 双极化滤波天线单元、双极化滤波天线阵列
CN202110537792.6 2021-05-18

Publications (1)

Publication Number Publication Date
WO2022242069A1 true WO2022242069A1 (zh) 2022-11-24

Family

ID=76279793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131269 WO2022242069A1 (zh) 2021-05-18 2021-11-17 双极化滤波天线单元和双极化滤波天线阵列

Country Status (2)

Country Link
CN (1) CN112968281B (zh)
WO (1) WO2022242069A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112968281B (zh) * 2021-05-18 2021-09-24 华南理工大学 双极化滤波天线单元、双极化滤波天线阵列
CN115548670A (zh) * 2021-06-30 2022-12-30 华为技术有限公司 天线结构、天线模组、芯片与电子设备
CN113708060A (zh) * 2021-08-16 2021-11-26 中国电子科技集团公司第四十三研究所 一种基于三维差分馈电结构的偶极子天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100149063A1 (en) * 2008-12-16 2010-06-17 Smartant Telecom Co., Ltd. Dual-frequency antenna
CN106067602A (zh) * 2016-05-23 2016-11-02 南通大学 双极化滤波天线阵列
CN109728425A (zh) * 2018-12-18 2019-05-07 南通大学 双极化滤波贴片天线
CN109742525A (zh) * 2018-12-31 2019-05-10 瑞声科技(南京)有限公司 一种滤波天线
CN112490657A (zh) * 2020-12-09 2021-03-12 广东工业大学 一种具有吸收性辐射零点的双波束宽带滤波天线
CN112968281A (zh) * 2021-05-18 2021-06-15 华南理工大学 双极化滤波天线单元、双极化滤波天线阵列

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW578333B (en) * 2003-02-18 2004-03-01 Gemtek Technology Co Ltd Dual-frequency antenna
CN101728643A (zh) * 2010-01-27 2010-06-09 电子科技大学 一种液晶聚合物毫米波超宽带槽天线
JP5408166B2 (ja) * 2011-03-23 2014-02-05 株式会社村田製作所 アンテナ装置
CN102280704B (zh) * 2011-05-13 2015-05-20 广东博纬通信科技有限公司 一种宽波束宽度小尺寸的圆极化天线
CN102354809B (zh) * 2011-08-09 2014-04-02 华南理工大学 可工作于北斗卫星导航系统和移动3g的双频双极化天线
FR2997236A1 (fr) * 2012-10-23 2014-04-25 Thomson Licensing Antenne fente compacte
CN106058442B (zh) * 2016-07-06 2019-04-19 广东通宇通讯股份有限公司 一种天线
EP3732748B1 (en) * 2017-12-28 2023-10-11 Avery Dennison Retail Information Services LLC Rfid tags using multi-layer constructions for improved durability
CN208570901U (zh) * 2018-05-29 2019-03-01 华南师范大学 一种紧凑宽带圆极化背腔式rfid阅读器天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100149063A1 (en) * 2008-12-16 2010-06-17 Smartant Telecom Co., Ltd. Dual-frequency antenna
CN106067602A (zh) * 2016-05-23 2016-11-02 南通大学 双极化滤波天线阵列
CN109728425A (zh) * 2018-12-18 2019-05-07 南通大学 双极化滤波贴片天线
CN109742525A (zh) * 2018-12-31 2019-05-10 瑞声科技(南京)有限公司 一种滤波天线
CN112490657A (zh) * 2020-12-09 2021-03-12 广东工业大学 一种具有吸收性辐射零点的双波束宽带滤波天线
CN112968281A (zh) * 2021-05-18 2021-06-15 华南理工大学 双极化滤波天线单元、双极化滤波天线阵列

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIDDIQUI ZEESHAN; SONKKI MARKO; RASILAINEN KIMMO; CHEN JIANGCHENG; BERG MARKUS; LEINONEN MARKO E.; PARSSINEN AARNO: "Dual-Polarized Filtering Antenna for mm-Wave 5G Base Station Antenna Array", 2021 15TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), EURAAP, 22 March 2021 (2021-03-22), pages 1 - 4, XP033907382, DOI: 10.23919/EuCAP51087.2021.9411318 *

Also Published As

Publication number Publication date
CN112968281B (zh) 2021-09-24
CN112968281A (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
WO2023010680A1 (zh) 共口径双频双极化天线阵列及通信设备
US11387568B2 (en) Millimeter-wave antenna array element, array antenna, and communications product
US8854270B2 (en) Hybrid multi-antenna system and wireless communication apparatus using the same
WO2022242069A1 (zh) 双极化滤波天线单元和双极化滤波天线阵列
US10044111B2 (en) Wideband dual-polarized patch antenna
US10749272B2 (en) Dual-polarized millimeter-wave antenna system applicable to 5G communications and mobile terminal
CN107808998B (zh) 多极化辐射振子及天线
CN111883910B (zh) 一种双极化低剖面磁电偶极子天线及无线通信设备
CN106450683A (zh) 一种宽带双极化磁电偶极子基站天线上发送信号的方法
CN109742540B (zh) 一种小型化高隔离度多源多波束天线
CN114374085B (zh) 一种面向5g毫米波双频段应用的双极化混合天线
CN110783704A (zh) 双过孔探针馈电集成基片间隙波导圆极化天线
CN114976665B (zh) 一种加载频率选择表面辐射稳定的宽带双极化偶极子天线
CN114709609A (zh) 低剖面高增益宽轴比波束的圆极化微带天线
CN109560387B (zh) 一种用于移动终端的毫米波双极化天线
WO2021083217A1 (zh) 天线单元及电子设备
CN111628286B (zh) 双频双圆极化天线
CN210668685U (zh) 新型双过孔探针馈电isgw圆极化天线
CN113078469A (zh) 一种用于卫星通信的Ku波段双频双极化天线
CN116053776B (zh) 双宽带双极化磁电偶极子基站天线及通信设备
CN115207613B (zh) 一种宽带双极化天线单元及天线阵列
CN114824774B (zh) 一种宽带高隔离度双极化超表面天线
CN114914692A (zh) 双极化高隔离度磁电偶极子毫米波天线及无线通信设备
CN115173051A (zh) 一种宽带高增益圆极化天线阵列
WO2021083218A1 (zh) 天线单元及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE