WO2021059835A1 - 親水性基を有する変性ポリカルボジイミド化合物 - Google Patents

親水性基を有する変性ポリカルボジイミド化合物 Download PDF

Info

Publication number
WO2021059835A1
WO2021059835A1 PCT/JP2020/032173 JP2020032173W WO2021059835A1 WO 2021059835 A1 WO2021059835 A1 WO 2021059835A1 JP 2020032173 W JP2020032173 W JP 2020032173W WO 2021059835 A1 WO2021059835 A1 WO 2021059835A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
mass
diisocyanate
resin
Prior art date
Application number
PCT/JP2020/032173
Other languages
English (en)
French (fr)
Inventor
雄大 佐々木
温子 深瀬
Original Assignee
日清紡ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清紡ケミカル株式会社 filed Critical 日清紡ケミカル株式会社
Priority to US17/762,535 priority Critical patent/US20220372202A1/en
Priority to JP2021548441A priority patent/JPWO2021059835A1/ja
Priority to KR1020227009096A priority patent/KR20220069938A/ko
Priority to EP20870392.6A priority patent/EP4036140A4/en
Priority to CN202080067082.5A priority patent/CN114450321A/zh
Publication of WO2021059835A1 publication Critical patent/WO2021059835A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/09Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
    • C08G18/095Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture oligomerisation to carbodiimide or uretone-imine groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/09Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/166Catalysts not provided for in the groups C08G18/18 - C08G18/26
    • C08G18/168Organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/282Alkanols, cycloalkanols or arylalkanols including terpenealcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/285Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/302Water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/797Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing carbodiimide and/or uretone-imine groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • C08G18/807Masked polyisocyanates masked with compounds having only one group containing active hydrogen with nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/83Chemically modified polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2115/00Oligomerisation
    • C08G2115/06Oligomerisation to carbodiimide or uretone-imine groups

Definitions

  • the present invention relates to a modified polycarbodiimide compound having a hydrophilic group.
  • Epoxy compounds, oxazoline compounds, and carbodiimide compounds are known as curing agents that have high reactivity with carboxy groups in carboxy group-containing resins and exhibit excellent curing performance.
  • the carbodiimide compound has an advantage that it exhibits excellent heat resistance even in a cured product because of its high heat resistance.
  • the carbodiimide compound has a problem that it has a short pot life after being mixed with a resin due to its high reactivity, needs to be mixed immediately before use, and gels during storage.
  • Patent Document 1 a part of a carbodiimide group is grafted with a reactive compound having an unsaturated bond. A method has been proposed. However, in this method, the self-crosslinking reaction cannot be eliminated because the carbodiimide group remains.
  • the carbodiimide group of the polycarbodiimide compound is modified with a dialkylamine having a linear or branched alkyl group having 4 or more carbon atoms.
  • a one-component epoxy resin composition comprising the above polyguanidine has been proposed.
  • the epoxy resin exhibits excellent storage stability even when it is liquefied, and can be cured at a relatively low temperature.
  • polyguanidine since the modified amine does not dissociate during curing, polyguanidine must contribute to the curing reaction, and it is difficult to cure the carboxy group-containing resin.
  • Patent Document 3 proposes a water-soluble or water-dispersible modified polycarbodiimide amine in which a polycarbodiimide whose end is sealed with a hydrophilic compound is modified with a secondary amine.
  • the secondary amine used in Patent Document 3 requires a relatively high temperature for dissociation and volatilization and removal, it is cured under low temperature drying conditions generally used in an aqueous or aqueous dispersion system. There is a concern that the reaction will not proceed and the performance will not be exhibited.
  • the present invention has been made in view of such circumstances, and is a modified poly having a hydrophilic group, which has potential as a curing agent, is unblocked at a relatively low temperature, and exhibits the activity of a carbodiimide group. It is an object of the present invention to provide a carbodiimide compound.
  • the present inventors modified the carbodiimide group of the polycarbodiimide compound having a hydrophilic group with an aromatic heterocyclic compound having a secondary amine nitrogen in the ring.
  • the present invention 1.
  • a modified polycarbodiimide compound in which at least a part of the carbodiimide group of the polycarbodiimide derived from the diisocyanate compound whose terminal is sealed with a hydrophilic compound is modified with an aromatic heterocyclic compound having an intracyclic secondary amine nitrogen.
  • One or two modified polycarbodiimide compounds in which the aromatic heterocyclic compound is one or more selected from pyrazole compounds and imidazole compounds. 4.
  • modified polycarbodiimide compounds wherein the aromatic heterocyclic compound is one or more selected from 3,5-dimethylpyrazole, 2-methylimidazole, and imidazole. 5.
  • the aromatic diisocyanate compound is one selected from 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, and o-trizine diisocyanate.
  • modified polycarbodiimide compounds 2 or more 7.
  • the thermosetting resin composition of 8 wherein the content of the curing agent is 0.5 to 1.5 equivalents with respect to the reactive group equivalent of the resin.
  • thermosetting resin compositions in which the resin containing the reactive group is one or more selected from polyurethane resin, polyamide resin, acrylic resin, vinyl acetate resin, polyolefin resin and polyimide resin. provide.
  • the modified polycarbodiimide compound of the present invention since the carbodiimide group is blocked by an aromatic heterocyclic compound having a secondary amine nitrogen in the ring, the electron density of the active hydrogen of guanidine after modification is lowered, and the temperature is low. And it can be dissociated in a short time.
  • the modified polycarbodiimide of the present invention having such characteristics is suitable as a curing agent for a resin containing a reactive group with a carbodiimide group such as a carboxy group-containing resin.
  • the mixed solution of the curing agent containing the modified polycarbodiimide of the present invention and the resin containing a reactive group such as a carboxy group is dried under very mild temperature conditions without being cured, and then cured under mild conditions.
  • composition obtained by mixing the modified polycarbodiimide compound of the present invention with an aqueous or aqueous dispersion resin containing a reactive group such as a carboxy group is also characterized by having a long pot life.
  • the modified polycarbodiimide compound according to the present invention at least a part of the carbodiimide group of the polycarbodiimide derived from the diisocyanate compound whose end is sealed with a hydrophilic compound is modified with an aromatic heterocyclic compound having an intracyclic secondary amine nitrogen. It is characterized by being made.
  • Diisocyanate compound used as a raw material for the modified polycarbodiimide compound of the present invention is not particularly limited, and can be appropriately selected and used from various conventionally known diisocyanate compounds. Specific examples thereof include aliphatic isocyanates such as hexamethylene diisocyanate, 1,4-tetramethylene diisocyanate, 2-methylpentane-1,5-diisocyanate, and lysine diisocyanate; isophorone diisocyanate, norbornan diisocyanate, and hydrogenated tolylene diisocyanate.
  • aliphatic isocyanates such as hexamethylene diisocyanate, 1,4-tetramethylene diisocyanate, 2-methylpentane-1,5-diisocyanate, and lysine diisocyanate
  • isophorone diisocyanate norbornan diisocyanate
  • hydrogenated tolylene diisocyanate hydrogenated tolylene diisocyanate.
  • Alicyclic diisocyanates such as hydrogenated xylene diisocyanate, hydrogenated diphenylmethane diisocyanate, and hydrogenated tetramethylximethylene diisocyanate; 2,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyl ether diisocyanate, p-phenylenediisocyanate, m-phenylenediocyanate, 3,3'-dimethoxy-4,4'-biphenyldiisocyanate, o-trizine diisocyanate, naphthylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, Examples thereof include aromatic diisocyanates such as 3,3'-dimethyl-4,4'-diphenyl ether diisocyanate and 3,3'-dimethyl-4,4'-diphenyl ether
  • aromatic diisocyanates are preferable from the viewpoint of obtaining a polycarbodiimide compound having excellent heat resistance, and 2,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2 , 6-Toluene diisocyanate and o-trizine diisocyanate are more preferable.
  • hydrophilic compound used as the terminal encapsulant is particularly limited as long as it is a hydrophilic organic compound having hydrophilicity and reactivity with the isocyanate group at the terminal of the diisocyanate compound or the polycarbodiimide compound. It's not a thing.
  • Specific examples of the hydrophilic compound include a polyalkylene oxide terminally sealed with an alkoxy group or a phenoxy group represented by the following general formula (a), a dialkylamino alcohol represented by the following general formula (b), and the following general formula.
  • Examples thereof include hydroxycarboxylic acid alkyl esters represented by (c), dialkylaminoalkylamines represented by the following general formula (d), alkyl sulfonates represented by the following general formula (e), and the like. It is not limited.
  • R 1 is an alkyl group or a phenyl group having 1 to 4 carbon atoms
  • R 2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • m is an integer of 1 to 30 carbon atoms.
  • R 3 represents an alkyl group having 1 to 4 carbon atoms
  • R 4 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 5 represents.
  • An alkyl group having 1 to 3 carbon atoms and R 6 represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 7 represents an alkyl group having 1 to 4 carbon atoms and R 8 Represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 9 represents an alkylene group having 1 to 10 carbon atoms
  • M represents an alkali metal such as Na and K.
  • alkyl group having 1 to 4 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, s-butyl, isobutyl and t-butyl groups.
  • alkyl group having 1 to 3 carbon atoms include methyl, ethyl, n-propyl and isopropyl groups.
  • alkylene group having 1 to 10 carbon atoms include methylene, ethylene, propylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, heptamethylene, octamethylene, nonamethylene, decamethylene and the like.
  • hydrophilic compounds represented by the general formulas (a) to (e) may be used alone or in combination of two or more.
  • the hydrophilic compound includes an alkoxy group or a phenoxy group represented by the above general formula (a) having excellent hydrophilicity among the above general formulas (a) to (e).
  • a polyalkylene oxide whose end is sealed with is preferable.
  • polyalkylene oxide represented by the general formula (a) examples include polyethylene glycol monomethyl ether, polyethylene glycol monoethyl ether, polypropylene glycol monomethyl ether, polypropylene glycol monoethyl ether, polypropylene glycol monophenyl ether and the like.
  • polyethylene glycol monomethyl ether is preferable.
  • polycarbodiimide compound of the present invention in addition to the above hydrophilic compound, a compound capable of reacting with a terminal isocyanate group and which alone cannot impart sufficient hydrophilicity to the polycarbodiimide is used in combination as another terminal encapsulant. can do.
  • Other end-capping agents are used as long as they are mixed with the above hydrophilic compound and show hydrophilicity so that polycarbodiimide can be dissolved in an aqueous medium.
  • the other terminal encapsulant is not particularly limited as long as it is a diisocyanate compound or a compound having reactivity with the terminal isocyanate group of polycarbodiimide.
  • monoisocyanate may be used as the terminal sealant.
  • the monoisocyanate include phenylisocyanate, p-nitrophenylisocyanate, p- or m-tolylisocyanate, p-formylphenylisocyanate, p-isopropylphenylisocyanate and the like. It may be used in combination of more than one species. Of these, p-isopropylphenylisocyanate is preferable.
  • the reaction between the terminal isocyanate group and the terminal encapsulant proceeds easily by mixing the diisocyanate compound or polycarbodiimide and the terminal encapsulant at room temperature of about 25 ° C., but if necessary, it is heated. May be good. At this time, it is preferable to use an equivalent amount of the terminal sealant (total of the hydrophilic compound and other terminal sealants used as needed) with respect to the terminal isocyanate group to be sealed, and the reaction is inert. It is preferably performed in a gas atmosphere.
  • polycarbodiimide compound derived from the diisocyanate compound used in the present invention has a group represented by the following general formula (1).
  • R represents a residue obtained by removing the NCO group from the diisocyanate compound.
  • the polycarbodiimide compound used in the present invention may be a polycarbodiimide copolymer having at least two or more carbodiimide groups in the molecule, which is synthesized by using at least one diisocyanate compound.
  • a copolymer can be obtained by copolymerizing polycarbodiimide with, for example, a polyether polyol, a polyester polyol, a polycarbonate polyol, a polybutadiene diol, or the like.
  • the above polycarbodiimide compound can be produced by various methods using a diisocyanate compound as a raw material, and as a typical example of the production method, an isocyanate-terminated polycarbodiimide is produced by a decarboxylation condensation reaction accompanied by decarboxylation of the diisocyanate compound.
  • Methods US Patent No. 2941956, Japanese Patent Publication No. 47-33279, J. Org. Chem, 28, 2069-2075 (1963), Chemical Review 1981, Vol. 81, No. 4, p619-621, etc.
  • a carbodiimidization catalyst is usually used for the decarboxylation condensation reaction of a diisocyanate compound.
  • Specific examples of the carbodiimidation catalyst include 1-phenyl-2-phospholene-1-oxide, 3-methyl-1-phenyl-2-phospholene-1-oxide, 1-ethyl-2-phospholene-1-oxide, 3 Examples thereof include -methyl-2-phospholene-1-oxide and phosphorene oxides such as these 3-phosphoren isomers, which may be used alone or in combination of two or more. Among these, 3-methyl-1-phenyl-2-phospholene-1-oxide is preferable from the viewpoint of reactivity.
  • the amount of the carbodiimidization catalyst is usually 0.1 to 1.0% by mass with respect to the diisocyanate compound.
  • the decarboxylation condensation reaction can be carried out without a solvent, but a solvent may be used.
  • solvents include alicyclic ethers such as tetrahydrofuran, 1,3-dioxane, and dioxolane; aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene: chlorobenzene, dichlorobenzene, trichlorobenzene, percrene, and the like.
  • Halogenated hydrocarbons such as trichloroethane and dichloroethane; ester compounds such as ethyl acetate and butyl acetate; ketone compounds such as methylethylketone, methylisobutylketone and cyclohexanone, etc., which may be used alone or in combination of two or more. Of these, cyclohexanone and tetrahydrofuran may be used.
  • the reaction temperature is not particularly limited, but is preferably 40 to 200 ° C, more preferably 50 to 130 ° C.
  • the temperature is preferably from 40 ° C. to the boiling point of the solvent.
  • the concentration of the diisocyanate compound is not particularly limited, but is preferably 5 to 55% by mass in consideration of efficiently proceeding the reaction while suppressing gelation. More preferably, it is 5 to 40% by mass.
  • the solid content concentration in the reaction system is also not particularly limited, but is preferably 5 to 55% by mass, more preferably 20 to 50% by mass.
  • the reaction temperature is preferably 40 to 180 ° C, more preferably 50 to 100 ° C. preferable.
  • concentration of the diisocyanate compound in the solvent is preferably 5 to 55% by mass, more preferably 20 to 50% by mass.
  • the degree of polymerization of the polycarbodiimide used in the present invention is not particularly limited, but considering that it enhances the solubility and dispersibility in water and efficiently suppresses gelation in an aqueous medium, it is considered. 2 to 15 is preferable, and 3 to 12 is more preferable.
  • a polyol having two or more hydroxyl groups in the molecule may be used in combination.
  • the strong cohesive force of the modified carbodiimide compound of the present invention can be alleviated, and the compatibility with the aqueous solvent can be improved.
  • examples of such polyols include polyester polyols, polyether polyols, polycarbonate polyols, castor oil polyols, long-chain aliphatic diols and the like.
  • the castor oil polyol may be derived from castor oil as a raw material, and specific examples thereof include URIC H-30, URIC H-62, URIC Y-403 (all manufactured by Ito Oil Co., Ltd.), HS. Examples thereof include 2G-120, HS SG-160R, HS 2G-270B, HS 2B-5500, and HS KA-001 (all manufactured by Toyokuni Oil Co., Ltd.).
  • the polyether polyol include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and the like, and specific examples thereof include Sanniks PP-400, Sanniks PP-1000, and Sanniks PP-2000 (above, Sanyo Chemical Industries, Ltd.).
  • castor oil polyol is preferable from the viewpoint of compatibility, and castor oil polyol having 2 functional groups is more preferable.
  • the aromatic heterocyclic compound used for the modification of the above-mentioned polycarbodiimide compound is an aromatic heterocyclic compound having an in ring secondary amine nitrogen.
  • the aromatic heterocyclic compound having a secondary amine nitrogen in the ring means an aromatic heterocyclic compound having an amine in the heterocycle.
  • the aromatic heterocyclic compound is not particularly limited as long as it has an in-ring secondary amine nitrogen, and specific examples thereof include a pyrrole compound, a pyrazole compound, an imidazole compound, and a triazole compound.
  • an aromatic heterocyclic compound having an intraring nitrogen number of 2 or more is preferable, and a pyrazole compound and an imidazole compound are more preferable.
  • pyrazole compound examples include pyrazole, 3-methylpyrazole, 4-methylpyrazole, 3,5-dimethylpyrazole and the like.
  • imidazole compound examples include imidazole, 2-methylimidazole, 2-tyl-4-methyl-imidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole and the like. Among these, 3,5-dimethylpyrazole, 2-methylimidazole, and imidazole are preferable.
  • the modified polycarbodiimide compound of the present invention is obtained by modifying the polycarbodiimide compound with an aromatic heterocyclic compound having a secondary amine nitrogen in the ring. This modification is carried out by mixing and reacting an aromatic heterocyclic compound having a secondary amine nitrogen in the ring and a polycarbodiimide compound so that the aromatic heterocyclic compound has a predetermined equivalent amount with respect to the carbodiimide group. be able to. Although this reaction can be carried out without a solvent, it is preferable to use an aqueous solvent.
  • aqueous solvent for example, a polycarbodiimide compound is mixed with an aqueous solvent, and an aromatic heterocyclic compound having a secondary amine nitrogen in the ring is added thereto so as to have a predetermined equivalent amount with respect to the carbodiimide group for reaction. Just let me do it.
  • the amount of the aromatic heterocyclic compound having the secondary amine nitrogen in the ring is not particularly limited as long as it can exhibit the performance required for the curing agent, but is preferably 1 to 2 equivalents with respect to 1 equivalent of the carbodiimide group. Considering that the amount of unreacted aromatic heterocyclic compounds is reduced to facilitate the removal of amines during heat treatment, 1 to 1.5 equivalents are more preferred.
  • the reaction temperature is not particularly limited, but is preferably room temperature (about 25 ° C.) or 40 to 120 ° C. in consideration of efficiently proceeding the reaction and suppressing side reactions.
  • the reaction time varies depending on the reaction temperature and cannot be unconditionally defined, but is usually about 0.1 to 2 hours.
  • the above reaction is preferably carried out with stirring.
  • the aqueous solvent used in the amine modification reaction may be water alone, a hydrated liquid compound alone, or a mixed solvent of water and a hydrated liquid compound.
  • Specific examples of the hydrated liquid compound include polyalkylenes such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, and dipropylene glycol monomethyl ether.
  • Glycol monoalkyl ethers Polyalkylene glycol dialkyl ethers such as diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, dipropylene glycol dimethyl ether; ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether Polyalkylene glycol monoalkyl ether acetates such as acetate, diethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate; polyalkylene glycol diacetates such as ethylene glycol diacetate and propylene glycol diacetate; ethylene glycol Polyalkylene glycol monophenyl ethers such as monophenyl ethers and propylene glycol monophenyl ethers; monoalcohols such as propanol, butanol,
  • the modified polycarbodiimide compound of the present invention described above can be suitably used as a curing agent or a curing accelerator for a resin.
  • the curing agent containing the modified polycarbodiimide of the present invention acts as a curing agent for a resin containing a reactive group that crosslinks with a carbodiimide group.
  • Specific examples of such a resin include a carboxy group-containing resin having a carboxy group in the molecule, an amino group-containing resin having an amino group in the molecule, a hydroxyl group-containing resin having a hydroxyl group in the molecule, and the like.
  • the resin containing the reactive group includes a polyurethane resin, a polyamide resin, an acrylic resin, a vinyl acetate resin, a polyolefin resin, and a polyimide resin containing a reactive group. preferable.
  • thermosetting resin composition of the present invention contains the above-mentioned resin and the curing agent of the present invention.
  • the modified polycarbodiimide compound of the present invention since the carbodiimide group is blocked by an aromatic heterocyclic compound having a secondary amine nitrogen in the ring, the electron density of the active hydrogen of guanidine after modification is lowered, and the temperature is low. And it can be dissociated in a short time.
  • the thermosetting resin composition of the present invention containing such a curing agent can be dried under very mild temperature conditions without being cured, and then cured under mild conditions, and also has a pot life. Because it is long, it has excellent long-term storage and handleability.
  • the content of the curing agent is not particularly limited as long as the desired curability is exhibited, but in consideration of making the curability of the resin appropriate, the main agent.
  • the reactive group equivalent of (the resin) 0.5 to 1.5 equivalents are preferable, and 0.8 to 1.2 equivalents are more preferable. Even if the content of the curing agent is increased to more than 1.5 equivalents, the effect does not change much.
  • thermosetting resin composition of the present invention has various additive components such as pigments, fillers, leveling agents, surfactants, dispersants, plasticizers, and ultraviolet absorbers, if necessary, depending on its use and the like. , Antioxidants and the like can be appropriately blended.
  • a coating film can be produced by applying the thermosetting resin composition of the present invention on a predetermined base material to form a coating layer and curing the coating layer.
  • a conventionally known method can be appropriately used as the coating method.
  • a knife-fedge coat or the like can be used.
  • heat treatment may be performed to promote the crosslinking reaction.
  • the heating method is not particularly limited, and for example, an electric heating furnace, an infrared heating furnace, a high-frequency combustible furnace, or the like can be used.
  • a polycarbodiimide compound was obtained by confirming that the absorption peak due to the isocyanate group having a wavelength of around 2270 cm-1 was almost eliminated by (IR) spectrum measurement.
  • the obtained polycarbodiimide compound and 495 parts by mass of water were mixed, and 43.2 parts by mass of 2-methylimidazole (hereinafter referred to as 2MZ; Curesol 2MZ-H, manufactured by Shikoku Kasei Kogyo Co., Ltd.) was added thereto.
  • 2MZ 2-methylimidazole
  • Example 1-2 Diphenylmethane diisocyanate [hereinafter, MDI (mixture of 2,4'-MDI 54% and 4,4'-MDI 46%, the same applies hereinafter), Millionate NM, manufactured by Toso Co., Ltd.] 100 parts by mass, polyethylene glycol monomethyl ether (molecular weight 550) , Blaunon MP-550, manufactured by Aoki Yushi Kogyo Co., Ltd., 64.0 parts by mass and carbodiimidization catalyst (3-methyl-phenyl-2-phospholene-1-oxide) 1.0 parts by mass, reflux tube and stirrer. The polycarbodiimide compound was placed in a reaction vessel and stirred at 80 ° C.
  • MDI mixture of 2,4'-MDI 54% and 4,4'-MDI 46%, the same applies hereinafter
  • Millionate NM manufactured by Toso Co., Ltd.
  • 100 parts by mass polyethylene glycol monomethyl ether (molecular weight 550)
  • Example 1-3 100 parts by mass of TDI, polyethylene glycol monomethyl ether (molecular weight 400, Brownon MP-400, manufactured by Aoki Yushi Kogyo Co., Ltd.) 79.0 parts by mass, polypropylene glycol (molecular weight 400, Sanniks PP-400, manufactured by Sanyo Kasei Kogyo Co., Ltd.) ) 22.7 parts by mass and 1.0 part by mass of the carbodiimidization catalyst (3-methyl-phenyl-2-phospholene-1-oxide) were placed in a reaction vessel equipped with a reflux tube and a stirrer, and 4 at 80 ° C. under a nitrogen stream.
  • Example 1-4 MDI 100 parts by mass, polyethylene glycol monomethyl ether (molecular weight 550, Blaunon MP-550, manufactured by Aoki Yushi Kogyo Co., Ltd.) 62.9 parts by mass, castor oil polyol (molecular weight 700, URIC Y-403, manufactured by Ito Oil Co., Ltd.) 25 .1 part by mass and 1.0 part by mass of carbodiimidization catalyst (3-methyl-phenyl-2-phospholene-1-oxide) were placed in a reaction vessel equipped with a reflux tube and a stirrer, and stirred at 80 ° C. for 4 hours under a nitrogen stream.
  • IR infrared absorption
  • Example 1-7 100 parts by mass of TDI, 65.7 parts by mass of polyethylene glycol monomethyl ether (molecular weight 550, Braunon MP-550, manufactured by Aoki Yushi Kogyo Co., Ltd.) and carbodiimidization catalyst (3-methyl-phenyl-2-phospholene-1-oxide) 1 Place 0.0 parts by mass in a reaction vessel equipped with a reflux tube and a stirrer, stir at 80 ° C. for 3 hours under a nitrogen stream, and the absorption peak due to isocyanate groups with a wavelength of around 2270 cm-1 by infrared absorption (IR) spectrum measurement is almost the same. After confirming that it had disappeared, a polycarbodiimide compound was obtained.
  • IR infrared absorption
  • DMP infrared absorption
  • Example 1-9 MDI 100 parts by mass, polyethylene glycol monomethyl ether (molecular weight 550, Blaunon MP-550, manufactured by Aoki Yushi Kogyo Co., Ltd.) 73.3 parts by mass, polypropylene glycol (molecular weight 400, Sanniks PP-400, manufactured by Sanyo Kasei Kogyo Co., Ltd.) ) 19.6 parts by mass and 1.0 part by mass of a carbodiimidization catalyst (3-methyl-phenyl-2-phospholene-1-oxide) were placed in a reaction vessel equipped with a reflux tube and a stirrer, and 4 at 80 ° C. under a nitrogen stream.
  • a carbodiimidization catalyst 3-methyl-phenyl-2-phospholene-1-oxide
  • IR infrared absorption
  • the obtained polycarbodiimide compound was mixed with 432 parts by mass of a mixed solvent (1/1, wt / wt) of ethyldiglycol acetate and water, and 50.6 parts by mass of DMP (manufactured by Nippon Finechem Co., Ltd.) was mixed therein.
  • Example 1-12 100 parts by mass of TDI, 105 parts by mass of polyethylene glycol monomethyl ether (molecular weight 550, Braunon MP-550, manufactured by Aoki Yushi Kogyo Co., Ltd.) and carbodiimidization catalyst (3-methyl-phenyl-2-phospholene-1-oxide) 1.0
  • the mass part was placed in a reflux tube and a reaction vessel equipped with a stirrer, and stirred at 80 ° C. for 3 hours under a nitrogen stream, and the absorption peak due to the isocyanate group having a wavelength of around 2270 cm-1 by infrared absorption (IR) spectrum measurement almost disappeared. After confirming that, a polycarbodiimide compound was obtained.
  • IMZ imidazole
  • Curesol SIZ manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • the obtained polycarbodiimide compound and 485 parts by mass of water are mixed, 53.2 parts by mass of diisopropylamine (hereinafter referred to as DIPA) is added thereto, the mixture is cooled to room temperature, and the mixture is stirred for 5 hours to absorb infrared rays (hereinafter referred to as DIPA). It was confirmed by IR) spectrum measurement that an absorption peak due to a guanidine group having a wavelength of about 1740 cm -1 was generated, and an absorption peak due to a carbodiimide group having a wavelength of about 210 cm -1 had almost disappeared. 5. Carbodiimide equivalent 385 g / mol) was obtained.
  • IR infrared absorption
  • thermosetting Urethane Resin Composition Production of Thermosetting Urethane Resin Composition and Cured Product
  • Examples 2-1 to 2-12, Comparative Examples 2-1 to 2-5 The modified polycarbodiimide compounds obtained in Examples 1-1 to 1-12 and Comparative Examples 1-1 to 1-5 were mixed with a carboxy group-containing aqueous polyurethane resin (Suncure777, manufactured by Lubrizol, solid content 35% by mass).
  • a thermosetting urethane resin composition was prepared by mixing carboxy groups and carbodiimide groups at an equivalent ratio of 1: 1.
  • thermosetting urethane resin compositions prepared in Examples 2-1 to 2-12 and Comparative Examples 2-1 to 2-5 were observed at 50 ° C. for 1 week. .. The results are shown in Table 2. Those that remained liquid were evaluated as ⁇ , and those that were solidified were evaluated as x (hereinafter, the same applies).
  • Rubbing test The thermosetting urethane resin compositions prepared in Examples 2-1 to 2-12 and Comparative Examples 2-1 to 2-5 were cast on an aluminum panel and dried at 70 ° C. for 5 minutes. A coating film having a thickness of 20 ⁇ m was prepared. Then, this coating film was heated at 150 ° C. for 10 minutes and cured to prepare a film.
  • the obtained film was double-rubbed with a friction tester ER-1B (manufactured by Suga Test Instruments Co., Ltd.) at a load of 900 g / cm 2 using ethanol as a solvent.
  • the results are also shown in Table 2.
  • the evaluation was performed based on the following whitening points (hereinafter, the same applies). 5: No change 4: Light whitening 3: Whitening 2: Overall whitening 1: Melting 0: Melting
  • thermosetting Acrylic Resin Composition [3] Production of Thermosetting Acrylic Resin Composition and Cured Product [Examples 3-1 to 3-12, Comparative Examples 3-1 to 3-5] The modified polycarbodiimide compounds obtained in Examples 1-1 to 1-12 and Comparative Examples 1-1 to 1-5 were mixed with an aqueous acrylic resin (PRIMAL AC-261P, manufactured by DOW, solid content 50% by mass). A thermosetting acrylic resin composition was prepared by mixing carboxy groups and carbodiimide groups at an equivalent ratio of 1: 1.
  • thermosetting acrylic resin compositions prepared in Examples 3-1 to 3-12 and Comparative Examples 3-1 to 3-5 were observed at 50 ° C. for 1 week. .. The results are shown in Table 3.
  • Rubbing test The thermosetting acrylic resin compositions prepared in Examples 3-1 to 3-12 and Comparative Examples 3-1 to 3-5 were cast on an aluminum panel and dried at 70 ° C. for 5 minutes. A coating film having a thickness of 20 ⁇ m was prepared. Then, this coating film was heated at 150 ° C. for 30 minutes and cured to prepare a film.
  • the obtained film was double-rubbed with a friction tester ER-1B (manufactured by Suga Test Instruments Co., Ltd.) at a load of 900 g / cm 2 using ethanol as a solvent.
  • the results are also shown in Table 3.
  • thermosetting resin compositions prepared in each example have a good pot life and are sufficiently cured under the conditions of 150 ° C. and 30 minutes. That is, by modifying the carbodiimide group with a predetermined amine-containing aromatic heterocyclic compound, gelation and solidification after mixing can be efficiently prevented, and as a result, pot life is improved and the pot life is improved, and the temperature and time are short. As a result of being able to dissociate the amine used for the modification, it can be seen that it is rapidly cured under mild conditions of 150 ° C. for 30 minutes to obtain a cured film.

Abstract

末端が親水性化合物で封止されたジイソシアネート化合物由来のポリカルボジイミドのカルボジイミド基の少なくとも一部が、3,5-ジメチルピラゾール等の環内2級アミン窒素を有する芳香族ヘテロ環化合物で変性されてなる変性ポリカルボジイミド化合物は、硬化剤としての潜在性を有し、比較的低温でブロックが外れてカルボジイミド基の活性が発現する。

Description

親水性基を有する変性ポリカルボジイミド化合物
 本発明は、親水性基を有する変性ポリカルボジイミド化合物に関する。
 カルボキシ基含有樹脂中のカルボキシ基との反応性が高く、優れた硬化性能を示す硬化剤として、エポキシ化合物、オキサゾリン化合物、カルボジイミド化合物が知られている。
 これらの中でも、特にカルボジイミド化合物は、自身の耐熱性が高いことから硬化物においても優れた耐熱性を示すという利点がある。
 その一方、カルボジイミド化合物は、その反応性の高さから、樹脂と混合した後の可使時間が短く、使用直前に混合する必要があるうえ、保管時にゲル化してしまうという問題がある。
 これらの問題を解決すべく、ポリカルボジイミドをブロック化して保存安定性を向上させる手法が開発され、例えば、特許文献1では、カルボジイミド基の一部を、不飽和結合を有する反応性化合物によってグラフトする方法が提案されている。
 しかし、この方法では、カルボジイミド基が残存しているため自己架橋反応を無くすことができない。
 また、カルボジイミド化合物を樹脂と混合した際の保存安定性を向上させる方法として、特許文献2では、ポリカルボジイミド化合物のカルボジイミド基を炭素数4以上の直鎖または分岐鎖アルキル基を有するジアルキルアミンで変性したポリグアニジンからなる一液型エポキシ樹脂組成物が提案されている。この方法では、エポキシ樹脂に対して、一液化した際にも優れた保存安定性を示し、比較的低温で硬化させることができる。
 しかし、特許文献2の変性ポリカルボジイミド化合物は、硬化の際に変性アミンが解離しないため、ポリグアニジンが硬化反応に寄与しなければならず、カルボキシ基含有樹脂を硬化させることは難しい。
 特許文献3では、末端が親水性化合物で封止れたポリカルボジイミドを2級アミンで変性した、水溶性または水分散性のポリカルボジイミドアミン変性物が提案されている。
 しかし、特許文献3で用いられている2級アミンは、解離させて揮発除去するのに比較的高温を必要とするため、水性または水分散系で一般的に用いられる低温の乾燥条件では、硬化反応が進まず性能を発揮できない懸念がある。
特開平7-330849号公報 特開2000-136231号公報 特開2013-112755号公報
 本発明は、このような事情に鑑みてなされたものであり、硬化剤としての潜在性を有し、比較的低温でブロックが外れてカルボジイミド基の活性が発現する、親水性基を有する変性ポリカルボジイミド化合物を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、親水性基を有するポリカルボジイミド化合物のカルボジイミド基を、環内2級アミン窒素を有する芳香族ヘテロ環化合物で変性してカルボジイミド基をブロック化することで、比較的低温でブロックが外れてカルボジイミド基が再生し、カルボキシ基含有樹脂等の硬化剤としての性能が発現されることを見出し、本発明を完成した。
 すなわち、本発明は、
1. 末端が親水性化合物で封止されたジイソシアネート化合物由来のポリカルボジイミドのカルボジイミド基の少なくとも一部が、環内2級アミン窒素を有する芳香族ヘテロ環化合物で変性されてなる変性ポリカルボジイミド化合物、
2. 前記芳香族ヘテロ環化合物が、環内窒素を2つ以上含む1の変性ポリカルボジイミド化合物、
3. 前記芳香族ヘテロ環化合物が、ピラゾール化合物およびイミダゾール化合物から選ばれる1種または2種以上である1または2の変性ポリカルボジイミド化合物、
4. 前記芳香族ヘテロ環化合物が、3,5-ジメチルピラゾール、2-メチルイミダゾール、およびイミダゾールから選ばれる1種または2種以上である3の変性ポリカルボジイミド化合物、
5. 前記ジイソシアネート化合物が、芳香族ジイソシアネート化合物である1~4のいずれかの変性ポリカルボジイミド化合物、
6. 前記芳香族ジイソシアネート化合物が、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、およびo-トリジンジイソシアネートから選ばれる1種または2種以上である5の変性ポリカルボジイミド化合物、
7. 1~6のいずれかの変性ポリカルボジイミド化合物を含む硬化剤、
8. 7の硬化剤と、カルボキシ基、アミノ基および水酸基から選ばれる反応性基を含有する樹脂を含む硬化性樹脂組成物、
9. 前記硬化剤の含有量が、前記樹脂の反応性基当量に対して0.5~1.5当量である8の熱硬化性樹脂組成物、
10. 前記反応性基を含有する樹脂が、ポリウレタン樹脂、ポリアミド樹脂、アクリル樹脂、酢酸ビニル樹脂、ポリオレフィン樹脂およびポリイミド樹脂から選ばれる1種または2種以上である8または9の熱硬化性樹脂組成物
を提供する。
 本発明の変性ポリカルボジイミド化合物は、環内2級アミン窒素を有する芳香族ヘテロ環化合物でカルボジイミド基がブロック化されているため、変性後のグアニジンの活性水素の電子密度が低下しており、低温かつ短時間で解離させることができる。
 このような特徴を有する本発明の変性ポリカルボジイミドは、カルボキシ基含有樹脂等のカルボジイミド基との反応性基を含有する樹脂の硬化剤として好適である。本発明の変性ポリカルボジイミドを含む硬化剤と、カルボキシ基等の反応性基を含有する樹脂との混合液は、非常に緩やかな温度条件で硬化することなく乾燥させた後、緩やかな条件で硬化させることができる。
 また、本発明の変性ポリカルボジイミド化合物と、カルボキシ基等の反応性基を含有する水性または水分散樹脂と混合した組成物は、ポットライフが長いという特徴も有する。
 以下、本発明についてさらに詳しく説明する。
 本発明に係る変性ポリカルボジイミド化合物は、末端が親水性化合物で封止されたジイソシアネート化合物由来のポリカルボジイミドのカルボジイミド基の少なくとも一部が、環内2級アミン窒素を有する芳香族ヘテロ環化合物で変性されてなることを特徴とする。
(1)ジイソシアネート化合物
 本発明の変性ポリカルボジイミド化合物の原料となるジイソシアネート化合物は、特に限定されるものではなく、従来公知の各種ジイソシアネート化合物から適宜選択して用いることができる。
 その具体例としては、ヘキサメチレンジイソシアネート、1,4-テトラメチレンジイソシアネート、2-メチルペンタン-1,5-ジイソシアネート、リジンジイソシアネート等の脂肪族イソシアネート;イソホロンジイソシアネート、ノルボルナンジイソシアネート、水添化トリレンジイソシアネート、水添化キシレンジイソシアネート、水添化ジフェニルメタンジイソシアネート、水添化テトラメチルキシレンジイソシアネート等の脂環式ジイソシアネート;2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート、p-フェニレンジイソシアネート、m-フェニレンジイソシアネート、3,3’-ジメトキシ-4,4’-ビフェニルジイソシアネート、o-トリジンジイソシアネート、ナフチレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、3,3’-ジメチル-4,4’-ジフェニルエーテルジイソシアネート、3,3’-ジメチル-4,4’-ジフェニルエーテルジイソシアネート等の芳香族ジイソシアネートなどが挙げられ、これらは1種単独で用いても、2種以上組み合わせて用いてもよい。
 これらの中でも、耐熱性に優れたポリカルボジイミド化合物が得られるという点から、芳香族ジイソシアネートが好ましく、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、o-トリジンジイソシアネートがより好ましい。
(2)親水性化合物
 末端封止剤として用いられる親水性化合物は、親水性を有するとともに、ジイソシアネート化合物またはポリカルボジイミド化合物の末端のイソシアネート基と反応性を有する親水性有機化合物であれば特に限定されるものではない。
 親水性化合物の具体例としては、下記一般式(a)で表されるアルコキシ基またはフェノキシ基で末端封鎖されたポリアルキレンオキサイド、下記一般式(b)で表されるジアルキルアミノアルコール、下記一般式(c)で表されるヒドロキシカルボン酸アルキルエステル、下記一般式(d)で表されるジアルキルアミノアルキルアミン、下記一般式(e)で表されるアルキルスルホン酸塩等が挙げられるが、これらに限定されるものではない。
 R1-O-(CH2-CHR2-O)m-H  (a)
 (R32-N-CH2-CHR4-OH   (b)
 R5-O-CO-CHR6-OH      (c)
 (R72-N-R8-NH2        (d)
 HO-R9-SO3M           (e)
(式(a)中、R1は、炭素数1~4のアルキル基またはフェニル基を、R2は、水素原子または炭素数1~4のアルキル基を、mは、1~30の整数を表す。式(b)中、R3は、炭素数1~4のアルキル基を、R4は、水素原子または炭素数1~4のアルキル基を表す。式(c)中、R5は、炭素数1~3のアルキル基を、R6は、水素原子または炭素数1~3のアルキル基を表す。式(d)中、R7は、炭素数1~4のアルキル基を、R8は、水素原子または炭素数1~4のアルキル基を表す。式(e)中、R9は、炭素数1~10のアルキレン基を、Mは、Na,K等のアルカリ金属を表す。)
 炭素数1~4のアルキル基の具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、イソブチル、t-ブチル基が挙げられる。
 炭素数1~3のアルキル基の具体例としては、メチル、エチル、n-プロピル、イソプロピル基が挙げられる。
 炭素数1~10のアルキレン基の具体例としては、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレン、ペンタメチレン、ヘキサメチレン、ヘプタメチレン、オクタメチレン、ノナメチレン、デカメチレン基等が挙げられる。
 なお、上記一般式(a)~(e)で表される親水性化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。
 ポリカルボジイミドの重合度が大きい場合や、後述するようにポリカルボジイミドを樹脂架橋剤とする際に用いられる水性媒体中の水の比率が高い場合等、ポリカルボジイミドを水性媒体に溶解または分散させるためにより高い親水性を付与する必要がある場合、親水性化合物としては、上記一般式(a)~(e)の中でも、親水性に優れた上記一般式(a)で表されるアルコキシ基またはフェノキシ基で末端封鎖されたポリアルキレンオキサイドが好ましい。
 上記一般式(a)で表されるポリアルキレンオキサイドの具体例としては、ポリエチレングリコールモノメチルエーテル、ポリエチレングリコールモノエチルエーテル、ポリプロピレングリコールモノメチルエーテル、ポリプロピレングリコールモノエチルエーテル、ポリプロピレングリコールモノフェニルエーテル等が挙げられ、特にポリエチレングリコールモノメチルエーテルが好適である。
 なお、本発明のポリカルボジイミド化合物では、上記親水性化合物以外に、末端イソシアネート基と反応可能であり、それ単独ではポリカルボジイミドに十分な親水性を付与できない化合物を、その他の末端封止剤として併用することができる。
 その他の末端封止剤は、上記親水性化合物と混合し、ポリカルボジイミドが水性媒体に溶解できる親水性を示す範囲で使用される。
 その他の末端封止剤としては、ジイソシアネート化合物またはポリカルボジイミドの末端のイソシアネート基と反応性を有する化合物であれば特に限定されない。
 その他の末端封止剤としては、イソシアネート基と反応する官能基を有する、脂肪族化合物、芳香族化合物、脂環族化合物等が挙げられ、その具体例としては、-OH基を持つメタノール、エタノール、フェノール、シクロヘキサノール、N-メチルエタノールアミン等;=NH基を持つジエチルアミン、ジシクロヘキシルアミン等;-NH2基を持つブチルアミン、シクロヘキシルアミン等;-COOH基を持つプロピオン酸、安息香酸、シクロヘキサンカルボン酸等;-SH基を持つエチルメルカプタン、アリルメルカプタン、チオフェノール等;エポキシ基を有する化合物などが挙げられる。
 なお、その他の末端封止剤は、単独で用いても、2種以上を組み合わせて用いてもよい。
 また、ポリカルボジイミドの末端を封止してその重合度を制御するため、モノイソシアネートを末端封止剤として使用してもよい。
 モノイソシアネートの具体例としては、フェニルイソシアネート、p-ニトロフェニルイソシアネート、p-またはm-トリルイソシアネート、p-ホルミルフェニルイソシアネート、p-イソプロピルフェニルイソシアネート等が挙げられ、これらは単独で用いても、2種以上組み合わせて用いてもよい。
 これらの中でもp-イソプロピルフェニルイソシアネートが好ましい。
 末端イソシアネート基と末端封止剤との反応は、ジイソシアネート化合物またはポリカルボジイミドと、末端封止剤とを、25℃程度の常温で混合することで容易に進行するが、必要に応じて加熱してもよい。
 この際、封止する末端イソシアネート基に対し、当量の末端封止剤(親水性化合物および必要に応じて用いられるその他の末端封止剤の合計)を用いることが好ましく、また、反応は不活性ガス雰囲気下で行うことが好ましい。
(3)ポリカルボジイミド化合物
 本発明で用いるジイソシアネート化合物由来のポリカルボジイミド化合物は、下記一般式(1)で示される基を有する。
Figure JPOXMLDOC01-appb-C000001
(式中、Rは、ジイソシアネート化合物からNCO基を除いた残基を表す。)
 また、本発明で用いられるポリカルボジイミド化合物は、少なくとも1種のジイソシアネート化合物を用いて合成された、分子中に少なくとも2個以上のカルボジイミド基を有するポリカルボジイミド共重合体であってもよい。
 このような共重合体としては、ポリカルボジイミドと、例えばポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリブタジエンジオール等を共重合させて得ることができる。
 上記ポリカルボジイミド化合物は、ジイソシアネート化合物を原料とした種々の方法で製造することができ、製法の代表例としては、ジイソシアネート化合物の脱二酸化炭素を伴う脱炭酸縮合反応により、イソシアネート末端ポリカルボジイミドを製造する方法(米国特許第2941956号明細書や特公昭47-33279号公報、J. Org. Chem, 28、2069-2075(1963)、Chemical Review1981、Vol.81, No.4, p619-621等)が挙げられる。
 ジイソシアネート化合物の脱炭酸縮合反応には、通常、カルボジイミド化触媒が用いられる。
 カルボジイミド化触媒の具体例としては、1-フェニル-2-ホスホレン-1-オキシド、3-メチル-1-フェニル-2-ホスホレン-1-オキシド、1-エチル-2-ホスホレン-1-オキシド、3-メチル-2-ホスホレン-1-オキシド、およびこれらの3-ホスホレン異性体等のホスホレンオキシドなどが挙げられ、これらは単独で用いても、2種以上組み合わせて用いてもよい。
 これらの中でも、反応性の点から、3-メチル-1-フェニル-2-ホスホレン-1-オキシドが好ましい。
 カルボジイミド化触媒の量は、ジイソシアネート化合物に対して、通常0.1~1.0質量%である。
 上記脱炭酸縮合反応は、無溶媒で行うことができるが、溶媒を用いてもよい。
 使用可能な溶媒の具体例としては、テトラヒドロフラン、1,3-ジオキサン、ジオキソラン等の脂環式エーテル;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素:クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、パークレン、トリクロロエタン、ジクロロエタン等のハロゲン化炭化水素;酢酸エチル、酢酸ブチル等のエステル化合物;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン化合物などが挙げられ、これらは単独で用いても、2種以上を組み合わせて用いてもよい
 これらの中でも、シクロヘキサノン、テトラヒドロフランが好ましい。
 反応温度は、特に限定されるものではないが、40~200℃が好ましく、50~130℃がより好ましい。また、溶媒中で反応を行う場合、40℃~溶媒の沸点までが好ましい。
 溶媒中で反応を行う場合、ジイソシアネート化合物の濃度は、特に限定されるものではないが、ゲル化を抑制しつつ、効率的に反応を進行させることを考慮すると、5~55質量%が好ましく、5~40質量%がより好ましい。
 また、反応系内の固形分濃度も特に限定されないが、5~55質量%が好ましく、20~50質量%がより好ましい。
 特に、ジイソシアネート化合物と末端封止剤とを反応させて末端の封止を行った後、触媒を添加してカルボジイミド化を行う場合、反応温度は40~180℃が好ましく、50~100℃がより好ましい。
 また、この場合、溶媒中のジイソシアネート化合物の濃度は、5~55質量%が好ましく、20~50質量%がより好ましい。
 本発明で用いるポリカルボジイミドの重合度は、特に限定されるものではないが、水への溶解性や分散性を高めるとともに、水性媒体中でのゲル化を効率的に抑制することを考慮すると、2~15が好ましく、3~12がより好ましい。
 なお、本発明のポリカルボジイミド化合物を製造する際に、分子中に水酸基を2個以上有するポリオールを併用してもよい。ポリオール成分を導入することで、本発明の変性カルボジイミド化合物の強い凝集力を緩和し、水系溶媒との馴染みをよくすることができる。
 このようなポリオールとしては、例えば、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、ひまし油ポリオール、長鎖脂肪族ジオール等が挙げられる。
 ひまし油ポリオールとしては、ひまし油を原料として誘導されるものであればよく、その具体例としては、URIC H-30、URIC H-62、URIC Y-403(以上、伊藤製油(株)製)、HS 2G-120、HS SG-160R、HS 2G-270B、HS 2B-5500、HS KA-001(以上、豊国製油(株)製)等が挙げられる。
 ポリエーテルポリオールとしては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等が挙げられ、その具体例としては、サンニックスPP-400、サンニックスPP-1000、サンニックスPP-2000(以上、三洋化成工業(株)製)、ユニオールPB-500、ユニオールPB-700(以上、日油(株)製)等が挙げられる。
 これらの中でも、相溶性の観点から、ひまし油ポリオールが好ましく、官能基数2のひまし油ポリオールがさらに好ましい。
(4)環内2級アミン窒素を有する芳香族ヘテロ環化合物
 本発明において、上述したポリカルボジイミド化合物の変性に用いられる芳香族ヘテロ環化合物は、環内2級アミン窒素を有する芳香族ヘテロ環化合物である。ここで、環内2級アミン窒素を有する芳香族ヘテロ環化合物とは、ヘテロ環内にアミンを有する芳香族ヘテロ環化合物をいう。
 芳香族ヘテロ環化合物は、環内2級アミン窒素を有するものであれば特に限定されるものではなく、その具体例としては、ピロール化合物、ピラゾール化合物、イミダゾール化合物、トリアゾール化合物等が挙げられるが、変性ポリカルボジイミド化合物からの解離開始温度をより低下させることを考慮すると、環内窒素の数が2以上である芳香族ヘテロ環化合物が好ましく、ピラゾール化合物、イミダゾール化合物がより好ましい。
 ピラゾール化合物の具体例としては、ピラゾール、3-メチルピラゾール、4-メチルピラゾール、3,5-ジメチルピラゾール等が挙げられる。
 イミダゾール化合物の具体例としては、イミダゾール、2-メチルイミダゾール、2--チル-4-メチル-イミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール等が挙げられる。
 これらの中でも、3,5-ジメチルピラゾール、2-メチルイミダゾール、イミダゾールが好ましい。
(5)ポリカルボジイミド化合物の変性
 本発明の変性ポリカルボジイミド化合物は、環内2級アミン窒素を有する芳香族ヘテロ環化合物でポリカルボジイミド化合物を変性して得られる。
 この変性は、環内2級アミン窒素を有する芳香族ヘテロ環化合物と、ポリカルボジイミド化合物とを、芳香族ヘテロ環化合物がカルボジイミド基に対して所定の当量となるように混合して反応させて行うことができる。
 この反応は、無溶媒で行うこともできるが、水系溶媒を用いることが好ましい。
 水系溶媒を用いる場合、例えば、ポリカルボジイミド化合物を水系溶媒と混合し、そこへ環内2級アミン窒素を有する芳香族ヘテロ環化合物をカルボジイミド基に対して所定の当量となるように添加して反応させればよい。
 環内2級アミン窒素を有する芳香族ヘテロ環化合物の使用量は、硬化剤に要求される性能を発揮し得る限り特に制限はないが、カルボジイミド基1当量に対して1~2当量が好ましく、未反応の芳香族ヘテロ環化合物を減らして加熱処理時にアミンを除去し易くすることを考慮すると、1~1.5当量がより好ましい。
 反応温度は、特に限定されるものではないが、反応を効率的に進行させるとともに、副反応を抑えることを考慮すると、常温(25℃程度)または40~120℃が好ましい。
 反応時間は、反応温度によって変動するため一概には規定できないが、通常は、0.1~2時間程度である。
 なお、上記反応は撹拌しながら行うことが好ましい。
 アミン変性反応に用いる上記水系溶媒としては、水のみでも、水和性液状化合物のみでも、水と水和性液状化合物との混合溶媒でもよい。
 水和性液状化合物の具体例としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル等のポリアルキレングリコールモノアルキルエーテル類;ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル等のポリアルキレングリコールジアルキルエーテル類;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート等のポリアルキレングリコールモノアルキルエーテルアセテート類;エチレングリコールジアセテート、プロピレングリコールジアセテート等のポリアルキレングリコールジアセテート類;エチレングリコールモノフェニルエーテル、プロピレングリコールモノフェニルエーテル等のポリアルキレングリコールモノフェニルエーテル類;プロパノール、ブタノール、ヘキサノール、オクタノール等のモノアルコール類、N-メチル-2-ピロリドン(NMP)、N-エチル-2-ピロリドン(NEP)等のN-置換アミド類;2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート等が挙げられ、これらは単独で用いても、2種以上を組み合わせて用いてもよい。
(6)硬化剤および熱硬化性樹脂組成物
 以上説明した本発明の変性ポリカルボジイミド化合物は、樹脂の硬化剤や硬化促進剤として好適に用いることができる。具体的には、本発明の変性ポリカルボジイミドを含む硬化剤は、カルボジイミド基と架橋反応する反応性基を含有する樹脂の硬化剤として作用する。
 このような樹脂の具体例としては、分子中にカルボキシ基を有するカルボキシ基含有樹脂や、分子中にアミノ基を有するアミノ基含有樹脂、分子中に水酸基を有する水酸基含有樹脂等が挙げられる。
 カルボジイミド基との架橋反応のし易さという点から、反応性基を含有する樹脂としては、反応性基を含有する、ポリウレタン樹脂、ポリアミド樹脂、アクリル樹脂、酢酸ビニル樹脂、ポリオレフィン樹脂、ポリイミド樹脂が好ましい。
 本発明の熱硬化性樹脂組成物は、上述した樹脂と、本発明の硬化剤とを含む。
 本発明の変性ポリカルボジイミド化合物は、環内2級アミン窒素を有する芳香族ヘテロ環化合物でカルボジイミド基がブロック化されているため、変性後のグアニジンの活性水素の電子密度が低下しており、低温かつ短時間で解離させることができる。
 このような硬化剤を含む本発明の熱硬化性樹脂組成物は、非常に緩やかな温度条件で硬化することなく乾燥させた後、緩やかな条件で硬化させることができるのみならず、ポットライフが長いため、長期保存性や取り扱い性に優れる。
 本発明の熱硬化性樹脂組成物において、硬化剤の含有量は、所望の硬化性が発揮される限り特に限定されるものではないが、樹脂の硬化性を適切にすることを考慮すると、主剤(上記樹脂)の反応性基当量に対し、0.5~1.5当量が好ましく、0.8~1.2当量がより好ましい。硬化剤の含有量を1.5当量よりも大きくしても効果はあまり変わらない。
 なお、本発明の熱硬化性樹脂組成物は、その用途等に応じ、必要であれば各種添加成分、例えば、顔料、充填剤、レベリング剤、界面活性剤、分散剤、可塑剤、紫外線吸収剤、酸化防止剤等を適宜配合できる。
 本発明の熱硬化性樹脂組成物を、所定の基材上に塗布して塗工層を形成し、これを硬化させることで、塗膜(フィルム)を作製できる。
 この場合、塗布法としては従来公知の方法を適宜用いることができ、例えば、刷毛塗り、タンポ塗り、吹付塗り、ホットスプレー塗り、エアレススプレー塗り、ローラ塗り、カーテンフロー塗り、流し塗り、浸し塗り、ナイフフェッジコート等を採用できる。
 塗工層を形成後、架橋反応を促進するために加熱処理を行ってもよい。加熱方法に特に制限はなく、例えば、電気加熱炉、赤外線加熱炉、高周波可燃炉等を用いることができる。
 以下、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
[1]変性ポリカルボジイミド化合物の合成
[実施例1-1]
 トリレンジイソシアネート(以下、TDI、コスモネートT-80、三井化学(株)製)100質量部、ポリエチレングリコールモノメチルエーテル(分子量550、ブラウノンMP-550、青木油脂工業(株)製)105質量部およびカルボジイミド化触媒(3-メチル-フェニル-2-ホスホレン-1-オキシド)1.0質量部を、還流管および撹拌機付き反応容器に入れ、窒素気流下80℃で3時間撹拌し、赤外吸収(IR)スペクトル測定による波長2270cm-1前後のイソシアネート基による吸収ピークがほぼ消失したことを確認して、ポリカルボジイミド化合物を得た。
 得られたポリカルボジイミド化合物と水495質量部とを混合し、そこへ2-メチルイミダゾール(以下、2MZという。キュアゾール2MZ-H、四国化成工業(株)製)43.2質量部を添加し、室温まで冷却した後、5時間撹拌し、赤外吸収(IR)スペクトル測定による波長1740cm-1前後のグアニジン基による吸収ピークが生成し、波長2150cm-1前後のカルボジイミド基による吸収ピークがほぼ消失したことを確認して、2MZ変性ポリカルボジイミド化合物P1(n=5、カルボジイミド当量385g/モル)を得た。
[実施例1-2]
 ジフェニルメタンジイソシアネート〔以下、MDI(2,4’-MDI 54%と4,4’-MDI46%の混合物、以下同様)、ミリオネートNM、東ソー(株)製〕100質量部、ポリエチレングリコールモノメチルエーテル(分子量550、ブラウノンMP-550、青木油脂工業(株)製)64.0質量部およびカルボジイミド化触媒(3-メチル-フェニル-2-ホスホレン-1-オキシド)1.0質量部を、還流管および撹拌機付き反応容器に入れ、窒素気流下80℃で4時間撹拌し、赤外吸収(IR)スペクトル測定による波長2270cm-1前後のイソシアネート基による吸収ピークがほぼ消失したことを確認して、ポリカルボジイミド化合物を得た。
 得られたポリカルボジイミド化合物と水409質量部とを混合し、そこへ2MZ(キュアゾール2MZ-H、四国化成工業(株)製)28.9質量部を添加し、室温まで冷却した後、5時間撹拌し、赤外吸収(IR)スペクトル測定による波長1740cm-1前後のグアニジン基による吸収ピークが生成し、波長2150cm-1前後のカルボジイミド基による吸収ピークがほぼ消失したことを確認して、2MZ変性ポリカルボジイミド化合物P2(n=4、カルボジイミド当量469g/モル)を得た。
[実施例1-3]
 TDI100質量部、ポリエチレングリコールモノメチルエーテル(分子量400、ブラウノンMP-400、青木油脂工業(株)製)79.0質量部、ポリプロピレングリコール(分子量400、サンニックスPP-400、三洋化成工業(株)製)22.7質量部およびカルボジイミド化触媒(3-メチル-フェニル-2-ホスホレン-1-オキシド)1.0質量部を、還流管および撹拌機付き反応容器に入れ、窒素気流下80℃で4時間撹拌し、赤外吸収(IR)スペクトル測定による波長2270cm-1前後のイソシアネート基による吸収ピークがほぼ消失したことを確認して、ポリカルボジイミド化合物を得た。
 得られたポリカルボジイミド化合物と水513質量部とを混合し、そこへ2MZ(キュアゾール2MZ-H、四国化成工業(株)製)38.9質量部を添加して室温まで冷却した後、5時間撹拌し、赤外吸収(IR)スペクトル測定による波長1740cm-1前後のグアニジン基による吸収ピークが生成し、波長2150cm-1前後のカルボジイミド基による吸収ピークがほぼ消失したことを確認して、2MZ変性ポリカルボジイミド化合物P3(n=6、カルボジイミド当量438g/モル)を得た。
[実施例1-4]
 MDI100質量部、ポリエチレングリコールモノメチルエーテル(分子量550、ブラウノンMP-550、青木油脂工業(株)製)62.9質量部、ひまし油ポリオール(分子量700、URIC Y-403、伊藤製油(株)製)25.1質量部およびカルボジイミド化触媒(3-メチル-フェニル-2-ホスホレン-1-オキシド)1.0質量部を、還流管および撹拌機付き反応容器に入れ、窒素気流下80℃で4時間撹拌し、赤外吸収(IR)スペクトル測定による波長2270cm-1前後のイソシアネート基による吸収ピークがほぼ消失したことを確認して、ポリカルボジイミド化合物を得た。
 得られたポリカルボジイミド化合物と水530質量部とを混合し、そこへ2MZ(キュアゾール2MZ-H、四国化成工業(株)製)25.8質量部を添加し、室温まで冷却した後、5時間撹拌し、赤外吸収(IR)スペクトル測定による波長1740cm-1前後のグアニジン基による吸収ピークが生成し、波長2150cm-1前後のカルボジイミド基による吸収ピークがほぼ消失したことを確認して、2MZ変性ポリカルボジイミド化合物P4(n=5、カルボジイミド当量666g/モル)を得た。
[実施例1-5]
 TDI100質量部、ポリエチレングリコールモノメチルエーテル(分子量550、ブラウノンMP-550、青木油脂工業(株)製)52.7質量部、ひまし油ポリオール(分子量700、URIC Y-403、伊藤製油(株)製)17.7質量部およびカルボジイミド化触媒(3-メチル-フェニル-2-ホスホレン-1-オキシド)1.0質量部を、還流管および撹拌機付き反応容器に入れ、窒素気流下80℃で4時間撹拌し、赤外吸収(IR)スペクトル測定による波長2270cm-1前後のイソシアネート基による吸収ピークがほぼ消失したことを確認して、ポリカルボジイミド化合物を得た。
 得られたポリカルボジイミド化合物とプロピレングリコールモノメチルエーテル440質量部とを混合し、そこへ2MZ(キュアゾール2MZ-H、四国化成工業(株)製)43.2質量部を添加し、室温まで冷却した後、5時間撹拌し、赤外吸収(IR)スペクトル測定による波長1740cm-1前後のグアニジン基による吸収ピークが生成し、波長2150cm-1前後のカルボジイミド基による吸収ピークがほぼ消失したことを確認して、2MZ変性ポリカルボジイミド化合物P5(n=10、カルボジイミド当量345g/モル)を得た。
[実施例1-6]
 TDI100質量部、ポリエチレングリコールモノメチルエーテル(分子量550、ブラウノンMP-550、青木油脂工業(株)製)52.7質量部、ひまし油ポリオール(分子量700、URIC Y-403、伊藤製油(株)製)17.7質量部およびカルボジイミド化触媒(3-メチル-フェニル-2-ホスホレン-1-オキシド)1.0質量部を、還流管および撹拌機付き反応容器に入れ、窒素気流下80℃で4時間撹拌し、赤外吸収(IR)スペクトル測定による波長2270cm-1前後のイソシアネート基による吸収ピークがほぼ消失したことを確認して、ポリカルボジイミド化合物を得た。
 得られたポリカルボジイミド化合物と、プロピレングリコールモノメチルエーテルおよび水の混合溶媒(1/1、wt/wt)440質量部とを混合し、そこへ2MZ(キュアゾール2MZ-H、四国化成工業(株)製)43.2質量部を添加し、室温まで冷却した後、5時間撹拌し、赤外吸収(IR)スペクトル測定による波長1740cm-1前後のグアニジン基による吸収ピークが生成し、波長2150cm-1前後のカルボジイミド基による吸収ピークがほぼ消失したことを確認して、2MZ変性ポリカルボジイミド化合物P6(n=10、カルボジイミド当量345g/モル)を得た。
[実施例1-7]
 TDI100質量部、ポリエチレングリコールモノメチルエーテル(分子量550、ブラウノンMP-550、青木油脂工業(株)製)65.7質量部およびカルボジイミド化触媒(3-メチル-フェニル-2-ホスホレン-1-オキシド)1.0質量部を、還流管および撹拌機付き反応容器に入れ、窒素気流下80℃で3時間撹拌し、赤外吸収(IR)スペクトル測定による波長2270cm-1前後のイソシアネート基による吸収ピークがほぼ消失したことを確認して、ポリカルボジイミド化合物を得た。
 得られたポリカルボジイミド化合物と水369質量部とを混合し、そこへ3,5-ジメチルピラゾール(以下、DMPという。(株)日本ファインケム製)52.0質量部を添加し、室温まで冷却した後、5時間撹拌し、赤外吸収(IR)スペクトル測定による波長1740cm-1前後のグアニジン基による吸収ピークが生成し、波長2150cm-1前後のカルボジイミド基による吸収ピークがほぼ消失したことを確認して、DMP変性ポリカルボジイミド化合物P7(n=6、カルボジイミド当量292g/モル)を得た。
[実施例1-8]
 TDI100質量部、ポリエチレングリコールモノメチルエーテル(分子量550、ブラウノンMP-550、青木油脂工業(株)製)63.2質量部、ひまし油ポリオール(分子量700、URIC Y-403、伊藤製油(株)製)25.4質量部およびカルボジイミド化触媒(3-メチル-フェニル-2-ホスホレン-1-オキシド)1.0質量部を、還流管および撹拌機付き反応容器に入れ、窒素気流下80℃で4時間撹拌し、赤外吸収(IR)スペクトル測定による波長2270cm-1前後のイソシアネート基による吸収ピークがほぼ消失したことを確認して、ポリカルボジイミド化合物を得た。
 得られたポリカルボジイミド化合物と水499質量部とを混合し、そこへDMP((株)日本ファインケム製)36.4質量部を添加し、室温まで冷却した後、5時間撹拌し、赤外吸収(IR)スペクトル測定による波長1740cm-1前後のグアニジン基による吸収ピークが生成し、波長2150cm-1前後のカルボジイミド基による吸収ピークがほぼ消失したことを確認して、DMP変性ポリカルボジイミド化合物P8(n=8、カルボジイミド当量399g/モル)を得た。
[実施例1-9]
 MDI100質量部、ポリエチレングリコールモノメチルエーテル(分子量550、ブラウノンMP-550、青木油脂工業(株)製)73.3質量部、ポリプロピレングリコール(分子量400、サンニックスPP-400、三洋化成工業(株)製)19.6質量部およびカルボジイミド化触媒(3-メチル-フェニル-2-ホスホレン-1-オキシド)1.0質量部を、還流管および撹拌機付き反応容器に入れ、窒素気流下80℃で4時間撹拌し、赤外吸収(IR)スペクトル測定による波長2270cm-1前後のイソシアネート基による吸収ピークがほぼ消失したことを確認して、ポリカルボジイミド化合物を得た。
 得られたポリカルボジイミド化合物と水522質量部とを混合し、そこへDMP((株)日本ファインケム製)28.2質量部を添加し、室温まで冷却した後、5時間撹拌し、赤外吸収(IR)スペクトル測定による波長1740cm-1前後のグアニジン基による吸収ピークが生成し、波長2150cm-1前後のカルボジイミド基による吸収ピークがほぼ消失したことを確認して、DMP変性ポリカルボジイミド化合物P9(n=4、カルボジイミド当量706g/モル)を得た。
[実施例1-10]
 TDI100質量部、ポリエチレングリコールモノメチルエーテル(分子量550、ブラウノンMP-550、青木油脂工業(株)製)52.7質量部、ひまし油ポリオール(分子量700、URIC Y-403、伊藤製油(株)製)17.7質量部およびカルボジイミド化触媒(3-メチル-フェニル-2-ホスホレン-1-オキシド)1.0質量部を、還流管および撹拌機付き反応容器に入れ、窒素気流下80℃で4時間撹拌し、赤外吸収(IR)スペクトル測定による波長2270cm-1前後のイソシアネート基による吸収ピークがほぼ消失したことを確認して、ポリカルボジイミド化合物を得た。
 得られたポリカルボジイミド化合物とエチルジグリコールアセテート432質量部とを混合し、そこへDMP((株)日本ファインケム製)50.6質量部を添加し、室温まで冷却した後、5時間撹拌し、赤外吸収(IR)スペクトル測定による波長1740cm-1前後のグアニジン基による吸収ピークが生成し、波長2150cm-1前後のカルボジイミド基による吸収ピークがほぼ消失したことを確認して、DMP変性ポリカルボジイミド化合物P10(n=10、カルボジイミド当量345g/モル)を得た。
[実施例1-11]
 TDI100質量部、ポリエチレングリコールモノメチルエーテル(分子量550、ブラウノンMP-550、青木油脂工業(株)製)52.7質量部、ひまし油ポリオール(分子量700、URIC Y-403、伊藤製油(株)製)17.7質量部およびカルボジイミド化触媒(3-メチル-フェニル-2-ホスホレン-1-オキシド)1.0質量部を、還流管および撹拌機付き反応容器に入れ、窒素気流下80℃で4時間撹拌し、赤外吸収(IR)スペクトル測定による波長2270cm-1前後のイソシアネート基による吸収ピークがほぼ消失したことを確認して、ポリカルボジイミド化合物を得た。
 得られたポリカルボジイミド化合物と、エチルジグリコールアセテートおよび水の混合溶媒(1/1、wt/wt)432質量部とを混合し、そこへDMP((株)日本ファインケム製)50.6質量部を添加し、室温まで冷却した後、5時間撹拌し、赤外吸収(IR)スペクトル測定による波長1740cm-1前後のグアニジン基による吸収ピークが生成し、波長2150cm-1前後のカルボジイミド基による吸収ピークがほぼ消失したことを確認して、DMP変性ポリカルボジイミド化合物P11(n=10、カルボジイミド当量345g/モル)を得た。
[実施例1-12]
 TDI100質量部、ポリエチレングリコールモノメチルエーテル(分子量550、ブラウノンMP-550、青木油脂工業(株)製)105質量部およびカルボジイミド化触媒(3-メチル-フェニル-2-ホスホレン-1-オキシド)1.0質量部を、還流管および撹拌機付き反応容器に入れ、窒素気流下80℃で3時間撹拌し、赤外吸収(IR)スペクトル測定による波長2270cm-1前後のイソシアネート基による吸収ピークがほぼ消失したことを確認して、ポリカルボジイミド化合物を得た。
 得られたポリカルボジイミド化合物と水503質量部とを混合し、そこへイミダゾール(以下、IMZという。キュアゾールSIZ、四国化成工業(株)製)35.8質量部を添加し、室温まで冷却した後、5時間撹拌し、赤外吸収(IR)スペクトル測定による波長1740cm-1前後のグアニジン基による吸収ピークが生成し、波長210cm-1前後のカルボジイミド基による吸収ピークがほぼ消失したことを確認して、IMZ変性ポリカルボジイミド化合物P12(n=5、カルボジイミド当量385g/モル)を得た。
[比較例1-1]
 TDI100質量部、ポリエチレングリコールモノメチルエーテル(分子量550、ブラウノンMP-550、青木油脂工業(株)製)105質量部およびカルボジイミド化触媒(3-メチル-フェニル-2-ホスホレン-1-オキシド)1.0質量部を、還流管および撹拌機付き反応容器に入れ、窒素気流下80℃で3時間撹拌し、赤外吸収(IR)スペクトル測定による波長2270cm-1前後のイソシアネート基による吸収ピークがほぼ消失したことを確認して、ポリカルボジイミド化合物を得た。
 得られたポリカルボジイミド化合物と水485質量部とを混合し、そこへジイソプロピルアミン(以下、DIPAという)53.2質量部を添加し、室温まで冷却した後、5時間撹拌し、赤外吸収(IR)スペクトル測定による波長1740cm-1前後のグアニジン基による吸収ピークが生成し、波長210cm-1前後のカルボジイミド基による吸収ピークがほぼ消失したことを確認して、DIPA変性ポリカルボジイミド化合物P13(n=5、カルボジイミド当量385g/モル)を得た。
[比較例1-2]
 MDI100質量部、ポリエチレングリコールモノメチルエーテル(分子量550、ブラウノンMP-550、青木油脂工業(株)製)64.0質量部およびカルボジイミド化触媒(3-メチル-フェニル-2-ホスホレン-1-オキシド)1.0質量部を、還流管および撹拌機付き反応容器に入れ、窒素気流下80℃で4時間撹拌し、赤外吸収(IR)スペクトル測定による波長2270cm-1前後のイソシアネート基による吸収ピークがほぼ消失したことを確認して、ポリカルボジイミド化合物を得た。
 得られたポリカルボジイミド化合物と水403質量部とを混合し、そこへDIPA35.6質量部を添加し、室温まで冷却した後、5時間撹拌し、赤外吸収(IR)スペクトル測定による波長1740cm-1前後のグアニジン基による吸収ピークが生成し、波長2150cm-1前後のカルボジイミド基による吸収ピークがほぼ消失したことを確認して、DIPA変性ポリカルボジイミド化合物P14(n=4、カルボジイミド当量469g/モル)を得た。
[比較例1-3]
 TDI100質量部、ポリエチレングリコールモノメチルエーテル(分子量400、ブラウノンMP-400、青木油脂工業(株)製)79.0質量部、ポリプロピレングリコール(分子量400、サンニックスPP-400、三洋化成工業(株)製)22.7質量部およびカルボジイミド化触媒(3-メチル-フェニル-2-ホスホレン-1-オキシド)1.0質量部を、還流管および撹拌機付き反応容器に入れ、窒素気流下80℃で4時間撹拌し、赤外吸収(IR)スペクトル測定による波長2270cm-1前後のイソシアネート基による吸収ピークがほぼ消失したことを確認して、ポリカルボジイミド化合物を得た。
 得られたポリカルボジイミド化合物と水504質量部とを混合し、そこへDIPA47.9質量部を添加して室温まで冷却した後、5時間撹拌し、赤外吸収(IR)スペクトル測定による波長1740cm-1前後のグアニジン基による吸収ピークが生成し、波長2150cm-1前後のカルボジイミド基による吸収ピークがほぼ消失したことを確認して、DIPA変性ポリカルボジイミド化合物P15(n=6、カルボジイミド当量438g/モル)を得た。
[比較例1-4]
 TDI100質量部、ポリエチレングリコールモノメチルエーテル(分子量550、ブラウノンMP-550、青木油脂工業(株)製)52.7質量部、ひまし油ポリオール(分子量700、URIC Y-403、伊藤製油(株)製)17.7質量部およびカルボジイミド化触媒(3-メチル-フェニル-2-ホスホレン-1-オキシド)1.0質量部を、還流管および撹拌機付き反応容器に入れ、窒素気流下80℃で4時間撹拌し、赤外吸収(IR)スペクトル測定による波長2270cm-1前後のイソシアネート基による吸収ピークがほぼ消失したことを確認して、ポリカルボジイミド化合物を得た。
 得られたポリカルボジイミド化合物と、エチルジグリコールアセテートおよび水の混合溶媒(1/1、wt/wt)432質量部とを混合し、そこへDIPA50.6質量部を添加し、室温まで冷却した後、5時間撹拌し、赤外吸収(IR)スペクトル測定による波長1740cm-1前後のグアニジン基による吸収ピークが生成し、波長2150cm-1前後のカルボジイミド基による吸収ピークがほぼ消失したことを確認して、DIPA変性ポリカルボジイミド化合物P16(n=10、カルボジイミド当量345g/モル)を得た。
[比較例1-5]
 TDI100質量部、ポリエチレングリコールモノメチルエーテル(分子量550、ブラウノンMP-550、青木油脂工業(株)製)52.7質量部、ひまし油ポリオール(分子量700、URIC Y-403、伊藤製油(株)製)17.7質量部およびカルボジイミド化触媒(3-メチル-フェニル-2-ホスホレン-1-オキシド)1.0質量部を、還流管および撹拌機付き反応容器に入れ、窒素気流下80℃で4時間撹拌し、赤外吸収(IR)スペクトル測定による波長2270cm-1前後のイソシアネート基による吸収ピークがほぼ消失したことを確認して、ポリカルボジイミド化合物を得た。
 得られたポリカルボジイミド化合物とエチルジグリコールアセテート432質量部とを混合し、そこへDIPA50.6質量部を添加し、室温まで冷却した後、5時間撹拌し、赤外吸収(IR)スペクトル測定による波長1740cm-1前後のグアニジン基による吸収ピークが生成し、波長2150cm-1前後のカルボジイミド基による吸収ピークがほぼ消失したことを確認して、DIPA変性ポリカルボジイミド化合物P17(n=10、カルボジイミド当量345g/モル)を得た。
〔アミンの解離性〕
 上記各実施例および比較例で得られた変性ポリカルボジイミド化合物を、120℃で10分加熱し、赤外吸収(IR)スペクトル測定による波長2150cm-1前後のカルボジイミド基による吸収ピークを確認した。変性前のポリカルボジイミド化合物のカルボジイミド基のピークを100%とし、加熱後にアミンが解離して生じたカルボジイミド基のピークの割合を算出した。結果を表1に示す。なお、生じたピークの割合が80%以上を〇、80%未満を×として評価した。
Figure JPOXMLDOC01-appb-T000002
 表1に示されるように、実施例1-1~1-12で得られた変性ポリカルボジイミド化合物は、比較例の変性ポリカルボジイミド化合物に比べ、アミンの解離性に優れていることがわかる。
[2]熱硬化性ウレタン樹脂組成物および硬化物の製造
[実施例2-1~2-12,比較例2-1~2-5]
 実施例1-1~1-12および比較例1-1~1-5で得られた変性ポリカルボジイミド化合物を、カルボキシ基含有水性ポリウレタン樹脂(Suncure777、Lubrizol社製、固形分35質量%)と、カルボキシ基とカルボジイミド基の当量比1:1で混合して熱硬化性ウレタン樹脂組成物を調製した。
(1)ポットライフ測定
 実施例2-1~2-12および比較例2-1~2-5で調製した熱硬化性ウレタン樹脂組成物について、50℃で1週間放置した後の状態を観察した。結果を表2に示す。液状を保ったものを〇とし、固化したものを×として評価した(以下、同様)。
(2)ラビング試験
 実施例2-1~2-12および比較例2-1~2-5で調製した熱硬化性ウレタン樹脂組成物を、アルミパネルにキャストして70℃で5分乾燥して厚さ20μmの塗膜を作製した。その後、この塗膜を150℃で10分加熱し、硬化させてフィルムを作製した。
 得られたフィルムについて、溶剤にエタノールを用い、加重900g/cm2にて摩擦試験機ER-1B(スガ試験機(株)製)によりダブルラビングを行った。結果を表2に併せて示す。評価は、以下の白化点数によって行った(以下、同様)。
5:変化なし
4:薄く白化
3:白化あり
2:全体白化
1:溶解あり
0:溶解
Figure JPOXMLDOC01-appb-T000003
[3]熱硬化性アクリル樹脂組成物および硬化物の製造
[実施例3-1~3-12,比較例3-1~3-5]
 実施例1-1~1-12および比較例1-1~1-5で得られた変性ポリカルボジイミド化合物を、水性アクリル樹脂(PRIMAL AC-261P、DOW社製、固形分50質量%)と、カルボキシ基とカルボジイミド基の当量比1:1で混合して熱硬化性アクリル樹脂組成物を調製した。
(1)ポットライフ測定
 実施例3-1~3-12および比較例3-1~3-5で調製した熱硬化性アクリル樹脂組成物について、50℃で1週間放置した後の状態を観察した。結果を表3に示す。
(2)ラビング試験
 実施例3-1~3-12および比較例3-1~3-5で調製した熱硬化性アクリル樹脂組成物を、アルミパネルにキャストして70℃で5分乾燥して厚さ20μmの塗膜を作製した。その後、この塗膜を150℃で30分加熱し、硬化させてフィルムを作製した。
 得られたフィルムについて、溶剤にエタノールを用い、加重900g/cm2にて摩擦試験機ER-1B(スガ試験機(株)製)によりダブルラビングを行った。結果を表3に併せて示す。
Figure JPOXMLDOC01-appb-T000004
 表2および3に示されるように、各実施例で調製した熱硬化性樹脂組成物は、ポットライフが良好であるとともに、150℃、30分の条件で十分に硬化していることがわかる。
 すなわち、カルボジイミド基を所定のアミン含有芳香族ヘテロ環化合物で変性することにより、混合後のゲル化や固化を効率的に防ぐことができる結果、ポットライフが向上し、また、低温かつ短時間で変性に用いたアミンを解離させることができる結果、150℃、30分という穏やかな条件で速やかに硬化して硬化膜が得られることがわかる。

Claims (10)

  1.  末端が親水性化合物で封止されたジイソシアネート化合物由来のポリカルボジイミドのカルボジイミド基の少なくとも一部が、環内2級アミン窒素を有する芳香族ヘテロ環化合物で変性されてなる変性ポリカルボジイミド化合物。
  2.  前記芳香族ヘテロ環化合物が、環内窒素を2つ以上含む請求項1記載の変性ポリカルボジイミド化合物。
  3.  前記芳香族ヘテロ環化合物が、ピラゾール化合物およびイミダゾール化合物から選ばれる1種または2種以上である請求項1または2記載の変性ポリカルボジイミド化合物。
  4.  前記芳香族ヘテロ環化合物が、3,5-ジメチルピラゾール、2-メチルイミダゾール、およびイミダゾールから選ばれる1種または2種以上である請求項3記載の変性ポリカルボジイミド化合物。
  5.  前記ジイソシアネート化合物が、芳香族ジイソシアネート化合物である請求項1~4のいずれか1項記載の変性ポリカルボジイミド化合物。
  6.  前記芳香族ジイソシアネート化合物が、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、およびo-トリジンジイソシアネートから選ばれる1種または2種以上である請求項5記載の変性ポリカルボジイミド化合物。
  7.  請求項1~6のいずれか1項記載の変性ポリカルボジイミド化合物を含む硬化剤。
  8.  請求項7記載の硬化剤と、カルボキシ基、アミノ基および水酸基から選ばれる反応性基を含有する樹脂を含む硬化性樹脂組成物。
  9.  前記硬化剤の含有量が、前記樹脂の反応性基当量に対して0.5~1.5当量である請求項8記載の熱硬化性樹脂組成物。
  10.  前記反応性基を含有する樹脂が、ポリウレタン樹脂、ポリアミド樹脂、アクリル樹脂、酢酸ビニル樹脂、ポリオレフィン樹脂およびポリイミド樹脂から選ばれる1種または2種以上である請求項8または9記載の熱硬化性樹脂組成物。
PCT/JP2020/032173 2019-09-25 2020-08-26 親水性基を有する変性ポリカルボジイミド化合物 WO2021059835A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/762,535 US20220372202A1 (en) 2019-09-25 2020-08-26 Modified polycarbodiimide compound having hydrophilic group
JP2021548441A JPWO2021059835A1 (ja) 2019-09-25 2020-08-26
KR1020227009096A KR20220069938A (ko) 2019-09-25 2020-08-26 친수성 기를 갖는 변성 폴리카르보디이미드 화합물
EP20870392.6A EP4036140A4 (en) 2019-09-25 2020-08-26 MODIFIED POLYCARBODIIMIDE COMPOUND HAVING A HYDROPHILIC GROUP
CN202080067082.5A CN114450321A (zh) 2019-09-25 2020-08-26 具有亲水性基团的改性聚碳二亚胺化合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019174214 2019-09-25
JP2019-174214 2019-09-25

Publications (1)

Publication Number Publication Date
WO2021059835A1 true WO2021059835A1 (ja) 2021-04-01

Family

ID=75166072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032173 WO2021059835A1 (ja) 2019-09-25 2020-08-26 親水性基を有する変性ポリカルボジイミド化合物

Country Status (6)

Country Link
US (1) US20220372202A1 (ja)
EP (1) EP4036140A4 (ja)
JP (1) JPWO2021059835A1 (ja)
KR (1) KR20220069938A (ja)
CN (1) CN114450321A (ja)
WO (1) WO2021059835A1 (ja)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2941956A (en) 1956-08-15 1960-06-21 Socony Mobil Oil Co Inc Regeneration of contact material
JPS4733279B1 (ja) 1968-12-20 1972-08-24
JPH07330849A (ja) 1994-06-10 1995-12-19 Nisshinbo Ind Inc 水性テトラメチルキシリレンカルボジイミド
JPH1036469A (ja) * 1996-07-26 1998-02-10 Japan Synthetic Rubber Co Ltd 熱硬化性樹脂
JPH1060272A (ja) * 1996-08-16 1998-03-03 Nippon Polyurethane Ind Co Ltd カルボキシル基含有樹脂用ポリカルボジイミド硬化剤組成物、これを用いた接着剤及び塗料
JP2000136231A (ja) 1998-08-26 2000-05-16 Nisshinbo Ind Inc 一液型エポキシ樹脂組成物
JP2000313825A (ja) * 1999-04-30 2000-11-14 Nippon Paint Co Ltd 水性塗料組成物
JP2001011151A (ja) * 1999-04-30 2001-01-16 Nippon Paint Co Ltd 熱硬化性水性塗料組成物およびこれを用いた塗膜形成方法、ならびに、複層塗膜形成方法
JP2001011152A (ja) * 1999-04-30 2001-01-16 Nippon Paint Co Ltd 親水化変性ポリカルボジイミド化合物の製造方法および親水化変性ポリカルボジイミド化合物、ならびにこれを含んだ常温硬化型水性塗料組成物
JP2013112755A (ja) 2011-11-29 2013-06-10 Nisshinbo Holdings Inc ポリカルボジイミドアミン変性物及び樹脂架橋剤
JP2016196612A (ja) * 2015-04-06 2016-11-24 日清紡ケミカル株式会社 変性ポリカルボジイミド化合物、硬化剤及び熱硬化性樹脂組成物
JP2016196613A (ja) * 2015-04-06 2016-11-24 日清紡ケミカル株式会社 変性ポリカルボジイミド化合物、硬化剤及び熱硬化性樹脂組成物
WO2017006950A1 (ja) * 2015-07-08 2017-01-12 日清紡ケミカル株式会社 カルボジイミド系水性樹脂架橋剤
WO2018092752A1 (ja) * 2016-11-18 2018-05-24 日清紡ケミカル株式会社 ポリカルボジイミド共重合体
JP2018104605A (ja) * 2016-12-27 2018-07-05 日清紡ケミカル株式会社 カルボキシル基含有水性樹脂組成物、成形体、及びポリカルボジイミド化合物の製造方法
WO2019059393A1 (ja) * 2017-09-25 2019-03-28 日清紡ケミカル株式会社 粉体塗料用硬化剤及び該粉体塗料用硬化剤を含む粉体塗料用組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344849A (ja) * 1999-06-08 2000-12-12 Nitto Denko Corp 芳香族ポリカルボジイミド及びそのシート
CN112204068B (zh) * 2017-12-22 2022-05-27 三井化学株式会社 封端异氰酸酯

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2941956A (en) 1956-08-15 1960-06-21 Socony Mobil Oil Co Inc Regeneration of contact material
JPS4733279B1 (ja) 1968-12-20 1972-08-24
JPH07330849A (ja) 1994-06-10 1995-12-19 Nisshinbo Ind Inc 水性テトラメチルキシリレンカルボジイミド
JPH1036469A (ja) * 1996-07-26 1998-02-10 Japan Synthetic Rubber Co Ltd 熱硬化性樹脂
JPH1060272A (ja) * 1996-08-16 1998-03-03 Nippon Polyurethane Ind Co Ltd カルボキシル基含有樹脂用ポリカルボジイミド硬化剤組成物、これを用いた接着剤及び塗料
JP2000136231A (ja) 1998-08-26 2000-05-16 Nisshinbo Ind Inc 一液型エポキシ樹脂組成物
JP2000313825A (ja) * 1999-04-30 2000-11-14 Nippon Paint Co Ltd 水性塗料組成物
JP2001011151A (ja) * 1999-04-30 2001-01-16 Nippon Paint Co Ltd 熱硬化性水性塗料組成物およびこれを用いた塗膜形成方法、ならびに、複層塗膜形成方法
JP2001011152A (ja) * 1999-04-30 2001-01-16 Nippon Paint Co Ltd 親水化変性ポリカルボジイミド化合物の製造方法および親水化変性ポリカルボジイミド化合物、ならびにこれを含んだ常温硬化型水性塗料組成物
JP2013112755A (ja) 2011-11-29 2013-06-10 Nisshinbo Holdings Inc ポリカルボジイミドアミン変性物及び樹脂架橋剤
JP2016196612A (ja) * 2015-04-06 2016-11-24 日清紡ケミカル株式会社 変性ポリカルボジイミド化合物、硬化剤及び熱硬化性樹脂組成物
JP2016196613A (ja) * 2015-04-06 2016-11-24 日清紡ケミカル株式会社 変性ポリカルボジイミド化合物、硬化剤及び熱硬化性樹脂組成物
WO2017006950A1 (ja) * 2015-07-08 2017-01-12 日清紡ケミカル株式会社 カルボジイミド系水性樹脂架橋剤
WO2018092752A1 (ja) * 2016-11-18 2018-05-24 日清紡ケミカル株式会社 ポリカルボジイミド共重合体
JP2018104605A (ja) * 2016-12-27 2018-07-05 日清紡ケミカル株式会社 カルボキシル基含有水性樹脂組成物、成形体、及びポリカルボジイミド化合物の製造方法
WO2019059393A1 (ja) * 2017-09-25 2019-03-28 日清紡ケミカル株式会社 粉体塗料用硬化剤及び該粉体塗料用硬化剤を含む粉体塗料用組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL REVIEW, vol. 81, no. 4, 1981, pages 619 - 621
J. ORG. CHEM, vol. 28, 1963, pages 2069 - 2075

Also Published As

Publication number Publication date
EP4036140A4 (en) 2023-10-04
KR20220069938A (ko) 2022-05-27
CN114450321A (zh) 2022-05-06
JPWO2021059835A1 (ja) 2021-04-01
US20220372202A1 (en) 2022-11-24
EP4036140A1 (en) 2022-08-03

Similar Documents

Publication Publication Date Title
CN107531877B (zh) 改性聚碳化二亚胺化合物、固化剂及热固化性树脂组成物
CN107709390B (zh) 碳化二亚胺类水性树脂交联剂
JP6849268B2 (ja) 変性ポリカルボジイミド化合物、硬化剤及び熱硬化性樹脂組成物
CN109952333B (zh) 聚碳化二亚胺共聚物
JP5833900B2 (ja) 樹脂架橋剤及び水性樹脂組成物
EP0449143A2 (en) Low temperature active aliphatic/aromatic polycarbodiimides
EP0952146B1 (en) Hydrophilic Dicyclohexylmethanecarbodiimide
EP2518113A1 (en) Resin crosslinking agent
KR100831205B1 (ko) 평활성, 방청성, 유연성이 우수한 고기능성 양이온전착수지 조성물
JP6947468B2 (ja) ポリカルボジイミド化合物及び熱硬化性樹脂組成物
WO2021059835A1 (ja) 親水性基を有する変性ポリカルボジイミド化合物
KR100491212B1 (ko) 분체도료용경화제,해당경화제를포함하는 분체도료조성물 및 분체도장
KR102565304B1 (ko) 실란트 및 높은 고형분 페인트를 위한 폴리아미드 조성물
WO2019059393A1 (ja) 粉体塗料用硬化剤及び該粉体塗料用硬化剤を含む粉体塗料用組成物
CN113508150A (zh) 纤维或皮革用交联剂
JPH0377811B2 (ja)
JP2023119349A (ja) ポリウレトンイミン組成物、水分散組成物、溶液組成物、硬化性組成物、樹脂硬化物、および、ポリウレトンイミン組成物の製造方法
JPH1135850A (ja) 粉体塗料用硬化剤、該硬化剤を含む粉体塗料組成物及び粉体塗装
JP2021134270A (ja) ポリカルボジイミド化合物、エポキシ樹脂用硬化剤、及びエポキシ樹脂組成物
JPH02279770A (ja) 被覆用樹脂組成物
JPH02279774A (ja) カチオン型電着塗装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870392

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021548441

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020870392

Country of ref document: EP

Effective date: 20220425