WO2021059969A1 - 樹脂組成物 - Google Patents

樹脂組成物 Download PDF

Info

Publication number
WO2021059969A1
WO2021059969A1 PCT/JP2020/033983 JP2020033983W WO2021059969A1 WO 2021059969 A1 WO2021059969 A1 WO 2021059969A1 JP 2020033983 W JP2020033983 W JP 2020033983W WO 2021059969 A1 WO2021059969 A1 WO 2021059969A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
mass
anhydride
carboxylic acid
unsaturated carboxylic
Prior art date
Application number
PCT/JP2020/033983
Other languages
English (en)
French (fr)
Inventor
陽司 山下
卓也 横道
健二 柏原
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2021548768A priority Critical patent/JPWO2021059969A1/ja
Priority to KR1020227013775A priority patent/KR20220070263A/ko
Priority to EP20870204.3A priority patent/EP4036126A4/en
Priority to CN202080067752.3A priority patent/CN114466875A/zh
Priority to US17/763,866 priority patent/US20220340748A1/en
Publication of WO2021059969A1 publication Critical patent/WO2021059969A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/04Anhydrides, e.g. cyclic anhydrides
    • C08F222/06Maleic anhydride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/46Reaction with unsaturated dicarboxylic acids or anhydrides thereof, e.g. maleinisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers

Definitions

  • the present invention relates to a resin composition, more specifically to a modified propylene-based resin composition.
  • Polyolefin materials such as polypropylene and polyethylene are used in various industrial fields because they are easily available and have excellent molding processability. However, since polyolefin does not have a polar group in the molecule, it is chemically inert and extremely difficult to paint or adhere. To solve these problems, acid-modified polyolefin resins have been proposed as coating pretreatment agents, adhesives, and compatibilizers.
  • a polyolefin resin is modified by introducing a polar group by graft-modifying it with an unsaturated carboxylic acid such as maleic anhydride or a derivative thereof.
  • an unsaturated carboxylic acid such as maleic anhydride or a derivative thereof.
  • a method for graft-reacting an unsaturated carboxylic acid derivative and its anhydride with polyolefin a method of graft-reacting with a graft initiator such as an organic peroxide is known.
  • the conventional method has a problem that the graft efficiency of the unsaturated carboxylic acid or its derivative is low, so that the reaction residue is large and the physical properties of the graft modified product are lowered. Therefore, Patent Document 1 proposes a method of adding rubber and performing a radical reaction in the presence of rubber. Further, Patent Document 2 proposes graft modification in which a solid rubber and an unsaturated aromatic monomer coexist.
  • Patent Document 1 can improve the graft amount (addition amount) of the unsaturated carboxylic acid, it is economical because the graft monomer and the radical generator are added in portions and the reaction time is long. Not only are there problems with properties and profitability, but there are unreacted residues of rubber with a low molecular weight, the fluidity (melt flow rate) increases significantly before and after graft modification, and the adhesion to olefin resin decreases. It has a problem that the physical properties such as poor compatibility and poor compatibility are deteriorated.
  • the amount of the unsaturated carboxylic acid grafted does not reach 1.0% by mass, and there is a problem that the compatibility with the glass fiber is inferior.
  • An object of the present invention is that the content of unsaturated carboxylic acid or its anhydride is high, the influence of reaction residue is small, the increase in fluidity after graft modification can be suppressed, and it is used as a compatibilizer for reinforcing fiber plastics. At that time, it is an object of the present invention to provide a modified polyolefin resin composition having excellent mechanical properties such as bending strength and impact resistance of a molded product.
  • the present inventors have diligently studied, and the flow after graft modification contains a specific diene-based elastomer, has a high content of unsaturated carboxylic acid or its anhydride, and is less affected by reaction residues.
  • a modified polyolefin resin composition having a small change in properties and excellent physical properties and compatibility, and have proposed the present invention. That is, the present invention has the following configuration.
  • the content of the anhydride (C) is 2.0% by mass or more, and the melt mass flow rate of the resin composition measured at 190 ° C.
  • the resin composition preferably has a volatile hydrocarbon compound content of 0.5% by mass or less.
  • the number average molecular weight of the diene-based elastomer (B) is preferably 50,000 or more, and the content of the diene-based elastomer (B) is 5 to 50% by mass with respect to 100 parts by mass of the propylene-based polymer (A). It is preferably a part.
  • Fiber reinforced plastic containing the compatibilizer described above Fiber reinforced plastic containing the compatibilizer described above.
  • the resin composition of the present invention has a high content of unsaturated carboxylic acid or its anhydride, it has excellent compatibility with reinforcing fibers such as carbon fibers and glass fibers.
  • reinforcing fibers such as carbon fibers and glass fibers.
  • the mechanical properties such as impact resistance and bending strength of the molded product are improved, and the processability of the resin composition is also good, so that the reaction residue and the volatile hydrocarbon compound are present. There is little odor because it is low.
  • the propylene-based polymer (A) used in the present invention is not limited, but homopolypropylene, a propylene- ⁇ -olefin copolymer, or the like can be used.
  • the propylene-based polymer (A) preferably contains 40 mol% or more of the propylene component. It is more preferably 50 mol% or more, further preferably 60 mol% or more, and particularly preferably 70 mol% or more. The higher the propylene content, the better the compatibility with the polypropylene resin as a compatibilizer.
  • the propylene- ⁇ -olefin copolymer is obtained by copolymerizing propylene as a main component with ⁇ -olefin.
  • ⁇ -olefin for example, one or several kinds of ethylene, 1-butene, 1-heptene, 1-octene, 4-methyl-1-pentene, vinyl acetate and the like can be used. Among these ⁇ -olefins, ethylene and 1-butene can be preferably used, and 1-butene can be used more preferably.
  • the melting point of the propylene-based polymer (A) is preferably 70 ° C. or higher and 170 ° C. or lower. It is more preferably 120 ° C. or higher, and even more preferably 140 ° C. or higher.
  • the melt mass flow rate of the propylene-based polymer (A) is preferably 1 g / 10 min or more and 100 g / 10 min or less. It is more preferably 50 g / 10 min or less, still more preferably 20 g / 10 min or less. If the melt mass flow rate is 100 g / 10 min or more, granulation becomes difficult when producing the present resin composition.
  • the diene-based elastomer (B) used in the present invention is a polymer mainly composed of a diene compound, although it is not limited, and has a double bond in the main chain.
  • diene elastomer (B) examples include acrylonitrile-butadiene elastomer, butadiene-isoprene copolymer, styrene-isoprene copolymer, butadiene-pentadiene copolymer, styrene-butadiene elastomer, styrene-butadiene copolymer, polychloroprene, polyisoprene, and polybutadiene.
  • styrene-butadiene copolymer and polybutadiene can be preferably used.
  • the diene-based elastomer (B) needs to have a number average molecular weight of 50,000 or more. It is preferably 70,000 or more, more preferably 80,000 or more. When the number average molecular weight is 50,000 or more, the mechanical properties such as workability and impact resistance of the molded product are improved when used as a compatibilizer for glass fiber reinforced plastic.
  • the upper limit of the number average molecular weight is preferably 300,000 or less, and more preferably 200,000 or less.
  • the dispersibility with the propylene copolymer (A) becomes good, the addition amount of the unsaturated carboxylic acid or the anhydride thereof in the resin composition becomes uniform, and the adhesion to the polyolefin resin is excellent. .. Further, when a low molecular weight diene-based elastomer having a number average molecular weight of less than 50,000 is used, it may be inferior in terms of adhesion to the olefin resin and compatibility, which is not desirable.
  • the content of the diene component in the diene-based elastomer (B) is preferably 30% by weight or more and 100% by weight or less. Further, 35% by mass or more is more preferable, and 40 parts by mass or more is further preferable. In particular, a polybutadiene elastomer is most preferable from the viewpoint of improving the amount of acid added.
  • the melting point (Tm) of the diene-based elastomer (B) is preferably 50 ° C. or higher and 120 ° C. or lower. It is more preferably 60 ° C. or higher, and even more preferably 80 ° C. or higher. At 120 ° C. or higher, during kneading with an extruder, incompatibility may occur due to poor melting, resulting in a decrease in the physical properties of the modified polyolefin resin composition and a decrease in the amount of acid added.
  • diene-based elastomers (B) may be used alone or in combination of two or more.
  • the resin composition has a carboxylic acid group or an acid anhydride group thereof, compatibility with glass fibers and the like can be imparted. Further, by having an unsaturated bond, it can be copolymerized with the propylene-based polymer (A) and the diene-based elastomer (B).
  • the unsaturated carboxylic acid or its anhydride (C) is not particularly limited as long as it has both an unsaturated bond and a carboxylic acid group or its anhydride group as described above, but acrylic acid, citraconic acid, nadic acid, Examples thereof include crotonic acid, isocrotonic acid, norbornene dicarboxylic acid, maleic acid, itaconic acid, citraconic acid and their acid anhydrides. Among these, maleic acid is preferable, acid anhydride is more preferable, and maleic anhydride is further preferable.
  • the resin composition of the present invention contains a propylene-based polymer (A), a diene-based elastomer (B), and a reaction product obtained by reacting an unsaturated carboxylic acid or an anhydride thereof (C).
  • the content of the unsaturated carboxylic acid or its anhydride (C) is 2.0% by mass or more of the whole resin composition, and the resin composition is measured at 190 ° C./2.16 kg specified by JIS K 7210.
  • the melt mass flow rate of the above is 2 g / 10 min or more and 500 g / 10 min or less, and the reaction residue derived from the unsaturated carboxylic acid or its anhydride (C) in the resin composition is less than 2.0% by mass of the entire resin composition. It is characterized by that.
  • the reaction product contains at least a copolymer composed of a propylene-based polymer (A), a diene-based elastomer (B), an unsaturated carboxylic acid or an anhydride thereof (C), and further contains a propylene-based polymer (A). And a copolymer of an unsaturated carboxylic acid or an anhydride (C) thereof, a diene-based elastomer (B) and a copolymer of an unsaturated carboxylic acid or an anhydride thereof (C) may be contained.
  • the resin composition of the present invention contains 98.0% by mass or more of the above reaction product and less than 2.0% by mass of a reaction residue derived from unsaturated carboxylic acid or its anhydride (C).
  • the resin composition of the present invention needs to contain an unsaturated carboxylic acid or an anhydride (C) thereof in an amount of 2.0% by mass or more. Further, it is preferably 4.0% by mass or more, and more preferably 5.0% by mass or more.
  • the content of unsaturated carboxylic acid or its anhydride (C) is equal to or higher than the above value, the compatibility with glass fibers and the like is improved, and when used as a compatibilizer for glass fiber reinforced plastics, for example. It is possible to improve each physical property such as tensile elastic modulus, flexural modulus and impact resistance.
  • the content of the unsaturated carboxylic acid or its anhydride (C) is preferably 15.0% by mass or less, more preferably 10.0% by mass or less. When it is 15.0% by mass or less, the compatibility with polyolefin or the like, particularly the compatibility with polypropylene or the like is good, and when used as a compatibilizer for glass fiber reinforced plastic, the mechanical properties are improved.
  • the reaction residue derived from the unsaturated carboxylic acid of the resin composition of the present invention or its anhydride (C) is less than 2.0% by mass. Further, it is preferably less than 1.5% by mass.
  • the reaction residue lowers each mechanical property such as tensile elastic modulus, bending elastic modulus and impact resistance. ..
  • the reaction efficiency of the unsaturated carboxylic acid or its anhydride (C) can be improved, and the reaction residue can be reduced.
  • the resin composition of the present invention has a melt mass flow rate of 190 ° C./2.16 kg specified in JIS K7210 of 2 g / 10 min or more and 500 g / 10 min or less. It is preferably 300 g / 10 min or less, and more preferably 280 g / 10 min or less. Further, it is preferably 50 g / 10 min or more, more preferably 80 g / 10 min or more, and further preferably 105 g / 10 min or more.
  • the melt mass flow rate is 500 g / 10 min or less, for example, when used as a compatibilizer for glass fiber reinforced plastic, the adhesive strength between the matrix and the glass interface becomes high, and the adhesive strength, bending strength, impact resistance, etc. are all increased. The mechanical properties are high. It is preferable that the melt mass flow rate is set to the above value or less to facilitate granulation.
  • the resin composition of the present invention preferably has a volatile hydrocarbon compound content of 0.5% by mass or less. Further, it is preferably 0.3% by mass or less, and more preferably 0.1% by mass or less.
  • a volatile hydrocarbon compound content of 0.5% by mass or less.
  • the content of the volatile hydrocarbon compound in the resin composition is 0.5% by mass or less, for example, when used as a compatibilizer for glass fiber reinforced plastic, deterioration of mechanical properties due to the volatile hydrocarbon compound can be suppressed. ..
  • the content of the volatile hydrocarbon compound is 1.0% by mass or more, when it is used as a compatibilizer for glass fiber reinforced plastic, not only the mechanical properties are deteriorated but also the heat resistance is also lowered.
  • the resin composition of the present invention preferably contains the diene-based elastomer (B) in an amount of 5 to 50% by mass based on the total amount of the propylene-based polymer (A) and the diene-based elastomer (B). It is more preferably 5 to 40% by mass, still more preferably 10 to 20% by mass.
  • the content of the diene-based elastomer (B) component is 5% by mass or more, mechanical properties such as impact resistance are improved when used as a compatibilizer for glass fiber reinforced plastics, for example.
  • the content of the diene-based elastomer (B) component is 50% by mass or less, for example, when used as a compatibilizer for glass fiber reinforced plastic, the compatibility with PP, which is a matrix, becomes good and the mechanical properties are improved.
  • the resin composition of the present invention may further contain glass fibers in addition to a copolymer of a propylene-based polymer (A), a diene-based elastomer (B), and an unsaturated carboxylic acid or an anhydride thereof (C). it can.
  • the resin composition of the present invention can be used as a compatibilizer, and the compatibilizer containing the resin composition of the present invention is preferably used as a compatibilizer for glass fiber reinforced plastics.
  • the method for producing the resin composition of the present invention is not particularly limited, but for example, a radical graft reaction (that is, a radical species is generated for a polymer serving as a main chain, and the radical species is used as a polymerization initiation point to generate an unsaturated carboxylic acid and acid anhydride. (Reaction of graft polymerization of a substance) and the like.
  • the radical generator is not particularly limited, but organic peroxides and azonitriles can be used, and organic peroxides are preferable.
  • the organic peroxide is not particularly limited, but is not particularly limited, but is di-tert-butylperoxyphthalate, tert-butylhydroperoxide, dicumyl peroxide, benzoyl peroxide, tert-butylperoxybenzoate, tert-butylperoxy-.
  • Peroxides can be mentioned.
  • azonitriles include azobisisobutyronitrile and azobisisopropionitrile.
  • the resin composition of the present invention can be used as a compatibilizer.
  • the compatibilizer of the present invention can be used for, for example, polyolefin resins such as polypropylene and polyethylene, and matrix resins such as polyethylene terephthalate, nylon, polycarbonate, epoxy resins and phenol resins. Among them, polyolefin resin can be preferably used, and polypropylene resin can be more preferably used. Further, as the filler type, glass fiber, carbon fiber, fiber reinforced plastic, talc, wood powder and the like can be used, and among them, glass fiber and plastic fiber are preferable, and glass fiber is particularly preferable.
  • the glass fiber reinforced plastic containing the compatibilizer of the present invention contains 40 to 95% by mass of the matrix resin and 5 to 60% by mass of the glass fiber with respect to the total amount of the matrix resin, the glass fiber and the compatibilizer of the present invention.
  • the compatibilizer of the present invention is preferably 1 to 10% by mass. Within the above range, the compatibility of the resin composition with the polyolefin resin and the glass fiber is well exhibited, and the kneadability of the resin composition, the polyolefin resin and the glass fiber is excellent.
  • the glass fiber reinforced plastic containing the compatibilizer of the present invention is used for parts for home appliances and automobiles.
  • Resin composition (P-1) (2 parts by mass), 58 parts by mass polypropylene (J-700GP manufactured by Prime Polymer Co., Ltd.) and 40 parts by mass of glass fiber (Central) on an extrusion molding machine (LABOTEX30HSS manufactured by Nippon Seiko Co., Ltd.) Glass ECS03-631K) is supplied, granulated, and then injection molded using an injection molding machine (equipment: TI-30F6 manufactured by Toyo Kikai Kinzoku Co., Ltd.) under the conditions of an injection temperature of 190 ° C and a mold temperature of 30 ° C.
  • test piece 1 test piece 1 described in JIS K 7139: 2009 (ISO 20753) was molded.
  • corresponding test pieces were prepared for each of the resin compositions of Examples 2 to 7 and Comparative Examples 1 to 7 and tested.
  • the content of the reaction residue derived from the unsaturated carboxylic acid or its anhydride (C) in the resin composition of the present invention was measured as described below ⁇ low molecular weight component>. ⁇ Low molecular weight> Each sample of the resin composition was thoroughly washed with acetone at 90 ° C. for 2 hours to extract the reaction residue. The acetone extract is transferred to a flask and concentrated to dryness at 100 ° C. in vacuum, and the weight of the flask before transferring the acetone extract is removed from the weight of the flask containing the concentrated and dried extract to obtain the weight of the dry solid component. Calculated.
  • ⁇ Number average molecular weight (Mn)> The number average molecular weight is determined by the GPC method using the eluent as THF by the gel permeation chromatograph Alliance e2695 (hereinafter, GPC, standard substance: polystyrene resin, mobile phase: tetrahydrofuran, column: Shodex KF-806 + KF-803). , Column temperature: 40 ° C., flow velocity: 1.0 ml / min, detector: tetrahydrofuran array detector (wavelength 254 nm ultraviolet rays)).
  • Example 1 Toshiba Machine Co., Ltd. twin-screw extruder (TEM-26SX) equipped with a supply unit, compression unit, and weighing unit contains 100 parts by mass of polypropylene (A-1), 15 parts by mass of diene elastomer (B-1), and maleic anhydride. 8 parts by mass and 2 parts by mass of di-tert-butyl peroxide were added, and the reaction was carried out at 160 ° C. After removing the reactive decomposition products of unreacted maleic anhydride and di-tert-butyl peroxide in the degassing part, a resin composition (P-1) was obtained. Table 1 shows the property values of P-1 and the evaluation results of the physical properties.
  • Example 2 A resin composition (P-2) was obtained in the same manner as in Example 1 except that the amount of maleic anhydride used in Example 1 was changed to 4 parts by mass. The evaluation results are shown in Table 1.
  • Example 3 The resin composition (P-3) was obtained in the same manner as in Example 1 except that the amount of maleic anhydride used in Example 1 was changed to 16 parts by mass. The evaluation results are shown in Table 1.
  • Example 4 A resin composition (P-4) was obtained in the same manner as in Example 1 except that the amount of di-tert-butyl peroxide used in Example 1 was changed to 1 part by mass. The evaluation results are shown in Table 1.
  • Example 5 A resin composition (P-5) was obtained in the same manner as in Example 1 except that the amount of di-tert-butyl peroxide used in Example 1 was changed to 4 parts by mass. The evaluation results are shown in Table 1.
  • Example 6 A resin composition (P-6) was obtained in the same manner as in Example 1 except that the supply amount of the diene-based elastomer (B-1) used in Example 1 was changed to 5 parts by mass. The evaluation results are shown in Table 1.
  • Example 7 A resin composition (P-7) was obtained in the same manner as in Example 1 except that the supply amount of the diene-based elastomer (B-1) used in Example 1 was changed to 50 parts by mass. The evaluation results are shown in Table 1.
  • Resin compositions (P-8) to (P-14) were also obtained for Comparative Examples 1 to 7 below, and the evaluation results are shown in Table 2.
  • Comparative Example 1 A resin composition (P-8) was obtained in the same manner as in Example 1 except that the amount of maleic anhydride used in Example 1 was changed to 2 parts by mass.
  • a resin composition (P-9) was obtained in the same manner as in Example 1 except that the amount of maleic anhydride used in Example 1 was changed to 20 parts by mass.
  • a resin composition (P-11) was obtained by adjusting the amount of maleic anhydride used in Example 1 to 20 parts by mass and the same as in Example 1 except that the reaction temperature was changed to 140 ° C.
  • Example 5 A resin composition (P-12) was obtained in the same manner as in Example 1 except that the diene-based elastomer used in Example 1 was changed from (B-1) to (B-2).
  • Example 6 A resin composition (P-13) was obtained in the same manner as in Example 1 except that the diene-based elastomer used in Example 1 was changed to 0 parts by mass.
  • Example 7 A resin composition (P-14) was obtained in the same manner as in Example 1 except that the diene-based elastomer used in Example 1 was changed to 70 parts by mass.
  • the propylene-based polymer (A) used in Examples and Comparative Examples is as follows.
  • A-1 Polypropylene (pellets, melt mass flow rate: 9 g / 10 min (230 ° C))
  • B diene-based elastomer used in Examples and Comparative Examples is as follows.
  • the resin composition of the present invention is a propylene-based polymer or a diene-based polymer obtained by copolymerizing a high-molecular-weight diene-based elastomer with a small amount of reaction residue of a carboxylic acid compound while having an acid addition amount of a certain amount or more. Since it contains an elastomer and a copolymer of an unsaturated carboxylic acid or an anhydride thereof, it has excellent interfacial adhesion with glass. Therefore, it can be used as a compatibilizer for glass fiber reinforced plastics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】不飽和カルボン酸またはその無水物の含有量が高く、かつ反応残渣物の影響が少なくグラフト変性後の流動性の上昇を抑制でき、かつ強化繊維プラスチックの相溶化剤として用いた際、成形品の曲げ強度や耐衝撃性などの機械物性に優れた変性ポリオレフィン樹脂組成物を提供すること 【解決手段】 プロピレン系重合体(A)、ジエン系エラストマー(B)および、不飽和カルボン酸またはその無水物(C)を反応させてなる反応生成物を含有する樹脂組成物であって、樹脂組成物の不飽和カルボン酸またはその無水物(C)の含有量が2.0質量%以上であり、かつJIS K 7210で規定する190℃/2.16kgにおいて測定される樹脂組成物のメルトマスフローレイトが2g/10min以上500g/10min以下であり、樹脂組成物中の不飽和カルボン酸またはその無水物(C)由来の反応残渣が2.0質量%未満である樹脂組成物。

Description

樹脂組成物
 本発明は、樹脂組成物、さらに詳しくは変性プロピレン系樹脂組成物に関する。
ポリプロピレン、ポリエチレン等のポリオレフィン材料は、入手が容易で且つ成形加工性に優れることから、各種産業分野で使用されている。しかし、ポリオレフィンは分子内に極性基を有していないことから化学的に不活性であって極めて塗装や接着が困難な材料である。
 こうした問題に対して、酸変性ポリオレフィン樹脂が塗装前処理剤や接着剤、相溶化剤として提案されている。
 従来からポリオレフィン樹脂を、例えば無水マレイン酸などの不飽和カルボン酸またはその誘導体を用い、グラフト変性することによって極性基を導入し改質することはよく知られており、広く一般に実施されている。
 ポリオレフィンに不飽和カルボン酸誘導体及びその無水物をグラフト反応させる方法としては、有機過酸化物等のグラフト開始剤を用いてグラフト反応させる方法が公知である。
 しかしながら、従来の方法では不飽和カルボン酸またはその誘導体のグラフト効率が低いために反応残渣が多く、グラフト変性物の物性を低下させる問題を有している。
 そこで、特許文献1には、ゴムを添加し、ゴム共存下でラジカル反応を行う方法等が提案されている。
 また、特許文献2では固型ゴムおよび不飽和芳香族単量体を共存させグラフト変性することが提案されている。
特開昭55-50040号公報 特許2632980号公報
 しかし、特許文献1に記載の方法では不飽和カルボン酸のグラフト量(付加量)の向上は認められるが、グラフトモノマーおよびラジカル発生剤を分割添加し、反応時間を長く必要とするために、経済性、採算性に問題があるばかりか、低分子量であるゴムの未反応残存物が存在し、グラフト変性前後で流動性(メルトフローレート)が大幅に上昇し、オレフィン樹脂への密着性の低下や相溶性が劣るといった物性が低下するという問題を有している。また、特許文献2に記載の方法では、不飽和カルボン酸のグラフト量は1.0質量%にも到達せず、ガラス繊維との相溶性が劣るといった問題があった。
本発明の目的は、不飽和カルボン酸またはその無水物の含有量が高く、かつ反応残渣物の影響が少なくグラフト変性後の流動性の上昇を抑制でき、かつ強化繊維プラスチックの相溶化剤として用いた際、成形品の曲げ強度や耐衝撃性などの機械物性に優れた変性ポリオレフィン樹脂組成物を提供することにある。
 上記課題を達成するため、本発明者らは鋭意検討し、特定のジエン系エラストマーを含み、不飽和カルボン酸またはその無水物の含有量が高く、かつ反応残渣の影響が少なくグラフト変性後の流動性の変化が小さい、物性および相溶性に優れた変性ポリオレフィン樹脂組成物を見出し、本発明を提案するに至った。
すなわち本発明は、以下の構成からなる。
プロピレン系重合体(A)、ジエン系エラストマー(B)および、不飽和カルボン酸またはその無水物(C)の共重合物を含有する樹脂組成物であって、樹脂組成物の不飽和カルボン酸またはその無水物(C)の含有量が2.0質量%以上であり、かつJIS K 7210で規定する190℃/2.16kgにおいて測定される樹脂組成物のメルトマスフローレイトが2g/10min以上500g/10min以下であり、樹脂組成物中の不飽和カルボン酸またはその無水物(C)由来の反応残渣が2.0質量%未満である樹脂組成物。
 前記樹脂組成物は、揮発性炭化水素化合物の含有量が0.5質量%以下であることが好ましい。
 前記ジエン系エラストマー(B)の数平均分子量が5万以上であることが好ましく、前記ジエン系エラストマー(B)の含有量が、プロピレン系重合体(A)100質量部に対し、5~50質量部であることが好ましい。
 さらにガラス繊維を含むことを特徴とする、前記のいずれかに記載の樹脂組成物。
 前記のいずれかに記載の樹脂組成物を含む、相溶化剤。
 前記のいずれかに記載の樹脂組成物を含むガラス繊維強化プラスチック用相溶化剤。
 前記に記載の相溶化剤を含有する繊維強化プラスチック。
  本発明の樹脂組成物は、不飽和カルボン酸またはその無水物の含有量が高いため、炭素繊維やガラス繊維などの強化繊維との相溶性が優れる。例えばガラス繊維強化プラスチックの相溶化剤として用いた際、成形品の耐衝撃性や曲げ強度などの機械物性が向上するまた、樹脂組成物の加工性もよく、反応残渣および揮発性炭化水素化合物が少ないため臭気が少ない。
 以下、本発明の実施の形態について詳細に説明する。
<プロピレン系重合体(A)>
 本発明で用いるプロピレン系重合体(A)は限定的ではないが、ホモポリプロピレンまたはプロピレン-α-オレフィン共重合体などが使用できる。
 プロピレン系重合体(A)はプロピレン成分を40モル%以上含むことが好ましい。より好ましくは50モル%以上であり、さらに好ましくは60モル%以上、特に好ましくは70モル%以上である。プロピレン含有量が多いほど、相溶化剤として、ポリプロピレン樹脂との相溶性が向上する。
プロピレン-α-オレフィン共重合体は、プロピレンを主体としてこれにα-オレフィンを共重合したものである。α-オレフィンとしては、例えば、エチレン、1-ブテン、1-ヘプテン、1-オクテン、4-メチル-1-ペンテン、酢酸ビニルなどを一種又は数種用いることができる。これらのα-オレフィンの中では、エチレン、1-ブテンが好ましく使用でき、1-ブテンがより好ましく使用できる。
 プロピレン系重合体(A)の融点は70℃以上、170℃以下であることが好ましい。より好ましくは120℃以上であり、さらに好ましくは140℃以上である。融点が高いほど結晶性が高くなり、相溶化剤としてポリプロピレンと混錬した際、成型物の機械強度が向上する。
 プロピレン系重合体(A)のメルトマスフローレートは1g/10min以上100g/10min以下であることが好ましい。より好ましくは50g/10min以下、さらに好ましくは20g/10min以下である。メルトマスフローレートが100g/10min以上では本樹脂組成物を作製する際、造粒が困難となる。
 <ジエン系エラストマー(B)>
 本発明で用いるジエン系エラストマー(B)は、限定的ではないがジエン化合物を主体とする重合体で、二重結合を主鎖に有している。ジエン系エラストマー(B)としては例えば、アクリロニトリル・ブタジエンエラストマー、ブタジエン・イソプレンコポリマー、スチレン・イソプレンコポリマー、ブタジエン・ペンタジエンコポリマー、スチレン・ブタジエンエラストマー、スチレンブタジエンコポリマー、ポリクロロプレン、ポリイソプレン、ポリブタジエンなどを挙げることができ、好ましくはスチレンブタジエンコポリマー、ポリブタジエンが使用できる。
ジエン系エラストマー(B)は、数平均分子量が5万以上であることが必要である。好ましくは7万以上、より好ましくは8万以上である。数平均分子量が5万以上であることで、加工性およびガラス繊維強化プラスチックの相溶化剤として用いた場合、成形品の耐衝撃性などの機械物性が良好となる。また、数平均分子量の上限は好ましくは30万以下であり、より好ましくは20万以下である。前記の値以下であることでプロピレン系共重合体(A)との分散性が良好となり、樹脂組成物の不飽和カルボン酸またはその無水物の付加量が均一となりポリオレフィン樹脂への密着性が優れる。また、数平均分子量が5万未満である低分子量のジエン系エラストマーを用いた場合、オレフィン樹脂への密着性や相溶性の点で劣る可能性があるため望ましくない。
ジエン系エラストマー(B)におけるジエン成分の含有量は、30重量%以上100重量%以下であることが好ましい。また、35質量%以上がより好ましく、40質量部以上がさらに好ましい。特にポリブタジエンエラストマーが、酸付加量向上の観点から最も好ましい。
 ジエン系エラストマー(B)の融点(Tm)は、50℃以上120℃以下であることが好ましい。より好ましくは60℃以上であり、さらに好ましくは80℃以上である。120℃以上では、押出機での混練時、溶融不良により非相溶となり、変性ポリオレフィン樹脂組成物の物性低下、酸付加量低下になることがある。
これらのジエン系エラストマー(B)は、単独で用いてもよく、また2種類以上を組み合わせて用いてもよい。
<不飽和カルボン酸またはその無水物(C)>
 本発明で用いる不飽和カルボン酸またはその無水物(C)は、分子中にC=C不飽和結合と、カルボン酸基またはその酸無水物基の両方を有する化合物である。樹脂組成物がカルボン酸基またはその酸無水物基を有することで、ガラス繊維等との相溶性を付与することができる。また不飽和結合を有することで、プロピレン系重合体(A)およびジエン系エラストマー(B)と共重合可能である。
不飽和カルボン酸またはその無水物(C)は前述のとおり不飽和結合と、カルボン酸基またはその無水物基の両方を有していれば特に限定されないが、アクリル酸、メタクリル酸、ナジック酸、クロトン酸、イソクロトン酸、ノルボルネンジカルボン酸、マレイン酸、イタコン酸、シトラコン酸及びこれらの酸無水物が挙げられる。これらの中でもマレイン酸が好ましく、酸無水物がより好ましく、無水マレイン酸がさらに好ましい。
<樹脂組成物>
 本発明の樹脂組成物は、プロピレン系重合体(A)、ジエン系エラストマー(B)および、不飽和カルボン酸またはその無水物(C)を反応させてなる反応生成物を含有し、樹脂組成物の不飽和カルボン酸またはその無水物(C)の含有量が樹脂組成物全体の2.0質量%以上であり、かつJIS K 7210で規定する190℃/2.16kgにおいて測定される樹脂組成物のメルトマスフローレイトが2g/10min以上500g/10min以下であり、樹脂組成物中の不飽和カルボン酸またはその無水物(C)由来の反応残渣が樹脂組成物全体の2.0質量%未満であることを特徴とする。
 上記反応生成物は、少なくともプロピレン系重合体(A)、ジエン系エラストマー(B)および、不飽和カルボン酸またはその無水物(C)からなる共重合体を含み、更にプロピレン系重合体(A)及び不飽和カルボン酸またはその無水物(C)の共重合体、ジエン系エラストマー(B)及び不飽和カルボン酸またはその無水物(C)の共重合体を含むことがある。本発明の樹脂組成物は、上記反応生成物を98.0質量%以上含み、不飽和カルボン酸またはその無水物(C)由来の反応残渣を2.0質量%未満含むものである。
 本発明の樹脂組成物は、不飽和カルボン酸またはその無水物(C)を2.0質量%以上含有していることが必要である。また好ましくは4.0質量%以上、より好ましくは5.0質量%以上である。不飽和カルボン酸またはその無水物(C)の含有量が上記の値以上であることで、ガラス繊維等との相溶性を向上させ、ひいてはガラス繊維強化プラスチックの相溶化剤として用いたとき、例えば引張弾性率、曲げ弾性率や耐衝撃性などの各物性を向上させることができる。不飽和カルボン酸またはその無水物(C)の含有量は15.0質量%以下が好ましく、より好ましくは10.0質量%以下である。15.0質量%以下ではポリオレフィン等との相溶性、特にポリプロピレン等との相溶性が良好となり、ガラス繊維強化プラスチックの相溶化剤として用いたとき、機械物性が向上する。
 本発明の樹脂組成物の不飽和カルボン酸またはその無水物(C)由来の反応残渣は2.0質量%未満である。また好ましくは1.5質量%未満である。反応残渣の含有量が2.0質量%以上であると、ガラス繊維強化プラスチックの相溶化剤として用いたとき、反応残渣により引張弾性率、曲げ弾性率や耐衝撃性など各機械物性が低下する。ジエン系エラストマーを含有することにより不飽和カルボン酸またはその無水物(C)の反応効率が向上し、反応残渣を低減することが可能である。
 本発明の樹脂組成物はJIS K 7210で規定する190℃/2.16kgのメルトマスフローレイトが2g/10min以上500g/10min以下である。好ましくは300g/10min以下であり、より好ましくは、280g/10min以下である。また、好ましくは50g/10min以上であり、より好ましくは80g/10min以上であり、さらに好ましくは105g/10min以上である。メルトマスフローレイトが500g/10min以下であることで、例えばガラス繊維強化プラスチックの相溶化剤として用いたとき、マトリックスとガラス界面の接着強度が高くなり、接着強度、曲げ強度、耐衝撃性などの各機械物性が高くなる。メルトマスフローレイトを上記の値以下とすることで造粒が容易となり好ましい。
 本発明の樹脂組成物は揮発性炭化水素化合物の含有量が0.5質量%以下であることが好ましい。また、好ましくは0.3質量%以下であり、より好ましくは0.1質量%以下である。樹脂組成物の揮発性炭化水素化合物の含有量が0.5質量%以下であることで、例えばガラス繊維強化プラスチックの相溶化剤として用いたとき、揮発性炭化水素化合物による機械物性低下を抑制できる。揮発性炭化水素化合物の含有量が1.0質量%以上ではガラス繊維強化プラスチックの相溶化剤として用いたとき、機械物性低下を招くばかりでなく、耐熱性も低下する。
 本発明の樹脂組成物は、ジエン系エラストマー(B)を、プロピレン系重合体(A)およびジエン系エラストマー(B)の合計量に対し、5~50質量%含有することが好ましい。より好ましくは5~40質量%、さらに好ましくは10~20質量%である。ジエン系エラストマー(B)成分の含有量を5質量%以上とすることで、例えばガラス繊維強化プラスチックの相溶化剤として用いたとき、耐衝撃性などの機械物性が向上する。ジエン系エラストマー(B)成分の含有量が50質量%以下では例えばガラス繊維強化プラスチックの相溶化剤として用いたとき、マトリックスであるPPとの相溶性が良好となり機械物性が向上する。
 本発明の樹脂組成物は、プロピレン系重合体(A)、ジエン系エラストマー(B)および、不飽和カルボン酸またはその無水物(C)の共重合物に加えて、さらにガラス繊維を含むことができる。本発明の樹脂組成物は相溶化剤として用いることができ、本発明の樹脂組成物を含む相溶化剤は、ガラス繊維強化プラスチック用相溶化剤として好ましく用いられる。
<樹脂組成物の製造方法>
 本発明の樹脂組成物の製造方法は特に限定されないが、例えばラジカルグラフト反応(すなわち主鎖となるポリマーに対してラジカル種を生成し、そのラジカル種を重合開始点として不飽和カルボン酸および酸無水物をグラフト重合させる反応)などが挙げられる。
 ラジカル発生剤としては、特に限定されないが、有機過酸化物、アゾニトリル類を使用することができ、有機過酸化物が好ましい。有機過酸化物としては、特に限定されないが、ジ-tert-ブチルパーオキシフタレート、tert-ブチルヒドロパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシピバレート、メチルエチルケトンパーオキサイド、ジ-tert-ブチルパーオキサイド、ラウロイルパーオキサイド、2,5―ジメチルー2,5―ジ(tert-ブチルプロピル)ヘキサン等の過酸化物が挙げられる。アゾニトリル類としてはアゾビスイソブチロニトリル、アゾビスイソプロピオニトリル等が挙げられる。
<相溶化剤>
 本発明の樹脂組成物は相溶化剤として用いることができる。本発明の相溶化剤は、例えばポリプロピレン、ポリエチレン等のポリオレフィン樹脂、ポリエチレンテレフタレート、ナイロン、ポリカーボネート、エポキシ樹脂やフェノール樹脂などのマトリックス樹脂に対して用いることができる。中でもポリオレフィン樹脂を好適に用いることができ、ポリプロピレン樹脂がより好ましく用いることができる。また、フィラー種としては、ガラス繊維、炭素繊維、繊維強化プラスチック、タルク、木粉などを用いることができ、中でもガラス繊維やプラスチック繊維が好ましく、特にガラス繊維が好ましい。
 本発明の相溶化剤を含有するガラス繊維強化プラスチックは、マトリックス樹脂、ガラス繊維および本発明の相溶化剤の合計量に対し、マトリックス樹脂を40~95質量%、ガラス繊維を5~60質量%、本発明の相溶化剤を1~10質量%であることが好ましい。前記範囲内であることで、ポリオレフィン樹脂とガラス繊維に対して樹脂組成物の相溶性が良好に発揮され、樹脂組成物とポリオレフィン樹脂とガラス繊維との混練性が優れる。
 本発明の相溶化剤を含有するガラス繊維強化プラスチックは、家電や自動車用部品に用いられる。
 以下、実施例を挙げて本発明を更に詳細に説明する。但し、本発明は実施例に限定されない。
<試験片の作製>
 押出成形機(日本精工株式会社製LABOTEX30HSS)に樹脂組成物(P-1)(2質量部)、58質量部のポリプロピレン(プライムポリマー株式会社製J―700GP)および40質量部のガラス繊維(セントラル硝子製ECS03―631K)を供給し、造粒した後、射出成形機(装置:東洋機械金属株式会社製TI―30F6)を用いて、射出温度190℃、金型温度30℃の条件で射出成形し、JIS K 7139:2009(ISO 20753)記載の多目的試験片(タイプA1)(試験片1)を成形した。
 また、実施例2~7及び比較例1~7の樹脂組成物のそれぞれについても対応する試験片を作製し、試験を行った。
<引張強度の評価>
 上記で作製した試験片を用いて引張強度の評価を行った。評価法はJIS K 7161:2014(ISO 527-1)に規定された方法による。試験片の厚みは3.0mmであり、チャック間距離は50mm、引張速度1.0mm/分の条件で引張強度を評価する。測定温度はことわりのない限り23℃である。
〔評価基準〕
 ◎:非常に優れる(70MPa以上)
 ○:優れる(60MPa以上、70MPa未満)
 △:実用可能(50MPa以上、60MPa未満)
 ×:実用不能(50MPa未満)
<曲げ強度の評価>
上記で作製した試験片の端部を加工機(東洋精機製株式会社製NOTCHING TOOL-A)を用い切断し、短冊形試験片(80mm×10mm×3mm)を作製し、曲げ強度の評価を行った。評価法はJIS K 7171:2016(ISO178:2010)に規定された方法による。スパン長さ48mm、荷重速度1.0mm/分の条件で曲げ強度を評価した。測定温度はことわりのない限り23℃である。
〔評価基準〕
 ◎:非常に優れる(100MPa以上)
 ○:優れる(90MPa以上、100MPa未満)
 △:実用可能(80MPa以上、90MPa未満)
 ×:実用不能(80MPa未満)
<耐衝撃性の評価>
上記で作製した試験片の端部を加工機(東洋精機製株式会社製NOTCHING TOOL―A)を用い切断し、ノッチ付短冊形試験片(80mm×10mm×3mm、ノッチ深さ2 mm)を作製し、耐衝撃試験を行った。評価法はJIS K 7110:1999(ISO 180)に規定されたアイゾット衝撃試験法による。
〔評価基準〕
 ◎:非常に優れる(7kJ/m以上)
 ○:優れる(6kJ/m以上、7kJ/m未満)
 △:実用可能(5kJ/m以上、6kJ/m未満)
 ×:実用不能(5kJ/m未満)
<不飽和カルボン酸またはその酸無水物の含有量>
 FT-IR(島津製作所社製、FT-IR8200PC)を使用して、無水マレイン酸(東京化成製)のクロロホルム溶液によって作成した検量線から得られる係数(f)、アセトン洗浄後の樹脂組成物の各サンプルを10質量%トルエン溶液のサンプル試料とし、サンプル試料における無水マレイン酸のカルボニル(C=O)結合の伸縮ピーク(1780cm-1)の吸光度(I)を用いて下記式により算出した値である。
不飽和カルボン酸またはその酸無水物の含有量[質量%]=[吸光度(I)× 係数(f)× 100 / サンプル試料濃度(%)]
本発明の樹脂組成物における不飽和カルボン酸またはその無水物(C)由来の反応残渣の含有量は、下記の<低分子量分>の通りに測定した。
<低分子量分>
 樹脂組成物の各サンプルを90℃のアセトンで2h十分に洗浄し、反応残渣を抽出した。アセトン抽出物をフラスコに移し真空で100℃にて濃縮乾固させ、アセトン抽出物を移す前のフラスコ重量を、濃縮乾固させた抽出物が入ったフラスコの重量から除き、乾固成分重量を算出した。本発明の低分子量分は、下記式により算出した値である。
低分子量分[質量%]=[乾固成分重量 / アセトン洗浄前樹脂重量]×100
<メルトマスフローレイト>
 JIS K6758に規定された方法による。測定温度は190℃であり荷重はことわりのない限り2.16kgで測定する。
<数平均分子量(Mn)>
 数平均分子量は溶離液をTHFとしてGPC法により、日本ウォーターズ社製ゲルパーミエーションクロマトグラフAlliance e2695(以下、GPC、標準物質:ポリスチレン樹脂、移動相:テトラヒドロフラン、カラム:Shodex KF-806 + KF-803、カラム温度:40℃、流速:1.0ml/分、検出器:フォトダイオードアレイ検出器(波長254nm = 紫外線))によって測定した。
<揮発性炭化水素化化合物含有量>
 樹脂組成物の各サンプルを210℃で1時間静置させ、残留した重量から算出した値である。
揮発性炭化水素化合物含有量[質量%]=[(静置前の樹脂重量-静置後の樹脂重量)/静置前の樹脂重量]×100
〔実施例1〕
 供給部、圧縮部および計量部を備えた東芝機械製二軸押出機(TEM―26SX)に、ポリプロピレン(A-1)100質量部、ジエン系エラストマー(B-1)15質量部及び無水マレイン酸8質量部、ジ-tert-ブチルパーオキサイド2質量部を加え、160℃で反応した。脱気部にて未反応の無水マレイン酸およびジ-tert-ブチルパーオキサイドの反応分解物を除去後、樹脂組成物(P-1)を得た。P-1の性状値および物性評価結果を表1に示す。
〔実施例2〕
 実施例1で用いた無水マレイン酸の量を4質量部に変更した以外は実施例1と同様にすることにより、樹脂組成物(P-2)を得た。評価結果を表1に示す。
〔実施例3〕
実施例1で用いた無水マレイン酸の量を16質量部に変更した以外は実施例1と同様にすることにより、樹脂組成物(P-3)を得た。評価結果を表1に示す。
〔実施例4〕
実施例1で用いたジ-tert-ブチルパーオキサイドの量を1質量部に変更した以外は実施例1と同様にすることにより、樹脂組成物(P-4)を得た。評価結果を表1に示す。
〔実施例5〕
実施例1で用いたジ-tert-ブチルパーオキサイドの量を4質量部に変更した以外は実施例1と同様にすることにより、樹脂組成物(P-5)を得た。評価結果を表1に示す。
〔実施例6〕
実施例1で用いたジエン系エラストマー(B-1)の供給量を5質量部に変更した以外は実施例1と同様にすることにより、樹脂組成物(P-6)を得た。評価結果を表1に示す。
〔実施例7〕
実施例1で用いたジエン系エラストマー(B-1)の供給量を50質量部に変更した以外は実施例1と同様にすることにより、樹脂組成物(P-7)を得た。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 下記比較例1~7についてもそれぞれ樹脂組成物(P-8)~(P-14)を得、評価結果を表2に示した。
〔比較例1〕
実施例1で用いた無水マレイン酸の量を2質量部に変更した以外は実施例1と同様にすることにより、樹脂組成物(P-8)を得た。
〔比較例2〕
実施例1で用いた無水マレイン酸の量を20質量部に変更した以外は実施例1と同様にすることにより、樹脂組成物(P-9)を得た。
〔比較例3〕
実施例1で用いたジ-tert-ブチルパーオキサイドの量を6質量部に変更した以外は実施例1と同様にすることにより、樹脂組成物(P-10)を得た。
〔比較例4〕
実施例1で用いた無水マレイン酸の量を20質量部にし、反応温度を140℃に変更した以外は実施例1と同様にすることにより、樹脂組成物(P-11)を得た。
〔比較例5〕
実施例1で用いたジエン系エラストマーを(B―1)から(B―2)に変更した以外は実施例1と同様にすることにより、樹脂組成物(P-12)を得た。
〔比較例6〕
実施例1で用いたジエン系エラストマーを0質量部に変更した以外は実施例1と同様にすることにより、樹脂組成物(P-13)を得た。
〔比較例7〕
実施例1で用いたジエン系エラストマーを70質量部に変更した以外は実施例1と同様にすることにより、樹脂組成物(P-14)を得た。
Figure JPOXMLDOC01-appb-T000002
実施例および比較例で用いたプロピレン系重合体(A)は以下のものである。
A-1: ポリプロピレン(ペレット、メルトマスフローレイト: 9g/10min(230℃))
実施例および比較例で用いたジエン系エラストマー(B)は以下のものである。
B-1:ポリブタジエン(ペレット、密度0.91g/cm、Mn=16万)
B-2:液状ポリブタジエン(Mn=8,000、粘度:15,000cps)
 
 本発明の樹脂組成物は、一定量以上の酸付加量を有しながらも、カルボン酸化合物の反応残渣量が少なく、かつ高分子量なジエン系エラストマーを共重合した、プロピレン系重合体、ジエン系エラストマーおよび不飽和カルボン酸またはその無水物の共重合物を含有しているため、ガラスとの界面密着性に優れている。よって、ガラス繊維強化プラスチックの相溶化剤として利用しうるものである。
 

Claims (8)

  1.  プロピレン系重合体(A)、ジエン系エラストマー(B)および、不飽和カルボン酸またはその無水物(C)を反応させてなる反応生成物を含有する樹脂組成物であって、不飽和カルボン酸またはその無水物(C)の含有量が樹脂組成物全体の2.0質量%以上であり、かつJIS K 7210で規定する190℃/2.16kgにおいて測定される樹脂組成物のメルトマスフローレイトが2g/10min以上500g/10min以下であり、不飽和カルボン酸またはその無水物(C)由来の反応残渣が樹脂組成物全体の2.0質量%未満である樹脂組成物。
  2.  樹脂組成物における揮発性炭化水素化合物の含有量が樹脂組成物全体の0.5質量%以下である請求項1に記載の樹脂組成物。
  3.  前記ジエン系エラストマー(B)の数平均分子量が5万以上である請求項1または2に記載の樹脂組成物。
  4.  前記ジエン系エラストマー(B)の含有量が、プロピレン系重合体(A)100質量部に対し、5~50質量部である、請求項1から3のいずれかに記載の樹脂組成物。
  5.  樹脂組成物がさらにガラス繊維を含む請求項1から4のいずれかに記載の樹脂組成物。
  6.  請求項1から5のいずれかに記載の樹脂組成物を含む、相溶化剤。
  7.  請求項1から5のいずれかに記載の樹脂組成物を含むガラス繊維強化プラスチック用相溶化剤。
  8.  請求項6に記載の相溶化剤を含有する繊維強化プラスチック。
PCT/JP2020/033983 2019-09-27 2020-09-08 樹脂組成物 WO2021059969A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021548768A JPWO2021059969A1 (ja) 2019-09-27 2020-09-08
KR1020227013775A KR20220070263A (ko) 2019-09-27 2020-09-08 수지 조성물
EP20870204.3A EP4036126A4 (en) 2019-09-27 2020-09-08 RESIN COMPOSITION
CN202080067752.3A CN114466875A (zh) 2019-09-27 2020-09-08 树脂组合物
US17/763,866 US20220340748A1 (en) 2019-09-27 2020-09-08 Resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019176943 2019-09-27
JP2019-176943 2019-09-27

Publications (1)

Publication Number Publication Date
WO2021059969A1 true WO2021059969A1 (ja) 2021-04-01

Family

ID=75165739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033983 WO2021059969A1 (ja) 2019-09-27 2020-09-08 樹脂組成物

Country Status (7)

Country Link
US (1) US20220340748A1 (ja)
EP (1) EP4036126A4 (ja)
JP (1) JPWO2021059969A1 (ja)
KR (1) KR20220070263A (ja)
CN (1) CN114466875A (ja)
TW (1) TW202116898A (ja)
WO (1) WO2021059969A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550040A (en) * 1978-10-05 1980-04-11 Idemitsu Kosan Co Ltd Polyolefin resin composition
JPS63172715A (ja) * 1987-01-12 1988-07-16 Mitsubishi Electric Corp 低誘電率樹脂
JPH08127697A (ja) * 1994-10-28 1996-05-21 Tonen Corp 繊維強化ポリプロピレン組成物
JP2632980B2 (ja) 1987-11-20 1997-07-23 住友化学工業株式会社 変性ポリオレフィン樹脂組成物
JP2001247760A (ja) * 2000-03-06 2001-09-11 Asahi Kasei Corp ウレタン組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4146529A (en) * 1976-03-29 1979-03-27 Toa Nenryo Kogyo Kabushiki Kaisha Process for the production of modified polyolefin
JPH0747679B2 (ja) * 1988-09-30 1995-05-24 住友ダウ株式会社 耐薬品性に優れるゴム強化樹脂組成物
US5244970A (en) * 1990-05-29 1993-09-14 Tonen Corporation Modified polyolefin-containing thermoplastic resin composition
JPH0559254A (ja) * 1991-09-02 1993-03-09 Tonen Corp ガラス繊維強化熱可塑性樹脂組成物
JPH08143739A (ja) * 1994-11-17 1996-06-04 Tonen Corp 繊維強化ポリプロピレン組成物
JPH0959448A (ja) * 1995-08-25 1997-03-04 Tonen Corp マイカ強化ポリプロピレン樹脂組成物
JPH0959449A (ja) * 1995-08-28 1997-03-04 Tonen Corp マイカ強化ポリプロピレン樹脂組成物
JP4820474B2 (ja) * 2005-11-02 2011-11-24 日本ポリエチレン株式会社 ポリオレフィン系樹脂変性物の製造方法及びその変性物
JP5180882B2 (ja) * 2008-07-29 2013-04-10 株式会社プライムポリマー ポリプロピレン樹脂組成物、およびその成形体
WO2010119480A1 (ja) * 2009-04-14 2010-10-21 化薬アクゾ株式会社 無水マレイン酸変性ポリプロピレン及びそれを含む樹脂組成物
JP2016006245A (ja) * 2014-05-22 2016-01-14 ユニチカ株式会社 繊維収束剤、繊維状強化材および繊維強化樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550040A (en) * 1978-10-05 1980-04-11 Idemitsu Kosan Co Ltd Polyolefin resin composition
JPS63172715A (ja) * 1987-01-12 1988-07-16 Mitsubishi Electric Corp 低誘電率樹脂
JP2632980B2 (ja) 1987-11-20 1997-07-23 住友化学工業株式会社 変性ポリオレフィン樹脂組成物
JPH08127697A (ja) * 1994-10-28 1996-05-21 Tonen Corp 繊維強化ポリプロピレン組成物
JP2001247760A (ja) * 2000-03-06 2001-09-11 Asahi Kasei Corp ウレタン組成物

Also Published As

Publication number Publication date
KR20220070263A (ko) 2022-05-30
EP4036126A1 (en) 2022-08-03
JPWO2021059969A1 (ja) 2021-04-01
EP4036126A4 (en) 2023-09-27
US20220340748A1 (en) 2022-10-27
CN114466875A (zh) 2022-05-10
TW202116898A (zh) 2021-05-01

Similar Documents

Publication Publication Date Title
JP4430674B2 (ja) 改良された高温度オーバーモールディング特性を有する水素化スチレン系ブロックコポリマー組成物
JP5121663B2 (ja) 無水マレイン酸変性ポリプロピレン及びそれを含む樹脂組成物
CA2312159A1 (en) Compatibilized blends of non-polar thermoplastic elastomers and polar thermoplastic polymers
EP3333233B1 (en) Hot-melt adhesive resin film and production method therefor
EP1853663B1 (en) Polyolefin-based thermoplastic polymer composition
AU599715B2 (en) Thermoplastic resin composition
US20210301131A1 (en) Polyamide resin composition with high fluidity
JP2643388B2 (ja) 変性ポリオレフィン樹脂組成物
WO2021059969A1 (ja) 樹脂組成物
EP0612800B1 (en) Propylene polymer compositions
JP5281297B2 (ja) ポリプロピレン樹脂組成物
US4107109A (en) Reactive compositions and polymers made therefrom
WO1996001873A1 (fr) Composition de resine polyester thermoplastique
JP2569296B2 (ja) ポリアミド樹脂組成物
JP2004018691A (ja) ポリプロピレン樹脂組成物および該組成物を原料とする自動車外装材部品
KR100379223B1 (ko) 접착성이 우수한 올레핀계 열가소성 일래스토머 수지조성물 및 이의 제조방법
JPH05320446A (ja) ポリフェニレンエーテル系樹脂組成物およびそれからの成形品
JPH0569510A (ja) 熱可塑性エラストマー積層体
JP2802146B2 (ja) ポリオレフィン樹脂組成物
JPH09249783A (ja) 新規なニトリル樹脂組成物および積層体
JPH03221549A (ja) 熱可塑性重合体組成物
JPH0453861A (ja) プロピレン重合体樹脂組成物
JPH085999B2 (ja) 熱可塑性エラストマー組成物
JPH05222138A (ja) プロピレン系重合体組成物およびその製造方法
JPH0689080B2 (ja) 熱接着性に優れた熱可塑性エラストマー組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548768

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227013775

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020870204

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020870204

Country of ref document: EP

Effective date: 20220428