WO2021033690A1 - 電極用成形体の製造方法 - Google Patents

電極用成形体の製造方法 Download PDF

Info

Publication number
WO2021033690A1
WO2021033690A1 PCT/JP2020/031154 JP2020031154W WO2021033690A1 WO 2021033690 A1 WO2021033690 A1 WO 2021033690A1 JP 2020031154 W JP2020031154 W JP 2020031154W WO 2021033690 A1 WO2021033690 A1 WO 2021033690A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode material
electrode
contact
support
molded product
Prior art date
Application number
PCT/JP2020/031154
Other languages
English (en)
French (fr)
Inventor
昭人 福永
英二郎 岩瀬
浩二 殿原
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202080051569.4A priority Critical patent/CN114144903A/zh
Priority to EP20854591.3A priority patent/EP4020613A4/en
Priority to JP2021540952A priority patent/JP7242869B2/ja
Publication of WO2021033690A1 publication Critical patent/WO2021033690A1/ja
Priority to US17/563,093 priority patent/US20220123280A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a method for manufacturing an electrode molded body.
  • an electrolytic solution As the electrolyte contained in a battery such as a lithium ion battery, an electrolytic solution is usually used. In recent years, from the viewpoint of safety (for example, prevention of liquid leakage), the development of an all-solid-state battery in which the electrolytic solution is replaced with a solid electrolyte has been studied.
  • an electrode material such as an active material and a coating liquid containing a solvent are usually used (see, for example, International Publication No. 2017/104405).
  • a method for manufacturing a lithium ion battery which is a powder supply method in which powder contained in a hopper is supplied to an object to be supplied from a powder supply port formed at the tip of a powder supply cylinder.
  • a powder supply method for a lithium ion battery is used, which includes a supply step of supplying the powder to the supply object from the powder supply port (for example, JP-A-2015-). 028910 (see).
  • an electrode material is supplied to a pair of press rolls or belts arranged substantially horizontally by a quantitative feeder, and the electrode material is used for this press.
  • a method for manufacturing an electrochemical element electrode sheet which comprises a step of molding an electrode material into a sheet-like molded body with a roll or a belt, is known (see, for example, Japanese Patent Application Laid-Open No. 2007-005747).
  • the method of forming an electrode using a coating liquid for example, the method described in International Publication No. 2017/104405.
  • the coating liquid it is usually necessary to dry the coating liquid. If the drying is not sufficient, the residual solvent on the electrodes may reduce the battery performance (for example, discharge capacity and output characteristics). In particular, in an all-solid-state battery, it is preferable that the amount of solvent remaining on the electrodes is small.
  • JP-A-2015-028910 and JP-A-2007-005747 have been proposed to manufacture electrodes using powder.
  • members hoppers, press rolls, belts, etc.
  • the transportability, moldability, etc. of the powder are locally reduced, and an electrode having a large in-plane variation in mass distribution may be manufactured.
  • One embodiment of the present disclosure is an object of the present invention to provide a method for producing an electrode molded product capable of producing an electrode molded product having excellent in-plane uniformity of mass distribution.
  • the disclosure includes the following embodiments: ⁇ 1> while the discharge port for discharging an electrode material containing an electrode active material and the first support member are relatively moved in the plane direction of the first support member, on the surface F A of the first support member from said discharge port Including the step of discharging the electrode material toward Said step, using a contact member having a contact surface F B in contact with the electrode material, The contact wall friction angle of the contact surface F B and the electrode material of the member and .theta.1, when the wall friction angle between the surface F A and the electrode material of the first support member and .theta.2, following ( A method for producing an electrode molded product that satisfies the relationships 1) and (2). (1) 1 ° ⁇ ⁇ 1 ⁇ 15 ° (2) 15 ° ⁇ ⁇ 2
  • ⁇ 4> is a storage member capable of storing a and the electrode material has a discharge opening while the contact member is in contact, the inner peripheral surface of the discharge port is the contact surface F B of the contact member, ⁇ 1 > To ⁇ 3>.
  • the method for producing an electrode molded product according to any one of. ⁇ 5> the contact member is a roller member, an outer peripheral surface of the roll member is the contact surface F B of the contact member, ⁇ 1> to electrode molded product according to any one of ⁇ 3> Manufacturing method.
  • the contact member is a long second support that forms a part of the discharge port and moves while contacting the electrode material to be discharged, and the electrode of the second support. contact surface of the material is the contact surface F B of the contact member, ⁇ 1> to ⁇ 3> any one method of manufacturing an electrode for molded product according to the.
  • the contact surface F B of the contact member, the contact angle with water is 75 ° or more, ⁇ 1> to any method of manufacturing an electrode for molding according to one of ⁇ 6>.
  • the surface F A of the first support, the contact angle with water is less than 30 ° or 75 °, ⁇ 1> ⁇ of the electrode molded product according to any one of ⁇ 7> Production method.
  • the contact surface F B of the contact member has a surface layer containing at least either a fluorine atom or a silicon atom, ⁇ 1> to the manufacture of electrodes for molding according to any one of ⁇ 8> Method.
  • the contact surface F B of the contact member has an arithmetic mean roughness Ra of 10 ⁇ m or less ⁇ 1> to ⁇ 10> method of manufacturing an electrode for molding according to any one of.
  • the first support is a mold release material.
  • FIG. 1 is a conceptual diagram illustrating an embodiment of an electrode material ejection step in the method for manufacturing an electrode molded product according to the present disclosure.
  • FIG. 2 is a conceptual diagram illustrating another embodiment of the electrode material ejection step in the method for manufacturing an electrode molded product according to the present disclosure.
  • the numerical range represented by using “-” means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
  • the term "process” is included in the term "process” as long as the intended purpose of the process is achieved, not only in an independent process but also in cases where it cannot be clearly distinguished from other processes. ..
  • (meth) acrylic means both acrylic and / or methacrylic.
  • the amount of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. ..
  • “% by mass” and “% by weight” are synonymous, and “parts by mass” and “parts by weight” are synonymous.
  • a combination of two or more preferred embodiments is a more preferred embodiment.
  • solid content means a component that does not disappear by volatilization or evaporation when 1 g of a sample is dried in a nitrogen atmosphere at 200 ° C. for 6 hours.
  • the discharge port for discharging the electrode material containing the electrode active material and the first support are relatively moved in the surface direction of the first support from the discharge port.
  • electrode material discharge step refers to a step while the electrode material discharged from the discharge port is moving toward the first support.
  • the method for producing an electrode molded product according to the present disclosure can produce an electrode molded product having excellent in-plane uniformity of mass distribution.
  • the reason why the method for producing an electrode molded product according to the present disclosure exerts this effect is presumed as follows.
  • the discharge port for discharging the electrode material containing the electrode active material and the first support are relatively moved in the surface direction of the first support from the discharge port.
  • the step of discharging the electrode material toward the surface of the first support is included.
  • a contact member having a contact surface that comes into contact with the electrode material interposed between the first support is used.
  • the three elements of the first support, the electrode material, and the contact member form a configuration in which the electrode material is interposed between the first support and the contact member. Since the contact member is a member that comes into contact with the electrode material while the electrode material discharged from the discharge port is moving toward the first support, the contact surface in contact with the electrode material has an affinity for the electrode member. It is desired that the property is low and the releasability is excellent. However, simply giving the contact surface of the contact member to the contact surface with the electrode material releasable does not mean that the electrode material is uniformly arranged on the first support.
  • the electrode material is hardly adhered on the contact surface F B of the electrode material of the contact member, while on the surface F A of the first support It becomes easy to adhere. Therefore, it is presumed that the electrode material discharged toward the surface of the first support does not adhere to the contact member, moves smoothly, and is supplied to the first support. As a result, the target amount of the electrode material is sequentially supplied onto the first support, and it is presumed that an electrode molded body having excellent in-plane uniformity of mass distribution is produced.
  • the electrode material adheres to the contact surface of the contact member with the electrode material, a work for removing the electrode material is required, and this work also causes a decrease in productivity.
  • the work of removing the electrode material is not required and the productivity is also improved. It is expected to increase.
  • a step of preparing an electrode material also referred to as an electrode material preparation step
  • a step of molding the electrode material electrode material molding
  • electrode material molding a step of molding the electrode material
  • Electrode material ejection process while relatively moving the discharge port for discharging an electrode material containing an electrode active material and the first support member in the surface direction of the first support member, the discharge port surface F A of the first support member This is a process of discharging the electrode material toward the surface.
  • the electrode material containing the electrode active material used in this step is a powder or a mixture of powder and a small amount of liquid component, and in the electrode material discharge step, a mixture of powder or powder and a small amount of liquid component is used. This is a step of discharging onto the first support.
  • the details of the electrode material containing the electrode active material will be described later.
  • the electrode material discharge step and using a contact member having a contact surface F B in contact with the interposed electrode material between the first support member. Then, the wall friction angle of the contact surface F B and the electrode material in the contact member and .theta.1, when the wall friction angle between the surface F A and the electrode material of the first support member and .theta.2, the following (1) and Satisfy the relationship of (2). (1) 1 ° ⁇ ⁇ 1 ⁇ 15 ° (2) 15 ° ⁇ ⁇ 2
  • the wall surface friction angles ⁇ 1 and ⁇ 2 are physical property values indicating the frictional resistance between the surface of the object and the electrode material layer. When the wall surface friction angle is large, the frictional resistance is high, and when the wall surface friction angle is small, the frictional resistance is low.
  • a force is applied in the shearing direction between the electrode material layer in a compacted state by applying a vertical load and the surface of the object, and the flowing force of the electrode material layer at that time is applied. Measurement by obtaining.
  • the wall surface friction angles ⁇ 1 and ⁇ 2 are measured using a powder flow measuring device VOLUTION (Volution Powder Flow Tester, VFT). If the surface of the object to be measured cannot be applied to the above device as it is, only the surface of the object to be measured is taken out, or a measurement sample having the same composition and surface properties as the surface of the object to be measured is prepared and used. And measure it.
  • the above (1) is specified from the viewpoint of facilitating pressure on the electrode material and the viewpoint of improving the releasability of the electrode material.
  • ⁇ 1 is 1 °. It is preferably 15 ° or more, and more preferably 3 ° or more and 13 ° or less.
  • the above (2) is specified from the viewpoint that the electrode material can be easily arranged on the first support, but from the same viewpoint and when necessary, the electrode material is released from the first support.
  • ⁇ 2 is preferably 15 ° or more and 60 ° or less, and more preferably 16 ° or more and 55 ° or less. That is, in the electrode material discharge step, it is preferable that the wall surface friction angle ⁇ 1 and the wall surface friction angle ⁇ 2 satisfy the following relationship (2'). (2') 15 ° ⁇ ⁇ 2 ⁇ 60 °
  • the wall surface friction angle ⁇ 1 and the wall surface friction angle ⁇ 2 satisfy the following relationship (3) from the viewpoint of further enhancing the in-plane uniformity of the mass distribution.
  • ⁇ 2- ⁇ 1 is preferably 3 ° or more and 50 ° or less, and more preferably 5 ° or more and 40 ° or less.
  • FIG. 1 is a conceptual diagram illustrating an embodiment (hereinafter, referred to as a first embodiment) of an electrode material ejection step in the method for manufacturing an electrode molded body according to the present disclosure.
  • FIG. 2 is a conceptual diagram illustrating another embodiment (hereinafter, referred to as a second embodiment) of the electrode material ejection step in the method for manufacturing an electrode molded product according to the present disclosure.
  • the electrode material 20 stored in the hopper 30 is discharged from the discharge port 32 of the hopper 30 and supplied onto the support (an example of the first support) 10 being conveyed in the direction of arrow A.
  • the support 10 is conveyed in the direction of arrow A by a transfer mechanism (not shown).
  • the discharge port (an example of the discharge port of the electrode material) 32 of the hopper 30 and the support 10 need only move relative to each other in the plane direction of the support 10, and in addition to the mode in which the support 10 moves, the hopper It may be a mode in which the 30 is moved, or a mode in which both the support 10 and the hopper 30 are moved.
  • the transport mechanism is not limited, and known transport means can be used, and examples thereof include a belt conveyor, a linear motion guide, and a cross roller table.
  • the electrode material 20 discharged from the discharge port 32 of the hopper 30 is regulated by the regulation roll 40 as shown in FIG. 1 in terms of the amount of the electrode material 20 (specifically, for example, the layer thickness of the electrode material 20), the density distribution, and the like. Will be done. Further, the electrode material 20 supplied on the support 10 moves with the transportation of the support 10 and is pressurized by contact with the pressure roll 50 (corresponding to the electrode material molding step described later).
  • the hopper 30 and the regulation roll 40 are both members that come into contact with the electrode material 20 while the electrode material 20 is moving toward the support 10 which is an example of the first support. It corresponds to the "contact member" in the disclosure.
  • Hopper 30 is a storage member capable of storing and the electrode material 20 has an outlet 32 for discharging the electrode material 20, the inner peripheral surface of the discharge port 32 is the contact surface F B of the contact member.
  • regulation roll 40 is a roll member, the outer peripheral surface of the roll member is the contact surface F B of the contact member.
  • the wall friction angle between the inner peripheral surface of the discharge port 32 of the hopper 30 and the electrode material 20 is set to ⁇ 1 (30) , and the wall friction between the outer peripheral surface of the regulation roll 40 and the electrode material 20.
  • the angle is ⁇ 1 (40)
  • the electrode material discharged from the discharge port 32 toward the support 10 by satisfying the relationship of (1) above at least one (preferably both) of ⁇ 1 (30) and ⁇ 1 (40). 20 does not adhere to the inner peripheral surface of the discharge port 32 of the hopper 30 and / or the outer peripheral surface of the regulation roll 40, moves smoothly, and is sequentially supplied to the support 10 being conveyed. As a result, the electrode material 20 is sequentially supplied onto the support 10 in a target amount, and as a result, it is presumed that an electrode molded body having excellent in-plane uniformity of mass distribution can be produced. Will be done.
  • the hopper 30 does not hinder the movement and discharge of the electrode material 20 stored inside, not only the inner peripheral surface of the discharge port 32 but also many regions of the inner peripheral surface of the hopper 30 in contact with the electrode material 20. It is preferable that (preferably all regions) are designed so that the wall friction angle with the electrode material 20 satisfies the relationship (1) above.
  • the pressure roll 50 in FIG. 1 is a member that contacts the electrode material 20 supplied on the support 10 and pressurizes the electrode material 20. Since the electrode material 20 preferably does not adhere to the outer peripheral surface of the pressure roll 50 and moves together with the support 10, the wall friction angle between the outer peripheral surface of the pressure roll 50 and the electrode material 20 is also described in (1) above. It is preferable that it is designed to satisfy the relationship of.
  • the electrode material 20 stored in the hopper 30 is discharged from the discharge port 32 of the hopper 30 and is supplied onto the support 10 transported in the direction of arrow A. At this time, it moves along a part of the inner peripheral surface of the hopper 30 and a part of the discharge port 32 of the hopper 30 while contacting the electrode material 20 discharged from the discharge port 32 of the hopper 30.
  • (An example of a second support) 60 is provided. Unless otherwise specified, the second embodiment is the same as the first embodiment except that the support 60 is used, and the preferred embodiment is also the same. Therefore, details will be omitted here.
  • the hopper 30 and the support 60 are both members that come into contact with the electrode material 20 while the electrode material 20 is moving toward the support (an example of the first support) 10. It corresponds to the "contact member" in the disclosure.
  • Hopper 30 as in the first embodiment, the inner circumferential surface of the discharge port 32 for discharging the electrode material 20 is the contact surface F B of the contact member.
  • the support 60 is a long second support that constitutes a part of the discharge port 32 that discharges the electrode material 20 and moves while contacting the discharged electrode material 20, and the second support thereof. contact surface between the electrode material of the support 60 is a body composed of the contact surface F B of the contact member.
  • the wall friction angle between the inner peripheral surface of the discharge port 32 of the hopper 30 and the electrode material 20 is set to ⁇ 1 (30) , and the contact surface of the support 60 with the electrode material 20 and the electrode material.
  • the electrode material discharged from the discharge port 32 toward the support 10 by satisfying the relationship of (1) above at least one (preferably both) of ⁇ 1 (30) and ⁇ 1 (60).
  • the 20 does not adhere to the inner peripheral surface of the discharge port 32 of the hopper 30 and / or the contact surface of the support 60 with the electrode material 20, moves smoothly, and is sequentially supplied to the conveyed support 10. ..
  • the electrode material 20 is sequentially supplied onto the support 10 in a target amount, and as a result, it is presumed that an electrode molded body having excellent in-plane uniformity of mass distribution can be produced. Will be done.
  • the support 60 moves while being in contact with the electrode material 20, and forms a state in which the electrode material 20 is sandwiched between the support 60 and the support 10. Therefore, the regulation roll 40 shown in FIG. 2 regulates the amount of the electrode material 20 (specifically, for example, the layer thickness of the electrode material 20) via the support 60.
  • the regulation roll 40 in the second embodiment since the regulation roll 40 in the second embodiment does not come into contact with the electrode material 20, the wall friction angle between the outer peripheral surface of the regulation roll 40 and the electrode material 20 is set to ⁇ 1 (40) by the relationship of (1) above. There is no need to meet.
  • the outer peripheral surface of the regulation roll 40 in the second embodiment may have a surface texture useful for regulating the amount of the electrode material 20 via the support 60.
  • the pressurizing roll 50 shown in FIG. 2 also pressurizes the electrode material 20 via the support 60.
  • the outer peripheral surface of the regulation roll 40 in the second embodiment may have a surface texture useful for pressurizing the electrode material 20 via the support 60.
  • the contact surface F B of the contact member may have a surface texture that satisfies the relationship of the above (1).
  • the contact surface F B of the contact member is preferably excellent in water repellency, it is preferable that the contact angle with water is 75 ° or more, more preferably at least 80 °, 85 ° or more Is more preferable.
  • the upper limit of the contact angle with water of the contact surface F B of the contact member is not particularly, but since the contact angle of it is 180 ° or less, more preferably 150 ° or less.
  • the surface in contact with the electrode material preferably has a surface layer containing at least either a fluorine atom or a silicon atom .
  • the surface layer is preferably a layer containing at least one of a compound having a fluorine atom in the molecule and a compound having a silicon atom in the molecule.
  • a resin having a fluorine atom in the molecule is preferable, and specifically, for example, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) and polytetrafluoroethylene (PTFE).
  • a resin having a silicon atom in the molecule is preferable, and specifically, for example, a methyl silicone resin, a phenyl silicone resin, a methyl phenyl silicone resin, an epoxy-modified silicone resin, and a polyester. Examples thereof include modified silicone resin and urethane modified silicone resin.
  • the surface layer further contains an antistatic agent.
  • an antistatic agent a conventionally known antistatic agent is used.
  • a commercially available coating agent may be used for forming the surface layer.
  • Specific examples of commercially available coating agents include A ⁇ cot (Amucoat), NF-004, NF-015, NF-004EC, NF-004A, NF-015A, and NF-manufactured by Nippon Fluorine Industry Co., Ltd. 015EC or the like is used.
  • the "EC" series manufactured by Nippon Fluorine Industry Co., Ltd. is a coating agent having an antistatic ability.
  • the contact member may have an undercoat layer as a lower layer of the surface layer on the surface in contact with the electrode material.
  • the undercoat layer include a layer obtained by roughening the surface of the contact member by sandblasting or the like and then applying a material mainly composed of an epoxy resin.
  • the contact surface F B of the contact members in order to further improve releasability of the electrode material, it is preferable arithmetic average roughness Ra of 10 ⁇ m or less.
  • Arithmetic average roughness Ra at the interface F B of the contact member is preferably 8 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the lower limit of the arithmetic mean roughness Ra at the interface F B of the contact member for example, is 0.05 .mu.m.
  • the arithmetic mean roughness Ra at the interface F B of the contact member is measured by the following method.
  • the surface shape of the contact member is measured with a laser displacement meter or the like, and the profile of the surface shape is calculated.
  • the reference length L is extracted in the direction of the average line
  • the x-axis is taken in the direction of the average line of the extracted portion
  • the y-axis is taken in the direction of the vertical magnification
  • the surface F A of the first support wall friction angle ⁇ 2 between the electrode member may have a surface texture that satisfies the relationship of the above (2).
  • the surface F A of the first support member it is preferable that the contact angle with water is less than 30 ° or 75 °, and more preferably 40 ° to 60 °.
  • contact angle with water of the surface F A of the first support to the above range select the material itself of the first support what is the contact angle with water in the above range, or the 1 It is preferable that the surface of the support in contact with the electrode material has a surface layer in which the contact angle with water is controlled within the above range.
  • the material having a contact angle with water of 30 ° or more and less than 75 ° include metals such as stainless steel (also referred to as SUS) and glass.
  • the surface layer in which the contact angle with water is controlled to be 30 ° or more and less than 75 ° include a layer containing polyvinyl alcohol, titanium dioxide, etc. having a saponification degree of 90% or more.
  • the contact angle with water on the surface F A of the contact surface F B and the first support of the contact member is measured by a water droplet in air method. Specifically, for example, using a DMO-701 (manufactured by Kyowa Interface Science Co., Ltd.) to determine the contact angle of water to the surface F A of the contact surface F B or the first support member of the contact member.
  • the water droplet volume used for the measurement is 1 ⁇ L, and the water droplet temperature is 25 ° C.
  • the first support for example, the contact angle with water can be cited as the release material having a surface F A within the above range is preferred.
  • the release material includes, for example, a release paper (for example, SP-8E Ivory, manufactured by Nippon Label Co., Ltd., etc.), a surface-treated metal (for example, aluminum and stainless steel), a film having a surface layer, and a surface. Examples include paper having a layer, and among them, release paper is preferable.
  • the surface layer refers to the above-mentioned surface layer in which the contact angle with water is controlled to be 30 ° or more and less than 75 °.
  • the shape of the first support is preferably a flat plate, a film, or a sheet from the viewpoint of transportability and the like.
  • the average thickness of the first support is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and particularly preferably 20 ⁇ m or more, from the viewpoint of transportability and the like. From the viewpoint of flexibility and light weight, the average thickness of the first support is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and particularly preferably 200 ⁇ m or less.
  • the average thickness of the first support is the arithmetic mean of the thicknesses of the three points measured by cross-sectional observation. A known microscope (for example, a scanning electron microscope) can be used for cross-section observation.
  • the size of the first support is not limited, and may be determined according to the size of the molded body for electrodes to be manufactured, the size of various members used in the manufacturing process, and the like.
  • the second support member since corresponding to the "contact member" in the present disclosure, at least, it is preferable that the surface corresponding to the contact surface F B is the contact angle with water of 75 ° or more.
  • the material constituting the second support include resin, metal, and paper, and any of these has a surface layer having a contact angle with water of 75 ° or more formed as described above. Is preferably used.
  • the second support is preferably a current collector, and more preferably a surface layer having a contact angle with water of 75 ° or more formed on the surface of the current collector. Since the second support is a current collector, the electrode material can be easily arranged on the current collector, and the productivity when obtaining the electrode molded body with the current collector is also improved. Can be done.
  • the current collector is not limited, and a known current collector can be used.
  • the positive electrode current collector examples include aluminum, aluminum alloy, stainless steel, nickel, and titanium.
  • the positive electrode current collector is preferably aluminum or an aluminum alloy.
  • the positive electrode current collector is also preferably aluminum or stainless steel having a coating layer containing carbon, nickel, titanium, or silver on the surface.
  • Examples of the negative electrode current collector include aluminum, copper, copper alloy, stainless steel, nickel, and titanium.
  • the negative electrode current collector is preferably aluminum, copper, a copper alloy, or stainless steel, and more preferably copper or a copper alloy.
  • the negative electrode current collector is preferably aluminum, copper, copper alloy, or stainless steel having a coating layer containing carbon, nickel, titanium, or silver on the surface.
  • the current collector is preferably aluminum foil or copper foil.
  • the aluminum foil is usually used as a current collector in the positive electrode.
  • Copper foil is usually used as a current collector in the negative electrode.
  • the second support may be meshed or punched. Further, the second support may be a porous body, a foam, or a molded body of a fiber group. The surface of the second support may have irregularities due to surface treatment.
  • the shape of the second support is preferably a film shape or a sheet shape.
  • the average thickness of the second support is preferably 1 ⁇ m to 500 ⁇ m, more preferably 3 ⁇ m to 300 ⁇ m, and particularly preferably 5 ⁇ m to 200 ⁇ m from the viewpoint of transportability and penetration resistance.
  • the average thickness of the second support is also measured in the same manner as the average thickness of the first support.
  • the electrode material is discharged from the discharge port.
  • the hopper (an example of the storage member) 30 is used as the discharge means for discharging the electrode material, but the present invention is not limited to this.
  • the discharge means for discharging the electrode material may have a discharge port, and examples thereof include a screw feeder, a disc feeder, a rotary feeder, and a belt feeder in addition to the hopper.
  • the discharge means it is preferable that at least the wall friction angle ⁇ 1 between the inner peripheral surface of the discharge port and the electrode material satisfies the above formula (1).
  • the discharge port in the above discharge means has an opening / closing mechanism for controlling the supply of the electrode material from the viewpoint of preventing contamination due to scattering of the electrode material.
  • the "opening / closing mechanism” means a movable mechanism capable of opening / closing the flow path of the electrode material.
  • the valve body used in the opening / closing mechanism include a plate-shaped valve body and a spherical valve body.
  • the discharge amount of the electrode material by the discharge means is preferably 0.01 kg / min to 100 kg / min, and preferably 0.1 kg / min to 10 kg / min from the viewpoint of stability. More preferably, it is 0.5 kg / min to 5 kg / min.
  • a regulating means for regulating the amount of the electrode material may be used.
  • the regulating means may be omitted, or it may be coupled to the discharge port of the discharge means and integrated with the discharge means.
  • the regulation roll 40 is used as a regulation means for regulating the amount of the electrode material, the density distribution, and the like, but the present invention is not limited thereto. ..
  • the regulating means may have a contact surface that directly or indirectly contacts the electrode material.
  • a roll member such as a regulating roll, a scraper, a plate-shaped member (for example, a squeegee), or the like may be used.
  • a regulating means corresponds to the "contact member" in the present disclosure, it is preferable that the wall friction angle ⁇ 1 between the contact surface with the electrode material and the electrode material satisfies the above formula (1).
  • An uneven shape may be formed on the contact surface with the electrode material in the regulating means. Since the surface of the regulating means has an uneven shape, it becomes easy to control the amount of the electrode material, the density distribution, and the like.
  • a vibrating means for vibrating the electrode material when regulating the amount, density distribution, etc. of the electrode material, a vibrating means for vibrating the electrode material may be used in combination with the above-mentioned regulating means. By having the vibrating means, it becomes easy to control the amount of the electrode material, the density distribution, and the like.
  • the vibration means for example, a general vibration device or the like can be mentioned.
  • the method for producing an electrode molded product according to the present disclosure preferably includes a step of preparing an electrode material (that is, an electrode material preparation step) before the electrode material ejection step.
  • preparing the electrode material means preparing the electrode material in a usable state, and includes preparing the electrode material unless otherwise specified. That is, in the electrode material preparation step, an electrode material prepared in advance or a commercially available electrode material may be prepared, or an electrode material may be prepared.
  • the electrode material contains an electrode active material.
  • the electrode material may contain components other than the electrode active material, if necessary. Hereinafter, the components contained in the electrode material will be described.
  • the electrode active material is a substance capable of inserting and releasing ions of metal elements belonging to Group 1 or Group 2 in the periodic table.
  • Examples of the electrode active material include a positive electrode active material and a negative electrode active material.
  • the positive electrode active material is not limited, and a known active material used for the positive electrode can be used.
  • the positive electrode active material is preferably a positive electrode active material capable of reversibly inserting and releasing lithium ions.
  • the positive electrode active material include transition metal oxides and elements that can be combined with lithium (for example, sulfur).
  • the positive electrode active material is preferably a transition metal oxide.
  • the transition metal oxide is at least one transition metal element selected from the group consisting of Co (cobalt), Ni (nickel), Fe (iron), Mn (manganese), Cu (copper), and V (vanadium). It is preferably a transition metal oxide containing (hereinafter, referred to as "element Ma").
  • the molar ratio of Li to element Ma (amount of substance of Li / amount of substance of element Ma) is preferably 0.3 to 2.2.
  • the "amount of substance of element Ma” means the total amount of substance of all elements corresponding to element Ma.
  • the transition metal oxides are Group 1 elements other than lithium, Group 2 elements, Al (aluminum), Ga (gallium), In (indium), Ge (germanium), Sn (tin), Pb ( At least one transition metal element selected from the group consisting of lead), Sb (antimony), Bi (bismas), Si (silicon), P (phosphorus), and B (boron) (hereinafter referred to as "element Mb"). .) May be included.
  • the content of the element Mb (that is, the total content of all the elements corresponding to the element Mb) is preferably 0 mol% to 30 mol% with respect to the amount of substance of the element Ma.
  • transition metal oxide examples include a transition metal oxide having a layered rock salt type structure, a transition metal oxide having a spinel type structure, a lithium-containing transition metal phosphoric acid compound, a lithium-containing transition metal halogenated phosphoric acid compound, and lithium.
  • transition metal oxide having a layered rock salt structure examples include LiCoO 2 (lithium cobalt oxide [LCO]), LiNi 2 O 2 (lithium nickel oxide), and LiNi 0.85 Co 0.10 Al 0.05 O 2. (Lithium nickel cobalt oxide [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (lithium nickel cobalt oxide [NMC]), and LiNi 0.5 Mn 0.5 O 2 (nickel manganese) Lithium oxide oxide).
  • the transition metal oxide having a spinel structure for example, LiCoMnO 4, Li 2 FeMn 3 O 8, Li 2 CuMn 3 O 8, Li 2 CrMn 3 O 8, and Li 2 NiMn 3 O 8 and the like.
  • lithium-containing transition metal phosphate compound examples include olivine-type iron phosphate salt (for example, LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 ), iron pyrophosphate salt (for example, LiFeP 2 O 7 ), and phosphorus.
  • Cobalt acid salts eg, LiCoPO 4
  • monoclinic panacycon-type vanadium phosphate salts eg, Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate)
  • lithium-containing transition metal halide phosphate compound examples include iron fluoride phosphate (eg, Li 2 FePO 4 F), manganese fluoride phosphate (eg, Li 2 MnPO 4 F), and phosphorus fluoride.
  • Acid cobalt salts eg, Li 2 CoPO 4 F can be mentioned.
  • lithium-containing transition metal silicic acid compound examples include Li 2 FeSiO 4 , Li 2 MnSiO 4 , and Li 2 CoSiO 4 .
  • the transition metal oxide is preferably a transition metal oxide having a layered rock salt type structure, and is preferably LiCoO 2 (lithium cobalt oxide [LCO]), LiNi 0.85 Co 0.10 Al 0.05 O 2 (nickel cobalt). It is more likely that it is at least one compound selected from the group consisting of lithium aluminum oxide [NCA]) and LiNi 1/3 Co 1/3 Mn 1/3 O 2 (lithium nickel manganese cobalt oxide [NMC]). preferable.
  • LiCoO 2 lithium cobalt oxide [LCO]
  • LiNi 0.85 Co 0.10 Al 0.05 O 2 nickel cobalt
  • NMC lithium nickel manganese cobalt oxide
  • the positive electrode active material may be a commercially available product or a synthetic product produced by a known method (for example, a firing method).
  • the positive electrode active material obtained by the firing method may be washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • composition of the positive electrode active material is measured using inductively coupled plasma (ICP) emission spectroscopy.
  • ICP inductively coupled plasma
  • the shape of the positive electrode active material is not limited, but it is preferably in the form of particles from the viewpoint of handleability.
  • the volume average particle size of the positive electrode active material is not limited and can be, for example, 0.1 ⁇ m to 50 ⁇ m.
  • the volume average particle size of the positive electrode active material is preferably 0.3 ⁇ m to 40 ⁇ m, and more preferably 0.5 ⁇ m to 30 ⁇ m.
  • the volume average particle size of the positive electrode active material is 0.3 ⁇ m or more, an aggregate of the electrode materials can be easily formed, and scattering of the electrode materials during handling can be suppressed.
  • the volume average particle size of the positive electrode active material is 40 ⁇ m or less, the thickness of the electrode molded body can be easily adjusted, and the generation of voids can be suppressed in the molding process.
  • the volume average particle size of the positive electrode active material is measured by the following method.
  • a dispersion containing 0.1% by mass of the positive electrode active material is prepared by mixing the positive electrode active material with a solvent (for example, heptane, octane, toluene, or xylene).
  • a dispersion liquid irradiated with 1 kHz ultrasonic waves for 10 minutes is used as a measurement sample.
  • a laser diffraction / scattering particle size distribution measuring device for example, LA-920 manufactured by HORIBA, Ltd.
  • data is captured 50 times under the condition of a temperature of 25 ° C. to obtain a volume average particle size.
  • a quartz cell is used as the measurement cell.
  • the above measurement is performed using five samples, and the average of the measured values is taken as the volume average particle size of the positive electrode active material.
  • JIS Z 8828: 2013 refers the volume average particle size of the positive electrode active material.
  • Examples of the method for adjusting the particle size of the positive electrode active material include a method using a crusher or a classifier.
  • the electrode material may contain one type of positive electrode active material alone, or may contain two or more types of positive electrode active material.
  • the content of the positive electrode active material is preferably 10% by mass to 95% by mass, more preferably 30% by mass to 90% by mass, and 50% by mass to 85% by mass with respect to the total solid content mass of the electrode material. It is more preferably by mass, and particularly preferably by 60% by mass to 80% by mass.
  • the negative electrode active material is not limited, and a known active material used for the negative electrode can be used.
  • the negative electrode active material is preferably a negative electrode active material capable of reversibly inserting and releasing lithium ions.
  • the negative electrode active material for example, a carbonaceous material, a metal oxide (for example, tin oxide), silicon oxide, a metal composite oxide, a single lithium, a lithium alloy (for example, a lithium aluminum alloy), and an alloy with lithium can be formed.
  • Metals eg, Sn, Si, and In.
  • the negative electrode active material is preferably a carbonaceous material or a lithium composite oxide from the viewpoint of reliability.
  • a carbonaceous material is a material substantially composed of carbon.
  • Carbonaceous materials include, for example, petroleum pitch, carbon black (eg, acetylene black), graphite (eg, natural graphite, and artificial graphite (eg, vapor-grown graphite)), hard carbon, and synthetic resins (eg, poly). Examples thereof include a carbonaceous material obtained by calcining (acrylonitrile (PAN) and a furfuryl alcohol resin).
  • carbon material examples include carbon fibers (for example, polyacrylonitrile-based carbon fibers, cellulose-based carbon fibers, pitch-based carbon fibers, vapor-grown carbon fibers, dehydrated PVA (polyvinyl alcohol) -based carbon fibers, lignin carbon fibers, and glass. Dehydrated carbon fiber and activated carbon fiber) are also mentioned.
  • carbon fibers for example, polyacrylonitrile-based carbon fibers, cellulose-based carbon fibers, pitch-based carbon fibers, vapor-grown carbon fibers, dehydrated PVA (polyvinyl alcohol) -based carbon fibers, lignin carbon fibers, and glass. Dehydrated carbon fiber and activated carbon fiber
  • graphite examples include mesophase microspheres, graphite whiskers, and flat graphite.
  • "flat plate” means a shape having two main planes facing in opposite directions.
  • the metal composite oxide is preferably a metal composite oxide capable of occluding and releasing lithium.
  • the metal composite oxide capable of occluding and releasing lithium preferably contains at least one element selected from the group consisting of titanium and lithium from the viewpoint of high current density charge / discharge characteristics.
  • the metal oxide and the metal composite oxide are particularly preferably amorphous oxides.
  • amorphous means a substance having a broad scattering band having an apex in a region of 20 ° to 40 ° at a 2 ⁇ value in an X-ray diffraction method using CuK ⁇ rays.
  • Amorphous oxides may have crystalline diffraction lines.
  • the strongest intensity of the crystalline diffraction lines observed in the region of 40 ° to 70 ° at the 2 ⁇ value is the broad scattering observed in the region of 20 ° to 40 ° at the 2 ⁇ value.
  • the intensity of the diffraction line at the apex of the band is preferably 100 times or less, and more preferably 5 times or less.
  • Amorphous oxides are particularly preferably free of crystalline diffraction lines.
  • the metal oxide and the metal composite oxide are chalcogenides.
  • Chalcogenides are reaction products of metallic elements and Group 16 elements in the Periodic Table.
  • the amorphous oxides of metalloid elements and chalcogenides are preferable, and the elements of Groups 13 to 15 in the periodic table, Al, Ga, Si, Sn. , Ge, Pb, Sb, and Bi, oxides containing at least one element selected from the group, and chalcogenides are more preferred.
  • amorphous oxides and chalcogenides are Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2. O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 and SnSi S 3 . Further, the above-mentioned compound may be a composite oxide with lithium (for example, Li 2 SnO 2 ).
  • the negative electrode active material also preferably further contains titanium.
  • a negative electrode containing titanium from the viewpoint of excellent rapid charge / discharge characteristics because the volume fluctuation during occlusion and release of lithium ions is small, and the life of the lithium ion secondary battery can be improved by suppressing the deterioration of the electrodes.
  • the active material is preferably Li 4 Ti 5 O 12 (lithium titanate [also referred to as LTO]).
  • the negative electrode active material may be a commercially available product or a synthetic product produced by a known method (for example, a firing method).
  • the negative electrode active material obtained by the firing method may be washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the negative electrode active material is available as, for example, CGB20 (Nippon Graphite Industry Co., Ltd.).
  • the composition of the negative electrode active material is measured using inductively coupled plasma (ICP) emission spectroscopy.
  • ICP inductively coupled plasma
  • the shape of the negative electrode active material is not limited, but it is preferably in the form of particles from the viewpoint of easy handling and easy control of uniformity during mass production.
  • the volume average particle size of the negative electrode active material is preferably 0.1 ⁇ m to 60 ⁇ m, more preferably 0.3 ⁇ m to 50 ⁇ m, and particularly preferably 0.5 ⁇ m to 40 ⁇ m.
  • the volume average particle size of the negative electrode active material is 0.1 ⁇ m or more, an aggregate of the electrode materials can be easily formed, and scattering of the electrode materials during handling can be suppressed.
  • the volume average particle size of the negative electrode active material is 60 ⁇ m or less, the thickness of the electrode molded body can be easily adjusted, and the generation of voids can be suppressed in the molding process.
  • the volume average particle size of the negative electrode active material is measured by a method according to the method for measuring the volume average particle size of the positive electrode active material.
  • Examples of the method for adjusting the particle size of the negative electrode active material include a method using a crusher or a classifier.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling airflow type jet mill, or a sieve is preferably used.
  • wet pulverization using water or an organic solvent (for example, methanol) can also be performed, if necessary.
  • the method for adjusting the particle size to a desired particle size is preferably classification.
  • a sieve or a wind power classifier can be used.
  • the classification may be dry or wet.
  • an amorphous oxide containing Sn, Si, or Ge is used as the negative electrode active material
  • lithium ion or lithium metal is occluded as a preferable negative electrode active material that can be used in combination with the above amorphous oxide.
  • releaseable carbon materials, lithium, lithium alloys, and metals that can be alloyed with lithium are used as the negative electrode active material.
  • the electrode material may contain one kind of single negative electrode active material, or may contain two or more kinds of negative electrode active materials.
  • the content of the negative electrode active material is preferably 10% by mass to 80% by mass, more preferably 20% by mass to 80% by mass, and 30% by mass to 30% by mass, based on the total solid content mass of the electrode material. It is more preferably 80% by mass, and particularly preferably 40% by mass to 75% by mass.
  • the surfaces of the positive electrode active material and the negative electrode active material may be each coated with a surface coating agent.
  • the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Si, or Li.
  • the metal oxide include spinel titanate, tantalum oxide, niobium oxide, and lithium niobate compound. Specific compounds include, for example, Li 4 Ti 5 O 12 , LiTaO 3 , LiNbO 3 , LiAlO 2 , Li 2 ZrO 3 , Li 2 WO 4 , Li 2 TIO 3 , Li 2 B 4 O 7 , Li 3 PO. 4 , Li 2 MoO 4 , and LiBO 2 .
  • the electrode material preferably contains an inorganic solid electrolyte from the viewpoint of improving battery performance (for example, discharge capacity and output characteristics).
  • the "solid electrolyte” means a solid electrolyte capable of transferring ions inside.
  • the inorganic solid electrolyte is not an electrolyte containing an organic substance as a main ionic conductive material, an organic solid electrolyte (for example, a polymer electrolyte typified by polyethylene oxide (PEO)) and a lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) ) Is clearly distinguished from the organic electrolyte salt). Further, since the inorganic solid electrolyte is solid in the steady state, it is not dissociated or liberated into cations or anions.
  • PEO polymer electrolyte typified by polyethylene oxide (PEO)
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • electrolytes and inorganic electrolyte salts that are dissociated or liberated into cations or anions in the polymer (eg, LiPF 6 , LiBF 4 , lithium bis (fluorosulfonyl) imide (LiFSI), and LiCl).
  • LiPF 6 LiPF 6
  • LiBF 4 lithium bis (fluorosulfonyl) imide
  • LiFSI lithium bis (fluorosulfonyl) imide
  • LiCl LiCl
  • the inorganic solid electrolyte is not limited as long as it is an inorganic solid electrolyte having ionic conductivity of metal elements belonging to Group 1 or Group 2 in the periodic table, and generally does not have electron conductivity.
  • the inorganic solid electrolyte preferably has lithium ion ionic conductivity.
  • the inorganic solid electrolyte examples include a sulfide-based inorganic solid electrolyte and an oxide-based inorganic solid electrolyte.
  • the inorganic solid electrolyte is preferably a sulfide-based inorganic solid electrolyte from the viewpoint that a good interface can be formed between the active material and the inorganic solid electrolyte.
  • the sulfide-based inorganic solid electrolyte preferably contains a sulfur atom (S), has ionic conductivity of a metal element belonging to Group 1 or Group 2 in the periodic table, and has electronic insulation.
  • S sulfur atom
  • the sulfide-based inorganic solid electrolyte contains at least Li, S, and P and has lithium ion conductivity.
  • the sulfide-based inorganic solid electrolyte may contain elements other than Li, S, and P, if necessary.
  • Examples of the sulfide-based inorganic solid electrolyte include an inorganic solid electrolyte having a composition represented by the following formula (A).
  • L represents at least one element selected from the group consisting of Li, Na, and K, and is preferably Li.
  • M represents at least one element selected from the group consisting of B, Zn, Sn, Si, Cu, Ga, Sb, Al, and Ge, and represents B, Sn, Si, Al, Alternatively, it is preferably Ge, and more preferably Sn, Al, or Ge.
  • A represents at least one element selected from the group consisting of I, Br, Cl, and F, and is preferably I or Br, and more preferably I.
  • a1 represents 1 to 12, preferably 1 to 9, and more preferably 1.5 to 4.
  • b1 represents 0 to 1, and more preferably 0 to 0.5.
  • c1 represents 1.
  • d1 represents 2 to 12, preferably 3 to 7, and more preferably 3.25 to 4.5.
  • e1 represents 0 to 5, preferably 0 to 3, and more preferably 0 to 1.
  • b1 and e1 are preferably 0, b1 and e1 are 0, and the ratio of a1, c1, and d1 (that is, a1: c1: d1) is 1 to 1. It is more preferable that it is 9: 1: 3 to 7, b1 and e1 are 0, and the ratio of a1, c1, and d1 (that is, a1: c1: d1) is 1.5 to 4: d1. It is particularly preferably 1: 3.25 to 4.5.
  • composition ratio of each element can be controlled, for example, by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte.
  • the sulfide-based inorganic solid electrolyte may be non-crystal (glass), crystallized (glass-ceramic), or only partially crystallized.
  • Examples of the sulfide-based inorganic solid electrolyte as described above include Li-PS-based glass containing Li, P, and S, and Li-PS-based glass ceramics containing Li, P, and S. Can be mentioned.
  • the sulfide-based inorganic solid electrolyte is preferably Li-PS-based glass.
  • the lithium ion conductivity of the sulfide-based inorganic solid electrolyte is preferably 1 ⁇ 10 -4 S / cm or more, and more preferably 1 ⁇ 10 -3 S / cm or more.
  • the upper limit of the lithium ion conductivity of the sulfide-based inorganic solid electrolyte is not limited, but it is practically, for example, 1 ⁇ 10 -1 S / cm or less.
  • Sulfide-based inorganic solid electrolytes include, for example, (1) a reaction between lithium sulfide (Li 2 S) and phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), (2) lithium sulfide and simple phosphorus and at least one reaction of the elemental sulfur, or (3) a phosphorus sulfide and lithium sulfide (e.g., phosphorus pentasulfide (P 2 S 5)) can be prepared by reaction of at least one of the elemental phosphorus and elemental sulfur.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • P 2 S 5 diphosphorus pentasulfide
  • P 2 S 5 diphosphorus pentasulfide
  • a phosphorus sulfide and lithium sulfide e.g., phosphorus pentasulfide (P 2 S 5)
  • the molar ratio of Li 2 S to P 2 S 5 (Li 2 S: P 2 S 5 ) in the production of Li-PS-based glass and Li-PS-based glass ceramics is 65:35 to 85. : 15 is preferable, and 68:32 to 77:23 is more preferable.
  • the lithium ion conductivity can be further increased.
  • the sulfide-based inorganic solid electrolyte for example, a Li 2 S, a compound obtained by using a raw material composition containing a sulfide of group 13 to group 15 element, and the like.
  • a raw material composition for example, Li 2 S-P 2 S 5, Li 2 S-LiI-P 2 S 5, Li 2 S-LiI-Li 2 O-P 2 S 5, Li 2 S-LiBr-P 2 S 5, Li 2 S- Li 2 O-P 2 S 5, Li 2 S-Li 3 PO 4 -P 2 S 5, Li 2 S-P 2 S 5 -P 2 O 5, Li 2 S-P 2 S 5- SiS 2 , Li 2 S-P 2 S 5- SnS, Li 2 S-P 2 S 5- Al 2 S 3 , Li 2 S-GeS 2 , Li 2 S-GeS 2- ZnS, Li 2 S-Ga 2 S 3, Li 2 S-GeS 2 -Ga 2 S 3, Li 2 S-GeS 2 -P
  • the raw material composition in view of the high lithium ion conductivity, Li 2 S-P 2 S 5, Li 2 S-GeS 2 -Ga 2 S 3, Li 2 S-SiS 2 -P 2 S 5 , Li 2 S-SiS 2 -Li 4 SiO 4 , Li 2 S-SiS 2 -Li 3 PO 4 , Li 2 S-LiI-Li 2 O-P 2 S 5 , Li 2 S-Li 2 O-P 2 S 5 , Li 2 S-Li 3 PO 4- P 2 S 5 , Li 2 S-GeS 2- P 2 S 5 , or Li 10 GeP 2 S 12 is preferable, and Li 2 SP 2 S 5 more preferably, Li 10 GeP 2 S 12, or Li 2 S-P 2 S 5 -SiS 2.
  • an amorphization method As a method for producing a sulfide-based inorganic solid electrolyte using the above-mentioned raw material composition, for example, an amorphization method can be mentioned.
  • the amorphization method include a mechanical milling method and a melt quenching method.
  • the mechanical milling method is preferable from the viewpoint that the treatment at room temperature can be performed and the manufacturing process can be simplified.
  • the oxide-based inorganic solid electrolyte preferably contains an oxygen atom (O), has ionic conductivity of a metal element belonging to Group 1 or Group 2 in the periodic table, and has electronic insulation.
  • O oxygen atom
  • the ionic conductivity of the oxide-based inorganic solid electrolyte is preferably 1 ⁇ 10 -6 S / cm or more, more preferably 5 ⁇ 10 -6 S / cm or more, and 1 ⁇ 10 -5 S / cm. It is particularly preferable that it is cm or more.
  • the upper limit of the ionic conductivity of the oxide-based inorganic solid electrolyte is not limited, but it is practically, for example, 1 ⁇ 10 -1 S / cm or less.
  • the oxide-based inorganic solid electrolyte examples include the following compounds. However, the oxide-based inorganic solid electrolyte is not limited to the following compounds.
  • Li xa La ya TiO 3 hereinafter referred to as "LLT”. Xa satisfies 0.3 ⁇ xa ⁇ 0.7, and ya satisfies 0.3 ⁇ ya ⁇ 0.7
  • Xb satisfies 5 ⁇ xb ⁇ 10, yb satisfies 1 ⁇ yb ⁇ 4, zb satisfies 1 ⁇ zb ⁇ 4, mb satisfies 0 ⁇ mb ⁇ 2, and nb satisfies 5 ⁇ nb. ⁇ 20 is satisfied.) (3) Li xc Byc M cc zc Onc (M cc is at least one element selected from the group consisting of C, S, Al, Si, Ga, Ge, In, and Sn. Xc is 0.
  • nc satisfies 0 ⁇ nc ⁇ 6).
  • phosphorus compounds containing Li, P, and O are also preferable.
  • the phosphorus compound containing Li, P, and O include lithium phosphate (Li 3 PO 4 ), LiPON in which a part of oxygen of lithium phosphate is replaced with nitrogen, and LiPOD1 (D1 is Ti, V, It is at least one element selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, and Au).
  • LiAlON (Al is at least one element selected from the group consisting of Si, B, Ge, Al, C, and Ga) is also preferable.
  • the oxide-based inorganic solid electrolytes include LLT, Li xb Layb Zr zb M bb mb Onb (M bb , xb, yb, zb, mb, and nb are as described above), LLZ.
  • Li 3 BO 3 Li 3 BO 3- Li 2 SO 4 , or Li xd (Al, Ga) yd (Ti, Ge) zd Si ad P md Ond (xd, yd, zd, ad, md, and nd) Is preferably as described above), and is preferably LLT, LLZ, LAGP (Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 ), or LATP ([Li 1.4 Ti 2). Si 0.4 P 2.6 O 12 ] -AlPO 4 ) is more preferable, and LLZ is particularly preferable.
  • the inorganic solid electrolyte is preferably in the form of particles.
  • the volume average particle size of the inorganic solid electrolyte is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • the upper limit of the volume average particle size of the inorganic solid electrolyte is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the volume average particle size of the inorganic solid electrolyte is measured by the following method.
  • a dispersion containing 1% by mass of the inorganic solid electrolyte is prepared by mixing the inorganic solid electrolyte and water (heptane when measuring the volume average particle size of a substance unstable to water).
  • a dispersion liquid irradiated with 1 kHz ultrasonic waves for 10 minutes is used as a measurement sample.
  • a laser diffraction / scattering particle size distribution measuring device for example, LA-920 manufactured by HORIBA, Ltd.
  • data is captured 50 times under the condition of a temperature of 25 ° C. to obtain a volume average particle size.
  • a quartz cell is used as the measurement cell.
  • the above measurement is performed using five samples, and the average of the measured values is defined as the volume average particle size of the inorganic solid electrolyte.
  • JIS Z 8828: 2013 refers the volume average particle size of the inorganic solid electrolyte.
  • the electrode material may contain one kind of independent inorganic solid electrolyte, or may contain two or more kinds of inorganic solid electrolytes.
  • the content of the inorganic solid electrolyte is based on the total solid content mass of the electrode material from the viewpoint of reducing the interfacial resistance and maintaining the battery characteristics (for example, improving the cycle characteristics). It is preferably 1% by mass or more, more preferably 5% by mass or more, and particularly preferably 10% by mass or more.
  • the upper limit of the content of the inorganic solid electrolyte is preferably 90% by mass or less, more preferably 70% by mass or less, and 50% by mass, based on the total solid content mass of the electrode material. The following is particularly preferable.
  • the electrode material preferably contains a binder from the viewpoint of improving the adhesion between the electrode materials.
  • the binder is not limited as long as it is an organic polymer, and a known binder used as a binder in the positive electrode or the negative electrode of the battery material can be used.
  • the binder include fluororesins, hydrocarbon-based thermoplastic resins, acrylic resins, and urethane resins.
  • fluororesin examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP).
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • PVdF-HFP a copolymer of polyvinylidene fluoride and hexafluoropropylene
  • hydrocarbon-based thermoplastic resin examples include polyethylene, polypropylene, styrene-butadiene rubber (SBR), hydrogenated styrene-butadiene rubber (HSBR), butylene rubber, acrylonitrile-butadiene rubber, polybutadiene, and polyisoprene.
  • acrylic resin examples include methyl poly (meth) acrylic acid, ethyl poly (meth) acrylic acid, isopropyl poly (meth) acrylic acid, isobutyl poly (meth) acrylic acid, butyl poly (meth) acrylic acid, and poly (meth).
  • binder examples include a copolymer of a vinyl-based monomer.
  • vinyl-based monomer copolymer examples include a (meth) methyl acrylate-styrene copolymer, a (meth) methyl acrylate-acrylonitrile copolymer, and a (meth) butyl acrylate-acrylonitrile-styrene copolymer. Can be mentioned.
  • the weight average molecular weight of the binder is preferably 10,000 or more, more preferably 20,000 or more, and particularly preferably 50,000 or more.
  • the upper limit of the weight average molecular weight of the binder is preferably 1,000,000 or less, more preferably 200,000 or less, and particularly preferably 100,000 or less.
  • the water concentration in the binder is preferably 100 ppm or less on a mass basis.
  • the metal concentration in the binder is preferably 100 ppm or less on a mass basis.
  • the electrode material may contain one kind of binder alone, or may contain two or more kinds of binders.
  • the content of the binder is preferably 0.01% by mass or more with respect to the total solid content mass of the electrode material from the viewpoint of reducing interfacial resistance and its maintainability. , 0.1% by mass or more is more preferable, and 1% by mass or more is particularly preferable. From the viewpoint of battery performance, the upper limit of the binder content is preferably 10% by mass or less, more preferably 5% by mass or less, and 3% by mass or less, based on the total solid content of the electrode material. Is particularly preferable.
  • the ratio of the total mass of the active material and the inorganic solid electrolyte to the mass of the binder is preferably 1,000 to 1, more preferably 500 to 2, and particularly preferably 100 to 10.
  • the electrode material preferably contains a conductive additive from the viewpoint of improving the electron conductivity of the active material.
  • the conductive auxiliary agent is not limited, and a known conductive auxiliary agent can be used.
  • the electrode material when the electrode material contains a positive electrode active material, the electrode material preferably contains a conductive auxiliary agent.
  • Conductive auxiliaries include, for example, graphite (eg, natural graphite and artificial graphite), carbon black (eg, acetylene black, ketjen black, and furnace black), amorphous carbon (eg, needle coke), carbon fiber (eg, needle coke).
  • graphite eg, natural graphite and artificial graphite
  • carbon black eg, acetylene black, ketjen black, and furnace black
  • amorphous carbon eg, needle coke
  • carbon fiber eg, needle coke
  • vapor-grown carbon fibers and carbon nanotubes eg graphene and fullerene
  • metal powders eg copper powder and nickel powder
  • metal fibers eg copper fibers and nickel.
  • Fibers and conductive polymers (eg, polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives).
  • the conductive auxiliary agent is preferably at least one kind of conductive auxiliary agent selected from the group consisting of carbon fibers and metal fibers.
  • Examples of the shape of the conductive auxiliary agent include fibrous, needle-shaped, tubular, dumbbell-shaped, disk-shaped, and elliptical spherical shape.
  • the shape of the conductive additive is preferably fibrous from the viewpoint of improving the electronic conductivity of the active material.
  • the aspect ratio of the conductive auxiliary agent is preferably 1.5 or more, and more preferably 5 or more.
  • the electron conductivity of the electrode active material can be improved, so that the output characteristics of the battery can be improved.
  • the aspect ratio of the conductive auxiliary agent is preferably 10,000 or less, more preferably 5,000 or less, and particularly preferably 1,000 or less. Further, the aspect ratio of the conductive auxiliary agent is preferably 500 or less, more preferably 300 or less, and particularly preferably 100 or less. When the aspect ratio of the conductive auxiliary agent is 10,000 or less, the dispersibility of the conductive auxiliary agent can be improved, and a short circuit due to the conductive auxiliary agent penetrating through the electrode molded body can be efficiently prevented.
  • the aspect ratio of the conductive auxiliary agent is measured by the following method.
  • a scanning electron microscope (SEM) for example, XL30 manufactured by PHILIPS
  • SEM scanning electron microscope
  • BMP bitmap
  • Images of 50 conductive aids are captured using image analysis software (for example, "A image-kun", which is an integrated application of IP-1000PC manufactured by Asahi Engineering Co., Ltd.).
  • image analysis software for example, "A image-kun", which is an integrated application of IP-1000PC manufactured by Asahi Engineering Co., Ltd.
  • the “maximum value of the length of the conductive auxiliary agent” is the length of the line segment having the maximum length (that is, the major axis length) among the line segments from a certain point to another point on the outer circumference of the conductive auxiliary agent. Means.
  • the “minimum value of the length of the conductive auxiliary agent” is a line segment from a certain point to another point on the outer circumference of the conductive auxiliary agent, and is the length of the line segments orthogonal to the line segment showing the maximum value. Means the length of the line segment that minimizes (that is, the minor axis length).
  • the average value (A) of 40 points excluding the upper 5 points and the lower 5 points is obtained.
  • the average value (B) of 40 points excluding the upper 5 points and the lower 5 points among the minimum values (minor axis lengths) of the lengths of each of the 50 conductive aids is obtained.
  • the aspect ratio of the conductive additive is calculated by dividing the average value (A) by the average value (B).
  • the minor axis length of the conductive auxiliary agent is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the minor axis length of the conductive auxiliary agent is preferably 1 nm or more, more preferably 3 nm or more, and particularly preferably 5 nm or more.
  • the minor axis length of the conductive auxiliary agent is the minimum value of the length of each of the 50 conductive auxiliary agents calculated in the method for measuring the aspect ratio of the conductive auxiliary agent.
  • the average value of the minor axis length of the conductive auxiliary agent is preferably 8 ⁇ m or less, more preferably 5 ⁇ m or less, and particularly preferably 3 ⁇ m or less.
  • the average value of the minor axis length of the conductive auxiliary agent is preferably 1 nm or more, more preferably 2 nm or more, and particularly preferably 3 nm or more.
  • the average value of the minor axis length of the conductive auxiliary agent is the top 10% (minor axis length) of the minimum values (minor axis length) of the lengths of each of the 50 conductive auxiliary agents calculated in the method for measuring the aspect ratio of the conductive auxiliary agent. That is, it is the average value of the minor axis lengths of each conductive auxiliary agent excluding the upper 5 points) and the lower 10% (that is, the lower 5 points).
  • the electrode material may contain one kind of conductive auxiliary agent alone, or may contain two or more kinds of conductive auxiliary agents.
  • the content of the conductive auxiliary agent is more than 0% by mass and 10% by mass or less with respect to the total solid content mass of the electrode material from the viewpoint of improving the electron conductivity of the active material. It is preferably 0.5% by mass to 8% by mass, and particularly preferably 1% by mass to 7% by mass.
  • the electrode material preferably contains a lithium salt from the viewpoint of improving battery performance.
  • the lithium salt is not limited, and known lithium salts can be used.
  • the lithium salt As the lithium salt, the lithium salt described in paragraphs 882 to 985 of JP2015-088486 is preferable.
  • the electrode material may contain one type of lithium salt alone, or may contain two or more types of lithium salts.
  • the content of the lithium salt is preferably 0.1% by mass to 10% by mass with respect to the total solid content mass of the electrode material.
  • the electrode material preferably contains a dispersant.
  • a dispersant When the electrode material contains a dispersant, aggregation can be suppressed when the concentration of either the electrode active material or the inorganic solid electrolyte is high.
  • the dispersant a known dispersant can be used without limitation.
  • the dispersant is composed of a small molecule or oligomer having a molecular weight of 200 or more and less than 3000, and has at least one functional group selected from the following functional group group (I), an alkyl group having 8 or more carbon atoms, or an alkyl group having 10 or more carbon atoms.
  • a compound having an aryl group of the above in the same molecule is preferable.
  • the functional group (I) includes an acidic group, a group having a basic nitrogen atom, a (meth) acryloyl group, a (meth) acrylamide group, an alkoxysilyl group, an epoxy group, an oxetanyl group, an isocyanate group, a cyano group, and a sulfanyl group. And at least one functional group selected from the group consisting of a hydroxy group, preferably a group consisting of an acidic group, a group having a basic nitrogen atom, an alkoxysilyl group, a cyano group, a sulfanyl group, and a hydroxy group, preferably carboxy.
  • a group consisting of a group, a sulfonic acid group, a cyano group, an amino group, and a hydroxy group is more preferable.
  • the electrode material may contain one kind of dispersant alone, or may contain two or more kinds of dispersants.
  • the content of the dispersant is 0.2% by mass to 10% by mass with respect to the total solid content mass of the electrode material from the viewpoint of achieving both anti-aggregation and battery performance. It is preferable, and more preferably 0.5% by mass to 5% by mass.
  • the electrode material may contain a liquid component.
  • the liquid component include an electrolytic solution.
  • the electrolytic solution is not limited, and a known electrolytic solution can be used.
  • the electrolytic solution include an electrolytic solution containing an electrolyte and a solvent.
  • Specific examples of the electrolytic solution include an electrolytic solution containing a lithium salt compound as an electrolyte and a carbonate compound as a solvent.
  • the lithium salt compound include lithium hexafluorophosphate.
  • the electrolytic solution may contain one kind of lithium salt compound alone, or may contain two or more kinds of lithium salt compounds.
  • the carbonate compound examples include ethyl methyl carbonate, ethylene carbonate, and propylene carbonate.
  • the electrolytic solution may contain one kind of carbonate compound alone, or may contain two or more kinds of carbonate compounds.
  • electrolyte contained in the electrolytic solution examples include the materials described in the above section "Inorganic solid electrolyte”.
  • an ionic liquid may be used as a component of the electrolytic solution.
  • the ionic liquid may be used as an electrolyte or a solvent.
  • the content of the electrolytic solution in the electrode material is preferably 30% by mass or less, more preferably 20% by mass or less, and particularly preferably 15% by mass or less, based on the total mass of the electrode material. ..
  • the content of the electrolytic solution in the electrode material is 30% by mass or less, it is possible to prevent the electrolytic solution from seeping out when the electrode material is molded.
  • the lower limit of the content of the electrolytic solution in the electrode material is preferably 0.01% by mass or more, preferably 0.1% by mass or more, based on the total mass of the electrode material. Is more preferable.
  • the electrode material may contain a solvent other than the solvent contained as a component of the electrolytic solution (hereinafter, also simply referred to as "solvent") as a liquid component.
  • solvent include alcohol compound solvents, ether compound solvents, amide compound solvents, amino compound solvents, ketone compound solvents, aromatic compound solvents, aliphatic compound solvents, and nitrile compound solvents.
  • Examples of the alcohol compound solvent include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, and the like. Examples thereof include 2-methyl-2,4-pentanediol, 1,3-butanediol, and 1,4-butanediol.
  • ether compound solvent examples include alkylene glycol alkyl ether (for example, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, and propylene glycol monomethyl.
  • alkylene glycol alkyl ether for example, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, and propylene glycol monomethyl.
  • Ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, and diethylene glycol monobutyl ether dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, t
  • amide compound solvent examples include N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, and N.
  • amino compound solvent examples include triethylamine, diisopropylethylamine, and tributylamine.
  • ketone compound solvent examples include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • aromatic compound solvent examples include benzene, toluene, and xylene.
  • Examples of the aliphatic compound solvent include hexane, heptane, octane, and decane.
  • nitrile compound solvent examples include acetonitrile, propyronitrile, and isobutyronitrile.
  • the solvent is preferably at least one solvent selected from the group consisting of a nitrile compound solvent, an aromatic compound solvent, and an aliphatic compound solvent, and is selected from the group consisting of isobutyronitrile, toluene, and heptane. It is more preferable that it is at least one solvent, and it is particularly preferable that it is at least one solvent selected from the group consisting of toluene and heptane.
  • the boiling point of the solvent is preferably 50 ° C. or higher, more preferably 70 ° C. or higher at normal pressure (that is, 1 atm).
  • the upper limit of the boiling point of the solvent is preferably 250 ° C. or lower, more preferably 220 ° C. or lower at normal pressure (that is, 1 atm).
  • the electrode material may contain one kind of solvent alone, or may contain two or more kinds of solvents.
  • the content of the solvent (including the solvent contained as a component of the electrolytic solution; hereinafter the same in this paragraph) in the electrode material is preferably 30% by mass or less, preferably 20% by mass, based on the total mass of the electrode material. It is more preferably% or less, and particularly preferably 15% by mass or less.
  • the lower limit of the solvent content in the electrode material is not limited and may be 0% by mass or more, or may exceed 0% by mass.
  • the content of the liquid component in the electrode material is preferably 30% by mass or less, more preferably 20% by mass or less, and particularly preferably 15% by mass or less, based on the total mass of the electrode material. ..
  • the content of the liquid component in the electrode material is 30% by mass or less, it is possible to suppress the exudation of the liquid component when the electrode material is molded. Further, when the liquid component contains a solvent, deterioration of battery performance can be suppressed.
  • the lower limit of the content of the liquid component in the electrode material is not limited and may be 0% by mass or more, or may exceed 0% by mass.
  • the electrode material for example, the following materials can also be used.
  • the electrode material can be prepared, for example, by mixing the electrode active material and, if necessary, the above-mentioned components other than the electrode active material.
  • the mixing method include a method using a ball mill, a bead mill, a planetary mixer, a blade mixer, a roll mill, a kneader, or a disc mill.
  • the method for producing an electrode molded body according to the present disclosure preferably includes a step of molding the electrode material (that is, an electrode material molding step) after the electrode material ejection step.
  • the method for producing an electrode molded product according to the present disclosure includes a molding step, the density of the electrode material can be increased and the density can be made uniform.
  • the electrode material 20 supplied on the support 10 is pressed by the pressure roll 50 to form the electrode material.
  • the means for pressurizing the electrode material is not limited to roll members such as pressurizing rolls, and examples thereof include presses.
  • the electrode material molding step it is preferable to mold the electrode material by directly or indirectly contacting the electrode material with the pressurizing means.
  • indirect contact means that the electrode material and the molding member are brought into contact with each other via another member (for example, the second support described above described later) arranged between the electrode material and the molding member. Means to make contact with.
  • the pressure is preferably 1 MPa to 1 GPa, more preferably 5 MPa to 500 MPa, and particularly preferably 10 MPa to 300 MPa.
  • the electrode material may be pressurized stepwise by using a plurality of pressurizing means (for example, a pressurizing roll).
  • a plurality of pressurizing means for example, a pressurizing roll.
  • the density distribution of the electrode material can be made more uniform.
  • the electrode material can be pressurized stepwise by using a plurality of pressure roll pairs in which the gap between the rolls is adjusted to be narrow stepwise.
  • the pressurizing means and the electrode material are relatively moved.
  • "moving the pressurizing means and the electrode material relative to each other” means moving the pressurizing means in one direction with respect to the electrode material, and moving the electrode material in one direction with respect to the pressurizing means. This includes moving the pressurizing means and the electrode material in one direction, but it is preferable to move the electrode material in one direction with respect to the pressurizing means.
  • the means for moving the electrode material (specifically, the first support to which the electrode material is supplied) is not limited, and known transport means can be used, for example, a belt conveyor, a linear motion guide, and a cross roller. There is a table.
  • the electrode material heated at 30 ° C. to 250 ° C. may be pressurized from the viewpoint of improving moldability.
  • the method for producing an electrode molded product according to the present disclosure may include the following other steps. For example, it includes a step of arranging the third support on the electrode material supplied on the first support (also referred to as a third support arranging step) after the electrode material ejection step and before the electrode material molding step. May be good. In addition, a step (also referred to as a transfer step) of transferring the electrode material onto the third support may be included before or after the electrode material molding step.
  • the third support is arranged on the electrode material supplied on the first support after the electrode material ejection step and before the electrode material molding step.
  • the third support arranging step is preferably adopted in the above-described electrode material discharging step when the first support is a mold release material and the second support is not used.
  • a current collector is preferable as the third support.
  • the current collector used as the third support is the same as the current collector in the second support, and the preferred embodiment is also the same.
  • the transfer step After the laminate in which the electrode material is sandwiched between the first support and the third support is formed by the third support arrangement step, the laminate is turned upside down to obtain the first structure. 3 The electrode material is transferred onto the support. By performing the transfer step, the electrode material is transferred onto the third support which is a current collector, and a molded body for an electrode with a current collector is obtained.
  • the electrode molded product obtained by the method for producing an electrode molded product according to the present disclosure is excellent in in-plane uniformity of density, and therefore can be used as various electrodes.
  • the electrode molded product is preferably an electrode molded product of an all-solid-state secondary battery.
  • the shape of the electrode molded body is not limited and may be appropriately determined according to the application.
  • the shape of the electrode molded body is preferably a flat plate.
  • the average thickness of the electrode molded product is preferably 0.01 m to 2 mm, preferably 0.05 mm to 1.5 mm, from the viewpoint of improving battery performance (for example, discharge capacity and output characteristics). It is more preferably 0.1 mm to 1 mm, and particularly preferably 0.1 mm to 1 mm.
  • the average thickness of the electrode molded body is measured in the same manner as the average thickness of the first support.
  • sulfide-based inorganic solid electrolyte Li-PS-based glass
  • the sulfide-based inorganic solid electrolyte is described in T.I. Ohtomo, A. Hayashi, M. et al. Tassumisago, Y. et al. Tsuchida, S.A. Hama, K.K. Kawamoto, Journal of Power Sources, 233, (2013), pp231-235, and A.M. Hayashi, S.A. Hama, H. Morimoto, M.D. Tassumisago, T. et al. Minami, Chem. Lett. , (2001), pp872-873.
  • lithium sulfide Li 2 S, Aldrich Corp., purity> 99.98%) 2.42 g, diphosphorus pentasulfide (P 2 S 5. 3.9 g (purity> 99%) manufactured by Aldrich was weighed, and then lithium sulfide and diphosphorus pentasulfide were mixed for 5 minutes using a Menou dairy pot.
  • the molar ratio of Li 2 S to P 2 S 5 Li 2 S: P 2 S 5 was 75:25.
  • 66 zirconia beads with a diameter of 5 mm were placed in a 45 mL zirconia container (Fritsch), and then the entire mixture of lithium sulfide and diphosphorus pentasulfide was placed, and then the container was completely filled in an argon atmosphere. Sealed in.
  • a container is attached to a planetary ball mill P-7 (trade name) manufactured by Fritsch, and mechanical milling is performed at a temperature of 25 ° C. and a rotation speed of 510 rpm (revolutions per minute) for 20 hours to produce a yellow powder sulfide-based solid electrolyte (Li). -PS-based glass) 6.2 g was obtained. The above steps were repeated 10 times to obtain 62 g of a sulfide-based solid electrolyte.
  • Example 1 [Preparation of electrode material for positive electrode (P-1)] 180 zirconia beads having a diameter of 5 mm were put into a 45 mL container made of zirconia (manufactured by Fritsch), and then 3.0 g of the prepared Li-PS-based glass was put into the container. A container was attached to a planetary ball mill P-7 manufactured by Fritsch, and the mixture was mixed at a temperature of 25 ° C. and a rotation speed of 300 rpm for 2 hours. Next, 6.8 g of LCO (LiCoO 2 , manufactured by Nippon Kagaku Kogyo Co., Ltd.) as an active material and Li-100 (0.2 g) manufactured by Denka Co., Ltd.
  • LCO LiCoO 2 , manufactured by Nippon Kagaku Kogyo Co., Ltd.
  • a conductive auxiliary agent as a conductive auxiliary agent were put into a container, and then a planetary ball mill. A container was attached to P-7, and the mixture was mixed at a temperature of 25 ° C. and a rotation speed of 100 rpm for 10 minutes to obtain a particulate electrode material (P-1) for a positive electrode. The above steps were repeated 50 times to obtain a required amount of electrode material for the positive electrode.
  • a surface layer was formed on the inner peripheral surface of the hopper (manufactured using stainless steel) and the inner peripheral surface of the discharge port by the following method.
  • an undercoat layer is formed on the inner peripheral surface of the hopper and the inner peripheral surface of the discharge port by the method described above, and then fluororesin coating is performed using NF-004 (main material: FEP) manufactured by Nippon Fluorine Industry Co., Ltd. Was carried out to form a surface layer.
  • NF-004 main material: FEP
  • For forming surface layer i.e., contact surface F B), was measured contact angle with water in the method described above, a 75 °, was measured arithmetic mean roughness Ra in the method described above, It was 5 ⁇ m.
  • a surface layer was formed on the outer peripheral surface of a stainless steel roll member (manufactured by Misumi Co., Ltd.) having an outer diameter of 10 mm by the following method.
  • a fluororesin coating is performed using NF-004 (main material: FEP) manufactured by Nippon Fluorine Industry Co., Ltd. to form a surface layer.
  • NF-004 main material: FEP
  • For forming surface layer i.e., contact surface F B), was measured contact angle with water in the method described above, a 75 °, was measured arithmetic mean roughness Ra in the method described above, It was 5 ⁇ m.
  • a positive electrode sheet was produced as follows.
  • the electrode material (P-1) for the positive electrode was put into four screw feeders (manufactured by AS ONE Corporation, powder metering feeder (screw type), PSF-100SA) arranged in parallel.
  • the above hopper having four entrances is provided, and through this hopper, a support (removing paper:) that moves the positive electrode material (P-1) in the direction of arrow A.
  • the electrode material is supplied on the support in a region of 80 mm in the width direction.
  • the electrode material supplied on the support was leveled using the above-mentioned regulation roll.
  • a powder sheet (positive electrode sheet) having a length in the longitudinal direction of 10 cm or more and a mass distribution amount (target value) of the electrode material of 100 mg / cm 2 was obtained.
  • the contact angle with water and the arithmetic mean roughness Ra were measured by the methods described above. The results are shown in Table 1.
  • Example 5 A powder sheet (positive electrode sheet) was produced in the same manner as in Example 1 except that the arithmetic average roughness Ra of the surface layers of the hopper and the regulation roll was set to 1 ⁇ m.
  • the arithmetic mean roughness Ra of the surface layer is determined by sparing the inner peripheral surface of the hopper and the outer peripheral surface of the regulation roll in a state where the surface layer is not formed in advance (the metal surface is crushed by a roller to crush the metal surface).
  • the adjustment was made by forming a surface layer in the same manner as in Example 1 except that processing with a mirror finishing tool for smooth finishing was performed.
  • a surface layer was formed on one side of a current collector (aluminum foil having a thickness of 20 ⁇ m) having a length of 200 mm by the following method.
  • a current collector aluminum foil having a thickness of 20 ⁇ m
  • the outer peripheral surface of the current collector was coated with a silicone resin to form a surface layer.
  • contact surface F B was measured contact angle with water in the method described above, a 85 °, was measured arithmetic mean roughness Ra in the method described above, It was 3 ⁇ m.
  • a positive electrode sheet was produced as follows.
  • the electrode material (P-1) for the positive electrode was put into four screw feeders (manufactured by AS ONE Corporation, powder metering feeder (screw type), PSF-100SA) arranged in parallel.
  • the above hopper having four entrances is provided, and through this hopper, a support (removing paper:) that moves the positive electrode material (P-1) in the direction of arrow A.
  • the above-mentioned long support that moves while moving was used. Further, in the long support, the surface on which the surface layer was formed was used as the side in contact with the positive electrode material (P-1). At this time, the electrode material is supplied on the support in a region of 80 mm in the width direction. Next, the electrode material supplied on the support was leveled using a regulation roll (a roll member having an outer diameter of 10 mm and having no surface layer and made of stainless steel (manufactured by MISUMI Co., Ltd.)). .. By the above procedure, a powder sheet (positive electrode sheet) having a length in the longitudinal direction of 10 cm or more and a mass distribution amount (target value) of the electrode material of 100 mg / cm 2 was obtained.
  • a regulation roll a roll member having an outer diameter of 10 mm and having no surface layer and made
  • Example 7 A powder sheet was prepared by the same procedure as in Example 1 except that the positive electrode material (P-2) prepared by kneading the positive electrode material (P-1) and the electrolytic solution was used. did. The content of the electrolytic solution was 30% by mass with respect to the total mass of the positive electrode material (P-2).
  • EC means ethylene carbonate.
  • EMC means ethyl methyl carbonate.
  • Example 8 A powder sheet was prepared by the same procedure as in Example 6 except that the positive electrode material (P-2) was used.
  • a powder sheet (positive electrode sheet) was produced in the same manner as in Example 1 except that the hopper and the regulation roll in which the surface layer was not formed were used.
  • a powder sheet (positive electrode sheet) was produced in the same manner as in Example 7 except that the hopper and the regulation roll in which the surface layer was not formed were used.
  • Support release paper
  • a support obtained by forming a surface layer by a silicone resin coating to a commercially available aluminum foil, the contact angle with water of the surface F A: 80 °, average thickness: 20 [mu] m, width 200 mm
  • a powder sheet positive electrode sheet was produced in the same manner as in Example 1 except that the length was changed to 200 mm) and the positive electrode material (P-1) was supplied on the surface layer.
  • Test pieces having a size of 1 cm 2 were cut out from 80 places ([8 places in the width direction] ⁇ [10 places in the length direction]) of the powder sheet.
  • a frame-shaped Thomson blade whose inner frame area per frame was adjusted to 1 cm 2 was used for cutting the test piece.
  • the mass of each test piece cut out from a total of 80 places on the powder sheet was measured.
  • the standard deviation ( ⁇ ) of the mass of the entire powder sheet was determined, and the uniformity of the mass distribution was evaluated according to the following criteria. Of the following criteria, A, B, C, and D were accepted. The results are shown in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

電極活物質を含む電極材料を吐出する吐出口と第1支持体とを上記第1支持体の面方向に相対移動させつつ、上記吐出口から上記第1支持体の表面Fに向かって上記電極材料を吐出する工程を含み、上記工程が、上記電極材料に接触する接触面Fを有する接触部材を用い、上記接触部材の上記接触面Fと上記電極材料との壁面摩擦角をθ1とし、上記第1支持体の上記表面Fと上記電極材料との壁面摩擦角をθ2としたとき、(1)1°≦θ1<15°及び(2)15°≦θ2の関係を満たす、電極用成形体の製造方法。

Description

電極用成形体の製造方法
 本開示は、電極用成形体の製造方法に関する。
 リチウムイオン電池等の電池に含まれる電解質としては、通常、電解液が用いられる。近年においては、安全性(例えば、液漏れの防止)の観点から、電解液を固体電解質に置き換えた全固体電池の開発が検討されている。
 上記のような電池に適用される電極の製造においては、通常、活物質等の電極材料、及び溶剤を含む塗布液が用いられる(例えば、国際公開第2017/104405号参照)。
 リチウムイオン電池の製造方法において、ホッパーに収容された粉体を粉体供給筒の先端に形成された粉体供給口から供給対象物に対して供給する粉体供給方法であって、上記粉体供給筒内の粉体を、進行波を用いて上記粉体供給口方向に搬送するとともに押圧して粉体を所定密度に充填する押圧工程と、上記粉体供給口の近傍において所定密度に充填された粉体を、上記粉体供給口から上記供給対象物に対して供給する供給工程とを含むリチウムイオン電池用粉体供給方法が用いられることが知られている(例えば、特開2015-028910号公報参照)。
 また、リチウムイオン二次電池に好適に用いられる電気化学素子電極用シートの製造方法として、電極材料を定量フィーダーによって、略水平に配置された一対のプレス用ロール又はベルトに供給し、このプレス用ロール又はベルトで電極材料をシート状成形体に成形する工程を含む、電気化学素子電極用シートの製造方法が知られている(例えば、特開2007-005747号公報参照)。
 塗布液を用いて電極を形成する方法(例えば、国際公開第2017/104405号に記載の方法)においては、通常、塗布液を乾燥することが必要である。乾燥が十分でない場合、電極に溶剤が残留することによって電池性能(例えば、放電容量、及び出力特性)が低下する可能性がある。特に、全固体電池においては、電極に残留する溶剤は少ないことが好ましい。
 そこで、例えば、特開2015-028910号公報及び特開2007-005747号公報に記載の、粉体を用いて電極を製造する方法が提案されている。
 特開2015-028910号公報及び特開2007-005747号公報においては、電極を製造する際に、粉体と接触する部材(ホッパー、プレス用ロール又はベルト等)が用いられるが、これらの部材に粉体が付着してしまうと、粉体の搬送性、成形性等が局所的に低下し、質量分布の面内バラツキが大きい電極が製造されてしまうことがある。
 そこで、本開示は、上記の事情に鑑みてなされたものである。
 本開示の一実施形態は、質量分布の面内均一性に優れる電極用成形体を製造しうる電極用成形体の製造方法を提供することを目的とする。
 本開示は、以下の実施形態を含む。
<1> 電極活物質を含む電極材料を吐出する吐出口と第1支持体とを上記第1支持体の面方向に相対移動させつつ、上記吐出口から上記第1支持体の表面Fに向かって上記電極材料を吐出する工程を含み、
 上記工程が、上記電極材料に接触する接触面Fを有する接触部材を用い、
 上記接触部材の上記接触面Fと上記電極材料との壁面摩擦角をθ1とし、上記第1支持体の上記表面Fと上記電極材料との壁面摩擦角をθ2としたとき、以下の(1)及び(2)の関係を満たす、電極用成形体の製造方法。
(1)1°≦θ1<15°
(2)15°≦θ2
<2> 上記壁面摩擦角θ1及び上記壁面摩擦角θ2が下記(3)の関係を満たす、<1>に記載の電極用成形体の製造方法。
(3)1°≦θ2-θ1≦60°
<3> 上記壁面摩擦角θ2が下記(2’)の関係を満たす、<1>又は<2>に記載の電極用成形体の製造方法。
(2’)15°≦θ2≦60°
<4> 上記接触部材が接触しながら排出口を有し且つ上記電極材料を貯留可能な貯留部材であり、上記排出口の内周面が上記接触部材の上記接触面Fである、<1>~<3>のいずれか1つに記載の電極用成形体の製造方法。
<5> 上記接触部材がロール部材であり、上記ロール部材の外周面が上記接触部材の上記接触面Fである、<1>~<3>のいずれか1つに記載の電極用成形体の製造方法。
<6> 上記接触部材が、上記吐出口の一部を構成し、且つ、吐出される上記電極材料に接触しながら移動する長尺の第2支持体であり、上記第2支持体の上記電極材料との接触面が上記接触部材の上記接触面Fである、<1>~<3>のいずれか1つに記載の電極用成形体の製造方法。
<7> 上記接触部材の上記接触面Fは、水との接触角が75°以上である、<1>~<6>のいずれか1つに記載の電極用成形体の製造方法。
<8> 上記第1支持体の上記表面Fは、水との接触角が30°以上75°未満である、<1>~<7>のいずれか1つに記載の電極用成形体の製造方法。
<9> 上記接触部材の上記接触面Fが、フッ素原子及びケイ素原子の少なくとも一方を含む表面層を有する、<1>~<8>のいずれか1つに記載の電極用成形体の製造方法。
<10> 上記表面層が更に帯電防止剤を含む、<9>に記載の電極用成形体の製造方法。
<11> 上記接触部材の上記接触面Fは、算術平均粗さRaが10μm以下である<1>~<10>のいずれか1つに記載の電極用成形体の製造方法。
<12> 上記第1支持体が離型材である、<1>~<11>のいずれか1つに記載の電極用成形体の製造方法。
 本開示の一実施形態によれば、質量分布の面内均一性に優れる電極用成形体を製造しうる電極用成形体の製造方法を提供することができる。
図1は、本開示に係る電極用成形体の製造方法における電極材料吐出工程の一実施形態を説明する概念図である。 図2は、本開示に係る電極用成形体の製造方法における電極材料吐出工程の別の一実施形態を説明する概念図である。
 以下、本開示の実施形態について図面を参照して説明する。本開示は、以下の実施形態に何ら制限されず、本開示の目的の範囲内において、適宜変更を加えて実施することができる。各図面において同一の符号を用いて示す構成要素は、同一の構成要素であることを意味する。各図面において重複する構成要素、及び符号については、説明を省略することがある。図面における寸法の比率は、必ずしも実際の寸法の比率を表すものではない。
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、「工程」との用語には、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において、「(メタ)アクリル」とは、アクリル及びメタクリルの双方、又は、いずれか一方を意味する。
 本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
 本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、「固形分」とは、1gの試料に対して、窒素雰囲気下、200℃で6時間乾燥処理を行った際に、揮発又は蒸発によって消失しない成分を意味する。
<電極用成形体の製造方法>
 本開示に係る電極用成形体の製造方法は、電極活物質を含む電極材料を吐出する吐出口と第1支持体とを上記第1支持体の面方向に相対移動させつつ、上記吐出口から上記第1支持体の表面Fに向かって上記電極材料を吐出する工程(以下、「電極材料吐出工程」ともいう)を含み、上記工程が、上記第1支持体との間に介在した上記電極材料に接触する接触面Fを有する接触部材を用い、上記接触部材の上記接触面Fと上記電極材料との壁面摩擦角をθ1とし、上記第1支持体の上記表面Fと上記電極材料との壁面摩擦角をθ2としたとき、以下の(1)及び(2)の関係を満たす、電極用成形体の製造方法である。
(1)1°≦θ1<15°
(2)15°≦θ2
 ここで、電極材料吐出工程は、吐出口より吐出された電極材料が第1支持体に向かって移動している間の工程を指す。
 本開示に係る電極用成形体の製造方法は、質量分布の面内均一性に優れる電極用成形体を製造しうる。本開示に係る電極用成形体の製造方法がこの効果を奏する理由は、以下のように推察される。
 本開示に係る電極用成形体の製造方法では、電極活物質を含む電極材料を吐出する吐出口と第1支持体とを上記第1支持体の面方向に相対移動させつつ、上記吐出口から上記第1支持体の表面に向かって上記電極材料を吐出する工程を含む。この工程にて、第1支持体との間に介在した電極材料に接触する接触面を有する接触部材を用いる。
 上記工程においては、第1支持体と電極材料と接触部材との3つの要素にて、第1支持体と接触部材との間に電極材料が介在する構成が形成される。
 接触部材は、吐出口より吐出された電極材料が第1支持体に向かって移動している間に電極材料と接触する部材であることから、電極材料に接触する接触面は、電極部材に対する親和性が低く、離型性に優れることが望まれる。
 しかしながら、単に、接触部材の電極材料との接触面に離型性をもたせても、電極材料が第1支持体上に均一に配置されるとは限らなかった。
 そこで、本発明者らが検討を行ったところ、第1支持体と接触部材との間に電極材料が介在する構成における3つの要素の間に、壁面摩擦角にて特定の関係性を持たせることで、質量分布の面内均一性に優れる電極用成形体を製造しうることを見出した。
 即ち、接触部材の接触部材との接触面Fと電極材料との壁面摩擦角θ1と、第1支持体の表面Fと電極材料との壁面摩擦角θ2と、が上記の(1)及び(2)の関係を満たすことで、質量分布の面内均一性に優れる電極用成形体を製造しうることを見出した。
 上記の(1)及び(2)を満たすことで、電極材料は、接触部材の電極材料との接触面Fには付着しにくくなり、一方で、第1支持体の表面F上には付着しやすくなる。そのため、第1支持体の表面に向かって吐出された電極材料は、接触部材に付着せず、滑らかに移動し、第1支持体へと供給されるものと推測される。その結果、目的とする量の電極材料が第1支持体上へと順次供給されることになり、質量分布の面内均一性に優れる電極用成形体が製造されるものと推察される。
 また、接触部材における電極材料との接触面に電極材料が付着してしまうと、これを除去するための作業が必要となり、この作業が生産性を低下させてしまう要因ともなる。
 一方で、本開示に係る電極用成形体の製造方法においては、接触部材における電極材料との接触面に電極材料が付着しにくくなることから、電極材料の除去作業を必要とせず、生産性も高まると考えられる。
 本開示に係る電極用成形体の製造方法では、電極材料吐出工程に加え、必要に応じて、電極材料を準備する工程(電極材料準備工程ともいう)、電極材料を成形する工程(電極材料成形工程ともいう)等を更に有していてもよい。
 以下、本開示に係る電極用成形体の製造方法における各工程について、説明する。
〔電極材料吐出工程〕
 電極材料吐出工程は、電極活物質を含む電極材料を吐出する吐出口と第1支持体とを第1支持体の面方向に相対移動させつつ、吐出口から第1支持体の表面Fに向かって電極材料を吐出する工程である。
 本工程で用いられる電極活物質を含む電極材料は、粉体又は粉体と少量の液体成分との混合物であり、電極材料吐出工程は、粉体又は粉体と少量の液体成分との混合物を第1支持体上へと吐出する工程である。
 ここで、電極活物質を含む電極材料の詳細については、後述する。
 電極材料吐出工程では、第1支持体との間に介在した電極材料に接触する接触面Fを有する接触部材を用いている。そして、接触部材における接触面Fと電極材料との壁面摩擦角をθ1とし、第1支持体の表面Fと上記電極材料との壁面摩擦角をθ2としたとき、以下の(1)及び(2)の関係を満たす。
(1)1°≦θ1<15°
(2)15°≦θ2
 壁面摩擦角θ1及びθ2は、対象物の表面と電極材料層との摩擦抵抗を示す物性値であり、壁面摩擦角が大きいと摩擦抵抗が高く、壁面摩擦角が小さいと摩擦抵抗が低い。
 壁面摩擦角θ1及びθ2の測定方法としては、垂直荷重を掛けて圧密した状態の電極材料層と対象物の表面との間にせん断方向に力を掛け、その際の電極材料層の流動する力を求めることによる測定が挙げられる。
 具体的には、粉粒体流動性測定装置VOLUTION(Volution Powder Flow Tester、VFT)用いて、壁面摩擦角θ1及びθ2を測定する。
 なお、測定対象物の表面が上記装置にそのまま適用できない場合、測定対象物の表面のみを取り出す、又は、測定対象物の表面と同様の組成及び表面性状を有する測定試料を作製し、これを用いて測定すればよい。
 電極材料吐出工程において、上記の(1)は、電極材料へ圧力をかけやすくなる観点と、電極材料の離型性を高める観点と、から特定されるが、同様の観点から、θ1は1°以上15°以下が好ましく、3°以上13°以下がより好ましい。
 電極材料吐出工程において、上記の(2)は、電極材料が第1支持体上に配置しやすくなる観点から特定されるが、同様の観点、及び、必要時に第1支持体から電極材料の離型を可能とする観点から、θ2は15°以上60°以下が好ましく、16°以上55°以下がより好ましい。
 即ち、電極材料吐出工程において、壁面摩擦角θ1及び壁面摩擦角θ2が下記(2’)の関係を満たすことが好ましい。
(2’)15°≦θ2≦60°
 電極材料吐出工程においては、質量分布の面内均一性をより高める観点から、上記壁面摩擦角θ1及び上記壁面摩擦角θ2が下記(3)の関係を満たすことが好ましい。
(3)1°≦θ2-θ1≦60°
 特に、質量分布の面内均一性をより高める観点から、θ2-θ1は、3°以上50°以下が好ましく、5°以上40°以下がより好ましい。
 電極材料吐出工程の具体的な実施形態について、以下、図面を参照して説明する。
 ここで、図1は、本開示に係る電極用成形体の製造方法における電極材料吐出工程の一実施形態(以下、第1実施形態という)を説明する概念図である。また、図2は、本開示に係る電極用成形体の製造方法における電極材料吐出工程の別の一実施形態(以下、第2実施形態という)を説明する概念図である。
[第1実施形態]
 図1では、ホッパー30に貯留された電極材料20が、ホッパー30の排出口32から排出され、矢印A方向に搬送されている支持体(第1支持体の一例)10上へと供給されている。
 支持体10は、図示されない搬送機構により、矢印A方向に搬送されている。ここで、ホッパー30の排出口(電極材料の吐出口の一例)32と支持体10とは支持体10の面方向に相対移動していればよく、支持体10が移動する態様の他、ホッパー30が移動する態様、支持体10とホッパー30との両方が移動する態様であってもよい。
 但し、電極材料20を均一に支持体10上に付与するためには、支持体10を移動する態様が好ましい。
 上記の搬送機構としては、制限されず、公知の搬送手段を利用でき、例えば、ベルトコンベア、リニアモーションガイド、及びクロスローラーテーブルが挙げられる。
 ホッパー30の排出口32から排出された電極材料20は、図1に示す、規制ロール40により電極材料20の量(具体的には、例えば、電極材料20による層厚)、密度分布等が規制される。
 また、支持体10上に供給された電極材料20は、支持体10の搬送に伴い移動し、加圧ロール50との接触により加圧される(後述する、電極材料成形工程に該当する)。
 ここで、ホッパー30及び規制ロール40は、いずれも、電極材料20が第1支持体の一例である支持体10に向かって移動している間に電極材料20と接触する部材であって、本開示における「接触部材」に該当する。
 ホッパー30は、電極材料20を排出する排出口32を有し且つ電極材料20を貯留可能な貯留部材であって、この排出口32の内周面が接触部材の接触面Fとなる。
 また、規制ロール40は、ロール部材であって、このロール部材の外周面が接触部材の接触面Fとなる。
 そのため、第1実施形態では、ホッパー30の排出口32の内周面と電極材料20との壁面摩擦角をθ1(30)とし、また、規制ロール40の外周面と電極材料20との壁面摩擦角をθ1(40)としたとき、θ1(30)及びθ1(40)の少なくとも一方が上記(1)の関係を満たし、両方が上記(1)の関係を満たすことが好ましい。
 第1実施形態では、θ1(30)及びθ1(40)の少なくとも一方(好ましくは両方)が上記(1)の関係を満たすことで、排出口32から支持体10に向かって排出された電極材料20は、ホッパー30の排出口32の内周面及び/又は規制ロール40の外周面に付着せず、滑らかに移動し、搬送されている支持体10へと順次供給される。
 これにより、電極材料20は目的とする量にて支持体10上へと順次供給されることになり、結果として、質量分布の面内均一性に優れる電極用成形体が製造しうるものと推察される。
 なお、ホッパー30は、内部に貯留する電極材料20の移動及び排出を妨げないという観点から、排出口32の内周面のみならず、電極材料20と接触するホッパー30の内周面の多く領域(好ましくはすべての領域)が、電極材料20との壁面摩擦角が上記(1)の関係を満たすように設計されることが好ましい。
 図1における加圧ロール50は、支持体10上に供給された電極材料20に接触し、電極材料20を加圧する部材である。
 電極材料20は、加圧ロール50の外周面に付着せず、支持体10と共に移動することが好ましいことから、加圧ロール50の外周面と電極材料20との壁面摩擦角も上記(1)の関係を満たすように設計されることが好ましい。
[第2実施形態]
 図2では、ホッパー30に貯留された電極材料20が、ホッパー30の排出口32から排出され、矢印A方向に搬送されている支持体10上へと供給されている。
 このとき、ホッパー30の内周面の一部及びホッパー30の排出口32の一部に沿って、且つ、ホッパー30の排出口32から排出される電極材料20に接触しながら移動する、長尺の支持体(第2支持体の一例)60が設けられている。
 第2実施形態は、上記の支持体60を用いた以外は、特に断らない限り、第1実施形態と同様であり、好ましい態様も同様であるため、ここでは詳細を省略する。
 ここで、ホッパー30及び支持体60は、いずれも、電極材料20が支持体(第1支持体の一例)10に向かって移動している間に電極材料20と接触する部材であって、本開示における「接触部材」に該当する。
 ホッパー30は、第1実施形態と同様、電極材料20を排出する排出口32の内周面が接触部材の接触面Fとなる。
 また、支持体60は、電極材料20を排出する排出口32の一部を構成し、且つ、排出される電極材料20に接触ながら移動する長尺の第2支持体であり、その第2支持体である支持体60の電極材料との接触面が接触部材の接触面Fとなる。
 そのため、第2実施形態では、ホッパー30の排出口32の内周面と電極材料20との壁面摩擦角をθ1(30)とし、また、支持体60の電極材料20との接触面と電極材料20との壁面摩擦角をθ1(60)としたとき、θ1(30)及びθ1(60)の少なくとも一方が上記(1)の関係を満たし、両方が上記(1)の関係を満たすことが好ましい。
 第2実施形態では、θ1(30)及びθ1(60)の少なくとも一方(好ましくは両方)が上記(1)の関係を満たすことで、排出口32から支持体10に向かって排出された電極材料20は、ホッパー30の排出口32の内周面及び/又は支持体60の電極材料20との接触面に付着せず、滑らかに移動し、搬送されている支持体10へと順次供給される。
 これにより、電極材料20は目的とする量にて支持体10上へと順次供給されることになり、結果として、質量分布の面内均一性に優れる電極用成形体が製造しうるものと推察される。
 ここで、第2実施形態では、支持体60は、電極材料20に接触しながら移動し、支持体10との間に電極材料20を挟持した状態を形成する。
 そのため、図2に示す規制ロール40は、支持体60を介して、電極材料20の量(具体的には、例えば、電極材料20による層厚)を規制する。このように、第2実施形態における規制ロール40は、電極材料20に接触しないため、規制ロール40の外周面と電極材料20との壁面摩擦角をθ1(40)は、上記(1)の関係を満たす必要がない。第2実施形態における規制ロール40の外周面は、支持体60を介して、電極材料20の量を規制するために有用な表面性状を有していればよい。
 また、図2に示す加圧ロール50も、支持体60を介して、電極材料20を加圧する。第2実施形態における規制ロール40の外周面は、支持体60を介して、電極材料20を加圧するために有用な表面性状を有していればよい。
[接触面F及び表面F
 電極材料吐出工程において用いる、接触部材の接触面F及び第1支持体の表面Fについて説明する。
(接触部材の接触面F
 本開示において、接触部材の接触面Fは、電極部材との壁面摩擦角θ1が上記(1)の関係を満たす表面性状を有していればよい。具体的には、接触部材の接触面Fは、撥水性に優れることが好ましく、水との接触角が75°以上であることが好ましく、80°以上であることがより好ましく、85°以上であることが更に好ましい。
 接触部材の接触面Fの水との接触角の上限は特にないが、接触角なので180°以下であり、150°以下がより好ましい。
 接触部材の接触面Fが上記の水との接触角を達成するために、接触部材は、電極材料と接触する表面に、フッ素原子及びケイ素原子の少なくとも一方を含む表面層を有することが好ましい。
 上記の表面層としては、フッ素原子を分子内に有する化合物及びケイ素原子を分子内に有する化合物の少なくとも一方を含む層であることが好ましい。
 フッ素原子を分子内に有する化合物としては、フッ素原子を分子内に有する樹脂が好ましく、具体的には、例えば、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリエチレン-テトラフルオロエチレン共重合体(ETFE)、ポリフッ化ビニリデン(PVDF)、ポリクロロ三フッ化エチレン(PCTFE)、ポリフッ化ビニル(PVF)等が挙げられる。
 一方、ケイ素原子を分子内に有する化合物としては、ケイ素原子を分子内に有する樹脂が好ましく、具体的には、例えば、メチルシリコーン樹脂、フェニルシリコーン樹脂、メチルフェニルシリコーン樹脂、エポキシ変性シリコーン樹脂、ポリエステル変性シリコーン樹脂、ウレタン変性シリコーン樹脂等が挙げられる。
 また、上記の表面層は更に帯電防止剤を含むことが好ましい。
 帯電防止剤としては、従来公知の帯電防止剤が用いられる。
 表面層の形成には、市販のコート剤を用いてもよい。市販のコート剤としては、具体的には、例えば、日本フッ素工業株式会社製のAμcoat(エーミューコート)、NF-004、NF-015、NF-004EC、NF-004A、NF-015A、NF-015EC等が用いられる。
 日本フッ素工業株式会社製の「EC」シリーズは、帯電防止能を有するコート剤である。
 また、接触部材は、電極材料と接触する表面に、表面層の下層として下塗り層を有していてもよい。
 下塗り層としては、接触部材の表面のサンドブラスト等用いて粗面化した後に、エポキシ樹脂を主とした材料を塗工して得られる層などが挙げられる。
 接触部材の接触面Fは、電極材料の離型性をより高める観点から、算術平均粗さRaが10μm以下であることが好ましい。
 接触部材の接触面Fにおける算術平均粗さRaは、8μm以下であることが好ましく、5μm以下であることが更に好ましい。
 接触部材の接触面Fにおける算術平均粗さRaの下限としては、例えば、0.05μmである。
 なお、接触部材の接触面Fにおける算術平均粗さRaは、以下の方法で測定される。
 接触部材の表面形状をレーザー変位計等で測定を行い表面形状のプロファイルを算出する。算出した粗さ曲線からその平均線の方向に基準長さLだけ抜き取り、この抜き取り部分の平均線の方向にx軸を、縦倍率の方向にy軸を取り、粗さ曲線をy=f(x)で表したときに、以下の式によって求められる。
Figure JPOXMLDOC01-appb-M000001
(第1支持体の表面F
 本開示において、第1支持体の表面Fは、電極部材との壁面摩擦角θ2が上記(2)の関係を満たす表面性状を有していればよい。具体的には、第1支持体の表面Fは、水との接触角が30°以上75°未満であることが好ましく、40°以上60°以下であることがより好ましい。
 第1支持体の表面Fの水との接触角が上記範囲とするためには、第1支持体の素材自体を水との接触角を上記範囲にあるものに選択するか、又は、第1支持体の電極材料と接触する表面に、水との接触角を上記範囲に制御した表面層を有することが好ましい。
 水との接触角が30°以上75°未満である素材としては、ステンレス鋼(SUSともいう)などの金属、ガラス等が挙げられる。
 水との接触角を30°以上75°未満に制御した表面層としては、ケン化度90%以上のポリビニルアルコール、二酸化チタン等を含む層等が挙げられる。
 ここで、接触部材の接触面F及び第1支持体の表面Fにおける水との接触角は、空中水滴法により測定される。
 具体的には、例えば、DMo-701(協和界面科学株式会社製)を用いて、接触部材の接触面F又は第1支持体の表面Fに対する水の接触角を求める。なお、測定に使用した水滴容量は1μLとし、水滴温度は25℃とする。
[第1の支持体]
 第1の支持体としては、例えば、水との接触角が上記範囲である表面Fを有する離型材が好ましいものとして挙げられる。
 離型材としては、例えば、離型紙(例えば、SP-8Eアイボリー、株式会社日本ラベル製等)、表面処理が施された金属(例えば、アルミニウム、及びステンレス鋼)、表面層を有するフィルム、及び表面層を有する紙が挙げられ、中でも、離型紙が好ましい。
 ここで、表面層は、既述の、水との接触角を30°以上75°未満に制御した表面層を指す。
 第1の支持体の形状は、搬送性等の観点から、平板状、フィルム状、又はシート状であることが好ましい。
 第1の支持体の平均厚さは、搬送性等の観点から、5μm以上であることが好ましく、10μm以上であることがより好ましく、20μm以上であることが特に好ましい。
 第1の支持体の平均厚さは、柔軟性、及び軽量性の観点から、500μm以下であることが好ましく、300μm以下であることがより好ましく、200μm以下であることが特に好ましい。
 第1の支持体の平均厚さは、断面観察によって測定される3か所の厚さの算術平均とする。断面観察においては、公知の顕微鏡(例えば、走査型電子顕微鏡)を用いることができる。
 第1の支持体の大きさは、制限されず、製造する電極用成形体の大きさ、製造工程に用いる各種部材の大きさ等に応じて決定すればよい。
[第2支持体]
 第2支持体は、既述の通り、本開示における「接触部材」に該当することから、少なくとも、接触面Fに該当する表面が水との接触角が75°以上であることが好ましい。
 第2支持体を構成する素材としては、例えば、樹脂、金属、及び紙が挙げられ、これらのいずれかに、既述の、水との接触角が75°以上である表面層を形成したものが好ましく用いられる。
 第2支持体は、集電体であることが好ましく、集電体の表面に、水との接触角が75°以上である表面層を形成したものがより好ましい。
 第2支持体が集電体であることで、電極材料を集電体上に容易に配置することができ、更に、集電体付の電極用成形体を得る際の生産性も向上させることができる。
 集電体としては、制限されず、公知の集電体を利用できる。
 正極集電体としては、例えば、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル、及びチタンが挙げられる。正極集電体は、アルミニウム、又はアルミニウム合金であることが好ましい。正極集電体は、表面にカーボン、ニッケル、チタン、若しくは銀を含む被覆層を有する、アルミニウム、又はステンレス鋼であることも好ましい。
 負極集電体としては、例えば、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル、及びチタンが挙げられる。負極集電体は、アルミニウム、銅、銅合金、又はステンレス鋼であることが好ましく、銅、又は銅合金であることがより好ましい。負極集電体は、表面にカーボン、ニッケル、チタン、若しくは銀を含む被覆層を有する、アルミニウム、銅、銅合金、又はステンレス鋼であることも好ましい。
 集電体としては、アルミニウム箔、又は銅箔であることが好ましい。アルミニウム箔は、通常、正極における集電体として利用される。銅箔は、通常、負極における集電体として利用される。
 第2支持体は、メッシュ加工されていてもよいし、パンチ加工されていてもよい。また、第2支持体は、多孔質体、発泡体、又は繊維群の成形体であってもよい。
 第2支持体の表面は、表面処理による凹凸を有していてもよい。
 第2支持体の形状は、フィルム状、又はシート状であることが好ましい。
 第2支持体の平均厚さは、搬送性及び貫通耐性の観点から、1μm~500μmであることが好ましく、3μm~300μmであることがより好ましく、5μm~200μmであることが特に好ましい。
 第2支持体の平均厚さも第1支持体の平均厚さと同様の方法で測定される。
[吐出手段]
 電極材料吐出工程では、吐出口より電極材料を吐出する。既述の、第1実施形態及び第2実施形態では、電極材料を吐出する吐出手段として、ホッパー(貯留部材の一例)30を用いて説明しているが、これに限定されるものではない。
 電極材料を吐出する吐出手段としては、吐出口を有していればよく、例えば、ホッパーの他には、スクリューフィーダー、ディスクフィーダー、ロータリーフィーダー、及びベルトフィーダーが挙げられる。
 なお、吐出手段としては、少なくとも吐出口の内周面と電極材料との壁面摩擦角θ1が上記式(1)を満たすことが好ましい。
 なお、上記の吐出手段における吐出口は、電極材料の飛散による汚染を防止する観点から、電極材料の供給を制御する開閉機構を有することが好ましい。ここで、「開閉機構」とは、電極材料の流路を開閉できる可動機構を意味する。開閉機構に用いられる弁体としては、例えば、板状の弁体、及び球状の弁体が挙げられる。
 電極材料吐出工程において、吐出手段による電極材料の吐出量は、安定性の観点から、0.01kg/分~100kg/分であることが好ましく、0.1kg/分~10kg/分であることがより好ましく、0.5kg/分~5kg/分であることが特に好ましい。
[規制手段]
 電極材料吐出工程では、電極材料の量を規制する規制手段を用いてもよい。なお、本開示に係る電極用成形体の製造方法では、規制手段は省略されてもよいし、上記の吐出手段の吐出口に結合し、吐出手段と一体化していてもよい。
 既述の、第1実施形態及び第2実施形態では、電極材料の量、密度分布等を規制する規制手段として、規制ロール40を用いて説明しているが、これに限定されるものではない。
 規制手段としては、電極材料に直接又は間接的に接触する接触面を有していればよく、例えば、規制ロール等のロール部材の他、スクレーパー、及び板状の部材(例えば、スキージ)等が挙げられる。
 なお、規制手段が、本開示における「接触部材」に該当する場合には、電極材料との接触面と電極材料との壁面摩擦角θ1が上記式(1)を満たすことが好ましい。
 規制手段における電極材料との接触面には、凹凸形状が形成されていてもよい。規制手段の表面が凹凸形状を有することで、電極材料の量、密度分布等が制御しやすくなる。
 本開示において、電極材料の量、密度分布等を規制する際には、上記の規制手段の他に、電極材料を振動させる振動手段を併用してもよい。
 振動手段を有することで、電極材料の量、密度分布等が制御しやすくなる。
 なお、振動手段としては、例えば、一般的な加振装置等が挙げられる。
〔電極材料準備工程〕
 本開示に係る電極用成形体の製造方法は、電極材料吐出工程の前に、電極材料を準備する工程(即ち、電極材料準備工程)を有することが好ましい。
 本開示において、「電極材料を準備する」とは、電極材料を使用可能な状態にすることを意味し、特に断りのない限り、電極材料を調製することを含む。すなわち、電極材料準備工程においては、予め調製した電極材料又は市販されている電極材料を準備してもよいし、電極材料を調製してもよい。
[電極材料]
 電極材料は、電極活物質を含む。電極材料は、必要に応じて、電極活物質以外の成分を含んでいてもよい。
 以下、電極材料に含まれる成分について説明する。
(電極活物質)
 電極活物質は、周期律表における第1族又は第2族に属する金属元素のイオンを挿入、及び放出することが可能な物質である。
 電極活物質としては、例えば、正極活物質及び負極活物質が挙げられる。
-正極活物質-
 正極活物質としては、制限されず、正極に用いられる公知の活物質を利用できる。正極活物質としては、可逆的にリチウムイオンを挿入及び放出できる正極活物質であることが好ましい。
 正極活物質としては、具体的には、例えば、遷移金属酸化物、及びリチウムと複合化できる元素(例えば、硫黄)が挙げられる。上記の中でも、正極活物質は、遷移金属酸化物であることが好ましい。
 遷移金属酸化物は、Co(コバルト)、Ni(ニッケル)、Fe(鉄)、Mn(マンガン)、Cu(銅)、及びV(バナジウム)からなる群より選択される少なくとも1種の遷移金属元素(以下、「元素Ma」という。)を含む遷移金属酸化物であることが好ましい。
 遷移金属酸化物がLi及び元素Maを含む場合、元素Maに対するLiのモル比(Liの物質量/元素Maの物質量)は、0.3~2.2であることが好ましい。本開示において「元素Maの物質量」とは、元素Maに該当する全ての元素の総物質量をいう。
 また、遷移金属酸化物は、リチウム以外の第1族の元素、第2族の元素、Al(アルミニウム)、Ga(ガリウム)、In(インジウム)、Ge(ゲルマニウム)、Sn(スズ)、Pb(鉛)、Sb(アンチモン)、Bi(ビスマス)、Si(ケイ素)、P(リン)、及びB(ホウ素)からなる群より選択される少なくとも1種の遷移金属元素(以下、「元素Mb」という。)を含んでいてもよい。元素Mbの含有量(すなわち、元素Mbに該当する全ての元素の総含有量)は、元素Maの物質量に対して、0mol%~30mol%であることが好ましい。
 遷移金属酸化物としては、例えば、層状岩塩型構造を有する遷移金属酸化物、スピネル型構造を有する遷移金属酸化物、リチウム含有遷移金属リン酸化合物、リチウム含有遷移金属ハロゲン化リン酸化合物、及びリチウム含有遷移金属ケイ酸化合物が挙げられる。
 層状岩塩型構造を有する遷移金属酸化物としては、例えば、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])、及びLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 スピネル型構造を有する遷移金属酸化物としては、例えば、LiCoMnO、LiFeMn、LiCuMn、LiCrMn、及びLiNiMnが挙げられる。
 リチウム含有遷移金属リン酸化合物としては、例えば、オリビン型リン酸鉄塩(例えば、LiFePO、及びLiFe(PO)、ピロリン酸鉄塩(例えば、LiFeP)、リン酸コバルト塩(例えば、LiCoPO)、及び単斜晶ナシコン型リン酸バナジウム塩(例えば、Li(PO(リン酸バナジウムリチウム))が挙げられる。
 リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、フッ化リン酸鉄塩(例えば、LiFePOF)、フッ化リン酸マンガン塩(例えば、LiMnPOF)、及びフッ化リン酸コバルト塩(例えば、LiCoPOF)が挙げられる。
 リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO、及びLiCoSiOが挙げられる。
 遷移金属酸化物は、層状岩塩型構造を有する遷移金属酸化物であることが好ましく、LiCoO(コバルト酸リチウム[LCO])、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、及びLiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])からなる群より選択される少なくとも1種の化合物であることがより好ましい。
 正極活物質は、市販品であってもよいし、公知の方法(例えば、焼成法)によって製造された合成品であってもよい。例えば、焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、又は有機溶剤を用いて洗浄されてもよい。
 正極活物質の組成は、誘導結合プラズマ(ICP)発光分光分析法を用いて測定する。
 正極活物質の形状は、制限されないが、取扱性の観点から、粒子状であることが好ましい。
 正極活物質の体積平均粒子径は、制限されず、例えば、0.1μm~50μmとすることができる。正極活物質の体積平均粒子径は、0.3μm~40μmであることが好ましく、0.5μm~30μmであることがより好ましい。
 正極活物質の体積平均粒子径が0.3μm以上であることで、電極材料の集合体を容易に形成することができ、また、取り扱いの際に電極材料が飛散することを抑制できる。正極活物質の体積平均粒子径が40μm以下であることで、電極用成形体の厚さを容易に調節することができ、また、成形過程において空隙の発生を抑制することができる。
 正極活物質の体積平均粒子径は、以下の方法により測定する。
 正極活物質と溶剤(例えば、ヘプタン、オクタン、トルエン、又はキシレン)とを混合することによって、0.1質量%の正極活物質を含む分散液を調製する。1kHzの超音波を10分間照射した分散液を測定試料とする。レーザ回折/散乱式粒度分布測定装置(例えば、株式会社堀場製作所製のLA-920)を用いて、温度25℃の条件下でデータの取り込みを50回行い、体積平均粒子径を求める。測定用のセルには、石英セルを用いる。上記測定を5つの試料を用いて行い、測定値の平均を正極活物質の体積平均粒子径とする。その他の詳細な条件については、必要に応じて、「JIS Z 8828:2013」を参照する。
 正極活物質の粒子径を調整する方法としては、例えば、粉砕機、又は分級機を用いる方法が挙げられる。
 電極材料は、1種単独の正極活物質を含んでいてもよいし、2種以上の正極活物質を含んでいてもよい。
 正極活物質の含有量は、電極材料の全固形分質量に対して、10質量%~95質量%であることが好ましく、30質量%~90質量%であることより好ましく、50質量%~85質量であることさらに好ましく、60質量%~80質量%であること特に好ましい。
-負極活物質-
 負極活物質としては、制限されず、負極に用いられる公知の活物質を利用できる。負極活物質は、可逆的にリチウムイオンを挿入及び放出できる負極活物質であることが好ましい。
 負極活物質としては、例えば、炭素質材料、金属酸化物(例えば、酸化スズ)、酸化ケイ素、金属複合酸化物、リチウム単体、リチウム合金(例えば、リチウムアルミニウム合金)、及びリチウムと合金を形成可能な金属(例えば、Sn、Si、及びIn)が挙げられる。上記の中でも、負極活物質は、信頼性の観点から、炭素質材料、又はリチウム複合酸化物であることが好ましい。
 炭素質材料は、実質的に炭素からなる材料である。
 炭素質材料としては、例えば、石油ピッチ、カーボンブラック(例えば、アセチレンブラック)、黒鉛(例えば、天然黒鉛、及び人造黒鉛(例えば、気相成長黒鉛))、ハードカーボン、及び合成樹脂(例えば、ポリアクリロニトリル(PAN)、及びフルフリルアルコール樹脂)を焼成してなる炭素質材料が挙げられる。炭素質材料としては、例えば、炭素繊維(例えば、ポリアクリロニトリル系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維、及び活性炭素繊維)も挙げられる。黒鉛としては、例えば、メソフェーズ微小球体、グラファイトウィスカー、及び平板状の黒鉛も挙げられる。
 本開示において、「平板状」とは、反対方向を向く2つの主平面を有する形状を意味する。
 金属複合酸化物としては、リチウムを吸蔵及び放出可能な金属複合酸化物であることが好ましい。
 リチウムを吸蔵及び放出可能な金属複合酸化物は、高電流密度充放電特性の観点から、チタン及びリチウムからなる群より選択される少なくとも1種の元素を含むことが好ましい。
 金属酸化物、及び金属複合酸化物は、特に非晶質酸化物であることが好ましい。ここで、「非晶質」とは、CuKα線を用いたX線回折法において、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有する物質を意味する。非晶質酸化物は、結晶性の回折線を有してもよい。非晶質酸化物において、2θ値で40°~70°の領域に観察される結晶性の回折線のうち最も強い強度は、2θ値で20°~40°の領域に観察されるブロードな散乱帯の頂点の回折線強度の100倍以下であることが好ましく、5倍以下であることがより好ましい。非晶質酸化物は、結晶性の回折線を有しないことが特に好ましい。
 金属酸化物、及び金属複合酸化物は、カルコゲナイドであることも好ましい。カルコゲナイドは、金属元素と周期律表における第16族の元素との反応生成物である。
 非晶質酸化物、及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及びカルコゲナイドが好ましく、周期律表における第13族~15族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb、及びBiからなる群より選択される少なくとも1種の元素を含む酸化物、並びにカルコゲナイドがより好ましい。
 非晶質酸化物、及びカルコゲナイドの好ましい例としては、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、Sb、及びSnSiSが挙げられる。また、上記した化合物は、リチウムとの複合酸化物(例えば、LiSnO)であってもよい。
 負極活物質は、チタンをさらに含むことも好ましい。リチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、そして、電極の劣化が抑制されることでリチウムイオン二次電池の寿命向上が可能となる観点から、チタンを含む負極活物質は、LiTi12(チタン酸リチウム[LTOともい])であることが好ましい。
 負極活物質は、市販品であってもよいし、公知の方法(例えば、焼成法)によって製造された合成品であってもよい。例えば、焼成法によって得られた負極活物質は、水、酸性水溶液、アルカリ性水溶液、又は有機溶剤を用いて洗浄されてもよい。
 負極活物質は、例えば、CGB20(日本黒鉛工業株式会社)として入手可能である。
 負極活物質の組成は、誘導結合プラズマ(ICP)発光分光分析法を用いて測定する。
 負極活物質の形状は、制限されないが、取り扱い易く、そして、量産の際に均一性を管理しやすいという観点から、粒子状であることが好ましい。
 負極活物質の体積平均粒子径は、0.1μm~60μmであることが好ましく、0.3μm~50μmであることがより好ましく、0.5μm~40μmであることが特に好ましい。
 負極活物質の体積平均粒子径が0.1μm以上であることで、電極材料の集合体を容易に形成することができ、また、取り扱いの際に電極材料が飛散することを抑制できる。負極活物質の体積平均粒子径が60μm以下であることで、電極用成形体の厚さを容易に調節することができ、また、成形過程において空隙の発生を抑制することができる。
 負極活物質の体積平均粒子径は、上記正極活物質の体積平均粒子径の測定方法に準ずる方法により測定する。
 負極活物質の粒子径を調整する方法としては、例えば、粉砕機、又は分級機を用いる方法が挙げられる。上記方法においては、例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミル、又は篩が好適に用いられる。負極活物質の粉砕においては、水、又は有機溶剤(例えば、メタノール)を用いる湿式粉砕も必要に応じて行うことができる。所望の粒子径に調整する方法は、分級であることが好ましい。分級においては、例えば、篩、又は風力分級機を用いることができる。分級は、乾式であってもよいし、湿式であってもよい。
 負極活物質として、Sn、Si、又はGeを含む非晶質酸化物を用いる場合、上記非晶質酸化物と併用することができる好ましい負極活物質としては、例えば、リチウムイオン又はリチウム金属を吸蔵及び放出できる炭素材料、リチウム、リチウム合金、及びリチウムと合金可能な金属が挙げられる。
 電極材料は、1種単独の負極活物質を含んでいてもよいし、2種以上の負極活物質を含んでいてもよい。
 負極活物質の含有量は、電極材料の全固形分質量に対して、10質量%~80質量%であることが好ましく、20質量%~80質量%であることがより好ましく、30質量%~80質量%であることがさらに好ましく、40質量%~75質量%であることが特に好ましい。
 正極活物質及び負極活物質の表面は、それぞれ、表面被覆剤で被覆されていてもよい。表面被覆剤としては、例えば、Ti、Nb、Ta、W、Zr、Si、又はLiを含む金属酸化物が挙げられる。上記金属酸化物としては、例えば、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、及びニオブ酸リチウム系化合物が挙げられる。具体的な化合物としては、例えば、LiTi12、LiTaO、LiNbO、LiAlO、LiZrO、LiWO、LiTiO、Li、LiPO、LiMoO、及びLiBOが挙げられる。
(無機固体電解質)
 電極材料は、電池性能(例えば、放電容量、及び出力特性)の向上という観点から、無機固体電解質を含むことが好ましい。
 ここで、「固体電解質」とは、内部においてイオンを移動させることができる固体状の電解質を意味する。
 無機固体電解質は、主たるイオン伝導性材料として有機物を含む電解質ではないことから、有機固体電解質(例えば、ポリエチレンオキシド(PEO)に代表される高分子電解質、及びリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)に代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は、定常状態では固体であるため、カチオン若しくはアニオンに解離又は遊離していない。よって、電解液、及びポリマー中でカチオン若しくはアニオンに解離又は遊離している無機電解質塩(例えば、LiPF、LiBF、リチウムビス(フルオロスルホニル)イミド(LiFSI)、及びLiCl)とも明確に区別される。
 無機固体電解質は、周期律表における第1族又は第2族に属する金属元素のイオンの伝導性を有する無機固体電解質であれば制限されず、電子伝導性を有しないことが一般的である。
 本開示に係る電極用成形体の製造方法によって得られる電極用成形体がリチウムイオン電池に用いられる場合、無機固体電解質は、リチウムイオンのイオン伝導性を有することが好ましい。
 無機固体電解質としては、例えば、硫化物系無機固体電解質、及び酸化物系無機固体電解質が挙げられる。上記の中でも、無機固体電解質は、活物質と無機固体電解質との間に良好な界面を形成できるという観点から、硫化物系無機固体電解質であることが好ましい。
-硫化物系無機固体電解質-
 硫化物系無機固体電解質は、硫黄原子(S)を含み、周期律表における第1族又は第2族に属する金属元素のイオン伝導性を有し、かつ、電子絶縁性を有することが好ましい。
 硫化物系無機固体電解質は、少なくともLi、S、及びPを含有し、リチウムイオン伝導性を有することがより好ましい。硫化物系無機固体電解質は、必要に応じて、Li、S、及びP以外の元素を含んでいてもよい。
 硫化物系無機固体電解質としては、例えば、下記式(A)で示される組成を有する無機固体電解質が挙げられる。
 La1b1c1d1e1  :式(A)
 式(A)中、Lは、Li、Na、及びKからなる群より選択される少なくとも1種の元素を表し、Liであることが好ましい。
 式(A)中、Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al、及びGeからなる群より選択される少なくとも1種の元素を表し、B、Sn、Si、Al、又はGeであることが好ましく、Sn、Al、又はGeであることがより好ましい。
 式(A)中、Aは、I、Br、Cl、及びFからなる群より選択される少なくとも1種の元素を表し、I、又はBrであることが好ましく、Iであることがより好ましい。
 式(A)中、a1は、1~12を表し、1~9であることが好ましく、1.5~4であることがより好ましい。
 式(A)中、b1は、0~1を表し、0~0.5であることがより好ましい。
 式(A)中、c1は、1を表す。
 式(A)中、d1は、2~12を表し、3~7であることが好ましく、3.25~4.5であることがより好ましい。
 式(A)中、e1は、0~5を表し、0~3であることが好ましく、0~1であることがより好ましい。
 式(A)中、b1、及びe1が0であることが好ましく、b1、及びe1が0であり、かつ、a1、c1、及びd1の比(即ち、a1:c1:d1)が、1~9:1:3~7であることがより好ましく、b1、及びe1が0であり、かつ、a1、c1、及びd1の比(即ち、a1:c1:d1)が、1.5~4:1:3.25~4.5であることが特に好ましい。
 各元素の組成比は、例えば、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。
 硫化物系無機固体電解質は、非結晶(ガラス)であってもよいし、結晶化(ガラスセラミックス化)していてもよいし、一部のみが結晶化していてもよい。上記のような硫化物系無機固体電解質としては、例えば、Li、P、及びSを含有するLi-P-S系ガラス、並びにLi、P、及びSを含有するLi-P-S系ガラスセラミックスが挙げられる。上記の中でも、硫化物系無機固体電解質は、Li-P-S系ガラスであることが好ましい。
 硫化物系無機固体電解質のリチウムイオン伝導度は、1×10-4S/cm以上であることが好ましく、1×10-3S/cm以上であることがより好ましい。硫化物系無機固体電解質のリチウムイオン伝導度の上限は、制限されないが、例えば、1×10-1S/cm以下であることが実際的である。
 硫化物系無機固体電解質は、例えば、(1)硫化リチウム(LiS)と硫化リン(例えば、五硫化二燐(P))との反応、(2)硫化リチウムと単体燐及び単体硫黄の少なくとも一方との反応、又は(3)硫化リチウムと硫化リン(例えば、五硫化二燐(P))と単体燐及び単体硫黄の少なくとも一方との反応により製造できる。
 Li-P-S系ガラス、及びLi-P-S系ガラスセラミックスの製造における、LiSとPとのモル比(LiS:P)は、65:35~85:15であることが好ましく、68:32~77:23であることがより好ましい。LiSとPとのモル比を上記範囲にすることにより、リチウムイオン伝導度をより高めることができる。
 硫化物系無機固体電解質としては、例えば、LiSと、第13族~第15族の元素の硫化物とを含む原料組成物を用いてなる化合物が挙げられる。
 原料組成物としては、例えば、LiS-P、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、及びLi10GeP12が挙げられる。上記の中でも、原料組成物は、高いリチウムイオン伝導度の観点から、LiS-P、LiS-GeS-Ga、LiS-SiS-P、LiS-SiS-LiSiO、LiS-SiS-LiPO、LiS-LiI-LiO-P、LiS-LiO-P、LiS-LiPO-P、LiS-GeS-P、又はLi10GeP12であることが好ましく、LiS-P、Li10GeP12、又はLiS-P-SiSであることがより好ましい。
 上記した原料組成物を用いて硫化物系無機固体電解質を製造する方法としては、例えば、非晶質化法が挙げられる。
 非晶質化法としては、例えば、メカニカルミリング法、及び溶融急冷法が挙げられる。上記の中でも、常温での処理が可能となり、また、製造工程の簡略化を図ることができる観点から、メカニカルミリング法が好ましい。
-酸化物系無機固体電解質-
 酸化物系無機固体電解質は、酸素原子(O)を含み、周期律表における第1族又は第2族に属する金属元素のイオン伝導性を有し、かつ、電子絶縁性を有することが好ましい。
 酸化物系無機固体電解質のイオン伝導度は、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。酸化物系無機固体電解質のイオン伝導度の上限は、制限されないが、例えば、1×10-1S/cm以下であることが実際的である。
 酸化物系無機固体電解質としては、例えば、以下の化合物が挙げられる。ただし、酸化物系無機固体電解質は、以下の化合物に制限されない。
 (1)LixaLayaTiO(以下、「LLT」という。xaは0.3≦xa≦0.7を満たし、yaは0.3≦ya≦0.7を満たす。)
 (2)LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、In、及びSnからなる群より選択される少なくとも1種の元素である。xbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)
 (3)Lixcyccc zcnc(MccはC、S、Al、Si、Ga、Ge、In、及びSnからなる群より選択される少なくとも1種の元素である。xcは0≦xc≦5を満たし、ycは0≦yc≦1を満たし、zcは0≦zc≦1を満たし、ncは0≦nc≦6を満たす。)
 (4)Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(xdは1≦xd≦3を満たし、ydは0≦yd≦1を満たし、zdは0≦zd≦2を満たし、adは0≦ad≦1を満たし、mdは1≦md≦7を満たし、ndは3≦nd≦13を満たす。)
 (5)Li(3-2xe)ee xeeeO(xeは0≦xe≦0.1を満たし、Meeは2価の金属原子を表し、Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。)
 (6)LixfSiyfzf(xfは1≦xf≦5を満たし、yfは0<yf≦3を満たし、zfは1≦zf≦10を満たす。)
 (7)Lixgygzg(xgは1≦xg≦3を満たし、ygは0<yg≦2を満たし、zgは1≦zg≦10を満たす。)
 (8)LiBO
 (9)LiBO-LiSO
 (10)LiO-B-P
 (11)LiO-SiO
 (12)LiBaLaTa12
 (13)LiPO(4-3/2w)(wはw<1を満たす。)
 (14)LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO
 (15)ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO
 (16)NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12
 (17)Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(xhは0≦xh≦1を満たし、yhは0≦yh≦1を満たす。)
 (18)ガーネット型結晶構造を有するLiLaZr12(以下、「LLZ」という。)
 酸化物系無機固体電解質としては、Li、P、及びOを含むリン化合物も好ましい。Li、P、及びOを含むリン化合物としては、例えば、リン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、及びLiPOD1(D1は、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、及びAuからなる群より選択される少なくとも1種の元素である。)が挙げられる。
 酸化物系無機固体電解質としては、LiAlON(Alは、Si、B、Ge、Al、C、及びGaからなる群より選択される少なくとも1種の元素である。)も好ましい。
 上記の中でも、酸化物系無機固体電解質は、LLT、LixbLaybZrzbbb mbnb(Mbb、xb、yb、zb、mb、及びnbは、上記のとおりである。)、LLZ、LiBO、LiBO-LiSO、又はLixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(xd、yd、zd、ad、md、及びndは、上記のとおりである。)であることが好ましく、LLT、LLZ、LAGP(Li1.5Al0.5Ge1.5(PO)、又はLATP([Li1.4TiSi0.42.612]-AlPO)であることがより好ましく、LLZであることが特に好ましい。
 無機固体電解質は、粒子状であることが好ましい。
 無機固体電解質の体積平均粒子径は、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。無機固体電解質の体積平均粒子径の上限は、100μm以下であることが好ましく、50μm以下であることがより好ましい。
 無機固体電解質の体積平均粒子径は、以下の方法により測定する。
 無機固体電解質と水(水に不安定な物質の体積平均粒子径を測定する場合はヘプタン)とを混合することによって、1質量%の無機固体電解質を含む分散液を調製する。1kHzの超音波を10分間照射した分散液を測定試料とする。レーザ回折/散乱式粒度分布測定装置(例えば、株式会社堀場製作所製のLA-920)を用いて、温度25℃の条件下でデータの取り込みを50回行い、体積平均粒子径を求める。測定用のセルには、石英セルを用いる。上記測定を5つの試料を用いて行い、測定値の平均を無機固体電解質の体積平均粒子径とする。その他の詳細な条件については、必要に応じて、「JIS Z 8828:2013」を参照する。
 電極材料は、1種単独の無機固体電解質を含んでいてもよいし、2種以上の無機固体電解質を含んでいてもよい。
 電極材料が無機固体電解質を含む場合、無機固体電解質の含有量は、界面抵抗の低減、及び電池特性維持効果(例えばサイクル特性の向上)の観点から、電極材料の全固形分質量に対して、1質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることが特に好ましい。同様の観点から、無機固体電解質の含有量の上限は、電極材料の全固形分質量に対して、90質量%以下であることが好ましく、70質量%以下であることがより好ましく、50質量%以下であることが特に好ましい。
(バインダー)
 電極材料は、電極材料同士の密着性の向上という観点から、バインダーを含むことが好ましい。バインダーとしては、有機ポリマーであれば制限されず、電池材料の正極又は負極において結着剤として用いられる公知のバインダーを利用できる。バインダーとしては、例えば、含フッ素樹脂、炭化水素系熱可塑性樹脂、アクリル樹脂、及びウレタン樹脂が挙げられる。
 含フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニレンジフルオリド(PVdF)、及びポリビニレンジフルオリドとヘキサフルオロプロピレンとの共重合物(PVdF-HFP)が挙げられる。
 炭化水素系熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリルブタジエンゴム、ポリブタジエン、及びポリイソプレンが挙げられる。
 アクリル樹脂としては、例えば、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリ(メタ)アクリル酸イソプロピル、ポリ(メタ)アクリル酸イソブチル、ポリ(メタ)アクリル酸ブチル、ポリ(メタ)アクリル酸ヘキシル、ポリ(メタ)アクリル酸オクチル、ポリ(メタ)アクリル酸ドデシル、ポリ(メタ)アクリル酸ステアリル、ポリ(メタ)アクリル酸2-ヒドロキシエチル、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸ベンジル、ポリ(メタ)アクリル酸グリシジル、ポリ(メタ)アクリル酸ジメチルアミノプロピル、及び上記樹脂を形成するモノマーの共重合体が挙げられる。
 バインダーとしては、ビニル系モノマーの共重合体も挙げられる。
 ビニル系モノマーの共重合体としては、例えば、(メタ)アクリル酸メチル-スチレン共重合体、(メタ)アクリル酸メチル-アクリロニトリル共重合体、及び(メタ)アクリル酸ブチル-アクリロニトリル-スチレン共重合体が挙げられる。
 バインダーの重量平均分子量は、10,000以上であることが好ましく、20,000以上であることがより好ましく、50,000以上であることが特に好ましい。
 バインダーの重量平均分子量の上限は、1,000,000以下であることが好ましく、200,000以下であることがより好ましく、100,000以下であることが特に好ましい。
 バインダーにおける水分濃度は、質量基準で、100ppm以下であることが好ましい。
 バインダーにおける金属濃度は、質量基準で、100ppm以下であることが好ましい。
 電極材料は、1種単独のバインダーを含んでいてもよいし、2種以上のバインダーを含んでいてもよい。
 電極材料がバインダーを含む場合、バインダーの含有量は、界面抵抗の低減性、及びその維持性の観点から、電極材料の全固形分質量に対して、0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、1質量%以上であることが特に好ましい。バインダーの含有量の上限は、電池性能の観点から、電極材料の全固形分質量に対して、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることが特に好ましい。
 電極材料が、電極活物質、無機固体電解質、及びバインダーを含む場合、バインダーの質量に対する活物質及び無機固体電解質の合計質量の比([活物質の質量+無機固体電解質の質量]/[バインダーの質量])は、1,000~1であることが好ましく、500~2であることがより好ましく、100~10であることが特に好ましい。
(導電助剤)
 電極材料は、活物質の電子伝導性の向上という観点から、導電助剤を含むことが好ましい。導電助剤としては、制限されず、公知の導電助剤を利用できる。特に、電極材料が正極活物質を含む場合、電極材料は、導電助剤を含むことが好ましい。
 導電助剤としては、例えば、黒鉛(例えば、天然黒鉛、及び人造黒鉛)、カーボンブラック(例えば、アセチレンブラック、ケッチェンブラック、及びファーネスブラック)、無定形炭素(例えば、ニードルコークス)、炭素繊維(例えば、気相成長炭素繊維、及びカーボンナノチューブ)、他の炭素質材料(例えば、グラフェン、及びフラーレン)、金属粉(例えば、銅粉、及びニッケル粉)、金属繊維(例えば、銅繊維、及びニッケル繊維)、及び導電性高分子(例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、及びポリフェニレン誘導体)が挙げられる。
 上記の中でも、導電助剤は、炭素繊維、及び金属繊維からなる群より選択される少なくとも1種の導電助剤であることが好ましい。
 導電助剤の形状としては、例えば、繊維状、針状、筒状、ダンベル状、円盤状、及び楕円球状が挙げられる。上記の中でも、導電助剤の形状は、活物質の電子伝導性の向上という観点から、繊維状であることが好ましい。
 導電助剤のアスペクト比は、1.5以上であることが好ましく、5以上であることがより好ましい。導電助剤のアスペクト比が1.5以上であることで、電極活物質の電子伝導性を向上できるため、電池の出力特性を向上できる。
 導電助剤のアスペクト比は、10,000以下であることが好ましく、5,000以下であることがより好ましく、1,000以下であることが特に好ましい。さらに、導電助剤のアスペクト比は、500以下であることが好ましく、300以下であることがより好ましく、100以下であることが特に好ましい。導電助剤のアスペクト比が10,000以下であることで、導電助剤の分散性を向上でき、導電助剤が電極用成形体を突き抜けることによる短絡を効率的に防止できる。
 導電助剤のアスペクト比は、以下の方法により測定する。走査型電子顕微鏡(SEM)(例えば、PHILIPS社製XL30)を用いて1000倍~3000倍の観察倍率で撮影した任意の3視野のSEM像を、BMP(ビットマップ)ファイルに変換する。画像解析ソフト(例えば、旭エンジニアリング株式会社製のIP-1000PCの統合アプリケーションである「A像くん」)を用いて50個の導電助剤の画像を取り込む。各導電助剤が重なることなく観察される状態で、各導電助剤の長さの最大値と最小値とを読み取る。「導電助剤の長さの最大値」とは、導電助剤の外周のある点から他の点までの線分のうち、長さが最大となる線分の長さ(すなわち長軸長)を意味する。「導電助剤の長さの最小値」とは、導電助剤の外周のある点から他の点までの線分であって、上記最大値を示す線分と直交する線分のうち、長さが最小となる線分の長さ(すなわち短軸長)を意味する。50個の各導電助剤の長さの最大値(長軸長)のうち、上位5点及び下位5点を除く40点の平均値(A)を求める。次に、50個の各導電助剤の長さの最小値(短軸長)のうち、上位5点及び下位5点を除く40点の平均値(B)を求める。平均値(A)を平均値(B)で除することによって、導電助剤のアスペクト比を算出する。
 導電助剤の短軸長は、10μm以下であることが好ましく、8μm以下であることがより好ましく、5μm以下であることが特に好ましい。
 導電助剤の短軸長は、1nm以上であることが好ましく、3nm以上であることがより好ましく、5nm以上であることが特に好ましい。
 導電助剤の短軸長は、導電助剤のアスペクト比の測定方法において算出される50個の各導電助剤の長さの最小値である。
 導電助剤の短軸長の平均値は、8μm以下であることが好ましく、5μm以下であることがより好ましく、3μm以下であることが特に好ましい。
 導電助剤の短軸長の平均値は、1nm以上であることが好ましく、2nm以上であることがより好ましく、3nm以上であることが特に好ましい。
 導電助剤の短軸長の平均値は、導電助剤のアスペクト比の測定方法において算出される50個の各導電助剤の長さの最小値(短軸長)のうち、上位1割(すなわち上位5点)及び下位1割(すなわち下位5点)を除いた各導電助剤の短軸長の平均値である。
 電極材料は、1種単独の導電助剤を含んでいてもよいし、2種以上の導電助剤を含んでいてもよい。
 電極材料が導電助剤を含む場合、導電助剤の含有量は、活物質の電子伝導性の向上という観点から、電極材料の全固形分質量に対して、0質量%を超え10質量%以下であることが好ましく、0.5質量%~8質量%であることがより好ましく、1質量%~7質量%であることが特に好ましい。
(リチウム塩)
 電極材料は、電池性能の向上の観点から、リチウム塩を含むことが好ましい。リチウム塩としては、制限されず、公知のリチウム塩を利用できる。
 リチウム塩としては、特開2015-088486号公報の段落0082~段落0085に記載のリチウム塩が好ましい。
 電極材料は、1種単独のリチウム塩を含んでいてもよいし、2種以上のリチウム塩を含んでいてもよい。
 電極材料がリチウム塩を含む場合、リチウム塩の含有量は、電極材料の全固形分質量に対して、0.1質量%~10質量%であることが好ましい。
(分散剤)
 電極材料は、分散剤を含むことが好ましい。電極材料が分散剤を含むことで、電極活物質、及び無機固体電解質のいずれか一方の濃度が高い場合における凝集を抑制できる。
 分散剤としては、制限されず、公知の分散剤を利用できる。分散剤としては、分子量が200以上3000未満の低分子又はオリゴマーからなり、下記官能基群(I)より選択される少なくとも1種の官能基と、炭素数8以上のアルキル基又は炭素数10以上のアリール基と、を同一分子内に有する化合物が好ましい。
 官能基群(I)は、酸性基、塩基性窒素原子を有する基、(メタ)アクリロイル基、(メタ)アクリルアミド基、アルコキシシリル基、エポキシ基、オキセタニル基、イソシアネート基、シアノ基、スルファニル基、及びヒドロキシ基からなる群より選択される少なくとも1種の官能基であり、酸性基、塩基性窒素原子を有する基、アルコキシシリル基、シアノ基、スルファニル基、及びヒドロキシ基からなる群が好ましく、カルボキシ基、スルホン酸基、シアノ基、アミノ基、及びヒドロキシ基からなる群がより好ましい。
 電極材料は、1種単独の分散剤を含んでいてもよいし、2種以上の分散剤を含んでいてもよい。
 電極材料が分散剤を含む場合、分散剤の含有量は、凝集防止と電池性能との両立の観点から、電極材料の全固形分質量に対して、0.2質量%~10質量%であることが好ましく、0.5質量%~5質量%であることがより好ましい。
(液体成分)
 電極材料は、液体成分を含んでいてもよい。液体成分としては、例えば、電解液が挙げられる。
 電解液としては、制限されず、公知の電解液を利用できる。電解液としては、例えば、電解質と、溶剤と、を含む電解液が挙げられる。具体的な電解液としては、例えば、電解質としてリチウム塩化合物と、溶剤としてカーボネート化合物と、を含む電解液が挙げられる。
 リチウム塩化合物としては、例えば、ヘキサフルオロリン酸リチウムが挙げられる。電解液は、1種単独のリチウム塩化合物を含んでいてもよいし、2種以上のリチウム塩化合物を含んでいてもよい。
 カーボネート化合物としては、例えば、炭酸エチルメチル、炭酸エチレン、及び炭酸プロピレンが挙げられる。電解液は、1種単独のカーボネート化合物を含んでいてもよいし、2種以上のカーボネート化合物を含んでいてもよい。
 電解液に含まれる電解質としては、例えば、上記「無機固体電解質」の項において説明した材料も挙げられる。
 電解液の成分として、例えば、イオン液体を用いてもよい。イオン液体は、電解質として用いても溶剤として用いてもよい。
 電極材料における電解液の含有量は、電極材料の全質量に対して、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、15質量%以下であることが特に好ましい。電極材料における電解液の含有量が30質量%以下であることで、電極材料を成形した際に電解液が滲み出ることを抑制することができる。
 電極材料における電解液の含有量の下限は、電池性能の向上の観点から、電極材料の全質量に対して、0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましい。
 電極材料は、液体成分として、電解液の成分として含まれる溶剤以外の溶剤(以下、単に「溶剤」ともいう。)を含んでいてもよい。溶剤としては、例えば、アルコール化合物溶剤、エーテル化合物溶剤、アミド化合物溶剤、アミノ化合物溶剤、ケトン化合物溶剤、芳香族化合物溶剤、脂肪族化合物溶剤、及びニトリル化合物溶剤が挙げられる。
 アルコール化合物溶剤としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、及び1,4-ブタンジオールが挙げられる。
 エーテル化合物溶剤としては、例えば、アルキレングリコールアルキルエーテル(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、及びジエチレングリコールモノブチルエーテル)、ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、及びジオキサンが挙げられる。
 アミド化合物溶剤としては、例えば、N,N-ジメチルホルムアミド、1-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、及びヘキサメチルホスホリックトリアミドが挙げられる。
 アミノ化合物溶剤としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、及びトリブチルアミンが挙げられる。
 ケトン化合物溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、及びシクロヘキサノンが挙げられる。
 芳香族化合物溶剤としては、例えば、ベンゼン、トルエン、及びキシレンが挙げられる。
 脂肪族化合物溶剤としては、例えば、ヘキサン、ヘプタン、オクタン、及びデカンが挙げられる。
 ニトリル化合物溶剤としては、例えば、アセトニトリル、プロピロニトリル、及びイソブチロニトリルが挙げられる。
 溶剤は、ニトリル化合物溶剤、芳香族化合物溶剤、及び脂肪族化合物溶剤からなる群より選択される少なくとも1種の溶剤であることが好ましく、イソブチロニトリル、トルエン、及びヘプタンからなる群より選択される少なくとも1種の溶剤であることがより好ましく、トルエン、及びヘプタンからなる群より選択される少なくとも1種の溶剤であることが特に好ましい。
 溶剤の沸点は、常圧(即ち1気圧)において、50℃以上であることが好ましく、70℃以上であることがより好ましい。溶剤の沸点の上限は、常圧(即ち1気圧)において、250℃以下であることが好ましく、220℃以下であることがより好ましい。
 電極材料は、1種単独の溶剤を含んでいてもよいし、2種以上の溶剤を含んでいてもよい。
 電極材料における溶剤(電解液の成分として含まれる溶剤を含む。以下、本段落において同じ。)の含有量は、電極材料の全質量に対して、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、15質量%以下であることが特に好ましい。電極材料における溶剤の含有量が30質量%以下であることで、電池性能の劣化を抑制することができ、また、電極材料を成形した際に溶剤が滲み出ることを抑制することができる。電極材料における溶剤の含有量の下限は、制限されず、0質量%以上であってもよいし、0質量%を超えてもよい。
 電極材料における液体成分の含有量は、電極材料の全質量に対して、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、15質量%以下であることが特に好ましい。電極材料における液体成分の含有量が30質量%以下であることで、電極材料を成形した際に液体成分が滲み出ることを抑制することができる。また、液体成分が溶剤を含む場合には、電池性能の劣化を抑制することができる。電極材料における液体成分の含有量の下限は、制限されず、0質量%以上であってもよいし、0質量%を超えてもよい。
 上記の他、電極材料としては、例えば、以下の材料を用いることもできる。
(1)特開2017-104784号公報の段落0029~段落0037に記載の造粒体。
(2)特開2016-059870号公報の段落0054に記載の正極合剤塗料。
(3)特開2016-027573号公報の段落0017~段落0070に記載の複合粒子。
(4)特許第6402200号公報の段落0020~段落0033に記載の複合粒子。
(5)特開2019-046765号公報の段落0040~段落0065に記載の電極組成物。
(6)特開2017-054703号公報の段落0080~段落0114に記載の材料(例えば、活物質、正極スラリー、及び負極スラリー)。
(7)特開2014-198293号公報に記載の粉体。
(8)特開2016-062654号公報の段落0024~段落0025、段落0028、及び段落0030~段落0032に記載の活物質、バインダー、及び複合粒子。
(電極材料の調製方法)
 電極材料は、例えば、電極活物質と、必要に応じて、電極活物質以外の上記成分と、を混合することによって調製できる。
 混合方法としては、例えば、ボールミル、ビーズミル、プラネタリミキサー、ブレードミキサー、ロールミル、ニーダー、又はディスクミルを用いる方法が挙げられる。
〔電極材料成形工程〕
 本開示に係る電極用成形体の製造方法は、電極材料吐出工程後に、電極材料を成形する工程(即ち、電極材料成形工程)を含むことが好ましい。
 本開示に係る電極用成形体の製造方法が成形工程を含むことで、電極材料の密度を高め且つ密度の均一化を図ることができる。
 電極材料成形工程では、図1及び図2に示すように、支持体10上に供給された電極材料20を加圧ロール50にて加圧することで、電極材料を成形する。
 電極材料を加圧する手段(加圧手段ともいう)は、加圧ロール等のロール部材に限定されず、例えば、プレス器が挙げられる。
 電極材料成形工程においては、電極材料と加圧手段とを直接的に又は間接的に接触させることで、電極材料を成形することが好ましい。ここで、「間接的に接触させる」とは、電極材料と成形部材との間に配置された他の部材(例えば、後述する既述の第2支持体)を介して、電極材料と成形部材とを接触させることを意味する。
 電極材料を加圧する場合、圧力は、1MPa~1GPaであることが好ましく、5MPa~500MPaであることがより好ましく、10MPa~300MPaであることが特に好ましい。
 電極材料成形工程では、複数の加圧手段(例えば、加圧ロール)を用いて、電極材料を段階的に加圧してもよい。複数の加圧手段を用いて電極材料を段階的に加圧することで、電極材料の密度分布をより均一にできる。
 例えば、ロール間の隙間を段階的に狭く調整した、複数の加圧ロール対を用いることで、電極材料を段階的に加圧できる。
 電極材料成形工程では、加圧手段と電極材料(具体的には、電極材料が供給された第1支持体)とを相対移動させて行うことが好ましい。
 本開示において、「加圧手段と電極材料とを相対移動させる」とは、電極材料に対して加圧手段を一方向に移動させること、加圧手段に対して電極材料を一方向に移動させること、及び加圧手段と電極材料とをそれぞれ一方向に移動させることを含むが、加圧手段に対して電極材料を一方向に移動させることが好ましい。
 電極材料(具体的には、電極材料が供給された第1支持体)を移動させる手段としては、制限されず、公知の搬送手段を利用でき、例えば、ベルトコンベア、リニアモーションガイド、及びクロスローラーテーブルが挙げられる。
 電極材料成形工程においては、成形性の向上の観点から、例えば、30℃~250℃にて加熱された電極材料を加圧してもよい。
〔その他の工程〕
 本開示に係る電極用成形体の製造方法は、以下のその他の工程を含んでいてもよい。
 例えば、電極材料吐出工程後で電極材料成形工程前に、第1支持体上に供給された電極材料上に第3支持体を配置する工程(第3支持体配置工程ともいう)を含んでいてもよい。
 加えて、電極材料成形工程の前又は後に、上記第3支持体上に上記電極材料を転写する工程(転写工程ともいう)を含んでいてもよい。
[第3支持体配置工程]
 第3支持体配置工程は、電極材料吐出工程後で電極材料成形工程前に、第1支持体上に供給された電極材料上に第3支持体を配置する。
 第3支持体配置工程は、既述の電極材料吐出工程において、第1支持体が離型材であり、且つ、第2支持体が用いられない態様の場合に採用されることが好ましい。
 第3支持体配置工程を行うことで、電極材料の飛散、汚染等を抑制することができ、密度分布の面内均一性に優れる電極用成形体が得られやすくなる。
 第3支持体としては、集電体が好ましい。
 第3支持体として用いられる集電体については、第2支持体における集電体と同様であり、好ましい態様も同様である。
[転写工程]
 転写工程では、第3支持体配置工程により、第1支持体と第3支持体との間に電極材料が挟持された積層体が形成された後には、積層体を上下反転することで、第3支持体上に上記電極材料を転写する。
 転写工程を行うことで、集電体である第3支持体上に電極材料が転写され、集電体付電極用成形体が得られる。
<<電極用成形体>>
 本開示に係る電極用成形体の製造方法によって得られる電極用成形体は、密度の面内均一性に優れるため、種々の電極として用いることができる。
 電極用成形体は、全固体二次電池の電極用成形体であることが好ましい。
 電極用成形体の形状は、制限されず、用途に応じて適宜決定すればよい。電極用成形体の形状は、平板状であることが好ましい。
 電極用成形体の平均厚さは、電池性能(例えば、放電容量、及び出力特性)の向上の観点から、0.01m~2mmであることが好ましく、0.05mm~1.5mmであることがより好ましく、0.1mm~1mmであることが特に好ましい。
 電極用成形体の平均厚さは、第1支持体の平均厚さと同様の方法で測定される。
 以下、実施例により本開示を詳細に説明するが、本開示はこれらに制限されるものではない。
<硫化物系無機固体電解質(Li-P-S系ガラス)の調製>
 硫化物系無機固体電解質は、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.Hama,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235、及びA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873を参考にして調製した。 
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g、五硫化二リン(P、Aldrich社製、純度>99%)3.9gをそれぞれ秤量した後、上記硫化リチウム、及び上記五硫化二リンを、メノウ製乳鉢を用いて、5分間混合した。なお、LiSとPとのモル比(LiS:P)は、75:25とした。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66個投入し、次いで、上記硫化リチウムと上記五硫化二リンとの混合物の全量を投入した後、アルゴン雰囲気下で容器を完全に密閉した。フリッチュ社製遊星ボールミルP-7(商品名)に容器を取り付け、温度25℃、回転数510rpm(revolutions per minute)で20時間メカニカルミリングを行うことによって、黄色粉体の硫化物系固体電解質(Li-P-S系ガラス)6.2gを得た。以上の工程を10回繰り返し、62gの硫化物系固体電解質を得た
<実施例1>
[正極用電極材料(P-1)の調製]
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、次いで、調製した上記Li-P-S系ガラス3.0gを投入した。フリッチュ社製遊星ボールミルP-7に容器を取り付け、温度25℃、回転数300rpmで2時間混合した。次に、活物質としてLCO(LiCoO、日本化学工業株式会社製)6.8g、及び導電助剤として株式会社デンカ製のLi-100(0.2g)を容器に投入し、次いで、遊星ボールミルP-7に容器を取り付け、温度25℃、回転数100rpmで10分間混合を行うことによって、粒子状の正極用電極材料(P-1)を得た。以上の工程を50回繰り返し、必要量の正極用電極材料を得た。
[ホッパーの準備]
 ホッパー(ステンレス鋼を使って製作)の内周面及び排出口の内周面について、以下の方法で表面層を形成した。
 まず、ホッパーの内周面及び排出口の内周面に、既述の方法で下塗り層を形成した後、日本フッ素工業株式会社製のNF-004(主材料:FEP)を用いてフッ素樹脂コーティングを行い、表面層を形成した。
 形成された表面層(即ち、接触面F)について、既述の方法で水との接触角を測定したところ、75°であり、既述の方法で算術平均粗さRaを測定したところ、5μmであった。
[規制ロールの準備]
 外径10mmであり、ステンレス鋼製のロール部材(株式会社ミスミ製)の外周面に、以下の方法で表面層を形成した。
 まず、ロール部材の外周面に、既述の方法で下塗り層を形成した後、日本フッ素工業株式会社製のNF-004(主材料:FEP)を用いてフッ素樹脂コーティングを行い、表面層を形成した。
 形成された表面層(即ち、接触面F)について、既述の方法で水との接触角を測定したところ、75°であり、既述の方法で算術平均粗さRaを測定したところ、5μmであった。
[正極シートの作製]
 図1に示す電極材料吐出工程を用いて、以下のように正極シートを作製した。
 正極用電極材料(P-1)を、並列に配置した4台のスクリューフィーダー(アズワン株式会社製、粉体計量供給機(スクリュータイプ)、PSF-100SA)に投入した。スクリューフィーダーの下部には、4箇所に分かれた入口を有する上記ホッパーが設けられており、このホッパーを通じて、正極用電極材料(P-1)を、矢印A方向に移動する支持体(離型紙:SP-8Eアイボリー、株式会社日本ラベル製、表面Fの水との接触角:60°平均厚さ:20μm、幅100mm、長さ200mm)の上に吐出した。
 このとき、支持体上には、幅方向で80mmの領域に電極材料が供給される。
 次に、上記規制ロールを用いて、支持体上に供給された電極材料を均した。
 以上の手順によって、長手方向の長さが10cm以上であり、電極材料の質量分布量(目標値)が100mg/cmである粉体シート(正極シート)を得た。
<実施例2~4>
 ホッパー及び規制ロールの表面層の形成に用いた日本フッ素工業株式会社製のNF-004を、それぞれ、表1に記載の、日本フッ素工業株式会社製のNF-015、Aμcoat、又はNF-004ECに変えた以外は、実施例1と同様にして、粉体シート(正極シート)を作製した。
 ホッパー及び規制ロールの表面層について、既述の方法で、水との接触角及び算術平均粗さRaを測定した。結果を表1に示す。
<実施例5>
 ホッパー及び規制ロールの表面層の算術平均粗さRaを1μmにした以外は、実施例1と同様にして、粉体シート(正極シート)を作製した。
 なお、表面層の算術平均粗さRaは、予め、表面層が形成されていない状態のホッパーの内周面及び規制ロールの外周面に、スパロール加工(ローラで金属表面を押しつぶして、金属表面を滑らかに仕上げる鏡面仕上げ工具による加工)をした以外は、実施例1と同様にして表面層を形成することで調整した。
<実施例6>
[長尺の支持体の準備]
 長さ200mmの集電体(厚み20μmのアルミニウム箔)の片面に、以下の方法で表面層を形成した。
 まず、集電体の外周面にシリコーン樹脂コーティングを行い、表面層を形成した。
 形成された表面層(即ち、接触面F)について、既述の方法で水との接触角を測定したところ、85°であり、既述の方法で算術平均粗さRaを測定したところ、3μmであった。
 図2に示す電極材料吐出工程を用いて、以下のように正極シートを作製した。
 正極用電極材料(P-1)を、並列に配置した4台のスクリューフィーダー(アズワン株式会社製、粉体計量供給機(スクリュータイプ)、PSF-100SA)に投入した。スクリューフィーダーの下部には、4箇所に分かれた入口を有する上記ホッパーが設けられており、このホッパーを通じて、正極用電極材料(P-1)を、矢印A方向に移動する支持体(離型紙:SP-8Eアイボリー、株式会社日本ラベル製、表面Fの水との接触角:60°平均厚さ:20μm、幅100mm、長さ200mm)の上に吐出した。
 なお、図2に示すように、ホッパーの内周面の一部及びホッパーの排出口の一部に沿って、且つ、ホッパーの排出口から排出される正極用電極材料(P-1)に接触しながら移動する、上記長尺の支持体を用いた。また、長尺の支持体は、表面層が形成されている面を正極用電極材料(P-1)と接触する側として用いた。
 このとき、支持体上には、幅方向で80mmの領域に電極材料が供給される。
 次に、規制ロール(表面層を有していない、外径10mmであり、ステンレス鋼製のロール部材((株)ミスミ製))を用いて、支持体上に供給された電極材料を均した。
 以上の手順によって、長手方向の長さが10cm以上であり、電極材料の質量分布量(目標値)が100mg/cmである粉体シート(正極シート)を得た。
<実施例7>
 正極用電極材料(P-1)と電解液とを混練することによって調製した正極用電極材料(P-2)を用いたこと以外は、実施例1と同様の手順によって、粉体シートを作製した。電解液の含有量は、正極用電極材料(P-2)の全質量に対して、30質量%であった。電解液としては、アルドリッチ社製のヘキサフルオロリン酸リチウム溶液(1.0M LiPF in EC/EMC=50/50(v/v))を用いた。「EC」とは、炭酸エチレンを意味する。「EMC」とは、炭酸エチルメチルを意味する。
<実施例8>
 上記正極用電極材料(P-2)を用いたこと以外は、実施例6と同様の手順によって、粉体シートを作製した。
<比較例1>
 表面層を形成していない状態のホッパー及び規制ロールを用いた以外は、実施例1と同様にして、粉体シート(正極シート)を作製した。
<比較例2>
 表面層を形成していない状態のホッパー及び長尺の支持体を用いた以外は、実施例6と同様にして、粉体シート(正極シート)を作製した。
<比較例3>
 表面層を形成していない状態のホッパー及び規制ロールを用いた以外は、実施例7と同様にして、粉体シート(正極シート)を作製した。
<比較例4>
 支持体(離型紙)を、支持体(市販アルミニウム箔にシリコーン樹脂コーティングをして表面層を形成したもの、表面Fの水との接触角:80°平均厚さ:20μm、幅200mm、長さ200mm)に変え、表面層上に正極用電極材料(P-1)を供給した以外は、実施例1と同様にして、粉体シート(正極シート)を作製した。
<測定及び評価>
[壁面摩擦角θ1及びθ2の測定]
 各実施例及び比較例における、壁面摩擦角θ1及びθ2を既述の方法で測定した。
 結果を表1に示す。
[質量分布の均一性に関する評価]
 粉体シートの80か所([幅方向に8か所]×[長さ方向に10か所])から、それぞれ、1cmの大きさの試験片を切り取った。試験片の切り取りには、1つの枠あたりの枠内面積を1cmに調節した枠状のトムソン刃を用いた。次に、粉体シートの合計80か所から切り取った各試験片の質量を測定した。各試験片の質量から、粉体シートの全体における質量の標準偏差(σ)を求め、以下の基準に従って、質量分布の均一性を評価した。以下の基準のうち、A、B、C、及びDを合格とした。結果を表1に示す。
(基準)
 A:0%≦σ<1%
 B:1%≦σ<2%
 C:2%≦σ<3%
 D:3%≦σ<5%
 E:5%≦σ<10%
 F:10%≦σ
[生産性に関する評価]
 10枚の粉体シートを作製した場合に、以下の式に従って算出される稼働率(r)に基づいて、以下の基準に従って生産性を評価した。正常に稼働した場合、1枚の粉体シートを作製するに要する時間は30秒である。正常に稼働することができれば、300秒で10枚の粉体シートを作製することができる。そこで、以下の式において、「目標の作製時間」は、300秒とした。以下の基準のうち、A、B、及びCを合格とした。結果を表1に示す。
 式:[稼働率(r)]=[目標の作製時間]/[実際の作製時間]
(基準)
 A:0.9<r≦1.0
 B:0.8<r≦0.9
 C:0.6<r≦0.8
 D:0.4<r≦0.6
 E:r≦0.4
Figure JPOXMLDOC01-appb-T000002
 表1より、実施例1~8は、比較例1~4に比べて、質量分布の均一性が高いことがわかった。
〔符号の説明〕
 10:第1支持体
 20:電極材料
 30:ホッパー(貯留部材の一例、接触部材の一例)
 32:ホッパーの排出口(吐出口の一例)
 40:規制ロール(接触部材の一例)
 50:加圧ロール
 60:第2支持体(接触部材の一例)
 A :第1支持体が搬送される方向
 2019年8月19日に出願された日本国特許出願2019-149870号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書に参照により取り込まれる。

Claims (12)

  1.  電極活物質を含む電極材料を吐出する吐出口と第1支持体とを該第1支持体の面方向に相対移動させつつ、前記吐出口から前記第1支持体の表面Fに向かって前記電極材料を吐出する工程を含み、
     前記工程が、前記電極材料に接触する接触面Fを有する接触部材を用い、
     前記接触部材の前記接触面Fと前記電極材料との壁面摩擦角をθ1とし、前記第1支持体の前記表面Fと前記電極材料との壁面摩擦角をθ2としたとき、以下の(1)及び(2)の関係を満たす、電極用成形体の製造方法。
    (1)1°≦θ1<15°
    (2)15°≦θ2
  2.  前記壁面摩擦角θ1及び前記壁面摩擦角θ2が下記(3)の関係を満たす、請求項1に記載の電極用成形体の製造方法。
    (3)1°≦θ2-θ1≦60°
  3.  前記壁面摩擦角θ2が下記(2’)の関係を満たす、請求項1又は請求項2に記載の電極用成形体の製造方法。
    (2’)15°≦θ2≦60°
  4.  前記接触部材が前記吐出口としての排出口を有し且つ前記電極材料を貯留可能な貯留部材であり、当該排出口の内周面が前記接触部材の前記接触面Fである、請求項1~請求項3のいずれか1項に記載の電極用成形体の製造方法。
  5.  前記接触部材がロール部材であり、当該ロール部材の外周面が前記接触部材の前記接触面Fである、請求項1~請求項3のいずれか1項に記載の電極用成形体の製造方法。
  6.  前記接触部材が、前記吐出口の一部を構成し、且つ、吐出される前記電極材料に接触しながら移動する長尺の第2支持体であり、当該第2支持体の前記電極材料との接触面が前記接触部材の前記接触面Fである、請求項1~請求項3のいずれか1項に記載の電極用成形体の製造方法。
  7.  前記接触部材の前記接触面Fは、水との接触角が75°以上である、請求項1~請求項6のいずれか1項に記載の電極用成形体の製造方法。
  8.  前記第1支持体の前記表面Fは、水との接触角が30°以上75°未満である、請求項1~請求項7のいずれか1項に記載の電極用成形体の製造方法。
  9.  前記接触部材の前記接触面Fが、フッ素原子及びケイ素原子の少なくとも一方を含む表面層を有する、請求項1~請求項8のいずれか1項に記載の電極用成形体の製造方法。
  10.  前記表面層が更に帯電防止剤を含む、請求項9に記載の電極用成形体の製造方法。
  11.  前記接触部材の前記接触面Fは、算術平均粗さRaが10μm以下である請求項1~請求項10のいずれか1項に記載の電極用成形体の製造方法。
  12.  前記第1支持体が離型材である、請求項1~請求項11のいずれか1項に記載の電極用成形体の製造方法。
PCT/JP2020/031154 2019-08-19 2020-08-18 電極用成形体の製造方法 WO2021033690A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080051569.4A CN114144903A (zh) 2019-08-19 2020-08-18 电极用成型体的制造方法
EP20854591.3A EP4020613A4 (en) 2019-08-19 2020-08-18 METHOD FOR PRODUCING A MOLDED BODY FOR ELECTRODES
JP2021540952A JP7242869B2 (ja) 2019-08-19 2020-08-18 電極用成形体の製造方法
US17/563,093 US20220123280A1 (en) 2019-08-19 2021-12-28 Method of manufacturing formed body for electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019149870 2019-08-19
JP2019-149870 2019-08-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/563,093 Continuation US20220123280A1 (en) 2019-08-19 2021-12-28 Method of manufacturing formed body for electrode

Publications (1)

Publication Number Publication Date
WO2021033690A1 true WO2021033690A1 (ja) 2021-02-25

Family

ID=74661176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031154 WO2021033690A1 (ja) 2019-08-19 2020-08-18 電極用成形体の製造方法

Country Status (5)

Country Link
US (1) US20220123280A1 (ja)
EP (1) EP4020613A4 (ja)
JP (1) JP7242869B2 (ja)
CN (1) CN114144903A (ja)
WO (1) WO2021033690A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7366804B2 (ja) 2020-03-09 2023-10-23 株式会社豊田中央研究所 湿潤粉体塗工装置制御プログラム、湿潤粉体塗工装置、及び塗工膜の製造方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642200B2 (ja) 1985-11-07 1989-01-13 Kobe Steel Ltd
JPH09106816A (ja) * 1995-10-09 1997-04-22 Toyota Autom Loom Works Ltd 水素吸蔵合金電極の製造方法
JP2002231231A (ja) * 2001-01-29 2002-08-16 Japan Storage Battery Co Ltd 電池用極板の製造装置
JP2007005747A (ja) 2005-05-27 2007-01-11 Nippon Zeon Co Ltd 電気化学素子電極用シートの製造方法
JP2013114847A (ja) * 2011-11-28 2013-06-10 Panasonic Corp リチウムイオン二次電池とその製造方法
JP2014198293A (ja) 2013-03-29 2014-10-23 トヨタ自動車株式会社 粉体塗工装置、およびそれを用いた電極の製造方法
JP2015028910A (ja) 2013-06-27 2015-02-12 日本ゼオン株式会社 リチウムイオン電池用粉体供給方法、リチウムイオン電池用粉体供給装置及びリチウムイオン電池製造方法
JP2015088486A (ja) 2013-09-25 2015-05-07 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池
JP2016027573A (ja) 2015-09-04 2016-02-18 日本ゼオン株式会社 粉体圧延装置及び圧延シートの製造方法
JP2016062654A (ja) 2014-09-12 2016-04-25 トヨタ自動車株式会社 リチウムイオン二次電池用電極の製造方法
JP2016059870A (ja) 2014-09-18 2016-04-25 パナソニックIpマネジメント株式会社 塗膜物の製造方法、塗膜物の製造装置、塗膜物、非水系2次電池極板、および移動体
JP2017054703A (ja) 2015-09-09 2017-03-16 三洋化成工業株式会社 非水系二次電池活物質被覆用樹脂、非水系二次電池用被覆活物質及び非水系二次電池用被覆活物質の製造方法
JP2017104784A (ja) 2015-12-08 2017-06-15 トヨタ自動車株式会社 造粒体シート製造装置
WO2017104405A1 (ja) 2015-12-16 2017-06-22 富士フイルム株式会社 電極用材料、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
CN106898769A (zh) * 2015-12-18 2017-06-27 惠州比亚迪电池有限公司 一种磷酸锰铁锂类材料及其制备方法以及电池浆料组合物和正极与锂电池
JP2019046765A (ja) 2017-09-07 2019-03-22 三洋化成工業株式会社 リチウムイオン電池用電極の製造方法及びリチウムイオン電池用電極の製造装置
JP2019149870A (ja) 2018-02-26 2019-09-05 Neホールディングス株式会社 ハイブリッド系統接続システム及び連系空き枠マッチングシステム
JP2020146625A (ja) * 2019-03-13 2020-09-17 株式会社豊田中央研究所 湿潤粉体塗工装置制御プログラム、湿潤粉体塗工装置、及び塗工膜の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3140678B2 (ja) * 1996-03-12 2001-03-05 古河電池株式会社 蓄電池用電極基板へのペースト活物質の自動充填装置
US10396350B2 (en) * 2015-01-05 2019-08-27 Zeon Corporation Method for manufacturing electrode for lithium ion battery
WO2021033689A1 (ja) * 2019-08-19 2021-02-25 富士フイルム株式会社 電極用成形体の製造方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642200B2 (ja) 1985-11-07 1989-01-13 Kobe Steel Ltd
JPH09106816A (ja) * 1995-10-09 1997-04-22 Toyota Autom Loom Works Ltd 水素吸蔵合金電極の製造方法
JP2002231231A (ja) * 2001-01-29 2002-08-16 Japan Storage Battery Co Ltd 電池用極板の製造装置
JP2007005747A (ja) 2005-05-27 2007-01-11 Nippon Zeon Co Ltd 電気化学素子電極用シートの製造方法
JP2013114847A (ja) * 2011-11-28 2013-06-10 Panasonic Corp リチウムイオン二次電池とその製造方法
JP2014198293A (ja) 2013-03-29 2014-10-23 トヨタ自動車株式会社 粉体塗工装置、およびそれを用いた電極の製造方法
JP2015028910A (ja) 2013-06-27 2015-02-12 日本ゼオン株式会社 リチウムイオン電池用粉体供給方法、リチウムイオン電池用粉体供給装置及びリチウムイオン電池製造方法
JP2015088486A (ja) 2013-09-25 2015-05-07 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池
JP2016062654A (ja) 2014-09-12 2016-04-25 トヨタ自動車株式会社 リチウムイオン二次電池用電極の製造方法
JP2016059870A (ja) 2014-09-18 2016-04-25 パナソニックIpマネジメント株式会社 塗膜物の製造方法、塗膜物の製造装置、塗膜物、非水系2次電池極板、および移動体
JP2016027573A (ja) 2015-09-04 2016-02-18 日本ゼオン株式会社 粉体圧延装置及び圧延シートの製造方法
JP2017054703A (ja) 2015-09-09 2017-03-16 三洋化成工業株式会社 非水系二次電池活物質被覆用樹脂、非水系二次電池用被覆活物質及び非水系二次電池用被覆活物質の製造方法
JP2017104784A (ja) 2015-12-08 2017-06-15 トヨタ自動車株式会社 造粒体シート製造装置
WO2017104405A1 (ja) 2015-12-16 2017-06-22 富士フイルム株式会社 電極用材料、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
CN106898769A (zh) * 2015-12-18 2017-06-27 惠州比亚迪电池有限公司 一种磷酸锰铁锂类材料及其制备方法以及电池浆料组合物和正极与锂电池
JP2019046765A (ja) 2017-09-07 2019-03-22 三洋化成工業株式会社 リチウムイオン電池用電極の製造方法及びリチウムイオン電池用電極の製造装置
JP2019149870A (ja) 2018-02-26 2019-09-05 Neホールディングス株式会社 ハイブリッド系統接続システム及び連系空き枠マッチングシステム
JP2020146625A (ja) * 2019-03-13 2020-09-17 株式会社豊田中央研究所 湿潤粉体塗工装置制御プログラム、湿潤粉体塗工装置、及び塗工膜の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. HAYASHIS. HAMAH. MORIMOTOM. TATSUMISAGOT. MINAMI, CHEM. LETT., 2001, pages 872 - 873
See also references of EP4020613A4
T. OHTOMOA. HAYASHIM. TATSUMISAGOY TSUCHIDAS. HAMAK. KAWAMOTO, JOURNAL OF POWER SOURCES, vol. 233, 2013, pages 231 - 235

Also Published As

Publication number Publication date
CN114144903A (zh) 2022-03-04
US20220123280A1 (en) 2022-04-21
EP4020613A1 (en) 2022-06-29
JPWO2021033690A1 (ja) 2021-02-25
EP4020613A4 (en) 2023-03-29
JP7242869B2 (ja) 2023-03-20

Similar Documents

Publication Publication Date Title
KR20200078479A (ko) 전고체 이차 전지 및 그 충전 방법
WO2021033521A1 (ja) 電極用成形体の製造方法
JP6912658B2 (ja) 全固体二次電池及びその製造方法
WO2011033707A1 (ja) 非水電解質二次電池用電極およびその製造方法ならびに非水電解質二次電池
US11605805B2 (en) Method of manufacturing formed body for electrode
JP7014899B2 (ja) 固体電解質含有シート、全固体二次電池用電極シート、全固体二次電池、電子機器及び電気自動車、並びに、これらの製造方法
JP2023144101A (ja) 電極用成形体の製造方法
WO2021033690A1 (ja) 電極用成形体の製造方法
WO2021033492A1 (ja) 電極用成形体の製造方法
US20230114069A1 (en) Method of manufacturing an electrode comprising a dry electrode film and an electrode for an electrochemical device therefrom
JP7334202B2 (ja) 二次電池用電極の製造方法および該電極
WO2020262649A1 (ja) 電極用成形体の製造方法
KR20220135643A (ko) 활물질이 없는 전고체 전지용 음극 및 이를 포함하는 전고체 전지
WO2024024785A1 (ja) シート状電極用成形体の製造方法
US20220293905A1 (en) Method of producing electrode for secondary battery
US20220311047A1 (en) All-solid secondary battery
WO2022202901A1 (ja) 固体電解質積層シート及び全固体二次電池、並びに、全固体二次電池の製造方法
WO2024075574A1 (ja) 電極層の製造方法
WO2024024786A1 (ja) 電極材料の製造方法、電池用電極の製造方法、及び、電池の製造方法
KR20240035351A (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854591

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021540952

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020854591

Country of ref document: EP

Effective date: 20220321