WO2021035405A1 - 显示装置及其制造方法和驱动基板 - Google Patents

显示装置及其制造方法和驱动基板 Download PDF

Info

Publication number
WO2021035405A1
WO2021035405A1 PCT/CN2019/102293 CN2019102293W WO2021035405A1 WO 2021035405 A1 WO2021035405 A1 WO 2021035405A1 CN 2019102293 W CN2019102293 W CN 2019102293W WO 2021035405 A1 WO2021035405 A1 WO 2021035405A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
base substrate
light
reflective
Prior art date
Application number
PCT/CN2019/102293
Other languages
English (en)
French (fr)
Inventor
卢鹏程
黄冠达
陈小川
杨盛际
董学
王辉
王晏酩
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP19932230.6A priority Critical patent/EP4020572A4/en
Priority to PCT/CN2019/102293 priority patent/WO2021035405A1/zh
Priority to JP2022512405A priority patent/JP7339432B2/ja
Priority to CN201980001460.7A priority patent/CN112703605A/zh
Priority to US16/959,757 priority patent/US20210408488A1/en
Priority to KR1020227008984A priority patent/KR20220049031A/ko
Priority to US16/814,119 priority patent/US11600234B2/en
Publication of WO2021035405A1 publication Critical patent/WO2021035405A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1216Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates

Definitions

  • the embodiments of the present disclosure relate to a display device, a manufacturing method thereof, and a driving substrate.
  • the embodiments of the present disclosure relate to a display device, a manufacturing method thereof, and a driving substrate.
  • a display device including:
  • a display area the display area includes a plurality of sub-pixels located on the base substrate, and each sub-pixel includes:
  • a light-emitting element located on the first reflective electrode including a first electrode layer, an organic light-emitting function layer, and a second electrode layer sequentially stacked on the first reflective electrode, the first electrode layer Is a transparent electrode layer, and the organic light-emitting functional layer includes an electron injection layer, an electron transport layer, a light emitting layer, a hole injection layer, and a hole transport layer;
  • An insulating layer is located between the first reflective electrode and the first electrode layer, and the insulating layer is light-transmissive so that the light emitted by the organic light-emitting function layer can penetrate therethrough and reach the first reflector An electrode to be reflected by the first reflective electrode;
  • the pixel circuit is located on the base substrate and includes a driving transistor including a semiconductor layer, a source electrode, and a drain electrode. One of the source electrode and the drain electrode and the first reflective electrode are electrically connected to each other, so The semiconductor layer is located in the base substrate; and
  • the storage capacitor located on the base substrate is configured to store data signals
  • the peripheral area surrounds the display area and includes:
  • a plurality of second reflective electrodes located on the base substrate.
  • a light-blocking layer arranged on a side of the plurality of second reflective electrodes away from the base substrate.
  • a manufacturing method of a display device including a display area and a peripheral area surrounding the display area, the manufacturing method including:
  • a plurality of sub-pixels are formed on the base substrate, the plurality of sub-pixels are located in the display area, and the formation of the sub-pixels includes:
  • a light-emitting element is formed on the first reflective electrode, and the light-emitting element includes a first electrode layer, an organic light-emitting function layer, and a second electrode layer sequentially stacked on the first reflective electrode.
  • the first electrode layer Is a transparent electrode layer, and the organic light-emitting functional layer includes an electron injection layer, an electron transport layer, a light emitting layer, a hole injection layer, and a hole transport layer;
  • An insulating layer is formed between the first reflective electrode and the first electrode layer, and the insulating layer is light-transmissive so that the light emitted by the organic light-emitting function layer penetrates therethrough and reaches the first reflective layer.
  • a pixel circuit is formed on the base substrate, the pixel circuit includes a driving transistor, the driving transistor includes a semiconductor layer, a source electrode, and a drain electrode. One of the source electrode and the drain electrode and the first reflective electrode are connected to each other. Electrically connected, the semiconductor layer is located in the base substrate; and
  • a light blocking layer is formed on the side of the plurality of reflective electrodes away from the base substrate.
  • a driving substrate suitable for driving a light emitting element to emit light including:
  • a display area the display area includes a plurality of sub-pixels located on the base substrate, and each sub-pixel includes:
  • the first reflective electrode is located on the base substrate
  • the insulating layer is located on the side of the first reflective electrode away from the base substrate, the insulating layer has a first surface suitable for forming the light-emitting element, and the insulating layer is light-transmissive so that it is incident on the The light of the insulating layer penetrates therethrough and reaches the first reflective electrode to be reflected by the first reflective electrode;
  • the pixel circuit is located on the base substrate and includes a driving transistor including a semiconductor layer, a source electrode, and a drain electrode. One of the source electrode and the drain electrode and the first reflective electrode are electrically connected to each other, so The semiconductor layer is located in the base substrate; and
  • a storage capacitor located on the base substrate and configured to store data signals
  • the peripheral area surrounds the display area and includes:
  • a plurality of second reflective electrodes located on the base substrate.
  • a light-blocking layer arranged on a side of the plurality of second reflective electrodes away from the base substrate.
  • FIG. 1(a) is a schematic diagram of the arrangement of a display device on a silicon wafer according to an embodiment of the disclosure
  • FIG. 1(b) is a schematic diagram of each functional area in a display device provided by an embodiment of the disclosure.
  • FIG. 2 is a schematic partial enlarged cross-sectional view of a sub-pixel of a display device provided by an embodiment of the disclosure
  • FIG. 3 is a schematic partial enlarged cross-sectional view of a sub-pixel of a display device according to another embodiment of the present disclosure
  • FIG. 4 is a schematic partial enlarged cross-sectional view of a sub-pixel of a display device provided by still another embodiment of the present disclosure
  • FIG. 5 is a schematic partial enlarged cross-sectional view of a sub-pixel of a display device according to another embodiment of the present disclosure.
  • 6(a) and 6(b) respectively show two different relative positional relationships of the first electrode layer and the first reflective electrode provided by the embodiments of the present disclosure
  • FIG. 7 is a schematic cross-sectional view of a display device provided by an embodiment of the disclosure.
  • FIG. 8(a) is a schematic circuit diagram of a display device provided by an embodiment of the disclosure.
  • FIG. 8(b) is a schematic diagram of a partial circuit of a display device provided by an embodiment of the disclosure.
  • FIG. 9(a) is a schematic structural diagram of a display device provided by an embodiment of the disclosure.
  • FIG. 9(b) is a schematic cross-sectional view of a display device provided by an embodiment of the disclosure.
  • FIG. 10 is a flowchart of a method for forming sub-pixels of a display device according to an embodiment of the disclosure
  • 11 to 14 are schematic cross-sectional views of the substrate in each step of the method for forming sub-pixels of the display device provided by the embodiments of the present disclosure
  • FIG. 15 to FIG. 17 are schematic cross-sectional views of a substrate in each step in a method for forming sub-pixels of a display device according to another embodiment of the present disclosure
  • FIG. 18 is a schematic diagram of the structure of an organic light-emitting functional layer in a display device provided by an embodiment of the disclosure.
  • organic electroluminescent devices include bottom emission type devices, top emission type devices, and double-sided emission type devices.
  • the light-emitting element of an organic electroluminescence device generally includes a cathode, an anode, and an organic light-emitting functional layer disposed between the two.
  • the material of the cathode is a transparent or semi-transparent conductive material and the anode is a reflective metal
  • the OLED is a top emission device
  • the substrate can be a transparent, semi-transparent or non-transparent substrate.
  • Micro OLED is a type of silicon-based display. Due to the excellent electrical characteristics and extremely fine device size of silicon-based devices, it is conducive to achieving a high degree of integration. Generally, in the process of manufacturing silicon-based micro-OLEDs, the anode including the reflective metal is manufactured by the panel factory, and the part below the reflective metal is manufactured by the fab. However, when making reflective metal, it is difficult for panel manufacturers to precisely control the pattern of the reflective metal through an etching process, which not only increases the manufacturing cost and difficulty of silicon-based micro OLEDs, but also affects the brightness of the light.
  • An embodiment of the present disclosure provides a display device including: a base substrate, a display area, and a peripheral area surrounding the display area.
  • the display area includes: a plurality of sub-pixels located on the base substrate, each sub-pixel includes: a first reflective electrode; a light-emitting element located on the first reflective electrode, the light-emitting element includes A first electrode layer, an organic light-emitting function layer, and a second electrode layer on a reflective electrode, the first electrode layer is a transparent electrode layer, and the organic light-emitting function layer includes an electron injection layer, an electron transport layer, a light emitting layer, and a space. Hole injection layer and hole transport layer.
  • the display area further includes: an insulating layer located between the first reflective electrode and the first electrode layer, the insulating layer is light-transmissive so that the light emitted by the organic light-emitting function layer penetrates therethrough and reaches the first A reflective electrode to be reflected by the first reflective electrode; a pixel circuit, located on the base substrate and including a driving transistor, the driving transistor includes a semiconductor layer, a source electrode, a drain electrode, one of the source electrode and the drain electrode is connected to The first reflective electrode is electrically connected to each other, the semiconductor layer is located in the base substrate; and the storage capacitor located on the base substrate is configured to store data signals.
  • the peripheral area includes: a plurality of second reflective electrodes located on the base substrate; and a light blocking layer provided on a side of the plurality of second reflective electrodes away from the base substrate.
  • the first reflective electrode and the first electrode layer are separated from each other by an insulating layer.
  • drive substrate refers to the laminated structure under the first electrode layer (excluding the first electrode layer) in the display device. Since the laminated structure contains pixel circuits such as driving transistors, it is suitable for driving light-emitting elements to emit light. .
  • FIG. 1(a) is a schematic diagram of the arrangement of a display device on a silicon wafer according to an embodiment of the disclosure, that is, a wafer map.
  • the wafer diagram schematically shows the number and arrangement of display devices on the silicon wafer. It can be understood that the number and arrangement of the display devices shown in the figure are for illustrative purposes only, and are not intended to limit the embodiments of the present disclosure.
  • FIG. 1(b) is a schematic diagram of each functional area in a display device provided by an embodiment of the disclosure. As shown in Figure 1(b), the display device includes a display area (Active area, AA for short), a peripheral area (Edge area, EA for short) surrounding the display area, and a Bonding area (BA for short).
  • the display area AA includes a plurality of pixel units PX arranged in an array.
  • Each pixel unit PX includes a plurality of sub-pixels SP.
  • the pixel unit may include 3, 4, 5 or more sub-pixels, which need to be designed and determined according to the actual application environment, which is not limited here.
  • the display device further includes a plurality of pads located in the bonding area BA, and the pads are used to provide signal input or output channels for the display device.
  • FIG. 7 is a schematic cross-sectional view of a display device provided by an embodiment of the disclosure. For example, as shown in FIG.
  • the display device includes three sub-pixels, namely, a red sub-pixel SP1, a green sub-pixel SP2, and a blue sub-pixel SP3.
  • the colors of the sub-pixels in the display device are only illustrative, and may also include other colors such as blue and white.
  • FIG. 2 is a schematic partial enlarged cross-sectional view of a sub-pixel of a display device provided by an embodiment of the disclosure.
  • each sub-pixel includes a first reflective electrode 106 and a light-emitting element 130 located on the first reflective electrode 106.
  • the light-emitting element 130 includes a first reflective electrode 106 sequentially stacked on the first reflective electrode 106.
  • the electrode layer 122, the organic light emitting function layer 124, and the second electrode layer 126 are examples of the first reflective electrode 106.
  • each sub-pixel further includes an insulating layer 103 located between the first reflective electrode 106 and the first electrode layer 122.
  • the insulating layer 103 is light-transmissive so that the organic light-emitting function layer 124 emits light. The light penetrates therethrough and reaches the first reflective electrode 106 to be reflected by the first reflective electrode 106.
  • the first reflective electrode 106 and the first electrode layer 122 are separated by the insulating layer 103, so that when the first reflective electrode 106 is manufactured, the first reflective electrode 106 can be integrated in the driving substrate manufactured by the fab. The manufacturing cost and manufacturing difficulty of the first reflective electrode 106 are reduced.
  • the light L emitted by the organic light-emitting function layer 124 is incident on the insulating layer 103 near the first surface 1031 of the organic light-emitting function layer 124, since the insulating layer 103 has light-transmitting properties, the light L can penetrate the first surface 1031 of the insulating layer 103.
  • the surface 1031 is emitted from the second surface 1032 of the insulating layer 103 close to the first reflective electrode 106 and reaches the first reflective electrode 106.
  • the first reflective electrode 106 has reflective properties, and reflects the light L incident thereon back to the light-emitting element 130 and finally exits the light-emitting element 130.
  • the insulating layer 103 due to the light-transmitting properties of the insulating layer 103, the light reflected by the first reflective electrode 106 is emitted to the outside with almost no loss, thereby ensuring high light output brightness and high light output efficiency of the display device.
  • the insulating layers 103 in the three sub-pixels are integrally formed to facilitate manufacturing and reduce the difficulty of the manufacturing process.
  • a conductive path for electrically connecting the first electrode layer and the first reflective electrode is provided in the insulating layer. Two examples of conductive paths are provided below.
  • the insulating layer 103 includes a via hole 110 filled with a metal member 108, and the first reflective electrode 106 is electrically connected to the first electrode layer 122 through the metal member 108.
  • the first reflective electrode 106 is electrically connected to the first electrode layer 122 through the metal member 108.
  • the metal member 108 is made of a metal material, such as tungsten metal, and a via filled with tungsten metal is also called a tungsten via (W-via).
  • a metal material such as tungsten metal
  • W-via tungsten via
  • the thickness of the insulating layer 103 is relatively large, the formation of tungsten vias in the insulating layer 103 can ensure the stability of the conductive path, and since the process of making the tungsten vias is mature, the resulting insulating layer 103 has a flat surface. It is good for reducing the contact resistance between the insulating layer 103 and the first electrode layer 122.
  • the tungsten via is not only suitable for realizing the electrical connection between the insulating layer 103 and the first electrode layer 122, but also for the electrical connection between the first reflective electrode 106 and the pixel circuit, and between other wiring layers. Electrical connection. The electrical connection between the first reflective electrode 106 and the pixel circuit will be described in detail later.
  • the insulating layer 203 includes a first opening 210 exposing the first reflective electrode 206, and at least a portion 222 a of the first electrode layer 222 is located in the first opening 210 and electrically connected to the first reflective electrode 206.
  • the first electrode layer 122 and the first reflective electrode 106 are electrically connected through the metal member 108, and there is no direct contact between the two.
  • a portion 222a of the first electrode layer 222 is filled in the first opening 210 of the insulating layer 203, and is in direct contact with the first reflective electrode 206 to form an electrical connection.
  • the manufacturing process is simpler. Moreover, since the first electrode layer 222 and the first reflective electrode 206 are in direct contact with each other, the thickness of the display device is reduced, which is beneficial to the thinning of the display device.
  • the first reflective electrode and the first electrode layer are insulated from each other.
  • the entire first reflective electrode 306 is separated from the first electrode layer 322 by the insulating layer 303 and insulated from the first electrode layer 322. That is, there is no electrical connection between the first electrode layer 322 and the first reflective electrode 306.
  • the pixel circuit including the driving transistor T1 is electrically connected to the first electrode layer 322 through the via 310 for controlling the light emission of the light-emitting element.
  • the display device further includes at least one wiring layer M1, and the at least one wiring layer M1 is located between the first reflective electrode 106 and the base substrate 100.
  • the wiring layer M1 includes a metal layer (shaded portion), and the gate electrode connection portion 102g, the source electrode connection portion 102s, and the drain electrode connection portion 102d are located in the same metal layer.
  • the first reflective electrode 106 also includes a metal layer 105, and the material of the metal layer 105 is, for example, aluminum or aluminum alloy, such as aluminum-copper alloy. Since aluminum or aluminum-copper alloy has low electrical resistance and high reflectivity, the light-emitting brightness and light-emitting efficiency of the display device can be improved.
  • the thickness of the metal layer 105 is between 10 nm and 1000 nm. If the thickness is too low, the reflection effect is not obvious, if the thickness is too high, the overall thickness of the panel will be larger.
  • the first reflective electrode 106 can be regarded as the wiring layer M2 of the display device. As shown in FIG. 2, when the display device includes multiple wiring layers, the wiring layer M2 where the first reflective electrode 106 is located is the uppermost wiring layer, which can simplify the production of the first reflective electrode 106 without destroying the bottom structure of the display device. .
  • the first reflective electrode 106 further includes at least one protective layer 104, and the protective layer 104 is stacked on the metal layer 105 and is located on the side of the metal layer 105 close to the base substrate 100. That is, the protective layer 104 is located on the surface of the metal layer 105 close to the base substrate 100. In this way, the protective layer 104 can prevent the metal layer 105 from being oxidized.
  • the material of the protective layer is a conductive material, such as titanium nitride (TiN).
  • the protective layer 104 is not provided on the surface of the metal layer 105 close to the first electrode layer 122, the light emitted by the organic light-emitting function layer 124 and passing through the first electrode layer 122 and the insulating layer 103 can be directly incident on the surface of the metal layer 105.
  • the surface thereby reducing the loss of light on the interface, improving the light reflection efficiency and the brightness of the display device.
  • the arrangement and number of the protective layer 104 are not limited to the situation shown in FIG. 2.
  • the protective layer may not be provided in the first reflective electrode.
  • the first reflective electrodes 106 and 306 do not include any protective layer, but only include a metal layer.
  • the protective layer may be provided on a single side of the metal layer. For example, it is only provided on the side of the metal layer 105 close to the base substrate 100 (as shown in FIG. 2), or only on the side of the metal layer 105 away from the base substrate 100 (not shown).
  • two protective layers are provided, they can be provided on both sides of the metal layer. For example, as shown in FIG.
  • the first reflective electrode 406 includes two protective layers 404 and a metal layer 405 located between them.
  • the two protection layers 404 are respectively located on the side of the metal layer 405 close to the base substrate 400 and the side of the metal layer 405 away from the base substrate 400.
  • the insulating layer 403 includes a via 410 and a metal member 408 located in the via.
  • the first electrode layer 422 is electrically connected to the first reflective electrode 406 including the two protective layers 404 and the metal layer 405 through the metal member 408.
  • a protective layer is provided on the upper and lower sides of each of the gate electrode connection portion 102g, the source electrode connection portion 102s, and the drain electrode connection portion 102d, which can effectively prevent these electrode connection portions from being oxidized. Improve conductivity.
  • the insulating layer 103 further includes a second opening 114 exposing the pad 112.
  • the arrangement of the second opening 114 facilitates the electrical connection and signal communication between the pad 112 and an external circuit.
  • the display device of FIG. 7 adopts the sub-pixel structure shown in FIG. 2. It is understood that all the sub-pixel structures shown in FIG. 3 to FIG. 5 can be applied to the display device of FIG. 7 and will not be repeated here.
  • the relative positional relationship between the first electrode layer and the first reflective electrode can be determined according to actual needs. For example, as shown in FIGS. 2 and 6(a), the orthographic projection of the first electrode layer 122 on the plane where the base substrate 100 is located is in the orthographic projection of the first reflective electrode 106 on the plane where the base substrate 100 is located. That is, the area of the orthographic projection of the first electrode layer 122 is smaller than the area of the orthographic projection of the first reflective electrode 106. In this way, almost all the light passing through the first electrode layer 122 is incident on the first reflective electrode 106 and is reflected, thereby improving the light-exiting efficiency and light-exiting brightness of the display device.
  • the arrangement of the first electrode layer and the first reflective electrode is not limited to the situation shown in FIG. 2 and FIG. 6(a), and vice versa.
  • the orthographic projection of the first reflective electrode 206 on the plane where the base substrate 100 is located is in the orthographic projection of the first electrode layer 222 on the plane where the base substrate 200 is located.
  • the orthographic projection of the first reflective electrode 306 on the plane where the base substrate 300 is located partially overlaps with the orthographic projection of the first electrode layer 322 on the plane where the base substrate 200 is located. This positional relationship may not change the electrical connection relationship between the wiring layer and the driving transistor in the existing display device, so that the manufacturing process of the first reflective electrode 306 is simple.
  • the shape of the first reflective electrode is not limited to the rectangle shown in FIGS. 6(a) and 6(b), but may be other regular shapes, such as a circle, an ellipse, a parallelogram, a regular polygon, Trapezoid and so on.
  • the first reflective electrode may also have an irregular shape, such as a broken line shape, a curved shape, a honeycomb shape, and the like.
  • the first reflective electrode 306 in FIG. 9(a) has a honeycomb shape.
  • the shape of the first electrode layer may be the same as or different from the shape of the first reflective electrode. For example, as shown in FIG.
  • the shape of the first reflective electrode 106 in a plane parallel to the base substrate 100, is the same as the shape of the first electrode layer 122. In this way, the reflection by the first reflective electrode 106 can ensure that the brightness of the emitted light is more uniform.
  • the shape of the first electrode layer is a circle
  • the shape of the first reflective electrode is a rectangle.
  • the orthographic projection of the circular first electrode layer on the plane where the base substrate is located is in the orthographic projection of the rectangular first reflective electrode on the plane where the base substrate is located. In this way, almost all the light passing through the circular first electrode layer is incident on the rectangular first reflective electrode and is reflected, thereby improving the light-exiting efficiency and light-exiting brightness of the display device.
  • the organic light-emitting functional layer may include a light-emitting layer and one or more film layers including a hole injection layer, an electron injection layer, a hole transport layer, an electron transport layer, an electron blocking layer, and a hole blocking layer Composition of multi-layer structure.
  • FIG. 18 is a schematic structural diagram of an organic light-emitting functional layer provided by an embodiment of the disclosure.
  • the organic light-emitting function layer 124 sequentially includes an electron injection layer EIL, an electron transport layer ETL, a light-emitting layer OL, a hole injection layer HTL, and a hole transport layer HIL from top to bottom. These layers can adopt the present invention.
  • the organic light-emitting function layer 124 may be made of organic materials. As shown in FIG. 2, under the voltage driving of the first electrode layer 122 and the second electrode layer 126, the light-emitting characteristics of the organic material are used to emit light according to the required gray scale.
  • each sub-pixel further includes a pixel circuit, and the pixel circuit includes a driving transistor.
  • FIG. 8(a) is a schematic circuit diagram of a display device provided by an embodiment of the disclosure.
  • FIG. 8(b) is a schematic diagram of a partial circuit of a display device provided by an embodiment of the disclosure.
  • each sub-pixel SP in the display area AA, includes a light-emitting element X and a pixel circuit 10 to which the light-emitting element X is coupled.
  • each pixel circuit 10 includes a driving transistor M0.
  • the light-emitting element X includes, for example, an OLED.
  • the anode of the OLED is electrically connected to the second terminal D of the driving transistor M0, and the cathode of the OLED is electrically connected to the second power terminal VSS.
  • the voltage of the second power terminal VSS is generally a negative voltage or a ground voltage VGND (for example, 0V).
  • the driving transistor M0 may be an N-type transistor.
  • the driving transistor T1 in each sub-pixel includes a source electrode S, a drain electrode D, and a semiconductor layer (the part between the source electrode S and the drain electrode D), the source electrode S and the drain electrode.
  • One of the electrodes D and the first reflective electrode 106 are electrically connected to each other.
  • the semiconductor layer is located in the base substrate, and the semiconductor layer is, for example, a channel region formed between the source electrode S and the drain electrode D.
  • the driving transistor T1 includes a gate electrode G, a source electrode S, and a drain electrode D.
  • the three electrodes correspond to the three electrode connection parts, respectively.
  • the gate electrode G is electrically connected to the gate electrode connection portion 102g
  • the source electrode S is electrically connected to the source electrode connection portion 102s
  • the drain electrode D is electrically connected to the drain electrode connection portion 102d.
  • the drain electrode D of the driving transistor T1 is electrically connected to the first reflective electrode 106 through the drain electrode connecting portion 102d.
  • each sub-pixel further includes a storage capacitor on the base substrate.
  • each sub-pixel further includes a storage capacitor Cst located on the base substrate and configured to store data signals.
  • the first terminal of the storage capacitor Cst is coupled to the gate electrode G of the driving transistor M0, and the second terminal of the storage capacitor Cst is coupled to the ground terminal GND.
  • the gate electrode G of the driving transistor T1 can store high-gray-scale or low-gray-scale data signals through the storage capacitor Cst.
  • the peripheral area includes a plurality of second reflective electrodes located on the base substrate and a light blocking layer disposed on a side of the plurality of second reflective electrodes away from the base substrate.
  • a second reflective electrode 216 is provided in the peripheral area EA, and the second reflective electrode 216 has the same structure as the first reflective electrode 106, for example, includes a metal layer 215 and a protective layer 214.
  • the metal layer 215 and the metal layer 105 are provided in the same layer
  • the protective layer 214 and the protective layer 104 are provided in the same layer, which is beneficial to simplify the manufacturing process.
  • a light blocking layer 240 is provided on the side of the second reflective electrode 216 away from the base substrate 100 for shielding the light reflected by the second reflective electrode 216 and reducing light leakage from the display area to the peripheral area.
  • the light blocking layer 240 includes a stacked structure of color film layers of at least two colors.
  • the light blocking layer 240 includes a red color film layer 218 and a green color film layer 220 that are stacked.
  • a stacked structure of color film layers of three colors can also be used.
  • the light blocking layer includes a black matrix layer, and the black matrix layer includes a black resin material, which can also achieve a light shielding effect.
  • the display device further includes a first encapsulation layer 132, a color filter layer 134, a second encapsulation layer 136 and a cover plate 138 disposed in the display area AA.
  • the first encapsulation layer 132 is located on the side of the second electrode layer 126 away from the base substrate.
  • the color filter layer 134 is located on a side of the first encapsulation layer 132 away from the base substrate, and includes a red color film layer R, a green color film layer G, and a blue color film layer B.
  • the second encapsulation layer 136 and the cover plate 138 are located on the side of the color filter layer 134 away from the base substrate.
  • the specific materials of the first encapsulation layer 132, the color filter layer 134, the second encapsulation layer 136 and the cover plate 138 conventional materials in the art can be used, which will not be discussed in detail here.
  • an encapsulation layer 236 and a cover plate 238 covering the light blocking layer 240 are also provided in the peripheral area EA.
  • the packaging layer 236 and the second packaging layer 136 use the same material and are manufactured in the same process step
  • the cover plate 238 and the cover plate 138 use the same material and are manufactured in the same process step. In this way, the manufacturing process steps can be reduced. .
  • FIG. 9(a) is a schematic structural diagram of a display device provided by an embodiment of the disclosure.
  • FIG. 9(b) is a schematic cross-sectional view of a display device provided by an embodiment of the disclosure.
  • the display device includes: a first reflective electrode pattern located in the display area AA, the first reflective electrode pattern includes a plurality of first reflective electrodes 306 spaced apart from each other .
  • the peripheral area EA includes the sensor area 30, the display device further includes a plurality of second reflective electrode patterns located in the sensor area 30, and the second reflective electrode pattern includes a plurality of second reflective electrodes 307 spaced apart from each other.
  • the peripheral region further includes a plurality of third reflective electrodes on the base substrate.
  • the peripheral area EA further includes a connecting electrode area 50
  • the display device further includes a third reflective electrode pattern located in the connecting electrode area 50, and the third reflective electrode The pattern includes a plurality of third reflective electrodes 308 spaced apart from each other.
  • the pattern density of the first reflective electrode pattern is the same as the pattern density of the second reflective electrode pattern and/or the pattern density of the third reflective electrode pattern.
  • the pattern density of the plurality of first reflective electrodes 306 is the same as the pattern density of the plurality of second reflective electrodes 307, or the pattern density of the plurality of first reflective electrodes 306 is the same as the pattern density of the plurality of third reflective electrodes.
  • the pattern density of the electrode 308, or the pattern density of the plurality of first reflective electrodes 306, the pattern density of the plurality of second reflective electrodes 307, and the pattern density of the plurality of third reflective electrodes 308 are all the same as each other.
  • the over-etching phenomenon can be avoided when the conductive layer is etched.
  • the display area of the display device needs to form a reflective electrode pattern, and the conductive layer part of the peripheral area of the organic light emitting diode display device needs to be completely or partially removed, and the display area and The pattern density of the peripheral area is different, resulting in a large difference in the amount of conductive material that needs to be etched away in the display area and the peripheral area in a unit area under the same dry etching process.
  • the selectivity of the dry etching process is poor.
  • making at least one of the pattern density of the second reflective electrode pattern and the third reflective electrode pattern the same as the pattern density of the first reflective electrode pattern can avoid the occurrence of over-etching, thereby improving etching uniformity.
  • the peripheral region further includes a light blocking layer disposed on the side of the plurality of second reflective electrodes and the plurality of third reflective electrode layers away from the base substrate.
  • a light blocking layer 330 is provided on the side of the plurality of second reflective electrodes 307 and the plurality of third reflective electrodes 308 away from the base substrate.
  • the optical layer includes a black matrix layer.
  • the material of the black matrix layer is black resin, which can block the light reflected by the second reflective electrode 307 and the third reflective electrode 308 and reduce the light leakage from the display area to the peripheral area.
  • the peripheral area EA further includes a first dummy area 20 surrounding the display area AA, and the first dummy area 20 is not provided with a reflective electrode.
  • the first dummy area 20 is provided with a first dummy electrode 22.
  • the first dummy electrode 22 in the first dummy area 20 and the plurality of first electrodes 322 in the display area AA are in the same layer to simplify the manufacturing process.
  • two adjacent first electrodes 322 are separated by a pixel definition layer 323.
  • the organic light emitting function layer 324, the second electrode 326, and the encapsulation layer 327 all extend into the first dummy region 20.
  • the peripheral area EA further includes a second dummy area 40 surrounding the sensing area 30, and the second dummy area 40 is not provided with a reflective electrode.
  • the second dummy area 40 is provided with a second dummy electrode 42.
  • the peripheral area EA further includes a third dummy area 60 surrounding the connection electrode area 50, and the third dummy area 60 is not provided with a reflective electrode.
  • the third dummy area 60 is provided with a third dummy electrode 62.
  • the peripheral area of the display device further includes a voltage control circuit.
  • the display device may further include: a plurality of voltage control circuits 12 located in the peripheral area of the array substrate, and the first electrode of the driving transistor M0 in the pixel circuit 10 and The common voltage control circuit 12 is coupled.
  • the voltage control circuit is configured to output an initialization signal Vinit to the first pole of the driving transistor M0 in response to the reset control signal RE to control the reset of the corresponding light-emitting element X; and to output the first power signal VDD in response to the light-emission control signal EM To the first pole of the driving transistor to drive the light-emitting element X to emit light.
  • the first electrode layer is a transparent electrode layer.
  • the first electrode layer may be made of a light-transmitting material or a semi-light-transmitting material.
  • the second electrode layer can also be a transparent electrode layer, for example, made of a light-transmitting material or a semi-transmitting material.
  • the light-transmitting material is, for example, a transparent conductive oxide, including but not limited to indium tin oxide (ITO), indium zinc oxide (IZO), cadmium tin oxide (CTO), Tin oxide (stannum dioxide, SnO2) and zinc oxide (zinc oxide, ZnO), etc.
  • the first electrode layer is made of ITO.
  • ITO materials have a higher work function than ordinary molybdenum and titanium metals, they are suitable for use as OLED anode materials, and because ITO has high transmittance, the light emitted by the organic light-emitting function layer can pass through the first layer with almost no loss.
  • the electrode layer further improves the light-emitting efficiency and light-emitting brightness of the display device.
  • one of the first electrode layer and the second electrode layer is used as an anode, and the other is used as a cathode.
  • the material of the insulating layer is a light-transmitting material, such as silicon nitride (SiNx), silicon oxide (SiOx), aluminum oxide (Al2O3), aluminum nitride (AlN) or other suitable materials.
  • the insulating layer may be a single layer or multiple layers.
  • the base substrate is a silicon-based substrate.
  • the silicon-based substrate has a mature manufacturing process and stable performance, and is suitable for manufacturing highly integrated miniature display devices.
  • the display device is a silicon-based micro organic light emitting diode display device.
  • a light-emitting element including a first electrode layer 122, an organic light-emitting function layer 124 and a second electrode layer 126, a first encapsulation layer 132, a color filter layer 134, a second encapsulation layer 136, and a cover plate 138 are all manufactured in the panel factory.
  • the insulating layer 103 above the pad 112 is also etched in the panel factory to expose the pad and make it bonded with the flexible circuit board (FPC bonding) or wiring bonding (Wire bonding) process.
  • the first reflective electrode 106 and the insulating layer 103 can be fabricated by a fab, and a drive substrate suitable for forming a light-emitting element can be prepared, which not only reduces the difficulty of manufacturing the first reflective electrode, but also It is also conducive to the follow-up process of the panel factory.
  • Another embodiment of the present disclosure provides a method of manufacturing a display device including a display area and a peripheral area surrounding the display area.
  • the manufacturing method includes: providing a base substrate; and forming a plurality of sub-bases on the base substrate. Pixel, the plurality of sub-pixels are located in the display area.
  • the formation of the sub-pixel includes: forming a first reflective electrode; forming a light-emitting element on the first reflective electrode, and the light-emitting element includes a first electrode layer sequentially stacked on the first reflective electrode, An organic light-emitting functional layer and a second electrode layer, the first electrode layer is a transparent electrode layer, and the organic light-emitting functional layer includes an electron injection layer, an electron transport layer, a light emitting layer, a hole injection layer, and a hole transport layer; An insulating layer is formed between the first reflective electrode and the first electrode layer, and the insulating layer is light-transmissive so that light emitted from the organic light-emitting function layer penetrates therethrough and reaches the first reflective electrode To be reflected by the first reflective electrode; forming a pixel circuit on the base substrate, the pixel circuit including a driving transistor, the driving transistor including a semiconductor layer, a source electrode, a drain electrode, the source electrode and the drain electrode One is electrically connected to the first reflective electrode, the
  • the arrangement and specific structures or materials of the first electrode layer, the light emitting element, the second electrode layer, the insulating layer, the first reflective electrode, the second reflective electrode, the pixel circuit, and the storage capacitor can refer to the previous embodiments. The content is not repeated here.
  • the reflective metal is usually manufactured in the panel factory, which increases the difficulty and cost of the manufacturing process.
  • the first reflective electrode and the first electrode layer are separated by the insulating layer, so that the laminated structure including the first reflective electrode and the insulating layer in the display device can be independently manufactured in the fab.
  • the laminated structure has a surface suitable for manufacturing light-emitting elements, therefore, the difficulty of manufacturing the first reflective electrode is reduced, and at the same time, the high light-emitting efficiency and high light-emitting brightness of the display device are ensured.
  • another embodiment of the present disclosure provides a method for forming sub-pixels, including:
  • Step S1 Provide a base substrate.
  • Step S2 forming a light reflection layer and an insulating layer on the base substrate.
  • Step S3 forming a light-emitting element on the insulating layer, the light-emitting element including a first electrode layer, a light-emitting layer, and a second electrode layer sequentially stacked on the light reflection layer, the first electrode layer being a transparent electrode layer
  • the insulating layer is light-transmissive so that the light emitted by the light-emitting layer penetrates therethrough and reaches the light reflection layer to be reflected by the light reflection layer.
  • an embodiment of the present disclosure provides a method for forming sub-pixels of the display device of FIG. 2, and the method includes:
  • Step 101 Provide a base substrate, and form a first reflective electrode 106 and an insulating layer 103 on the base substrate 100.
  • the first reflective electrode 106 is formed on the base substrate 100.
  • the first reflective electrode 106 includes a metal layer 105 and a protective layer 104.
  • the metal layer 105 and the protective layer 104 may be formed by using a patterning process.
  • the patterning process includes, but is not limited to, a photolithography process.
  • the photolithography process includes coating photoresist on a pre-patterned material, exposing the photoresist using a mask, developing the photoresist to remove part of the photoresist, and etching a part of the pre-patterned material. Material, and peel off the remaining photoresist.
  • an insulating layer 103 is formed on the first reflective electrode 106.
  • the formation of the insulating layer 103 includes: forming a via hole 110 in the insulating layer 103, as shown in FIG. 11; and filling a metal member 108 in the via hole 110, as shown in FIG. So far, a driving substrate having a first surface 1031 suitable for forming a light-emitting element is formed. It can be understood that, in addition to the first reflective electrode and the insulating layer, other elements such as pixel circuits need to be formed on the base substrate, and the specific preparation process thereof will not be discussed in detail here.
  • Step 102 forming a first electrode layer 122 on the first surface 1031 of the insulating layer 103.
  • a first electrode material 150 is formed on the side of the insulating layer 103 away from the base substrate 100; then, the first electrode material 150 is patterned to form a first electrode layer 122, as shown in FIG. .
  • the first electrode layer 122 covers the via hole 110 and is in contact with the metal member 108, and the first electrode layer 122 is electrically connected to the first reflective electrode 106 through the metal member 108.
  • Step 103 sequentially forming an organic light-emitting function layer 124 and a second electrode layer 126 on the side of the first electrode layer 122 away from the base substrate, as shown in FIG. 2.
  • step 101 can be performed in a fab, and a drive substrate is obtained.
  • the drive substrate has a first surface 1031 suitable for forming a light-emitting element.
  • steps 102 and 103 are performed in the panel factory, and the panel factory continues to manufacture and package light-emitting elements on the drive substrate obtained in step 101, so as to obtain the final display device.
  • the first reflective electrode can be manufactured in a fab, the manufacturing difficulty and cost of the first reflective electrode are not only reduced, but also the high light extraction efficiency of the display device is ensured.
  • another embodiment of the present disclosure provides a method for forming the sub-pixel in FIG. 3, and the method includes:
  • Step 201 As shown in FIG. 15, a base substrate is provided, and a first reflective electrode 206 and an insulating layer 203 are formed on the base substrate 200.
  • the first reflective electrode 206 is formed on the base substrate 200 on which the pixel circuit is formed.
  • the first reflective electrode 106 only includes a metal layer.
  • an insulating layer 203 is formed on the first reflective electrode 206.
  • the formation of the insulating layer 203 includes: forming a first opening 210 in the insulating layer 203, and the first opening 210 exposes the first reflective electrode 206.
  • a part of the surface of the first reflective electrode 206 away from the base substrate 200 is exposed by the first opening 210. So far, a drive substrate having a first surface 2031 suitable for forming a light-emitting element is formed.
  • Step 202 forming a first electrode layer 222 on the first surface 2031 of the insulating layer 203.
  • the first electrode material 250 is formed on the side of the insulating layer 203 away from the base substrate 200. Then, the first electrode material 250 is patterned to form the first electrode layer 222, as shown in FIG. 17.
  • the first electrode layer 222 covers the first opening 210, and at least a part 222a of the first electrode layer 222 is formed in the first opening 210 and is electrically connected to the first reflective electrode 206
  • Step 203 sequentially forming a light-emitting layer 224 and a second electrode layer 226 on the side of the first electrode layer 222 away from the base substrate, as shown in FIG. 3.
  • step 201 can be performed in a fab, and a driving substrate is obtained, and the driving substrate has a first surface 2031 suitable for forming a light-emitting element.
  • steps 202 and 203 are performed in the panel factory, and the panel factory continues to manufacture and package light-emitting elements on the drive substrate obtained in step 201, so as to obtain the final display device.
  • the first reflective electrode can be manufactured in a fab, the manufacturing difficulty and cost of the first reflective electrode are not only reduced, but also the high light extraction efficiency of the display device is ensured.
  • a driving substrate suitable for driving a light-emitting element to emit light including a base substrate, a display area, and a peripheral area.
  • the display area includes a plurality of sub-pixels located on the base substrate.
  • each sub-pixel includes: a first reflective electrode, located on the base substrate; an insulating layer, located on the side of the first reflective electrode away from the base substrate, and the insulating layer is suitable for forming the On the first surface of the light emitting element, the insulating layer is light-transmissive so that light incident on the insulating layer penetrates therethrough and reaches the first reflective electrode to be reflected by the first reflective electrode; the pixel circuit is located at the On the base substrate and including a driving transistor, the driving transistor includes a semiconductor layer, a source electrode, a drain electrode, one of the source electrode and the drain electrode and the first reflective electrode are electrically connected to each other, and the semiconductor layer is located at the The base substrate; and a storage capacitor, located on the base substrate and configured to store data signals.
  • the peripheral area surrounds the display area and includes a plurality of second reflective electrodes located on the base substrate; and a light-blocking layer disposed on a side of the plurality of second reflective electrodes away from the base substrate .
  • the first reflective electrode since the first reflective electrode is provided, and the insulating layer has a first surface suitable for forming the light-emitting element, the first reflective electrode can be integrated in the drive substrate manufactured by a fab. The manufacturing cost and difficulty of the first reflective electrode are reduced, and the high light output brightness and high light output efficiency of the display device are ensured.
  • the driving substrate includes a base substrate 100, a first reflective electrode 106, and an insulating layer 103.
  • the insulating layer 103 includes a via hole 110 filled with a metal member 118.
  • the metal member 118 and the first reflective electrode 106 are mutually connected. Electric connection.
  • the insulating layer 103 has a first surface 1031 suitable for forming the light-emitting element 130.
  • the driving substrate includes a base substrate 200, a first reflective electrode 206, and an insulating layer 203, and the insulating layer 203 includes a first opening 210 exposing the first reflective electrode 203.
  • the insulating layer 203 has a first surface 2031 suitable for forming the light-emitting element 230.
  • the manufacturing method thereof, and the drive substrate provided by the embodiments of the present disclosure since the insulating layer and the first reflective electrode are provided, the laminated structure including the first reflective electrode and the insulating layer in the display device is on the wafer Independent manufacturing in the factory becomes possible, therefore, the difficulty of manufacturing the first reflective electrode is reduced, and at the same time, the high light-emitting efficiency and high light-emitting brightness of the display device are ensured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示装置及其制造方法和驱动基板。该显示装置包括:衬底基板(100)、显示区(AA)和周边区(EA);所述显示区(AA)包括位于所述衬底基板(100)上的多个子像素(SP),每个子像素(SP)包括:第一反射电极(106)、发光元件(130)、第二电极层(126)、绝缘层(103)、像素电路(10)、存储电容(Cst)。周边区(EA)包括多个第二反射电极(216)和挡光层(240)。本公开的显示装置中,利用绝缘层(103)将第一反射电极(106)和第一电极层(122)间隔开,使第一反射电极(106)可集成在由晶圆厂制造的驱动基板中,降低了第一反射电极(106)的制造成本和制造难度。

Description

显示装置及其制造方法和驱动基板 技术领域
本公开实施例涉及一种显示装置及其制造方法和驱动基板。
背景技术
随着虚拟现实(Virtual Reality,简称VR)技术和增强现实(Augmented Reality,简称AR)技术的日益进步,适用于VR/AR领域的显示装置也正在向微型化、高像素密度(Pixel Per Inch,简称PPI)、快速响应和高色域的方向发展。硅基微显示OLED面板正是其中突出的一个方向。虽然硅基微显示OLED起步较晚,但凭借着其微型化和高PPI的优势,也正在成为显示领域的新的关注焦点。
发明内容
本公开实施例涉及一种显示装置及其制造方法和驱动基板。
根据本公开第一方面,提供一种显示装置,包括:
衬底基板;
显示区,所述显示区包括位于所述衬底基板上的多个子像素,每个子像素包括:
第一反射电极;
位于所述第一反射电极上的发光元件,所述发光元件包括依次叠置在所述第一反射电极上的第一电极层、有机发光功能层和第二电极层,所述第一电极层为透明电极层,所述有机发光功能层包括电子注入层、电子传输层、发光层、空穴注入层和空穴传输层;
绝缘层,位于所述第一反射电极和所述第一电极层之间,所述绝缘层为透光的以使由所述有机发光功能层发出的光从中穿透并且到达所述第一反射电极以被所述第一反射电极反射;
像素电路,位于所述衬底基板上并且包括驱动晶体管,所述驱动晶体管包括半导体层、源电极、漏电极,所述源电极和漏电极之一与所述第一反射电极 彼此电连接,所述半导体层位于所述衬底基板中;和
位于所述衬底基板上的存储电容,配置为存储数据信号;
周边区,围绕所述显示区并且包括:
位于所述衬底基板上的多个第二反射电极;和
设置在所述多个第二反射电极远离于所述衬底基板一侧的挡光层。
根据本公开第二方面,提供一种显示装置的制造方法,所述显示装置包括显示区和围绕显示区的周边区,该制造方法包括:
提供衬底基板;
在所述衬底基板上形成多个子像素,所述多个子像素位于所述显示区中,所述子像素的形成包括:
形成第一反射电极;
在所述第一反射电极上形成发光元件,所述发光元件包括依次叠置在所述第一反射电极上的第一电极层、有机发光功能层和第二电极层,所述第一电极层为透明电极层,所述有机发光功能层包括电子注入层、电子传输层、发光层、空穴注入层和空穴传输层;
在所述第一反射电极和所述第一电极层之间形成绝缘层,所述绝缘层为透光的以使由所述有机发光功能层发出的光从中穿透并且到达所述第一反射电极以被所述第一反射电极反射;
在所述衬底基板上形成像素电路,所述像素电路包括驱动晶体管,所述驱动晶体管包括半导体层、源电极、漏电极,所述源电极和漏电极之一与所述第一反射电极彼此电连接,所述半导体层位于所述衬底基板中;以及
在所述衬底基板上形成存储电容,所述存储电容配置为存储数据信号;
在所述周边区中形成多个第二反射电极;以及
在所述多个反射电极远离所述衬底基板的一侧形成挡光层。
根据本公开第三方面,提供一种适于驱动发光元件发光的驱动基板,包括:
衬底基板,
显示区,所述显示区包括位于所述衬底基板上的多个子像素,每个子像素包括:
第一反射电极,位于所述衬底基板上;
绝缘层,位于所述第一反射电极远离所述衬底基板的一侧,所述绝缘层具有适于形成所述发光元件的第一表面,所述绝缘层为透光以使得入射至所述绝缘层的光从中穿透并且到达所述第一反射电极以被所述第一反射电极反射;
像素电路,位于所述衬底基板上并且包括驱动晶体管,所述驱动晶体管包括半导体层、源电极、漏电极,所述源电极和漏电极之一与所述第一反射电极彼此电连接,所述半导体层位于所述衬底基板中;和
存储电容,位于所述衬底基板上并且配置为存储数据信号;
周边区,围绕所述显示区并且包括:
位于所述衬底基板上的多个第二反射电极;和
设置在所述多个第二反射电极远离于所述衬底基板一侧的挡光层。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1(a)为本公开实施例提供的显示装置在硅片上的排布示意图;
图1(b)为本公开实施例提供的显示装置中各功能区的示意图;
图2为本公开实施例提供的显示装置的子像素的局部放大截面示意图;
图3为本公开另一实施例提供的显示装置的子像素的局部放大截面示意图;
图4为本公开再一实施例提供的显示装置的子像素的局部放大截面示意图;
图5为本公开又一实施例提供的显示装置的子像素的局部放大截面示意图;
图6(a)和6(b)分别示出本公开实施例提供的第一电极层和第一反射电极的两种不同的相对位置关系;
图7为本公开实施例提供的显示装置的截面示意图;
图8(a)为本公开实施例提供的显示装置的电路示意图;
图8(b)为本公开实施例提供的显示装置的局部电路示意图;
图9(a)为本公开实施例提供的显示装置的结构示意图;
图9(b)为本公开实施例提供的显示装置的截面示意图;
图10为本公开实施例提供的显示装置的子像素的形成方法的流程图;
图11至图14为本公开实施例提供的显示装置的子像素的形成方法中各步骤的基板截面示意图;
图15至图17为本公开另一实施例提供的显示装置的子像素的形成方法中各步骤的基板截面示意图;
图18为本公开实施例提供的显示装置中有机发光功能层的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
通常,有机电致发光器件(OLED)包括底部发光型器件、顶部发光型器件和双面发光型器件。有机电致发光器件的发光元件一般包括阴极、阳极和设置在二者之间的有机发光功能层。当阴极的材料为透明或半透明导电材料,阳极为反射性金属时,则OLED为顶部发光型器件(top emission device),基板可以为透明、半透明或非透明基板。
微型OLED属于一种硅基显示器。由于硅基器件优良的电学特性和极细 微的器件尺寸,有利于实现高度集成化。通常,在制造硅基微型OLED过程中,包括反射性金属在内的阳极由面板厂制造,而位于反射性金属以下的部分由晶圆厂制造。然而,在制作反射性金属时,面板厂很难通过刻蚀工艺精确控制反射性金属的图案,这不仅增加了硅基微型OLED的制造成本和难度,还影响到出光亮度。
本公开实施例提供一种显示装置,包括:衬底基板、显示区和围绕显示区的周边区。其中,显示区包括:位于所述衬底基板上的多个子像素,每个子像素包括:第一反射电极;位于所述第一反射电极上的发光元件,所述发光元件包括依次叠置在第一反射电极上的第一电极层、有机发光功能层和第二电极层,所述第一电极层为透明电极层,所述有机发光功能层包括电子注入层、电子传输层、发光层、空穴注入层和空穴传输层。该显示区还包括:位于第一反射电极和所述第一电极层之间的绝缘层,所述绝缘层为透光的以使由所述有机发光功能层发出的光从中穿透并且到达第一反射电极以被第一反射电极反射;像素电路,位于所述衬底基板上并且包括驱动晶体管,所述驱动晶体管包括半导体层、源电极、漏电极,所述源电极和漏电极之一与第一反射电极彼此电连接,所述半导体层位于所述衬底基板中;和位于所述衬底基板上的存储电容,配置为存储数据信号。本实施例中,周边区包括:位于所述衬底基板上的多个第二反射电极;和设置在所述多个第二反射电极远离于所述衬底基板一侧的挡光层。
本实施例的显示装置中,利用绝缘层将第一反射电极和第一电极层彼此分隔开。这样一来,使第一反射电极集成在由晶圆厂制造的驱动基板中成为可能,不仅降低了第一反射电极的制造成本和难度,而且保证了显示装置的高出光亮度和高出光效率。本文中,“驱动基板”是指显示装置中位于第一电极层下方(不包括第一电极层)的叠层结构,由于该叠层结构包含诸如驱动晶体管的像素电路,适于驱动发光元件发光。
图1(a)为本公开实施例提供的显示装置在硅片上的排布示意图,也就是晶圆图(wafer map)。该晶圆图示意性示出了硅片上显示装置的数量和排列方式。可以理解的是,图中所示的显示装置的数量和排列方式仅为示意性目的,并非对本公开实施例的限制。图1(b)为本公开实施例提供的显示装置中各功能区的示意图。如图1(b)所示,显示装置包括显示区(Active area,简称AA)、 围绕显示区的周边区(Edge area,简称EA)和绑定区(Bonding area,简称BA)。显示区AA包括呈阵列方式排布的多个像素单元PX。每个像素单元PX包括多个子像素SP。例如,像素单元可以包括3个、4个、5个或更多的子像素,这需要根据实际应用环境来设计确定,在此不作限定。如图1(b)所示,显示装置还包括位于绑定区BA中的多个焊盘,焊盘用于给显示装置提供信号输入或输出的通道。图7为本公开实施例提供的显示装置的截面示意图。例如,如图7所示,显示装置包括三个子像素,即红色子像素SP1、绿色子像素SP2和蓝色子像素SP3。显示装置中子像素的颜色仅为示意性的,还可以包括诸如蓝色、白色等其他颜色。
图2为本公开实施例提供的显示装置的子像素的局部放大截面示意图。如图2和图7所示,例如,每个子像素包括第一反射电极106和位于第一反射电极106上的发光元件130,发光元件130包括依次叠置在第一反射电极106上的第一电极层122、有机发光功能层124和第二电极层126。
例如,继续参考图2和图7,每个子像素还包括位于第一反射电极106和第一电极层122之间的绝缘层103,绝缘层103为透光的以使由有机发光功能层124发出的光从中穿透并且到达第一反射电极106以被第一反射电极106反射。利用绝缘层103将第一反射电极106和第一电极层122间隔开,这样一来,在制造第一反射电极106时,第一反射电极106可集成在由晶圆厂制造的驱动基板中,降低了第一反射电极106的制造成本和制造难度。而且,当有机发光功能层124发出的光L入射到绝缘层103靠近有机发光功能层124的第一表面1031时,由于绝缘层103具有透光性能,光L可穿透绝缘层103的第一表面1031,从绝缘层103的靠近第一反射电极106的第二表面1032射出并且达到第一反射电极106。第一反射电极106具有反射性能,将入射至其上的光L反射回发光元件130,并且最终从发光元件130射出。本实施例中,由于绝缘层103的透光性能,被第一反射电极106反射的光几乎没有损失地向外射出,因此保证了显示装置的高出光亮度和高出光效率。例如,三个子像素中的绝缘层103为一体形成以方便制作,降低制作工艺的难度。
至少一些实施例中,绝缘层中提供有用于电连接第一电极层和第一反射电极之间的导电通路。下面提供导电通路的两个示例。
例如,如图2所示,绝缘层103包括填充有金属构件108的过孔110,第 一反射电极106通过金属构件108与第一电极层122电连接。这样,通过在绝缘层103中形成第一反射电极106和第一电极层122之间的导电通道,有利于将显示装置中像素电路提供的信号通过第一反射电极106传输到第一电极层122。这样一来,不仅有利于实现像素电路对发光元件的控制,而且使显示装置的结构更紧凑,有利于器件的微型化。进一步地,例如,金属构件108由金属材料制成,例如钨金属,由钨金属填充的过孔也称为钨过孔(W-via)。例如,在绝缘层103厚度较大的情况下,在绝缘层103中形成钨过孔可以保证导电通路的稳定性,而且,由于制作钨过孔的工艺成熟,所得到的绝缘层103的表面平坦度好,有利于降低绝缘层103与第一电极层122之间的接触电阻。可以理解的是,钨过孔不仅适于实现绝缘层103与第一电极层122之间的电连接,还适于第一反射电极106与像素电路之间的电连接,以及其他布线层之间的电连接。有关第一反射电极106与像素电路之间的电连接将在后面详细描述。
再例如,如图3所示,绝缘层203包括暴露第一反射电极206的第一开口210,第一电极层222的至少一部分222a位于第一开口210中并且与第一反射电极206电连接。图2中,第一电极层122与第一反射电极106通过金属构件108形成电连接,二者之间没有直接接触。图3中,第一电极层222的一部分222a填充在绝缘层203的第一开口210中,并且与第一反射电极206彼此直接接触以形成电连接。与图2相比,图3中绝缘层203的第一开口210无需金属构件填充,因此制作工艺更简单。而且,由于第一电极层222和第一反射电极206彼此直接接触,减小了显示装置的厚度,有利于显示装置的薄化。
至少一些实施例中,第一反射电极与第一电极层相互绝缘。例如,如图4所示,整个第一反射电极306通过绝缘层303与第一电极层322隔开并且与第一电极层322相互绝缘。也就是,第一电极层322和第一反射电极306之间没有电连接。这样一来,在制作第一反射电极306时,无需改变现有显示装置中布线层和像素电路的位置或连接关系,同样可以实现本公开的目的。在此情况下,包括驱动晶体管T1在内的像素电路通过过孔310与第一电极层322电连接,用于控制发光元件的发光。
例如,如图2所示,显示装置还包括至少一个布线层M1,至少一个布线 层M1位于第一反射电极106和衬底基板100之间。例如,布线层M1包括金属层(阴影部分),栅电极连接部102g、源电极连接部102s和漏电极连接部102d位于该同一金属层中。
例如,如图2所示,第一反射电极106也包括金属层105,该金属层105的材料例如为铝或铝合金,例如铝铜合金。由于铝或铝铜合金的电阻小,并且反射率高,能够提高显示装置的出光亮度和出光效率。例如,金属层105的厚度在10nm至1000nm之间。如果厚度过低,反射效果不明显,如果厚度过高,造成面板的整体厚度较大。第一反射电极106可以看作是显示装置的布线层M2。如图2所示,当显示装置包括多个布线层时,第一反射电极106所在的布线层M2为最上层布线层,这样可简化第一反射电极106的制作,无需破坏显示装置底层的架构。
例如,如图2所示,第一反射电极106还包括至少一个保护层104,该保护层104与金属层105层叠设置且位于金属层105靠近衬底基板100的一侧。也就是,保护层104位于金属层105的靠近衬底基板100的表面上。这样,保护层104可以避免金属层105被氧化。例如,保护层的材料为导电材料,例如氮化钛(TiN)。由于金属层105的靠近第一电极层122的表面没有设置保护层104,由有机发光功能层124发出的、且穿过第一电极层122、绝缘层103的光可以直接入射到金属层105的表面,由此减少了光在界面上的损失,提高了光反射效率和显示装置的出光亮度。
本公开实施例中,保护层104的设置方式和数量并不局限于图2所示的情况。第一反射电极中可以不设置保护层。例如,如图3和图4所示,第一反射电极106、306不包括任何保护层,仅包括金属层。在设置一层保护层的情况下,保护层可以设置在金属层的单侧上。例如,仅设置在金属层105的靠近衬底基板100的一侧(如图2所示),或者,仅设置在金属层105的远离衬底基板100的一侧(未示出)。在设置两层保护层的情况下,可以设置在金属层的两侧。例如,如图5所示,第一反射电极406包括两个保护层404和位于二者之间的金属层405。两个保护层404分别位于金属层405靠近衬底基板400的一侧以及金属层405远离衬底基板400的一侧。在此情况下,绝缘层403包括过孔410和位于过孔中的金属构件408。第一电极层422通过金属构件408与包括两个保护层404和金属层405的第一反射电极406电连接。 可以理解的是,上述保护层还可以应用到其他布线层中。例如,如图2所示,在栅电极连接部102g、源电极连接部102s和漏电极连接部102d的每个的上下两侧均设置有保护层,这样能有效防止这些电极连接部被氧化,提高导电性能。
例如,如图7所示,绝缘层103还包括暴露焊盘112的第二开口114,第二开口114的设置有利于焊盘112与外界电路之间的电连接和信号连通。图7的显示装置采用了图2所示的子像素结构,可以理解的是,图3至图5所示的子像素结构均可以应用于图7的显示装置中,此处不再赘述。
至少一些实施例中,第一电极层和第一反射电极之间的相对位置关系可根据实际需要确定。例如,如图2和图6(a)所示,第一电极层122在衬底基板100所在平面上的正投影位于第一反射电极106在衬底基板100所在平面上的正投影中。也就是,第一电极层122的正投影的面积小于第一反射电极106的正投影的面积。这样,穿过第一电极层122的光几乎全部入射到第一反射电极106上并且被反射,从而提高了显示装置的出光效率和出光亮度。可以理解的是,第一电极层和第一反射电极的设置方式并不限于图2和图6(a)所示的情况,反之亦可。例如,如图3所示,第一反射电极206在衬底基板100所在平面上的正投影位于第一电极层222在衬底基板200所在平面上的正投影中。再例如,如图4和图6(b)所示,第一反射电极306在衬底基板300所在平面上的正投影与第一电极层322在衬底基板200所在平面上的正投影部分重叠,这种位置关系可以不改变现有显示装置中的布线层和驱动晶体管的电连接关系,使第一反射电极306的制作工艺简单。
至少一些实施例中,第一反射电极的形状不局限于图6(a)和图6(b)所示的矩形,可以是其他规则形状,例如圆形、椭圆形、平行四边形、正多边形、梯形等。或者,第一反射电极还可以具有不规则形状,例如折线形、弯曲形、蜂窝形等。例如,图9(a)中的第一反射电极306为蜂窝形状。在平行于衬底基板的平面内,第一电极层的形状可以与第一反射电极的形状相同或不同。例如,如图6(a)所示,在平行于衬底基板100所在平面内,第一反射电极106的形状与第一电极层122的形状相同。这样,经过第一反射电极106的反射可保证出射光的亮度更均匀。再例如,第一电极层的形状为圆形,第一反射电极的形状为矩形。进一步地,在此情况下,圆形的第一电极层在衬底基板所在平面上 的正投影位于矩形的第一反射电极在衬底基板所在平面上的正投影中。这样一来,穿过圆形第一电极层的光几乎全部入射到矩形的第一反射电极上并且被反射,从而提高了显示装置的出光效率和出光亮度。
至少一些实施例中,有机发光功能层可以包括发光层以及包括空穴注入层、电子注入层、空穴传输层、电子传输层、电子阻挡层、空穴阻挡层中的一个或多个膜层组成的多层结构。图18为本公开实施例提供的有机发光功能层的结构示意图。例如,如图18所示,有机发光功能层124从上到下依次包括电子注入层EIL、电子传输层ETL、发光层OL、空穴注入层HTL和空穴传输层HIL,这些层可采用本领域已知材料和结构,此处不再详细论述。有机发光功能层124可以由有机材料制成,如图2所示,在第一电极层122和第二电极层126的电压驱动下,利用有机材料的发光特性根据需要的灰度发光。
至少一些实施例中,每个子像素还包括像素电路,该像素电路包括驱动晶体管。图8(a)为本公开实施例提供的显示装置的电路示意图。图8(b)为本公开实施例提供的显示装置的局部电路示意图。例如,如图8(a)所示,显示区AA中,每个子像素SP包括一个发光元件X和该发光元件X耦接的一个像素电路10。如图8(b)所示,每个像素电路10包括驱动晶体管M0。发光元件X例如包括OLED。这样OLED的正极与驱动晶体管M0的第二端D电连接,OLED的负极与第二电源端VSS电连接。第二电源端VSS的电压一般为负电压或接地电压VGND(例如为0V)。驱动晶体管M0可以为N型晶体管,在电流由其第一端S流向第二端D时,可以将第一端S作为其源电极,第二端D作为其漏电极。在电流由其第二端D流向第一端S时,可以将第二端D作为其源电极,第一端S作为其漏电极。
例如,如图2和图7所示,每个子像素中的驱动晶体管T1包括源电极S、漏电极D和半导体层(位于源电极S和漏电极D之间的部分),源电极S和漏电极D之一与第一反射电极106彼此电连接。半导体层位于衬底基板中,该半导体层例如为源电极S和漏电极D之间形成的沟道区。例如,如图2所示,驱动晶体管T1包括栅电极G、源电极S和漏电极D。三个电极分别对应三个电极连接部。例如,栅电极G电连接于栅电极连接部102g,源电极S电连接于源电极连接部102s,漏电极D电连接于漏电极连接部102d。驱动晶体管T1的漏电极D通过漏电极连接部102d电连接于第一反射电极106。在驱 动晶体管T1处于开启状态时,由电源线提供的电信号VDD可经过驱动晶体管T1的漏电极S、漏电极连接部102d和第一反射电极106传输到第一电极层122。由于第二电极层126与第一电极层122之间形成电压差,在二者之间形成电场,有机发光功能层124在该电场作用下发光。
至少一些实施例中,每个子像素还包括位于衬底基板上的存储电容。例如,如图8(b)所示,每个子像素还包括位于衬底基板上的存储电容Cst,配置为存储数据信号。存储电容Cst的第一端与驱动晶体管M0的栅电极G耦接,存储电容Cst的第二端与接地端GND耦接。这样一来,驱动晶体管T1的栅电极G可以通过存储电容Cst存储高灰阶或低灰阶的数据信号。
至少一些实施例中,周边区包括位于衬底基板上的多个第二反射电极和设置在多个第二反射电极远离于衬底基板一侧的挡光层。例如,如图7所示,在周边区EA中设置有第二反射电极216,该第二反射电极216具有与第一反射电极106相同的结构,例如,包括金属层215和保护层214。例如,金属层215与金属层105为同层设置,保护层214和保护层104为同层设置,这样有利于简化制作工艺。在第二反射电极216远离于衬底基板100一侧设置有挡光层240,用于遮挡由第二反射电极216反射的光线和降低显示区向周边区的漏光。例如,该挡光层240包括至少两个颜色的彩膜层的叠层结构。例如,挡光层240包括层叠设置的红色彩膜层218和绿色彩膜层220。在其他实施例中,还可以采用三种颜色的彩膜层的叠层结构。再例如,挡光层包括黑矩阵层,黑矩阵层包括黑色树脂材料,同样可以实现遮光效果。在制作挡光层中的彩膜层时,可以与显示区AA中相同颜色的彩膜层在同一工艺步骤中完成,这样可以减少制作工艺的步骤。
例如,如图7所示,显示装置还包括设置在显示区AA中的第一封装层132、彩色滤光层134、第二封装层136和盖板138。例如,第一封装层132位于第二电极层126远离衬底基板的一侧。彩色滤光层134位于第一封装层132远离衬底基板的一侧,并且包括红色彩膜层R、绿色彩膜层G和蓝色彩膜层B。第二封装层136和盖板138位于彩色滤光层134远离衬底基板的一侧。对于第一封装层132、彩色滤光层134、第二封装层136和盖板138的具体材料可采用本领域的常规材料,此处不再详细论述。例如,在周边区EA中,还设置有覆盖该挡光层240的封装层236和盖板238。例如,封装层236与第二封 装层136采用相同材料且在同一工艺步骤中制作完成,盖板238与盖板138采用相同材料且在同一工艺步骤中制作完成,这样,可以减少制作工艺的步骤。
图9(a)为本公开实施例提供的显示装置的结构示意图。图9(b)为本公开实施例提供的显示装置的截面示意图。例如,如图9(a)和图9(b)所示,显示装置包括:位于显示区AA中的第一反射电极图案,该第一反射电极图案包括彼此间隔的多个第一反射电极306。例如,周边区EA包括传感器区30,该显示装置还包括位于传感器区30中的多个第二反射电极图案,该第二反射电极图案包括彼此间隔的多个第二反射电极307。
至少一些实施例中,周边区还包括位于衬底基板上的多个第三反射电极。例如,如图9(a)和图9(b)所示,周边区EA还包括连接电极区50,该显示装置还包括位于连接电极区50中的第三反射电极图案,该第三反射电极图案包括彼此间隔的多个第三反射电极308。
至少一些实施例中,第一反射电极图案的图案密度与第二反射电极图案的图案密度和/或第三反射电极图案的图案密度相同。如图9(a)所示,多个第一反射电极306的图案密度与多个第二反射电极307的图案密度相同,或者,多个第一反射电极306的图案密度与多个第三反射电极308的图案密度,或者,多个第一反射电极306的图案密度、多个第二反射电极307的图案密度和多个第三反射电极308的图案密度彼此均相同。这样一来,可避免在对导电层进行刻蚀时发生过刻现象。发明人发现,在对导电层进行刻蚀的过程中,显示装置的显示区需要形成反射电极图案,而该有机发光二极管显示装置的周边区的导电层部分需要被完全或部分去除,显示区和周边区的图形密度不同,从而导致在同一干刻工艺下,在单位面积内,显示区和周边区需要被刻蚀去掉的导电材料的量差异较大。而干刻工艺的选择性较差,从而一方面容易导致最后形成的第一电极图案的工艺膜厚、和尺寸均一性难以管控,另一方面容易导致第一电极图案下的绝缘层发生过刻现象。本实施例中,使第二反射电极图案的图案密度和第三反射电极图案中的至少一个与第一反射电极图案的图案密度相同,可以避免发生过刻现象,从而提高刻蚀均匀性。
至少一些实施例中,周边区还包括设置在多个第二反射电极和多个第三反射电极层的远离于衬底基板一侧的挡光层。例如,如图9(a)和图9(b)所示, 在多个第二反射电极307和多个第三反射电极308的远离于衬底基板一侧设置有挡光层330,该挡光层包括黑矩阵层,该黑矩阵层的材料为黑色树脂,可以遮挡由第二反射电极307和第三反射电极308反射的光线和降低显示区向周边区的漏光。
例如,如图9(a)和图9(b)所示,周边区EA还包括围绕显示区AA的第一虚设区20,该第一虚设区20内不设置反射电极。例如,该第一虚设区20设置有第一虚设电极22。例如,该第一虚设区20中的第一虚设电极22与显示区AA中的多个第一电极322处于同一层,以简化制作工艺。显示区AA中,相邻两个第一电极322之间由像素定义层323将隔开。例如,有机发光功能层324、第二电极326、封装层327均延伸到第一虚设区20中。
例如,如图9(a)和图9(b)所示,周边区EA还包括围绕传感区30的第二虚设区40,该第二虚设区40内不设置反射电极。例如,该第二虚设区40设置有第二虚设电极42。
例如,如图9(a)和图9(b)所示,周边区EA还包括围绕连接电极区50的第三虚设区60,该第三虚设区60内不设置反射电极。例如,该第三虚设区60设置有第三虚设电极62。
至少一些实施例中,显示装置的周边区还包括电压控制电路。例如,如图8(a)和8(b)所示,显示装置还可以包括:位于阵列基板的周边区中的多个电压控制电路12,且像素电路10中驱动晶体管M0的第一极与共用的电压控制电路12耦接。电压控制电路被配置为响应于复位控制信号RE,将初始化信号Vinit输出至驱动晶体管M0的第一极,控制对应的发光元件X复位;以及响应于发光控制信号EM,将第一电源信号VDD输出至驱动晶体管的第一极,以驱动发光元件X发光。
至少一些实施例中,第一电极层为透明电极层。例如,第一电极层可由透光材料或半透光材料制成。同样,第二电极层也可为透明电极层,例如由透光材料或半透光材料制成。透光材料例如为透明导电氧化物,包括但不限于铟锡氧化物(indium tin oxide,ITO)、铟锌氧化物(indium zinc oxide,IZO)、镉锡氧化物(cadmium tin oxide,CTO)、氧化锡(stannum dioxide,SnO2)及氧化锌(zinc oxide,ZnO)等。例如,第一电极层由ITO制成。由于ITO材料相比于普通的钼、钛金属具有高功函数,适合用作OLED阳极材料,并且由于ITO 具有高透过率,由有机发光功能层发出的光可以几乎无损失地穿过第一电极层,进一步提高显示装置的出光效率和出光亮度。在硅基微型OLED显示装置中,第一电极层和第二电极层之一用作阳极,另一个用作阴极。
至少一些实施例中,绝缘层的材料为透光材料的,例如包括氮化硅(SiNx)、氧化硅(SiOx)、氧化铝(Al2O3)、氮化铝(AlN)或其他适合的材料等。例如,绝缘层可以是单层,也可以是多层。
至少一些实施例中,衬底基板为硅基基板。硅基基板的制作工艺成熟,性能稳定,适于制作高集成度的微型显示器件。例如,显示装置为硅基微型有机发光二极管显示装置。
本实施例的显示装置中,包括第一电极层122、有机发光功能层124和第二电极层126的发光元件、第一封装层132、彩色滤光层134、第二封装层136和盖板138均在面板厂制作完成,另外,焊盘112上方的绝缘层103也在面板厂完成刻蚀,从而露出焊盘,并使其与柔性电路板绑定(FPC bonding)或者布线绑定(Wire bonding)制程。因此,通过采用本公开设计的显示装置,可以由晶圆厂制作出第一反射电极106和绝缘层103,制备出适于形成发光元件的驱动基板,不仅降低了第一反射电极的制造难度,也有利于面板厂的后续工艺制程。
本公开另一实施例提供一种显示装置的制造方法,所述显示装置包括显示区和围绕显示区的周边区,该制造方法包括:提供衬底基板;在所述衬底基板上形成多个子像素,所述多个子像素位于所述显示区中。其中,所述子像素的形成包括:形成第一反射电极;在所述第一反射电极上形成发光元件,所述发光元件包括依次叠置在所述第一反射电极上的第一电极层、有机发光功能层和第二电极层,所述第一电极层为透明电极层,所述有机发光功能层包括电子注入层、电子传输层、发光层、空穴注入层和空穴传输层;在所述第一反射电极和所述第一电极层之间形成绝缘层,所述绝缘层为透光的以使由所述有机发光功能层发出的光从中穿透并且到达所述第一反射电极以被所述第一反射电极反射;在所述衬底基板上形成像素电路,所述像素电路包括驱动晶体管,所述驱动晶体管包括半导体层、源电极、漏电极,所述源电极和漏电极之一与所述第一反射电极彼此电连接,所述半导体层位于所述衬底基板中;以及在所述衬底基板上形成存储电容,所述存储电容配置为存储数据信号。该制造 方法还包括:在所述周边区中形成多个第二反射电极;以及在所述多个反射电极远离所述衬底基板的一侧形成挡光层。
本实施例中,第一电极层、发光元件、第二电极层、绝缘层、第一反射电极、第二反射电极、像素电路、存储电容的设置方式和具体结构或材料可参考前面实施例中的内容,此处不再赘述。
在现有显示装置的制作方法中,反射性金属通常在面板厂制作完成,增加了工艺制作的难度和成本。本实施例中,将第一反射电极和第一电极层通过绝缘层间隔开,使显示装置中包括第一反射电极和绝缘层在内的叠层结构在晶圆厂中独立制作完成成为可能,而且该叠层结构具有适于制作发光元件的表面,因此,降低了第一反射电极的制作难度,同时保证了显示装置的高出光效率和高出光亮度。
如图10所示,本公开又一实施例提供一种子像素的形成方法,包括:
步骤S1:提供衬底基板。
步骤S2:在所述衬底基板上形成光反射层和绝缘层;以及
步骤S3:在所述绝缘层上形成发光元件,所述发光元件包括依次叠置在所述光反射层上的第一电极层、发光层和第二电极层,第一电极层为透明电极层;其中所述绝缘层为透光的以使由所述发光层发出的光从中穿透并且到达所述光反射层以被所述光反射层反射。
例如,本公开实施例提供一种图2的显示装置的子像素的形成方法,该方法包括:
步骤101:提供衬底基板,并且在衬底基板100上形成第一反射电极106和绝缘层103。
例如,在衬底基板100上形成第一反射电极106。例如,该第一反射电极106包括金属层105和保护层104。金属层105和保护层104可通过利用图案化工艺形成。本公开实施例中,图案化工艺包括但不限于光刻工艺。例如,光刻工艺包括在预图案化的材料上涂覆光刻胶、利用掩模对该光刻胶进行曝光、对光刻胶进行显影以去除部分光刻胶、刻蚀一部分预图案化的材料、以及剥离剩余光刻胶。接下来,在第一反射电极106上形成绝缘层103。例如,绝缘层103的形成包括:在绝缘层103中形成过孔110,如图11所示;以及在过孔110中填充金属构件108,如图12所示。至此,形成了具有适于形成发光元 件的第一表面1031的驱动基板。可以理解的是,除了第一反射电极和绝缘层之外,衬底基板上还需形成像素电路等其他元件,其具体制备过程此处不再详细讨论。
步骤102:在绝缘层103的第一表面1031上形成第一电极层122。
例如,如图13所示,在绝缘层103的远离衬底基板100的一侧形成第一电极材料150;然后,图案化第一电极材料150以形成第一电极层122,如图14所示。第一电极层122覆盖于过孔110并且与金属构件108相接触,第一电极层122通过金属构件108与第一反射电极106电连接。
步骤103:在第一电极层122远离衬底基板的一侧依次形成有机发光功能层124和第二电极层126,如图2所示。
本实施例的制造方法中,步骤101可在晶圆厂执行,并且得到一驱动基板,该驱动基板具有适于形成发光元件的第一表面1031。接着,步骤102和103在面板厂执行,面板厂在步骤101得到的驱动基板上,继续制作发光元件并进行封装,从而得到最终的显示装置。相对于现有显示装置的制造方法,由于第一反射电极可以在晶圆厂制造,不仅降低了第一反射电极的制作难度和制作成本,保证了显示装置的高出光效率。
例如,本公开另一实施例提供一种图3的子像素的形成方法,该方法包括:
步骤201:如图15所示,提供衬底基板,并且在衬底基板200上形成第一反射电极206和绝缘层203。
例如,在形成有像素电路的衬底基板200上形成第一反射电极206。例如,该第一反射电极106仅包括金属层。接下来,在第一反射电极206上形成绝缘层203。例如,绝缘层203的形成包括:在绝缘层203中形成第一开口210,第一开口210暴露第一反射电极206。如图15所示,第一反射电极206远离衬底基板200的部分表面被第一开口210暴露。至此,形成了具有适于形成发光元件的第一表面2031的驱动基板。
步骤202:在绝缘层203的第一表面2031上形成第一电极层222。
例如,如图16所示,在绝缘层203的远离衬底基板200的一侧形成第一电极材料250。然后,图案化第一电极材料250以形成第一电极层222,如图17所示。第一电极层222覆盖于第一开口210,第一电极层222的至少一部 分222a形成于第一开口210中并且与第一反射电极206电连接
步骤203:在第一电极层222远离衬底基板的一侧依次形成发光层224和第二电极层226,如图3所示。
本实施例的制造方法中,步骤201可在晶圆厂执行,并且得到一驱动基板,该驱动基板具有适于形成发光元件的第一表面2031。接着,步骤202和203在面板厂执行,面板厂在步骤201得到的驱动基板上,继续制作发光元件并进行封装,从而得到最终的显示装置。相对于现有显示装置的制造方法,由于第一反射电极可以在晶圆厂制造,不仅降低了第一反射电极的制作难度和制作成本,保证了显示装置的高出光效率。
本公开又一实施例提供一种驱动基板,适于驱动发光元件发光,包括:衬底基板、显示区和周边区。其中,所述显示区包括位于所述衬底基板上的多个子像素。其中,每个子像素包括:第一反射电极,位于所述衬底基板上;绝缘层,位于所述第一反射电极远离所述衬底基板的一侧,所述绝缘层具有适于形成所述发光元件的第一表面,所述绝缘层为透光以使得入射至所述绝缘层的光从中穿透并且到达所述第一反射电极以被所述第一反射电极反射;像素电路,位于所述衬底基板上并且包括驱动晶体管,所述驱动晶体管包括半导体层、源电极、漏电极,所述源电极和漏电极之一与所述第一反射电极彼此电连接,所述半导体层位于所述衬底基板中;和存储电容,位于所述衬底基板上并且配置为存储数据信号。其中,周边区围绕所述显示区并且包括位于所述衬底基板上的多个第二反射电极;和设置在所述多个第二反射电极远离于所述衬底基板一侧的挡光层。
本实施例的驱动基板中,由于具有第一反射电极,并且绝缘层具有适于形成所述发光元件的第一表面,使第一反射电极可集成在由晶圆厂制造的驱动基板中,不仅降低了第一反射电极的制造成本和难度,而且保证了显示装置的高出光亮度和高出光效率。
例如,如图12所示,驱动基板包括衬底基板100、第一反射电极106、绝缘层103,绝缘层103包括填充有金属构件118的过孔110,金属构件118与第一反射电极106彼此电连接。这样,绝缘层103具有适于形成发光元件130的第一表面1031。
例如,如图15所示,驱动基板包括衬底基板200、第一反射电极206、 绝缘层203,绝缘层203包括暴露第一反射电极203的第一开口210。这样,绝缘层203具有适于形成发光元件230的第一表面2031。
在本公开实施例提供的显示装置及其制造方法和驱动基板中,由于设置了绝缘层和第一反射电极,使显示装置中包括第一反射电极和绝缘层在内的叠层结构在晶圆厂中独立制作完成成为可能,因此,降低了第一反射电极的制作难度,同时保证了显示装置的高出光效率和高出光亮度。
本文中,有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (21)

  1. 一种显示装置,包括:
    衬底基板;
    显示区,所述显示区包括位于所述衬底基板上的多个子像素,每个子像素包括:
    第一反射电极;
    位于所述第一反射电极上的发光元件,所述发光元件包括依次叠置在所述第一反射电极上的第一电极层、有机发光功能层和第二电极层,所述第一电极层为透明电极层,所述有机发光功能层包括电子注入层、电子传输层、发光层、空穴注入层和空穴传输层;
    绝缘层,位于所述第一反射电极和所述第一电极层之间,所述绝缘层为透光的以使由所述有机发光功能层发出的光从中穿透并且到达所述第一反射电极以被所述第一反射电极反射;
    像素电路,位于所述衬底基板上并且包括驱动晶体管,所述驱动晶体管包括半导体层、源电极、漏电极,所述源电极和漏电极之一与所述第一反射电极彼此电连接,所述半导体层位于所述衬底基板中;和
    位于所述衬底基板上的存储电容,配置为存储数据信号;
    周边区,围绕所述显示区并且包括:
    位于所述衬底基板上的多个第二反射电极;和
    设置在所述多个第二反射电极远离于所述衬底基板一侧的挡光层。
  2. 根据权利要求1所述的显示装置,其中所述绝缘层包括填充有金属构件的过孔,所述第一反射电极通过所述金属构件与所述第一电极层电连接。
  3. 根据权利要求1所述的显示装置,其中所述绝缘层包括暴露所述第一反射电极的第一开口,所述第一电极层的至少一部分位于所述第一开口中并且与所述第一反射电极电连接。
  4. 根据权利要求1所述的显示装置,其中整个所述第一反射电极通过所述绝缘层与所述第一电极层隔开并且与所述第一电极层相互绝缘。
  5. 根据权利要求1至4任一项所述的显示装置,还包括至少一个布线层,所述至少一个布线层位于所述第一反射电极和所述衬底基板之间。
  6. 根据权利要求1至4任一项所述的显示装置,还包括绑定区和位于所述绑定区中的焊盘,所述绝缘层包括暴露所述焊盘的第二开口。
  7. 根据权利要求1至4任一项所述的显示装置,其中所述第一反射电极和所述第二发射电极均包括同层设置的金属层。
  8. 根据权利要求7所述的显示装置,其中所述金属层的材料为铝或铝合金。
  9. 根据权利要求8所述的显示装置,其中所述第一反射电极和所述第二反射电极均还包括至少一个保护层,该保护层与所述金属层层叠且设置在所述金属层靠近所述衬底基板的一侧。
  10. 根据权利要求1至4任一项所述的显示装置,其中所述第一电极层在所述衬底基板所在平面上的正投影位于所述第一反射电极在所述衬底基板所在平面上的正投影中。
  11. 根据权利要求1至4任一项所述的显示装置,其中多个第一反射电极的图案密度与多个第二反射电极的图案密度相同。
  12. 根据权利要求1至4任一项所述的显示装置,其中所述挡光层包括至少两种颜色不同且层叠设置的彩膜层。
  13. 根据权利要求所述1至4任一项所述的显示装置,其中所述衬底基板为硅基基板。
  14. 一种显示装置的制造方法,所述显示装置包括显示区和围绕显示区的周边区,该制造方法包括:
    提供衬底基板;
    在所述衬底基板上形成多个子像素,所述多个子像素位于所述显示区中,所述子像素的形成包括:
    形成第一反射电极;
    在所述第一反射电极上形成发光元件,所述发光元件包括依次叠置在所述第一反射电极上的第一电极层、有机发光功能层和第二电极层,所述第一电极层为透明电极层,所述有机发光功能层包括电子注入层、电子传输层、发光层、空穴注入层和空穴传输层;
    在所述第一反射电极和所述第一电极层之间形成绝缘层,所述绝缘层为透光的以使由所述有机发光功能层发出的光从中穿透并且到达所述 第一反射电极以被所述第一反射电极反射;
    在所述衬底基板上形成像素电路,所述像素电路包括驱动晶体管,所述驱动晶体管包括半导体层、源电极、漏电极,所述源电极和漏电极之一与所述第一反射电极彼此电连接,所述半导体层位于所述衬底基板中;以及
    在所述衬底基板上形成存储电容,所述存储电容配置为存储数据信号;
    在所述周边区中形成多个第二反射电极;以及
    在所述多个反射电极远离所述衬底基板的一侧形成挡光层。
  15. 根据权利要求14所述的显示装置的制造方法,还包括:
    在所述绝缘层中形成过孔;以及
    在所述过孔中填充金属构件。
  16. 根据权利要求15所述的显示装置的制造方法,其中所述第一电极层的形成包括:
    在所述绝缘层的远离所述衬底基板的一侧形成第一电极材料;以及
    图案化所述第一电极材料以形成第一电极层,所述第一电极层覆盖于所述绝缘层的过孔并且与所述金属构件相接触,所述第一电极层通过所述金属构件与所述第一反射电极电连接。
  17. 根据权利要求14所述的显示装置的制造方法,还包括:
    在所述绝缘层中形成第一开口,所述第一开口暴露所述第一反射电极。
  18. 根据权利要求17所述的显示装置的制造方法,其中所述第一电极层的形成包括:
    在所述绝缘层的远离所述衬底基板的一侧形成第一电极材料,所述第一开口;以及
    图案化所述第一电极材料以形成第一电极层,所述第一电极层覆盖于所述绝缘层的第一开口,所述第一电极层的至少一部分形成于所述第一开口中并且与所述第一反射电极电连接。
  19. 一种适于驱动发光元件发光的驱动基板,包括:
    衬底基板,
    显示区,所述显示区包括位于所述衬底基板上的多个子像素,每个子像素 包括:
    第一反射电极,位于所述衬底基板上;
    绝缘层,位于所述第一反射电极远离所述衬底基板的一侧,所述绝缘层具有适于形成所述发光元件的第一表面,所述绝缘层为透光以使得入射至所述绝缘层的光从中穿透并且到达所述第一反射电极以被所述第一反射电极反射;
    像素电路,位于所述衬底基板上并且包括驱动晶体管,所述驱动晶体管包括半导体层、源电极、漏电极,所述源电极和漏电极之一与所述第一反射电极彼此电连接,所述半导体层位于所述衬底基板中;和
    存储电容,位于所述衬底基板上并且配置为存储数据信号;
    周边区,围绕所述显示区并且包括:
    位于所述衬底基板上的多个第二反射电极;和
    设置在所述多个第二反射电极远离于所述衬底基板一侧的挡光层。
  20. 根据权利要求19所述的驱动基板,其中所述绝缘层包括填充有金属构件的过孔,所述金属构件与所述第一反射电极彼此电连接。
  21. 根据权利要求19所述的驱动基板,其中所述绝缘层包括暴露所述第一反射电极的第一开口。
PCT/CN2019/102293 2015-10-15 2019-08-23 显示装置及其制造方法和驱动基板 WO2021035405A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP19932230.6A EP4020572A4 (en) 2019-08-23 2019-08-23 DISPLAY DEVICE AND MANUFACTURING METHOD THEREOF, AND DRIVING SUBSTRATE
PCT/CN2019/102293 WO2021035405A1 (zh) 2019-08-23 2019-08-23 显示装置及其制造方法和驱动基板
JP2022512405A JP7339432B2 (ja) 2019-08-23 2019-08-23 表示装置およびその製造方法、駆動基板
CN201980001460.7A CN112703605A (zh) 2019-08-23 2019-08-23 显示装置及其制造方法和驱动基板
US16/959,757 US20210408488A1 (en) 2019-08-23 2019-08-23 Display device and manufacturing method thereof and driving substrate
KR1020227008984A KR20220049031A (ko) 2019-08-23 2019-08-23 표시장치, 이의 제조방법 및 구동기판
US16/814,119 US11600234B2 (en) 2015-10-15 2020-03-10 Display substrate and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/102293 WO2021035405A1 (zh) 2019-08-23 2019-08-23 显示装置及其制造方法和驱动基板

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102307 Continuation-In-Part WO2021035414A1 (zh) 2015-10-15 2019-08-23 像素电路及驱动方法、显示基板及驱动方法、显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102314 Continuation-In-Part WO2021035420A1 (zh) 2015-10-15 2019-08-23 显示面板及其制造方法、显示装置

Publications (1)

Publication Number Publication Date
WO2021035405A1 true WO2021035405A1 (zh) 2021-03-04

Family

ID=74683289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102293 WO2021035405A1 (zh) 2015-10-15 2019-08-23 显示装置及其制造方法和驱动基板

Country Status (6)

Country Link
US (1) US20210408488A1 (zh)
EP (1) EP4020572A4 (zh)
JP (1) JP7339432B2 (zh)
KR (1) KR20220049031A (zh)
CN (1) CN112703605A (zh)
WO (1) WO2021035405A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210111981A (ko) * 2020-03-04 2021-09-14 주식회사 디비하이텍 유기발광 표시장치 및 제조방법
KR20220143250A (ko) * 2021-04-16 2022-10-25 주식회사 디비하이텍 유기발광 표시장치 및 제조방법
KR20230106758A (ko) * 2022-01-06 2023-07-14 삼성디스플레이 주식회사 표시 장치 및 이를 포함하는 터치 입력 시스템
CN116997202A (zh) * 2022-04-22 2023-11-03 北京京东方技术开发有限公司 显示基板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080169757A1 (en) * 2007-01-16 2008-07-17 Tpo Displays Corp. Top-emitting organic electroluminescent display
US20100025664A1 (en) * 2008-07-29 2010-02-04 Samsung Electronics Co., Ltd. Organic light emitting diode display
US20130001601A1 (en) * 2011-06-28 2013-01-03 Joon-Gu Lee Organic light emitting display device and method of manufacturing organic light emitting display device
CN103022079A (zh) * 2012-12-12 2013-04-03 京东方科技集团股份有限公司 阵列基板及其制备方法、有机发光二极管显示装置
CN104332561A (zh) * 2014-11-26 2015-02-04 京东方科技集团股份有限公司 有机电致发光器件、其制备方法以及显示装置
CN107086237A (zh) * 2016-02-15 2017-08-22 精工爱普生株式会社 电光学装置以及电子设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070013293A1 (en) 2005-07-12 2007-01-18 Eastman Kodak Company OLED device having spacers
JP6393972B2 (ja) 2013-10-10 2018-09-26 セイコーエプソン株式会社 発光装置および電子機器
KR20160090176A (ko) * 2015-01-21 2016-07-29 (주)휴앤컴퍼니 유기발광다이오드 표시장치 및 그 제조방법
CN105185816A (zh) * 2015-10-15 2015-12-23 京东方科技集团股份有限公司 阵列基板及其制造方法、显示装置
JP6696193B2 (ja) * 2016-02-09 2020-05-20 セイコーエプソン株式会社 電気光学装置、および電子機器
KR20180036434A (ko) * 2016-09-30 2018-04-09 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
JP6702366B2 (ja) 2018-07-17 2020-06-03 セイコーエプソン株式会社 発光装置、電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080169757A1 (en) * 2007-01-16 2008-07-17 Tpo Displays Corp. Top-emitting organic electroluminescent display
US20100025664A1 (en) * 2008-07-29 2010-02-04 Samsung Electronics Co., Ltd. Organic light emitting diode display
US20130001601A1 (en) * 2011-06-28 2013-01-03 Joon-Gu Lee Organic light emitting display device and method of manufacturing organic light emitting display device
CN103022079A (zh) * 2012-12-12 2013-04-03 京东方科技集团股份有限公司 阵列基板及其制备方法、有机发光二极管显示装置
CN104332561A (zh) * 2014-11-26 2015-02-04 京东方科技集团股份有限公司 有机电致发光器件、其制备方法以及显示装置
CN107086237A (zh) * 2016-02-15 2017-08-22 精工爱普生株式会社 电光学装置以及电子设备

Also Published As

Publication number Publication date
EP4020572A4 (en) 2022-09-07
CN112703605A (zh) 2021-04-23
JP7339432B2 (ja) 2023-09-05
KR20220049031A (ko) 2022-04-20
JP2022552595A (ja) 2022-12-19
US20210408488A1 (en) 2021-12-30
EP4020572A1 (en) 2022-06-29

Similar Documents

Publication Publication Date Title
WO2021035405A1 (zh) 显示装置及其制造方法和驱动基板
TWI637657B (zh) 有機發光二極體顯示器
KR101972169B1 (ko) 유기 발광 표시 장치 및 그 제조방법
WO2021233002A1 (zh) 显示基板及其制作方法、显示装置
US11227903B2 (en) Organic light emitting display device having a reflective barrier and method of manufacturing the same
TWI759046B (zh) 有機發光二極體顯示裝置及製造其之方法
WO2020154875A1 (zh) 像素单元及其制造方法和双面oled显示装置
KR20200128274A (ko) 유연 전자 소자
WO2018205587A1 (zh) 显示基板及其制作方法、显示装置
WO2021077332A1 (zh) 显示基板及其制备方法、显示装置
JP2023519034A (ja) 表示基板及びその製造方法
TW202125810A (zh) 顯示裝置及其製造方法
CN110212111B (zh) 显示基板及制作方法、显示面板、显示装置
WO2021035530A1 (zh) 显示装置及制备方法、电子设备
WO2021035442A1 (zh) 显示面板及其制作方法、显示装置
CN113066836A (zh) 显示面板及显示装置
WO2021189480A1 (zh) 显示基板及其制备方法、显示装置
CN112670300A (zh) 显示模组、制备方法以及显示装置
JP2023070156A (ja) 表示装置
WO2023065206A1 (zh) 显示基板以及显示装置
JP7481368B2 (ja) 表示パネル及び表示装置
KR102094805B1 (ko) 유기발광 디스플레이장치 및 그 제조방법
WO2021189495A1 (zh) 显示面板和显示装置
CN112714969B (zh) 发光装置、制备发光装置的方法以及电子设备
WO2024065616A1 (zh) 显示面板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932230

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512405

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227008984

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019932230

Country of ref document: EP

Effective date: 20220323