WO2016133244A1 - 다중대역 복사소자 - Google Patents

다중대역 복사소자 Download PDF

Info

Publication number
WO2016133244A1
WO2016133244A1 PCT/KR2015/004241 KR2015004241W WO2016133244A1 WO 2016133244 A1 WO2016133244 A1 WO 2016133244A1 KR 2015004241 W KR2015004241 W KR 2015004241W WO 2016133244 A1 WO2016133244 A1 WO 2016133244A1
Authority
WO
WIPO (PCT)
Prior art keywords
low frequency
substrate
radiating element
high frequency
feed
Prior art date
Application number
PCT/KR2015/004241
Other languages
English (en)
French (fr)
Inventor
이수원
나상근
나도선
Original Assignee
주식회사 감마누
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 감마누 filed Critical 주식회사 감마누
Priority to US15/551,590 priority Critical patent/US10186772B2/en
Priority to CN201580076357.0A priority patent/CN107251318A/zh
Publication of WO2016133244A1 publication Critical patent/WO2016133244A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/321Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/005Patch antenna using one or more coplanar parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/001Crossed polarisation dual antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/385Two or more parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Definitions

  • the present invention relates to a multiband radiating element, and more particularly, to a dual polarization multiband radiating element having high frequency radiating elements and low frequency parasitic elements formed on both sides of a substrate.
  • an antenna as a multi-band antenna that can be used in not only one frequency band but also two or more frequency bands.
  • built-in antennas as well as repeater antennas and base station antennas.
  • the existing antennas are designed to be used only in a single frequency band, so that different antennas have to be used for individual frequency bands for use in two or more frequency bands.
  • the length of the radiation element had to be increased.
  • the size of the entire antenna is increased due to the long length of the radiating element, which increases the manufacturing cost. There was even a problem of increased cost.
  • the present invention proposes a multi-band radiating element which can be used in both high frequency band and low frequency band, has a wide band characteristic, and can reduce the manufacturing cost and installation cost by miniaturizing the size of the entire antenna.
  • An object of the present invention is to provide a multi-band radiating element that can be used in both a high frequency band and a low frequency band.
  • an object of the present invention is to provide a multi-band radiating element capable of having a wide band characteristic because the frequency band in which the antenna operates is wide.
  • the present invention relates to a multi-band radiating element, the first high frequency radiating element formed on the upper surface of the substrate, is formed on the upper surface of the substrate, is formed spaced apart a predetermined distance from the first high frequency radiating element in the outer direction of the substrate At least one first low frequency parasitic element, formed on an upper surface of the substrate, at least one second low frequency parasitic element formed at a predetermined distance away from the first high frequency radiating element in an outward direction of the substrate, formed on a bottom surface of the substrate A second high frequency radiation element; And a reflector formed to be spaced apart from the bottom of the substrate by a predetermined distance.
  • the antenna can operate There is an effect that can widen the frequency band that has a wideband characteristics.
  • parasitic elements formed on the outer periphery of the substrate rather than separately forming a long radiation element for use in the low frequency band, it is possible to reduce the size of the entire antenna to reduce the manufacturing cost and installation cost have.
  • first low frequency parasitic elements may be formed, and the four first low frequency parasitic elements may be formed at an angle of 90 ° to each other, and the second low frequency parasitic elements may be formed of four, and the four fourth low frequency parasitic elements may be formed.
  • the low frequency parasitic elements may be formed at an angle of 90 ° to each other.
  • the second low frequency parasitic elements may be formed between two adjacent ones of the four first low frequency parasitic elements formed at an angle of 90 ° to each other, and the first low frequency parasitic elements may be formed at 90 ° angles to each other. It may be formed between two adjacent of the four second low frequency parasitic elements formed.
  • the second high frequency radiating element may have a shape in which the first high frequency radiating element is rotated 90 ° to the left or the right, and the reflecting plate may include a ground component.
  • the display device may further include a third low frequency parasitic element supporting the substrate from the reflecting plate, wherein the third low frequency parasitic element may be integrally formed with the reflecting plate, and at least one substrate supporting part supporting the substrate.
  • the apparatus may further include one or more connecting portions connecting lower ends of the substrate supports.
  • the first low frequency parasitic element, the second low frequency parasitic element, and the third low frequency parasitic element may be shorted with the ground component.
  • the substrate may further include one or more fourth low frequency parasitic elements formed on a bottom surface of the substrate and spaced apart from the second high frequency radiating element by a predetermined distance in an outer direction of the substrate.
  • the first high-frequency radiating element includes a 1-1 track portion including the 1-1 feed and the first balun, 1-2 feeds, and is spaced apart from the 1-1 track portion by a predetermined distance It is formed between the first 1-2 track portion formed in parallel, the second balun formed between the 1-1 track portion and the 1-2 track portion and between the 1-1 track portion and the 1-2 track portion, And a 2-1 feed including at least one first via, wherein the second high frequency radiation element may include a 2-2 feed, and the 1-1 feed and the 1-2 feed.
  • a feed signal having a polarization characteristic of 0 °, +45 °, +90 ° can be introduced, and the 2-1 feed and the 2-2 feed is 0 ° -45 °, -90 ° Any one of a feed signal having a polarization characteristic may be introduced.
  • the apparatus may further include a first high frequency radiation unit formed at one end of the first-first line unit and the 1-2 line unit, and a second high frequency radiation unit formed at the other ends of the first-first line unit and the 1-2 line unit. Can be.
  • the multi-band radiating element according to an embodiment of the present invention may be implemented as a dual polarized antenna including all the technical features described above.
  • the present invention by forming a high-frequency radiating element for radiating different polarizations on both sides of the substrate, and by using the parasitic element to the low frequency band, there is an effect that can be used in both high frequency band and low frequency band.
  • the parasitic element has a wideband characteristics by extending the frequency band to operate the antenna in the high frequency band as well as the low frequency band.
  • the structure supporting the substrate from the reflecting plate is used as a parasitic element of a low frequency band and formed integrally with the reflecting plate, there is an effect of shortening the manufacturing process.
  • FIG. 1 is a view showing a top surface of a multi-band radiation device according to an embodiment of the present invention.
  • FIG. 2 is a view showing the bottom of the multi-band radiating element according to an embodiment of the present invention.
  • FIG 3 is a view showing a first high frequency radiation element.
  • FIG. 4 is a diagram illustrating a current flowing in the first high frequency radiation element.
  • FIG 5 is a diagram illustrating a current flowing through the first high frequency radiation element and the second low frequency parasitic element.
  • FIG. 6 is a diagram illustrating a current flowing through the first low frequency parasitic element and the second low frequency parasitic element.
  • FIG. 8 is a graph showing the return loss value of the multi-band radiating element according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a dual polarized antenna including a multi-band radiating element according to an embodiment of the present invention.
  • FIG. 1 is a view showing the top of the multi-band radiating element 100 according to an embodiment of the present invention
  • Figure 2 is a view showing the bottom.
  • the multi-band radiating element 100 includes a first high frequency radiating element 10, a first low frequency parasitic element 20, a second low frequency parasitic element 30, a second high frequency radiating element 40, and a reflecting plate 6.
  • the radiating elements are formed on one surface of the substrate 5.
  • the substrate 5 refers to a general dielectric substrate on which a radiating element may be formed, and may include all general dielectric substrates such as PCB, FPCB, etc., and the reflector 6 includes a ground component.
  • the first high frequency radiation element 10 is formed on the upper surface of the substrate 5 to transmit and receive a feed signal in a high frequency band. Specifically, since 1700 to 2700 MHZ band feed signal is transmitted and received, low-frequency parasitic elements to be described later are formed on the outer side of the substrate 5, the first high frequency radiation element 10 is preferably formed in the center of the substrate (5) Do. As shown in FIG. 3, the first high frequency radiation element 10 includes a first-first feed 11-1 and a first balun 12 to which an inner conductor of a first coaxial cable (not shown) is connected. A first-first line part 13 and a first-second feed part 11-2 to which an outer conductor of the first coaxial cable (not shown) is connected, and a predetermined distance from the first-first line part 13.
  • the second balun 16 and the first-first track part formed between the first and second track parts 15, the first-first track part 13, and the first-second track part 15, which are spaced apart and parallel to each other.
  • a first high frequency radiator 19-1 and a second high frequency radiator 19-2 It will be described in detail below.
  • the inner conductor of the first coaxial cable (not shown) is connected to the first-first feed 11-1, and the outer conductor of the first coaxial cable (not shown) is connected to the 1-2 feed (11-2).
  • a feed signal flows in. Specifically, a feed signal having a + 45 ° polarization characteristic flows into the first-first track part 13 through the first-first feed 11-1 and through the first-two feed 11-2. It provides a feed signal directly to the 1-2 line portion 15. That is, the feed signal introduced into the first-first feed 11-1 and the first-second feed 11-1 connected to the first coaxial cable (not shown) may be formed in the first-first form formed on the upper surface of the substrate 5.
  • the first high frequency radiation element 10 including the first line portion 13 and the first-second line portion 15, and has any polarization characteristic different from that of a feed signal having a + 45 ° polarization characteristic.
  • the feed signal may be introduced.
  • any one of a feed signal having 0 ° and + 90 ° polarization characteristics may be introduced.
  • the first coaxial cable (not shown) may be installed in parallel with a predetermined distance from the first balun 12, the first-first feed (11-1) and the first-second feed (11-2) May be formed in the form of vias.
  • the first-first feed 11-1 and the first-two feed 11-2 may be formed in plural to smoothly transfer the feed signal, and the feed signal is transmitted without interruption by covering the inside with a conductive material. Is preferred.
  • the 2-1 feed 18-1 is connected to the inner conductor of the second coaxial cable (not shown), and a feed signal different from the 1-1 feed 11-1 is introduced. Specifically, a feed signal having a ⁇ 45 ° polarization characteristic is introduced to provide a feed signal to the second high frequency radiation element 40 formed on the bottom surface of the substrate 5 through the first via 17. That is, the feed signal introduced into the 2-1 feed 18-1 connected to the second coaxial cable (not shown) is provided only to the second high frequency radiation element 40 formed on the bottom surface of the substrate 5, -45 Not only a feed signal having a polarization characteristic but also a feed signal having a different polarization characteristic may be introduced.
  • any one of a feed signal having 0 ° and ⁇ 90 ° polarization characteristics may be introduced.
  • the second feeder (18-2) that is connected to the outer conductor of the second coaxial cable (not shown) will be described later in the section describing the second high frequency radiation element (40).
  • FIG. 1 illustrates only the case where only one second-first feed 18-1 and one first via 17 are formed, but the second-first feed 18-1 and first via 17 are also formed.
  • a plurality of them may be formed, and the inside may be covered with a conductive material, and the second coaxial cable (not shown) may be formed.
  • the second balloon 16 may be spaced apart from the predetermined distance and installed in parallel.
  • the first balun 12 and the second balun 16 are spaced apart by a predetermined distance from the first coaxial cable (not shown) and the second coaxial cable (not shown), respectively, and are disposed in parallel to the substrate 5. ) And the reflection plate 6 directly, as well as matching the feed signal introduced by the first coaxial cable (not shown) with the feed signal introduced by the second coaxial cable (not shown), thereby resonating the frequency. This can be done.
  • the feed signals introduced through the 1-1st power feed 11-1 and the 1-2 power feed 11-2 are parallel to each other at a predetermined distance and are arranged in parallel with the 1-1 track portion 13 and the 1-2.
  • a feed signal having a + 45 ° polarization characteristic is provided, current flows through the first-first line unit 13 and the first-second line unit 15, and the first high frequency radiation unit 19-1.
  • the same current flows also in the second high frequency radiation unit 19-2, and thus, the first high frequency radiation unit 19-1 and the second high frequency radiation unit 19-2 provide a high frequency band feed signal in a free space. Can be copied. This current flow can be seen in FIG.
  • the first high frequency radiation unit 19-1 and the second high frequency radiation unit 19-2 may be formed in a dipole antenna shape in which left and right are symmetrical, and the first-first line unit 13 and the first line unit 13 are formed. Impedance matching is made by -2 line portion 15. Specifically, the feed signal is provided to the first high frequency radiation unit 19-1 and the second high frequency radiation unit 19-2 through the first-first line unit 13 and the 1-2 line unit 15. As a result, the impedances of the first-first feed 11-1 and the second feed 18-1 are converted into the impedances of the first high frequency radiator 19-1 and the second high frequency radiator 19-2. . In this case, the shapes, lengths, and widths of the first-first line part 13, the first-second line part 15, the first high frequency radiator 19-1, and the second high frequency radiator 19-2 are determined. Fine tuning will ensure accurate impedance conversion.
  • the second high frequency radiation element 40 is formed on the bottom of the substrate 5. Specifically, the second high frequency radiating element 40 is formed by rotating the first high frequency radiating element 10 to the left or right by 90 °, and similarly to the first high frequency radiating element 10, a feed signal of 1700 to 2700 MHZ band is provided. Send and receive Referring to FIG. 2, it can be seen that the second high frequency radiation element 40 is formed by rotating the first high frequency radiation element 10 of FIG. 1 to 90 ° to the left or the right.
  • the second high frequency radiation element 40 has some differences from the first high frequency radiation element 10, which is a second coaxial cable (not shown) that provides a feed signal flowing into the second high frequency radiation element 40. to be.
  • a feed signal having a ⁇ 45 ° polarization characteristic is introduced through the 2-1 power feeding 18-1 connected to the inner conductor of the second coaxial cable (not shown), and the substrate 5 is transferred through the first via 17.
  • the outer conductor of the second coaxial cable (not shown) that is not described above includes the second high frequency radiation element 40 Is connected to the 2-2 power feed 18-2.
  • a feed signal having a ⁇ 45 ° polarization characteristic introduced through the second coaxial cable (not shown) may be provided to the second high frequency radiation element 40.
  • a feed signal having a -45 ° polarization characteristic but also a feed signal having a different polarization characteristic may be introduced, for example, having a 0 ° and -90 ° polarization characteristic. Any one of the feed signals may be introduced.
  • the first high frequency radiation element 10 has a feed signal having a + 45 ° polarization characteristic. 2 It can be seen that the high frequency radiation element 40 is provided with a feed signal having a -45 ° polarization characteristic, through which the multi-band radiation element of the present invention can have the characteristics of a double polarization.
  • the second high frequency radiating element 40 is formed by rotating the first high frequency radiating element 10 90 degrees to the left or the right, the second high frequency radiating element 40 is formed by the current flowing through the first high frequency radiating element 10 formed on the upper surface of the substrate 5.
  • the coupled current flowing in the second high frequency radiation element 40 formed at the bottom may be mutually coupled and induced.
  • the first high frequency radiation element 10 and the second high frequency radiation element 40 formed on both sides of the substrate 5 are supplied with feed signals having different polarization characteristics from each other and have a high frequency band having double polarization characteristics.
  • the feed signal of can be copied into free space.
  • the part 31 of the second low frequency parasitic element 30 to be described later can be transmitted and received up to the feed signal of the 1400 to 1700 MHZ band can have a broadband characteristics, the current flow associated with this can be seen in Figure 5 have.
  • the multi-band radiating element 100 may receive only one of the feed signals having different polarization characteristics from each other to copy the feed signal of the high frequency band having the characteristics of the fragment wave into the free space.
  • a feed signal having a + 45 ° polarization characteristic may be provided to both the first high frequency radiating element 10 and the second high frequency radiating element 40, and radiating radiation of a high frequency band radical signal into free space.
  • Only one element may be formed on the substrate 5 to provide a feed signal.
  • the first high frequency radiation element 10 and the second high frequency radiation element 40 may be formed in various shapes different from those shown in FIGS. 1 and 2 as necessary.
  • the multi-band radiating element 100 can copy up to a low frequency band feed signal, which will be described below.
  • first low frequency parasitic elements 20 and the second low frequency parasitic elements 30 are formed on the upper surface of the substrate 5 similarly to the first high frequency radiating element 10, but from the first high frequency radiating element 10 to the substrate. It is formed spaced apart by a predetermined distance in the outward direction of (5). Referring to FIG. 1, four first low frequency parasitic elements 20 and a second low frequency parasitic element 30 surround the first high frequency radiation element 10 formed at the center of the substrate 5. You can see that formed on the outside of the). In detail, each of the first low frequency parasitic elements 20 and the second low frequency parasitic elements 30 may be formed at an angle of 90 ° to each other, and the first low frequency parasitic element 20 may be formed based on the first low frequency parasitic element 20.
  • the first low frequency parasitic element 20 is formed between two adjacent second low frequency parasitic elements 30, and the second low frequency parasitic element 30 is adjacent to the second low frequency parasitic element 30. It is formed between two first low frequency parasitic elements 10. That is, when the second low frequency parasitic element 30 is formed at 3 o'clock as shown in FIG. 1, the first low frequency parasitic element 20 at 1 o'clock, and the second low frequency parasitic element 30 at 12 o'clock. In the 11 o'clock direction, the first low frequency parasitic element 20 may be formed. However, this is only one embodiment, and the number, formation positions, and the like of the first low frequency parasitic element 20 and the second low frequency parasitic element 30 may be freely set as necessary.
  • the first low frequency parasitic element 20 and the second low frequency parasitic element 30 may operate by coupling a feed signal provided to the first high frequency radiating element 10. Referring to FIG. 6, the shape of the current flowing coupled to the first low frequency parasitic element 20 and the second low frequency parasitic element 30 may be confirmed. In this case, even if the radiating element used in the low frequency band does not secure the physical length value, the same effect as that obtained by the capacitive coupling through the coupling effect can be caused. Specifically, the first low frequency parasitic element 20 transmits and receives a feed signal of 800 to 960 MHZ band, and the second low frequency parasitic element 30 has a feed signal of 698 to 800 MHZ band and 1400 to 1700 MHZ band as described above.
  • both the first low frequency parasitic element 20 and the second low frequency parasitic element 30 may finely tune shapes, lengths, and widths so as to transmit and receive a feed signal of a frequency band in charge
  • the 2-2 low frequency parasitic element unit 32 transmits and receives a feed signal in the 698 to 800 MHZ band. can do.
  • both the 2-1 low frequency parasitic portion 31 and the 2-2 low frequency parasitic element portion 32 are formed on one axis of the second low frequency parasitic element 30 having a cross shape.
  • the first low frequency parasitic element 20 and the second low frequency parasitic element 30 formed on the outer periphery of the substrate 5 is just one embodiment, and may be coupled to the first high frequency radiating element 10 to operate. Of course it can be formed in any other position.
  • a tuning element 70 may be additionally formed between the first low frequency parasitic element 20 and the second low frequency parasitic element 30.
  • the tuning element 70 may transmit and receive a feed signal having characteristics of standing waves in the 1710 to 2690 MHZ band by finely tuning the shape, the length, and the width, and the other axis and the second low frequency parasitic element 30 described above.
  • the power supply signal may be provided through a coupling effect with the first low frequency parasitic element 20.
  • the tuning element 70 shown in FIG. 1 is also just one embodiment, and of course, the formation position, length and width may be freely set as necessary.
  • the multi-band radiating element 100 includes a reflecting plate 6 formed to be spaced apart from the bottom of the substrate 5 by a predetermined distance, and supports the substrate 5 from the reflecting plate 6.
  • the third low frequency parasitic element 50 including at least one substrate support part 51 and at least one connection part 52 connecting the lower ends of the support parts to each other and the second high frequency radiation element 40 formed at the bottom of the substrate 5.
  • a fourth low frequency parasitic element 60 formed to be spaced apart from the substrate 5 in an outer direction of the substrate 5 by a predetermined distance.
  • the third low frequency parasitic element 50 supports the substrate 5 from the reflector 6 and simultaneously transmits and receives a low frequency band feed signal, and specifically, transmits and receives a feed signal of 900 to 960 MHZ band. Referring to FIG. 7, the third low frequency parasitic element 50 may be identified.
  • the third low frequency parasitic element 50 may include at least one substrate support 51 and a lower end of the substrate support 51 supporting the substrate 5. At least one connecting portion 52 for connecting the substrate support 51 and the connecting portion 52 is both ground and short.
  • the height, width, and the like of the substrate support part 51 and the connection part 52 included in the third low frequency parasitic element 50 may be finely tuned to transmit and receive a feed signal of a frequency band in charge, and the substrate may simply be Broadband characteristics can be obtained in the low frequency band by substituting parasitic elements for the structure supporting (5).
  • the number, height, width, and the like of the substrate support part 51 and the connection part 52 shown in FIG. 7 are just one embodiment, and may be freely set as necessary.
  • the characteristics of the third low frequency parasitic element 50 that is to receive the feed signal through the coupling effect at least the position corresponding to the position where the first low frequency parasitic element 20 and the second low frequency parasitic element 30 are formed. The same number will preferably be formed.
  • the third low frequency parasitic elements 50 may have at least 8 as shown in FIG. 6. It will be desirable to form dogs.
  • the third low frequency parasitic element 50 may be integrally formed with the reflecting plate 6. In this case, since the process of separately forming and attaching the third low frequency parasitic element 50 and the reflecting plate 6 is unnecessary, there is an effect that the entire manufacturing process can be shortened. However, if necessary, the third low frequency parasitic element 50 may be formed separately from the reflector 6.
  • At least one fourth low-frequency parasitic element 60 is formed to be spaced apart from the second high-frequency radiating element 40 formed on the bottom of the substrate 5 in the outer direction of the substrate 5. It transmits and receives a feed signal of a low frequency band. In more detail, it is possible to transmit and receive a feed signal having characteristics of standing waves in the 698 to 960 MHZ band, and each parasitic element has a 90 ° angle with each other like the first low frequency parasitic element 20 and the second low frequency parasitic element 30. Are formed. Referring to FIG. 2, it can be seen that the fourth low frequency parasitic element 60 is formed on the opposite side of the position where the first low frequency parasitic element 20 is formed with respect to the substrate 50.
  • the fourth low frequency parasitic element 60 may receive a feed signal through the coupling effect with the first low frequency parasitic element 20, thereby obtaining a wideband characteristic in the low frequency band.
  • the number and formation positions of the fourth low frequency parasitic elements 60 may be freely set.
  • the power supply signal may be coupled with other elements. It will be desirable to be formed in a position that can be provided.
  • the second low frequency parasitic element 20 may be formed on the opposite side of the position where the second low frequency parasitic element 30 is formed.
  • the first low frequency parasitic element 20, the second low frequency parasitic element 30, the fourth low frequency parasitic element 60 and the substrate 5 formed on the substrate 5 are supported by the reflecting plate 6.
  • the third low frequency parasitic element 50 may receive a feed signal through a coupling effect with the first high frequency radiating element 10 and other elements to copy the low frequency band feed signal into free space.
  • the first to third low frequency parasitic elements 20, 30, and 50 are all shorted with the ground component included in the reflector 6, and the first high frequency radiation element 10 and the second high frequency radiation element 40 Capacitive coupling through a coupling effect may result in the same effect as the length obtained even if the physical length is not secured for use in the low frequency band.
  • FIG. 8 is a graph showing a return loss value S11 of the multi-band radiating element 100 according to an embodiment of the present invention. Referring to FIG. 8, all of the 698 to 800 MHZ bands, the 800 to 960 MHZ bands, the 1400 to 1700 MHZ bands, and the 1700 to 2700 MHZ bands that the multi-band radiating element 100 can transmit and receive have very low return loss values of ⁇ 10 or less. It can be confirmed that it is a good level.
  • a dual polarization antenna including a multiband radiating element 100 can be identified.
  • the dual polarization antenna includes a first high frequency radiation element 10, a second high frequency radiation element 40, and an additional tuning element 70 in which the multi-band radiation element 100 radiates different polarizations on both sides of the substrate 5.
  • the first to fourth parasitic elements 20, 30, 50, and 60 up to the low frequency band, it can be used in both the high frequency band and the low frequency band.
  • the tuning element 70 and the first to fourth parasitic elements 20, 30, 50, and 60 are supplied with a feed signal through a coupling effect, the frequency band in which the antenna operates by capacitive coupling is wide. It may have a broadband characteristic.
  • the first and second parasitic elements 20 and 30 are formed outside the upper surface of the substrate 5, which is a limited space, and the fourth parasitic is formed outside the bottom surface, without additionally forming long radiation elements for use in the low frequency band. Since the element 60 is used as the third parasitic element 50 to integrally form the structure for supporting the substrate 5 from the reflecting plate 6, the element 60 can be miniaturized and the manufacturing process shortened. Benefits can be obtained, while at the same time saving manufacturing and installation costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

본 발명은 다중대역 복사소자에 관한 것으로서, 기판의 상면에 형성되는 제1 고주파 복사소자, 상기 기판의 상면에 형성되며, 상기 제1 고주파 방사소자로부터 상기 기판의 외곽 방향으로 소정 거리 이격되어 형성되는 하나 이상의 제1 저주파 기생소자, 상기 기판의 상면에 형성되며, 상기 제1 고주파 방사소자로부터 상기 기판의 외곽 방향으로 소정 거리 이격되어 형성되는 하나 이상의 제2 저주파 기생소자, 상기 기판의 저면에 형성되는 제2 고주파 복사소자 및 상기 기판의 저면으로부터 소정거리 이격되어 형성되는 반사판을 포함하는 것을 특징으로 한다.

Description

다중대역 복사소자
본 발명은 다중대역 복사소자에 관한 것으로서, 구체적으로 고주파 복사소자와 저주파 기생소자를 기판의 양면에 형성한 이중편파 다중대역 복사소자에 관한 것이다.
최근 이동통신 서비스의 발달로 인해 안테나는 하나의 주파수 대역만이 아닌 두 가지 이상의 주파수 대역에서 모두 사용할 수 있는 다중대역(Multi-Band) 안테나로 구성해야 할 필요성이 증가하고 있으며, 이는 이동통신 단말기에 내장되는 안테나뿐만 아니라 중계기 안테나나 기지국 안테나 역시 마찬가지다.
하지만 기존의 안테나는 단일 주파수 대역에서만 사용할 수 있도록 설계되어 있어, 두 가지 이상의 주파수 대역에서 사용하기 위해서는 개별적인 주파수 대역 별로 서로 다른 안테나를 사용할 수밖에 없었으며, 그에 따라, 저주파수 대역에서 사용하는 안테나는 안테나의 길이값을 확보하기 위해 복사소자의 길이를 늘릴 수 밖에 없었다. 그러나 이 경우, 복사소자의 긴 길이로 인해 전체 안테나의 사이즈가 커져 제조비용이 증가하는 문제점이 발생하였으며, 중계기 안테나나 기지국 안테나의 설치자는 개별적인 주파수 대역 별로 안테나를 설치해야 하므로 설치 공간상의 문제와 설치비용이 증가하는 문제점까지 발생하였다. 아울러 안테나가 동작하는 주파수 대역 역시 좁기 때문에 만족스러운 특성을 얻기에는 어려움이 있었다.
따라서 본 발명에서는 고주파수 대역과 저주파수 대역에서 모두 사용할 수 있음과 동시에 광대역 특성을 갖고, 전체 안테나의 크기를 소형화시켜 제조비용과 설치비용을 절약할 수 있는 다중대역 복사소자를 제안하기로 한다.
본 발명은 고주파수 대역과 저주파수 대역에서 모두 사용할 수 있는 다중대역 복사소자를 제공하는 것을 목적으로 한다.
또한, 안테나가 동작하는 주파수 대역이 넓어 광대역 특성을 가질 수 있는 다중대역 복사소자를 제공하는 것을 목적으로 한다.
또한, 전체 안테나의 크기를 소형화시켜 제조비용과 설치비용을 절약할 수 있는 다중대역 복사소자를 제공하는 것을 목적으로 한다.
한편, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 이하에서 설명할 내용으로부터 통상의 기술자에게 자명한 범위 내에서 다양한 기술적 과제가 도출될 수 있다.
본 발명은 다중대역 복사소자에 관한 것으로서, 기판의 상면에 형성되는 제1 고주파 복사소자, 상기 기판의 상면에 형성되며, 상기 제1 고주파 방사소자로부터 상기 기판의 외곽 방향으로 소정 거리 이격되어 형성되는 하나 이상의 제1 저주파 기생소자, 상기 기판의 상면에 형성되며, 상기 제1 고주파 방사소자로부터 상기 기판의 외곽 방향으로 소정 거리 이격되어 형성되는 하나 이상의 제2 저주파 기생소자, 상기 기판의 저면에 형성되는 제2 고주파 복사소자; 및 상기 기판의 저면으로부터 소정거리 이격되어 형성되는 반사판을 포함하는 것을 특징으로 한다.
본 발명에 따르면, 기판의 양면에 서로 다른 편파를 복사하는 고주파 복사소자를 형성하고, 기생소자를 통해 저주파수 대역까지 사용할 수 있게 함으로써, 고주파수 대역과 저주파수 대역에서 모두 사용할 수 있으며, 안테나가 동작할 수 있는 주파수 대역을 넓혀 광대역 특성을 가질 수 있는 효과가 있다. 또한, 저주파수 대역에서 사용하기 위해 길이가 긴 복사소자를 개별적으로 형성하지 않고, 기판의 외곽에 형성된 기생소자를 이용하므로, 전체 안테나의 크기를 소형화시켜 제조비용과 설치비용을 절약할 수 있는 효과가 있다.
또한, 상기 제1 저주파 기생소자는 4개가 형성되며, 상기 4개의 제1 저주파 기생소자는 서로 90°각도를 이루며 형성될 수 있고, 상기 제2 저주파 기생소자는 4개가 형성되며, 상기 4개의 제2 저주파 기생소자는 서로 90°각도를 이루며 형성될 수도 있다.
아울러, 상기 제2 저주파 기생소자는, 상기 서로 90°각도를 이루며 형성된 4개의 제1 저주파 기생소자 중 인접한 2개 사이에 형성될 수 있으며, 상기 제1 저주파 기생소자는, 상기 서로 90°각도를 이루며 형성된 4개의 제2 저주파 기생소자 중 인접한 2개 사이에 형성될 수도 있다.
한편, 상기 제2 고주파 복사소자는, 상기 제1 고주파 복사소자를 좌측 또는 우측으로 90°회전한 형상을 가질 수 있고, 상기 반사판은, 그라운드 성분을 포함할 수 있다.
또한, 상기 반사판으로부터 상기 기판을 지지하는 제3 저주파 기생소자를 더 포함할 수 있으며, 상기 제3 저주파 기생소자는 상기 반사판과 일체로 형성될 수 있고, 상기 기판을 지지하는 하나 이상의 기판 지지부 및 상기 기판 지지부들의 하단을 연결하는 하나 이상의 연결부를 더 포함할 수 있다. 이 경우, 상기 제1 저주파 기생소자, 제2 저주파 기생소자 및 제3 저주파 기생소자는 그라운드 성분과 쇼트되어 있을 수 있다. 아울러, 상기 기판의 저면에 형성되며, 상기 제2 고주파 방사소자로부터 상기 기판의 외곽 방향으로 소정 거리 이격되어 형성되는 하나 이상의 제4 저주파 기생소자를 더 포함할 수도 있다.
한편, 상기 제1 고주파 복사소자는, 제1-1 급전과 제1 발룬을 포함하는 제1-1 선로부, 제1-2 급전을 포함하고, 상기 제1-1 선로부와 소정 거리 이격되어 평행하게 형성된 제1-2 선로부, 상기 제1-1 선로부와 제1-2 선로부 사이에 형성된 제2 발룬 및 상기 제1-1 선로부와 제1-2 선로부 사이에 형성되며, 하나 이상˚의 제1 비아를 포함하는 제2-1 급전을 포함하고, 상기 제2 고주파 복사소자는, 제2-2 급전을 포함할 수 있으며, 상기 제1-1 급전 및 제1-2 급전은, 0°, +45°, +90°편파 특성을 갖는 급전신호 중 어느 하나가 유입될 수 있고, 상기 제2-1 급전 및 제2-2 급전은, 0° -45°, -90° 편파 특성을 갖는 급전신호 중 어느 하나가 유입될 수 있다. 또한, 상기 제1-1 선로부와 제1-2 선로부의 일단에 형성된 제1 고주파 복사부 및 상기 제1-1 선로부와 제1-2 선로부의 타단에 형성된 제2 고주파 복사부를 더 포함할 수 있다.
마지막으로 본 발명의 일 실시 예에 따른 다중대역 복사소자는 상기 기재한 기술적 특징을 모두 포함하는 듀얼 편파 안테나로 구현할 수 있다.
본 발명에 따르면, 기판의 양면에 서로 다른 편파를 복사하는 고주파 복사소자를 형성하고, 기생소자를 통해 저주파수 대역까지 사용할 수 있게 함으로써, 고주파수 대역과 저주파수 대역에서 모두 사용할 수 있는 효과가 있다.
또한, 기생소자를 통해 저주파수 대역뿐만 아니라 고주파수 대역까지도 안테나가 동작할 수 있는 주파수 대역을 넓혀 광대역 특성을 가질 수 있는 효과가 있다.
또한, 저주파수 대역에서 사용하기 위해 길이가 긴 복사소자를 개별적으로 형성하지 않고, 기판의 외곽에 형성된 기생소자를 이용하므로, 전체 안테나의 크기를 소형화시켜 제조비용과 설치비용을 절약할 수 있는 효과가 있다.
또한, 반사판으로부터 기판을 지지하는 구조물을 저주파수 대역의 기생소자로 사용함과 동시에 반사판과 일체로 형성하므로 제조공정을 단축할 수 있는 효과가 있다.
한편, 본 발명의 효과는 이상에서 언급한 효과들로 제한되지 않으며, 이하에서 설명할 내용으로부터 통상의 기술자에게 자명한 범위 내에서 다양한 효과들이 포함될 수 있다.
도 1은 본 발명의 일 실시 예에 따른 다중대역 복사소자의 상면을 나타낸 도면이다.
도 2는 본 발명의 일 실시 예에 따른 다중대역 복사소자의 저면을 나타낸 도면이다.
도 3은 제1 고주파 복사소자를 나타낸 도면이다.
도 4는 제1 고주파 복사소자에 흐르는 전류를 나타낸 도면이다.
도 5는 제1 고주파 복사소자와 제2 저주파 기생소자에 흐르는 전류를 나타낸 도면이다.
도 6은 제1 저주파 기생소자와 제2 저주파 기생소자에 흐르는 전류를 나타낸 도면이다.
도 7은 제3 저주파 기생소자를 나타낸 도면이다.
도 8은 본 발명의 일 실시 예에 따른 다중대역 복사소자의 반사손실 값을 나타낸 그래프이다.
도 9는 본 발명의 일 실시 예에 따른 다중대역 복사소자를 포함하는 듀얼 편파 안테나를 나타낸 도면이다.
한편, 도면에 사용된 부호는 다음과 같다.
100: 다중대역 복사소자
5: 기판 6: 반사판
10: 제1 고주파 복사소자
20: 제1 저주파 기생소자
30: 제2 저주파 기생소자
40: 제2 고주파 복사소자
50: 제3 저주파 기생소자
60: 제4 저주파 기생소자
70: 튜닝소자
이하, 본 발명의 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 설명하는 실시 예들은 본 발명의 기술 사상을 당업자가 용이하게 이해할 수 있도록 제공되는 것으로 이에 의해 본 발명이 한정되지 않으며, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 첨부된 도면에 표현된 사항들은 본 발명의 실시 예들을 쉽게 설명하기 위해 도식화된 도면으로 실제로 구현되는 형태와 상이할 수 있으며, 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다.
또한, 어떤 구성요소들을 '포함'한다는 표현은, '개방형의 표현'으로서 해당 구성요소들이 존재하는 것을 단순히 지칭하는 표현이며, 추가적인 구성요소들을 배제하는 것으로 이해되어서는 안 될 것이다.
도 1은 본 발명의 일 실시 예에 따른 다중대역 복사소자(100)의 상면을 나타내는 도면이며, 도 2는 저면을 나타내는 도면이다.
다중대역 복사소자(100)는 제1 고주파 복사소자(10), 제1 저주파 기생소자(20), 제2 저주파 기생소자(30) 및 제2 고주파 복사소자(40) 및 반사판(6)을 포함하며, 복사소자들은 기판(5)의 일면에 형성된다. 여기서 기판(5)은 복사소자가 형성될 수 있는 일반적인 유전체 기판을 의미하는 것으로서, PCB, FPCB 등과 같은 일반적인 유전체 기판 등을 모두 포함할 수 있으며, 반사판(6)은 그라운드 성분을 포함한다.
제1 고주파 복사소자(10)는 기판(5)의 상면에 형성되어, 고주파수 대역의 급전신호를 송수신한다. 구체적으로 1700 내지 2700 MHZ 대역의 급전신호를 송수신하며, 후술할 저주파 기생소자들이 기판(5)의 외곽에 형성되므로, 제1 고주파 복사소자(10)는 기판(5)의 중심부에 형성하는 것이 바람직하다. 이러한 제1 고주파 복사소자(10)는 도 3에서 확인할 수 있듯이 제1 동축 케이블(미도시)의 내부도체가 연결되는 제1-1 급전(11-1)과 제1 발룬(12)을 포함하는 제1-1 선로부(13), 제1 동축 케이블(미도시)의 외부도체가 연결되는 제1-2 급전(11-2)을 포함하며, 제1-1 선로부(13)와 소정 거리 이격되어 평행하게 형성된 제1-2 선로부(15), 제1-1 선로부(13)와 제1-2 선로부(15) 사이에 형성된 제2 발룬(16) 및 제1-1 선로부(13)와 제1-2 선로부(15) 사이에 형성되며, 제2 동축 케이블(미도시)의 내부도체가 연결되는 제2-1 급전(18-1)과 하나 이상의 제1 비아(17) 그리고 제1 고주파 복사부(19-1) 및 제2 고주파 복사부(19-2)를 포함하는 형태로 형성된다. 이하, 자세히 설명하기로 한다.
제1-1 급전(11-1)에는 제1 동축 케이블(미도시)의 내부도체가 연결되며 제1-2 급전(11-2)에는 제1 동축 케이블(미도시)의 외부도체가 연결되어 급전신호가 유입된다. 구체적으로 +45°편파 특성을 갖는 급전신호가 유입되어 제1-1 급전(11-1)을 통해 제1-1 선로부(13)에, 제1-2 급전(11-2)을 통해 제1-2 선로부(15)에 직접적으로 급전신호를 제공한다. 즉, 제1 동축 케이블(미도시)과 연결된 제1-1 급전(11-1)과 제1-2 급전(11-2)에 유입된 급전신호는 기판(5)의 상면에 형성된 제1-1 선로부(13)와 제1-2 선로부(15)를 포함하는 제1 고주파 복사소자(10)에만 제공되며, +45°편파 특성을 갖는 급전신호뿐만 아니라, 이와 상이한 편파 특성을 갖는 어떠한 급전신호가 유입될 수 있음은 물론이다. 예를 들어, 0°, +90°편파 특성을 갖는 급전신호 중 어느 하나가 유입될 수도 있다.
한편, 제1 동축 케이블(미도시)은 제1 발룬(12)으로부터 소정거리 이격되어 평행하게 설치될 수 있으며, 제1-1 급전(11-1) 및 제1-2 급전(11-2)은 비아(Via)의 형태로 형성될 수 있다. 구체적으로 제1-1 급전(11-1) 및 제1-2 급전(11-2)은 급전신호의 원활한 전달을 위하여 복수 개 형성될 수 있으며, 내부를 전도성 재질로 뒤덮어 급전신호가 끊김 없이 전달되게 하는 것이 바람직하다.
제2-1 급전(18-1)은 제2 동축 케이블(미도시)의 내부도체와 연결되며, 제1-1 급전(11-1)과는 상이한 급전신호가 유입된다. 구체적으로, -45°편파 특성을 갖는 급전신호가 유입되어 제1 비아(17)를 통해 기판(5)의 저면에 형성된 제2 고주파 복사소자(40)에 급전신호를 제공한다. 즉, 제2 동축 케이블(미도시)과 연결된 제2-1 급전(18-1)에 유입된 급전신호는 기판(5)의 저면에 형성된 제2 고주파 복사소자(40)에만 제공되며, -45°편파 특성을 갖는 급전신호뿐만 아니라, 이와 상이한 편파 특성을 갖는 어떠한 급전신호가 유입될 수 있음은 물론이다. 예를 들어, 0°, -90°편파 특성을 갖는 급전신호 중 어느 하나가 유입될 수도 있다. 한편, 제2 동축 케이블(미도시)의 외부도체와 연결되는 제2-2 급전(18-2)에 관해서는 제2 고주파 복사소자(40)를 설명하는 부분에서 후술하기로 한다.
또한, 도 1에는 제2-1 급전(18-1) 및 제1 비아(17)가 하나만 형성된 경우만을 도시하고 있으나, 제2-1 급전(18-1) 및 제1 비아(17) 역시 제1-1 급전(11-1) 및 제1-2 급전(11-2)과 마찬가지로 복수 개 형성할 수 있고, 내부를 전도성 재질로 뒤덮을 수 있음은 물론이며, 제2 동축 케이블(미도시)은 제2 발룬(16)으로부터 소정거리 이격되어 평행하게 설치될 수 있다.
한편, 제1 발룬(12)과 제2 발룬(16)은 상기 설명한 바와 같이 각각 제1 동축 케이블(미도시)과 제2 동축 케이블(미도시)로부터 소정거리 이격되어 평행하게 설치되어 기판(5)과 반사판(6)을 직접적으로 연결시킬 뿐만 아니라, 제1 동축 케이블(미도시)에 의해 유입되는 급전신호와 제2 동축 케이블(미도시)에 의해 유입되는 급전신호의 차이를 맞춰 주파수의 공진이 이루어지게 할 수 있다.
제1-1 급전(11-1)과 제1-2 급전(11-2)을 통해 유입된 급전신호는, 소정거리 이격되어 평행하게 형성된 제1-1 선로부(13)와 제1-2 선로부(15)를 통해 제1-1 선로부(13)와 제1-2 선로부(15)의 일단에 형성된 제1 고주파 복사부(19-1)와 타단에 형성된 제2 고주파 복사부(19-2)에 제공된다. 구체적으로 +45°편파 특성을 갖는 급전신호가 제공됨에 따라 제1-1 선로부(13)와 제1-2 선로부(15)에는 전류가 흐르게 되고, 제1 고주파 복사부(19-1)와 제2 고주파 복사부(19-2) 역시 동일한 전류가 흐르게 되며, 이로 인해 제1 고주파 복사부(19-1)과 제2 고주파 복사부(19-2)는 고주파수 대역의 급전신호를 자유 공간으로 복사할 수 있다. 이러한 전류의 흐름은 도 4에서 확인할 수 있다.
한편, 제1 고주파 복사부(19-1)와 제2 고주파 복사부(19-2)는 좌/우가 대칭인 다이폴 안테나 형태로 형성할 수 있으며, 제1-1 선로부(13)와 제1-2 선로부(15)에 의해 임피던스 매칭이 이루어진다. 구체적으로, 급전신호가 제1-1 선로부(13)와 제1-2 선로부(15)를 통해 제1 고주파 복사부(19-1)와 제2 고주파 복사부(19-2)에 제공되면서 제1-1 급전(11-1)와 제2 급전(18-1)의 임피던스가 제1 고주파 복사부(19-1)와 제2 고주파 복사부(19-2)의 임피던스로 변환되게 된다. 이 경우 제1-1 선로부(13)와 제1-2 선로부(15), 제1 고주파 복사부(19-1)와 제2 고주파 복사부(19-2) 형상, 길이 및 폭 등을 미세하게 튜닝하여 정확한 임피던스 변환이 이루어지도록 할 수 있을 것이다.
기판(5)의 저면에는 제2 고주파 복사소자(40)가 형성된다. 구체적으로 제2 고주파 복사소자(40)는 제1 고주파 복사소자(10)를 좌측 또는 우측으로 90°회전하여 형성하며, 제1 고주파 복사소자(10)와 마찬가지로 1700 내지 2700 MHZ 대역의 급전신호를 송수신한다. 도 2를 참조하면 제2 고주파 복사소자(40)가 도 1의 제1 고주파 복사소자(10)를 좌측 또는 우측으로 90°회전하여 형성된 것을 확인할 수 있다. 즉, 90°회전하여 형성했을 뿐, 소정 거리 이격되어 평행하게 형성된 선로부, 선로부의 양단에 형성된 고주파 복사부, 발룬 모두 제1 고주파 복사소자(10)와 동일하게 형성되며, 선로부와 복사부를 통한 임피던스 매칭 역시 동일하다. 하지만 제2 고주파 복사소자(40)는 제1 고주파 복사소자(10)와 일부 차이점이 존재하는데, 그것이 제2 고주파 복사소자(40)에 유입되는 급전신호를 제공하는 제2 동축 케이블(미도시)이다. 이에 대해 제2 동축 케이블(미도시)의 내부도체와 연결된 제2-1 급전(18-1)을 통해 -45°편파 특성을 갖는 급전신호가 유입되어 제1 비아(17)를 통해 기판(5)의 저면에 형성된 제2 고주파 복사소자(40)에 급전신호를 제공한다는 것은 이미 설명하였으며, 앞서 설명하지 않은 제2 동축 케이블(미도시)의 외부도체는 제2 고주파 복사소자(40)가 포함하는 제2-2 급전(18-2)에 연결된다. 이를 통해 제2 동축 케이블(미도시)를 통해 유입된 -45°편파 특성을 갖는 급전신호가 제2 고주파 복사소자(40)에 제공될 수 있다. 아울러, 상기 설명한 바와 같이 -45°편파 특성을 갖는 급전신호뿐만 아니라, 이와 상이한 편파 특성을 갖는 어떠한 급전신호가 유입될 수 있음은 물론이며, 예를 들어, 0°, -90°편파 특성을 갖는 급전신호 중 어느 하나가 유입될 수도 있다.
상기 설명한 제1 고주파 복사소자(10)와 제2 고주파 복사소자(40)를 포함하는 고주파 복사소자 전체로 보아, 제1 고주파 복사소자(10)에는 +45°편파 특성을 갖는 급전신호가, 제2 고주파 복사소자(40)에는 -45°편파 특성을 갖는 급전신호가 제공되는 것으로 볼 수 있으며, 이를 통해 본 발명의 다중대역 복사소자는 이중편파의 특성을 가질 수 있다. 아울러, 제2 고주파 복사소자(40)는 제1 고주파 복사소자(10)를 좌측 또는 우측으로 90°회전하여 형성하였기 때문에 기판(5) 상면에 형성된 제1 고주파 복사소자(10)에 흐르는 전류와 저면에 형성된 제2 고주파 복사소자(40)에 흐르는 커플링 된 전류는 상호 결합 및 유기될 수 있다.
상기 설명한 바와 같이, 기판(5)의 양면에 형성된 제1 고주파 복사소자(10)와 제2 고주파 복사소자(40)는 서로 상이한 편파 특성을 갖는 급전신호를 제공받아 이중편파의 특성을 갖는 고주파수 대역의 급전신호를 자유 공간으로 복사할 수 있다. 아울러, 후술할 제2 저주파 기생소자(30)의 일부(31)에 의해 1400 내지 1700 MHZ 대역의 급전신호까지 송수신할 수 있어 광대역 특성을 가질 수 있으며, 이와 관련된 전류의 흐름은 도 5에서 확인할 수 있다.
한편, 본 발명의 일 실시 예에 따른 다중대역 복사소자(100)는 서로 상이한 편파 특성을 갖는 급전신호 중 어느 하나만을 제공받아 단편파의 특성 갖는 고주파수 대역의 급전신호를 자유 공간으로 복사할 수도 있다. 예를 들어, 제1 고주파 복사소자(10)와 제2 고주파 복사소자(40) 모두에 +45°편파 특성을 갖는 급전신호만 제공될 수도 있으며, 고주파수 대역의 급진신호를 자유 공간으로 복사하는 복사소자를 기판(5)에 하나만 형성하여 급전신호를 제공할 수도 있다. 또한, 제1 고주파 복사소자(10)와 제2 고주파 복사소자(40)는 필요에 따라 도 1 및 도 2에 도시된 형상과 상이한 다양한 형상으로 형성될 수 있음은 물론이다. 이와 더불어 다중대역 복사소자(100)는 저주파수 대역의 급전신호까지 복사할 수 있는바, 이하 설명하도록 한다.
하나 이상의 제1 저주파 기생소자(20)와 제2 저주파 기생소자(30)는 제1 고주파 복사소자(10)와 마찬가지로 기판(5)의 상면에 형성되나, 제1 고주파 복사소자(10)로부터 기판(5)의 외곽 방향으로 소정 거리 이격되어 형성된다. 도 1을 참조하면, 4개의 제1 저주파 기생소자(20) 및 제2 저주파 기생소자(30)가 기판(5)의 중심부에 형성된 제1 고주파 복사소자(10)를 둘러싸는 형태로 기판(5)의 외곽에 형성된 것을 확인할 수 있다. 구체적으로, 제1 저주파 기생소자(20)와 제2 저주파 기생소자(30)는 각각의 기생소자가 서로 90°각도를 이루며 형성되며, 제1 저주파 기생소자(20)를 기준으로 살피면, 하나의 제1 저주파 기생소자(20)는 인접한 2개의 제2 저주파 기생소자(30) 사이에 형성되고, 제2 저주파 기생소자(30)를 기준으로 살피면, 하나의 제2 저주파 기생소자(30)는 인접한 2개의 제1 저주파 기생소자(10) 사이에 형성된다. 즉, 도 1과 같이 3시 방향에 제2 저주파 기생소자(30)가 형성되어 있다면, 1시 방향에는 제1 저주파 기생소자(20)가, 12시 방향엔 제2 저주파 기생소자(30)가, 11시 방향엔 제1 저주파 기생소자(20)가 형성될 수 있는 것이다. 그러나 이는 하나의 실시 예일 뿐이며, 필요에 따라 제1 저주파 기생소자(20)와 제2 저주파 기생소자(30)의 개수, 형성 위치 등은 자유롭게 설정 가능하다.
제1 저주파 기생소자(20)와 제2 저주파 기생소자(30) 모두 제1 고주파 복사소자(10)에 제공된 급전신호가 커플링되어 동작할 수 있다. 도 6을 참조하면, 제1 저주파 기생소자(20)와 제2 저주파 기생소자(30)에 커플링되어 흐르는 전류의 형상을 확인할 수 있다. 이 경우 저주파수 대역에 사용되는 복사소자가 물리적인 길이값을 확보하지 못한다 하여도 커플링 효과를 통한 용량성 결합에 의해 길이값이 확보된 것과 동일한 효과를 유발할 수 있다. 구체적으로 제1 저주파 기생소자(20)는 800 내지 960 MHZ 대역의 급전신호를 송수신하며, 제2 저주파 기생소자(30)는 698 내지 800 MHZ 대역의 급전신호와 앞서 설명한 바와 같이 1400 내지 1700 MHZ 대역의 급전신호를 송수신할 수 있다. 여기서 제1 저주파 기생소자(20)와 제2 저주파 기생소자(30) 모두 형상, 길이 및 폭 등을 미세하게 튜닝하여 담당하는 주파수 대역의 급전신호를 송수신하게 할 수 있으며, 제2 저주파 기생소자(30)의 경우 제2-1 저주파 기생소자부(31)가 1400 내지 1700 MHZ 대역의 급전신호를 송수신하고, 제2-2 저주파 기생소자부(32)가 698 내지 800 MHZ 대역의 급전신호를 송수신할 수 있다. 한편, 제2-1 저주파 기생소사부(31)와 제2-2 저주파 기생소자부(32) 모두 십자가(十) 형상의 제2 저주파 기생소자(30)의 일축에 형성되어 있는데, 이는 제1 고주파 복사소자(10)로부터 제공된 전류가 흐르는 방향에 따른 것이며, 타축의 경우 후술할 튜닝소자(70)와의 커플링 효과를 위해 형성되는 것이다. 또한, 제1 저주파 기생소자(20)와 제2 저주파 기생소자(30)가 기판(5)의 외곽에 형성된 것은 하나의 실시 예일 뿐이며, 제1 고주파 복사소자(10)와 커플링되어 동작할 수 있는 다른 어떤 위치에도 형성될 수 있음은 물론이다.
한편, 제1 저주파 기생소자(20)와 제2 저주파 기생소자(30)의 사이에는 튜닝소자(70)가 추가적으로 형성될 수 있다. 도 1을 참조하면, 제1 저주파 기생소자(20)와 제2 저주파 기생소자(30) 사이에 8개의 튜닝소자(70)가 형성된 것을 확인할 수 있다. 여기서 튜닝소자(70)는 형상, 길이 및 폭 등을 미세하게 튜닝하여 1710 내지 2690 MHZ 대역의 정재파의 특성을 갖는 급전신호를 송수신할 수 있으며, 상기 설명한 제2 저주파 기생소자(30)의 타축 및 제1 저주파 기생소자(20)와 커플링 효과를 통해 급전신호를 제공받을 수 있다. 아울러, 도 1에 도시된 튜닝소자(70) 역시 하나의 실시 예일 뿐이며, 필요에 따라 형성 위치, 길이 및 폭 등을 자유롭게 설정할 수 있음은 물론이다.
아울러, 본 발명의 일 실시 예에 따른 다중대역 복사소자(100)는 기판(5)의 저면으로부터 소정 거리 이격되어 형성되는 반사판(6)을 포함하며, 반사판(6)으로부터 기판(5)을 지지하는 하나 이상의 기판 지지부(51)와 지지부들의 하단을 서로 연결하는 하나 이상의 연결부(52)들을 포함하는 제3 저주파 기생소자(50)와 기판(5)의 저면에 형성된 제2 고주파 복사소자(40)로부터 기판(5)의 외곽 방향으로 소정 거리 이격되어 형성된 제4 저주파 기생소자(60)를 더 포함할 수 있다. 이하, 도 2와 도 7을 참조하며 설명하기로 한다.
제3 저주파 기생소자(50)는 반사판(6)으로부터 기판(5)을 지지함과 동시에 저주파수 대역의 급전신호를 송수신하며, 구체적으로 900 내지 960 MHZ 대역의 급전신호를 송수신할 수 있다. 도 7을 참조하면 제3 저주파 기생소자(50)를 확인할 수 있는바, 제3 저주파 기생소자(50)는 기판(5)을 지지하는 하나 이상의 기판 지지부(51)와 기판 지지부(51)들의 하단을 연결하는 하나 이상의 연결부(52)를 포함하며, 기판 지지부(51)와 연결부(52)는 모두 그라운드와 쇼트되어 있다. 여기서 제3 저주파 기생소자(50)가 포함하는 기판 지지부(51)와 연결부(52)의 높이, 폭 등을 미세하게 튜닝하여 담당하는 주파수 대역의 급전신호를 송수신하게 할 수 있으며, 기존에 단순히 기판(5)을 지지하던 구조물을 기생소자로 대체함으로써 저주파수 대역에서 광대역 특성을 얻을 수 있다. 아울러, 도 7에 도시된 기판 지지부(51)와 연결부(52)의 개수, 높이, 폭 등은 하나의 실시 예일 뿐이며, 필요에 따라 자유롭게 설정 가능함은 물론이다. 하지만, 커플링 효과를 통해 급전신호를 제공받아야 하는 제3 저주파 기생소자(50)의 특성상, 제1 저주파 기생소자(20)와 제2 저주파 기생소자(30)가 형성된 위치와 대응되는 위치에 최소한 동일한 개수는 형성되는 것이 바람직할 것이다. 예를 들어, 도 1과 같이 제1 저주파 기생소자(20)가 4개, 제2 저주파 기생소자(30)가 4개 형성되어 있다면, 제3 저주파 기생소자(50)는 도 6와 같이 최소한 8개 형성되는 것이 바람직할 것이다. 아울러, 제3 저주파 기생소자(50)는 반사판(6)과 일체로 형성할 수 있다. 이 경우, 제3 저주파 기생소자(50)와 반사판(6)을 별개로 형성하여 부착시키는 공정이 필요하지 않게 되므로, 전체 제조공정을 단축할 수 있는 효과가 있다. 하지만 필요에 따라 제3 저주파 기생소자(50)를 반사판(6)과 별개로 형성할 수 있음은 물론이다.
제4 저주파 기생소자(60)는 도 2에서 확인할 수 있듯이, 기판(5)의 저면에 형성된 제2 고주파 복사소자(40)로부터 기판(5)의 외곽 방향으로 소정 거리 이격되어 하나 이상 형성되며, 저주파 대역의 급전신호를 송수신한다. 구체적으로 698 내지 960 MHZ 대역의 정재파의 특성을 갖는 급전신호를 송수신할 수 있으며, 제1 저주파 기생소자(20) 및 제2 저주파 기생소자(30)와 마찬가지로 각각의 기생소자가 서로 90°각도를 이루며 형성된다. 도 2를 참조하면, 제4 저주파 기생소자(60)는 기판(50)을 기준으로 제1 저주파 기생소자(20)가 형성된 위치의 반대면에 형성되는 것을 확인할 수 있다. 즉, 제4 저주파 기생소자(60)는 제1 저주파 기생소자(20)와의 커플링 효과를 통해 급전신호를 제공받을 수 있으며, 이를 통해 저주파수 대역에서 광대역 특성을 얻을 수 있다. 아울러 필요에 따라 제4 저주파 기생소자(60)의 개수, 형성 위치 등은 자유롭게 설정 가능할 것이나, 직접적인 급전이 되지 않는 제4 저주파 기생소자(60)의 특성상, 다른 소자와 커플링 효과를 통해 급전신호를 제공받을 수 있는 위치에 형성되는 것이 바람직할 것이다. 예를 들어, 도 2와 같이 제1 저주파 기생소자(20)가 형성된 위치의 반대면이 아니라, 제2 저주파 기생소자(30)가 형성된 위치의 반대면에도 형성할 수 있을 것이다.
상기 설명한 바와 같이, 기판(5)에 형성된 제1 저주파 기생소자(20), 제2 저주파 기생소자(30), 제4 저주파 기생소자(60) 및 기판(5)을 반사판(6)으로부터 지지하는 제3 저주파 기생소자(50)는 제1 고주파 복사소자(10) 및 기타 다른 소자들과의 커플링 효과를 통해 급전신호를 제공받아 저주파수 대역의 급전신호를 자유 공간으로 복사할 수 있다. 아울러, 제1 내지 제3 저주파 기생소자(20, 30, 50) 모두 반사판(6)이 포함하는 그라운드 성분과 쇼트되어 있으며, 제1 고주파 복사소자(10) 및 제2 고주파 복사소자(40)와의 커플링 효과를 통한 용량성 결합에 의해 저주파수 대역에서 사용되기 위한 물리적인 길이값을 확보하지 못한다 하여도 길이값이 확보된 것과 동일한 효과를 유발할 수 있다.
한편, 도 8은 본 발명의 일 실시 예에 따른 다중대역 복사소자(100)의 반사손실 값(S11)을 나타낸 그래프이다. 도 8을 참조하면 다중대역 복사소자(100)가 송수신할 수 있는 698 내지 800 MHZ 대역, 800 내지 960 MHZ 대역, 1400 내지 1700 MHZ 대역 및 1700 내지 2700 MHZ 대역 모두 반사손실 값이 -10 이하로 매우 양호한 수준임을 확인할 수 있다.
도 9를 참조하면, 본 발명의 일 실시 예에 따른 다중대역 복사소자(100)를 포함하는 듀얼 편파 안테나를 확인할 수 있다. 듀얼 편파 안테나는 다중대역 복사소자(100)가 기판(5)의 양면에 서로 다른 편파를 복사하는 제1 고주파 복사소자(10)와 제2 고주파 복사소자(40)와 추가적인 튜닝소자(70)를 형성하고, 제1 내지 제4 기생소자(20, 30, 50, 60)를 통해 저주파수 대역까지 사용할 수 있게 함으로써, 고주파수 대역과 저주파수 대역에서 모두 사용할 수 있다. 또한, 튜닝소자(70) 및 제1 내지 제4 기생소자(20, 30, 50, 60)는 커플링 효과를 통해 급전신호를 제공받으므로, 용량성 결합에 의해 안테나가 동작하는 주파수 대역이 넓은 광대역 특성을 가질 수도 있다. 한편, 저주파수 대역에서 사용하기 위해 길이가 긴 복사소자를 추가적으로 형성하지 않고, 한정된 공간인 기판(5)의 상면 외곽에 제1 및 제2 기생소자(20, 30)를, 저면 외곽에 제4 기생소자(60)를, 반사판(6)으로부터 기판(5)을 지지하는 구조물을 제3 기생소자(50)로서 반사판(6)과 일체로 형성하여 사용하므로, 전체 안테나 크기의 소형화 및 제조공정 단축의 효과를 얻을 수 있고, 동시에 제조비용과 설치비용을 절약할 수도 있다.
위에서 설명된 본 발명의 실시 예들은 예시의 목적을 위해 개시된 것이며, 이들에 의하여 본 발명이 한정되는 것은 아니다. 또한, 본 발명에 대한 기술 분야에서 통상의 지식을 가진 자라면, 본 발명의 사상과 범위 안에서 다양한 수정 및 변경을 가할 수 있을 것이며, 이러한 수정 및 변경은 본 발명의 범위에 속하는 것으로 보아야 할 것이다.

Claims (17)

  1. 기판의 상면에 형성되는 제1 고주파 복사소자;
    상기 기판의 상면에 형성되며, 상기 제1 고주파 방사소자로부터 상기 기판의 외곽 방향으로 소정 거리 이격되어 형성되는 하나 이상의 제1 저주파 기생소자;
    상기 기판의 상면에 형성되며, 상기 제1 고주파 방사소자로부터 상기 기판의 외곽 방향으로 소정 거리 이격되어 형성되는 하나 이상의 제2 저주파 기생소자;
    상기 기판의 저면에 형성되는 제2 고주파 복사소자; 및
    상기 기판의 저면으로부터 소정거리 이격되어 형성되는 반사판;
    을 포함하는 다중대역 복사소자
  2. 제1항에 있어서,
    상기 제1 저주파 기생소자는 4개가 형성되며,
    상기 4개의 제1 저주파 기생소자는 서로 90°각도를 이루며 형성된 것을 특징으로 하는 다중대역 복사소자
  3. 제1항에 있어서,
    상기 제2 저주파 기생소자는 4개가 형성되며,
    상기 4개의 제2 저주파 기생소자는 서로 90°각도를 이루며 형성된 것을 특징으로 하는 다중대역 복사소자
  4. 제2항에 있어서,
    상기 제2 저주파 기생소자는,
    상기 서로 90°각도를 이루며 형성된 4개의 제1 저주파 기생소자 중 인접한 2개 사이에 형성되는 것을 특징으로 하는 다중대역 복사소자
  5. 제3항에 있어서,
    상기 제1 저주파 기생소자는,
    상기 서로 90°각도를 이루며 형성된 4개의 제2 저주파 기생소자 중 인접한 2개 사이에 형성되는 것을 특징으로 하는 다중대역 복사소자
  6. 제1항에 있어서,
    상기 제2 고주파 복사소자는,
    상기 제1 고주파 복사소자를 좌측 또는 우측으로 90°회전한 형상을 갖는 것을 특징으로 하는 다중대역 복사소자
  7. 제1항에 있어서,
    상기 반사판은,
    그라운드 성분을 포함하는 것을 특징으로 하는 다중대역 복사소자
  8. 제7항에 있어서,
    상기 반사판으로부터 상기 기판을 지지하는 제3 저주파 기생소자;
    를 더 포함하는 것을 특징으로 하는 다중대역 복사소자
  9. 제8항에 있어서,
    상기 제3 저주파 기생소자는 상기 반사판과 일체로 형성된 것을 특징으로 하는 다중대역 복사소자
  10. 제8항에 있어서,
    상기 제3 저주파 기생소자는,
    상기 기판을 지지하는 하나 이상의 기판 지지부; 및
    상기 기판 지지부들의 하단을 연결하는 하나 이상의 연결부;
    를 더 포함하는 것을 특징으로 하는 다중대역 복사소자
  11. 제8항에 있어서,
    상기 제1 저주파 기생소자, 제2 저주파 기생소자 및 제3 저주파 기생소자는 그라운드 성분과 쇼트되어 있는 것을 특징으로 하는 다중대역 복사소자
  12. 제1항에 있어서,
    상기 기판의 저면에 형성되며, 상기 제2 고주파 방사소자로부터 상기 기판의 외곽 방향으로 소정 거리 이격되어 형성되는 하나 이상의 제4 저주파 기생소자;
    를 더 포함하는 것을 특징으로 하는 다중대역 복사소자
  13. 제1항에 있어서,
    상기 제1 고주파 복사소자는,
    제1-1 급전과 제1 발룬을 포함하는 제1-1 선로부;
    제1-2 급전을 포함하고, 상기 제1-1 선로부와 소정 거리 이격되어 평행하게 형성된 제1-2 선로부;
    상기 제1-1 선로부와 제1-2 선로부 사이에 형성된 제2 발룬; 및
    상기 제1-1 선로부와 제1-2 선로부 사이에 형성되며, 하나 이상의 제1 비아를 포함하는 제2-1 급전;
    을 포함하고,
    상기 제2 고주파 복사소자는,
    제2-2 급전;
    을 포함하는 것을 특징으로 하는 다중대역 복사소자
  14. 제13항에 있어서,
    상기 제1-1 급전 및 제1-2 급전은,
    0°, +45°, +90°편파 특성을 갖는 급전신호 중 어느 하나가 유입되는 것을 특징으로 하는 다중대역 복사소자
  15. 제13항에 있어서,
    상기 제2-1 급전 및 제2-2 급전은,
    0°, -45°, -90°편파 특성을 갖는 급전신호 중 어느 하나가 유입되는 것을 특징으로 하는 다중대역 복사소자
  16. 제13항에 있어서,
    상기 제1-1 선로부와 제1-2 선로부의 일단에 형성된 제1 고주파 복사부; 및
    상기 제1-1 선로부와 제1-2 선로부의 타단에 형성된 제2 고주파 복사부;
    를 더 포함하는 것을 특징으로 하는 다중대역 복사소자
  17. 제1항 내지 제16항 중 어느 한 항에 있어서,
    상기 다중대역 복사소자를 포함하는 듀얼 편파 안테나
PCT/KR2015/004241 2015-02-17 2015-04-28 다중대역 복사소자 WO2016133244A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/551,590 US10186772B2 (en) 2015-02-17 2015-04-28 Multi-brand radiating element
CN201580076357.0A CN107251318A (zh) 2015-02-17 2015-04-28 多频段辐射元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150024235A KR101524528B1 (ko) 2015-02-17 2015-02-17 다중대역 복사소자
KR10-2015-0024235 2015-02-17

Publications (1)

Publication Number Publication Date
WO2016133244A1 true WO2016133244A1 (ko) 2016-08-25

Family

ID=53505644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004241 WO2016133244A1 (ko) 2015-02-17 2015-04-28 다중대역 복사소자

Country Status (4)

Country Link
US (1) US10186772B2 (ko)
KR (1) KR101524528B1 (ko)
CN (1) CN107251318A (ko)
WO (1) WO2016133244A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3454414A1 (en) * 2017-09-08 2019-03-13 PC-Tel, Inc. Broadband low-profile dual-linearly polarized antenna for a onelte two-in-one platform
CN109473777A (zh) * 2017-09-08 2019-03-15 Pc-Tel公司 一种用于OneLTE二合一平台的宽带低剖面双线极化天线
WO2023035391A1 (zh) * 2021-09-07 2023-03-16 华南理工大学 双频双极化天线和双频双极化天线阵列

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888513B (zh) 2017-12-06 2021-07-09 华为技术有限公司 天线阵列及无线通信设备
TWI668917B (zh) * 2018-03-26 2019-08-11 和碩聯合科技股份有限公司 雙頻天線模組
TWI682585B (zh) * 2018-10-04 2020-01-11 和碩聯合科技股份有限公司 天線裝置
CN109713438A (zh) * 2018-12-26 2019-05-03 佛山市安捷信通讯设备有限公司 一种小型化的多端口定向5g天线
CN111987438A (zh) * 2020-07-23 2020-11-24 嘉兴美泰通讯技术有限公司 平面双极化振子板、天线振子单元及多频天线组阵单元
CN114447602B (zh) * 2020-10-31 2024-05-03 华为技术有限公司 多频融合基站天线及通信设备
US11527810B2 (en) * 2020-11-16 2022-12-13 Ford Global Technologies, Llc Low-profile automotive universal antenna system
KR102456278B1 (ko) * 2020-12-15 2022-10-20 주식회사 에이스테크놀로지 개선된 격리도 특성을 가지는 다중 대역 기지국 안테나
CN113471666B (zh) * 2021-05-14 2022-12-06 上海交通大学 一种多频透射基站天线及通信系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100109764A (ko) * 2009-04-01 2010-10-11 주식회사 케이티 스켈톤 슬롯 복사기 및 그 스켈톤 슬롯 복사기를 이용한 광대역 패치 안테나
KR20110123715A (ko) * 2011-10-27 2011-11-15 주식회사 에이스테크놀로지 복사 소자를 둘러싼 초크 부재가 반사판으로부터 이격되어 배열되는 안테나
KR20150011406A (ko) * 2013-07-15 2015-02-02 주식회사 굿텔 다중대역 다이폴 안테나 및 시스템

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220335A (en) * 1990-03-30 1993-06-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Planar microstrip Yagi antenna array
US8228254B2 (en) * 2001-06-14 2012-07-24 Heinrich Foltz Miniaturized antenna element and array
US7015860B2 (en) * 2002-02-26 2006-03-21 General Motors Corporation Microstrip Yagi-Uda antenna
WO2005076407A2 (en) * 2004-01-30 2005-08-18 Fractus S.A. Multi-band monopole antennas for mobile communications devices
US7652632B2 (en) * 2004-08-18 2010-01-26 Ruckus Wireless, Inc. Multiband omnidirectional planar antenna apparatus with selectable elements
KR100870725B1 (ko) * 2008-03-06 2008-11-27 주식회사 감마누 기판형 광대역 이중편파 다이폴 안테나
US8604994B2 (en) * 2008-10-07 2013-12-10 Panasonic Corporation Antenna apparatus including feeding elements and parasitic elements activated as reflectors
US9196959B1 (en) * 2010-12-23 2015-11-24 Rockwell Collins, Inc. Multi-ring switched parasitic array for improved antenna gain
CN202076403U (zh) * 2011-05-16 2011-12-14 摩比天线技术(深圳)有限公司 一种加载滤波器的双频双极化天线阵子
CN102437416A (zh) * 2011-08-25 2012-05-02 电子科技大学 一种带有寄生单元的宽带低交叉极化印刷偶极子天线
WO2014070549A1 (en) * 2012-10-30 2014-05-08 P-Wave Holdings, Llc Dual polarized dipole antenna
US10038240B2 (en) * 2012-12-21 2018-07-31 Drexel University Wide band reconfigurable planar antenna with omnidirectional and directional radiation patterns
CN203039108U (zh) * 2013-01-16 2013-07-03 东莞理工学院 一种宽带uhf印刷偶极子天线

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100109764A (ko) * 2009-04-01 2010-10-11 주식회사 케이티 스켈톤 슬롯 복사기 및 그 스켈톤 슬롯 복사기를 이용한 광대역 패치 안테나
KR20110123715A (ko) * 2011-10-27 2011-11-15 주식회사 에이스테크놀로지 복사 소자를 둘러싼 초크 부재가 반사판으로부터 이격되어 배열되는 안테나
KR20150011406A (ko) * 2013-07-15 2015-02-02 주식회사 굿텔 다중대역 다이폴 안테나 및 시스템

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3454414A1 (en) * 2017-09-08 2019-03-13 PC-Tel, Inc. Broadband low-profile dual-linearly polarized antenna for a onelte two-in-one platform
CN109473777A (zh) * 2017-09-08 2019-03-15 Pc-Tel公司 一种用于OneLTE二合一平台的宽带低剖面双线极化天线
US10819042B2 (en) 2017-09-08 2020-10-27 Pc-Tel, Inc. Broadband low-profile dual-linearly polarized antenna for a OneLTE two-in-one platform
WO2023035391A1 (zh) * 2021-09-07 2023-03-16 华南理工大学 双频双极化天线和双频双极化天线阵列

Also Published As

Publication number Publication date
KR101524528B1 (ko) 2015-06-10
US20180040956A1 (en) 2018-02-08
CN107251318A (zh) 2017-10-13
US10186772B2 (en) 2019-01-22

Similar Documents

Publication Publication Date Title
WO2016133244A1 (ko) 다중대역 복사소자
WO2016072620A1 (en) Antenna device
WO2015041422A1 (ko) 안테나 장치 및 그를 구비하는 전자 기기
WO2019124844A1 (ko) 이중편파 안테나 및 이를 포함하는 이중편파 안테나 조립체
WO2020231077A1 (ko) 불요 공진 억제 기능을 가지는 기지국 안테나 방사체
WO2015174621A1 (ko) 안테나 장치
TWI521788B (zh) 天線組合及無線通訊裝置
WO2011099693A2 (ko) 그라운드 방사 안테나
WO2010067930A1 (ko) 소형 이중대역 복사 소자
WO2016036043A2 (ko) 옴니 안테나
WO2014178494A1 (ko) 다중 대역 안테나
WO2020098473A1 (zh) 双频垂直极化天线和电视机
US20100289703A1 (en) Antennas for shielded devices
WO2015160200A1 (ko) 다중 안테나
WO2016064080A1 (ko) 다중대역 2포트 안테나
US20080106481A1 (en) Dipole Antenna With Reduced Feedline Reverse Current
WO2011078558A2 (ko) 안테나 장치
WO2022225245A1 (ko) 저대역 방사체 및 이를 포함하는 다중 광대역 안테나
EP2446723A2 (en) Shield case and antenna set comprising it
CN113054423B (zh) 天线组件
WO2021107423A1 (ko) 다중 광대역 안테나 및 이를 이용한 mimo 안테나
WO2012015131A1 (ko) 멀티밴드 칩 안테나 실장용 기판 및 이를 포함하는 멀티밴드 칩 안테나 장치
US10205217B2 (en) Antenna for wireless communication device chassis having reduced cutback
WO2012093867A2 (ko) 안테나 및 이를 포함하는 전자 장치
WO2014042301A1 (ko) 메타머티리얼 안테나

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882777

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15551590

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882777

Country of ref document: EP

Kind code of ref document: A1