WO2020253457A1 - 温控组件及电池包 - Google Patents

温控组件及电池包 Download PDF

Info

Publication number
WO2020253457A1
WO2020253457A1 PCT/CN2020/091302 CN2020091302W WO2020253457A1 WO 2020253457 A1 WO2020253457 A1 WO 2020253457A1 CN 2020091302 W CN2020091302 W CN 2020091302W WO 2020253457 A1 WO2020253457 A1 WO 2020253457A1
Authority
WO
WIPO (PCT)
Prior art keywords
side plate
plate
section
temperature control
main body
Prior art date
Application number
PCT/CN2020/091302
Other languages
English (en)
French (fr)
Inventor
吴布维
黄银成
宿永强
周灵刚
赵丰刚
陈松乔
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to JP2021575016A priority Critical patent/JP7412457B2/ja
Priority to EP23189486.6A priority patent/EP4265936A3/en
Priority to KR1020217040607A priority patent/KR20220007888A/ko
Priority to EP20815703.2A priority patent/EP3792994B1/en
Priority to US17/123,026 priority patent/US20210104789A1/en
Publication of WO2020253457A1 publication Critical patent/WO2020253457A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/025Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by having a particular shape
    • F16F1/027Planar, e.g. in sheet form; leaf springs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/02Special physical effects, e.g. nature of damping effects temperature-related
    • F16F2222/025Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2234/00Shape
    • F16F2234/06Shape plane or flat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2236/00Mode of stressing of basic spring or damper elements or devices incorporating such elements
    • F16F2236/04Compression
    • F16F2236/045Compression the spring material being generally enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of batteries, in particular to a temperature control component and a battery pack.
  • Battery packs usually include multiple batteries grouped together.
  • the group technology in addition to ensuring the strength and performance of the structure itself, it is also necessary to consider the impact of the structure on the battery life. Temperature and expansion force have a great impact on the battery life. Therefore, thermal management and expansion force design must be considered in the design.
  • the battery pack In terms of thermal management design: At present, there are mainly two methods of water cooling and air cooling. Among them, due to the high cost of the water cooling method, the battery pack generally uses air cooling for heat dissipation.
  • expansion force design during the charging and discharging process of the battery pack, the battery will gradually expand and interact with the fixed structure (ie, expansion force).
  • expansion force ie, expansion force
  • an appropriate expansion force will be beneficial to the battery's own reaction, but an excessive expansion force will cause the battery to be over-stressed and cause lithium evolution, and even cause irreversible capacity loss, thereby greatly reducing the battery life.
  • the batteries are directly attached to each other and strengthen the external structure to directly resist the expansion force.
  • the disadvantage of this method is: when the battery capacity and the battery form a string As the number gradually increases, the expansion force of the batteries after they are grouped will become greater and greater, thereby reducing the battery life; (2) A buffer pad and other structures are added between the batteries, which absorb the expansion force through the expansion and contraction characteristics of the material, thereby reducing the cost
  • the disadvantage of this method is that the large surface of the battery is close to the cushion, and only the side and bottom of the battery can be used to dissipate heat, thus reducing the heat dissipation efficiency; (3) The battery is separated from the battery and the middle is empty.
  • the shortcoming of this method is that the battery expands freely at the beginning, and it is easy to react insufficiently under no pressure, which reduces the service life. At the same time, if the battery swells larger, the gap is reserved. When it is too large, the volume of the group will be affected.
  • the purpose of the present invention is to provide a temperature control assembly and a battery pack.
  • the temperature control assembly can not only perform thermal management on the battery, but also absorb battery production.
  • the expansion force of the battery thereby reducing the deformation of the battery under the expansion force, greatly improving the service life of the battery.
  • the present invention provides a temperature control assembly, which includes: a first side plate; a second side plate, which is arranged opposite to the first side plate in the longitudinal direction, and the second side plate is connected to the first side plate and A cavity is formed together with the first side plate; and an elastic thermal conductive sheet is arranged in the cavity and divides the cavity into a plurality of channels.
  • the elastic thermally conductive sheet has a main body, and the main body includes: a first flat plate section that is close to the first side plate in the longitudinal direction and extends in the vertical direction; the second flat plate section is close to the second side plate in the longitudinal direction and extends in the vertical direction Extension; and a connecting section, which extends obliquely from the first side plate toward the second side plate and is connected to the first flat section and the second flat section.
  • the first flat plate section contacts the first side plate
  • the second flat plate section contacts the second side plate
  • the first side plate has: a first body part extending in the up-down direction; and a first extension part connected to one end of the first body part and extending in the longitudinal direction, and the first extension part is connected On the second side panel.
  • the elastic thermally conductive sheet is movably disposed in the cavity formed by the second side plate and the first side plate. Or, the two ends of the elastic heat conducting sheet in the up-down direction respectively abut against the corresponding first extension portion of the first side plate.
  • the elastic thermally conductive sheet further has: a compression part connected to one end of the main body part in the vertical direction.
  • the compression part is arranged such that when the first flat plate section and the second flat plate section of the main body part are compressed by the first side plate and the second side plate in the longitudinal direction, the compression part is compressed by the main body part and deformed.
  • the compression part is formed as a coiled structure.
  • the compression part abuts against the first extension part of the first side plate in the up and down direction ,
  • the main body part is wound around the compression part to squeeze the compression part.
  • the compression part is formed as an arch structure.
  • the elastic thermally conductive sheet further has a connecting part located between the compression part and the first extension part in the up-down direction and connected to the compression part.
  • the compression portion includes: a third flat plate section extending in the up and down direction and spaced apart from the first side plate and the second side plate in the longitudinal direction; the first pressing section is from the third flat plate The section extends obliquely toward the first side plate and is connected to the third flat plate section and the main body part; and the second pressing section extends obliquely from the third flat plate section toward the first side plate and is connected to the third flat plate section and the connecting part .
  • the elastic thermal conductive sheet is one sheet in number.
  • the number of elastic thermally conductive sheets is at least two, and the at least two elastic thermally conductive sheets include a first elastic thermally conductive sheet and a second elastic thermally conductive sheet.
  • the temperature control assembly further includes a partition plate extending in the longitudinal direction and connected to the first side plate and the second side plate. The first elastic heat conducting sheet is arranged above the partition plate, and the second elastic heat conducting sheet is arranged below the partition plate.
  • the present invention also provides a battery pack, which includes a plurality of batteries and the above-mentioned temperature control assembly, the plurality of batteries includes a first battery and a second battery, and the temperature control assembly is disposed on the first battery and the second battery between.
  • the present invention also provides a device, which includes the battery pack described above, and the battery pack is used to provide electrical energy.
  • the heat dissipation treatment of the battery can be realized. And during the use of the battery pack, the battery will generate expansion force. At this time, the expansion force of two adjacent batteries squeezes the first side plate and the second side plate respectively, and the first side plate and the second side plate are The first flat section and the second flat section of the main body are squeezed longitudinally. Due to the elasticity and structural characteristics of the elastic thermal conductive sheet, the main body of the elastic thermal conductive sheet deforms under the squeezing action of the first side plate and the second side plate and absorbs the expansion force of the battery in time, thereby reducing the expansion force of the battery. The degree of deformation caused by the bottom, which greatly improves the service life of the battery.
  • Fig. 1 is a schematic diagram of the structure of the battery pack of the present invention.
  • Fig. 2 is a top view of the battery pack in Fig. 1 with an upper cover removed.
  • Fig. 3 is a schematic structural diagram of a temperature control component of the present invention in an embodiment.
  • Fig. 4 is an exploded view of Fig. 3.
  • Fig. 5 is an enlarged view of the circled part in Fig. 3.
  • Fig. 6 is a perspective view of the elastic thermally conductive sheet in Fig. 4.
  • Fig. 7 is a schematic structural diagram of the temperature control component of the present invention in another embodiment.
  • Fig. 8 is an exploded view of Fig. 7.
  • Fig. 9 is an enlarged view of the circled part in Fig. 7 in which the first compression part is in an unsqueezed state.
  • Fig. 10 is an enlarged view of the circled part in Fig. 7, in which the first compression part is in a compressed state.
  • Fig. 11 is a perspective view of the elastic thermally conductive sheet in Fig. 8.
  • Figure 13 is an assembly diagram of the air duct assembly and the lower box.
  • the battery pack of the present application includes a plurality of batteries 1, a temperature control assembly 2, a lower box body 3, an air duct assembly 4, a fan 5, a cable tie 6, an upper box cover 7, an end plate 8, and installation Panel 9 and wiring harness isolation board (not shown).
  • the plurality of batteries 1 includes a first battery 1A and a second battery 1B, and the temperature control assembly 2 is disposed between the first battery 1A and the second battery 1B.
  • the number of the first battery 1A and the second battery 1B can be multiple, the multiple first batteries 1A and the multiple second batteries 1B are alternately arranged in the longitudinal direction Y, and each adjacent first battery A temperature control component 2 can be provided between 1A and the second battery 1B.
  • the temperature control component 2 may be made of a metal material, such as an aluminum profile.
  • the first side plate 21 is disposed opposite to the second side plate 22 along the longitudinal direction Y, and the second side plate 22 is connected to the first side plate 21 and forms an enclosure structure with a cavity together with the first side plate 21.
  • the first side plate 21 may have: a first body portion 211 extending in the vertical direction Z; and a first extension portion 212 connected to one end of the first body portion 211 and extending along the longitudinal direction Y, and the first extension portion 212 is connected to The second side panel 22.
  • the number of the first extension portion 212 can be selectively set to one (that is, the first side plate 21 has an "L"-shaped structure) or two (that is, the first side plate 21 has a "]"-shaped structure).
  • the second side plate 22 as a whole may have a flat structure (not shown).
  • the second side plate 22 may have: a second body portion 221 extending in the vertical direction Z; and a second extension portion 222 connected to one end of the second body portion 221 and extending in the longitudinal direction Y, and the second extension portion 222 Connected to the first side plate 21.
  • the number of the second extension portion 222 can also be selectively set to one or two.
  • each of the first extension portions 212 and the corresponding second extension portion 222 overlap and are fixedly connected together in the up-down direction Z.
  • the first body portion 211 of the first side plate 21 and the second body portion 221 of the second side plate 22 are arranged directly facing the large surface of the corresponding battery 1.
  • first flat section 231A, the connecting section 231C, and the second side plate 22 form a corresponding channel F
  • the second flat section 231B, the connecting section 231C, and the first side plate 21 also form a corresponding channel F.
  • the first flat plate section 231A is close to the first side plate 21 in the longitudinal direction Y
  • the second flat section 231B is close to the second side plate 22 in the longitudinal direction Y
  • the second flat section 231B also includes two arrangements: 1) the second flat section 231B is arranged in contact with the second side plate 22; 2) the second flat section 231B It is separated from the second side plate 22 by a certain distance, and the distance between the second flat plate section 231B and the second side plate 22 is smaller than the distance between the second flat plate section 231B and the first side plate 21.
  • the battery 1 will generate expansion force.
  • the expansion force of two adjacent batteries 1 ie, the first battery 1A and the second battery 1B
  • the plate 22 and the first side plate 21 and the second side plate 22 respectively press the first plate section 231A and the second plate section 231B of the main body portion 231 in the longitudinal direction Y.
  • the main body 231 of the elastic thermally conductive sheet 23 is deformed under the squeezing action of the first side plate 21 and the second side plate 22, and absorbs the expansion force of the battery 1 in a timely manner, thereby The degree of deformation of the battery 1 under the action of the expansion force is reduced, thereby greatly improving the service life of the battery 1.
  • the main body portion 231 of the elastic thermally conductive sheet 23 may include a plurality of first plate sections 231A, a plurality of second plate sections 231B, and a plurality of connecting sections 231C, and adjacent first plate sections 231A and The two flat plate sections 231B are connected by a corresponding connecting section 231C, so that a plurality of first flat plate sections 231A, a plurality of second flat plate sections 231B, and a plurality of connecting sections 231C together form a wave-like structure (also called a corrugated board-like structure) .
  • This wave-like structure makes the contact area between the air and the elastic heat conductive sheet 23 large, thereby improving the heat dissipation efficiency of the temperature control assembly 2 to the battery 1.
  • the elastic thermally conductive sheet 23 may further have a compression portion 232 connected to one end of the main body portion 231 in the vertical direction Z.
  • the number of the compression parts 232 may be two, and the two compression parts 232 are respectively connected to the two ends of the main body 231 in the vertical direction Z.
  • the compression portion 232 is configured such that when the first flat section 231A and the second flat section 231B of the main body 231 are compressed by the first side plate 21 and the second side plate 22 in the longitudinal direction Y, the compression section 232 is pressed by the main body The portion 231 is compressed and deformed.
  • the compressed portion 232 of the elastic thermally conductive sheet 23 may be formed in a coiled structure (enclosed with a cavity).
  • the main body part 231 stretches and becomes longer and compresses in the vertical direction Z
  • the portion 232 abuts on the first extension portion 212 of the first side plate 21.
  • the elongated portion of the main body portion 231 is wound around the compression portion 232 and presses the compression portion 232, and the compression portion 232 is deformed to form the main body portion 231
  • the elongated portion provides enough space, thereby achieving the purpose of absorbing the expansion force of the battery 1.
  • the compression portion 232 of the elastic thermal conductive sheet 23 may be formed in an arched structure (enclosed with a cavity).
  • the elastic thermally conductive sheet 23 further has a connecting portion 233 located between the compression portion 232 and the first extension portion 212 in the vertical direction Z and connected to the compression portion 232.
  • the first extension portion 212 presses the compression portion 232 together with the main body portion 231 via the connecting portion 233, and the compression portion 232 is deformed to extend the main body portion 231. Enough space is partially provided, thereby achieving the purpose of absorbing the expansion force of the battery 1.
  • the compression portion 232 may include: a third flat plate section 232A extending in the up-down direction Z and spaced apart from the first side plate 21 and the second side plate 22 in the longitudinal direction Y;
  • the three flat plate sections 232A extend obliquely toward the first side plate 21 and are connected to the third flat plate section 232A and the main body portion 231; and the second pressing section 232C extends obliquely from the third flat plate section 232A toward the first side plate 21, and Connected to the third flat section 232A and the connecting portion 233.
  • the connecting portion 233 may be formed in an L-shaped structure, as shown in FIG. 5.
  • the connecting portion 233 of the elastic thermal conductive sheet 23 can be directly fixed to the first extension portion 212, and other parts of the elastic thermal conductive sheet 23 do not need to be fixed to the first side plate 21 and the second side plate 22.
  • the number of elastic thermally conductive sheets 23 can be selectively set according to actual use conditions. Specifically, referring to FIG. 3 to FIG. 5 and FIG. 7 to FIG. 10, the elastic thermal conductive sheet 23 may be one piece in number. 12, the number of elastic thermally conductive sheets 23 may be at least two, and the at least two elastic thermally conductive sheets 23 include a first elastic thermally conductive sheet 23A and a second elastic thermally conductive sheet 23B.
  • the partition plate 24 extends in the longitudinal direction Y and is connected to the first side plate 21 and the second side plate 22.
  • the first elastic heat conducting sheet 23A is arranged above the partition plate 24, and the second elastic heat conducting sheet 23B is arranged below the partition plate 24.
  • the lower case 3 is used to support the plurality of batteries 1.
  • the plurality of batteries 1 can be arranged in at least two rows of battery rows in the transverse direction X, and the air duct assembly 4 is arranged between the two rows of battery rows and fixed to the lower box 3.
  • the air duct assembly 4 and the corresponding battery row form an air duct, and the air duct is connected to a plurality of channels F of the corresponding temperature control assembly 2 and the fan 5.
  • the air duct assembly 4 may include an air volume adjusting plate 41, a first supporting plate 42, a second supporting plate 43, a mounting plate 44 and a sealing strip 45.
  • the air volume adjusting plate 41 is arranged in the air duct, the first supporting plate 42 and the second supporting plate 43 are spaced apart in the longitudinal direction Y, and the first supporting plate 42 is close to the fan 5. Wherein, the height of the air volume adjustment plate 41 is successively reduced along the direction of the first support plate 42 toward the second support plate 43, so that the air duct expands from the side close to the fan 5 to the side away from the fan 5 in the longitudinal direction Y.
  • the end plates 8 are arranged at both ends of each battery row in the longitudinal direction Y.
  • the cable tie 6 is circumferentially tightened to correspond to all the batteries 1 in a battery row, the corresponding temperature control assembly 2 and the corresponding two end plates 8.
  • the installation panel 9 is located outside the corresponding end plate 8 in the longitudinal direction Y, is fixedly connected to the lower box body 3 and the corresponding end plate 8, and is fixedly installed with the fan 5.
  • the wire harness isolation plate is arranged above the plurality of batteries 1 and directly fixed to the end plate 8, thereby helping to improve the grouping efficiency and integration degree of the battery pack.
  • the upper box cover 7 is arranged above the wire harness isolation plate and is fixedly connected to the wire harness isolation plate by fasteners (such as rivets).
  • fasteners such as rivets
  • the embodiment of the present application also provides a device, including the battery pack in the above-mentioned embodiment, and the battery pack is used to provide electric energy.
  • the device includes, but is not limited to, vehicles, ships, energy storage cabinets or aircraft, etc.
  • the vehicles can be new energy vehicles, such as pure electric vehicles, hybrid vehicles, or extended-range electric vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种温控组件(2)及电池包,温控组件(2)包括:第一侧板(21)、第二侧板(22)以及弹性导热片(23)。弹性导热片(23)具有主体部(231),且主体部(231)包括:第一平板段(231A),在纵向上靠近第一侧板(21)、沿上下方向延伸;第二平板段(231B),在纵向上靠近第二侧板(22)、沿上下方向延伸;以及连接段(231C),从第一侧板(21)朝向第二侧板(22)倾斜延伸、连接于第一平板段(231A)和第二平板段(231B)。当外部空气流经温控组件(2)时,即可实现对电池(1)的散热处理。在电池包的使用过程中,相邻两个电池(1)的膨胀力分别挤压第一侧板(21)和第二侧板(22)、而第一侧板(21)和第二侧板(22)分别挤压第一平板段(231A)和第二平板段(231B)。

Description

温控组件及电池包
本申请要求享有2019年06月18日提交的名称为“温控组件及电池包”的中国专利申请CN201910528793.7的优先权,其全部内容通过引用并入本文中。
技术领域
本发明涉及电池技术领域,尤其涉及一种温控组件及电池包。
背景技术
电池包通常包括成组在一起的多个电池。在成组技术中,除了保证结构自身强度和性能外,还需要考虑结构对于电池寿命的影响,其中温度和膨胀力对于电池寿命影响很大,所以在设计时必须考虑热管理和膨胀力设计。
在热管理设计方面:目前主要有水冷和风冷两种方式。其中,由于水冷方式的成本较高,因而电池包普遍采用风冷方式进行散热。
在膨胀力设计方面:电池包在充放电过程中,电池会逐渐产生膨胀、且与固定结构产生相互作用力(即膨胀力)。其中,适当的膨胀力会有益于电池自身反应,但是过大的膨胀力会使得电池受压过大而发生析锂现象,甚至产生不可逆的容量损失,从而极大地降低了电池的寿命。
为了缓解膨胀力,目前主要有以下几种形式:(1)电池之间直接贴紧、加强外部结构,以直接抵抗膨胀力,这种方式的不足之处在于:当电池容量和电池成组串数逐渐提升时,电池成组后的膨胀力会越来越大,从而降低了电池使用寿命;(2)电池间增加缓冲垫等结构,其通过材料自身伸缩特性来吸收膨胀力,从而降低成组后的膨胀力,这种方式的不足之处在于:电池大面紧贴缓冲垫,只能采用电池侧面和底部散热,由此降低了散热效率;(3)电池与电池隔开,中间空出间隙,以使得电池自由膨胀,这种方式的不足之处在于:电池初始时为自由膨胀,在无压力下容易反应不充分,降低了使用寿命,同时若电池膨胀量较大、预留间隙过大时,影响成组体积。
发明内容
鉴于背景技术中存在的问题,本发明的目的在于提供一种温控组件及电池包,当温控组件应用于电池包中时,温控组件不仅能够对电池进行热管理,还能够吸收电池产生的膨胀力,从而降低了电池在膨胀力作用下产生的变形,极大地提高了电池的使用寿命。
为了实现上述目的,本发明提供了一种温控组件,其包括:第一侧板;第二侧板,沿纵向与第一侧板相对设置,且第二侧板连接于第一侧板并与第一侧板一起形成有腔体;以及弹性导热片,设置于所述腔体内并将所述腔体划分为多个通道。弹性导热片具有主体部,且主体部包括:第一平板段,在纵向上靠近第一侧板、并沿上下方向延伸;第二平板段,在纵向上靠近第二侧板、并沿上下方向延伸;以及连接段,从第一侧板朝向第二侧板倾斜延伸、并连接于第一平板段和第二平板段。
在本发明的一些实施例中,第一平板段接触第一侧板,第二平板段接触第二侧板。
在本发明的一些实施例中,第一侧板具有:第一本体部,沿上下方向延伸;以及第一延伸部,连接于第一本体部的一端并沿纵向延伸,且第一延伸部连接于第二侧板。
在本发明的一些实施例中,弹性导热片活动设置于第二侧板与第一侧板形成的腔体内。或者,弹性导热片在上下方向上的两端分别抵靠在第一侧板的对应的第一延伸部上。
在本发明的一些实施例中,弹性导热片还具有:压缩部,连接于主体部在上下方向的一端。压缩部设置成:当主体部的第一平板段和第二平板段在纵向上受到第一侧板和第二侧板的挤压后,压缩部被主体部挤压而产生变形。
在本发明的一些实施例中,压缩部形成为卷绕状结构。当主体部的第一平板段和第二平板段在纵向上受到第一侧板和第二侧板的挤压后,压缩部在上下方向上抵靠在第一侧板的第一延伸部上、主体部围绕压缩部进行卷绕,以挤压压缩部。
在本发明的一些实施例中,压缩部形成为拱形结构。弹性导热片还具有:连接部,在上下方向上位于压缩部与第一延伸部之间并连接于压缩部。当主体部在纵向上受到第一侧板和第二侧板的挤压后,连接部抵靠在第一侧板的第一延伸部上,第一延伸部经由连接部与主体部一起挤压压缩部。
在本发明的一些实施例中,压缩部包括:第三平板段,沿上下方向延伸、并在纵向上与第一侧板和第二侧板间隔设置;第一挤压段,从第三平板段朝向第一侧板倾斜延伸、并连接于第三平板段和主体部;以及第二挤压段,从第三平板段朝向第一侧板倾斜延伸、并连接于第三平板段和连接部。
在本发明的一些实施例中,弹性导热片在数量上为一片。
在本发明的一些实施例中,弹性导热片在数量上为至少两片,所述至少两片弹性导热片包括第一弹性导热片和第二弹性导热片。温控组件还包括:分隔板,沿纵向延伸并连接于第一侧板和第二侧板。第一弹性导热片设置于分隔板上方,第二弹性导热片设置于分隔板下方。
本发明还提供了一种电池包,其包括多个电池以及上述所述的温控组件,所述多个电池包括第一电池和第二电池,温控组件设置于第一电池与第二电池之间。
本发明还提供了一种装置,其包括上述所述的电池包,所述电池包用于提供电能。
本发明的有益效果如下:
本发明的电池包中,当外部空气流经温控组件的通道时,即可实现对电池的散热处理。且在电池包的使用过程中,电池会产生膨胀力,此时相邻两个电池的膨胀力分别挤压第一侧板和第二侧板、而第一侧板和第二侧板分别在纵向上挤压主体部的第一平板段和第二平板段。由于弹性导热片自身的弹性和结构特性,弹性导热片的主体部在第一侧板和第二侧板的挤压作用下产生变形以及时吸收电池的膨胀力,从而降低了电池在膨胀力作用下产生的变形程度,由此极大地提高了电池的使用寿命。
附图说明
图1是本发明的电池包的结构示意图。
图2是图1中的电池包去除上箱盖后的俯视图。
图3是本发明的温控组件在一实施例中的结构示意图。
图4是图3的分解图。
图5是图3中的圆圈部分的放大图。
图6是图4中弹性导热片的立体图。
图7是本发明的温控组件在另一实施例中的结构示意图。
图8是图7的分解图。
图9是图7中的圆圈部分的放大图,其中第一压缩部处于未挤压状态。
图10是图7中的圆圈部分的放大图,其中第一压缩部处于挤压状态。
图11是图8中弹性导热片的立体图。
图12是本发明的温控组件在又一实施例中的结构示意图。
图13是是风道组件与下箱体的组装图。
其中,附图标记说明如下:
1电池
1A第一电池
1B第二电池
2温控组件
21第一侧板
211第一本体部
212第一延伸部
22第二侧板
221第二本体部
222第二延伸部
23弹性导热片
231主体部
231A第一平板段
231B第二平板段
231C连接段
232压缩部
232A第三平板段
232B第一挤压段
232C第二挤压段
233连接部
24分隔板
3下箱体
4风道组件
41风量调节板
42第一支撑板
43第二支撑板
44安装板
45密封条
5风机
6扎带
7上箱盖
8端板
F通道
X横向
Y纵向
Z上下方向
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,除非另有明确的规定和限定,术语“第一”、“第二”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”是指两个以上(包括两个);除非另有规定或说明,术语“连接”、应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接,或电连接,或信号连接;“连接”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本说明书的描述中,需要理解的是,本申请实施例所描述的“上”、“下”、等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。下面通过具体的实施例并结合附图对本申请做进一步的详细描述。
参照图1至图13,本申请的电池包包括多个电池1、温控组件2、下箱体3、风道组件4、风机5、扎带6、上箱盖7、端板8、安装面板9以及线束隔离板(未示出)。
参照图1和图2,所述多个电池1包括第一电池1A和第二电池1B,温控组件2设置于第一电池1A与第二电池1B之间。进一步地,第一电池1A和第二电池1B在数量上可均为多个、多个第一电池1A和多个第二电池1B在纵向Y上依次交替排列,且每相邻的第一电池1A和第二电池1B之间可均设置温控组件2。
为了保证温控组件2的强度以及导热性,温控组件2可由金属材料制成,如铝型材。
参照图3至图12,温控组件2可包括第一侧板21、第二侧板22、弹性导热片23以及分隔板24。
第一侧板21沿纵向Y与第二侧板22相对设置,且第二侧板22连接于第一侧板21并与第一侧板21一起形成带有腔体的围框结构。
第一侧板21可具有:第一本体部211,沿上下方向Z延伸;以及第一延伸部212,连接于第一本体部211的一端并沿纵向Y延伸,且第一延伸部212连接于第二侧板22。其中,第一延伸部212在数量上可选择性设置为一个(即第一侧板21为“L”型结构)或两个(即第一侧板21为“]”型结构)。
第二侧板22整体可为平板状结构(未示出)。或者,第二侧板22可具有:第二本体部221,沿上下方向Z延伸;以及第二延伸部222,连接于第二本体部221的一端并沿纵向Y延伸,且第二延伸部222连接于第一侧板21。其中,第二延伸部222在数量上也可选择性设置为一个或两个。
当第一延伸部212和第二延伸部222在数量上均为两个时,各第一延伸部212与对应的第二延伸部222在上下方向Z上叠置并固定连接在一起。
第一侧板21的第一本体部211与第二侧板22的第二本体部221直接面向对应电池1的大面设置,当外部空气流经温控组件2的通道F时,即可实现对电池1的散热处理。
弹性导热片23设置于第一侧板21与第二侧板22形成的腔体内并将所述腔体划分为多个通道F。具体地,弹性导热片23可活动设置于第二侧板22与第一侧板21形成的腔体内。或者,弹性导热片23在上下方向Z上的两端分别抵靠在第一侧板21的对应的第一延伸部212上。
弹性导热片23具有主体部231,且主体部231包括:第一平板段231A,在纵向Y上靠近第一侧板21、并沿上下方向Z延伸;第二平板段231B,在纵向Y上靠近第二侧板22、并沿上下方向Z延伸;以及连接段231C,从第一侧板21朝向第二侧板22倾斜延伸、并连接于第一平板段231A和第二平板段231B。此时,第一平板段231A与连接段231C、第二侧板22形成对应一个通道F,第二平板段231B与连接段231C、第一侧板21也形成对应一个通道F。
需要说明的是,这里的“第一平板段231A在纵向Y上靠近第一侧板21”包括两种设置方式:1)第一平板段231A与第一侧板21接触设置;2)第一平板段231A与第一侧板21间隔一定距离,且第一平板段231A与第一侧板21之间的间隔小于第一平板段231A与第二侧板22之间的间隔。
同理,“第二平板段231B在纵向Y上靠近第二侧板22”也包括两种设置方式:1)第二平板段231B与第二侧板22接触设置;2)第二平板段231B与第二侧板22间隔一定距离,且第二平板段231B与第二侧板22之间的间隔小于第二平板段231B与第一侧板21之间的间隔。
在电池包的使用过程中,电池1会产生膨胀力,此时相邻两个电池1(即第一电池1A和第二电池1B)的膨胀力分别挤压第一侧板21和第二侧板22、而第一侧板21和第二侧板22分别在纵向Y上挤压主体部231的第一平板段231A和第二平板段231B。由于弹性导热片23自身的弹性和结构特性,弹性导热片23的主体部231在第一侧板21和第二侧板22的挤压作用下产生变形,以及时吸收电池1的膨胀力,从而降低了电池1在膨胀力作用下产生的变形程度,由此极大地提高了电池1的使用寿命。
参照图6和图11,弹性导热片23的主体部231可包括多个第一平板段231A、多个第二平板段231B以及多个连接段231C,且相邻的第一平板段231A和第二平板段231B通过对应一个连接段231C连接,由此多个第一平板段231A、多个第二平板段231B以及多个连接段231C一起形成波浪状结构(也可称为瓦楞板状结构)。这种波浪状结构,使得空气与弹性导热片23的接触面积大,从而提高了温控组件2对电池1的散热效率。
弹性导热片23还可具有:压缩部232,连接于主体部231在上下方向Z的一端。压缩部232在数量上可为两个,两个压缩部232分别连接于主体部231在上下方向Z上的两端。其中,压缩部232设置成:当主体部231的第一平板段231A和第二平板段231B在纵向Y上受到第一侧板21和第二侧板22的挤压后,压缩部232被主体部231挤压而产生变形。
在第一实施例中,参照图7至图11,弹性导热片23的压缩部232可形成为卷绕状结构(围成有空腔)。当主体部231的第一平板段231A和第二平板段231B在纵向Y上受到第一侧板21和第二侧板22的挤压后,主体部231在上下方向Z上伸展变长、压缩部232抵靠在第一侧板21的第一延伸部212上,此时主体部231伸长的部分围绕压缩部232进行卷绕并挤压压缩部232,压缩部232产生变形以为主体部231的伸长部分提供足够的空间,由此到达吸收电池1的膨胀力的目的。
在第一实施例中,弹性导热片23的两端需要具有足够的活动性,因此压缩部232与第一侧板21的第一延伸部212之间无需固定连接,而主体部231的部分第一平板段231A可粘接于第一侧板21,主体部231的部分第二平板段231B可粘接于第二侧板22。优选地,在上下方向Z上位于中间的第一平板段231A粘接于第一侧板21,在上下方向Z上 位于中间的第二平板段231B粘接于第二侧板22。
在第二实施例中,参照图3至图6,弹性导热片23的压缩部232可形成为拱形结构(围成有空腔)。弹性导热片23还具有:连接部233,在上下方向Z上位于压缩部232与第一延伸部212之间并连接于压缩部232。当主体部231的第一平板段231A和第二平板段231B在纵向Y上受到第一侧板21和第二侧板22的挤压后,主体部231在上下方向Z上伸展变长、连接部233抵靠在第一侧板21的第一延伸部212上,第一延伸部212经由连接部233与主体部231一起挤压压缩部232,压缩部232产生变形以为主体部231的伸长部分提供足够的空间,由此到达吸收电池1的膨胀力的目的。
具体地,压缩部232可包括:第三平板段232A,沿上下方向Z延伸、并在纵向Y上与第一侧板21和第二侧板22间隔设置;第一挤压段232B,从第三平板段232A朝向第一侧板21倾斜延伸、并连接于第三平板段232A和主体部231;以及第二挤压段232C,从第三平板段232A朝向第一侧板21倾斜延伸、并连接于第三平板段232A和连接部233。
连接部233可形成为L型结构,如图5所示。
在第二实施例中,弹性导热片23的连接部233可直接固定于第一延伸部212,而弹性导热片23的其他部分与第一侧板21和第二侧板22之间无需固定。
弹性导热片23的数量可根据实际使用情况进行选择性设置。具体地,参照图3至图5以及图7至图10,弹性导热片23在数量上可为一片。参照图12,弹性导热片23在数量上可为至少两片,所述至少两片弹性导热片23包括第一弹性导热片23A和第二弹性导热片23B。分隔板24沿纵向Y延伸并连接于第一侧板21和第二侧板22。第一弹性导热片23A设置于分隔板24上方,第二弹性导热片23B设置于分隔板24下方。
参照图1和图2,下箱体3用于支撑所述多个电池1。所述多个电池1在横向X上可排列成至少两排电池排,风道组件4设置于两排电池排之间并固定于下箱体3。风道组件4与对应的电池排形成有风道,且所述风道连通于对应的温控组件2的多个通道F和风机5。
参照图13,风道组件4可包括风量调节板41、第一支撑板42、第二支撑板43、安装板44以及密封条45。
风量调节板41设置于所述风道内,第一支撑板42与第二支撑板43在纵向Y上间隔设置且第一支撑板42靠近风机5。其中,风量调节板41的高度沿第一支撑板42朝向第二支撑板43的方向依次减小,以使所述风道沿纵向Y从靠近风机5一侧向远离风机5一侧扩张。
安装板44沿纵向Y延伸并连接于第一支撑板42和第二支撑板43,且风量调节板41固定安装于安装板44。密封条45设置于第一支撑板42、第二支撑板43以及安装板44上。当风道组件4与多个电池1完成装配后,密封条45粘接于对应的电池排以与该电池排密封连接。
电池包在使用过程中,在风机5的作用下,外部空气能够进入温控组件2的多个通道F中,以实现对电池1的散热。同时,基于风量调节板41的设置,外部空气进入不同温控组件2的量不同,由此实现对所有电池1的均匀散热。
参照图1,端板8在纵向Y上设置于各电池排两端。扎带6沿周向箍紧对应一个电池排中的所有电池1、对应的温控组件2以及对应的两个端板8。安装面板9在纵向Y上位于对应的端板8外侧、固定连接于下箱体3以及对应的端板8、并固定安装风机5。
线束隔离板设置于所述多个电池1上方并直接固定于端板8,由此有助于提高电池包的成组效率以及一体化程度。参照图1和图2,上箱盖7设置于线束隔离板的上方并通过紧固件(如铆钉)与线束隔离板固定连接。这里,由于上箱盖7的周侧未设置卡扣等复杂结构,因而其可采用吸塑工艺直接加工而成,从而降低了加工成本。
本申请的实施例还提供一种装置,包括上述实施例中的电池包,电池包用于提供电能。该装置包括但不限于车辆、船舶、储能电柜或飞行器等,其中车辆可以为新能源汽车,如纯电动汽车、混合动力汽车或增程式电动汽车等。

Claims (11)

  1. 一种温控组件(2),其特征在于,包括:
    第一侧板(21);
    第二侧板(22),沿纵向(Y)与第一侧板(21)相对设置,且第二侧板(22)连接于第一侧板(21)并与第一侧板(21)一起形成有腔体;以及
    弹性导热片(23),设置于所述腔体内并将所述腔体划分为多个通道(F);
    弹性导热片(23)具有主体部(231),且主体部(231)包括:第一平板段(231A),在纵向(Y)上靠近第一侧板(21)、并沿上下方向(Z)延伸;第二平板段(231B),在纵向(Y)上靠近第二侧板(22)、并沿上下方向(Z)延伸;以及连接段(231C),从第一侧板(21)朝向第二侧板(22)倾斜延伸、并连接于第一平板段(231A)和第二平板段(231B)。
  2. 根据权利要求1所述的温控组件(2),其特征在于,第一平板段(231A)接触第一侧板(21),第二平板段(231B)接触第二侧板(22)。
  3. 根据权利要求1所述的温控组件(2),其特征在于,第一侧板(21)具有:第一本体部(211),沿上下方向(Z)延伸;以及第一延伸部(212),连接于第一本体部(211)的一端并沿纵向(Y)延伸,且第一延伸部(212)连接于第二侧板(22)。
  4. 根据权利要求3所述的温控组件(2),其特征在于,
    弹性导热片(23)活动设置于第二侧板(22)与第一侧板(21)形成的腔体内;或者
    弹性导热片(23)在上下方向(Z)上的两端分别抵靠在第一侧板(21)的对应的第一延伸部(212)上。
  5. 根据权利要求3所述的温控组件(2),其特征在于,
    弹性导热片(23)还具有:压缩部(232),连接于主体部(231)在上下方向(Z)的一端;
    压缩部(232)设置成:当主体部(231)的第一平板段(231A)和第二平板段(231B) 在纵向(Y)上受到第一侧板(21)和第二侧板(22)的挤压后,压缩部(232)被主体部(231)挤压而产生变形。
  6. 根据权利要求5所述的温控组件(2),其特征在于,
    压缩部(232)形成为卷绕状结构;
    当主体部(231)的第一平板段(231A)和第二平板段(231B)在纵向(Y)上受到第一侧板(21)和第二侧板(22)的挤压后,压缩部(232)在上下方向(Z)上抵靠在第一侧板(21)的第一延伸部(212)上、主体部(231)围绕压缩部(232)进行卷绕,以挤压压缩部(232)。
  7. 根据权利要求5所述的温控组件(2),其特征在于,
    压缩部(232)形成为拱形结构;
    弹性导热片(23)还具有:连接部(233),在上下方向(Z)上位于压缩部(232)与第一延伸部(212)之间并连接于压缩部(232);
    当主体部(231)的第一平板段(231A)和第二平板段(231B)在纵向(Y)上受到第一侧板(21)和第二侧板(22)的挤压后,连接部(233)抵靠在第一侧板(21)的第一延伸部(212)上,第一延伸部(212)经由连接部(233)与主体部(231)一起挤压压缩部(232)。
  8. 根据权利要求7所述的温控组件(2),其特征在于,压缩部(232)包括:第三平板段(232A),沿上下方向(Z)延伸、并在纵向(Y)上与第一侧板(21)和第二侧板(22)间隔设置;第一挤压段(232B),从第三平板段(232A)朝向第一侧板(21)倾斜延伸、并连接于第三平板段(232A)和主体部(231);以及第二挤压段(232C),从第三平板段(232A)朝向第一侧板(21)倾斜延伸、并连接于第三平板段(232A)和连接部(233)。
  9. 根据权利要求8所述的温控组件(2),其特征在于,
    弹性导热片(23)在数量上为一片;或者
    弹性导热片(23)在数量上为至少两片,所述至少两片弹性导热片(23)包括第一弹性导热片(23A)和第二弹性导热片(23B);
    温控组件(2)还包括:分隔板(24),沿纵向(Y)延伸并连接于第一侧板(21)和第二侧板(22);
    第一弹性导热片(23A)设置于分隔板(24)上方,第二弹性导热片(23B)设置于分隔板(24)下方。
  10. 一种电池包,其特征在于,包括多个电池(1)以及权利要求1-9中任一项所述的温控组件(2),所述多个电池(1)包括第一电池(1A)和第二电池(1B),温控组件(2)设置于第一电池(1A)与第二电池(1B)之间。
  11. 一种装置,其特征在于,包括权利要求10所述的电池包,所述电池包用于提供电能。
PCT/CN2020/091302 2019-06-18 2020-05-20 温控组件及电池包 WO2020253457A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021575016A JP7412457B2 (ja) 2019-06-18 2020-05-20 温度制御アセンブリ及び電池パック
EP23189486.6A EP4265936A3 (en) 2019-06-18 2020-05-20 Temperature control assembly and battery pack
KR1020217040607A KR20220007888A (ko) 2019-06-18 2020-05-20 온도 조절 어셈블리 및 배터리 팩
EP20815703.2A EP3792994B1 (en) 2019-06-18 2020-05-20 Temperature control assembly and battery pack
US17/123,026 US20210104789A1 (en) 2019-06-18 2020-12-15 Temperature control assembly and battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910528793.7A CN112103421B (zh) 2019-06-18 2019-06-18 温控组件及电池包
CN201910528793.7 2019-06-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/123,026 Continuation US20210104789A1 (en) 2019-06-18 2020-12-15 Temperature control assembly and battery pack

Publications (1)

Publication Number Publication Date
WO2020253457A1 true WO2020253457A1 (zh) 2020-12-24

Family

ID=73748504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091302 WO2020253457A1 (zh) 2019-06-18 2020-05-20 温控组件及电池包

Country Status (7)

Country Link
US (1) US20210104789A1 (zh)
EP (2) EP4265936A3 (zh)
JP (1) JP7412457B2 (zh)
KR (1) KR20220007888A (zh)
CN (1) CN112103421B (zh)
HU (1) HUE063495T2 (zh)
WO (1) WO2020253457A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114628841A (zh) * 2021-12-27 2022-06-14 浙江零跑科技股份有限公司 一种新能源车电池包

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112103419A (zh) * 2019-06-18 2020-12-18 宁德时代新能源科技股份有限公司 温控组件及电池包
JP7424338B2 (ja) * 2021-03-31 2024-01-30 トヨタ自動車株式会社 蓄電装置
AR126916A1 (es) * 2021-08-31 2023-11-29 Bajaj Auto Ltd Bloque de baterías para vehíchulo eléctrico
US11817567B2 (en) 2021-12-28 2023-11-14 Beta Air, Llc System for battery temperature management in an electric aircraft
CN116745978A (zh) * 2022-02-21 2023-09-12 宁德时代新能源科技股份有限公司 电池和用电装置
WO2023240460A1 (zh) * 2022-06-14 2023-12-21 宁德时代新能源科技股份有限公司 一种热管理组件、电池和用电装置
CN218586079U (zh) * 2022-05-26 2023-03-07 宁德时代新能源科技股份有限公司 热管理部件、电池以及用电装置
CN116250121A (zh) * 2022-06-22 2023-06-09 宁德时代新能源科技股份有限公司 热管理部件、热管理系统、电池及用电装置
CN218334077U (zh) * 2022-09-05 2023-01-17 宁德时代新能源科技股份有限公司 冷却结构、电池及用电装置
WO2024108421A1 (zh) * 2022-11-23 2024-05-30 宁德时代新能源科技股份有限公司 换热组件、电池及用电装置
CN116130835A (zh) * 2023-04-17 2023-05-16 宁德时代新能源科技股份有限公司 电池和用电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007355A (ja) * 2001-06-19 2003-01-10 Kojima Press Co Ltd 二次電池の冷却構造
CN1713412A (zh) * 2004-06-25 2005-12-28 三星Sdi株式会社 二次电池组件
JP2008124033A (ja) * 2006-03-28 2008-05-29 Takehiro:Kk 電池モジュール
JP2011243358A (ja) * 2010-05-17 2011-12-01 Denso Corp 電池パック
CN105552268A (zh) * 2016-01-30 2016-05-04 华南理工大学 一种装有散热片的多出口电动汽车电池空气冷却电池箱
JP2019046578A (ja) * 2017-08-30 2019-03-22 日産自動車株式会社 バッテリパックの製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199093A (ja) * 1996-01-17 1997-07-31 Matsushita Electric Ind Co Ltd 蓄電池用電槽および蓄電池
JP2000048867A (ja) * 1998-07-31 2000-02-18 Toyota Motor Corp 組電池
JP2005302502A (ja) * 2004-04-12 2005-10-27 Uchiyama Mfg Corp バッテリーセル用ケース
JP2007165698A (ja) * 2005-12-15 2007-06-28 Mitsubishi Electric Corp 電力貯蔵デバイス
US8683690B2 (en) * 2006-01-19 2014-04-01 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
US20100243225A1 (en) 2006-01-19 2010-09-30 Werner Zobel Flat tube, flat tube heat exchanger, and method of manufacturing same
TWM367989U (en) * 2009-05-01 2009-11-01 Simula Technology Inc Spring
KR20110024954A (ko) * 2009-09-03 2011-03-09 삼성전자주식회사 냉각용 유로를 갖는 이차 전지 모듈
US9065158B2 (en) * 2010-05-28 2015-06-23 GM Global Technology Operations LLC Corrugated fin and frame assembly for battery cooling
FR2962204B1 (fr) * 2010-06-30 2014-11-21 Valeo Systemes Thermiques Tube d'echangeur de chaleur, echangeur de chaleur comportant de tels tubes et procede d'obtention d'un tel tube.
WO2012124783A1 (ja) * 2011-03-17 2012-09-20 日本発條株式会社 押圧ユニット
JP5537497B2 (ja) * 2011-05-26 2014-07-02 株式会社日立製作所 電池モジュール
FR2987673B1 (fr) * 2012-03-01 2018-06-15 Valeo Systemes Thermiques Procede de fabrication d'un tube d'echangeur de chaleur pour vehicule, notamment automobile, tube obtenu par ledit procede et echangeur de chaleur comprenant un tel tube
JP6091921B2 (ja) * 2013-02-15 2017-03-08 本田技研工業株式会社 電池モジュール及び組電池
CN204809210U (zh) * 2015-06-04 2015-11-25 番禺得意精密电子工业有限公司 弹性导热片
KR102094445B1 (ko) 2015-07-27 2020-03-27 주식회사 엘지화학 배터리 모듈, 배터리 모듈을 포함하는 배터리 팩 및 배터리 팩을 포함하는 자동차
WO2017124124A1 (en) * 2016-01-12 2017-07-20 Marcus Dean Shane Battery
CN107437594B (zh) * 2016-05-27 2020-03-10 宁德时代新能源科技股份有限公司 电池包
CN106025130B (zh) * 2016-06-30 2019-12-13 郑州宇通客车股份有限公司 温控组件及电池模组、电池箱
CN207967120U (zh) * 2018-04-02 2018-10-12 宁德时代新能源科技股份有限公司 电池模组
CN109473583A (zh) * 2018-11-07 2019-03-15 阜阳市人民电气实业有限公司 一种新能源电动汽车电池箱

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007355A (ja) * 2001-06-19 2003-01-10 Kojima Press Co Ltd 二次電池の冷却構造
CN1713412A (zh) * 2004-06-25 2005-12-28 三星Sdi株式会社 二次电池组件
JP2008124033A (ja) * 2006-03-28 2008-05-29 Takehiro:Kk 電池モジュール
JP2011243358A (ja) * 2010-05-17 2011-12-01 Denso Corp 電池パック
CN105552268A (zh) * 2016-01-30 2016-05-04 华南理工大学 一种装有散热片的多出口电动汽车电池空气冷却电池箱
JP2019046578A (ja) * 2017-08-30 2019-03-22 日産自動車株式会社 バッテリパックの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114628841A (zh) * 2021-12-27 2022-06-14 浙江零跑科技股份有限公司 一种新能源车电池包
CN114628841B (zh) * 2021-12-27 2024-05-14 浙江零跑科技股份有限公司 一种新能源车电池包

Also Published As

Publication number Publication date
HUE063495T2 (hu) 2024-01-28
EP4265936A2 (en) 2023-10-25
CN112103421A (zh) 2020-12-18
CN112103421B (zh) 2021-10-22
US20210104789A1 (en) 2021-04-08
EP4265936A3 (en) 2024-01-17
EP3792994B1 (en) 2023-09-20
KR20220007888A (ko) 2022-01-19
JP2022537035A (ja) 2022-08-23
JP7412457B2 (ja) 2024-01-12
EP3792994A1 (en) 2021-03-17
EP3792994A4 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
WO2020253457A1 (zh) 温控组件及电池包
CN210136906U (zh) 温控组件及电池包
WO2020253684A1 (zh) 温控组件及电池包
WO2020253507A1 (zh) 温控组件及电池包
CN210136907U (zh) 温控组件及电池包
WO2015176592A1 (zh) 电池组及具有该电池组的电池模块
CN210136908U (zh) 温控组件及电池包
CN211376748U (zh) 温控组件及电池包
CN112103418A (zh) 温控组件及电池包
CN112103420A (zh) 温控组件及电池包
CN114388961A (zh) 一种电池模组及电池
CN112103419A (zh) 温控组件及电池包
CN217848096U (zh) 一种具有隔热绝缘结构的电池箱及用电装置
CN116666812A (zh) 冷却板、电池包和用电设备
CN217134537U (zh) 电池模组
JPWO2020253684A5 (zh)
CN219937173U (zh) 缓冲加热膜及电池模组
CN207967110U (zh) 弹性支撑结构和电池系统
CN212517363U (zh) 一种电池模组
CN219350414U (zh) 一种用于电芯模块的隔热结构
CN212366124U (zh) 一种电池组pack固定结构
CN217691318U (zh) 电池包和车辆
CN215184223U (zh) 电池组
CN215816165U (zh) 电池模组及具有其的电池包
CN117712607A (zh) 一种电池包上盖及电池包

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020815703

Country of ref document: EP

Effective date: 20201206

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20815703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217040607

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021575016

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE