WO2021020023A1 - 位相差フィルム及びその製造方法 - Google Patents

位相差フィルム及びその製造方法 Download PDF

Info

Publication number
WO2021020023A1
WO2021020023A1 PCT/JP2020/026095 JP2020026095W WO2021020023A1 WO 2021020023 A1 WO2021020023 A1 WO 2021020023A1 JP 2020026095 W JP2020026095 W JP 2020026095W WO 2021020023 A1 WO2021020023 A1 WO 2021020023A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
retardation film
retardation
less
resin film
Prior art date
Application number
PCT/JP2020/026095
Other languages
English (en)
French (fr)
Inventor
恭輔 井上
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to US17/597,654 priority Critical patent/US20220251318A1/en
Priority to CN202080052256.0A priority patent/CN114127594A/zh
Priority to KR1020227000675A priority patent/KR20220038051A/ko
Priority to JP2021536860A priority patent/JPWO2021020023A1/ja
Publication of WO2021020023A1 publication Critical patent/WO2021020023A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/02Chemical treatment or coating of shaped articles made of macromolecular substances with solvents, e.g. swelling agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00788Producing optical films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0031Refractive
    • B29K2995/0032Birefringent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0041Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0045Isotropic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/22Molecular weight
    • C08G2261/228Polymers, i.e. more than 10 repeat units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3325Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from other polycyclic systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/59Stability
    • C08G2261/592Stability against heat
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/60Glass transition temperature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/62Mechanical aspects
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2465/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a retardation film and a method for producing the same.
  • Patent Documents 1 to 3 Conventionally, a film manufacturing technique using a resin has been proposed (Patent Documents 1 to 3).
  • One of the films manufactured using resin is a retardation film. Since the retardation film has retardation in at least one of the in-plane direction and the thickness direction, it is generally required to have a large birefringence in at least one of the in-plane direction and the thickness direction.
  • the retardation film is a kind of optical film, it is usually required to have a small haze.
  • those having a particularly small haze have been difficult to manufacture by the conventional technique. Therefore, a technique for realizing a retardation film having an NZ coefficient of less than 1.0 and a small haze has been required regardless of whether the manufacturing method is simple or not.
  • the present inventor has diligently studied to solve the above-mentioned problems.
  • the present inventor has a first step of preparing an optically isotropic resin film formed of a resin containing a crystalline polymer, and a birefringence in the thickness direction by contacting the resin film with an organic solvent.
  • a retardation film having an NZ coefficient of less than 1.0 can be easily produced by a method including a second step of changing the birefringence.
  • the present inventor has found that according to this manufacturing method, it is possible to realize a retardation film having an NZ coefficient of less than 1.0 and a small haze. Based on these findings, the present inventor has completed the present invention. That is, the present invention includes the following.
  • the method for producing a retardation film according to [7] which comprises a third step of stretching the resin film after the second step.
  • the present invention it is possible to provide a retardation film having an NZ coefficient of less than 1.0 and a small haze; and a manufacturing method capable of easily producing a retardation film having an NZ coefficient of less than 1.0.
  • the birefringence in the in-plane direction of the film is a value represented by (nx-ny), and is therefore represented by Re / d, unless otherwise specified.
  • the birefringence in the thickness direction of the film is a value represented by [ ⁇ (nx + ny) / 2 ⁇ -nz], and is therefore represented by Rth / d, unless otherwise specified.
  • the NZ coefficient of the film is a value represented by (nx-nz) / (nx-ny) unless otherwise specified.
  • nx represents the refractive index in the direction perpendicular to the thickness direction of the film (in-plane direction) and in the direction giving the maximum refractive index.
  • ny represents the refractive index in the in-plane direction of the film and orthogonal to the nx direction.
  • nz represents the refractive index in the thickness direction of the film.
  • d represents the thickness of the film.
  • the measurement wavelength is 590 nm unless otherwise specified.
  • a material having a positive intrinsic birefringence means a material in which the refractive index in the stretching direction is larger than the refractive index in the direction perpendicular to it, unless otherwise specified.
  • a material having a negative intrinsic birefringence means a material in which the refractive index in the stretching direction is smaller than the refractive index in the direction perpendicular to it, unless otherwise specified.
  • the value of the intrinsic birefringence can be calculated from the permittivity distribution.
  • the "long" film means a film having a length of 5 times or more with respect to the width, preferably having a length of 10 times or more, and specifically a roll.
  • the directions of the elements of "parallel”, “vertical” and “orthogonal” include an error within a range that does not impair the effect of the present invention, for example, within a range of ⁇ 5 °, unless otherwise specified. You may be.
  • the retardation film according to the first embodiment has achieved the embodiment of the above-mentioned technical means for the first time.
  • the retardation film according to the first embodiment is formed of a resin containing a polymer having crystallinity.
  • the "polymer having crystallinity” represents a polymer having a melting point Tm. That is, the “polymer having crystallinity” refers to a polymer whose melting point can be observed with a differential scanning calorimeter (DSC).
  • a polymer having crystallinity may be referred to as a “crystalline polymer”.
  • a resin containing a crystalline polymer may be referred to as a "crystalline resin”. This crystalline resin is preferably a thermoplastic resin.
  • the crystalline polymer preferably contains an alicyclic structure.
  • an alicyclic structure By using a crystalline polymer containing an alicyclic structure, the mechanical properties, heat resistance, transparency, low hygroscopicity, dimensional stability and light weight of the retardation film can be improved.
  • the polymer containing an alicyclic structure represents a polymer having an alicyclic structure in the molecule.
  • the polymer containing such an alicyclic structure can be, for example, a polymer obtained by a polymerization reaction using a cyclic olefin as a monomer or a hydride thereof.
  • Examples of the alicyclic structure include a cycloalkane structure and a cycloalkene structure. Among these, a cycloalkane structure is preferable because it is easy to obtain a retardation film having excellent properties such as thermal stability.
  • the number of carbon atoms contained in one alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, and particularly preferably 15 or less. is there. When the number of carbon atoms contained in one alicyclic structure is within the above range, mechanical strength, heat resistance, and moldability are highly balanced.
  • the crystallinity of the crystalline polymer contained in the retardation film is not particularly limited, but is usually higher than a certain level.
  • the specific range of crystallinity is preferably 10% or more, more preferably 15% or more, and particularly preferably 30% or more.
  • the crystallinity of the crystalline polymer can be measured by X-ray diffraction.
  • the proportion of the crystalline polymer in the crystalline resin is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more.
  • the proportion of the crystalline polymer is not more than the lower limit of the above range, the birefringence expression and heat resistance of the retardation film can be enhanced.
  • the upper limit of the proportion of the crystalline polymer can be 100% by weight or less.
  • Fluorescent whitening agents such as benzotriazole derivatives, benzoimidazole derivatives, and benzothiazole derivatives), carbazole derivatives, pyridine derivatives, naphthalic acid derivatives, and imidazolone derivatives; benzophenone-based ultraviolet absorbers, salicylic acid-based ultraviolet absorbers, benzotriazole-based UV absorbers such as UV absorbers; Inorganic fillers such as talc, silica, calcium carbonate, glass fibers; Colorants; Flame retardants; Flame retardant aids; Antistatic agents; Plastics; Near infrared absorbers; Lubricants; Fillers ; And any polymer other than the crystalline polymer, such as a soft polymer; and the like.
  • the arbitrary component one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • the NZ coefficient of the retardation film according to the first embodiment of the present invention is usually less than 1.0.
  • the retardation film having an NZ coefficient of less than 1.0 is provided in the display device, it is possible to improve the display quality such as the viewing angle, contrast, and image quality of the display device.
  • the specific value of the NZ coefficient of the retardation film can be arbitrary depending on the use of the retardation film, and can be, for example, less than 0.8, less than 0.6, less than 0.4, and the like.
  • the lower limit of the NZ coefficient of the retardation film is arbitrary and can be, for example, greater than -1000, greater than -500, greater than -100, greater than -40, greater than -20, and so on.
  • the NZ coefficient of the retardation film is preferably larger than 0.0 because it has been particularly difficult to manufacture by the conventional technique.
  • the haze of the retardation film according to the first embodiment of the present invention is usually less than 1.0%, preferably less than 0.8%, more preferably less than 0.5%, and ideally 0.0%. Is. When the retardation film having a small haze is provided on a display device, the sharpness of the image displayed on the display device can be improved.
  • the haze of the film can be measured using a haze meter (for example, "NDH5000” manufactured by Nippon Denshoku Kogyo Co., Ltd.).
  • organic solvent one that does not dissolve the crystalline polymer can be used.
  • Preferred organic solvents include, for example, hydrocarbon solvents such as toluene, limonene, decalin; carbon disulfide;
  • the type of the organic solvent may be one type or two or more types.
  • the ratio of the organic solvent contained in the retardation film to 100% by weight of the retardation film is preferably 10% by weight or less, more preferably 5% by weight or less, and particularly preferably 0.1% by weight or less. Is.
  • the retardation film usually has large birefringence in at least one of the in-plane direction and the thickness direction. Specifically, the retardation film is usually, 1.0 ⁇ 10 -3 or more in-plane direction of the birefringent Re / d, and, 1.0 ⁇ 10 -3 or more absolute value in the thickness direction of the birefringent It has at least one of
  • of birefringence in the thickness direction of the retardation film is usually 1.0 ⁇ 10 -3 or more, preferably 3.0 ⁇ 10 -3 or more, and particularly preferably 5.0 ⁇ 10 It is -3 or more.
  • the upper limit is not limited and may be, for example, 2.0 ⁇ 10 -2 or less, 1.5 ⁇ 10 -2 or less, or 1.0 ⁇ 10 -2 or less.
  • the birefringence Re / d in the in-plane direction of the retardation film is 1.0 ⁇ 10 -3 or more
  • of the birefringence in the thickness direction of the retardation film is in the above range. May be outside.
  • the specific in-plane retardation Re of the retardation film may be, for example, preferably 100 nm or more, more preferably 110 nm or more, particularly preferably 120 nm or more, and preferably 180 nm or less, more preferably 170 nm or less, particularly. It can preferably be 160 nm or less.
  • the retardation film can function as a quarter wave plate.
  • the value of the retardation Rth in the thickness direction of the retardation film can be set according to the application of the retardation film.
  • the retardation Rth in the specific thickness direction of the retardation film can be preferably 200 nm or more, more preferably 250 nm or more, and particularly preferably 300 nm or more.
  • the upper limit may be 10,000 nm or less.
  • the specific total light transmittance of the retardation film is preferably 80% or more, more preferably 85% or more, and particularly preferably 88% or more.
  • the total light transmittance of the retardation film can be measured in the wavelength range of 400 nm to 700 nm using an ultraviolet-visible spectrometer.
  • the thickness d of the retardation film can be appropriately set according to the application of the retardation film.
  • the specific thickness d of the retardation film is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, particularly preferably 20 ⁇ m or more, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and particularly preferably 50 ⁇ m or less.
  • the thickness d of the retardation film is not less than the lower limit of the above range, the handleability can be improved and the strength can be increased. Further, when the thickness d of the retardation film is not more than the upper limit value, it is easy to wind the long retardation film.
  • the retardation film according to the first embodiment described above can be manufactured by the manufacturing method described in the second embodiment described later.
  • the method for producing a retardation film according to the second embodiment of the present invention includes a first step of preparing an optically isotropic resin film formed of a crystalline resin containing a crystalline polymer; It comprises a second step of contacting with an organic solvent to change the birefringence in the thickness direction.
  • a retardation film having an NZ coefficient of less than 1.0 can be easily manufactured.
  • the surface area of the resin film is large on the front surface and the back surface, which are the main surfaces. Therefore, as for the infiltration rate of the organic solvent, the infiltration rate in the thickness direction through the front surface or the back surface is high. Then, the orientation of the molecules of the crystalline polymer can proceed so that the molecules of the polymer are oriented in the thickness direction.
  • the NZ coefficient of the resin film is adjusted. Therefore, the resin film after contact with the organic solvent can be obtained as a retardation film having an NZ coefficient of less than 1.0.
  • the ability to adjust the NZ coefficient by simply bringing the optically isotropic resin film and the organic solvent into contact with each other in this way is useful in facilitating the production of the retardation film.
  • the method for producing a retardation film according to the second embodiment of the present invention may further include an arbitrary step in combination with the above-mentioned first step and second step.
  • the method for producing a retardation film may include a third step of stretching the resin film after the second step, and may include a fourth step of heat-treating the resin film after the second step. May be good.
  • a retardation film can be obtained as a resin film whose characteristics have been adjusted by these arbitrary steps.
  • First step Preparation of resin film
  • an optically isotropic resin film formed of a crystalline resin containing a crystalline polymer is prepared.
  • the resin film before contact with the organic solvent in the second step may be appropriately referred to as "raw film”.
  • the crystalline resin as the material of the optically isotropic raw film prepared in the first step can be the same as the crystalline resin described in the first embodiment.
  • the crystallinity of the crystalline polymer contained in the raw film is preferably small.
  • the specific crystallinity is preferably less than 10%, more preferably less than 5%, and particularly preferably less than 3%. If the crystallinity of the crystalline polymer contained in the raw film before contact with the organic solvent is low, many molecules of the crystalline polymer can be oriented in the thickness direction by contact with the organic solvent, and thus a wide range.
  • the NZ coefficient can be adjusted in.
  • the raw film is an optically isotropic resin film. That is, the raw film is a film in which the birefringence Re / d in the in-plane direction is small and the absolute value
  • the birefringence Re / d of the raw film in the in-plane direction is usually less than 1.0 ⁇ 10 -3 , preferably less than 0.5 ⁇ 10 -3 , and more preferably 0.3 ⁇ 10 ⁇ . It is less than 3 .
  • of the birefringence in the thickness direction of the raw film is usually less than 1.0 ⁇ 10 -3 , preferably less than 0.5 ⁇ 10 -3 , more preferably 0.3 ⁇ 10. It is less than -3 .
  • Having optical isotropic properties as described above indicates that the molecular orientation of the crystalline polymer contained in the raw film is low and is substantially non-oriented.
  • the raw film preferably has a small content of an organic solvent, and more preferably does not contain an organic solvent.
  • the ratio of the organic solvent contained in the raw film to 100% by weight of the raw film (solvent content) is preferably 1% or less, more preferably 0.5% or less, and particularly preferably 0.1% or less. Yes, ideally 0.0%. Since the amount of the organic solvent contained in the raw film before contact with the organic solvent is small, many molecules of the crystalline polymer can be oriented in the thickness direction by the contact with the organic solvent, and thus NZ in a wide range. The coefficient can be adjusted.
  • the solvent content of the raw film can be measured by the density.
  • the haze of the raw film is preferably less than 1.0%, preferably less than 0.8%, more preferably less than 0.5%, and ideally 0.0%.
  • the thickness of the raw film is set according to the thickness of the retardation film to be manufactured.
  • the thickness is increased by contacting with an organic solvent in the second step.
  • the thickness is reduced by the stretching. Therefore, the thickness of the raw film may be set in consideration of the change in thickness in the second and subsequent steps as described above.
  • the raw film may be a single-wafer film, but it is preferably a long film.
  • a long raw film it is possible to continuously produce a retardation film by a roll-to-roll method, so that the productivity of the retardation film can be effectively increased.
  • an injection molding method As a method for producing a raw fabric film, since a raw fabric film containing no organic solvent can be obtained, an injection molding method, an extrusion molding method, a press molding method, an inflation molding method, a blow molding method, a calendar molding method, and a casting molding method.
  • a resin molding method such as a method or a compression molding method is preferable.
  • the extrusion molding method is preferable because the thickness can be easily controlled.
  • the manufacturing conditions in the extrusion molding method are preferably as follows.
  • the cylinder temperature (molten resin temperature) is preferably Tm or more, more preferably “Tm + 20 ° C” or higher, preferably “Tm + 100 ° C” or lower, and more preferably “Tm + 50 ° C” or lower.
  • the cooling body that the molten resin extruded into a film comes into contact with first is not particularly limited, but a cast roll is usually used.
  • the cast roll temperature is preferably "Tg-50 ° C.” or higher, preferably "Tg + 70 ° C.” or lower, and more preferably "Tg + 40 ° C.” or lower.
  • the cooling roll temperature is preferably "Tg-70 ° C.” or higher, more preferably “Tg-50 ° C.” or higher, preferably “Tg + 60 ° C.” or lower, and more preferably “Tg + 30 ° C.” or lower.
  • Tm represents the melting point of the crystalline polymer
  • Tg represents the glass transition temperature of the crystalline polymer.
  • Second step Contact between the resin film and the organic solvent
  • the organic solvent a solvent that can penetrate into the resin film without dissolving the crystalline polymer contained in the resin film can be used, and for example, a hydrocarbon solvent such as toluene, limonene, and decalin; carbon disulfide; Can be mentioned.
  • the type of the organic solvent may be one type or two or more types.
  • the contact method between the resin film and the organic solvent is arbitrary.
  • Examples of the contact method include a spray method in which an organic solvent is sprayed on a resin film; a coating method in which an organic solvent is applied to a resin film; a dipping method in which a resin film is immersed in an organic solvent; and the like. Above all, the dipping method is preferable because continuous contact can be easily performed.
  • the temperature of the organic solvent in contact with the resin film is arbitrary as long as the organic solvent can maintain the liquid state, and therefore can be set in the range of the melting point or more and the boiling point or less of the organic solvent.
  • the time for contacting the resin film with the organic solvent is not particularly specified, but is preferably 0.5 seconds or longer, more preferably 1.0 seconds or longer, particularly preferably 5.0 seconds or longer, and preferably 120 seconds or longer. Hereinafter, it is more preferably 80 seconds or less, and particularly preferably 60 seconds or less.
  • the contact time is equal to or greater than the lower limit of the above range, the NZ coefficient can be effectively adjusted by contact with the organic solvent.
  • the adjustment amount of the NZ coefficient tends not to change significantly even if the immersion time is lengthened. Therefore, when the contact time is not more than the upper limit of the above range, the productivity can be improved without impairing the quality of the retardation film.
  • the birefringence Rth / d in the thickness direction of the resin film changes when it is brought into contact with the organic solvent in the second step.
  • the NZ coefficient is adjusted to obtain an NZ coefficient of less than 1.0.
  • the amount of change in birefringence Rth / d in the thickness direction of the resin film caused by contact with an organic solvent is preferably 1.0 ⁇ 10 -3 or more, more preferably 2.0 ⁇ 10 -3 or more, and particularly preferably 5. It is 0.0 ⁇ 10 -3 or more, preferably 50.0 ⁇ 10 -3 or less, more preferably 30.0 ⁇ 10 -3 or less, and particularly preferably 20.0 ⁇ 10 -3 or less.
  • the amount of change in the birefringence Rth / d in the thickness direction represents an absolute value of the change in the birefringence Rth / d in the thickness direction.
  • the in-plane birefringence Re / d of the resin film may or may not change due to contact with an organic solvent. From the viewpoint of simplifying the control of the in-plane retardation Re of the retardation film, it is preferable that the change in the birefringence Re / d in the in-plane direction caused by the contact with the organic solvent in the resin film is small and does not occur. Is more preferable.
  • the amount of change in birefringence Re / d of the resin film in the in-plane direction caused by contact with an organic solvent is preferably 0.0 ⁇ 10 -3 to 2.0 ⁇ 10 -3 , more preferably 0.0 ⁇ 10.
  • the amount of change in the birefringence Re / d in the in-plane direction represents an absolute value of the change in the birefringence Re / d in the in-plane direction.
  • the organic solvent in contact with the resin film penetrates into the resin film, so that the thickness of the resin film is usually increased in the second step.
  • the lower limit of the rate of change in the thickness of the resin film at this time may be, for example, 10% or more, 20% or more, or 30% or more.
  • the upper limit of the change rate of the thickness may be, for example, 80% or less, 50% or less, or 40% or less.
  • the rate of change in the thickness of the resin film is a ratio obtained by dividing the amount of change in the thickness of the resin film by the thickness of the raw film (that is, the resin film before contact with the organic solvent).
  • the birefringence Rth / d in the thickness direction of the resin film is changed by the second step. Therefore, when a resin film having desired optical characteristics can be obtained by changing the birefringence Rth / d in the thickness direction in the second step, the resin film can be obtained as a retardation film. Further, in the production method according to the second embodiment, an arbitrary step may be further applied to the resin film after the second step has been performed.
  • the method for producing a retardation film according to the second embodiment of the present invention may include a third step of stretching the resin film after the second step.
  • the molecules of the crystalline polymer contained in the resin film can be oriented in a direction corresponding to the stretching direction. Therefore, according to the third step, optical characteristics such as birefringence Re / d in the in-plane direction, in-plane retardation Re, birefringence Rth / d in the thickness direction, retardation Rth in the thickness direction, and NZ coefficient of the resin film.
  • the thickness d can be adjusted.
  • the stretching direction there is no limitation on the stretching direction, and examples thereof include a longitudinal direction, a width direction, and an oblique direction.
  • the diagonal direction is a direction perpendicular to the thickness direction and is neither parallel to the width direction nor perpendicular to the width direction.
  • the stretching direction may be one direction or two or more directions.
  • a uniaxial stretching method such as a method of uniaxially stretching the resin film in the longitudinal direction (longitudinal uniaxial stretching method), a method of uniaxially stretching the resin film in the width direction (horizontal uniaxial stretching method); Biaxial stretching method such as simultaneous biaxial stretching method in which the film is stretched in the longitudinal direction and at the same time in the width direction, and sequential biaxial stretching method in which the resin film is stretched in one of the longitudinal direction and the width direction and then stretched in the other direction.
  • a method of stretching the resin film in an oblique direction (diagonal stretching method); and the like.
  • the draw ratio is preferably 1.1 times or more, more preferably 1.2 times or more, preferably 20.0 times or less, more preferably 10.0 times or less, still more preferably 5.0 times or less, particularly. It is preferably 2.0 times or less. It is desirable to appropriately set the specific draw ratio according to factors such as the optical characteristics, thickness, and strength of the retardation film to be manufactured.
  • the stretching ratio is equal to or higher than the lower limit of the above range, the birefringence can be significantly changed by stretching. Further, when the draw ratio is not more than the upper limit value of the above range, the direction of the slow phase axis can be easily controlled and the breakage of the resin film can be effectively suppressed.
  • the stretching temperature is preferably "Tg + 5 ° C.” or higher, more preferably “Tg + 10 ° C.” or higher, preferably “Tg + 100 ° C.” or lower, and more preferably "Tg + 90 ° C.” or lower.
  • Tg represents the glass transition temperature of the crystalline polymer.
  • the stretching temperature is equal to or higher than the lower limit of the above range, the resin film can be sufficiently softened to uniformly stretch. Further, when the stretching temperature is not more than the upper limit of the above range, the curing of the resin film due to the progress of crystallization of the crystalline polymer can be suppressed, so that stretching can be smoothly performed, and the stretching causes a large birefringence. Can be expressed. Further, usually, the haze of the obtained resin film can be reduced to increase the transparency.
  • a stretched film as a stretched resin film can be obtained.
  • the NZ coefficient can be adjusted. Therefore, when a resin film as a stretched film having desired optical characteristics can be obtained by stretching by the third step, the resin film can be obtained as a retardation film.
  • the method for producing a retardation film according to the second embodiment of the present invention may include a fourth step of heat-treating the resin film after the second step.
  • the fourth step is usually performed after the third step.
  • the heat treatment temperature is usually not less than the glass transition temperature of the crystalline polymer Tg and not more than the melting point Tm of the crystalline polymer. More specifically, the heat treatment temperature is preferably Tg ° C. or higher, more preferably Tg + 10 ° C. or higher, preferably Tm-20 ° C. or lower, and more preferably Tm-40 ° C. or lower. In the above temperature range, crystallization of the crystalline polymer can be rapidly promoted while suppressing white turbidity due to the progress of crystallization.
  • the heat treatment treatment time is preferably 1 second or longer, more preferably 5 seconds or longer, preferably 30 minutes or shorter, and more preferably 15 minutes or shorter.
  • the NZ coefficient can be adjusted. Therefore, when a resin film having desired optical characteristics can be obtained by the heat treatment in the fourth step, the resin film can be obtained as a retardation film.
  • the method for producing the retardation film may further include an arbitrary step in combination with the above-mentioned steps.
  • the method for producing the retardation film may include, for example, a step of removing the organic solvent adhering to the resin film after the second step. Examples of the method for removing the organic solvent include drying and wiping.
  • the method for producing the retardation film may include, for example, a step of performing a preheat treatment for heating the resin film to the stretching temperature before the third step.
  • the preheating temperature and the stretching temperature are the same, but may be different.
  • the preheating temperature is preferably T1-10 ° C. or higher, more preferably T1-5 ° C. or higher, preferably T1 + 5 ° C. or lower, and more preferably T1 + 2 ° C. or lower with respect to the stretching temperature T1.
  • the preheating time is arbitrary, preferably 1 second or longer, more preferably 5 seconds or longer, and preferably 60 seconds or shorter, more preferably 30 seconds or shorter.
  • the method for producing the retardation film may include, for example, a step of performing a relaxation treatment of heat-shrinking the resin film to remove residual stress.
  • the relaxation treatment the residual stress can be removed by causing the resin film to undergo thermal shrinkage in an appropriate temperature range while keeping the resin film flat.
  • a long retardation film can be manufactured by using a long raw film.
  • the method for producing a retardation film may include a step of winding the long retardation film thus produced into a roll shape. Further, the method for producing a retardation film may include a step of cutting a long retardation film into a desired shape.
  • the birefringence can be adjusted by a simple step of contacting the raw film with an organic solvent, so that a retardation film having a desired NZ coefficient can be obtained. Easy to manufacture. Therefore, according to this manufacturing method, a retardation film having an NZ coefficient of less than 1.0 can be easily obtained.
  • the NZ coefficient of the retardation film produced by the manufacturing method according to the second embodiment may be the same as the NZ coefficient of the retardation film according to the first embodiment in detail. Further, the retardation film produced by the production method according to the second embodiment may have the same characteristics as the retardation film according to the first embodiment in terms of characteristics other than the NZ coefficient. Therefore, the retardation film produced by the production method according to the second embodiment is the crystalline resin contained in the retardation film; the haze of the retardation film; the amount of the organic solvent contained in the retardation film; the retardation.
  • Characteristics such as film retardation Re and Rth; double refraction Re / d and Rth / d of the retardation film; total light transmittance of the retardation film; thickness of the retardation film; It can be the same as the retardation film.
  • the retardation film according to the first embodiment described above and the retardation film manufactured by the manufacturing method according to the second embodiment can be provided in, for example, a display device.
  • the retardation film can improve the display quality such as the viewing angle, contrast, and image quality of the image displayed on the display device.
  • the glass transition temperature Tg and the melting point Tm of the polymer were measured as follows. First, the polymer was melted by heating, and the melted polymer was rapidly cooled with dry ice. Subsequently, using this polymer as a test piece, the glass transition temperature Tg and melting point Tm of the polymer were measured at a heating rate of 10 ° C./min (heating mode) using a differential scanning calorimeter (DSC). It was measured.
  • the ratio of the racemo diad of the polymer was measured as follows. Orthodichlorobenzene -d 4 as a solvent, at 200 ° C., by applying the inverse-gated decoupling method, was 13 C-NMR measurement of the polymer. In the results of this 13 C-NMR measurement, a signal of 43.35 ppm derived from meso-diad and a signal of 43.43 ppm derived from racemo-diad were used with the peak of 127.5 ppm of orthodichlorobenzene-d 4 as a reference shift. Was identified. Based on the intensity ratios of these signals, the proportion of racemo diads in the polymer was determined.
  • the in-plane retardation Re of the film, the retardation Rth in the thickness direction, and the NZ coefficient were measured by a phase difference meter (“AXoScan OPMF-1” manufactured by AXOMETRICS).
  • the measurement wavelength was 590 nm.
  • the thickness of the film was measured using a contact-type thickness gauge (Code No. 543-390 manufactured by Mitutoyo Co., Ltd.).
  • the weight of the retardation film as a sample was measured by thermogravimetric analysis (TGA: under a nitrogen atmosphere, a heating rate of 10 ° C./min, 30 ° C. to 300 ° C.) as described above.
  • TGA thermogravimetric analysis
  • 0.014 parts of the tetrachlorotungsten phenylimide (tetrahydrofuran) complex was dissolved in 0.70 parts of toluene to prepare a solution.
  • This catalyst solution was added to a pressure resistant reactor to initiate a ring-opening polymerization reaction. Then, the reaction was carried out for 4 hours while maintaining 53 ° C. to obtain a solution of a ring-opening polymer of dicyclopentadiene.
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) of the obtained ring-opening polymer of dicyclopentadiene are 8,750 and 28,100, respectively, and the molecular weight distribution (Mw / Mn) obtained from these is Was 3.21.
  • the hydride contained in the reaction solution and the solution were separated using a centrifuge and dried under reduced pressure at 60 ° C. for 24 hours to obtain a hydride of a crystallinity ring-opening polymer of dicyclopentadiene 28. I got 5 copies.
  • the hydrogenation rate of this hydride was 99% or more, the glass transition temperature Tg was 93 ° C., the melting point (Tm) was 262 ° C., and the ratio of racemo diad was 89%.
  • a mixture of a hydride of a ring-opening polymer of dicyclopentadiene and an antioxidant was formed into a strand by hot melt extrusion molding and then shredded with a strand cutter to obtain a pellet-shaped crystalline resin.
  • Example 1 (1-1. First step: Manufacture of raw film)
  • the crystalline resin produced in Production Example 1 was molded using a heat melt extrusion film molding machine equipped with a T-die (“Manufacturing Expert Type Me-20 / 2800V3” manufactured by Optical Control Systems), and 1.5 m / min.
  • the film was wound on a roll at a high speed to obtain a resin film (thickness 50 ⁇ m) as a long raw film having a width of about 120 mm.
  • the operating conditions of the film forming machine were as follows.
  • Example 2 In the step (1-1), the thickness of the resin film as the raw film was changed to 20 ⁇ m by adjusting the speed (line speed) of winding the film on the roll. Further, in the step (1-2), the time for immersing the resin film in the treatment solvent (here, toluene) was changed to 1 second. Except for the above items, the retardation film was manufactured and evaluated by the same operation as in Example 1.
  • the treatment solvent here, toluene
  • Example 3 In the step (1-1), the thickness of the resin film as the raw film was changed to 100 ⁇ m by adjusting the speed (line speed) of winding the film on the roll. Further, in the step (1-2), the time for immersing the resin film in the treatment solvent (here, toluene) was changed to 60 seconds. Except for the above items, the retardation film was manufactured and evaluated by the same operation as in Example 1.
  • the treatment solvent here, toluene
  • Example 4 A stretching device (“SDR-562Z” manufactured by Eto Co., Ltd.) was prepared.
  • the stretching device was provided with a clip capable of gripping the end of a rectangular resin film and an oven.
  • a total of 24 clips were provided, 5 on each side of the resin film and 1 on each apex of the resin film, and the resin film could be stretched by moving these clips.
  • two ovens were provided, and it was possible to set the stretching temperature and the heat treatment temperature, respectively. Further, in the stretching device, the transfer of the resin film from one oven to the other oven can be performed while being gripped by a clip.
  • a resin film as a raw film was produced and the resin film was brought into contact with toluene by the same method as in Example 1.
  • the resin film after contact with toluene was attached to the stretching device, and the resin film was treated at a preheating temperature of 110 ° C. for 10 seconds.
  • the resin film was stretched at a stretching temperature of 110 ° C. at a longitudinal stretching ratio of 1 time, a transverse stretching ratio of 1.5 times, and a stretching speed of 1.5 times / 10 seconds.
  • the "longitudinal stretch ratio" represents a stretch ratio in a direction corresponding to the longitudinal direction of the long raw fabric film
  • the "transverse stretch ratio” is a direction corresponding to the width direction of the long raw fabric film. Represents the stretching ratio of.
  • Example 5 By adjusting the speed (line speed) of winding the film on the roll, the thickness of the resin film as the raw film was changed to 35 ⁇ m. Except for the above items, the retardation film was manufactured and evaluated by the same method as in Example 4.
  • Example 5 the thickness of the resin film (resin film before stretching) obtained after contact with toluene was 47 ⁇ m, and the retardation Rth in the thickness direction was ⁇ 420 nm.
  • Example 6 When the resin film was stretched using the stretching device, the lateral stretching ratio was changed to 1.3 times. Except for the above items, the retardation film was manufactured and evaluated by the same method as in Example 4.
  • Example 7 A resin film as a raw film was produced, the resin film was brought into contact with toluene, and the resin film was stretched by the same method as in Example 4.
  • the stretched film as a resin film that had been stretched was moved to an oven for heat treatment while being held by a clip, and heat-treated at a treatment temperature of 170 ° C. for 20 seconds.
  • the stretched film after this heat treatment was evaluated as a retardation film by the method described above.
  • the in-plane retardation Re 378 nm
  • the thickness direction retardation Rth ⁇ 10 nm
  • the thickness was 44 ⁇ m
  • the haze Hz 0.4%.
  • Example 8 The treatment time in the heat treatment was changed to 10 minutes. Except for the above items, the retardation film was manufactured and evaluated by the same method as in Example 7.
  • Example 9 By adjusting the speed (line speed) of winding the film on the roll, the thickness of the resin film as the raw film was changed to 30 ⁇ m. Further, when the resin film was stretched using the stretching device, the lateral stretching ratio was changed to 1.7 times. Except for the above items, the retardation film was manufactured and evaluated by the same method as in Example 4.
  • Example 9 the thickness of the resin film (resin film before stretching) obtained after contact with toluene was 41 ⁇ m, and the retardation Rth in the thickness direction was -370 nm.
  • Example 10 By adjusting the speed (line speed) of winding the film on the roll, the thickness of the resin film as the raw film was changed to 33 ⁇ m. Further, when the resin film was stretched using the stretching device, the lateral stretching ratio was changed to 1.4 times. Except for the above items, the retardation film was manufactured and evaluated by the same method as in Example 4.
  • Example 10 the thickness of the resin film (resin film before stretching) obtained after contact with toluene was 44 ⁇ m, and the retardation Rth in the thickness direction was -390 nm.
  • Example 11 The type of treatment solvent was changed from toluene to limonene. Except for the above items, the retardation film was manufactured and evaluated by the same method as in Example 1.
  • Example 12 The type of treatment solvent was changed from toluene to decalin. Further, the time for immersing the resin film in the treatment solvent (here, decalin) was changed to 60 seconds. Except for the above items, the retardation film was manufactured and evaluated by the same method as in Example 1.
  • the stretched resin film was used as a raw film and was brought into contact with toluene as a treatment solvent. That is, the vat was filled with toluene, and the stretched resin film was immersed in the toluene for 5 seconds. Then, the resin film was taken out from toluene, and the surface was wiped off with gauze. The obtained resin film was evaluated as a retardation film by the method described above.
  • the stretched resin film was used as a raw film and was brought into contact with toluene as a treatment solvent. That is, the vat was filled with toluene, and the stretched resin film was immersed in the toluene for 5 seconds. Then, the resin film was taken out from toluene, and the surface was wiped off with gauze. The obtained resin film was evaluated as a retardation film by the method described above.
  • Example 3 A long resin film was produced by the same method as in step (1-1) of Example 1. The obtained resin film was cut into 100 mm ⁇ 100 mm. A shrink film was attached to both sides of the cut resin film to obtain a multi-layer film. The shrink film was a film having a property of shrinking 20% vertically and 25% horizontally at 145 ° C.
  • the multilayer film was attached to the stretching device and treated at a preheating temperature of 145 ° C. for 5 seconds. Then, the multilayer film was stretched at a stretching temperature of 145 ° C. at a longitudinal stretching ratio of 0.8 times and a transverse stretching ratio of 1.2 times. The shrinkage film was removed from the stretched multilayer film to obtain a resin film as a retardation film. This resin film was evaluated by the method described above.
  • Comparative Example 2 even when the optically anisotropic raw film is brought into contact with an organic solvent, it is not possible to easily produce a retardation film having an NZ coefficient of less than 1.0. It was. Further, it is considered that the retardation film obtained in Comparative Example 2 has a large haze and is inferior in image sharpness when provided in a display device.
  • the raw film when a raw film in which the orientation of the molecules of the crystalline polymer is appropriately controlled by appropriately adjusting the optical properties is used, the raw film is optically anisotropic. Even if it has properties, it may be possible to produce a retardation film having an NZ coefficient of less than 1.0. However, as can be seen from the fact that the NZ coefficient of less than 1.0 was not obtained in Comparative Example 2 using the optically anisotropic raw fabric film as in Comparative Example 1, the optically anisotropic raw fabric film was used. In this case, in order to achieve an NZ coefficient of less than 1.0, it is required to precisely control the optical properties of the raw film, and thus the orientation of the molecules of the crystalline polymer contained in the raw film.
  • a retardation film having an NZ coefficient of less than 1.0 is obtained by a simple method of bringing an optically isotropic raw film into contact with an organic solvent.
  • all of the obtained retardation films have sufficiently small haze. Therefore, from the results of these examples, it was confirmed that the retardation film having an NZ coefficient of less than 1.0 can be easily manufactured by the manufacturing method of the present invention, and the haze of the manufactured retardation film can be reduced. ..

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Ophthalmology & Optometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Liquid Crystal (AREA)

Abstract

結晶性を有する重合体を含む樹脂で形成され、NZ係数が1.0未満であり、且つ、ヘイズが1.0%未満である、位相差フィルム。

Description

位相差フィルム及びその製造方法
 本発明は、位相差フィルム及びその製造方法に関する。
 従来から、樹脂を用いたフィルムの製造技術が提案されている(特許文献1~3)。
特開平02-64141号公報 特開2016-26909号公報 国際公開第2017/065222号
 樹脂を用いて製造されるフィルムの一つに、位相差フィルムがある。位相差フィルムは、面内方向及び厚み方向のうち少なくとも一方にレターデーションを有するので、一般に、面内方向及び厚み方向のうち少なくとも一方の方向に大きな複屈折を有することが求められる。
 面内方向の複屈折と厚み方向の複屈折とのバランスは、NZ係数によって表すことができる。例えば、NZ係数が1.0未満の位相差フィルムが得られれば、その位相差フィルムによって、表示装置の視野角、コントラスト、画質等の表示品質の改善が可能になる。
 NZ係数が1.0未満の位相差フィルムの製造方法は、従来、知られている。しかし、従来の製造方法では、NZ係数が1.0未満の位相差フィルムを簡単に製造することができなかった。例えば、従来の製造方法では、フィルムの延伸及び収縮を組み合わせて実施する必要があったり、厚みを精密に調整した複数の層を備えるフィルムを用いる必要があったりした。そのため、制御項目が多くなったり工程数が多かったりするので、製造方法が複雑になる傾向があった。
 また、位相差フィルムは、光学フィルムの一種であるので、通常、ヘイズが小さいことが求められる。しかし、NZ係数が1.0未満の位相差フィルムの中でも特にヘイズが小さいものは、従来の技術によっては製造すること自体が困難であった。そのため、製造方法が簡単か否かに依らず、NZ係数が1.0未満で且つヘイズが小さい位相差フィルムを実現する技術も求められていた。
 本発明は、前記の課題に鑑みて創案されたもので、NZ係数が1.0未満であり、且つ、ヘイズが小さい位相差フィルム;並びに、NZ係数が1.0未満の位相差フィルムを簡単に製造できる製造方法;を提供することを目的とする。
 本発明者は、前記の課題を解決するべく鋭意検討した。その結果、本発明者は、結晶性を有する重合体を含む樹脂で形成された光学等方性の樹脂フィルムを用意する第一工程と、この樹脂フィルムを有機溶媒に接触させて厚み方向の複屈折を変化させる第二工程と、を含む方法によれば、NZ係数が1.0未満の位相差フィルムを簡単に製造できることを見い出した。さらに、本発明者は、この製造方法によれば、NZ係数が1.0未満で且つヘイズが小さい位相差フィルムを実現できることを見い出した。これらの知見に基づき、本発明者は本発明を完成させた。
 すなわち、本発明は、下記のものを含む。
 〔1〕 結晶性を有する重合体を含む樹脂で形成され、
 NZ係数が1.0未満であり、且つ、
 ヘイズが1.0%未満である、位相差フィルム。
 〔2〕 前記位相差フィルムのNZ係数が、0.0より大きく1.0未満である、〔1〕に記載の位相差フィルム。
 〔3〕 前記位相差フィルムが、有機溶媒を含む、〔1〕又は〔2〕に記載の位相差フィルム。
 〔4〕 前記有機溶媒が、炭化水素溶媒である、〔3〕に記載の位相差フィルム。
 〔5〕 前記結晶性を有する重合体が、脂環式構造を含有する、〔1〕~〔4〕のいずれか一項に記載の位相差フィルム。
 〔6〕 前記結晶性を有する重合体が、ジシクロペンタジエンの開環重合体の水素化物である、〔1〕~〔5〕のいずれか一項に記載の位相差フィルム。
 〔7〕 結晶性を有する重合体を含む樹脂で形成された光学等方性の樹脂フィルムを用意する第一工程と、
 前記樹脂フィルムを、有機溶媒に接触させて、厚み方向の複屈折を変化させる第二工程と、を含む、位相差フィルムの製造方法。
 〔8〕 前記第二工程の後で、前記樹脂フィルムを延伸する第三工程を含む、〔7〕に記載の位相差フィルムの製造方法。
 〔9〕 前記有機溶媒が、炭化水素溶媒である、〔7〕又は〔8〕に記載の位相差フィルムの製造方法。
 〔10〕 前記結晶性を有する重合体が、脂環式構造を含有する、〔7〕~〔9〕のいずれか一項に記載の位相差フィルムの製造方法。
 〔11〕 前記結晶性を有する重合体が、ジシクロペンタジエンの開環重合体の水素化物である、〔7〕~〔10〕のいずれか一項に記載の位相差フィルムの製造方法。
 本発明によれば、NZ係数が1.0未満であり、且つ、ヘイズが小さい位相差フィルム;並びに、NZ係数が1.0未満の位相差フィルムを簡単に製造できる製造方法;を提供できる。
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、フィルムの面内レターデーションReは、別に断らない限り、Re=(nx-ny)×dで表される値である。また、フィルムの面内方向の複屈折は、別に断らない限り、(nx-ny)で表される値であり、よってRe/dで表される。さらに、フィルムの厚み方向のレターデーションRthは、別に断らない限り、Rth=[{(nx+ny)/2}-nz]×dで表される値である。また、フィルムの厚み方向の複屈折は、別に断らない限り、[{(nx+ny)/2}-nz]で表される値であり、よってRth/dで表される。さらに、フィルムのNZ係数は、別に断らない限り、(nx-nz)/(nx-ny)で表される値である。ここで、nxは、フィルムの厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、フィルムの前記面内方向であってnxの方向に直交する方向の屈折率を表す。nzは、フィルムの厚み方向の屈折率を表す。dは、フィルムの厚みを表す。測定波長は、別に断らない限り、590nmである。
 以下の説明において、固有複屈折が正の材料とは、別に断らない限り、延伸方向の屈折率がそれに垂直な方向の屈折率よりも大きくなる材料を意味する。また、固有複屈折が負の材料とは、別に断らない限り、延伸方向の屈折率がそれに垂直な方向の屈折率よりも小さくなる材料を意味する。固有複屈折の値は誘電率分布から計算することができる。
 以下の説明において、「長尺」のフィルムとは、幅に対して、5倍以上の長さを有するフィルムをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムをいう。長さの上限に特段の制限は無いが、通常、幅に対して10万倍以下である。
 以下の説明において、要素の方向が「平行」、「垂直」及び「直交」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±5°の範囲内での誤差を含んでいてもよい。
 以下の説明において、長尺のフィルムの長手方向は、通常は製造ラインにおけるフィルム搬送方向と平行である。また、MD方向(mashine direction)は、製造ラインにおけるフィルムの搬送方向であり、通常は長尺のフィルムの長手方向と平行である。さらに、TD方向(transverse direction)は、フィルム面に平行な方向であって、前記MD方向に垂直な方向であり、通常は長尺のフィルムの幅方向と平行である。
[1.第一実施形態に係る位相差フィルムの概要]
 本発明の第一実施形態に係る位相差フィルムは、結晶性を有する重合体を含む樹脂で形成され、NZ係数が1.0未満であり、且つ、ヘイズが小さい。このような位相差フィルムは、従来の技術では実現できなかったが、本発明により、初めて実現できたものである。この位相差フィルムは、例えば表示装置に設けることにより、その表示装置に表示される画像の鮮明性を高くしながら、視野角、コントラスト、画質等の表示品質を改善することができる。
 従来、表示装置に表示される画像の鮮明性を高くしながら表示品質を改善するという課題を解決するための技術的手段が求められていたが、その技術的手段を具体化することが困難であった。一局面において、第一実施形態に係る位相差フィルムは、前記の技術的手段の具体化を初めて達成したものと言える。
[2.位相差フィルムに含まれる結晶性樹脂]
 第一実施形態に係る位相差フィルムは、結晶性を有する重合体を含む樹脂で形成されている。「結晶性を有する重合体」とは、融点Tmを有する重合体を表す。すなわち、「結晶性を有する重合体」とは、示差走査熱量計(DSC)で融点を観測することができる重合体を表す。以下の説明において、結晶性を有する重合体を、「結晶性重合体」ということがある。また、結晶性重合体を含む樹脂を「結晶性樹脂」ということがある。この結晶性樹脂は、好ましくは熱可塑性樹脂である。
 結晶性重合体は、正の固有複屈折を有することが好ましい。正の固有複屈折を有する結晶性重合体を用いることにより、NZ係数が1.0未満の位相差フィルムを容易に製造できる。
 結晶性重合体は、脂環式構造を含有することが好ましい。脂環式構造を含有する結晶性重合体を用いることにより、位相差フィルムの機械特性、耐熱性、透明性、低吸湿性、寸法安定性及び軽量性を良好にできる。脂環式構造を含有する重合体とは、分子内に脂環式構造を有する重合体を表す。このような脂環式構造を含有する重合体は、例えば、環状オレフィンを単量体として用いた重合反応によって得られうる重合体又はその水素化物でありうる。
 脂環式構造としては、例えば、シクロアルカン構造及びシクロアルケン構造が挙げられる。これらの中でも、熱安定性などの特性に優れる位相差フィルムが得られ易いことから、シクロアルカン構造が好ましい。1つの脂環式構造に含まれる炭素原子の数は、好ましくは4個以上、より好ましくは5個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下である。1つの脂環式構造に含まれる炭素原子の数が上記範囲内にあることで、機械的強度、耐熱性、及び成形性が高度にバランスされる。
 脂環式構造を含有する結晶性重合体において、全ての構造単位に対する脂環式構造を有する構造単位の割合は、好ましくは30重量%以上、より好ましくは50重量%以上、特に好ましくは70重量%以上である。脂環式構造を有する構造単位の割合を前記のように多くすることにより、耐熱性を高めることができる。全ての構造単位に対する脂環式構造を有する構造単位の割合は、100重量%以下としうる。また、脂環式構造を含有する結晶性重合体において、脂環式構造を有する構造単位以外の残部は、格別な限定はなく、使用目的に応じて適宜選択しうる。
 脂環式構造を含有する結晶性重合体としては、例えば、下記の重合体(α)~重合体(δ)が挙げられる。これらの中でも、耐熱性に優れる位相差フィルムが得られ易いことから、重合体(β)が好ましい。
 重合体(α):環状オレフィン単量体の開環重合体であって、結晶性を有するもの。
 重合体(β):重合体(α)の水素化物であって、結晶性を有するもの。
 重合体(γ):環状オレフィン単量体の付加重合体であって、結晶性を有するもの。
 重合体(δ):重合体(γ)の水素化物であって、結晶性を有するもの。
 具体的には、脂環式構造を含有する結晶性重合体としては、ジシクロペンタジエンの開環重合体であって結晶性を有するもの、及び、ジシクロペンタジエンの開環重合体の水素化物であって結晶性を有するものがより好ましい。中でも、ジシクロペンタジエンの開環重合体の水素化物であって結晶性を有するものが特に好ましい。ここで、ジシクロペンタジエンの開環重合体とは、全構造単位に対するジシクロペンタジエン由来の構造単位の割合が、通常50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは100重量%の重合体をいう。
 ジシクロペンタジエンの開環重合体の水素化物は、ラセモ・ダイアッドの割合が高いことが好ましい。具体的には、ジシクロペンタジエンの開環重合体の水素化物における繰り返し単位のラセモ・ダイアッドの割合は、好ましくは51%以上、より好ましくは70%以上、特に好ましくは85%以上である。ラセモ・ダイアッドの割合が高いことは、シンジオタクチック立体規則性が高いことを表す。よって、ラセモ・ダイアッドの割合が高いほど、ジシクロペンタジエンの開環重合体の水素化物の融点が高い傾向がある。
 ラセモ・ダイアッドの割合は、後述する実施例に記載の13C-NMRスペクトル分析に基づいて決定できる。
 上記重合体(α)~重合体(δ)としては、国際公開第2018/062067号に開示されている製造方法により得られる重合体を用いうる。
 結晶性重合体の融点Tmは、好ましくは200℃以上、より好ましくは230℃以上であり、好ましくは290℃以下である。このような融点Tmを有する結晶性重合体を用いることによって、成形性と耐熱性とのバランスに更に優れた位相差フィルムを得ることができる。
 通常、結晶性重合体は、ガラス転移温度Tgを有する。結晶性重合体の具体的なガラス転移温度Tgは、特に限定されないが、通常は85℃以上、通常170℃以下である。
 重合体のガラス転移温度Tg及び融点Tmは、以下の方法によって測定できる。まず、重合体を、加熱によって融解させ、融解した重合体をドライアイスで急冷する。続いて、この重合体を試験体として用いて、示差走査熱量計(DSC)を用いて、10℃/分の昇温速度(昇温モード)で、重合体のガラス転移温度Tg及び融点Tmを測定しうる。
 結晶性重合体の重量平均分子量(Mw)は、好ましくは1,000以上、より好ましくは2,000以上であり、好ましくは1,000,000以下、より好ましくは500,000以下である。このような重量平均分子量を有する結晶性重合体は、成形加工性と耐熱性とのバランスに優れる。
 結晶性重合体の分子量分布(Mw/Mn)は、好ましくは1.0以上、より好ましくは1.5以上であり、好ましくは4.0以下、より好ましくは3.5以下である。ここで、Mnは数平均分子量を表す。このような分子量分布を有する結晶性重合体は、成形加工性に優れる。
 重合体の重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、テトラヒドロフランを展開溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)により、ポリスチレン換算値として測定しうる。
 位相差フィルムに含まれる結晶性重合体の結晶化度は、特段の制限はないが、通常は、ある程度以上高い。具体的な結晶化度の範囲は、好ましくは10%以上、より好ましくは15%以上、特に好ましくは30%以上である。
 結晶性重合体の結晶化度は、X線回折法によって測定しうる。
 結晶性重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 結晶性樹脂における結晶性重合体の割合は、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは90重量%以上である。結晶性重合体の割合が前記範囲の下限値以上である場合、位相差フィルムの複屈折の発現性及び耐熱性を高めることができる。結晶性重合体の割合の上限は、100重量%以下でありうる。
 結晶性樹脂は、結晶性重合体に加えて、任意の成分を含みうる。任意の成分としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤等の酸化防止剤;ヒンダードアミン系光安定剤等の光安定剤;石油系ワックス、フィッシャートロプシュワックス、ポリアルキレンワックス等のワックス;ソルビトール系化合物、有機リン酸の金属塩、有機カルボン酸の金属塩、カオリン及びタルク等の核剤;ジアミノスチルベン誘導体、クマリン誘導体、アゾール系誘導体(例えば、ベンゾオキサゾール誘導体、ベンゾトリアゾール誘導体、ベンゾイミダゾール誘導体、及びベンゾチアソール誘導体)、カルバゾール誘導体、ピリジン誘導体、ナフタル酸誘導体、及びイミダゾロン誘導体等の蛍光増白剤;ベンゾフェノン系紫外線吸収剤、サリチル酸系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤等の紫外線吸収剤;タルク、シリカ、炭酸カルシウム、ガラス繊維等の無機充填材;着色剤;難燃剤;難燃助剤;帯電防止剤;可塑剤;近赤外線吸収剤;滑剤;フィラー;及び、軟質重合体等の、結晶性重合体以外の任意の重合体;などが挙げられる。任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[3.位相差フィルムのNZ係数]
 本発明の第一実施形態に係る位相差フィルムのNZ係数は、通常1.0未満である。このように1.0未満のNZ係数を有する位相差フィルムは、表示装置に設けた場合に、その表示装置の視野角、コントラスト、画質等の表示品質の改善が可能である。
 位相差フィルムのNZ係数の具体的な値は、位相差フィルムの用途に応じて任意でありえ、例えば、0.8未満、0.6未満、0.4未満などでありうる。位相差フィルムのNZ係数の下限は任意であり、例えば、-1000より大きい、-500より大きい、-100より大きい、-40より大きい、-20より大きい、などでありうる。中でも、従来の技術による製造が特に困難であったことから、位相差フィルムのNZ係数は、0.0より大きいことが好ましい。
 フィルムのNZ係数は、そのフィルムの面内レターデーションRe及び厚み方向のレターデーションRthから計算により求めうる。
[4.位相差フィルムのヘイズ]
 本発明の第一実施形態に係る位相差フィルムのヘイズは、通常1.0%未満、好ましくは0.8%未満、より好ましくは0.5%未満であり、理想的には0.0%である。このようにヘイズが小さい位相差フィルムは、表示装置に設けた場合に、その表示装置に表示される画像の鮮明性を高くできる。
 フィルムのヘイズは、ヘイズメーター(例えば、日本電色工業社製「NDH5000」)を用いて測定しうる。
[5.位相差フィルムに含まれる有機溶媒]
 本発明の第一実施形態に係る位相差フィルムは、有機溶媒を含みうる。この有機溶媒は、通常、第二実施形態で説明する製造方法の第二工程においてフィルム中に取り込まれたものである。
 第二工程においてフィルム中に取り込まれた有機溶媒の全部または一部は、重合体の内部に入り込みうる。したがって、有機溶媒の沸点以上で乾燥を行ったとしても、容易には溶媒を完全に除去することは難しい。よって、位相差フィルムは、有機溶媒を含むことが通常である。
 前記の有機溶媒としては、結晶性重合体を溶解しないものを用いうる。好ましい有機溶媒としては、例えば、トルエン、リモネン、デカリン等の炭化水素溶媒;二硫化炭素;が挙げられる。有機溶媒の種類は、1種類でもよく、2種類以上でもよい。
 位相差フィルムの重量100%に対する当該位相差フィルムに含まれる有機溶媒の比率(溶媒含有率)は、好ましくは10重量%以下、より好ましくは5重量%以下、特に好ましくは0.1重量%以下である。
 位相差フィルムの溶媒含有率は、実施例において説明する測定方法により測定できる。
[6.位相差フィルムのその他の特性]
 位相差フィルムは、通常、面内方向及び厚み方向のうち少なくとも一方の方向に大きな複屈折を有する。具体的には、位相差フィルムは、通常、1.0×10-3以上の面内方向の複屈折Re/d、及び、1.0×10-3以上の厚み方向の複屈折の絶対値|Rth/d|の少なくとも一方を有する。
 詳細には、位相差フィルムの面内方向の複屈折Re/dは、通常1.0×10-3以上、好ましくは3.0×10-3以上、特に好ましくは5.0×10-3以上である。上限に制限はなく、例えば、2.0×10-2以下、1.5×10-2以下、又は1.0×10-2以下でありうる。ただし、位相差フィルムの厚み方向の複屈折の絶対値|Rth/d|が1.0×10-3以上である場合には、位相差フィルムの面内方向の複屈折Re/dは前記範囲の外にあってよい。
 また、位相差フィルムの厚み方向の複屈折の絶対値|Rth/d|は、通常1.0×10-3以上、好ましくは3.0×10-3以上、特に好ましくは5.0×10-3以上である。上限に制限はなく、例えば、2.0×10-2以下、1.5×10-2以下、又は1.0×10-2以下でありうる。ただし、位相差フィルムの面内方向の複屈折Re/dが1.0×10-3以上である場合には、位相差フィルムの厚み方向の複屈折の絶対値|Rth/d|は前記範囲の外にあってよい。
 位相差フィルムの面内レターデーションReの値は、位相差フィルムの用途に応じて設定しうる。
 位相差フィルムの具体的な面内レターデーションReは、例えば、好ましくは10nm以下、より好ましくは5nm以下、特に好ましくは3nm以下でありうる。この場合、位相差フィルムは、ポジティブCプレート又はネガティブCプレートとして機能できる。
 また、位相差フィルムの具体的な面内レターデーションReは、例えば、好ましくは100nm以上、より好ましくは110nm以上、特に好ましくは120nm以上でありえ、また、好ましくは180nm以下、より好ましく170nm以下、特に好ましくは160nm以下でありうる。この場合、位相差フィルムは、1/4波長板として機能できる。
 さらに、位相差フィルムの具体的な面内レターデーションReは、例えば、好ましくは245nm以上、より好ましくは265nm以上、特に好ましくは270nm以上でありえ、また、好ましくは320nm以下、より好ましくは300nm以下、特に好ましくは295nm以下でありうる。この場合、位相差フィルムは、1/2波長板として機能できる。
 位相差フィルムの厚み方向のレターデーションRthの値は、位相差フィルムの用途に応じて設定しうる。位相差フィルムの具体的な厚み方向のレターデーションRthは、好ましくは200nm以上、より好ましくは250nm以上、特に好ましくは300nm以上でありうる。また、上限は、10000nm以下でありうる。
 フィルムのレターデーションは、位相差計(例えば、AXOMETRICS社製「AxoScan OPMF-1」)を用いて測定しうる。
 位相差フィルムは、光学フィルムであるので、高い透明性を有することが好ましい。位相差フィルムの具体的な全光線透過率は、好ましくは80%以上、より好ましくは85%以上、特に好ましくは88%以上である。位相差フィルムの全光線透過率は、紫外・可視分光計を用いて、波長400nm~700nmの範囲で測定しうる。
 位相差フィルムの厚みdは、位相差フィルムの用途に応じて適切に設定できる。位相差フィルムの具体的な厚みdは、好ましくは5μm以上、より好ましくは10μm以上、特に好ましくは20μm以上であり、好ましくは200μm以下、より好ましくは100μm以下、特に好ましくは50μm以下である。位相差フィルムの厚みdが前記範囲の下限値以上である場合、ハンドリング性を良好にしたり、強度を高くしたりできる。また、位相差フィルムの厚みdが上限値以下である場合、長尺の位相差フィルムの巻取りが容易である。
 位相差フィルムは、枚葉のフィルムであってもよく、長尺のフィルムであってもよい。
 上述した第一実施形態に係る位相差フィルムは、後述する第二実施形態で説明する製造方法によって製造できる。
[7.第二実施形態に係る位相差フィルムの製造方法の概要]
 本発明の第二実施形態に係る位相差フィルムの製造方法は、結晶性重合体を含む結晶性樹脂で形成された光学等方性の樹脂フィルムを用意する第一工程と;この樹脂フィルムを、有機溶媒に接触させて、厚み方向の複屈折を変化させる第二工程と、を含む。この製造方法では、第二工程において樹脂フィルムのNZ係数を調整することができるので、1.0未満のNZ係数を有する位相差フィルムを簡単に製造することができる。
 この製造方法によって1.0未満のNZ係数を有する位相差フィルムが得られる仕組みを、本発明者は下記の通りであると推察する。ただし、本発明の技術的範囲は、下記の仕組みによって制限されるものではない。
 結晶性樹脂で形成された光学等方性の樹脂フィルムを、第二工程において有機溶媒と接触させると、その有機溶媒が樹脂フィルム中に浸入する。浸入した有機溶媒の作用により、フィルム中の結晶性重合体の分子にミクロブラウン運動が生じ、フィルムの分子鎖が配向する。本発明者の検討によれば、この分子鎖の配向の際には、結晶性重合体の溶媒誘起結晶化現象が進行することがありうると考えられる。
 ところで、樹脂フィルムの表面積は、主表面であるオモテ面及びウラ面が大きい。よって、有機溶媒の浸入速度は、前記のオモテ面又はウラ面を通った厚み方向への浸入速度が、大きい。そうすると、前記の結晶性重合体の分子の配向は、当該重合体の分子が厚み方向に配向するように進行しうる。
 このように結晶性重合体の分子が厚み方向に配向することにより、当該樹脂フィルムのNZ係数が調整される。よって、有機溶媒との接触後の樹脂フィルムを、1.0未満のNZ係数を有する位相差フィルムとして得ることができる。このように光学等方性の樹脂フィルムと有機溶媒とを単純に接触させるだけでNZ係数を調整できることは、位相差フィルムの製造を容易にするうえで、有用である。
 本発明の第二実施形態に係る位相差フィルムの製造方法は、上述した第一工程及び第二工程に組み合わせて、更に任意の工程を含んでいてもよい。例えば、位相差フィルムの製造方法は、第二工程の後で樹脂フィルムを延伸する第三工程を含んでいてもよく、第二工程の後で樹脂フィルムに熱処理を施す第四工程を含んでいてもよい。これらの任意の工程を行う場合、それら任意の工程によって特性を調整された樹脂フィルムとして、位相差フィルムを得ることができる。
[8.第一工程:樹脂フィルムの用意]
 第一工程では、結晶性重合体を含む結晶性樹脂で形成された光学等方性の樹脂フィルムを用意する。以下の説明では、第二工程における有機溶媒との接触前の樹脂フィルムを、適宜「原反フィルム」ということがある。
 第一工程で用意される光学等方性の原反フィルムの材料としての結晶性樹脂は、第一実施形態において説明した結晶性樹脂と同じでありうる。ただし、原反フィルムに含まれる結晶性重合体の結晶化度は、小さいことが好ましい。具体的な結晶化度は、好ましくは10%未満、より好ましくは5%未満、特に好ましくは3%未満である。有機溶媒と接触する前の原反フィルムに含まれる結晶性重合体の結晶化度が低いと、有機溶媒との接触によって多くの結晶性重合体の分子を厚み方向に配向させられるので、広い範囲でのNZ係数の調整が可能となる。
 原反フィルムは、光学等方性の樹脂フィルムである。すなわち、原反フィルムは、面内方向の複屈折Re/dが小さく、且つ、厚み方向の複屈折の絶対値|Rth/d|が小さいフィルムである。具体的には、原反フィルムの面内方向の複屈折Re/dは、通常1.0×10-3未満、好ましくは0.5×10-3未満、より好ましくは0.3×10-3未満である。また、原反フィルムの厚み方向の複屈折の絶対値|Rth/d|は、通常1.0×10-3未満、好ましくは0.5×10-3未満、より好ましくは0.3×10-3未満である。このように光学等方性を有することは、原反フィルムに含まれる結晶性重合体の分子の配向性が低く、実質的に無配向状態となっていることを表す。このような光学等方性の樹脂フィルムを原反フィルムとして用いた場合、当該原反フィルムの光学特性の精密な制御が不要であり、よって結晶性重合体の分子の配向性の精密な制御が不要であるので、位相差フィルムの製造方法をシンプルにできる。さらに、光学等方性の樹脂フィルムを原反フィルムとして用いた場合、通常は、ヘイズが小さい位相差フィルムを得ることができる。
 原反フィルムは、有機溶媒の含有量が小さいことが好ましく、有機溶媒を含まないことがより好ましい。原反フィルムの重量100%に対する当該原反フィルムに含まれる有機溶媒の比率(溶媒含有率)は、好ましくは1%以下、より好ましくは0.5%以下、特に好ましくは0.1%以下であり、理想的には0.0%である。有機溶媒と接触する前の原反フィルムに含まれる有機溶媒の量が少ないことにより、有機溶媒との接触によって多くの結晶性重合体の分子を厚み方向に配向させられるので、広い範囲でのNZ係数の調整が可能となる。
 原反フィルムの溶媒含有率は、密度によって測定しうる。
 原反フィルムのヘイズは、好ましくは1.0%未満、好ましくは0.8%未満、より好ましくは0.5%未満であり、理想的には0.0%である。原反フィルムのヘイズが小さいほど、得られる位相差フィルムのヘイズを小さくし易い。
 原反フィルムの厚みは、製造しようとする位相差フィルムの厚みに応じて設定することが好ましい。通常、第二工程で有機溶媒と接触させることにより、厚みは大きくなる。他方、第三工程において延伸を行う場合、その延伸によって厚みは小さくなる。したがって、前記のような第二工程以降の工程における厚みの変化を考慮して、原反フィルムの厚みを設定してもよい。
 原反フィルムは、枚葉のフィルムであってもよいが、長尺のフィルムであることが好ましい。長尺の原反フィルムを用いることにより、ロール・トゥ・ロール法による位相差フィルムの連続的な製造が可能であるので、位相差フィルムの生産性を効果的に高めることができる。
 原反フィルムの製造方法としては、有機溶媒を含まない原反フィルムが得られることから、射出成形法、押出成形法、プレス成形法、インフレーション成形法、ブロー成形法、カレンダー成形法、注型成形法、圧縮成形法等の樹脂成型法が好ましい。これらの中でも、厚みの制御が容易であることから、押出成形法が好ましい。
 押出成形法における製造条件は、好ましくは下記の通りである。シリンダー温度(溶融樹脂温度)は、好ましくはTm以上、より好ましくは「Tm+20℃」以上であり、好ましくは「Tm+100℃」以下、より好ましくは「Tm+50℃」以下である。また、フィルム状に押し出された溶融樹脂が最初に接触する冷却体は特に限定されないが、通常はキャストロールを用いる。このキャストロール温度は、好ましくは「Tg-50℃」以上であり、好ましくは「Tg+70℃」以下、より好ましくは「Tg+40℃」以下である。さらに、冷却ロール温度は、好ましくは「Tg-70℃」以上、より好ましくは「Tg-50℃」以上であり、好ましくは「Tg+60℃」以下、より好ましくは「Tg+30℃」以下である。このような条件で原反フィルムを製造する場合、厚み1μm~1mmの原反フィルムを容易に製造できる。ここで、「Tm」は、結晶性重合体の融点を表し、「Tg」は結晶性重合体のガラス転移温度を表す。
[9.第二工程:樹脂フィルムと有機溶媒との接触]
 第二工程では、第一工程で用意した原反フィルムとしての樹脂フィルムを、有機溶媒に接触させる。有機溶媒としては、樹脂フィルムに含まれる結晶性重合体を溶解させずに当該樹脂フィルム中に浸入できる溶媒を用いることができ、例えば、トルエン、リモネン、デカリン等の炭化水素溶媒;二硫化炭素;が挙げられる。有機溶媒の種類は、1種類でもよく、2種類以上でもよい。
 樹脂フィルムと有機溶媒との接触方法は、任意である。接触方法としては、例えば、樹脂フィルムに有機溶媒をスプレーするスプレー法;樹脂フィルムに有機溶媒を塗布する塗布法;有機溶媒中に樹脂フィルムを浸漬する浸漬法;などが挙げられる。中でも、連続的な接触を容易に行えることから、浸漬法が好ましい。
 樹脂フィルムに接触させる有機溶媒の温度は、有機溶媒が液体状態を維持できる範囲で任意であり、よって、有機溶媒の融点以上沸点以下の範囲に設定しうる。
 樹脂フィルムと有機溶媒とを接触させる時間は、特に指定はないが、好ましくは0.5秒以上、より好ましくは1.0秒以上、特に好ましくは5.0秒以上であり、好ましくは120秒以下、より好ましくは80秒以下、特に好ましくは60秒以下である。接触時間が前記範囲の下限値以上である場合、有機溶媒との接触によるNZ係数の調整を効果的に行うことができる。他方、浸漬時間を長くしてもNZ係数の調整量は大きく変わらない傾向がある。よって、接触時間が前記範囲の上限値以下である場合、位相差フィルムの品質を損なわずに生産性を高めることができる。
 第二工程で有機溶媒と接触させられることにより、樹脂フィルムの厚み方向の複屈折Rth/dは、変化する。これにより、NZ係数の調整が行われて、1.0未満のNZ係数が得られる。有機溶媒との接触によって生じる樹脂フィルムの厚み方向の複屈折Rth/dの変化量は、好ましくは1.0×10-3以上、より好ましくは2.0×10-3以上、特に好ましくは5.0×10-3以上であり、好ましくは50.0×10-3以下、より好ましくは30.0×10-3以下、特に好ましくは20.0×10-3以下である。前記の厚み方向の複屈折Rth/dの変化量とは、厚み方向の複屈折Rth/dの変化の絶対値を表す。
 樹脂フィルムの面内方向の複屈折Re/dは、有機溶媒との接触によって変化してもよく、変化しなくてもよい。位相差フィルムの面内レターデーションReの制御を簡単にする観点では、有機溶媒との接触によって樹脂フィルムに生じる面内方向の複屈折Re/dの変化は小さいことが好ましく、変化を生じないことがより好ましい。有機溶媒との接触によって生じる樹脂フィルムの面内方向の複屈折Re/dの変化量は、好ましくは0.0×10-3~2.0×10-3、より好ましくは0.0×10-3~1.0×10-3、特に好ましくは0.0×10-3~0.5×10-3である。前記の面内方向の複屈折Re/dの変化量とは、面内方向の複屈折Re/dの変化の絶対値を表す。
 樹脂フィルムに接触した有機溶媒が樹脂フィルム中に浸入することにより、第二工程においては、通常、樹脂フィルムの厚みが大きくなる。この際の樹脂フィルムの厚みの変化率の下限は、例えば、10%以上、20%以上、又は30%以上でありうる。また、厚みの変化率の上限は、例えば、80%以下、50%以下、又は40%以下でありうる。前記の樹脂フィルムの厚みの変化率とは、樹脂フィルムの厚みの変化量を、原反フィルム(即ち、有機溶媒と接触する前の樹脂フィルム)の厚みで割って得られる比率である。
 前記のように、第二工程によって樹脂フィルムの厚み方向の複屈折Rth/dが変化する。よって、第二工程による厚み方向の複屈折Rth/dの変化によって、所望の光学特性を有する樹脂フィルムが得られる場合、その樹脂フィルムを位相差フィルムとして得ることができる。
 また、第二実施形態に係る製造方法では、第二工程を施された後の樹脂フィルムに、更に任意の工程を施してもよい。
[10.第三工程:樹脂フィルムの延伸]
 本発明の第二実施形態に係る位相差フィルムの製造方法では、第二工程の後で、樹脂フィルムを延伸する第三工程を含んでいてもよい。延伸により、樹脂フィルムに含まれる結晶性重合体の分子を延伸方向に応じた方向に配向させることができる。よって、第三工程によれば、樹脂フィルムの面内方向の複屈折Re/d、面内レターデーションRe、厚み方向の複屈折Rth/d、厚み方向のレターデーションRth、NZ係数等の光学特性;並びに、厚みdを調整することができる。
 延伸方向に制限はなく、例えば、長手方向、幅方向、斜め方向などが挙げられる。ここで、斜め方向とは、厚み方向に対して垂直な方向であって、幅方向に平行でもなく垂直でもない方向を表す。また、延伸方向は、一方向でもよく、二以上の方向でもよい。よって、延伸方法としては、例えば、樹脂フィルムを長手方向に一軸延伸する方法(縦一軸延伸法)、樹脂フィルムを幅方向に一軸延伸する方法(横一軸延伸法)等の、一軸延伸法;樹脂フィルムを長手方向に延伸すると同時に幅方向に延伸する同時二軸延伸法、樹脂フィルムを長手方向及び幅方向の一方に延伸した後で他方に延伸する逐次二軸延伸法等の、二軸延伸法;樹脂フィルムを斜め方向に延伸する方法(斜め延伸法);などが挙げられる。
 延伸倍率は、好ましくは1.1倍以上、より好ましくは1.2倍以上であり、好ましくは20.0倍以下、より好ましくは10.0倍以下、更に好ましくは5.0倍以下、特に好ましくは2.0倍以下である。具体的な延伸倍率は、製造したい位相差フィルムの光学特性、厚み、強度などの要素に応じて適切に設定することが望ましい。延伸倍率が前記範囲の下限値以上である場合、延伸によって複屈折を大きく変化させることができる。また、延伸倍率が前記範囲の上限値以下である場合、遅相軸の方向を容易に制御したり、樹脂フィルムの破断を効果的に抑制したりできる。
 延伸温度は、好ましくは「Tg+5℃」以上、より好ましくは「Tg+10℃」以上であり、好ましくは「Tg+100℃」以下、より好ましくは「Tg+90℃」以下である。ここで、「Tg」は結晶性重合体のガラス転移温度を表す。延伸温度が前記範囲の下限値以上である場合、樹脂フィルムを十分に軟化させて延伸を均一に行うことができる。また、延伸温度が前記範囲の上限値以下である場合、結晶性重合体の結晶化の進行による樹脂フィルムの硬化を抑制できるので、延伸を円滑に行うことができ、また、延伸によって大きな複屈折を発現させることができる。さらに、通常は、得られる樹脂フィルムのヘイズを小さくして透明性を高めることができる。
 前記の延伸処理を施すことにより、延伸された樹脂フィルムとしての延伸フィルムを得ることができる。前記のように、第三工程での延伸によって複屈折が変化しうるので、NZ係数の調整を行うことができる。よって、第三工程による延伸によって所望の光学特性を有する延伸フィルムとしての樹脂フィルムが得られる場合、その樹脂フィルムを位相差フィルムとして得ることができる。
[11.第四工程:樹脂フィルムの熱処理]
 本発明の第二実施形態に係る位相差フィルムの製造方法では、第二工程の後で、樹脂フィルムに熱処理を施す第四工程を含んでもよい。位相差フィルムの製造方法が第三工程を含む場合、第四工程は、通常、第三工程の後に行われる。熱処理により、樹脂フィルムに含まれる結晶性重合体の結晶化を進行させて、結晶性重合体の配向性を高めることができる。また、熱処理により、樹脂フィルムに含まれる有機溶媒の量を減らすことができる。よって、第四工程によれば、樹脂フィルムの光学特性を調整することができる。
 熱処理温度は、通常、結晶性重合体のガラス転移温度Tg以上、結晶性重合体の融点Tm以下である。より詳細には、熱処理温度は、好ましくはTg℃以上、より好ましくはTg+10℃以上であり、好ましくはTm-20℃以下、より好ましくはTm-40℃以下である。前記の温度範囲では、結晶化の進行による白濁を抑制しながら、速やかに結晶性重合体の結晶化を進行させることができる。
 熱処理の処理時間は、好ましくは1秒以上、より好ましくは5秒以上であり、好ましくは30分以下、より好ましくは15分以下である。
 前記のように、第四工程での熱処理によって複屈折が変化しうるので、NZ係数の調整を行うことができる。よって、第四工程による熱処理によって所望の光学特性を有する樹脂フィルムが得られる場合、その樹脂フィルムを位相差フィルムとして得ることができる。
[12.その他の工程]
 位相差フィルムの製造方法は、上述した工程に組み合わせて、更に任意の工程を含んでいてもよい。
 位相差フィルムの製造方法は、例えば、第二工程の後で、樹脂フィルムに付着した有機溶媒を除去する工程を含んでいてもよい。有機溶媒の除去方法としては、例えば、乾燥、ふき取り等が挙げられる。
 位相差フィルムの製造方法は、例えば、第三工程の前に、樹脂フィルムを延伸温度に加熱するための予熱処理を行う工程を含んでいてもよい。通常、予熱温度と延伸温度は同じであるが、異なっていてもよい。予熱温度は、延伸温度T1に対し、好ましくはT1-10℃以上、より好ましくはT1-5℃以上であり、好ましくはT1+5℃以下、より好ましくはT1+2℃以下である。予熱時間は任意であり、好ましくは1秒以上、より好ましくは5秒以上でありえ、また、好ましくは60秒以下、より好ましくは30秒以下でありえる。
 位相差フィルムの製造方法が、第三工程又は第四工程を含む場合、それらの工程後の樹脂フィルムには残留応力が含まれうる。そこで、位相差フィルムの製造方法は、例えば、樹脂フィルムを熱収縮させて残留応力を除去する緩和処理を行う工程を含んでいてもよい。緩和処理では、通常、樹脂フィルムを平坦に維持しながら、適切な温度範囲で樹脂フィルムに熱収縮を生じさせることで、残留応力を除去できる。
 上述した製造方法によれば、長尺の原反フィルムを用いて、長尺の位相差フィルムを製造することができる。位相差フィルムの製造方法は、このように製造された長尺の位相差フィルムをロール状に巻き取る工程を含んでいてもよい。さらに、位相差フィルムの製造方法は、長尺の位相差フィルムを所望の形状に切り出す工程を含んでいてもよい。
[13.製造される位相差フィルム]
 上述した本発明の第二実施形態の製造方法によれば、原反フィルムを有機溶媒に接触させるという簡単な工程によって複屈折の調整が可能であるので、所望のNZ係数を有する位相差フィルムを簡単に製造できる。よって、この製造方法によれば、NZ係数が1.0未満の位相差フィルムを容易に得ることができる。
 第二実施形態に係る製造方法で製造される位相差フィルムのNZ係数は、詳細には、第一実施形態に係る位相差フィルムのNZ係数と同じでありうる。さらに、第二実施形態に係る製造方法で製造される位相差フィルムは、NZ係数以外の特性についても、第一実施形態に係る位相差フィルムと同じでありうる。よって、第二実施形態に係る製造方法で製造される位相差フィルムは、当該位相差フィルムが含む結晶性樹脂;当該位相差フィルムのヘイズ;当該位相差フィルムが含む有機溶媒の量;当該位相差フィルムのレターデーションRe及びRth;当該位相差フィルムの複屈折Re/d及びRth/d;当該位相差フィルムの全光線透過率;当該位相差フィルムの厚み;などの特性が、第一実施形態に係る位相差フィルムと同じでありうる。
[14.用途]
 上述した第一実施形態に係る位相差フィルム、及び、第二実施形態に係る製造方法で製造された位相差フィルムは、例えば、表示装置に設けうる。この場合、位相差フィルムは、表示装置に表示される画像の視野角、コントラスト、画質等の表示品質を改善することができる。
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
[評価方法]
 (重合体の重量平均分子量Mw及び数平均分子量Mnの測定方法)
 重合体の重量平均分子量Mw及び数平均分子量Mnは、ゲル・パーミエーション・クロマトグラフィー(GPC)システム(東ソー社製「HLC-8320」)を用いて、ポリスチレン換算値として測定した。測定の際、カラムとしてはHタイプカラム(東ソー社製)を用い、溶媒としてはテトラヒドロフランを用いた。また、測定時の温度は、40℃であった。
 (重合体の水素化率の測定方法)
 重合体の水素化率は、オルトジクロロベンゼン-dを溶媒として、145℃で、H-NMR測定により測定した。
 (ガラス転移温度Tg及び融点Tmの測定方法)
 重合体のガラス転移温度Tg及び融点Tmの測定は、以下のようにして行った。まず、重合体を、加熱によって融解させ、融解した重合体をドライアイスで急冷した。続いて、この重合体を試験体として用いて、示差走査熱量計(DSC)を用いて、10℃/分の昇温速度(昇温モード)で、重合体のガラス転移温度Tg及び融点Tmを測定した。
 (重合体のラセモ・ダイアッドの割合の測定方法)
 重合体のラセモ・ダイアッドの割合の測定は以下のようにして行った。オルトジクロロベンゼン-dを溶媒として、200℃で、inverse-gated decoupling法を適用して、重合体の13C-NMR測定を行った。この13C-NMR測定の結果において、オルトジクロロベンゼン-dの127.5ppmのピークを基準シフトとして、メソ・ダイアッド由来の43.35ppmのシグナルと、ラセモ・ダイアッド由来の43.43ppmのシグナルとを同定した。これらのシグナルの強度比に基づいて、重合体のラセモ・ダイアッドの割合を求めた。
 (フィルムのレターデーションRe及びRth並びにNZ係数の測定方法)
 フィルムの面内レターデーションRe、厚み方向のレターデーションRth、及びNZ係数は、位相差計(AXOMETRICS社製「AxoScan OPMF-1」)により測定した。測定波長は590nmであった。
 (フィルムの厚みの測定方法)
 フィルムの厚みは、接触式厚さ計(MITUTOYO社製 Code No. 543-390)を用いて測定した。
 (フィルムのヘイズの測定方法)
 フィルムのヘイズは、ヘイズメーター(日本電色工業社製「NDH5000」)を用いて測定した。
 (位相差フィルムの溶媒含有率の測定方法)
 サンプルとしての位相差フィルムを製造するために用いた原反フィルム(溶媒浸漬前の樹脂フィルム)について、熱重量分析(TGA:窒素雰囲気下、昇温速度10℃/分、30℃~300℃)によって、その重量を測定した。30℃における原反フィルムの重量W(30℃)から300℃における原反フィルムの重量W(300℃)を引き算して、300℃における原反フィルムの重量減少量ΔWを求めた。後述する実施例及び比較例で用いた原反フィルムは、溶融押出法によって製造されたものであるので、溶媒を含まない。よって、この原反フィルムの重量減少量ΔWを、後述する式(X)ではリファレンスとして採用した。
 また、サンプルとしての位相差フィルムについて、前記と同じく熱重量分析(TGA:窒素雰囲気下、昇温速度10℃/分、30℃~300℃)によって、その重量を測定した。30℃における位相差フィルムの重量W(30℃)から300℃における位相差フィルムの重量W(300℃)を引き算して、300℃における位相差フィルムの重量減少量ΔWを求めた。
 前記の300℃における原反フィルムの重量減少量ΔW、及び、300℃における位相差フィルムの重量減少量ΔWから、以下の式(X)により、位相差フィルムの溶媒含有率を算出した。
  溶媒含有率(%)={(ΔW-ΔW)/W(30℃)}×100   (X)
〔製造例1.ジシクロペンタジエンの開環重合体の水素化物を含む結晶性樹脂の製造〕
 金属製の耐圧反応器を、充分に乾燥した後、窒素置換した。この金属製耐圧反応器に、シクロヘキサン154.5部、ジシクロペンタジエン(エンド体含有率99%以上)の濃度70%シクロヘキサン溶液42.8部(ジシクロペンタジエンの量として30部)、及び1-ヘキセン1.9部を加え、53℃に加温した。
 テトラクロロタングステンフェニルイミド(テトラヒドロフラン)錯体0.014部を0.70部のトルエンに溶解し、溶液を調製した。この溶液に、濃度19%のジエチルアルミニウムエトキシド/n-ヘキサン溶液0.061部を加えて10分間攪拌して、触媒溶液を調製した。この触媒溶液を耐圧反応器に加えて、開環重合反応を開始した。その後、53℃を保ちながら4時間反応させて、ジシクロペンタジエンの開環重合体の溶液を得た。得られたジシクロペンタジエンの開環重合体の数平均分子量(Mn)及び重量平均分子量(Mw)は、それぞれ、8,750および28,100であり、これらから求められる分子量分布(Mw/Mn)は3.21であった。
 得られたジシクロペンタジエンの開環重合体の溶液200部に、停止剤として1,2-エタンジオール0.037部を加えて、60℃に加温し、1時間攪拌して重合反応を停止させた。ここに、ハイドロタルサイト様化合物(協和化学工業社製「キョーワード(登録商標)2000」)を1部加えて、60℃に加温し、1時間攪拌した。その後、濾過助剤(昭和化学工業社製「ラヂオライト(登録商標)#1500」)を0.4部加え、PPプリーツカートリッジフィルター(ADVANTEC東洋社製「TCP-HX」)を用いて吸着剤と溶液を濾別した。
 濾過後のジシクロペンタジエンの開環重合体の溶液200部(重合体量30部)に、シクロヘキサン100部を加え、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム0.0043部を添加して、水素圧6MPa、180℃で4時間水素化反応を行なった。これにより、ジシクロペンタジエンの開環重合体の水素化物を含む反応液が得られた。この反応液は、水素化物が析出してスラリー溶液となっていた。
 前記の反応液に含まれる水素化物と溶液とを、遠心分離器を用いて分離し、60℃で24時間減圧乾燥して、結晶性を有するジシクロペンタジエンの開環重合体の水素化物28.5部を得た。この水素化物の水素化率は99%以上、ガラス転移温度Tgは93℃、融点(Tm)は262℃、ラセモ・ダイアッドの割合は89%であった。
 得られたジシクロペンタジエンの開環重合体の水素化物100部に、酸化防止剤(テトラキス〔メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン;BASFジャパン社製「イルガノックス(登録商標)1010」)1.1部を混合後、内径3mmΦのダイ穴を4つ備えた二軸押出し機(製品名「TEM-37B」、東芝機械社製)に投入した。ジシクロペンタジエンの開環重合体の水素化物及び酸化防止剤の混合物を、熱溶融押出し成形によりストランド状の成形した後、ストランドカッターにて細断して、ペレット形状の結晶性樹脂を得た。前記の二軸押出し機の運転条件は、以下の通りであった。
 ・バレル設定温度=270~280℃
 ・ダイ設定温度=250℃
 ・スクリュー回転数=145rpm
[実施例1]
 (1-1.第一工程:原反フィルムの製造)
 製造例1で製造した結晶性樹脂を、Tダイを備える熱溶融押出しフィルム成形機(Optical Control Systems社製「Measuring Extruder Type Me-20/2800V3」)を用いて成形し、1.5m/分の速度でロールに巻き取って、およそ幅120mmの長尺の原反フィルムとしての樹脂フィルム(厚み50μm)を得た。前記のフィルム成形機の運転条件は、以下の通りであった。
 ・バレル設定温度=280℃~300℃
 ・ダイ温度=270℃
 ・スクリュー回転数=30rpm
 ・キャストロール温度=80℃
 (1-2.第二工程:原反フィルムと処理溶媒との接触)
 樹脂フィルムを、100mm×100mmにカットした。位相差計を用いてレターデーションを測定したところ、面内レターデーションRe=5nm、厚み方向のレターデーションRth=6nmであった。この樹脂フィルムは、前記のように高温(280℃~300℃)での熱溶融押出によって製造されているので、樹脂フィルムは溶媒を含まないと考えられることから、その溶媒含有量は0.0%とした。
 バットを処理溶媒としてのトルエンで満たし、このトルエンに樹脂フィルムを5秒間浸漬させた。その後、トルエンから樹脂フィルムを取り出し、ガーゼで表面をふき取った。得られた樹脂フィルムを、位相差フィルムとして上述した方法で評価した。その結果、面内レターデーションRe=9nm、厚み方向のレターデーションRth=-575nm、厚みは64μm、ヘイズHzは0.4%であった。
[実施例2]
 前記工程(1-1)において、フィルムをロールに巻き取る速度(ライン速度)を調整することにより、原反フィルムとしての樹脂フィルムの厚みを20μmに変更した。
 また、前記工程(1-2)において、樹脂フィルムを処理溶媒(ここでは、トルエン)に浸漬する時間を1秒に変更した。
 以上の事項以外は、実施例1と同じ操作により、位相差フィルムの製造及び評価を行った。
[実施例3]
 前記工程(1-1)において、フィルムをロールに巻き取る速度(ライン速度)を調整することにより、原反フィルムとしての樹脂フィルムの厚みを100μmに変更した。
 また、前記工程(1-2)において、樹脂フィルムを処理溶媒(ここでは、トルエン)に浸漬する時間を60秒に変更した。
 以上の事項以外は、実施例1と同じ操作により、位相差フィルムの製造及び評価を行った。
[実施例4]
 延伸装置(エトー株式会社製「SDR-562Z」)を用意した。この延伸装置は、矩形の樹脂フィルムの端部を把持可能なクリップと、オーブンとを備えていた。クリップは、樹脂フィルムの1辺当たり5個、及び、樹脂フィルムの各頂点に1個の合計24個設けられていて、これらのクリップを移動させることで樹脂フィルムの延伸が可能であった。また、オーブンは2つ設けられており、延伸温度及び熱処理温度にそれぞれ設定することが可能であった。さらに、前記の延伸装置では、一方のオーブンから他方のオーブンへの樹脂フィルムの移行は、クリップで把持したまま行うことができた。
 実施例1と同じ方法により、原反フィルムとしての樹脂フィルムの製造、及び、その樹脂フィルムのトルエンへの接触を行った。
 トルエンへの接触後の樹脂フィルムを、前記の延伸装置に取り付け、樹脂フィルムを予熱温度110℃で10秒間処理した。その後、樹脂フィルムを、延伸温度110℃で、縦延伸倍率1倍、横延伸倍率1.5倍、延伸速度1.5倍/10秒で延伸した。前記の「縦延伸倍率」は、長尺の原反フィルムの長手方向に一致する方向への延伸倍率を表し、「横延伸倍率」は、長尺の原反フィルムの幅方向に一致する方向への延伸倍率を表す。これにより、延伸処理を施された樹脂フィルムとしての延伸フィルムを得た。この延伸フィルムを、位相差フィルムとして上述した方法で評価した。その結果、面内レターデーションRe=347nm、厚み方向のレターデーションRth=-12nm、厚みは47μm、ヘイズHzは0.4%であった。
[実施例5]
 フィルムをロールに巻き取る速度(ライン速度)を調整することにより、原反フィルムとしての樹脂フィルムの厚みを35μmに変更した。以上の事項以外は、実施例4と同じ方法により、位相差フィルムの製造及び評価を行った。
 この実施例5では、トルエンへの接触後に得られる樹脂フィルム(延伸前の樹脂フィルム)の厚みは47μm、厚み方向のレターデーションRthは-420nmであった。
[実施例6]
 延伸装置を用いた樹脂フィルムの延伸の際、横延伸倍率を1.3倍に変更した。以上の事項以外は、実施例4と同じ方法により、位相差フィルムの製造及び評価を行った。
[実施例7]
 実施例4と同じ方法により、原反フィルムとしての樹脂フィルムの製造、その樹脂フィルムのトルエンへの接触、及び、その樹脂フィルムの延伸を行った。
 延伸処理を施された樹脂フィルムとしての延伸フィルムを、クリップで把持したまま熱処理用のオーブンに移動させ、処理温度170℃で20秒、熱処理を行った。この熱処理後の延伸フィルムを、位相差フィルムとして上述した方法で評価した。その結果、面内レターデーションRe=378nm、厚み方向のレターデーションRth=-10nm、厚みは44μm、ヘイズHzは0.4%であった。
[実施例8]
 熱処理における処理時間を10分に変更した。以上の事項以外は、実施例7と同じ方法により、位相差フィルムの製造及び評価を行った。
[実施例9]
 フィルムをロールに巻き取る速度(ライン速度)を調整することにより、原反フィルムとしての樹脂フィルムの厚みを30μmに変更した。また、延伸装置を用いた樹脂フィルムの延伸の際、横延伸倍率を1.7倍に変更した。以上の事項以外は、実施例4と同じ方法により、位相差フィルムの製造及び評価を行った。
 この実施例9では、トルエンへの接触後に得られる樹脂フィルム(延伸前の樹脂フィルム)の厚みは41μm、厚み方向のレターデーションRthは-370nmであった。
[実施例10]
 フィルムをロールに巻き取る速度(ライン速度)を調整することにより、原反フィルムとしての樹脂フィルムの厚みを33μmに変更した。また、延伸装置を用いた樹脂フィルムの延伸の際、横延伸倍率を1.4倍に変更した。以上の事項以外は、実施例4と同じ方法により、位相差フィルムの製造及び評価を行った。
 この実施例10では、トルエンへの接触後に得られる樹脂フィルム(延伸前の樹脂フィルム)の厚みは44μm、厚み方向のレターデーションRthは-390nmであった。
[実施例11]
 処理溶媒の種類を、トルエンからリモネンに変更した。以上の事項以外は、実施例1と同じ方法により、位相差フィルムの製造及び評価を行った。
[実施例12]
 処理溶媒の種類を、トルエンからデカリンに変更した。また、樹脂フィルムを処理溶媒(ここでは、デカリン)に浸漬する時間を、60秒に変更した。以上の事項以外は、実施例1と同じ方法により、位相差フィルムの製造及び評価を行った。
[比較例1]
 実施例1の工程(1-1)と同じ方法により、長尺の樹脂フィルムを製造した。得られた樹脂フィルムを、100mm×100mmにカットした。カットした樹脂フィルムを、前記延伸装置に取り付け、予熱温度110℃で10秒間処理した。その後、樹脂フィルムを、延伸温度110℃で、縦延伸倍率1倍、横延伸倍率1.5倍、延伸速度1.5倍/10秒で延伸した。延伸後の樹脂フィルムの面内レターデーションRe=62nm、厚み方向のレターデーションRth=77nm、厚みは33μm、ヘイズHzは0.1%であった。
 延伸後の樹脂フィルムを原反フィルムとして、処理溶媒としてのトルエンに接触させた。すなわち、バットをトルエンで満たし、このトルエンに前記の延伸された樹脂フィルムを5秒間浸漬させた。その後、トルエンから樹脂フィルムを取り出し、ガーゼで表面をふき取った。得られた樹脂フィルムを、位相差フィルムとして上述した方法で評価した。
[比較例2]
 実施例1の工程(1-1)と同じ方法により、長尺の樹脂フィルムを製造した。得られた樹脂フィルムを、100mm×100mmにカットした。カットした樹脂フィルムを、前記延伸装置に取り付け、予熱温度110℃で10秒間処理した。その後、樹脂フィルムを、延伸温度110℃で、縦延伸倍率1倍、横延伸倍率2倍、延伸速度1.5倍/10秒で延伸した。延伸後の樹脂フィルムの面内レターデーションRe=91nm、厚み方向のレターデーションRth=85nm、厚みは25μm、ヘイズHzは0.1%であった。
 延伸後の樹脂フィルムを原反フィルムとして、処理溶媒としてのトルエンに接触させた。すなわち、バットをトルエンで満たし、このトルエンに前記の延伸された樹脂フィルムを5秒間浸漬させた。その後、トルエンから樹脂フィルムを取り出し、ガーゼで表面をふき取った。得られた樹脂フィルムを、位相差フィルムとして上述した方法で評価した。
[比較例3]
 実施例1の工程(1-1)と同じ方法により、長尺の樹脂フィルムを製造した。得られた樹脂フィルムを、100mm×100mmにカットした。カットした樹脂フィルムの両面に、収縮フィルムを貼合して、複層フィルムを得た。前記の収縮フィルムは、145℃において、縦に20%、横に25%収縮する性質を有するフィルムであった。
 複層フィルムを、前記延伸装置に取り付け、予熱温度145℃で5秒処理した。その後、複層フィルムを、延伸温度145℃で、縦延伸倍率0.8倍、横延伸倍率1.2倍で延伸した。延伸後の複層フィルムから収縮フィルムを除去して、位相差フィルムとしての樹脂フィルムを得た。この樹脂フィルムを、上述した方法で評価した。
[結果]
 上述した実施例及び比較例の結果を、下記の表に示す。下記の表において、略称の意味は、以下の通りである。
 COP:ジシクロペンタジエンの開環重合体の水素化物。
 d:厚み。
 Re:面内レターデーション。
 Rth:厚み方向のレターデーション。
 Hz:ヘイズ。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[検討]
 比較例3に示すように、フィルムの延伸及び収縮を組み合わせた製造方法によれば、NZ係数が1.0未満のフィルムを製造することは、可能であった。しかし、このように延伸及び収縮の組み合わせは、その制御が複雑であった。さらに、比較例3で得られるフィルムは複屈折が小さく、位相差フィルムとして用いることはできない。よって、1.0未満のNZ係数を有する位相差フィルムを簡単に製造することはできていない。
 また、比較例2に示すように、光学異方性の原反フィルムを有機溶媒に接触させた場合にも、1.0未満のNZ係数を有する位相差フィルムを簡単に製造することはできなかった。さらに、比較例2で得られた位相差フィルムは、ヘイズが大きく、表示装置に設けた場合に画像の鮮明性が劣ると考えられる。
 比較例1に示すように、光学特性を適切に調整されることによって結晶性重合体の分子の配向性を適切に制御された原反フィルムを用いる場合には、当該原反フィルムが光学異方性を有していても、NZ係数が1.0未満の位相差フィルムを製造できることがある。しかし、比較例1と同じく光学異方性の原反フィルムを用いた比較例2で1.0未満のNZ係数が得られていないことから分かるように、光学異方性の原反フィルムを用いる場合は、1.0未満のNZ係数を達成するために、その原反フィルムの光学特性を精密に制御することが求められ、よって原反フィルムに含まれる結晶性重合体の分子の配向性を精密に制御することが求められる。したがって、光学異方性の原反フィルムを用いる場合、制御が複雑化し、位相差フィルムの簡単な製造が実現できない。また、比較例1の位相差フィルムは、比較例2の位相差フィルムと同じく、ヘイズの大きかった。
 これに対し、実施例では、光学等方性の原反フィルムを有機溶媒に接触させるというシンプルな方法により、1.0未満のNZ係数を有する位相差フィルムを得ている。また、得られた位相差フィルムは、いずれも、ヘイズが充分に小さい。よって、これらの実施例の結果から、本発明の製造方法によってNZ係数が1.0未満の位相差フィルムを簡単に製造できること、及び、製造される位相差フィルムのヘイズを小さくできることを確認できた。
 

Claims (11)

  1.  結晶性を有する重合体を含む樹脂で形成され、
     NZ係数が1.0未満であり、且つ、
     ヘイズが1.0%未満である、位相差フィルム。
  2.  前記位相差フィルムのNZ係数が、0.0より大きく1.0未満である、請求項1に記載の位相差フィルム。
  3.  前記位相差フィルムが、有機溶媒を含む、請求項1又は2に記載の位相差フィルム。
  4.  前記有機溶媒が、炭化水素溶媒である、請求項3に記載の位相差フィルム。
  5.  前記結晶性を有する重合体が、脂環式構造を含有する、請求項1~4のいずれか一項に記載の位相差フィルム。
  6.  前記結晶性を有する重合体が、ジシクロペンタジエンの開環重合体の水素化物である、請求項1~5のいずれか一項に記載の位相差フィルム。
  7.  結晶性を有する重合体を含む樹脂で形成された光学等方性の樹脂フィルムを用意する第一工程と、
     前記樹脂フィルムを、有機溶媒に接触させて、厚み方向の複屈折を変化させる第二工程と、を含む、位相差フィルムの製造方法。
  8.  前記第二工程の後で、前記樹脂フィルムを延伸する第三工程を含む、請求項7に記載の位相差フィルムの製造方法。
  9.  前記有機溶媒が、炭化水素溶媒である、請求項7又は8に記載の位相差フィルムの製造方法。
  10.  前記結晶性を有する重合体が、脂環式構造を含有する、請求項7~9のいずれか一項に記載の位相差フィルムの製造方法。
  11.  前記結晶性を有する重合体が、ジシクロペンタジエンの開環重合体の水素化物である、請求項7~10のいずれか一項に記載の位相差フィルムの製造方法。
PCT/JP2020/026095 2019-07-31 2020-07-02 位相差フィルム及びその製造方法 WO2021020023A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/597,654 US20220251318A1 (en) 2019-07-31 2020-07-02 Phase contrast film and production method therefor
CN202080052256.0A CN114127594A (zh) 2019-07-31 2020-07-02 相位差膜及其制造方法
KR1020227000675A KR20220038051A (ko) 2019-07-31 2020-07-02 위상차 필름 및 그 제조 방법
JP2021536860A JPWO2021020023A1 (ja) 2019-07-31 2020-07-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019141795 2019-07-31
JP2019-141795 2019-07-31

Publications (1)

Publication Number Publication Date
WO2021020023A1 true WO2021020023A1 (ja) 2021-02-04

Family

ID=74229973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026095 WO2021020023A1 (ja) 2019-07-31 2020-07-02 位相差フィルム及びその製造方法

Country Status (6)

Country Link
US (1) US20220251318A1 (ja)
JP (1) JPWO2021020023A1 (ja)
KR (1) KR20220038051A (ja)
CN (1) CN114127594A (ja)
TW (1) TW202110934A (ja)
WO (1) WO2021020023A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153695A1 (ja) * 2020-01-30 2021-08-05 日本ゼオン株式会社 位相差フィルムの製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735079A1 (en) * 1995-03-31 1996-10-02 Teijin Limited Film of aromatic polyethersulfone, process for the production thereof, and solution composition for the production thereof
JP2006274135A (ja) * 2005-03-30 2006-10-12 Kaneka Corp 位相差フィルムおよび位相差フィルムを形成するためのポリマーフィルムとその製造方法
JP2007041514A (ja) * 2005-03-17 2007-02-15 Fujifilm Corp 液晶表示装置
JP2010079239A (ja) * 2008-08-28 2010-04-08 Fujifilm Corp セルロースアシレートフィルムとその製造方法、位相差フィルム、偏光板および液晶表示装置
JP2011227429A (ja) * 2009-06-19 2011-11-10 Nitto Denko Corp 光学フィルムの製造方法、光学フィルムおよび画像表示装置
JP2016080959A (ja) * 2014-10-21 2016-05-16 富士フイルム株式会社 位相差フィルムおよびその製造方法、位相差フィルムを備えた偏光板および画像表示装置
WO2017065222A1 (ja) * 2015-10-15 2017-04-20 日本ゼオン株式会社 位相差フィルム及びその製造方法
JP2019028109A (ja) * 2017-07-26 2019-02-21 日本ゼオン株式会社 複層フィルム及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016026909A (ja) 2014-06-26 2016-02-18 日本ゼオン株式会社 樹脂フィルムの製造方法、樹脂フィルム、および光学フィルム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735079A1 (en) * 1995-03-31 1996-10-02 Teijin Limited Film of aromatic polyethersulfone, process for the production thereof, and solution composition for the production thereof
JP2007041514A (ja) * 2005-03-17 2007-02-15 Fujifilm Corp 液晶表示装置
JP2006274135A (ja) * 2005-03-30 2006-10-12 Kaneka Corp 位相差フィルムおよび位相差フィルムを形成するためのポリマーフィルムとその製造方法
JP2010079239A (ja) * 2008-08-28 2010-04-08 Fujifilm Corp セルロースアシレートフィルムとその製造方法、位相差フィルム、偏光板および液晶表示装置
JP2011227429A (ja) * 2009-06-19 2011-11-10 Nitto Denko Corp 光学フィルムの製造方法、光学フィルムおよび画像表示装置
JP2016080959A (ja) * 2014-10-21 2016-05-16 富士フイルム株式会社 位相差フィルムおよびその製造方法、位相差フィルムを備えた偏光板および画像表示装置
WO2017065222A1 (ja) * 2015-10-15 2017-04-20 日本ゼオン株式会社 位相差フィルム及びその製造方法
JP2019028109A (ja) * 2017-07-26 2019-02-21 日本ゼオン株式会社 複層フィルム及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153695A1 (ja) * 2020-01-30 2021-08-05 日本ゼオン株式会社 位相差フィルムの製造方法

Also Published As

Publication number Publication date
TW202110934A (zh) 2021-03-16
KR20220038051A (ko) 2022-03-25
CN114127594A (zh) 2022-03-01
US20220251318A1 (en) 2022-08-11
JPWO2021020023A1 (ja) 2021-02-04

Similar Documents

Publication Publication Date Title
TWI829868B (zh) 相位差薄膜及其製造方法
WO2021020023A1 (ja) 位相差フィルム及びその製造方法
WO2021039934A1 (ja) 位相差フィルム及びその製造方法
WO2022145174A1 (ja) 光学フィルム及びその製造方法
WO2021107108A1 (ja) 位相差フィルム及びその製造方法
WO2021153695A1 (ja) 位相差フィルムの製造方法
JP2022103558A (ja) 多層フィルム及びその製造方法、並びに光学フィルム及びその製造方法
WO2016002665A1 (ja) 光学フィルム及びその製造方法
WO2022145152A1 (ja) 光学フィルム及びその製造方法
JP2022103573A (ja) 光学フィルム及びその製造方法、並びに延伸フィルムの製造方法
JP2022116820A (ja) 光学フィルムの製造方法
WO2022145238A1 (ja) 複屈折フィルム、その製造方法、及び光学フィルムの製造方法
JP2022116889A (ja) 光学フィルムの製造方法
JP2022104366A (ja) 光学フィルム及びその製造方法
JP2022103574A (ja) 光学フィルム、及びその製造方法
JP7103125B2 (ja) 樹脂フィルムの製造方法
JP2024049134A (ja) 光学フィルムの製造方法
WO2020137305A1 (ja) 光学フィルム
JP2022116871A (ja) 光学フィルム及びその製造方法
WO2022145173A1 (ja) 光学フィルム及びその製造方法、並びに偏光板
WO2022145171A1 (ja) 多層フィルム、光学フィルム及び製造方法
JP2023045221A (ja) 光学フィルム及びその製造方法
JP2022116919A (ja) 光学フィルム、複合光学フィルム及び製造方法
JP2022103719A (ja) 光学フィルム、その製造方法及び用途
WO2022145172A1 (ja) 多層フィルム及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848474

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021536860

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20848474

Country of ref document: EP

Kind code of ref document: A1