WO2015160200A1 - 다중 안테나 - Google Patents

다중 안테나 Download PDF

Info

Publication number
WO2015160200A1
WO2015160200A1 PCT/KR2015/003835 KR2015003835W WO2015160200A1 WO 2015160200 A1 WO2015160200 A1 WO 2015160200A1 KR 2015003835 W KR2015003835 W KR 2015003835W WO 2015160200 A1 WO2015160200 A1 WO 2015160200A1
Authority
WO
WIPO (PCT)
Prior art keywords
loop
radiators
antenna
radiator
frequency
Prior art date
Application number
PCT/KR2015/003835
Other languages
English (en)
French (fr)
Inventor
성원모
황보창
Original Assignee
주식회사 이엠따블유
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엠따블유 filed Critical 주식회사 이엠따블유
Publication of WO2015160200A1 publication Critical patent/WO2015160200A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas

Definitions

  • the present invention relates to multiple antennas capable of broadband communication and dual resonance.
  • an antenna installed in a portable terminal having a mobile communication function can be largely classified into an external antenna and a multiple antenna according to an installation position.
  • the external antenna As the external antenna, a whip type, a helical type antenna, and the like are mainly used.
  • the external antenna is fixedly installed on the side or top of the portable terminal and has a structure capable of being pulled in and out by a user.
  • the external antenna Since the external antenna is installed outside the portable terminal, there is a disadvantage in that it is inconvenient to use and store and damage the appearance of the portable terminal. In addition, since the installation space of the external antenna must be secured to the outside of the portable terminal, there is a limitation in designing the appearance of the portable terminal, damaging the design, and making it difficult to miniaturize and slim the portable terminal.
  • the built-in antenna (or antenna) is mainly a monopole type, a loop type or a planar inverted antenna (PIFA), and is installed inside the portable terminal.
  • PIFA planar inverted antenna
  • Embodiments of the present invention not only can reduce the volume of the antenna, but also provide a multi-antenna capable of broadband communication.
  • embodiments of the present invention provide multiple antennas that can be used in a specific frequency, such as 5GHz wireless LAN through double resonance as well as broadband through multiple resonance.
  • a loop formed on an upper surface of a substrate; A plurality of radiators spaced apart from the loop by a first interval and spaced apart by a second interval from each other and formed around the loop to resonate at a first frequency; And a central radiator spaced apart from the loop by a third distance and including a central radiator resonating at a second frequency.
  • the loop may have a quadrangular shape
  • the plurality of radiators may include first, second, third and fourth radiators, and the first, second, third and fourth radiators may be formed to surround the loop. have.
  • the first, second, third and fourth radiators may include recesses formed at positions facing the loop and in a diagonal direction.
  • the first frequency may be tuned according to the internal shape of the recess or the size of the recess.
  • the center radiator may have a quadrangular shape.
  • impedances of the plurality of radiators and the central radiators may be determined according to the first, second, and third intervals.
  • the multi-antenna may have first and second frequencies adjusted by adjusting sizes of the plurality of radiators and the center radiator.
  • a multi-antenna according to any one of claims 1 to 6; A reflector reflecting radio waves radiated by resonance of the multiple antennas; And a support spaced apart from the reflector and the substrate of the multiple antenna by a predetermined distance.
  • the present invention by providing four antennas in the corner portion of the loop to form multiple resonances by the loop, it is possible to minimize the gain reduction at the edge portion, such as IMT-A It can be used throughout LTE system from 2GHz to 3.0GHz.
  • ICS Interference Cancellation System
  • FIG. 1 is a plan view of a multiple antenna according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a multiple antenna device to which multiple antennas are applied according to an embodiment of the present invention.
  • 3A illustrates radiation patterns and gains of multiple antennas according to an embodiment of the present invention.
  • Figure 3b is a diagram showing the radiation pattern and the gain of a typical patch antenna
  • FIG. 4 is a graph illustrating VSWR of multiple antennas according to an embodiment of the present invention.
  • FIG. 5 is a graph illustrating isolation when multiple antennas are applied to an ICS repeater according to an embodiment of the present invention.
  • FIG. 1 is a plan view of a multiple antenna 100 according to an embodiment of the present invention.
  • the multiple antenna 100 includes a substrate 102, a loop 110, first, second, third, and fourth radiators 120, 122, 124, 126, and a central radiator 140.
  • the substrate 102 may be made of, for example, a dielectric having a constant dielectric constant.
  • the substrate 102 may be formed in a predetermined thickness plate shape, but is not limited thereto.
  • the substrate 102 may be made of a magnetic material having a constant dielectric constant and permeability.
  • the loop 110 is formed on the upper surface of the substrate 102.
  • the loop 110 is formed in an open shape at both ends. At this time, one end of the loop 110 is connected to the feeder (not shown), and the other end of the loop 110 is connected to the ground (not shown).
  • one end of the loop 110 may be connected to the feed line of the coaxial cable, and the other end of the loop 110 may be connected to the ground line of the coaxial cable.
  • the first, second, third, and fourth radiators 120, 122, 124, and 126 are formed around the loop 110 to allow multiple resonances at specific frequencies, such as the 2.3 GHz to 3.0 GHz band.
  • the loop 110 may have a rectangular shape.
  • a portion of the first, second, third, and fourth radiators 120, 122, 124, and 126 surrounding the roof 110 may be spaced apart by a first interval around the loop 110.
  • first, second, third, and fourth radiators 120, 122, 124, and 126 have the same shape. Specifically, the first, second, third, and fourth radiators 120, 122, 124, and 126 are spaced apart by a first interval in an outward direction of the loop 110 and are coupled at a first frequency through a coupling feed with the loop 110. Resonance may occur. In certain embodiments, the first, second, third, and fourth radiators 120, 122, 124, 126 have a first recess 130 surrounding a portion of the loop 110, such as a corner portion, and the first The second recess 132 may be included in a portion symmetrical with the recess 130.
  • the second recesses 132 may have various shapes, such as at least one staircase shape therein.
  • the second concave portion 132 may be formed in various sizes.
  • the second concave portion 132 may be formed in various shapes by varying the depth of the recessed portion.
  • the first frequency at which the loop 110 and the first, second, third, and fourth radiators 120, 122, 124, and 126 resonate by changing the size or shape of the second recess 132. Tuning may be possible.
  • the first, second, third, and fourth radiators 120, 122, 124, and 126 may be formed on the substrate 102 to surround the loop 110 by being spaced apart by a second interval.
  • the first, second, third, and fourth radiators 120, 122, 124, and 126 may be formed in a vertically or horizontally symmetrical form based on the X or Y central axis of the loop 110.
  • the second interval may be larger than the first interval within a preset range, such as 0.3 mm.
  • first, second, third, and fourth radiators 120, 122, 124, and 126 perform multiple resonances
  • first when a current is applied to the loop 110, a couple with the loop 110 is performed. Ring feeding causes each of the first, second, third, and fourth radiators 120, 122, 124, and 126 to resonate, and the second and fourth radiators 122 and 126 are coupled to the first radiator 120. Through the resonance in the first frequency band.
  • the first and third radiators 120 and 124 may resonate through coupling feeding with the second radiator 122.
  • the coupling feeding between the first, second, third, and fourth radiators 120, 122, 124, and 126 and the loop 110 and the first, second, third, and fourth positions are performed. Coupling feeding between the radiators 120, 122, 124, and 126 may occur to generate multiple resonances in the first frequency band.
  • the central radiator 140 is formed inside the loop 110 spaced apart from the loop 110 by a third interval.
  • the central radiator 140 also feeds in the loop 110 at different frequency bands. Resonance occurs. Specifically, when a current is supplied to one end of the loop 110, the first, second, third, and fourth radiators 120, 122, 124, and 126 are organically coupled to each other at regular intervals, thereby coupling coupling. .
  • radiators 120, 122, 124, and 126 operate as the first antenna.
  • the center radiator 140 operates as a second antenna because resonance occurs due to coupling feeding, and radiation occurs at a frequency different from the first frequency, for example, a second frequency.
  • the impedances of the first, second, third, and fourth radiators 120, 122, 124, and 126 and the central radiator 140 may be adjusted by the first, second, and third intervals.
  • the first radiator 120 may adjust impedance by using a second gap with the second radiator 122 and the fourth radiator 126 and a first gap with the loop 110.
  • the second frequency at which the central radiator 140 resonates is a frequency corresponding to WLAN, for example, 5 GHz.
  • the first frequency may be 2.3 GHz-3.0 GHz used in the IMT-A system.
  • the frequency at which the multi-antenna 100 operates is described as an example of 5 GHz and 2.3 GHz-3.0 GHz, but the frequencies at which the multi-antenna 100 operates are first, second, third, and fourth radiators 120 and 122. , 124 and 126 may be possible through the size control of the central radiator 140.
  • the center frequency is 800 MHz, corresponding to 1/3 of 2.5 GHz.
  • the center frequency is 2.5 GHz. It can operate at a frequency of 7.5GHz band corresponding to twice.
  • the loop 110 may have a square shape in which part thereof is opened.
  • the center radiator 140 also has a square shape formed inside the loop 110.
  • the loop 110 power is supplied by the loop 110, and multiple resonances are generated by the first, second, third, and fourth radiators 120, 122, 124, and 126 to enable wideband at the first frequency.
  • the multiple antenna 100 usable in the second frequency band by resonance by the central radiator 140.
  • the horizontal and vertical lengths of the multi-antenna 100 are applied under the assumption that the multi-antenna 100 is formed on the square-shaped substrate 102 having one side of 80 mm.
  • the length of the other remainder and the first interval are proportional to the changed length of one.
  • the second interval and the third interval may be changed.
  • the third interval may be as large as a preset multiple compared to the second interval, and preferably may have a size three times or more.
  • FIG. 2 is a diagram illustrating a multi-antenna device 200 to which a multi-antenna 100 is applied according to an exemplary embodiment of the present invention.
  • the multi-antenna device 200 includes the multi-antenna 100, the reflector 210, and the support 220 of FIG. 1.
  • the multiple antenna 100 may be formed to be spaced apart from the reflector 210 by a predetermined distance, for example, 10 mm or more, and may be supported by the reflector 210 by the support 220.
  • the reflector 210 may include a motherboard (not shown) that can provide current for powering the multiple antenna 100 as well as provide ground.
  • the reflector 210 may reflect the direction of the radio wave generated by the resonance of the multiple antenna 100 again. In this case, the reflector 210 may improve the directivity of the multiple antenna 100.
  • Figure 3a is a diagram showing the radiation pattern and the gain of the multiple antenna 100 according to an embodiment of the present invention
  • Figure 3b is a diagram showing the radiation pattern and gain of a typical patch antenna.
  • the multiple antennas 100 according to the embodiment of the present invention are both numerically oriented in terms of directivity, in terms of gain, the conventional antennas are 6 dBi while the multiple antennas 100 are It can be seen that there is a performance difference of 2dBi or more with more than 8dBi.
  • FIG. 4 is a graph illustrating a voltage standing wave ratio (VSWR) of multiple antennas according to an exemplary embodiment of the present invention.
  • VSWR voltage standing wave ratio
  • the first antenna generates multiple resonances (multiple edge portions) at 2.3724 GHz to 3.0204 GHz, and the VSWR is 2.004 and 1.087 at 2.3724 GHz and 3.0204 GHz. That is, VSWR 2: 1 is satisfied at a bandwidth of approximately 630MHz, that is, VSWR is represented as 2 or less.
  • the second antenna has resonance at 5 GHz, VSWR is 1.078 at 5 GHz, and VSWR 2: 1 is satisfied at approximately 330 MHz bandwidth. In this case, it can be seen that the gain is more than 6dBi.
  • the multi-antenna 100 may be used in an LTE system of 2 GHz band such as IMT-A because not only the gain reduction at the edge portion but also the sufficient bandwidth.
  • the multi-antenna 100 in one embodiment may be utilized for WLAN using a resonance of 5 GHz, and may be used as a backhaul network in the case of a picocell or femtocell repeater.
  • FIG. 5 is a graph illustrating isolation when the multiple antenna 100 according to an embodiment of the present invention is applied to an Interference Cancellation System (ICS) repeater.
  • ICS Interference Cancellation System
  • the ICS repeater uses a DSP technique to wirelessly transmit the RF signal of the base station to the repeater and to retransmit the original signal of the repeater as it is, thereby eliminating the interference signal from which the retransmitted signal is re-introduced to the receiving antenna. It means the used system. That is, the ICS repeater according to the embodiment of the present invention may transmit and receive signals using the multiple antenna 100 of FIG. 1.
  • isolation of -47 dB can be secured over the entire band, and when applied to IMT-A, isolation of -54 dB or more can be secured. Able to know.
  • the loop 110 and the four radiators 120, 122, 124, and 126 have been described as examples, but four or more radiators are disposed around the loop 110 to provide multiple antennas. 100 may also be formed.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

다중 안테나가 개시된다. 본 발명의 일 실시예에 따른 다중 안테나는 기판의 상면에 형성되는 루프; 상기 루프와 제1 간격만큼 이격되어 형성되며, 상호간에 제2 간격만큼 이격되어 상기 루프 주변에 형성되어 제1 주파수에서 공진하는 복수의 방사체; 및 상기 루프와 제3 간격만큼 이격되어 내부에 배치되며, 제2 주파수에서 공진하는 중심 방사체를 포함할 수 있다.

Description

다중 안테나
본 발명은 광대역 통신 및 이중 공진이 가능한 다중 안테나에 관한 것이다.
일반적으로 이동 통신 기능을 구비한 휴대용 단말기에 설치되는 안테나는 설치 위치에 따라 크게 외장형 안테나와 다중 안테나로 구분할 수 있다.
외장형 안테나로는 주로 휩 형(Whip type), 헬리컬 형(Helical type) 안테나 등이 사용되고 휴대용 단말기의 측면 또는 상부에 고정적으로 설치되어 사용자에 의해 인입 및 인출이 가능한 구조를 가진다.
이러한 외장형 안테나는 휴대용 단말기의 외부에 설치되기 때문에 사용 및 보관이 불편하고 휴대용 단말기의 외관을 해치게 되는 단점이 있다. 또한, 휴대용 단말기의 외부에 외장형 안테나의 설치공간을 확보해야 하기 때문에 휴대용 단말기의 외관 설계에 제약이 있고 디자인을 해치게 되며 휴대용 단말기의 소형화 및 슬림화를 어렵게 한다는 단점이 있다.
상기와 같은 외장형 안테나의 단점을 보완하기 위해 최근에는 안테나를 휴대용 단말기의 내부에 설치하는 내장 안테나 방식이 주로 이용되고 있다.
내장 안테나(또는, 인테나)는 주로 모노폴(monopole) 타입, 루프(Loop) 타입 또는 평판형 역-에프 안테나(PIFA: Planar Inverted-F Antenna)가 사용되고, 휴대용 단말기의 내부에 설치되기 때문에 휴대용 단말기의 내부에는 다중 안테나가 설치될 수 있는 공간이 마련되어야 하고, 휴대용 단말기가 슬림화되거나 소형화될수록 다중 안테나의 설치 공간도 줄어들게 된다.
최근에는 이동 통신 시스템 기술의 발달로 인하여 대용량의 데이터를 무선으로 전송한다. 이런 이유로, 낮은 에러율로 대용량의 데이터를 전송하기 위한 안테나의 개발이 요구되고 있다.
본 발명의 실시예들은 안테나의 체적을 소형화할 수 있을 뿐만 아니라 광대역 통신이 가능한 다중 안테나를 제공한다.
또한, 본 발명의 실시예들은 다중 공진을 통한 광대역뿐만 아니라 이중 공진을 통해 특정 주파수, 예컨대 5GHz 무선 랜에서 사용 가능한 다중 안테나를 제공한다.
본 발명의 예시적인 실시예에 따르면, 기판의 상면에 형성되는 루프; 상기 루프와 제1 간격만큼 이격되어 형성되며, 상호간에 제2 간격만큼 이격되어 상기 루프 주변에 형성되어 제1 주파수에서 공진하는 복수의 방사체; 및 상기 루프와 제3 간격만큼 이격되어 내부에 배치되며, 제2 주파수에서 공진하는 중심 방사체를 포함하는 다중 안테나가 제공된다.
상기 다중 안테나에서 상기 루프는 사각형 형상을 가지며, 상기 복수의 방사체는 제1, 2, 3 및 제4 방사체이며, 상기 제1, 2, 3 및 제4 방사체는 상기 루프를 감싸는 형태로 형성될 수 있다.
상기 다중 안테나에서 상기 제1, 2, 3 및 제4 방사체는 상기 루프와 마주 대하는 위치와 대각선 방향에 형성된 오목부를 포함할 수 있다.
상기 다중 안테나에서 상기 제1 주파수는 상기 오목부의 내부 형상 또는 상기 오목부의 크기에 따라 튜닝될 수 있다.
상기 다중 안테나에서 상기 중심 방사체는 사각형 형태를 가질 수 있다.
상기 다중 안테나는 상기 제1, 2 및 제3 간격에 따라 상기 복수의 방사체 및 중심 방사체의 임피던스가 결정될 수 있다.
상기 다중 안테나는 상기 복수의 방사체 및 중심 방사체의 크기 조절을 통해 제1 및 제2 주파수가 조절될 수 있다.
본 발명의 다른 예시적인 실시예에 따르면, 제1항 내지 제6항 중 어느 하나의 항에 기재된 다중 안테나; 상기 다중 안테나의 공진에 의해 방사되는 전파를 반사시키는 반사체; 및 상기 반사체와 상기 다중 안테나의 기판과 소정 간격 이격시키는 지지대를 포함하는 다중 안테나 장치가 제공된다.
본 발명의 실시예들에 따르면, 루프와의 유기적인 결합을 통해 다중 공진을 발생시키는 다수의 방사체 및 소정의 주파수 대역에서 공진하는 방사체를 이용한 다중 안테나를 제공함으로써, 다중 안테나의 대역 특성을 향상시킬 수 있다.
또한, 본 발명의 실시예에 따르면, 루프 내부에 특정 주파수 대역에서 공진하는 방사체를 배치함으로서, 특정 주파수를 사용하는 무선 랜에서 사용 가능한 다중 안테나 구현이 가능하다.
본 발명의 실시예에 따르면, 루프의 모서리 부분에 4개의 방사체를 배치하여 루프에 의해 다중 공진을 형성하는 다중 안테나를 제공함으로서, 에지 부분에서의 이득 감소를 최소화할 수 있기 때문에 IMT-A 등의 2GHz-3.0GHz의 LTE 시스템 전반에 이용 가능하다.
또한, 본 발명의 실시예들에 따르면, 높은 격리도를 확보할 수 있기 때문에 높은 격리도가 필요한 ICS(Interference Cancellation System, 이하, 'ICS'라고 함) 중계기에 적용 가능하다.
도 1은 본 발명의 실시예에 따른 다중 안테나의 평면도
도 2는 본 발명의 실시예에 따른 다중 안테나가 적용된 다중 안테나 장치를 도시한 도면
도 3a는 본 발명의 실시예에 따른 다중 안테나의 방사 패턴 및 이득을 도시한 도면
도 3b는 일반적인 패치 안테나의 방사 패턴 및 이득을 도시한 도면
도 4는 본 발명의 실시예에 따른 다중 안테나의 VSWR을 도시한 그래프
도 5는 본 발명의 실시예에 따른 다중 안테나를 ICS 중계기에 적용한 경우 격리도를 도시한 그래프.
이하, 도면을 참조하여 본 발명의 구체적인 실시예를 설명하기로 한다. 그러나 이는 예시적 실시예에 불과하며 본 발명은 이에 한정되지 않는다.
본 발명을 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
본 발명의 기술적 사상은 청구범위에 의해 결정되며, 이하 실시예는 진보적인 본 발명의 기술적 사상을 본 발명이 속하는 기술분야에서 통상의 지식을 가진자에게 효율적으로 설명하기 위한 일 수단일 뿐이다.
도 1은 본 발명의 실시예에 따른 다중 안테나(100)의 평면도이다.
도 1을 참조하면, 다중 안테나(100)는 기판(102), 루프(110), 제1, 2, 3, 4 방사체(120, 122, 124, 126) 및 중심 방사체(140)를 포함한다.
기판(102)은 예를 들어, 일정한 유전율을 가지는 유전체로 이루어질 수 있다. 이때, 기판(102)은 일정한 두께 판상 형태로 형성될 수 있으나, 이에 한정되지는 않는다. 또한, 기판(102)은 일정한 유전율 및 투자율을 가지는 자성체로 이루어질 수 있다.
루프(110)는 기판(102)의 상면에 형성된다. 루프(110)는 양단이 개방된 형태로 형성된다. 이때, 루프(110)의 일단은 급전부(미도시됨)에 연결되며 루프(110)의 타단은 접지부(미도시됨)와 연결된다. 예를 들어, 루프(110)의 일단은 동축 케이블의 급전 선로로 연결되고, 루프(110)의 타단은 동축 케이블의 접지 선로와 연결될 수 있다.
소정의 실시예에서, 루프(110)의 주변에는 특정 주파수, 예컨대 2.3GHz-3.0GHz 대역에서의 다중 공진을 제1, 2, 3, 4 방사체(120, 122, 124, 126)이 형성되어 있다. 예를 들어, 루프(110)는 사각형 형상을 가질 수 있다. 이 경우, 루프(110)의 주변에는 일부분, 예컨대 모서리 부분을 감싸는 제1, 2, 3, 4 방사체(120, 122, 124, 126)가 제1 간격만큼 이격되어 형성될 수 있다.
또한, 제1, 2, 3, 4 방사체(120, 122, 124, 126)는 동일한 형상을 갖는다. 구체적으로, 제1, 2, 3, 4 방사체(120, 122, 124, 126)는 루프(110)의 외측방향으로 제1 간격만큼 이격되어 루프(110)와의 커플링 급전을 통해 제1 주파수에서 공진을 발생할 수 있다. 소정의 실시예에서, 제1, 2, 3, 4 방사체(120, 122, 124, 126)는 루프(110)의 일부분, 예컨대 모서리 부분을 감싸는 제1 오목부(130)를 구비하며, 제1 오목부(130)와 대칭되는 부분에 제2 오목부(132)를 포함할 수 있다.
소정의 실시예에서, 제2 오목부(132)는 다양한 형상, 예컨대 내부가 적어도 하나 이상의 계단 형상을 가질 수 있다. 또한, 제2 오목부(132)는 다양한 크기로 형성될 수 있다. 예들 들어, 제2 오목부(132)는 패인 부분의 깊이를 서로 다르게 하여 다양한 형상으로 형성될 수 있다.
소정의 실시예에서는 제2 오목부(132)의 크기 또는 형상 변경을 통해 루프(110)와 제1, 2, 3 및 제4 방사체(120, 122, 124, 126)간이 공진하는 제1 주파수의 튜닝이 가능할 수 있다.
한편, 제1, 2, 3, 4 방사체(120, 122, 124, 126) 상호간은 제2 간격만큼 이격되어 루프(110)를 감싸는 형태로 기판(102) 상에 형성될 수 있다. 또한, 제1, 2, 3, 4 방사체(120, 122, 124, 126)는 루프(110)의 X 또는 Y 중심축을 기준으로 상하 또는 좌우 대칭 형태로 형성될 수 있다.
소정의 실시예에서, 제2 간격은 제1 간격보다 기 설정됨 범위, 예컨대 0.3mm 범위 안에서 클 수 있다.
상술한 바와 같은 제1, 2, 3, 4 방사체(120, 122, 124, 126)가 다중 공진을 하는 과정에 대해 설명하면, 먼저 루프(110)에 전류가 인가되면, 루프(110)와의 커플링 급전을 통해 제1, 2, 3, 4 방사체(120, 122, 124, 126) 각각이 공진하게 되며, 제2 및 제4 방사체(122, 126)는 제1 방사체(120)와의 커플링 급전을 통해 제1 주파수 대역에서 공진하게 된다. 또한, 제1 및 제3 방사체(120, 124)는 제2 방사체(122)와의 커플링 급전을 통해 공진하게 된다.
다시말해서, 루프(110)에 전류가 인가되면, 제1, 2, 3, 4 방사체(120, 122, 124, 126) 상호간의 커플링 급전과 루프(110)와 제1, 2, 3, 4 방사체(120, 122, 124, 126)간의 커플링 급전이 발생되어 제1 주파수 대역에서 다중 공진이 발생될 수 있다.
중심 방사체(140)는 루프(110)와 제3 간격만큼 이격되어 루프(110)의 내측에 형성된다. 제1, 2, 3, 4 방사체(120, 122, 124, 126)가 루프(110)에 의해 다중 공진이 발생될 때, 중심 방사체(140)도 루프(110)와의 급전을 통해 다른 주파수 대역에서 공진이 발생된다. 구체적으로, 루프(110)의 일단에 전류가 공급되면, 제1, 2, 3, 4 방사체(120, 122, 124, 126)는 일정한 간격을 갖고 서로 유기적으로 결합하여 커플링 급전이 이루어지게 된다. 이 경우 루프(110)와 제1, 2, 3, 4 방사체(120, 122, 124, 126)의 다중 공진을 통해 제1 주파수에서 방사가 이루어지기 때문에 루프(110)와 제1, 2, 3, 4 방사체(120, 122, 124, 126)는 제1 안테나로 동작하게 된다.
또한, 중심 방사체(140)와 루프(110) 간에는 전기적 커플링이 발생하여 중심 방사체(140)에 커플링 급전이 이루어지게 된다. 이 경우, 중심 방사체(140)는 커플링 급전에 의해 공진이 발생되어 제1 주파수와 다른 주파수, 예컨데 제2 주파수에서 방사가 이루어지기 때문에 제2 안테나로 동작하게 된다.
상술한 바와 같은 제1, 2, 3 및 제4 방사체(120, 122, 124, 126)와 중심 방사체(140)의 임피던스는 제1, 2 및 제3 간격에 의해 조절될 수 있다. 구체적으로, 제1 방사체(120)는 제2 방사체(122) 및 제4 방사체(126)와의 제2 간격과 루프(110)와의 제1 간격을 이용하여 임피던스 조절이 가능하다.
소정의 실시예에서, 중심 방사체(140)가 공진하는 제2 주파수는 무선랜(WLAN)에 해당하는 주파수로서, 그 예로서 5GHz를 들 수 있다. 또한, 제1 주파수는 IMT-A 시스템에서 이용되는 2.3GHz-3.0GHz일 수 있다.
상기에서는 다중 안테나(100)가 동작하는 주파수가 5GHz와 2.3GHz-3.0GHz로 예를 들어 설명하였지만, 다중 안테나(100)가 동작하는 주파수는 제1, 2, 3 및 제4 방사체(120, 122, 124, 126)와 중심 방사체(140)의 크기 조절을 통해 가능할 수 있다. 구체적으로, 제1, 2, 3 및 제4 방사체(120, 122, 124, 126)와 중심 방사체(140)의 크기가 "a"에서 다중 안테나는 중심 주파수 2.5GHz를 기준으로 동작할 때, 제1, 2, 3 및 제4 방사체(120, 122, 124, 126)와 중심 방사체(140)의 크기가 3배 확대 스케일(3a)될 경우 중심주파수는 2.5GHz의 1/3에 해당하는 800MHz 대역의 주파수에서 동작하며, 반대로 제1, 2, 3 및 제4 방사체(120, 122, 124, 126)와 중심 방사체(140)의 크기가 1/3으로 축소 스케일될 경우 중심 주파수는 2.5GHz의 3배에 해당하는 7.5GHz 대역의 주파수에서 동작할 수 있다.
또한, 상기와 같은 구조를 갖는 다중 안테나(100)에서 루프(110)는 일부가 개방된 정사각형 형태를 가질 수 있으며, 이 경우 중심 방사체(140) 또한 루프(110)의 내부에 형성되는 정사각형 형태를 가질 수 있다.
상술한 바와 같이, 루프(110)에 의해 급전이 이루어지게 되며, 제1, 2, 3, 4 방사체(120, 122, 124, 126)에 의해 다중 공진이 발생되어 제1 주파수에서의 광대역이 가능할 뿐만 아니라 중심 방사체(140)에 의한 공진에 의해 제2 주파수 대역에서 사용 가능한 다중 안테나(100)의 구현이 가능하다.
소정의 실시예에서, 다중 안테나(100)의 가로 및 세로 길이는 한변이 80mm인 정사각형 형태의 기판(102) 상에 다중 안테나(100)가 형성된다는 가정 하에 적용되는 것으로, 기판(102), 제1 오목부(130), 제2 오목부(132), 루프(110) 또는 중심 방사체(140)의 길이 중 어느 하나의 변경에 따라 어느 하나의 변경된 길이에 비례하여 다른 나머지의 길이와 제1 간격, 제2 간격 및 제3 간격이 변경될 수 있다. 여기에서, 제3 간격은 제2 간격에 비해 기 설정된 배수만큼 클 수 있으며, 바람직하게는 3배 이상의 크기를 가질 수 있다.
도 2는 본 발명의 실시예에 따른 다중 안테나(100)가 적용된 다중 안테나 장치(200)를 도시한 도면이다.
도 2에 도시된 바와 같이, 다중 안테나 장치(200)는 도 1의 다중 안테나(100), 반사체(210) 및 지지대(220)를 포함한다.
다중 안테나(100)는 반사체(210)와 소정 간격, 예컨대 10mm 이상 이격되어 형성되며, 지지대(220)에 의해 반사체(210)에 지지될 수 있다.
소정의 실시예에서, 반사체(210)는 다중 안테나(100)에 급전을 위한 전류를 공급할 수 있을 뿐만 아니라 그라운드를 제공하는 메인보드(미도시됨)를 포함할 수 있다.
또한, 반사체(210)는 다중 안테나(100)의 공진에 의해 생성되는 전파의 방향을 다시 반사시켜줄 수 있다. 이 경우, 반사체(210)는 다중 안테나(100)의 지향성을 향상시킬 수 있다.
도 3a는 본 발명의 실시예에 따른 다중 안테나(100)의 방사 패턴 및 이득을 도시한 도면이며, 도 3b는 일반적인 패치 안테나의 방사 패턴 및 이득을 도시한 도면이다.
도 3a 및 도 3b에 도시된 바와 같이, 본 발명의 실시예에 따른 다중 안테나(100)가 종래의 안테나 모두 지향성에 있어서 비숫하지만, 이득 측면에서 종래의 안테나는 6dBi인 반면 다중 안테나(100)는 8dBi 이상으로 2dBi 이상의 성능 차이가 나는 것을 알 수 있다.
도 4는 본 발명의 실시예에 따른 다중 안테나의 VSWR(Voltage Standing Wave Ratio)을 도시한 그래프이다.
도 4를 참조하면, 제1 안테나는 2.3724GHz-3.0204GHz에서 다중 공진(다수의 에지 부분)이 발생되는 것을 알 수 있으며, 2.3724GHz과 3.0204GHz에서 VSWR이 2.004와 1.087인 것을 알 수 있다. 즉, 대략 630MHz의 대역폭에서 VSWR 2:1을 만족, 즉 VSWR이 2이하로 나타나게 된다. 또한, 다중 공진과 더불어 제2 안테나가 5GHz에서 공진이 발생되며, 5GHz에서 VSWR이 1.078이며, 대략 330MHz 대역폭에서 VSWR 2:1을 만족한 것을 알 수 있다. 이 경우 이득이 6dBi 이상인 것을 알 수 있다.
상술한 바와 같이, 다중 안테나(100)는 에지 부분에서 이득 감소가 적을 뿐만 아니라 충분한 대역폭을 갖고 있기 때문에 IMT-A와 같은 2GHz 대역의 LTE 시스템에 사용할 수 있다. 또한, 일 실시예에서의 다중 안테나(100)는 5GHz의 공진을 이용하여 WLAN에 활용 가능할 뿐만 아니라 피코셀이나 펨토셀의 중계기의 경우 백홀망으로 사용 가능하다.
도 5는 본 발명의 실시예에 따른 다중 안테나(100)를 ICS(Interference Cancellation System, 이하, 'ICS'라고 함) 중계기에 적용한 경우 격리도를 도시한 그래프이다.
소정의 실시예에서, ICS 중계기는 기지국의 RF 신호를 무선으로 중계기에 전송하고, 중계기의 원 신호 그대로를 재송신하는 방식으로, 재 송신 신호가 수신 안테나로 재유입되는 간섭 신호를 제거하는 DSP 기술을 이용한 시스템을 의미한다. 즉, 본 발명의 실시예에 따른 ICS 중계기는 도 1의 다중 안테나(100)를 이용하여 신호를 송수신할 수 있다.
도 5에 도시된 바와 같이, 다중 안테나(100)를 ICS 중계기 형태로 배치했을 경우 전대역에 걸쳐 -47dB의 격리도 확보가 가능하며, IMT-A에 적용할 경우 -54dB 이상의 격리도 확보가 가능한 것을 알 수 있다.
한편, 상술한 실시예에서는 루프(110)와 4개의 방사체(120, 122, 124, 126)를 이용하는 것으로 예를 들어 설명하였지만, 네개 이상의 복수의 방사체를 루프(110)의 주변에 배치하여 다중 안테나(100)를 형성할 수도 있다.
이상에서 본 발명의 대표적인 실시예들을 상세하게 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 상술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (8)

  1. 기판의 상면에 형성되는 루프;
    상기 루프와 제1 간격만큼 이격되어 형성되며, 상호간에 제2 간격만큼 이격되어 상기 루프 주변에 형성되어 제1 주파수에서 공진하는 복수의 방사체; 및
    상기 루프와 제3 간격만큼 이격되어 내부에 배치되며, 제2 주파수에서 공진하는 중심 방사체를 포함하는, 다중 안테나.
  2. 제1항에 있어서,
    상기 루프는 사각형 형상을 가지며,
    상기 복수의 방사체는 제1, 2, 3 및 제4 방사체이며,
    상기 제1, 2, 3 및 제4 방사체는 상기 루프를 감싸는 형태로 형성되는, 다중 안테나.
  3. 제2항에 있어서,
    상기 제1, 2, 3 및 제4 방사체는
    상기 루프와 마주 대하는 위치와 대각선 방향에 형성된 오목부를 포함하는, 다중 안테나.
  4. 제3항에 있어서,
    상기 제1 주파수는 상기 오목부의 내부 형상 또는 상기 오목부의 크기에 따라 튜닝되는, 다중 안테나.
  5. 제2항에 있어서,
    상기 중심 방사체는 사각형 형태를 갖는, 다중 안테나.
  6. 제1항에 있어서,
    상기 제1, 2 및 제3 간격에 따라 상기 복수의 방사체 및 중심 방사체의 임피던스가 결정되는, 다중 안테나.
  7. 제1항에 있어서,
    상기 복수의 방사체 및 중심 방사체의 크기 조절을 통해 제1 및 제2 주파수가 조절되는, 다중 안테나.
  8. 제1항 내지 제7항 중 어느 하나의 항에 기재된 다중 안테나;
    상기 다중 안테나의 공진에 의해 방사되는 전파를 반사시키는 반사체; 및
    상기 반사체와 상기 다중 안테나의 기판과 소정 간격 이격시키는 지지대를 포함하는, 다중 안테나 장치.
PCT/KR2015/003835 2014-04-17 2015-04-16 다중 안테나 WO2015160200A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140046127A KR101584764B1 (ko) 2014-04-17 2014-04-17 다중 안테나
KR10-2014-0046127 2014-04-17

Publications (1)

Publication Number Publication Date
WO2015160200A1 true WO2015160200A1 (ko) 2015-10-22

Family

ID=54324319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003835 WO2015160200A1 (ko) 2014-04-17 2015-04-16 다중 안테나

Country Status (2)

Country Link
KR (1) KR101584764B1 (ko)
WO (1) WO2015160200A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112514162A (zh) * 2018-09-30 2021-03-16 华为技术有限公司 天线及终端

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102104907B1 (ko) * 2020-01-28 2020-05-29 주식회사 알씨엔 8x8 일체형 다중 사용자 다중 입력 다중 출력 안테나
KR102222806B1 (ko) * 2020-05-07 2021-03-04 한화시스템 주식회사 광대역 주파수 수신 장치 및 광대역 주파수 조절 방법
KR102222807B1 (ko) * 2020-05-07 2021-03-04 한화시스템 주식회사 이중대역 주파수 수신 장치 및 이중대역 주파수 조절 방법
KR102660191B1 (ko) * 2021-03-22 2024-04-24 주식회사 아모텍 다중 대역 패치 안테나

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100279696B1 (ko) * 1992-09-30 2001-02-01 토마스 피. 로데스 다중 대역 안테나
KR20090012093U (ko) * 2008-05-23 2009-11-26 장용웅 고 이득 원형편파 고정형 rfid 안테나
KR20140026401A (ko) * 2011-03-31 2014-03-05 해리스 코포레이션 사이드­바이­사이드 수동 루프 안테나를 포함하는 무선 통신 디바이스 및 관련된 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100279696B1 (ko) * 1992-09-30 2001-02-01 토마스 피. 로데스 다중 대역 안테나
KR20090012093U (ko) * 2008-05-23 2009-11-26 장용웅 고 이득 원형편파 고정형 rfid 안테나
KR20140026401A (ko) * 2011-03-31 2014-03-05 해리스 코포레이션 사이드­바이­사이드 수동 루프 안테나를 포함하는 무선 통신 디바이스 및 관련된 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112514162A (zh) * 2018-09-30 2021-03-16 华为技术有限公司 天线及终端
CN112514162B (zh) * 2018-09-30 2022-06-10 华为技术有限公司 天线及终端
US11791569B2 (en) 2018-09-30 2023-10-17 Huawei Technologies Co., Ltd. Antenna and terminal

Also Published As

Publication number Publication date
KR101584764B1 (ko) 2016-01-12
KR20150120194A (ko) 2015-10-27

Similar Documents

Publication Publication Date Title
US10553934B2 (en) Antenna system and method
WO2015160200A1 (ko) 다중 안테나
WO2010030128A2 (ko) 전자기적 커플링을 이용한 다중 대역 안테나
DE60009753D1 (de) Rundstrhlende antenne mit asymmetrischem doppelkonus als passives speiseelement für ein strahlerelement
WO2021104191A1 (zh) 天线单元及电子设备
SK112000A3 (en) Dual multitriangular antennas for gsm and dcs cellular telephony
CN112290193B (zh) 毫米波模组、电子设备及毫米波模组的调节方法
US10333210B2 (en) Low profile high performance integrated antenna for small cell base station
WO2012100468A1 (en) Omnidirectional indoor antenna system
TW201909484A (zh) 天線系統
WO2016036043A2 (ko) 옴니 안테나
CN102377017A (zh) 多回圈天线系统及具有该多回圈天线系统的电子装置
CN103378421B (zh) 多天线组件及其无线移动互联设备
WO2020119010A1 (en) Shared ground mmwave and sub 6 ghz antenna system
WO2010038929A1 (ko) 다층 안테나
KR101719963B1 (ko) 초광대역 평판형 안테나
CN111725616A (zh) 具有寄生元件的天线
US10148014B2 (en) Highly isolated monopole antenna system
TWI707500B (zh) 雙頻天線結構
WO2010098564A2 (ko) 개방종단 폴디드 슬롯 안테나
US10971803B2 (en) Omnidirectional antenna system for macro-macro cell deployment with concurrent band operation
WO2016064080A1 (ko) 다중대역 2포트 안테나
WO2015009058A1 (ko) 초광대역 안테나
WO2021083218A1 (zh) 天线单元及电子设备
CN114069260B (zh) 天线系统及包含其的电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779612

Country of ref document: EP

Kind code of ref document: A1