WO2021063123A1 - 基站天线及其辐射单元 - Google Patents

基站天线及其辐射单元 Download PDF

Info

Publication number
WO2021063123A1
WO2021063123A1 PCT/CN2020/109880 CN2020109880W WO2021063123A1 WO 2021063123 A1 WO2021063123 A1 WO 2021063123A1 CN 2020109880 W CN2020109880 W CN 2020109880W WO 2021063123 A1 WO2021063123 A1 WO 2021063123A1
Authority
WO
WIPO (PCT)
Prior art keywords
balun
feeding
arm
conductor
radiating
Prior art date
Application number
PCT/CN2020/109880
Other languages
English (en)
French (fr)
Inventor
姜维维
黄立文
肖飞
刘永军
Original Assignee
京信通信技术(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信技术(广州)有限公司 filed Critical 京信通信技术(广州)有限公司
Publication of WO2021063123A1 publication Critical patent/WO2021063123A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/48Combinations of two or more dipole type antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/001Crossed polarisation dual antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

Definitions

  • This application relates to the field of mobile communication technology, and in particular to a base station antenna and its radiating unit.
  • coaxial cables are often used to feed dipoles (such as half-wave oscillators).
  • the outer conductor of the coaxial cable is welded to a balun arm of the balun.
  • the inner conductor of the cable is welded to the radiating arm supported by the other balun arm of the balun, thereby completing the coaxial cable to feed the dipole.
  • the coaxial cable needs to be welded with the balun and the radiating arm, which is low in efficiency and tends to cause unstable electrical indicators.
  • the cost of the radiating unit is also relatively high.
  • the primary purpose of this application is to provide a radiation unit that can improve production efficiency and reduce unstable factors of electrical indicators.
  • Another object of the present application is to provide a base station antenna using the above-mentioned radiating unit.
  • this application relates to a radiating unit, including a dipole, a balun supporting the dipole, and a feeding component for feeding the dipole;
  • the balun includes a pair of opposing pairs
  • the balun arm, at least one balun arm is arranged in a hollow;
  • the feeding component includes a feeding conductor and an insulating medium, and the feeding conductor passes through the hollow balun arm and is connected to a balun arm supported by another balun arm.
  • a radiating arm is connected; the insulating medium is filled between the feeding conductor and the inner wall of the balun arm and the feeding conductor is fastened in the balun arm.
  • the dipoles are provided with two pairs corresponding to two mutually orthogonal polarization directions
  • the feeding part is provided with one for each dipole
  • the radiation unit is provided with each polarization direction.
  • the distance from the spatial position of the combining port to the respective feeding points of the two dipoles of the same polarization is approximately the same.
  • the radiating unit further includes an annular base, an end of the balun away from the dipole is connected to the annular base, and the combining port is integrally formed on the annular base.
  • the combining port is formed at the geometric symmetry axis of the two dipoles of the same polarization on the base.
  • the junction port has a cylindrical structure, the outer wall of which constitutes an outer conductor, the through hole defined by the outer wall is provided with an inner conductor, the feed conductors of each feeder component and the inner conductor of the junction port The outer conductor of the combined port is connected with the balun arm where the feeding component is located.
  • the annular base is provided with two wiring layers isolated from each other along the height direction, and the two combining ports are arranged in one-to-one correspondence with the two wiring layers, and one end of the combining port passes through the bottom end of the annular base.
  • the feeding conductors of the two feeding parts in each polarization direction extend along a wiring layer and are connected to the inner conductors of the corresponding combination ports.
  • the balun is connected to the side wall of the annular base, and the inner cavity of the hollow balun arm communicates with the corresponding wiring layer.
  • the ring base is further provided with three mounting holes for mounting the radiation unit to the reflector by means of screws, and the three mounting holes are arranged at intervals along the ring base and not collinear.
  • each of the combined ports is adapted to be directly electrically connected to the phase shifter of the antenna through only a single cable, so as to be adapted to receive a signal directly output by the phase shifter, and realize the function through the combined port. Minute.
  • the present application also relates to a base station antenna, including a reflector, the above-mentioned radiation unit provided on the front of the reflector, and a phase shifter provided on the back of the reflector and electrically connected to the radiation unit.
  • the feeding part and the balun arm form a structure similar to a coaxial cable, so it can be connected to one A dipole on the balun is fed, and the feeding part can be fixed to the balun during the forming process of the balun arm of the radiating unit.
  • No welding is required, which saves welding man-hours and helps reduce The unstable factors of electrical performance caused by welding, and at the same time, because coaxial cables are no longer used, it helps reduce costs.
  • FIG. 1 is a perspective view of a radiation unit according to an embodiment of this application.
  • Fig. 2 is a cross-sectional view of the radiating unit of Fig. 1 in the direction of C-C, showing the relationship between the feeding part and the balun arm;
  • Fig. 3 is a perspective view of the radiating unit shown in Fig. 1 from another angle of view;
  • Fig. 4 is a side view of the radiating unit shown in Fig. 1;
  • FIG. 5 is a partial cross-sectional view of the radiation unit shown in FIG. 1 cut along the circumferential direction of the ring base, showing the internal structure of the ring base and the connection relationship between the ring base and the joint port and the balun;
  • Fig. 6 is a perspective view of a radiation unit according to another embodiment of the application.
  • FIG. 7 is a perspective view of a base station antenna according to an embodiment of the application, showing a structure in which the above-mentioned radiation unit is used as a low-frequency radiation unit and nested with the high-frequency radiation unit on a reflector;
  • Fig. 8 is a perspective view of the base station antenna shown in Fig. 7 from another perspective, showing the structure of the base station antenna on the back of the reflector.
  • the present application relates to a radiating unit 100, preferably a low-frequency radiating unit of dual-polarized four dipoles, with a built-in power feeding component 30 that feeds the dipole 10 In the balun 20, it forms a coaxial cable-like structure together with the outer wall of the balun 20, feeding the dipole 10, which can reduce the use of coaxial cables and reduce the cost; in addition, the feeding component 30 can be in the balun It is formed in the inner cavity of the balun arm during the forming process, which can save welding man-hours and avoid the factors of unstable electrical performance due to welding.
  • the radiation unit 100 includes two pairs of dipoles 10 working in two orthogonal polarization directions, four baluns 20 for supporting the two pairs of dipoles 10, and connected to the baluns.
  • the annular base 50 at one end away from the dipole 10, and the four feeding parts 30 for feeding the four dipoles 10 in a one-to-one correspondence.
  • the dipole 10 includes two radiating arms 101
  • the balun 20 includes a pair of opposite and spaced balun arms 21, 22, and the two radiating/101 are composed of two balun arms 21. , 22 one-to-one correspondence support.
  • one of the balun arms 21 is hollow, that is, the balun arm 21 has an inner cavity.
  • the feeding component 30 includes a feeding conductor 31 and an insulating medium 32.
  • the feeding conductor 31 is wrapped by the insulating medium 32 and passes through the cavity of the balun arm 21.
  • One end of the feed conductor 31 is formed by the balun arm 21. The upper end of which is extended and electrically connected to the radiating arm 101 supported by the other balun arm 22.
  • the protruding end of the feeding conductor 31 is directly welded to the radiating arm or balun arm, so as to directly feed the radiating arm through the feeding conductor 31.
  • the two balun arms of the balun 20 are both hollow structures, or one balun arm is hollow, and the other balun arm is hollow at least at one end close to the radiating arm. One end is penetrated by a hollow balun arm and then placed in the cavity of the other balun arm to couple and feed the radiation arm. It should be understood that the protruding end of the feeding conductor 31 does not directly contact the radiating arm and the balun, and its insulated overhead is installed in the inner cavity of the balun to realize coupling and feeding with the radiating arm.
  • the feeding part 30 is built into the inner cavity of the balun arm, so that the balun arm and the feeding part 30 form a structure similar to a coaxial cable, It not only supports the dipole 10 structurally, but also feeds the dipole 10 electrically, without using a coaxial cable, and avoiding the steps of coaxial cable and balun welding, which helps to save assembly man-hours , And can avoid the unstable factors of electrical performance caused by welding.
  • the annular base 50 is provided with two wiring layers 51 along its height direction, and the two wiring layers 51 correspond to the two polarization directions one to one and are arranged separately from each other.
  • the balun 20 is fixed to the annular base 50 on the side wall of the annular base 50, and the inner cavity of the hollow balun arm 21 is connected to the corresponding wiring layer 51, that is, two diagonals on a diagonal
  • the balun arm 21 of one balun 20 is connected to one wiring layer 51, and the two baluns on the other diagonal are connected to the other wiring layer 51, so that the feeding conductor 31 can be routed along the inner cavity of the balun arm and the wiring layer 51. It is arranged inside the balun arm and the annular base 50 to avoid the exposure of the feeding conductor 31 and does not need to be welded.
  • the radiating unit 100 is further provided with two combining ports 40 corresponding to two polarization directions, and two dipoles 10 belonging to the same polarization direction are connected to one combining port 40 through the feeding part 30 , And then connected to the phase shifter through the combining port 40.
  • the wiring power divider function is integrated into the radiating unit 100 itself, and no additional wiring power divider is required, which can avoid the problem of fixing the radiating unit 100 and the wiring power divider separately.
  • each combined circuit The port 40 is connected to the phase shifter through a coaxial cable to complete the phase shifter's feeding of two dipoles 10 in one polarization direction.
  • coaxial cables makes it possible to reduce the coaxial cable by half when the radiating unit 100 is applied to the base station antenna, which is beneficial to reduce the weight of the antenna, reduce the cost, and make the back of the reflector more concise;
  • Two cable vias are provided on the reflector for the combination port 40 to pass through and connect to the phase shifter.
  • the cable vias are reduced by half, which can reduce the number of cable vias on the reflector.
  • the hole position opened on the upper side is beneficial to improve production efficiency, and is also helpful to avoid intermodulation problems caused by burrs on the hole position.
  • the junction port 40 has a cylindrical structure, its outer wall constitutes an outer conductor 41, and an inner conductor 42 is provided at the through hole defined by the outer wall.
  • An insulating medium 43 is used for the interval, the feeding conductor 31 of the feeding member 30 is connected to the inner conductor of the combining port 40, and the outer conductor of the combining port 40 is connected to the balun arm where the feeding member 30 is located.
  • the distance from the spatial position where the combining port 40 is located to the respective feeding points of the two dipoles 10 of the same polarization is approximately the same.
  • the junction port 40 is integrally formed on the annular base 50 and is located at the geometric symmetry axis of the two dipoles 10 of the same polarization.
  • the outer conductor (that is, the outer wall) of the combining port 40 is integrally formed with the ring base 50, and the inner conductor 42 of the combining port 40 extends into the corresponding wiring layer 51 of the ring base 50, and makes the inner conductor 42 Connect with the feeder part 30 extending from the inner cavity of the balun arm 21 and the feeder conductor 31 extending along the wiring layer 51, thereby completing the connection between the combined port 40 and the feeder part 30, realizing a combined port 40 paired to two Combining function of 10 dipoles.
  • the combining port 40 corresponding to the dipole 10 in one polarization direction is located in the other polarization. In the direction of a Barron's location.
  • the effective electrical length of the feeding part 30 from the combining port 40 to the radiating arm is half a wavelength or an integer multiple of the half wavelength
  • One end of each of the two feeding parts 30 is connected to the dipole 10, and the other end of each is connected to the combining port 40
  • the parallel impedance of the two feeding parts 30 at the combining port 40 is a specific impedance, for example, 50 Ohms to match the output impedance of the feed network.
  • the impedance at the combiner port 405 is 50 ohms, which matches the output impedance of the antenna feed network, it is no longer necessary to set up a corresponding length of coaxial cable between the combiner port 405 and the phase shifter for impedance matching, reducing The length of the coaxial cable.
  • the design principle of the length of the feeding component 30 is: the output impedance of the feeding network of the existing base station antenna is 50 ohms, while the existing dipole 10 is mostly composed of half-wave oscillators, and the ideal impedance of the half-wave oscillator is 75 ohms. From left to right, in order to match the dipole 10 with the feed network in the base station antenna, the output impedance of the combining port 40 of the radiating unit 100 of the present application must be 50 ohms.
  • the two dipoles 10 with the same polarization direction need to pass through two 75 ohm feeding parts that are integer multiples of half a wavelength (0.5 ⁇ ) 30 is connected in parallel at the combiner port 40 to achieve an impedance of 50 ohms.
  • the balun arm of the conventional radiating unit 100 is in order to achieve balanced feeding, its length is mostly a quarter of a wavelength (ie 0.25 ⁇ ), and the dielectric constant of a coaxial cable is generally 2.01, a half-wavelength feeding part
  • the length of 30 is
  • the length of the feeding component 30 of the present application along the balun arm 2 is 0.25 ⁇
  • the length along the annular base 50 is about 0.1 ⁇
  • the radiating unit 100 may not be provided with a ring base 50, and the combining port 40 is connected with a balun to complete the connection between the combining port 40 and the power feeding component 30.
  • the present application can flexibly adjust the impedance of the radiation unit 100 by changing the dielectric constant of the insulating medium in the feeding component 30 and the combining port 40, and the size of the feeding conductor 31 and the inner conductor of the combining port 40 to achieve radiation.
  • the electrical performance of the unit 100 can be flexibly adjust the impedance of the radiation unit 100 by changing the dielectric constant of the insulating medium in the feeding component 30 and the combining port 40, and the size of the feeding conductor 31 and the inner conductor of the combining port 40 to achieve radiation.
  • the annular base 50 is provided with three mounting posts 60, each of the mounting posts 60 is provided with a mounting hole, and the mounting hole is a threaded hole for mounting the radiation unit 100 to the reflector by means of screws. hole.
  • the three mounting holes are spaced along the annular base 50 and are not arranged collinearly, so that a triangular structure is formed between the three mounting holes, and the connection stability is higher.
  • the four mounting holes are used to fix the radiating unit
  • the solution of 100 can reduce the number of mounting holes, and correspondingly reduce the number of holes opened on the antenna reflector, so that the antenna reflector has better integrity, and is beneficial to avoid burrs in the reflector holes that may cause intermodulation problems.
  • the radiating unit 100 also has a filtering function, which can effectively reduce the problem of mutual coupling between different frequency bands of multiple frequency bands and multiple systems.
  • a short-circuit filter stub is added on the basis.
  • the short-circuit filter stub is composed of a coaxial cable and a short-circuit terminal 70.
  • the outer conductor of one end of the coaxial cable is welded to the bottom of the outer conductor of the junction port 40, and the inner conductor of the coaxial cable is welded together.
  • the inner conductor of the junction port 40 is welded together.
  • the inner conductor and outer conductor of the other end of the coaxial cable are both welded to the short-circuit terminal 70.
  • the length of the coaxial cable is about a quarter of the wavelength of the center frequency of the working frequency band of the radiating unit 100, that is, ⁇ /4.
  • this application also relates to a base station antenna.
  • the base station antenna has two frequency bands, high frequency and low frequency.
  • the high frequency is (1710 ⁇ 1880MHz), and the low frequency is (820 ⁇ 960MHz), the base station antenna is composed of multiple high-frequency radiation units 200 and low-frequency radiation units.
  • This embodiment illustrates one group of high- and low-frequency radiation units as an example.
  • the base station antenna adopts the radiation unit 100 of the above example as a low-frequency radiation unit, and thus can have the structure and function of the above radiation unit 100.
  • the high-frequency unit 200 is nested inside the low-frequency radiation unit, and is installed on the front surface of the reflector 300 together.
  • the phase shifter 400 for performing phase conversion of the signal to realize the function of the electric downward tilt angle is provided on the back of the reflector 300.
  • the phase shifter 400 only feeds two pairs of dipoles 10 of a low-frequency radiation unit 100 through two coaxial cables 500, and the two coaxial cables are connected to the two combined ports one by one. 40, the phase shifter 400 can be connected to a low-frequency radiation unit 100 to complete the power feeding. Therefore, compared with the current base station antenna where four cables 500 are used to feed the four dipoles 10, half of the coaxial cable 500 can be saved, which reduces the weight and cost of the antenna, and makes the back of the reflector more compact. concise. In addition, due to the reduction in the use of coaxial cables, the number of cable clamps 600 for fixing the cables is also reduced, further reducing costs.
  • two cable perforations are provided on the reflector for the connection port 40 to pass through and connected to the phase shifter, and three screw holes are provided for screws to pass through and the mounting post 60 on the radiation unit 100.
  • the installation hole connection can complete the installation and fixation of a radiation unit 100 on the reflector.
  • the hole position is reduced by nearly half, which is beneficial to reduce the reflector.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请提供一种基站天线及其辐射单元,所述辐射单元包括偶极子、支撑所述偶极子的巴伦,以及为偶极子馈电的馈电部件,所述巴伦包括一对相对设置的巴伦臂,至少一个巴伦臂中空设置,所述馈电部件包括馈电导体和绝缘介质,所述馈电导体穿设于中空的所述巴伦臂并与由另一个巴伦臂支撑的一个辐射臂连接;所述绝缘介质填充于馈电导体与巴伦臂内壁之间并使馈电导体紧固于巴伦臂内。通过将由馈电导体和绝缘介质构成的馈电部件置于中空巴伦臂的内腔中,馈电部件与巴伦臂构成类似同轴电缆的结构,不需要使用同轴电缆馈电,不需要进行焊接,节省了焊接工时、减少由于焊接带来的电气性能不稳定因素,同时,由于不使用同轴电缆,可以降低成本。

Description

基站天线及其辐射单元 技术领域
本申请涉及移动通信技术领域,尤其涉及一种基站天线及其辐射单元。
背景技术
随着通信行业的发展,小型化、多频段、多制式的基站天线越来越成为通信行业应用的主流天线。现有基站天线所采用的低频辐射单元中,往往采用同轴电缆来对偶极子(如半波振子)进行馈电,其中同轴电缆的外导体焊接于巴伦的一个巴伦臂,同轴电缆的内导体焊接到巴伦另一个巴伦臂支撑的辐射臂,从而完成同轴电缆对偶极子馈电。
然而,现有辐射单元中,同轴电缆需要与巴伦和辐射臂焊接,效率较低、也容易带来电气指标不稳定的因素。另外,由于同轴电缆价格相对较高,辐射单元的成本也较大。
发明内容
本申请的首要目的旨在提供一种可以提高生产效率并减少电气指标不稳定因素的辐射单元。
本申请的另一目的旨在提供一种采用上述辐射单元的基站天线。
为了实现上述目的,本申请提供以下技术方案:
作为第一方面,本申请涉及一种辐射单元,包括偶极子、支撑所述偶极子的巴伦,以及为偶极子馈电的馈电部件;所述巴伦包括一对相对设置的巴伦臂,至少一个巴伦臂中空设置;所述馈电部件包括馈电导体和绝缘介质,所述馈电导体穿设于中空的所述巴伦臂并与由另一个巴伦臂支撑的一个辐射臂连接;所述绝缘介质填充于馈电导体与巴伦臂内壁之间并使馈电导体紧固于巴伦臂内。
优选地,所述偶极子对应两个相互正交极化方向设有两对,所述馈电部件对应每个所述偶极子设有一个;所述辐射单元对应每个极化方向设有一个合路端口;为同一极化方向的两个偶极子馈电的两个馈电部件各自一端连接到对应的辐射臂,各自另一端通过该辐射单元所固有的合路端口实现合路。
优选地,所述合路端口所在的空间位置到所述同一极化的两个偶极子各自的馈电点的距离大致相等。
优选地,所述辐射单元还包括环形底座,所述巴伦远离所述偶极子的一端连接于所述环形底座,所述合路端口一体化形成于所述环形底座上。
优选地,所述合路端口形成于底座上相对于同一极化的两个所述偶极子的几何对称轴线处。
优选地,所述合路端口呈筒型结构,其外壁构成外导体,由其外壁限定形成的通孔处设置有内导体,各馈电部件所具有的馈电导体与合路端口的内导体相连接,所述合路端口的外导体与馈电部件所在的巴伦臂相连接。
优选地,所述环形底座沿高度方向设有相互隔离的两个布线层,两个合路端口与两个所述布线层一一对应设置并且合路端口一端从所述环形底座的底端穿出,每一个极化方向的两个馈电部件的馈电导体沿一个布线层延伸与对应合路端口的内导体连接。
优选地,所述巴伦与所述环形底座的侧壁连接,并且中空的巴伦臂的内腔与对应的布线层相互连通。
优选地,所述环形底座还开设有三个用于借助螺钉将辐射单元安装到反射板上的安装孔,三个所述安装孔沿环形底座间隔且不共线设置。
优选地,每个所述的合路端口,适于仅通过单一线缆与天线的移相器直接电连接,以适于接收该移相器直接输出的一路信号,经由该合路端口实现功分。
作为第二方面,本申请还涉及一种基站天线,包括反射板、设于反射板正面的上述辐射单元,及设于反射板背面并与辐射单元电连接的移相器。
相比现有技术,本申请的方案具有以下优点:
本申请的辐射单元中,通过将由馈电导体和绝缘介质构成的馈电部件置于中空巴伦臂的内腔中,馈电部件与巴伦臂构成类似同轴电缆的结构,因而可以对一个巴伦上的一个偶极子进行馈电,可以在辐射单元的巴伦臂成型过程中完成所述馈电部件与巴伦的固定,不需要进行焊接,节省了焊接工时、有助于减少由于焊接带来的电气性能不稳定因素,同时,由于不再采用同轴电缆,有助于降低成本。
本申请附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请一种实施方式的辐射单元的立体图;
图2为图1的辐射单元C-C向的剖视图,示出馈电部件与巴伦臂之间的关系;
图3为图1所示辐射单元另一个视角的立体图;
图4为图1所示辐射单元的侧视图;
图5为图1所示辐射单元沿环形底座圆周方向切割所形成的局部剖视图,示出环形底座的内部结构及环形底座与合路端口和巴伦之间的连接关系;
图6为本申请另一种实施方式的辐射单元的立体图;
图7为本申请一种实施方式的基站天线的立体图,示出了采用上述辐射单元作为低频辐射单元并与高频辐射单元嵌套安装于反射板的结构;
图8为图7所示基站天线另一个视角的立体图,示出了该基站天线于反射板背面的结构。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其 中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能解释为对本申请的限制。
参见图1至图5,作为第一方面,本申请涉及一种辐射单元100,优选为双极化四偶极子的低频辐射单元,通过将为偶极子10馈电的馈电部件30内置于巴伦20,从而与巴伦20的外壁共同构成类似同轴电缆的结构,为偶极子10馈电,可以减少同轴电缆的使用,降低成本;另外,馈电部件30可在巴伦成型过程中成型于巴伦臂的内腔中,可以省去焊接的工时,也避免由于焊接而带来电气性能不稳定的因素。
在一种实施方式中,所述辐射单元100包括工作于相互正交的两个极化方向的两对偶极子10、用于支撑两对偶极子10的四个巴伦20、连接于巴伦远离偶极子10一端的环形底座50,以及一一对应为四个所述偶极子10馈电的四个馈电部件30。所述偶极子10包括两个辐射臂101,所述巴伦20包括一对相对并具有间隔设置的巴伦臂21、22,两个所述辐射/101由两个所述巴伦臂21、22一一对应支撑。
优选地,其中一个巴伦臂21中空设置,即该巴伦臂21具有内腔。所述馈电部件30包括馈电导体31和绝缘介质32,所述馈电导体31由所述绝缘介质32包裹穿设于巴伦臂21的所述空腔中,其一端由巴伦臂21的上端伸出与另一个巴伦臂22支撑的辐射臂101电连接。在该实施方式中,所述馈电导体31伸出的一端与辐射臂或巴伦臂直接焊接,以通过馈电导体31对辐射臂直接馈电。
在另一种实施方式中,所述巴伦20的两个巴伦臂均为中空结构,或者一个巴伦臂中空,另一巴伦臂至少靠近辐射臂的一端为中空,馈电导体31的一端由一个中空的巴伦臂穿出而后置于另一巴伦臂的内腔内,对辐射臂进行耦合馈电。应当理解的,馈电导体31的伸出端不与辐射臂和巴伦直接接触,其绝缘架空地安装在巴伦臂的内腔中,实现与辐射臂耦合馈电。
通过将巴伦臂21设成具有内腔的中空结构,将馈电部件30内置于巴伦臂的内腔中,使巴伦臂与馈电部件30之间构成类似于同轴电缆的结构, 既从结构上支撑所述偶极子10,也从电气上对偶极子10进行馈电,不需要使用同轴电缆,也避免了同轴电缆与巴伦焊接的步骤,有助于节省装配工时,并且可以避免由焊接带来的电气性能不稳定的因素。
请结合图5,进一步地,所述环形底座50沿其高度方向设有两个布线层51,两个所述布线层51与两个极化方向一一对应且相互隔离设置。所述巴伦20于所述环形底座50的侧壁固定于所述环形底座50,并且中空的巴伦臂21的内腔与对应的所述布线层51连通,即一个对角线上的两个巴伦20的巴伦臂21与一个布线层51连通,另一对角线的两个巴伦与另一布线层51连通,从而使馈电导体31可沿巴伦臂内腔和布线层设置在巴伦臂和环形底座50内部,避免馈电导体31的外露,也不需要对其进行焊接。
进一步地,所述辐射单元100还对应两个极化方向设有两个合路端口40,属于同一极化方向的两个偶极子10通过所述馈电部件30连接至一个合路端口40,进而经过合路端口40连接至移相器。通过设置合路端口40,将接线功分功能集成于辐射单元100本身,不需要设置额外的接线功分器,可以避免辐射单元100与接线功分器分别固定的问题,另外,每个合路端口40通过一根同轴电缆连接至移相器即可完成移相器对一个极化方向两个偶极子10的馈电,相对于现有采用两根同轴电缆馈电的方案,减少了同轴电缆的使用,使得该辐射单元100应用于基站天线时,可以减少一半的同轴电缆,有利于减轻天线的重量、降低成本,并使得反射板背面更为简洁;另外,只需要在反射板上开设两个线缆过孔供合路端口40穿出与移相器连接即可,相对现有开设四个过孔的方案,减少了一半的线缆过孔,可以减少在反射板上开设的孔位,有利于提高生产效率,更有助于避免由于孔位带有毛刺而引起交调问题。
请结合图3,优选地,所述合路端口40呈筒型结构,其外壁构成外导体41,由其外壁限定形成的通孔处设置有内导体42,所述内导体与外导体之间间隔以绝缘介质43,馈电部件30所具有的馈电导体31与合路端口40的内导体相连接,所述合路端口40的外导体与馈电部件30所在的巴伦臂相连接。
优选地,所述合路端口40所在的空间位置到所述同一极化的两个偶极子10各自的馈电点的距离大致相等。
在本实施方式中,所述合路端口40一体化形成于所述环形底座50上,并位于相对于同一极化的两个所述偶极子10的几何对称轴线处。
具体地,所述合路端口40的外导体(即外壁)与环形底座50一体成型,所述合路端口40的内导体42伸入环形底座50的对应布线层51,并使该内导体42与馈电部件30由巴伦臂21内腔伸出并沿布线层51延伸的馈电导体31连接,由此完成合路端口40与馈电部件30的连接,实现一个合路端口40对两个偶极子10的合路功能。
为了使合路端口40到两个偶极子10的空间距离大致相等,在一种较佳的实施方式中,一个极化方向偶极子10对应的所述合路端口40位于另一极化方向的一个巴伦所处的位置处。
当馈电部件30的馈电导体31为75欧姆的导体时,优选的,由合路端口40到辐射臂之间的馈电部件30的有效电长度为半个波长或半波长的整数倍,两根馈电部件30的各自一端与偶极子10连接,各自另一端连接到合路端口40,并且使得两个馈电部件30于该合路端口40处的并联阻抗为特定阻抗,例如50欧姆,以与馈电网络的输出阻抗相适配。
由于合路端口405处的阻抗为50欧姆,与天线馈电网络的输出阻抗相匹配,不再需要在合路端口405与移相器之间设置相应长度的同轴电缆来进行阻抗匹配,减少同轴电缆的长度。
其中馈电部件30长度设计的原理是:现有基站天线的馈电网络的输出阻抗均为50欧姆,而现有偶极子10多由半波振子构成,半波振子的理想阻抗为75欧姆左右,为了让偶极子10与基站天线中的馈电网络匹配,须使本申请辐射单元100的合路端口40的输出阻抗为50欧姆。例如在一个实施例中为了实现合路端口40的输出阻抗为50欧姆,相同极化方向的两个偶极子10需要通过半个波长(0.5λ)整数倍的75欧姆的两个馈电部件30在合路端口40处并联连接实现50欧姆阻抗。由于常规辐射单元100的巴伦臂为了实现平衡馈电,其长度多为四分之一个波长(即0.25λ),而同轴电缆的介电常数一般为2.01,半个波长的馈电部件30的长度为
Figure PCTCN2020109880-appb-000001
优选地,本申请馈电部件30沿巴伦臂2的长度为0.25λ,沿环形底座50的长度约为0.1λ,作为馈电部件30的同轴电缆长度刚好满足阻抗匹配的最小长度。
在另一实施方式中,所述辐射单元100也可不设置环形底座50,所述合路端口40与巴伦连接而完成合路端口40与馈电部件30的连接。
应当理解地,本申请可以通过改变馈电部件30和合路端口40中的绝缘介质的介电常数、馈电导体31和合路端口40内导体的尺寸来灵活调节辐射单元100的阻抗,以实现辐射单元100的电气性能。
优选地,所述环形底座50上设有三个安装柱60,每个所述安装柱60开设有安装孔,所述安装孔为螺纹孔,用于借助螺钉将辐射单元100安装到反射板的安装孔。三个所述安装孔沿环形底座50间隔且不共线设置,从而使三个安装孔之间构成三角形结构,具有较高的连接稳定性,相对于传统天线采用四个安装孔来固定辐射单元100的方案,可以减少安装孔的数量,对应地,减少在天线反射板上开设的孔位,使天线反射板完整性较好,有利于避免反射板孔位存在毛刺而带来交调问题。
参见图6,在另一种实施方式中,所述辐射单元100还具有滤波功能,其可以有效减少多频段多系统不同频段间的互耦问题,该实施例的辐射单元100在上述实施实例的基础上增加短路滤波枝节,所述短路滤波枝节由同轴电缆、短路端子70组成,其中,同轴电缆的一端外导体与合路端口40的外导体底部焊接在一起,同轴电缆的内导体与合路端口40的内导体焊接在一起。同轴电缆的另一端的内导体和外导体均与短路端子70焊接在一起。优选地,同轴电缆的长度约为辐射单元100工作频段中心频点波长的四分之一,即λ/4。
请参考图7和图8,作为第二方面,本申请还涉及一种基站天线,该基站天线的工作频段有高频、低频两个频段,高频为(1710~1880MHz),低频为(820~960MHz),基站天线由多个高频辐射单元200和低频辐射单元构成,本实施例对其中一组高低频辐射单元进行举例说明。
本实施例中,所述基站天线采用以上实例的辐射单元100作为低频辐射单元,因而可以具有以上辐射单元100的结构和功能。另外,高频单元 200嵌套于低频辐射单元内部,并共同安装于反射板300的正面。用于对信号进行相位变换以实现电调下倾角功能的移相器400设于反射板300的背面。
在本实施方式中,所述移相器400仅通过两根同轴电缆500对一个低频辐射单元100的两对偶极子10馈电,两根同轴电缆一一对应连接到两个合路端口40,即可实现移相器400与一个低频辐射单元100的连接,从而完成馈电。因此,相对于现有基站天线中通过四根电缆500对四个偶极子10馈电的情形,可以省去一半的同轴电缆500,减轻天线的重量、降低成本,使得反射板背面更为简洁。另外,由于减少同轴线缆的使用,用于固定线缆的线缆卡夹600的数量也得以减少,进一步降低成本。
较为关键的,通过采用上述辐射单元100,反射板上开设两个线缆穿孔供合路端口40穿出与移相器连接,开设三个螺钉孔供螺钉穿过与辐射单元100上安装柱60的安装孔连接,即可完成一个辐射单元100于反射板上的安装与固定,相对于现有开设四个线缆穿孔、四个螺钉孔的情形,孔位减少近半,有利于降低反射板上孔位存在毛刺而产生的交调问题,从而互调稳定性能更好。
以上所述仅是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (10)

  1. 一种辐射单元,包括偶极子、支撑所述偶极子的巴伦,以及为偶极子馈电的馈电部件,所述巴伦包括一对相对设置的巴伦臂,至少一个巴伦臂中空设置,所述馈电部件包括馈电导体和绝缘介质,所述馈电导体穿设于中空的所述巴伦臂并与由另一个巴伦臂支撑的一个辐射臂连接;所述绝缘介质填充于馈电导体与巴伦臂内壁之间并使馈电导体紧固于巴伦臂内。
  2. 根据权利要求1所述的辐射单元,所述偶极子对应两个相互正交极化方向设有两对,所述馈电部件对应每个所述偶极子设有一个;
    所述辐射单元对应每个极化方向设有一个合路端口;
    为同一极化方向的两个偶极子馈电的两个馈电部件各自一端连接到对应的辐射臂,各自另一端通过该辐射单元所固有的合路端口实现合路。
  3. 根据权利要求2所述的辐射单元,所述合路端口所在的空间位置到所述同一极化的两个偶极子各自的馈电点的距离大致相等。
  4. 根据权利要求2所述的辐射单元,所述辐射单元还包括环形底座,所述巴伦远离所述偶极子的一端连接于所述环形底座,所述合路端口一体化形成于所述环形底座上。
  5. 根据权利要求4所述的辐射单元,所述合路端口形成于底座上相对于同一极化的两个所述偶极子的几何对称轴线处。
  6. 根据权利要求4所述的辐射单元,所述合路端口呈筒型结构,其外壁构成外导体,由其外壁限定形成的通孔处设置有内导体,各馈电部件所具有的馈电导体与合路端口的内导体相连接,所述合路端口的外导体与馈电部件所在的巴伦臂相连接。
  7. 根据权利要求6所述的辐射单元,所述环形底座沿高度方向设有相互隔离的两个布线层,两个所述布线层与两个合路端口一一对应设置并且合路端口一端从所述环形底座的底端穿出,每一个极化方向的两个馈电部件的馈电导体沿一个布线层延伸与对应合路端口的内导体连接。
  8. 根据权利要求7所述的辐射单元,所述巴伦与所述环形底座的侧壁连接,并且中空的巴伦臂的内腔与对应的布线层相互连通。
  9. 根据权利要求4所述的辐射单元,所述环形底座还开设有三个用于借助螺钉将辐射单元安装到反射板的安装孔,三个所述安装孔沿环形底座间隔且不共线设置。
  10. 一种基站天线,包括反射板、设于反射板正面的辐射单元,及设于反射板背面并与辐射单元电连接的移相器,所述辐射单元为权利要求1至9任意一项所述的辐射单元。
PCT/CN2020/109880 2019-09-30 2020-08-18 基站天线及其辐射单元 WO2021063123A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910944449 2019-09-30
CN201910944449.6 2019-09-30
CN201911411651.9 2019-12-31
CN201911411651.9A CN111180860B (zh) 2019-09-30 2019-12-31 基站天线及其辐射单元

Publications (1)

Publication Number Publication Date
WO2021063123A1 true WO2021063123A1 (zh) 2021-04-08

Family

ID=70080350

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2020/109880 WO2021063123A1 (zh) 2019-09-30 2020-08-18 基站天线及其辐射单元
PCT/CN2020/109878 WO2021063122A1 (zh) 2019-09-30 2020-08-18 天线及其辐射单元、辐射单元巴伦结构和制造方法
PCT/CN2020/109881 WO2021063124A1 (zh) 2019-09-30 2020-08-18 馈电组件及辐射单元

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/109878 WO2021063122A1 (zh) 2019-09-30 2020-08-18 天线及其辐射单元、辐射单元巴伦结构和制造方法
PCT/CN2020/109881 WO2021063124A1 (zh) 2019-09-30 2020-08-18 馈电组件及辐射单元

Country Status (4)

Country Link
US (1) US20220376394A1 (zh)
EP (1) EP4024610A4 (zh)
CN (6) CN111092296B (zh)
WO (3) WO2021063123A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111092296B (zh) * 2019-09-30 2022-04-26 京信通信技术(广州)有限公司 基站天线及其辐射单元
CN112072287B (zh) * 2020-09-03 2022-09-27 武汉凡谷电子技术股份有限公司 一种双极化天线模块
CN112397246B (zh) * 2020-10-26 2022-03-08 中国电子科技集团公司第二十九研究所 偶极子天线结构及电缆组件
CN114256577B (zh) * 2021-12-03 2023-05-02 京信通信技术(广州)有限公司 集成式天线单元与基站天线
CN114284720B (zh) * 2021-12-09 2023-04-25 中国电子科技集团公司第二十九研究所 一种双同轴电缆的馈电结构
CN115986372A (zh) * 2022-12-30 2023-04-18 京信通信技术(广州)有限公司 基站天线
CN116487872B (zh) * 2023-05-17 2024-02-09 江苏亨鑫科技有限公司 一种具有pcb功分馈电结构低频辐射单元
CN117791132A (zh) * 2023-09-28 2024-03-29 中信科移动通信技术股份有限公司 辐射单元及基站天线
CN117477216B (zh) * 2023-12-27 2024-04-26 华南理工大学 耦合馈电的低频振子及阵列天线

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080033660A (ko) * 2006-10-13 2008-04-17 (주)에이스안테나 광대역 고이득 이중편파 다이폴 안테나
CN101707291A (zh) * 2009-11-26 2010-05-12 广东通宇通讯设备有限公司 一种宽带的双极化天线单元
WO2012113026A1 (en) * 2011-02-24 2012-08-30 Andrew Llc Wideband radiating elements
CN102694237A (zh) * 2012-05-21 2012-09-26 华为技术有限公司 一种双极化天线单元及基站天线
CN203850423U (zh) * 2014-04-14 2014-09-24 江苏捷士通射频系统有限公司 一种宽频双极化振子
CN205104602U (zh) * 2015-08-27 2016-03-23 摩比天线技术(深圳)有限公司 超宽频双极化辐射单元及其天线
CN109326872A (zh) * 2018-09-14 2019-02-12 京信通信系统(中国)有限公司 基站天线及其辐射单元
CN111180860A (zh) * 2019-09-30 2020-05-19 京信通信技术(广州)有限公司 基站天线及其辐射单元

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4302905C1 (de) * 1993-02-02 1994-03-17 Kathrein Werke Kg Richtantenne, insbesondere Dipolantenne
US5418545A (en) * 1993-11-09 1995-05-23 Harris Corporation Variable length slot fed dipole antenna
US6037912A (en) * 1998-09-22 2000-03-14 Allen Telecom Inc. Low profile bi-directional antenna
DE10150150B4 (de) * 2001-10-11 2006-10-05 Kathrein-Werke Kg Dualpolarisiertes Antennenarray
FR2841391B3 (fr) * 2002-06-25 2004-09-24 Jacquelot Technologies Dispositif rayonnant bi-bande a double polarisation
WO2004055938A2 (en) * 2002-12-13 2004-07-01 Andrew Corporation Improvements relating to dipole antennas and coaxial to microstrip transitions
US6922174B2 (en) * 2003-06-26 2005-07-26 Kathrein-Werke Kg Mobile radio antenna for a base station
EP2005522B1 (en) * 2006-03-30 2015-09-09 Intel Corporation Broadband dual polarized base station antenna
US7688271B2 (en) * 2006-04-18 2010-03-30 Andrew Llc Dipole antenna
US7280083B1 (en) * 2006-08-08 2007-10-09 United States Of America As Represented By The Secretary Of The Navy Phased array blade antenna assembly
KR100826115B1 (ko) * 2006-09-26 2008-04-29 (주)에이스안테나 빔폭 편차를 개선시킨 절곡된 폴디드 다이폴 안테나
US8847832B2 (en) * 2006-12-11 2014-09-30 Harris Corporation Multiple polarization loop antenna and associated methods
TW200832811A (en) * 2007-01-19 2008-08-01 Advanced Connectek Inc Circularly polarized antenna
US8199064B2 (en) * 2007-10-12 2012-06-12 Powerwave Technologies, Inc. Omni directional broadband coplanar antenna element
CN101425626B (zh) * 2007-10-30 2013-10-16 京信通信系统(中国)有限公司 宽频带环状双极化辐射单元及线阵天线
KR100870725B1 (ko) * 2008-03-06 2008-11-27 주식회사 감마누 기판형 광대역 이중편파 다이폴 안테나
GB0820689D0 (en) * 2008-11-12 2008-12-17 Siemens Ag Antenna arrangement
CN201699136U (zh) * 2009-12-30 2011-01-05 广东通宇通讯设备有限公司 一种宽频双极化天线辐射单元及天线
CN102117967A (zh) * 2009-12-30 2011-07-06 广东通宇通讯股份有限公司 一种宽频双极化天线辐射单元及天线
CN102013560B (zh) * 2010-09-25 2013-07-24 广东通宇通讯股份有限公司 一种宽带高性能双极化辐射单元及天线
CN201966321U (zh) * 2010-12-17 2011-09-07 摩比天线技术(深圳)有限公司 一种电调天线的调节机构
CN102171889B (zh) * 2011-04-14 2014-12-24 华为技术有限公司 相位调整装置及多频天线
CN102723577B (zh) * 2012-05-18 2014-08-13 京信通信系统(中国)有限公司 宽频带环状双极化辐射单元及阵列天线
KR101213188B1 (ko) * 2012-09-18 2012-12-18 주식회사 선우커뮤니케이션 이중편파 다이폴 안테나
CN202797284U (zh) * 2012-10-10 2013-03-13 华为技术有限公司 一种馈电网络、天线及双极化天线阵列馈电电路
KR101981368B1 (ko) * 2012-10-15 2019-05-22 갭웨이브스 에이비 자기 접지형 안테나 장치
CN202930542U (zh) * 2012-11-12 2013-05-08 摩比天线技术(深圳)有限公司 宽频双极化天线辐射单元及其天线
CN203103499U (zh) * 2012-12-13 2013-07-31 中国航空无线电电子研究所 超宽带印刷天线
CN103036073A (zh) * 2013-01-05 2013-04-10 广东通宇通讯股份有限公司 双频双极化天线
AU2014218516B2 (en) * 2013-02-21 2017-11-16 Bae Systems Australia Ltd High power - low loss antenna system and method
CN203232955U (zh) * 2013-04-25 2013-10-09 华为技术有限公司 天线振子及具有该天线振子的天线
JP6064830B2 (ja) * 2013-08-07 2017-01-25 日立金属株式会社 アンテナ装置
CN103401073B (zh) * 2013-08-13 2016-01-06 武汉虹信通信技术有限责任公司 一种非金属接触式天线辐射单元相位调节控制器
CN203589207U (zh) * 2013-11-22 2014-05-07 佛山市安捷信通讯设备有限公司 低剖面双极化低频辐射单元、天线阵列、天线装置及天线
CN103779658B (zh) * 2013-11-22 2016-08-24 佛山市安捷信通讯设备有限公司 低剖面多频段双极化天线
CN104716417A (zh) * 2013-12-12 2015-06-17 深圳光启创新技术有限公司 圆极化天线、圆极化天线系统和通讯设备
CN103825104A (zh) * 2014-01-24 2014-05-28 张家港保税区国信通信有限公司 一种td-lte基站内置合路小型化智能天线
CA2954985A1 (en) * 2014-07-15 2016-04-07 Applied Signals Intelligence, Inc. Electrically small, range and angle-of-arrival rf sensor and estimation system
CN204289687U (zh) * 2014-12-12 2015-04-22 湖北日海通讯技术有限公司 天线及其天线振子
US20160322695A1 (en) * 2015-04-30 2016-11-03 Motorola Solutions, Inc Rotary control with integrated antenna
CN104900987B (zh) * 2015-05-13 2019-01-29 武汉虹信通信技术有限责任公司 一种宽频辐射单元及天线阵列
CN105071044B (zh) * 2015-08-12 2018-08-14 四川省韬光通信有限公司 一种小型高隔离度双极化介质谐振器天线
SE539387C2 (en) * 2015-09-15 2017-09-12 Cellmax Tech Ab Antenna feeding network
JP2018532344A (ja) * 2015-10-30 2018-11-01 ホアウェイ・テクノロジーズ・カンパニー・リミテッド アンテナシステム
EP3166178B1 (en) * 2015-11-03 2019-09-11 Huawei Technologies Co., Ltd. An antenna element preferably for a base station antenna
CN205564971U (zh) * 2016-02-19 2016-09-07 深圳国人通信股份有限公司 一种天线振子及其天线
CN205646132U (zh) * 2016-04-13 2016-10-12 深圳市蓝麒科技有限公司 偶极子及数字电视天线
CN205752490U (zh) * 2016-05-20 2016-11-30 中天宽带技术有限公司 一种应用于2g、3g或4g移动通信频段的高增益和低回损天线辐射单元
CN106129596A (zh) * 2016-07-27 2016-11-16 京信通信技术(广州)有限公司 天线辐射单元及多频宽带基站天线
CN106025523B (zh) * 2016-08-09 2019-04-12 武汉虹信通信技术有限责任公司 一种十字型结构辐射单元及其天线阵列
CN106602223B (zh) * 2016-12-16 2023-05-02 华南理工大学 一种低频辐射单元
CN107181068A (zh) * 2017-04-17 2017-09-19 广东通宇通讯股份有限公司 高频超宽带双极化全波辐射单元
US10290950B1 (en) * 2017-04-20 2019-05-14 National Technology & Engineering Solutions Of Sandia, Llc Dual-band GPS antenna with horizontal polarization
CN207303345U (zh) * 2017-07-25 2018-05-01 广东通宇通讯股份有限公司 天线及其辐射单元
CN207217765U (zh) * 2017-10-13 2018-04-10 罗森伯格技术(昆山)有限公司 一种天线辐射单元
CN109672016A (zh) * 2017-10-13 2019-04-23 罗森伯格技术(昆山)有限公司 一种天线辐射单元
CN107910636B (zh) * 2017-10-26 2020-10-13 武汉虹信通信技术有限责任公司 一种宽频辐射单元及天线
CN108172978A (zh) * 2017-12-06 2018-06-15 京信通信系统(中国)有限公司 双极化辐射单元及天线装置
CN207559059U (zh) * 2017-12-11 2018-06-29 广东盛路通信科技股份有限公司 双频双极化小基站天线
CN108039570B (zh) * 2018-01-11 2024-03-08 江苏亨鑫科技有限公司 一种低剖面超宽频双极化辐射装置
CN108281765A (zh) * 2018-01-19 2018-07-13 武汉虹信通信技术有限责任公司 一种超宽频双极化辐射单元及天线
CN207977449U (zh) * 2018-03-13 2018-10-16 江苏捷士通射频系统有限公司 应用于低频段天线的超宽带辐射单元
CN108461904A (zh) * 2018-03-13 2018-08-28 江苏捷士通射频系统有限公司 应用于低频段天线的超宽带辐射单元
CN208272119U (zh) * 2018-04-19 2018-12-21 深圳国人通信股份有限公司 一种低频天线辐射单元
US10468758B1 (en) * 2018-05-07 2019-11-05 Virtual Em Inc. Zero weight airborne antenna with near perfect radiation efficiency utilizing conductive airframe elements and method
US10644384B1 (en) * 2018-05-07 2020-05-05 Virtual Em Inc. Zero weight airborne antenna with near perfect radiation efficiency utilizing conductive airframe elements and method
CN208589522U (zh) * 2018-05-07 2019-03-08 深圳国人通信股份有限公司 一种双极化辐射单元
CN108417998B (zh) * 2018-05-11 2024-01-30 京信通信技术(广州)有限公司 天线及其辐射单元
CN108717997A (zh) * 2018-05-29 2018-10-30 武汉虹信通信技术有限责任公司 一种低频天线振子及基站天线
CN208782022U (zh) * 2018-10-17 2019-04-23 深圳国人通信股份有限公司 一种天线振子
CN109193113B (zh) * 2018-11-06 2024-01-16 深圳市鑫龙通信技术有限公司 一种基站天线的双极化辐射单元
CN209045768U (zh) * 2018-12-19 2019-06-28 深圳国人通信股份有限公司 一种电调基站天线
CN109713433B (zh) * 2019-01-15 2022-11-04 武汉虹信科技发展有限责任公司 分体式辐射单元、天线阵列及基站天线
CN109802234B (zh) * 2019-01-30 2023-09-29 京信通信技术(广州)有限公司 基站天线及移相馈电装置
CN109980329B (zh) * 2019-03-12 2023-12-26 广州司南技术有限公司 一种宽带双极化天线
CA3192130A1 (en) * 2020-09-08 2022-03-17 Niranjan Sundararajan High performance folded dipole for multiband antennas
EP4218089A1 (en) * 2020-09-25 2023-08-02 Telefonaktiebolaget LM Ericsson (publ) Antenna
US11476574B1 (en) * 2022-03-31 2022-10-18 Isco International, Llc Method and system for driving polarization shifting to mitigate interference
US11476585B1 (en) * 2022-03-31 2022-10-18 Isco International, Llc Polarization shifting devices and systems for interference mitigation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080033660A (ko) * 2006-10-13 2008-04-17 (주)에이스안테나 광대역 고이득 이중편파 다이폴 안테나
CN101707291A (zh) * 2009-11-26 2010-05-12 广东通宇通讯设备有限公司 一种宽带的双极化天线单元
WO2012113026A1 (en) * 2011-02-24 2012-08-30 Andrew Llc Wideband radiating elements
CN102694237A (zh) * 2012-05-21 2012-09-26 华为技术有限公司 一种双极化天线单元及基站天线
CN203850423U (zh) * 2014-04-14 2014-09-24 江苏捷士通射频系统有限公司 一种宽频双极化振子
CN205104602U (zh) * 2015-08-27 2016-03-23 摩比天线技术(深圳)有限公司 超宽频双极化辐射单元及其天线
CN109326872A (zh) * 2018-09-14 2019-02-12 京信通信系统(中国)有限公司 基站天线及其辐射单元
CN111180860A (zh) * 2019-09-30 2020-05-19 京信通信技术(广州)有限公司 基站天线及其辐射单元

Also Published As

Publication number Publication date
EP4024610A1 (en) 2022-07-06
CN111092296A (zh) 2020-05-01
CN111180860A (zh) 2020-05-19
CN110994179A (zh) 2020-04-10
CN110994179B (zh) 2021-08-20
EP4024610A4 (en) 2022-10-19
CN112582774B (zh) 2022-05-24
US20220376394A1 (en) 2022-11-24
CN111129773B (zh) 2021-05-28
CN111092296B (zh) 2022-04-26
CN111180860B (zh) 2021-11-05
WO2021063124A1 (zh) 2021-04-08
CN112582774A (zh) 2021-03-30
CN111129773A (zh) 2020-05-08
CN210926288U (zh) 2020-07-03
WO2021063122A1 (zh) 2021-04-08

Similar Documents

Publication Publication Date Title
WO2021063123A1 (zh) 基站天线及其辐射单元
JP3580654B2 (ja) 共用アンテナおよびこれを用いた携帯無線機
US2324462A (en) High frequency antenna system
US5481272A (en) Circularly polarized microcell antenna
CN107808998B (zh) 多极化辐射振子及天线
JP2016103840A (ja) 多帯域アンテナの2重偏波放射素子
CN108155484B (zh) 宽频带的双极化壁挂天线
EP3533109B1 (en) Arrangement comprising antenna elements
JP2006238029A (ja) 携帯無線機
US11264730B2 (en) Quad-port radiating element
CN112821045B (zh) 辐射单元及基站天线
WO2024088133A1 (zh) 双频共口径辐射单元及天线
CN107275757A (zh) 用于多频基站天线中的低剖面宽频双极化辐射装置
CN113708048A (zh) 基站天线及其高频辐射单元
PT1920497E (pt) Antena multifuncional de banda larga que funciona na gama de hf, em particular para instalações navais
JPH07303005A (ja) 車両用アンテナ装置
US11095035B2 (en) Broad band dipole antenna
JP2013055407A (ja) アンテナ装置
JPH05347511A (ja) 平板型アンテナ
CN113054423B (zh) 天线组件
CN112310616B (zh) 一种低成本辐射单元及天线
US2650984A (en) Wireless aerial
US4062017A (en) Multiple frequency band antenna
RU2628300C2 (ru) Антенная решетка эллиптической поляризации
CN214313519U (zh) 天线组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20873071

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20873071

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 13.10.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20873071

Country of ref document: EP

Kind code of ref document: A1