WO2023240460A1 - 一种热管理组件、电池和用电装置 - Google Patents

一种热管理组件、电池和用电装置 Download PDF

Info

Publication number
WO2023240460A1
WO2023240460A1 PCT/CN2022/098727 CN2022098727W WO2023240460A1 WO 2023240460 A1 WO2023240460 A1 WO 2023240460A1 CN 2022098727 W CN2022098727 W CN 2022098727W WO 2023240460 A1 WO2023240460 A1 WO 2023240460A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
compressible
thermal management
layer
battery
Prior art date
Application number
PCT/CN2022/098727
Other languages
English (en)
French (fr)
Inventor
宋飞亭
侯跃攀
黄小腾
陈智明
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/098727 priority Critical patent/WO2023240460A1/zh
Priority to CN202280007308.1A priority patent/CN116802898A/zh
Priority to CN202380008512.XA priority patent/CN116848705A/zh
Priority to CN202320014583.8U priority patent/CN219203337U/zh
Priority to CN202320014474.6U priority patent/CN220042013U/zh
Priority to CN202320014354.6U priority patent/CN219203336U/zh
Priority to PCT/CN2023/070135 priority patent/WO2023155624A1/zh
Priority to PCT/CN2023/070125 priority patent/WO2023155620A1/zh
Priority to CN202380008509.8A priority patent/CN116802897A/zh
Priority to CN202320014214.9U priority patent/CN219203335U/zh
Priority to CN202320014404.0U priority patent/CN219575742U/zh
Priority to CN202380008510.0A priority patent/CN116868417A/zh
Priority to CN202380008508.3A priority patent/CN116491016A/zh
Priority to CN202380008507.9A priority patent/CN116745978A/zh
Priority to PCT/CN2023/070131 priority patent/WO2023155622A1/zh
Priority to PCT/CN2023/070133 priority patent/WO2023155623A1/zh
Priority to PCT/CN2023/070136 priority patent/WO2023155625A1/zh
Priority to CN202380008511.5A priority patent/CN116724443A/zh
Priority to PCT/CN2023/070126 priority patent/WO2023155621A1/zh
Priority to CN202320014347.6U priority patent/CN219203386U/zh
Priority to CN202320015597.1U priority patent/CN219534642U/zh
Publication of WO2023240460A1 publication Critical patent/WO2023240460A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/231Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a thermal management component, a battery and an electrical device.
  • the battery cell will release a lot of heat when working. If the heat inside the battery cannot be discharged in time, the problems inside the battery will continue to increase, causing the battery cell to work at a higher temperature, seriously affecting the life of the battery. In severe cases, It may cause thermal runaway and even cause safety accidents such as fire and explosion. And the battery cells will expand during the cycle, eventually causing the battery case to deform and swell.
  • the present application provides a thermal management component, a battery and a power consumption device, which can improve the heat exchange efficiency of the battery and absorb the expansion of the battery cells.
  • the present application provides a thermal management component, which includes: a heat exchange layer and a compressible layer arranged in a stack.
  • the elastic modulus of the compressible layer is smaller than the elastic modulus of the heat exchange layer.
  • the thermal management component is used in the battery.
  • the heat exchange layer can improve the heat exchange efficiency of the battery and improve the heat dissipation capacity of the battery; the elastic modulus of the compressible layer is small, and when subjected to the battery cell After the expansion force released by the battery cell, the compressible layer can deform along the direction of the expansion force of the battery cell, thereby absorbing the expansion of the battery cell, ensuring the expansion space of the battery cell, and avoiding large deformation of the entire battery module. And the compressible layer helps absorb tolerances when assembling the battery, eases installation and keeps the battery compact.
  • the compressible layer includes compressible cavities. After receiving the expansion force released by the battery cell, the gas in the compressible cavity is compressed so that the compressible layer deforms along the direction of the expansion force of the battery cell.
  • the compressible cavity is filled with phase change material or elastic material.
  • the heat capacity of the battery can be increased, allowing the thermal management component to insulate the battery cells or absorb the heat of the battery cells; when the compressible cavity is filled with elastic materials, The elastic material has good elasticity. After receiving the expansion force released by the battery cell, the elastic material is compressed, causing the compressible layer to deform in the direction of the expansion force of the battery cell, and rebounds after the expansion force disappears.
  • elastic materials can increase the support strength of the compressible layer.
  • the heat exchange layer includes a heat exchange cavity for containing a heat exchange medium.
  • the heat exchange layer can be used to accommodate the heat exchange medium.
  • the heat exchange medium can absorb the heat released by the battery cells or heat the battery cells to improve the heat exchange efficiency of the battery.
  • a first support member is provided in the heat exchange cavity.
  • the first support member can be used to increase the strength of the heat exchange layer, thereby avoiding large deformation of the heat exchange layer after being subjected to the expansion force released by the battery cells.
  • the elastic modulus of the first support is greater than the elastic modulus of the compressible layer. Since the elastic modulus of the compressible layer is smaller than the elastic modulus of the first support member, it is more prone to deformation. After the thermal management component is subjected to the expansion force released by the battery cell, the compressible layer can be along the direction of the expansion force of the battery cell. Large deformation occurs, while the heat exchange layer basically does not deform.
  • the heat exchange layer and the compressible layer are stacked and arranged along a first direction, and the first support member is supported in the heat exchange cavity along the first direction.
  • the battery cell is generally made to contact the thermal management component along the first direction, and the subsequent expansion force released by the battery cell is also basically along the first direction, and is supported in the heat exchange cavity along the first direction.
  • the first support member can greatly increase the elastic modulus of the heat exchange layer, so that after the thermal management component is subjected to the expansion force along the first direction released by the battery cell, the compressible layer can generate a larger force along the first direction. deformation, while the heat exchange layer will basically not deform.
  • the compressible layer is disposed in the heat exchange cavity.
  • Both ends of the thermal management component along the stacking direction are heat exchange cavities, which can effectively improve the heat exchange efficiency of the battery cells at both ends of the thermal management component and keep the temperature of the entire battery at a low level.
  • the heat exchange cavity is further provided with a first connection structure for fixing the compressible layer in the heat exchange cavity.
  • the first connection structure can fix the compressible layer to prevent the position of the compressible layer relative to the heat exchange chamber from changing.
  • a heat exchange space is defined between the outer wall of the compressible layer and the inner wall of the heat exchange cavity, and the first connection structure is disposed in the heat exchange space and divides the heat exchange space into a plurality of flow channels. Multiple flow channels facilitate the circulation of the heat exchange medium in the heat exchange space and avoid high temperatures in local thermal management components.
  • the compressible layer includes a first compressible tube
  • the heat exchange layer includes a first heat exchange tube
  • the first compressible tube is sleeved in the first heat exchange tube.
  • the thermal management component of the present application is composed of a first compressible tube and a first heat exchange tube, which is beneficial to the molding of the thermal management component.
  • the heat exchange layer is disposed in the compressible cavity. Both ends of the thermal management component along the stacking direction are heat exchange cavities, which can effectively improve the deformation capacity of the thermal management component, so that after being subjected to the expansion force released by the battery cells at both ends along the stacking direction, the thermal management component can produce a larger Good deformation to absorb the swollen parts released by the battery cells.
  • the compressible layer includes thermally conductive walls defining a compressible cavity.
  • the outer wall of the compressible layer is a heat-conducting wall, which effectively conducts the heat of the battery cells to the internal heat exchange layer for heat exchange.
  • the compressible layer includes a second compressible tube
  • the heat exchange layer includes a second heat exchange tube
  • the second heat exchange tube is sleeved in the second compressible tube.
  • the thermal management component of the present application is composed of a second compressible tube and a second heat exchange tube, which is beneficial to the molding of the thermal management component.
  • the thermal management component further includes a current collector, which includes a fluid flow chamber, the fluid fluid chamber is connected to the heat exchange chamber, and both the fluid fluid chamber and the heat exchange chamber are sealed and isolated from the compressible chamber.
  • the current collector can be used to connect the container that stores the heat exchange medium to circulate the heat exchange medium in the heat exchange cavity.
  • the compressible cavity and the heat exchange cavity are not connected, so that the heat exchange medium cannot enter the compressible cavity and avoid the compressible cavity. The deformation occurs after being subjected to the expansion force released by the battery cells, causing the heat exchange medium to overflow.
  • the heat exchange layer and the compressible layer are arranged extending along the second direction, and at least one end of the compressible layer protrudes from the heat exchange layer along the second direction.
  • the compressible layer protrudes from the heat exchange layer, which is beneficial to sealing and isolating the fluid chamber of the current collector from the compressible chamber, so that the heat exchange medium cannot enter the compressible chamber, and prevents the compressible chamber from being expanded by the expansion force released by the battery cells. Deformation occurs causing the heat exchange medium to overflow.
  • the compressible cavity is provided with an air inlet and an air outlet.
  • the compressible layer can be air-cooled through the air inlet and outlet, and cooperates with the heat exchange layer to further improve the heat exchange efficiency of the thermal management component for the battery.
  • the present application provides a battery, which includes a battery cell and the thermal management component in the above embodiment.
  • the thermal management component is used to adjust the temperature of the battery cell.
  • the present application provides an electrical device, which includes the battery of the above embodiment, and the battery is used to provide electrical energy.
  • Figure 1 is a schematic structural diagram of a vehicle according to some embodiments of the present application.
  • Figure 2 is a schematic diagram of the exploded structure of a battery according to some embodiments of the present application.
  • Figure 3 is a schematic diagram of the exploded structure of a battery cell according to some embodiments of the present application.
  • Figure 4 is a schematic structural diagram of a thermal management component according to some embodiments of the present application.
  • Figure 5 is a cross-sectional view of a first thermal management component according to some embodiments of the present application.
  • Figure 6 is a cross-sectional view of a second thermal management component according to some embodiments of the present application.
  • Figure 7 is a cross-sectional view of a third thermal management component according to some embodiments of the present application.
  • Figure 8 is a cross-sectional view of a fourth thermal management component according to some embodiments of the present application.
  • Figure 9 is a cross-sectional view of a fifth thermal management component according to some embodiments of the present application.
  • Figure 10 is a schematic structural diagram of a first compressible tube according to some embodiments of the present application.
  • Figure 11 is a schematic structural diagram of the first heat exchange tube in some embodiments of the present application.
  • Figure 12 is a side view of the first heat exchange tube in some embodiments of the present application.
  • Figure 13 is a schematic structural diagram of the assembled first compressible tube and the first heat exchange tube in some embodiments of the present application.
  • Figure 14 is a schematic structural diagram of a second heat exchange tube in some embodiments of the present application.
  • Figure 15 is a schematic structural diagram of a second compressible tube according to some embodiments of the present application.
  • Figure 16 is a side view of a second compressible tube according to some embodiments of the present application.
  • Figure 17 is a schematic structural diagram of the second compressible tube and the second heat exchange tube after assembly in some embodiments of the present application.
  • Figure 18 is an exploded view of a thermal management assembly according to some embodiments of the present application.
  • Figure 19 is a schematic structural diagram of a current collector according to some embodiments of the present application.
  • Figure 20 is a schematic structural diagram of the assembled thermal management components and battery cells according to some embodiments of the present application.
  • Figure 21 is a schematic structural diagram of a sixth thermal management component according to some embodiments of the present application.
  • 30-thermal management component 31-first direction; 32-third direction; 33-second direction; 400-heat exchange layer; 401-heat exchange cavity; 402-flow channel; 410-support; 420-first Connection structure; 430-first heat exchange tube; 431-first installation cavity; 432-first contact surface; 440-second heat exchange tube; 441-second contact surface; 450-second support member; 500 -Compressible layer; 501-compressible cavity; 502-air inlet; 503-air outlet; 510-first compressible tube; 511-first mating surface; 520-second compressible tube; 521-second installation cavity ; 522-second mating surface; 530-second connection structure; 600-current collector; 601-liquid flow chamber; 602-liquid inlet and outlet; 700-pipe.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. . As the application fields of power batteries continue to expand, their market demand is also constantly expanding.
  • a battery cell will generate a large amount of heat during the charging and discharging process. If the heat inside the battery cannot be dissipated in time, it will not only affect the life of the battery, but may also cause thermal runaway and even cause fire and explosion. ACCIDENT. Moreover, during the cycle of the battery, the positive and negative electrode plates expand and contract, and as the cycle proceeds, the positive electrode particles are easily broken, forming a higher thickness expansion, while the negative electrode continues to repair the SEI film, and the graphite particles expand. Looseness also produces very large thickness expansion, which eventually causes the battery case to swell and deform, which is commonly described in the industry as "bulging belly".
  • a thermal management component can be introduced into the battery, and the thermal management component not only has the ability to dissipate heat, but also absorbs the expansion of the battery cell.
  • the inventor in order to improve the heat dissipation capacity of the battery and absorb the expansion of the battery cells, the inventor has designed a thermal management component after in-depth research, which is used in the battery.
  • the heat exchange layer can improve the heat exchange of the battery. efficiency and improve the heat dissipation capacity of the battery; the elastic modulus of the compressible layer is small.
  • the compressible layer After receiving the expansion force released by the battery cell, the compressible layer can deform along the direction of the expansion force of the battery cell, thereby absorbing the battery cell.
  • the expanded part ensures the expansion space of the battery cells and avoids large deformation of the entire battery module.
  • the compressible layer is conducive to absorbing tolerances when assembling the battery, making it easier to install and maintain the compact structure of the battery.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • Batteries generally include a battery box for packaging one or more battery cells.
  • the battery box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cells may include lithium ion secondary battery cells, lithium ion primary battery cells, lithium sulfur battery cells, sodium lithium ion battery cells, sodium ion battery cells or magnesium ion battery cells, etc., embodiments of the present application There is no limit to this.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this. Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, prismatic battery cells and soft-pack battery cells.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode plate, a negative electrode plate and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode collector that is coated with the positive electrode active material layer. Fluid, the positive electrode current collector without the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode collector that is coated with the negative electrode active material layer.
  • Fluid, the negative electrode current collector that is not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the isolation film can be polypropylene (PP) or polyethylene (Polyethylene, PE).
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • the battery cell also includes a current collecting member, which is used to electrically connect the tabs of the battery cell and the electrode terminals to transport electric energy from the electrode assembly to the electrode terminal, and through the electrode terminal to the outside of the battery cell; and more
  • the battery cells are electrically connected through bus components to realize series, parallel or mixed connection of multiple battery cells.
  • the battery also includes a sampling terminal and a battery management system.
  • the sampling terminal is connected to the bus component and is used to collect battery cell information, such as voltage or temperature, etc.
  • the sampling terminal transmits the collected battery cell information to the battery management system.
  • the battery management system detects that the battery cell information exceeds the normal range, it will limit the battery output power to achieve safety protection.
  • the electrical devices suitable for using batteries described in the embodiments of the present application can be in various forms, such as mobile phones, portable devices, laptops, battery cars, electric cars, ships, spacecrafts, electric toys and electric toys.
  • Tools, etc., for example, spacecraft include airplanes, rockets, space shuttles and spaceships, etc.
  • Electric toys include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric aircraft toys, etc.
  • Power tools include metal cutting power tools, grinding power tools, assembly power tools and railway power tools, such as electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators and electric planers.
  • the battery cells and batteries described in the embodiments of the present application are not limited to the above-described electrical devices, but can also be applied to all electrical devices using battery cells and batteries. However, for the sake of simplicity of description, the following embodiments All are explained using electric vehicles as an example.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • the battery 100 includes a case 10 and battery cells 20 , and the battery cells 20 are accommodated in the case 10 .
  • the box 10 is used to provide an accommodation space for the battery cells 20, and the box 10 can adopt a variety of structures.
  • the box 10 may include a first part 11 and a second part 12 , the first part 11 and the second part 12 cover each other, and the first part 11 and the second part 12 jointly define a space for accommodating the battery cells 20 of accommodation space.
  • the second part 12 may be a hollow structure with one end open, and the first part 11 may be a plate-like structure.
  • the first part 11 covers the open side of the second part 12 so that the first part 11 and the second part 12 jointly define a receiving space.
  • the first part 11 and the second part 12 may also be hollow structures with one side open, and the open side of the first part 11 is covered with the open side of the second part 12.
  • the box 10 formed by the first part 11 and the second part 12 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • the battery 100 there may be a plurality of battery cells 20, and the plurality of battery cells 20 may be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the plurality of battery cells 20 are connected in series and in parallel.
  • the plurality of battery cells 20 can be directly connected in series or in parallel or mixed together, and then the whole composed of the plurality of battery cells 20 can be accommodated in the box 10 ; of course, the battery 100 can also be a plurality of battery cells 20 First, the battery modules are connected in series, parallel, or mixed to form a battery module, and then multiple battery modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 10 .
  • the battery 100 may also include other structures.
  • the battery 100 may further include a bus component for realizing electrical connections between multiple battery cells 20 .
  • Each battery cell 20 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 20 may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes.
  • FIG. 3 is a schematic diagram of an exploded structure of a battery cell provided by some embodiments of the present application.
  • the battery cell 20 refers to the smallest unit that constitutes the battery. As shown in FIG. 3 , the battery cell 20 includes an end cover 21 , a housing 22 , a cell assembly 23 and other functional components.
  • the end cap 21 refers to a component that covers the opening of the case 22 to isolate the internal environment of the battery cell 20 from the external environment.
  • the shape of the end cap 21 can be adapted to the shape of the housing 22 to fit the housing 22 .
  • the end cap 21 can be made of a material with a certain hardness and strength (such as aluminum alloy). In this way, the end cap 21 is less likely to deform when subjected to extrusion and collision, so that the battery cell 20 can have higher durability. Structural strength and safety performance can also be improved.
  • the end cap 21 may be provided with functional components such as electrode terminals. The electrode terminals may be used to electrically connect with the cell assembly 23 for outputting or inputting electrical energy of the battery cell 20 .
  • the end cap 21 may also be provided with a pressure relief mechanism for releasing the internal pressure when the internal pressure or temperature of the battery cell 20 reaches a threshold.
  • the end cap 21 can also be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiment of the present application.
  • an insulating member may also be provided inside the end cover 21 , and the insulating member may be used to isolate the electrical connection components in the housing 22 from the end cover 21 to reduce the risk of short circuit.
  • the insulating member may be plastic, rubber, etc.
  • the housing 22 is a component used to cooperate with the end cover 21 to form an internal environment of the battery cell 20 , wherein the formed internal environment can be used to accommodate the battery core assembly 23 , electrolyte and other components.
  • the housing 22 and the end cover 21 may be independent components, and an opening may be provided on the housing 22.
  • the end cover 21 covers the opening at the opening to form the internal environment of the battery cell 20.
  • the end cover 21 and the housing 22 can also be integrated.
  • the end cover 21 and the housing 22 can form a common connection surface before other components are put into the housing. When it is necessary to encapsulate the inside of the housing 22 At this time, the end cover 21 covers the housing 22 again.
  • the housing 22 can be of various shapes and sizes, such as rectangular parallelepiped, cylinder, hexagonal prism, etc. Specifically, the shape of the housing 22 can be determined according to the specific shape and size of the battery core assembly 23 .
  • the housing 22 may be made of a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiments of the present application.
  • the battery cell assembly 23 is a component in the battery cell 20 that undergoes electrochemical reactions.
  • One or more battery core assemblies 23 may be contained within the housing 22 .
  • the cell assembly 23 is mainly formed by winding or stacking positive electrode sheets and negative electrode sheets, and a separator is usually provided between the positive electrode sheets and the negative electrode sheets.
  • the portions of the positive electrode sheet and the negative electrode sheet that contain active material constitute the main body of the cell assembly, and the portions of the positive electrode sheet and the negative electrode sheet that do not contain active material each constitute the tabs.
  • the positive electrode tab and the negative electrode tab can be located together at one end of the main body or respectively located at both ends of the main body. During the charging and discharging process of the battery, the positive active material and negative active material react with the electrolyte, and the tabs are connected to the electrode terminals to form a current loop.
  • Figure 4 is a schematic structural diagram of a thermal management component of some embodiments of the present application.
  • Figure 5 is a cross-sectional view of a first thermal management component of some embodiments of the present application.
  • Figure 6 is a cross-sectional view of the second thermal management component according to some embodiments of the present application, and
  • FIG. 7 is a cross-sectional view of the third thermal management component according to some embodiments of the present application.
  • Thermal management assembly 30 includes a heat exchange layer 400 and a compressible layer 500 arranged in a stack.
  • the elastic modulus of the compressible layer 500 is less than the elastic modulus of the heat exchange layer 400 .
  • the heat exchange layer 400 is a layered structure for exchanging heat with the battery cells.
  • the heat of the battery cell is conducted to the heat exchange layer 400, causing the temperature of the battery cell to drop; when the temperature of the battery cell is lower than the heat exchange temperature, The heat of the heat exchange layer 400 is conducted to the battery cells, causing the temperature of the battery cells to increase.
  • the compressible layer 500 is a layered structure that has a large compression deformation after being subjected to an applied force.
  • the compressible layer 500 when the compressible layer 500 is subjected to a force along the stacking direction, the compressible layer 500 may be compressed along the stacking direction and produce larger deformation.
  • the elastic modulus is the proportional relationship between stress and strain of a material or structure during the elastic deformation stage. In the elastic deformation stage and under the premise of the same stress, the greater the elastic modulus, the smaller the deformability of the material or structure; the smaller the elastic modulus, the greater the deformability of the material or structure.
  • Thermal management component 30 is used in batteries.
  • the heat exchange layer 400 can improve the heat exchange efficiency of the battery and improve the heat dissipation capacity of the battery.
  • the elastic modulus of the compressible layer 500 is small. After being subjected to the expansion force released by the battery cells, , the compressible layer 500 can deform along the direction of the expansion force of the battery cell, thereby absorbing the expansion of the battery cell, ensuring the expansion space of the battery cell, and avoiding large deformation of the entire battery module, and the compressible layer 500 It is beneficial to absorb tolerances when assembling the battery, facilitate installation and maintain the compact structure of the battery.
  • the heat exchange layer 400 may have one or more layers, and the compressible layer 500 may have one or more layers.
  • the thermal management component 30 includes a heat exchange layer 400 and a compressible layer 500; as shown in Figure 6, the thermal management component 30 includes two heat exchange layers 400 and a compressible layer. Layer 500, the compressible layer 500 is disposed between two layers of heat exchange layers 400; as shown in Figure 7, the thermal management component 30 includes one layer of heat exchange layer 400 and two layers of compressible layers 500, the heat exchange layer 400 is disposed between two layers. Layers can be compressed between layers 500.
  • compressible layer 500 includes compressible cavities 501 .
  • the compressible cavity 501 is a cavity whose volume becomes smaller after the compressible layer 500 is subjected to a force.
  • the gas in the compressible cavity 501 is compressed, causing the compressible layer 500 to deform along the direction of the expansion force of the battery cells.
  • the compressible cavity 501 is filled with phase change material or elastic material.
  • Phase change materials refer to substances that change the state of matter and provide latent heat when the temperature remains unchanged.
  • the process of changing physical properties is called a phase change process.
  • the phase change material will absorb or release a large amount of latent heat.
  • Elastic materials refer to materials with low elastic modulus. Elastic materials can undergo large deformation under the expansion force of battery cells.
  • the heat capacity of the battery can be increased, so that the thermal management component 30 can achieve the function of insulating the battery cells or absorbing the heat of the battery cells; when the compressible cavity 501 is filled with elastic
  • the elastic material has good elasticity. After being subjected to the expansion force released by the battery cell, the elastic material is compressed so that the compressible layer 500 deforms along the direction of the expansion force of the battery cell, and after the expansion force disappears To achieve rebound, the elastic material can also increase the support strength of the compressible layer 500 .
  • the elastic material includes rubber material.
  • the heat exchange layer 400 includes a heat exchange cavity 401 for containing a heat exchange medium.
  • the heat exchange medium is a medium used to exchange heat with the battery cells. It is generally a liquid with a large specific heat capacity and can maintain fluidity at the battery operating temperature.
  • the heat exchange medium can be water, thermal oil, etc.
  • the heat exchange layer 400 can be used to accommodate a heat exchange medium.
  • the heat exchange medium can absorb the heat released by the battery cells or heat the battery cells to improve the heat exchange efficiency of the battery.
  • the heat exchange chamber 401 may be sealed or open.
  • FIG. 8 is a cross-sectional view of a fourth thermal management component according to some embodiments of the present application.
  • a first support member 410 is provided in the heat exchange cavity 401 .
  • the first support member 410 is a structure supported in the heat exchange cavity 401 to prevent the heat exchange cavity 401 from being extruded and deformed.
  • the first support member 410 can be used to increase the strength of the heat exchange layer 400 to avoid large deformation of the heat exchange layer 400 after being subjected to the expansion force released by the battery cells.
  • the elastic modulus of the first support 410 is greater than the elastic modulus of the compressible layer 500 .
  • the compressible layer 500 Since the elastic modulus of the compressible layer 500 is smaller than the elastic modulus of the first support member 410 and is more prone to deformation, after the thermal management assembly 30 is subjected to the expansion force released by the battery cells, the compressible layer 500 can be moved along the direction of the battery cells. The direction in which the expansion force acts will produce a large deformation, but the heat exchange layer 400 will basically not deform.
  • the heat exchange layer 400 and the compressible layer 500 are stacked and arranged along the first direction 31, and the first support member 410 is supported in the heat exchange cavity 401 along the first direction 31.
  • the battery cells When the thermal management component 30 is applied to a battery, the battery cells are generally made to contact the thermal management component 30 along the first direction 31 , and the subsequent expansion force released by the battery cells is also basically along the first direction 31 .
  • the first support member 410 supported in the heat exchange cavity 401 can greatly increase the elastic modulus of the heat exchange layer 400, so that the thermal management component 30 can be
  • the compression layer 500 can deform greatly along the first direction 31, while the heat exchange layer 400 will not deform substantially.
  • the compressible layer 500 is disposed in the heat exchange cavity 401 .
  • Both ends of the thermal management assembly 30 along the stacking direction are heat exchange cavities 401, which can effectively improve the heat exchange efficiency of the battery cells at both ends of the thermal management assembly 30 and keep the temperature of the entire battery at a low level.
  • FIG. 9 is a cross-sectional view of a fifth thermal management component according to some embodiments of the present application.
  • the heat exchange chamber 401 is also provided with a first connection structure 420 for fixing the compressible layer 500 in the heat exchange chamber 401 .
  • the first connection structure 420 is a structure whose two ends are connected to the inner wall of the heat exchange cavity 401 and the outer wall of the compressible layer 500 respectively.
  • the first connection structure 420 can fix the compressible layer 500 to prevent the position of the compressible layer 500 relative to the heat exchange cavity 401 from changing.
  • the first connection structure 420 is disposed in the heat exchange cavity 401 along the stacking direction.
  • the first connection structure 420 can fix the compressible layer 500, and on the other hand, it can be used to increase the strength of the heat exchange layer 400, thereby avoiding large deformation of the heat exchange layer 400 after being subjected to the expansion force released by the battery cells. .
  • a heat exchange space is defined between the outer wall of the compressible layer 500 and the inner wall of the heat exchange cavity 401, and the first connection structure 420 is disposed in the heat exchange space and divides the heat exchange space.
  • the multiple flow channels 402 facilitate the circulation of the heat exchange medium in the heat exchange space and prevent the local thermal management component 30 from having a high temperature.
  • a plurality of first connection structures 420 are provided in the heat exchange cavity 401 .
  • the elastic modulus of the first connecting structure 420 is greater than the elastic modulus of the compressible layer 500 .
  • Figure 10 is a schematic structural diagram of the first compressible tube in some embodiments of the present application
  • Figure 11 is a first heat exchanger of some embodiments of the present application.
  • Figure 12 is a side view of the first heat exchange tube in some embodiments of the present application
  • Figure 13 is a schematic structural diagram of the first compressible tube and the first heat exchange tube after assembly in some embodiments of the present application.
  • the compressible layer 500 includes a first compressible tube 510
  • the heat exchange layer 400 includes a first heat exchange tube 430
  • the first compressible tube 510 is sleeved in the first heat exchange tube 430.
  • the first compressible tube 510 is a tubular structure having a compressible cavity 501 inside and can be extruded and deformed.
  • the first heat exchange tube 430 is a tubular structure with a heat exchange cavity 401 inside, and the heat exchange cavity 410 is provided with a tubular structure of at least one first connection structure 420.
  • the end of the at least one first connection structure 420 defines a first connection structure 420.
  • the first mounting cavity 431 of the compressible tube 510 is compressible.
  • the thermal management component 30 of the present application is composed of a first compressible tube 510 and a first heat exchange tube 430, which is beneficial to the molding of the thermal management component 30.
  • the end of at least one first connection structure 420 in the first heat exchange tube 430 abuts against the outer wall of the first compressible tube 510 .
  • the thermal management component 30 has a third direction 32 corresponding to the height direction of the battery cell after being installed in the battery.
  • Two first connection structures 420 extending along the third direction 32 are provided in the first heat exchange tube 430 .
  • the two first connection structures 420 are respectively disposed at both ends of the first heat exchange tube 430 along the third direction 32 .
  • the first heat exchange tube 430 has two opposite first contact surfaces 432 for contacting the large surfaces of the battery cells.
  • the first contact surface 432 can increase the contact area between the first heat exchange tube 430 and the battery cell, thereby improving the heat exchange capability of the thermal management assembly 30 to the battery cell.
  • the first compressible tube 510 has two opposite first mating surfaces 511 for mating with the large surface of the battery cell.
  • the expansion and deformation of the battery cell is generally along the direction perpendicular to the large surface.
  • the first mating surface 511 can deform under the action of the expansion force of the battery cell, thereby absorbing the expansion of the battery cell.
  • the heat exchange layer 400 is disposed in the compressible cavity 501 .
  • Both ends of the thermal management component 30 along the stacking direction are heat exchange cavities 401, which can effectively improve the deformation ability of the thermal management component 30, so that after receiving the expansion force released by the battery cells at both ends along the stacking direction, the thermal management component 30 can produce better deformation to absorb the expansion of the battery cells.
  • the compressible layer 500 includes thermally conductive walls defining the compressible cavity 501 .
  • the thermally conductive wall is a wall structure of the compressible layer 500 with good thermal conductivity effect.
  • the material of the thermally conductive wall can be thermally conductive silica gel, metal, etc.
  • the outer wall of the compressible layer 500 is a thermally conductive wall, thereby effectively conducting the heat of the battery cells to the internal heat exchange layer 400 for heat exchange.
  • Figure 14 is a schematic structural diagram of a second heat exchange tube in some embodiments of the present application.
  • Figure 15 is a second compressible heat exchange tube in some embodiments of the present application.
  • Figure 16 is a side view of the second compressible tube in some embodiments of the present application.
  • Figure 17 is a schematic structural diagram of the second compressible tube and the second heat exchange tube after assembly in some embodiments of the present application.
  • the compressible layer 500 includes a second compressible tube 520
  • the heat exchange layer 400 includes a second heat exchange tube 440
  • the second heat exchange tube 440 is sleeved in the second compressible tube 520.
  • the second heat exchange tube 440 is a tubular structure having a heat exchange cavity 401 inside.
  • the second compressible tube 520 is a tubular structure having a compressible cavity 501 inside, and the compressible cavity 501 is provided with a tubular structure of at least one second connection structure 530 , and the end of the at least one second connection structure 530 defines a second connection structure 530 .
  • the thermal management component 30 of the present application is composed of a second compressible tube 520 and a second heat exchange tube 440, which is beneficial to the molding of the thermal management component 30.
  • the end of at least one second connection structure 530 in the second compressible tube 520 abuts against the outer wall of the second heat exchange tube 440 .
  • the thermal management component 30 has a third direction 32 corresponding to the height direction of the battery cell after being installed in the battery.
  • Two second connection structures 530 extending along the third direction 32 are provided in the second compressible tube 520 .
  • the two second connection structures 530 are respectively provided at both ends of the second compressible tube 520 along the third direction 32 .
  • the second compressible tube 520 has two opposite second mating surfaces 522 for abutting with the large surface of the battery cell.
  • the second mating surface 522 can increase the contact area between the second compressible tube 520 and the battery cells, thereby improving the heat exchange capability of the thermal management assembly 30 to the battery cells.
  • the expansion and deformation of the battery cells is generally along the direction perpendicular to the large surface. The second mating surface 522 can deform under the expansion force of the battery cells, thereby absorbing the expansion ability of the battery cells.
  • the second heat exchange tube 440 has two opposite second abutment surfaces 441 for cooperating with the large surface of the battery cell.
  • the two second contact surfaces 441 correspond to the two second mating surfaces 522 and absorb the heat conducted from the two second mating surfaces 522 .
  • a plurality of second supports 450 are provided inside the second heat exchange tube 440 .
  • the inner wall of the heat exchange cavity 401 defines a heat exchange space.
  • a plurality of second supports 450 are disposed in the heat exchange space and divide the heat exchange space into a plurality of flow channels 402 .
  • the elastic modulus of the second support 450 is greater than the elastic modulus of the compressible layer 500 .
  • Thermal management component 30 also includes a current collector 600 , which includes a liquid flow chamber 601 , which is connected to the heat exchange chamber 401 , and both the liquid flow chamber 601 and the heat exchange chamber 401 are sealed and isolated from the compressible cavity 501 .
  • the current collector 600 is a component that connects the heat exchange layer 400 and the heat exchange medium storage container.
  • the flow chamber 601 is a cavity in the current collector 600 that communicates with the heat exchange chamber 401 and the heat exchange medium storage container.
  • the current collector 600 can be used to connect the container storing the heat exchange medium to circulate the heat exchange medium in the heat exchange cavity 401.
  • the compressible cavity 501 and the heat exchange cavity 401 are not connected, so that the heat exchange medium cannot enter the compressible cavity 501. , to prevent the compressible cavity 501 from deforming after receiving the expansion force released by the battery cells and causing the heat exchange medium to overflow.
  • the current collector 600 also includes a liquid inlet and outlet 602 connected to the liquid flow chamber 601
  • the thermal management component 30 includes a current collector 600.
  • the current collector 600 is disposed at one end of the heat exchange layer 400.
  • the heat exchange layer 400 is open at one end, and the flow chamber 601 is connected to the heat exchange chamber 401 through the open end.
  • the thermal management component 30 includes two current collectors 600.
  • the two current collectors 600 are respectively disposed at both ends of the heat exchange layer 400.
  • the heat exchange layer 400 has openings at both ends, and the two fluid chambers 601 pass through the openings at both ends. Connected to the heat exchange chamber 401.
  • the thermal management component 30 further includes a connecting piece, which is a hollow structure, and the connecting piece is sealingly connected to the liquid inlet and outlet 602 with an opening at one end.
  • Figure 20 is a schematic structural diagram of a thermal management component and a battery cell assembled according to some embodiments of the present application.
  • the thermal management component 30 When the thermal management component 30 is applied to a battery, the thermal management component 30 can be disposed between two adjacent battery cells 20 , and the two opposite surfaces of the thermal management component 30 are respectively in contact with the two adjacent battery cells. Two adjacent large surfaces of 20; the thermal management component 30 can also be disposed between the casing and the battery cell 20 close to the casing.
  • Each thermal management component 30 can be individually connected to a heat exchange medium storage container, or the inlet and outlet 602 of adjacent thermal management components 30 can be connected through a pipeline 700 .
  • Figure 21 is a schematic structural diagram of a sixth thermal management component according to some embodiments of the present application.
  • the heat exchange layer 400 and the compressible layer 500 are arranged extending along the second direction 33 , and at least one end of the compressible layer 500 protrudes from the heat exchange layer 400 along the second direction 33 .
  • the compressible layer 500 protrudes beyond the heat exchange layer 400, which is conducive to sealing and isolating the fluid chamber 601 of the current collector 600 from the compressible chamber 501, so that the heat exchange medium cannot enter the compressible chamber 501, and prevents the compressible chamber 501 from being damaged by the battery.
  • the expansion force released by the monomer deforms, causing the heat exchange medium to overflow.
  • the compressible layer 500 is disposed in the heat exchange cavity 401
  • the current collector 600 includes a through hole penetrating along the second direction 33 , and the portion of the compressible layer 500 protruding from the heat exchange layer 400 passes through the through hole and communicates with the through hole.
  • One end of the hole is sealed and connected, and the other end of the through hole is sealed and connected to the outer wall of the heat exchange layer 400 .
  • a flow chamber 601 is defined between the outer wall of the portion of the compressible layer 500 that protrudes from the heat exchange layer 400 and the inner wall of the current collector 600 .
  • the compressible cavity 501 is provided with an air inlet 502 and an air outlet 503.
  • the compressible layer 500 can be air-cooled through the air inlet 502 and the air outlet 503, and cooperates with the heat exchange layer 400 to further improve the heat exchange efficiency of the thermal management assembly 30 for the battery.
  • the present application provides a thermal management component 30, which has a first direction 31, a second direction 33, and a third direction 32. It includes a heat exchange layer 400, a compressible layer 500 and a heat exchange layer 400 arranged in a stack along the first direction 31, and two current collectors 600 respectively provided at both ends of the heat exchange layer 400 along the second direction 33.
  • the compressible layer 500 includes a first compressible tube 510.
  • the first compressible tube 510 includes a compressible cavity 501.
  • the compressible cavity 501 is extended along the second direction 33 and has air inlets at both ends along the second direction 33.
  • the first compressible tube 510 has two opposite first mating surfaces 511 for mating with the large surface of the battery cell.
  • the heat exchange layer 400 includes a first heat exchange tube 430.
  • the first heat exchange tube 430 includes a heat exchange cavity 401 for containing a heat exchange medium.
  • the heat exchange cavity 401 is extended along the second direction 33 and is arranged along the second direction 33. Both ends have openings.
  • a plurality of first connection structures 420 are provided in the heat exchange cavity 401.
  • the elastic modulus of the first connection structures 420 is greater than the elastic modulus of the first compressible tube 510.
  • the two first connection structures 420 are respectively Disposed at both ends of the first heat exchange tube 430 along the third direction 32, the outer wall of the second compressible tube 520 and the inner wall of the heat exchange cavity 401 define a heat exchange space, and the remaining plurality of first connection structures 420 are arranged along the first
  • the directions 31 are arranged side by side and at intervals in the heat exchange space and divide the heat exchange space into a plurality of flow channels 402.
  • the ends of the plurality of first connection structures 420 define a first installation cavity 431 in which the first compressible tubes 510 are arranged.
  • a heat exchange tube 430 has two opposite first contact surfaces 432 for contacting the large surfaces of the battery cells.
  • the first compressible tube 510 is sleeved in the first heat exchange tube 430.
  • Each current collector 600 includes a liquid flow chamber 601, two liquid inlet and outlet ports 602, and a through hole penetrating along the second direction 33. The two liquid inlet and outlet ports 602 are both connected to the liquid flow chamber 601, and the liquid flow chamber 601 is connected to the heat exchanger.
  • the part of the compressible layer 500 protruding from the heat exchange layer 400 passes through the through hole and is sealingly connected to one end of the through hole, and the other end of the through hole is sealingly connected to the outer wall of the heat exchange layer 400.
  • the thermal management component 30 of the present application can be disposed between two adjacent battery cells 20 , and the two opposite surfaces of the thermal management component 30 are respectively in contact with the adjacent two battery cells 20 .
  • Two adjacent large surfaces of the battery cell 20; the thermal management component 30 can also be disposed between the casing and the battery cell 20 close to the casing, and the inlet and outlet 602 of the adjacent thermal management component 30 passes through the pipe 700 connect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

电池(100)的热管理组件(30)包括层叠布置的换热层(400)和可压缩层(500),可压缩层(500)的弹性模量小于换热层(400)的弹性模量。换热层(400)能够提高电池(100)的散热能力,可压缩层(500)在受到电池单体(20)释放的膨胀力后可沿膨胀力的作用方向产生形变,从而吸收电池单体(20)的部分膨胀,保证电池单体(20)的膨胀空间,避免整个电池(100)产生较大的形变。可压缩层(500)还有利于在装配电池单体(20)时吸收公差,从而提高装配操作的便捷性并保持电池(100)的结构紧凑。

Description

一种热管理组件、电池和用电装置 技术领域
本申请涉及电池技术领域,特别是涉及一种热管理组件、电池和用电装置。
背景技术
电池单体在工作时会放出大量的热量,如果电池内部的热量无法及时排出,电池内部的问题会持续上升,导致电池单体需要在较高的温度下工作,严重影响电池的寿命,严重时可能造成热失控,甚至引发起火爆炸等安全事故。且电池单体在循环过程中会膨胀最终导致电池壳体变形膨胀。
发明内容
鉴于上述问题,本申请提供一种热管理组件、电池和用电装置,其能够提高电池的换热效率,并且吸收电池单体膨胀的部分。
第一方面,本申请提供了一种热管理组件,其包括:层叠布置的换热层和可压缩层。可压缩层的弹性模量小于换热层的弹性模量。
本申请实施例的技术方案中,热管理组件用于应用于电池中,换热层能够提高电池的换热效率,提高电池的散热能力;可压缩层的弹性模量较小,在受到电池单体释放的膨胀力后,可压缩层可沿电池单体的膨胀力作用方向产生形变,从而吸收电池单体膨胀的部分,保证电池单体膨胀空间,避免整个电池模组产生较大的形变,并且可压缩层有利于在装配电池时吸收公差,便于安装以及保持电池的紧凑结构。
在一些实施例中,可压缩层包括可压缩腔。在受到电池单体释放的膨胀力后,可压缩腔的气体被压缩从而使得可压缩层沿电池单体的膨胀力作用方向产生形变。
在一些实施例中,可压缩腔中填充有相变材料或弹性材料。当可压缩腔中填充有相变材料时,可以提高电池的热容,使得热管理组件能够实现给电池单体保温或吸收电池单体热量的作用;当可压缩腔中填充有弹性材料时,弹性材料具有较好的弹性,在受到电池单体释放的膨胀力后,弹性材料被压缩从而使得可压缩层沿电池单体的膨胀力作用方向产生形变,并在膨胀力消失后实现回弹,此外,弹性材料还能够增加可压缩层的支撑强度。
在一些实施例中,换热层包括用于容纳换热介质的换热腔。换热层能够用于容纳换热介质,换热介质能够吸收电池单体放出的热量或对电池单体加热,提高电池的换热效率。
在一些实施例中,换热腔中设置有第一支撑件。第一支撑件能够用于提高换热层的强度,从而避免在受到电池单体释放的膨胀力后,换热层产生较大的形变。
在一些实施例中,第一支撑件的弹性模量大于可压缩层的弹性模量。由于可压缩层的弹性模量小于第一支撑件的弹性模量,更容易发生形变,热管理组件在受到电池单体释放的膨胀力后,可压缩层可沿电池单体的膨胀力作用方向产生较大的形变,而换热层基本不会产生形变。
在一些实施例中,换热层和可压缩层沿第一方向层叠布置,第一支撑件沿第一方向支撑于换热腔中。在将热管理组件应用于电池中时,一般使得电池单体沿第一方向抵接于热管理组件,后续电池单体释放的膨胀力也基本沿第一方向,沿第一方向支撑于换热腔中的第一支撑件能够较大程度提高换热层的弹性模量,使得热管理组件在 受到电池单体释放的沿第一方向的膨胀力后,可压缩层可沿第一方向产生较大的形变,而换热层基本不会产生形变。
在一些实施例中,可压缩层设置于换热腔中。热管理组件沿层叠方向的两端均为换热腔,可以有效提高热管理组件的两端的电池单体的换热效率,使得整个电池的温度保持的较低水平。
在一些实施例中,换热腔中还设置有用于将可压缩层固定于换热腔中的第一连接结构。第一连接结构能够固定可压缩层,以防止可压缩层相对于换热腔的位置改变。
在一些实施例中,可压缩层的外壁和换热腔的内壁之间限定出换热空间,第一连接结构设置于换热空间中并将换热空间划分为多个流道。多个流道有利于换热介质在换热空间中循环流通,避免局部热管理组件的温度较高。
在一些实施例中,可压缩层包括第一可压缩管,换热层包括第一换热管,第一可压缩管套设在第一换热管中。本申请的热管理组件由第一可压缩管和第一换热管套设而成,有利于热管理组件的成型。
在一些实施例中,换热层设置于可压缩腔中。热管理组件沿层叠方向的两端均为换热腔,可以有效提高热管理组件的形变能力,使其在受到沿层叠方向的两端的电池单体释放的膨胀力后,热管理组件能够产生较好的形变,以吸收电池单体释放膨胀的部分。
在一些实施例中,可压缩层包括导热壁,导热壁限定出可压缩腔。可压缩层的外壁为导热壁,从而有效将电池单体的热量传导至内部的换热层中进行换热。
在一些实施例中,可压缩层包括第二可压缩管,换热层包括第二换热管,第二换热管套设在第二可压缩管中。本申请的热管理组件由第二可压缩管和第二换热管套设而成,有利于热管理组件的成型。
在一些实施例中,热管理组件还包括集流体,集流体包括流液腔,流液腔连通于换热腔,流液腔和换热腔均密封隔绝于可压缩腔。集流体能够用于连通储存换热介质的容器,使换热腔中的换热介质流通,可压缩腔和换热腔不连通,使得换热介质无法进入到可压缩腔中,避免可压缩腔在受到电池单体释放的膨胀力后发生形变导致换热介质溢出。
在一些实施例中,换热层和可压缩层沿第二方向延伸布置,可压缩层沿第二方向的至少一端凸出于换热层。可压缩层凸出于换热层有利于集流体的流液腔密封隔绝于可压缩腔,使得换热介质无法进入到可压缩腔中,避免可压缩腔在受到电池单体释放的膨胀力后发生形变导致换热介质溢出。
在一些实施例中,可压缩腔设置有进风口和出风口。可压缩层可通过进风口和出风口进行风冷,并配合换热层进一步提高热管理组件对于电池的换热效率。
第二方面,本申请提供了一种电池,其包括电池单体和上述实施例中的热管理组件,热管理组件用于调节电池单体的温度。
第三方面,本申请提供了一种用电装置,其包括上述实施例的电池,电池用于提供电能。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例的车辆的结构示意图;
图2为本申请一些实施例的电池的分解结构示意图;
图3为本申请一些实施例的电池单体的分解结构示意图;
图4为本申请一些实施例的热管理组件的结构示意图;
图5为本申请一些实施例的第一种热管理组件的剖视图;
图6为本申请一些实施例的第二种热管理组件的剖视图;
图7为本申请一些实施例的第三种热管理组件的剖视图;
图8为本申请一些实施例的第四种热管理组件的剖视图;
图9为本申请一些实施例的第五种热管理组件的剖视图;
图10为本申请一些实施例的第一可压缩管的结构示意图;
图11为本申请一些实施例的第一换热管的结构示意图;
图12为本申请一些实施例的第一换热管的侧视图;
图13为本申请一些实施例的第一可压缩管和第一换热管装配后的结构示意图;
图14为本申请一些实施例的第二换热管的结构示意图;
图15为本申请一些实施例的第二可压缩管的结构示意图;
图16为本申请一些实施例的第二可压缩管的侧视图;
图17为本申请一些实施例的第二可压缩管和第二换热管装配后的结构示意图;
图18为本申请的一些实施例的热管理组件的爆炸图;
图19为本申请一些实施例的集流体的结构示意图;
图20为本申请一些实施例的热管理组件和电池单体装配后的结构示意图;
图21为本申请一些实施例的第六种热管理组件的结构示意图。
具体实施方式中的附图标号如下:
1000-车辆;
100-电池;200-控制器;300-马达;
10-箱体;11-第一部分;12-第二部分;
20-电池单体;21-端盖;22-壳体;23-电芯组件;
30-热管理组件;31-第一方向;32-第三方向;33-第二方向;400-换热层;401-换热腔;402-流道;410-支撑件;420-第一连接结构;430-第一换热管;431-第一安装腔;432-第一抵接面;440-第二换热管;441-第二抵接面;450-第二支撑件;500-可压缩层;501-可压缩腔;502-进风口;503-出风口;510-第一可压缩管;511-第一配合面;520-第二可压缩管;521-第二安装腔;522-第二配合面;530-第二连接结构;600-集流体;601-流液腔;602-进出液口;700-管道。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
本发明人注意到,电池单体在充放电过程中会产生大量的热量,如果不能及时排散电池内部的热量,不仅会影响到电池的寿命,还可能造成热失控,甚至引发起火爆炸等安全事故。且电池在循环过程中,正负极极片在发生膨胀和收缩,且随着循环进行,正极颗粒易破碎,形成较高的厚度膨胀,而负极随着SEI膜的不断修复,石墨颗粒的膨松,也产生非常大的厚度膨胀,最终导致电池壳体膨胀变形,行业通俗形容为“鼓肚子”。
为了缓解电池的散热性并且改善电池的膨胀变形,申请人研究发现,可以在电池中引入热管理组件,并且使得热管理组件既具有散热能力,还可以吸收电池单体膨胀的部分。
基于以上考虑,为了提高电池的散热能力并且吸收电池单体膨胀的部分,发明人经过深入研究,设计了一种热管理组件,其用于应用于电池中,换热层能够提高电池的换热效率,提高电池的散热能力;可压缩层的弹性模量较小,在受到电池单体释放的膨胀力后,可压缩层可沿电池单体的膨胀力作用方向产生形变,从而吸收电池单体膨胀的部分,保证电池单体膨胀空间,避免整个电池模组产生较大的形变,并且可压缩层有利于在装配电池时吸收公差,便于安装以及保持电池的紧凑结构。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。电池一般包括用于封装一个或多个电池单体的电池箱体,电池箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:圆柱电池单体、方形电池单体和软包电池单体。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为聚丙烯(Polypropylene,PP)或聚乙烯(Polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池单体还包括集流构件,集流构件用于将电池单体的极耳和电极端子电连 接,以将电能从电极组件输送至电极端子,经电极端子输送至电池单体的外部;多个电池单体之间通过汇流部件实现电连接,以实现多个电池单体的串联、并联或者混联。
电池还包括采样端子和电池管理系统,采样端子连接于汇流部件,用于采集电池单体的信息,例如电压或者温度等等。采样端子将所采集到的电池单体的信息传递至电池管理系统,电池管理系统检测到电池单体的信息超出正常范围时,会限制电池的输出功率以实现安全防护。
可以理解的是,本申请实施例中描述的使用电池所适用的用电装置可以为多种形式,例如,手机、便携式设备、笔记本电脑、电瓶车、电动汽车、轮船、航天器、电动玩具和电动工具等等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等等,电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨。
本申请的实施例描述的电池单体以及电池不仅仅局限适用于上述所描述的用电装置,还可以适用于所有使用电池单体以及电池的用电装置,但为描述简洁,下述实施例均以电动汽车为例进行说明。
请参阅图1,图1为本申请一些实施例提供的车辆的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池的爆炸图。电池100包括箱体10和电池单体20,电池单体20容纳于箱体10内。其中,箱体10用于为电池单体20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,第一部分11和第二部分12共同限定出用于容纳电池单体20的容纳空间。第二部分12可以为一端开口的空心结构,第一部分11可以为板状结构,第一部分11盖合于第二部分12的开口侧,以使第一部分11与第二部分12共同限定出容纳空间;第一部分11和第二部分12也可以是均为一侧开口的空心结构,第一部分11的开口侧盖合于第二部分12的开口侧。当然,第一部分11和第二部分12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个 电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。
请参照图3,图3为本申请一些实施例提供的电池单体的分解结构示意图。电池单体20是指组成电池的最小单元。如图3,电池单体20包括有端盖21、壳体22、电芯组件23以及其他的功能性部件。
端盖21是指盖合于壳体22的开口处以将电池单体20的内部环境隔绝于外部环境的部件。不限地,端盖21的形状可以与壳体22的形状相适应以配合壳体22。可选地,端盖21可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖21在受挤压碰撞时就不易发生形变,使电池单体20能够具备更高的结构强度,安全性能也可以有所提高。端盖21上可以设置有如电极端子等的功能性部件。电极端子可以用于与电芯组件23电连接,以用于输出或输入电池单体20的电能。在一些实施例中,端盖21上还可以设置有用于在电池单体20的内部压力或温度达到阈值时泄放内部压力的泄压机构。端盖21的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。在一些实施例中,在端盖21的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体22内的电连接部件与端盖21,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
壳体22是用于配合端盖21以形成电池单体20的内部环境的组件,其中,形成的内部环境可以用于容纳电芯组件23、电解液以及其他部件。壳体22和端盖21可以是独立的部件,可以于壳体22上设置开口,通过在开口处使端盖21盖合开口以形成电池单体20的内部环境。不限地,也可以使端盖21和壳体22一体化,具体地,端盖21和壳体22可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体22的内部时,再使端盖21盖合壳体22。壳体22可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体22的形状可以根据电芯组件23的具体形状和尺寸大小来确定。壳体22的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
电芯组件23是电池单体20中发生电化学反应的部件。壳体22内可以包含一个或更多个电芯组件23。电芯组件23主要由正极片和负极片卷绕或层叠放置形成,并且通常在正极片与负极片之间设有隔膜。正极片和负极片具有活性物质的部分构成电芯组件的主体部,正极片和负极片不具有活性物质的部分各自构成极耳。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳连接电极端子以形成电流回路。
根据本申请的一些实施例,请参阅图4~7,图4为本申请一些实施例的热管理组件的结构示意图,图5为本申请一些实施例的第一种热管理组件的剖视图,图6为本申请一些实施例的第二种热管理组件的剖视图,图7为本申请一些实施例的第三种热管理组件的剖视图。
本申请提供了一种热管理组件30。热管理组件30包括层叠布置的换热层400 和可压缩层500。可压缩层500的弹性模量小于换热层400的弹性模量。
换热层400为用于与电池单体进行换热的层状结构。当电池单体的温度比换热层400的温度高时,电池单体的热量传导至换热层400,使得电池单体的温度下降;当电池单体的温度比换热的温度低时,换热层400的热量传导至电池单体,使得电池单体的温度升高。
可压缩层500为受到作用力后压缩形变较大的层状结构。
可选地,当可压缩层500受到沿层叠方向的作用力后,可压缩层500可沿层叠方向压缩并产生较大的形变。
弹性模量是材料或结构在弹性变形阶段,其应力和应变成正比例关系。在弹性变形阶段且应力相同的前提下,弹性模量越大,材料或结构的可形变能力越小;弹性模量越小,材料或结构的可形变能力越大。
热管理组件30用于应用于电池中,换热层400能够提高电池的换热效率,提高电池的散热能力;可压缩层500的弹性模量较小,在受到电池单体释放的膨胀力后,可压缩层500可沿电池单体的膨胀力作用方向产生形变,从而吸收电池单体膨胀的部分,保证电池单体膨胀空间,避免整个电池模组产生较大的形变,并且可压缩层500有利于在装配电池时吸收公差,便于安装以及保持电池的紧凑结构。
换热层400的层数可以是一层或多层,可压缩层500的层数也可以是一层或多层。
作为示例,如图5所示,热管理组件30包括一层换热层400和一层可压缩层500;如图6所示,热管理组件30包括两层换热层400和一层可压缩层500,可压缩层500设置于两层换热层400之间;如图7所示,热管理组件30包括一层换热层400和两层可压缩层500,换热层400设置于两层可压缩层500之间。
根据本申请的一些实施例,可选地,可压缩层500包括可压缩腔501。
可压缩腔501为受到可压缩层500受到作用力后体积变小的腔体。
在受到电池单体释放的膨胀力后,可压缩腔501的气体被压缩从而使得可压缩层500沿电池单体的膨胀力作用方向产生形变。
根据本申请的一些实施例,可选地,可压缩腔501中填充有相变材料或弹性材料。
相变材料是指温度不变的情况下而改变物质状态并能提供潜热的物质。转变物理性质的过程称为相变过程,此时相变材料将吸收或释放大量的潜热。
弹性材料是指弹性模量较低的材料,弹性材料可在电池单体的膨胀力作用下发生较大形变。
当可压缩腔501中填充有相变材料时,可以提高电池的热容,使得热管理组件30能够实现给电池单体保温或吸收电池单体热量的作用;当可压缩腔501中填充有弹性材料时,弹性材料具有较好的弹性,在受到电池单体释放的膨胀力后,弹性材料被压缩从而使得可压缩层500沿电池单体的膨胀力作用方向产生形变,并在膨胀力消失后实现回弹,此外,弹性材料还能够增加可压缩层500的支撑强度。
可选地,弹性材料包括橡胶材料。
根据本申请的一些实施例,可选地,换热层400包括用于容纳换热介质的换热腔401。
换热介质为用于与电池单体进行换热的介质,一般为比热容较大且可以在电池工作温度下保持流动性的液体。
作为示例,换热介质可以为水、导热油等。
换热层400能够用于容纳换热介质,换热介质能够吸收电池单体放出的热量或对电池单体加热,提高电池的换热效率。
可选地,换热腔401可以为密封的或开放的。
根据本申请的一些实施例,可选地,请参阅图8,图8为本申请一些实施例的第四种热管理组件的剖视图。换热腔401中设置有第一支撑件410。
第一支撑件410为支撑于换热腔401中以防止换热腔401被挤压发生形变的结构。
第一支撑件410能够用于提高换热层400的强度,从而避免在受到电池单体释放的膨胀力后,换热层400产生较大的形变。
根据本申请的一些实施例,可选地,第一支撑件410的弹性模量大于可压缩层500的弹性模量。
由于可压缩层500的弹性模量小于第一支撑件410的弹性模量,更容易发生形变,热管理组件30在受到电池单体释放的膨胀力后,可压缩层500可沿电池单体的膨胀力作用方向产生较大的形变,而换热层400基本不会产生形变。
根据本申请的一些实施例,可选地,换热层400和可压缩层500沿第一方向31层叠布置,第一支撑件410沿第一方向31支撑于换热腔401中。
在将热管理组件30应用于电池中时,一般使得电池单体沿第一方向31抵接于热管理组件30,后续电池单体释放的膨胀力也基本沿第一方向31,沿第一方向31支撑于换热腔401中的第一支撑件410能够较大程度提高换热层400的弹性模量,使得热管理组件30在受到电池单体释放的沿第一方向31的膨胀力后,可压缩层500可沿第一方向31产生较大的形变,而换热层400基本不会产生形变。
根据本申请的一些实施例,可选地,请参阅图6,可压缩层500设置于换热腔401中。
热管理组件30沿层叠方向的两端均为换热腔401,可以有效提高热管理组件30的两端的电池单体的换热效率,使得整个电池的温度保持的较低水平。
根据本申请的一些实施例,可选地,请参阅图9,图9为本申请一些实施例的第五种热管理组件的剖视图。换热腔401中还设置有用于将可压缩层500固定于换热腔401中的第一连接结构420。
第一连接结构420为两端分别连接于换热腔401内壁和可压缩层500外壁的结构。
第一连接结构420能够固定可压缩层500,以防止可压缩层500相对于换热腔401的位置改变。
可选地,至少部分第一连接结构420沿层叠方向设置于换热腔401中。第一连接结构420一方面能够固定可压缩层500,另一方面能够用于提高换热层400的强度,从而避免在受到电池单体释放的膨胀力后,换热层400产生较大的形变。
根据本申请的一些实施例,可选地,可压缩层500的外壁和换热腔401的内壁之间限定出换热空间,第一连接结构420设置于换热空间中并将换热空间划分为多个流道402。
多个流道402有利于换热介质在换热空间中循环流通,避免局部热管理组件30的温度较高。
可选地,换热腔401中设置有多个第一连接结构420。
可选地,第一连接结构420的弹性模量大于可压缩层500的弹性模量。
根据本申请的一些实施例,可选地,请参阅图10~13,图10为本申请一些实施例的第一可压缩管的结构示意图,图11为本申请一些实施例的第一换热管的结构示意图,图12为本申请一些实施例的第一换热管的侧视图,图13为本申请一些实施例的第一可压缩管和第一换热管装配后的结构示意图。可压缩层500包括第一可压缩管510,换热层400包括第一换热管430,第一可压缩管510套设在第一换热管430中。
第一可压缩管510为内部具有可压缩腔501且可被挤压变形的管状结构。
第一换热管430为内部具有换热腔401的管状结构,且换热腔410中设置有至少一个第一连接结构420的管状结构,至少一个第一连接结构420的末端限定出设置第一可压缩管510的第一安装腔431。
本申请的热管理组件30由第一可压缩管510和第一换热管430套设而成,有利于热管理组件30的成型。
可选地,第一可压缩管510和第一换热管430套设后,第一换热管430中的至少一个第一连接结构420的末端抵接于第一可压缩管510的外壁。
可选地,热管理组件30具有安装于电池中后对应电池单体的高度方向的第三方向32,第一换热管430内设置有两个沿第三方向32延伸的第一连接结构420,且两个第一连接结构420分别设置于第一换热管430沿第三方向32的两端。
可选地,第一换热管430具有两个相对且用于与电池单体的大面抵接的第一抵接面432。第一抵接面432能够提高第一换热管430与电池单体的接触面积,从而提高热管理组件30对电池单体的换热能力。
可选地,第一可压缩管510具有两个相对且用于与电池单体的大面配合的第一配合面511。电池单体的膨胀变形一般沿垂直于大面的方向,第一配合面511能够在电池单体的膨胀力的作用下发生形变,从而吸收电池单体膨胀的部分。
根据本申请的一些实施例,可选地,请参阅图7,换热层400设置于可压缩腔501中。
热管理组件30沿层叠方向的两端均为换热腔401,可以有效提高热管理组件30的形变能力,使其在受到沿层叠方向的两端的电池单体释放的膨胀力后,热管理组件30能够产生较好的形变,以吸收电池单体释放膨胀的部分。
根据本申请的一些实施例,可选地,可压缩层500包括导热壁,导热壁限定出可压缩腔501。
导热壁为可压缩层500的具有较好导热效果的壁结构。
作为示例,导热壁的材料可以为导热硅胶、金属等。
可压缩层500的外壁为导热壁,从而有效将电池单体的热量传导至内部的换热层400中进行换热。
根据本申请的一些实施例,可选地,请参阅图14~17,图14为本申请一些实施例的第二换热管的结构示意图,图15为本申请一些实施例的第二可压缩管的结构示意图,图16为本申请一些实施例的第二可压缩管的侧视图,图17为本申请一些实施例的第二可压缩管和第二换热管装配后的结构示意图。可压缩层500包括第二可压缩管520,换热层400包括第二换热管440,第二换热管440套设在第二可压缩管520中。
第二换热管440为内部具有换热腔401的管状结构。
第二可压缩管520为内部具有可压缩腔501的管状结构,且可压缩腔501中设置有至少一个第二连接结构530的管状结构,至少一个第二连接结构530的末端限定出设置第二换热管440的第二安装腔521。
本申请的热管理组件30由第二可压缩管520和第二换热管440套设而成,有利于热管理组件30的成型。
可选地,第二可压缩管520和第二换热管440套设后,第二可压缩管520中的至少一个第二连接结构530的末端抵接于第二换热管440的外壁。
可选地,热管理组件30具有安装于电池中后对应电池单体的高度方向的第三方向32,第二可压缩管520内设置有两个沿第三方向32延伸的第二连接结构530,且两个第二连接结构530分别设置于第二可压缩管520沿第三方向32的两端。
可选地,第二可压缩管520具有两个相对且用于与电池单体的大面抵接的第二配合面522。第二配合面522能够提高第二可压缩管520与电池单体的接触面积,从而提高热管理组件30对电池单体的换热能力。并且电池单体的膨胀变形一般沿垂直于大面的方向,第二配合面522能够在电池单体的膨胀力的作用下发生形变,从而吸收电池单体膨胀的能力。
可选地,第二换热管440具有两个相对且用于与电池单体的大面配合的第二抵接面441。两个第二抵接面441对应两个第二配合面522,并吸收两个第二配合面522传导过来的热量。
可选地,第二换热管440内部设置有多个第二支撑件450。
换热腔401的内壁限定出换热空间,多个第二支撑件450设置于换热空间中并将换热空间划分为多个流道402。
可选地,第二支撑件450的弹性模量大于可压缩层500的弹性模量。
根据本申请的一些实施例,可选地,请参阅图4、18和19,图18为本申请的一些实施例的热管理组件的爆炸图,图19为本申请一些实施例的集流体的结构示意图。热管理组件30还包括集流体600,集流体600包括流液腔601,流液腔601连通于换热腔401,流液腔601和换热腔401均密封隔绝于可压缩腔501。
集流体600为连接换热层400与储存换热介质容器的部件。
流液腔601为集流体600内连通换热腔401和储存换热介质容器的腔体。
集流体600能够用于连通储存换热介质的容器,使换热腔401中的换热介质流通,可压缩腔501和换热腔401不连通,使得换热介质无法进入到可压缩腔501中,避免可压缩腔501在受到电池单体释放的膨胀力后发生形变导致换热介质溢出。
可选地,集流体600还包括进出液口602,进出液口602连通于流液腔601
可选地,热管理组件30包括一个集流体600,集流体600设置于换热层400的一端,换热层400一端开口,流液腔601通过一端开口连通于换热腔401。
可选地,热管理组件30包括两个集流体600,两个集流体600分别设置于换热层400的两端,换热层400两端开口,两个流液腔601分别通过两端开口连通于换热腔401。
可选地,热管理组件30还包括连接件,连接件为中空结构,连接件以其一端开口密封连接于进出液口602。
请参阅图4和20,图20为本申请一些实施例的热管理组件和电池单体装配后的结构示意图。将热管理组件30应用于电池中时,热管理组件30可以设置于相邻两个电池单体20之间,且热管理组件30的两个相对面分别抵接于相邻两个电池单体20的两个相邻的大面;热管理组件30还可以设置于壳体和靠近壳体的电池单体20之间。
每个热管理组件30可以单独与储存换热介质容器连接,或是相邻的热管理组件30的进出液口602通过管道700连接。
根据本申请的一些实施例,可选地,请参阅图4和21,图21为本申请一些实施例的第六种热管理组件的结构示意图。换热层400和可压缩层500沿第二方向33延伸布置,可压缩层500沿第二方向33的至少一端凸出于换热层400。
可压缩层500凸出于换热层400有利于集流体600的流液腔601密封隔绝于可压缩腔501,使得换热介质无法进入到可压缩腔501中,避免可压缩腔501在受到电池单体释放的膨胀力后发生形变导致换热介质溢出。
可选地,可压缩层500设置于换热腔401中,集流体600包括沿第二方向33贯穿的通孔,可压缩层500凸出于换热层400的部分穿过通孔并与通孔的一端密封连接,通孔的另一端密封连接于换热层400的外壁。可压缩层500凸出于换热层400的部分的外壁和集流体600的内壁之间限定出流液腔601。
根据本申请的一些实施例,可选地,请参阅图4,可压缩腔501设置有进风口502和出风口503。
可压缩层500可通过进风口502和出风口503进行风冷,并配合换热层400进一步提高热管理组件30对于电池的换热效率。
根据本申请的一些实施例,请参阅图4、9~13、18~21,本申请提供了一种热管理组件30,其具有第一方向31、第二方向33和第三方向32,其包括沿第一方向31依次层叠布置的换热层400、可压缩层500和换热层400,以及沿第二方向33分别设置于换热层400两端的两个集流体600。可压缩层500包括第一可压缩管510,第一可压缩管510包括可压缩腔501,可压缩腔501沿第二方向33延伸布置,且在沿第二方向33的两端分别具有进风口502和出风口503,第一可压缩管510具有两个相对且用于与电池单体的大面配合的第一配合面511。换热层400包括第一换热管430,第一换热管430包括用于容纳换热介质的换热腔401,换热腔401沿第二方向33延伸布置且在沿第二方向33的两端均具有开口,换热腔401中设置有多个第一连接结构420,第一连接结构420的弹性模量大于第一可压缩管510的弹性模量,两个第一连接结构420分别设置于第一换热管430沿第三方向32的两端,第二可压缩管520的外壁和换热腔401的内壁限定出换热空间,余下的多个第一连接结构420沿第一方向31并排且间隔设置于换热空间中并将换热空间划分为多个流道402,多个第一连接结构420的末端限定出设置第一可压缩管510的第一安装腔431,第一换热管430具有两个相对且用于与电池单体的大面抵接的第一抵接面432。第一可压缩管510套设在第一换热管430中,多个第一连接结构420的末端抵接于第一可压缩管510的外壁,第一可压缩管510沿第二方向33的两端均凸出于换热层400。每个集流体600包括流液腔601、两个进出液口602以及沿第二方向33贯穿的通孔,两个进出液口602均连通于流液腔601,流液腔601连通于换热腔401,可压缩层500凸出于换热层400的部分穿过通孔并与通孔的一端密封连接,通孔的另一端密封连接于换热层400的外壁。当本申请的热管理组件30应用于电池中时,热管理组件30可以设置于相邻两个电池单体20之间,且热管理组件30的两个相对面分别抵接于相邻两个电池单体20的两个相邻的大面;热管理组件30还可以设置于壳体和靠近壳体的电池单体20之间,相邻的热管理组件30的进出液口602通过管道700连接。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (19)

  1. 一种热管理组件,其中,所述热管理组件包括:
    层叠布置的换热层和可压缩层;
    所述可压缩层的弹性模量小于所述换热层的弹性模量。
  2. 根据权利要求1所述的热管理组件,其中,所述可压缩层包括可压缩腔。
  3. 根据权利要求2所述的热管理组件,其中,所述可压缩腔中填充有相变材料或弹性材料。
  4. 根据权利要求1~3任一项所述的热管理组件,其中,所述换热层包括用于容纳换热介质的换热腔。
  5. 根据权利要求4所述的热管理组件,其中,所述换热腔中设置有第一支撑件。
  6. 根据权利要求5所述的热管理组件,其中,所述第一支撑件的弹性模量大于所述可压缩层的弹性模量。
  7. 根据权利要求5或6所述的热管理组件,其中,所述换热层和所述可压缩层沿第一方向层叠布置,所述第一支撑件沿所述第一方向支撑于所述换热腔中。
  8. 根据权利要求4所述的热管理组件,其中,所述可压缩层设置于所述换热腔中。
  9. 根据权利要求8所述的热管理组件,其中,所述换热腔中还设置有用于将所述可压缩层固定于所述换热腔中的第一连接结构。
  10. 根据权利要求9所述的热管理组件,其中,所述可压缩层的外壁和所述换热腔的内壁之间限定出换热空间,所述第一连接结构设置于所述换热空间中并将所述换热空间划分为多个流道。
  11. 根据权利要求8~10任一项所述的热管理组件,其中,所述可压缩层包括第一可压缩管,所述换热层包括第一换热管,所述第一可压缩管套设在所述第一换热管中。
  12. 根据权利要求4所述的热管理组件,其中,所述换热层设置于所述可压缩腔中。
  13. 根据权利要求12所述的热管理组件,其中,所述可压缩层包括导热壁,所述导热壁限定出所述可压缩腔。
  14. 根据权利要求12或13所述的热管理组件,其中,所述可压缩层包括第二可压缩管,所述换热层包括第二换热管,所述第二换热管套设在所述第二可压缩管中。
  15. 根据权利要求4~14任一项所述的热管理组件,其中,所述热管理组件还包括集流体,所述集流体包括流液腔,所述流液腔连通于所述换热腔,所述流液腔和所述换热腔均密封隔绝于所述可压缩腔。
  16. 根据权利要求15所述的热管理组件,其中,所述换热层和所述可压缩层沿第二方向延伸布置,所述可压缩层沿所述第二方向的至少一端凸出于所述换热层。
  17. 根据权利要求3~16任一项所述的热管理组件,其中,所述可压缩腔设置有进风口和出风口。
  18. 一种电池,其中,所述电池包括电池单体和权利要求1~17任一项所述的热管理组件,所述热管理组件用于调节所述电池单体的温度。
  19. 一种用电装置,其中,所述用电装置包括权利要求18所述的电池,所述电池用于提供电能。
PCT/CN2022/098727 2022-02-21 2022-06-14 一种热管理组件、电池和用电装置 WO2023240460A1 (zh)

Priority Applications (21)

Application Number Priority Date Filing Date Title
PCT/CN2022/098727 WO2023240460A1 (zh) 2022-06-14 2022-06-14 一种热管理组件、电池和用电装置
CN202280007308.1A CN116802898A (zh) 2022-06-14 2022-06-14 一种热管理组件、电池和用电装置
CN202380008512.XA CN116848705A (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014583.8U CN219203337U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014474.6U CN220042013U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014354.6U CN219203336U (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070135 WO2023155624A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070125 WO2023155620A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008509.8A CN116802897A (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014214.9U CN219203335U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014404.0U CN219575742U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008510.0A CN116868417A (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008508.3A CN116491016A (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008507.9A CN116745978A (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070131 WO2023155622A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070133 WO2023155623A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070136 WO2023155625A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008511.5A CN116724443A (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070126 WO2023155621A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014347.6U CN219203386U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320015597.1U CN219534642U (zh) 2022-06-14 2023-01-04 一种热管理组件、电池和用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/098727 WO2023240460A1 (zh) 2022-06-14 2022-06-14 一种热管理组件、电池和用电装置

Publications (1)

Publication Number Publication Date
WO2023240460A1 true WO2023240460A1 (zh) 2023-12-21

Family

ID=87644380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098727 WO2023240460A1 (zh) 2022-02-21 2022-06-14 一种热管理组件、电池和用电装置

Country Status (2)

Country Link
CN (2) CN116802898A (zh)
WO (1) WO2023240460A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170140A (ja) * 2008-01-11 2009-07-30 Aiko Kk 電池モジュール加圧スペーサ
JP2014170697A (ja) * 2013-03-05 2014-09-18 Honda Motor Co Ltd 組電池
CN112103421A (zh) * 2019-06-18 2020-12-18 宁德时代新能源科技股份有限公司 温控组件及电池包
CN214254595U (zh) * 2020-12-29 2021-09-21 蜂巢能源科技有限公司 电池包壳体和电池包
CN114497826A (zh) * 2022-04-18 2022-05-13 宁德时代新能源科技股份有限公司 水冷板组件、水冷系统、电池及其箱体以及用电装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3008036B1 (fr) * 2013-07-05 2015-06-26 Renault Sa Dispositif de gestion thermique de la batterie d'un vehicule electrique
CN209447945U (zh) * 2018-12-30 2019-09-27 宁德时代新能源科技股份有限公司 一种电池包
CN216213823U (zh) * 2021-11-11 2022-04-05 宁德时代新能源科技股份有限公司 一种隔热垫及电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170140A (ja) * 2008-01-11 2009-07-30 Aiko Kk 電池モジュール加圧スペーサ
JP2014170697A (ja) * 2013-03-05 2014-09-18 Honda Motor Co Ltd 組電池
CN112103421A (zh) * 2019-06-18 2020-12-18 宁德时代新能源科技股份有限公司 温控组件及电池包
CN214254595U (zh) * 2020-12-29 2021-09-21 蜂巢能源科技有限公司 电池包壳体和电池包
CN114497826A (zh) * 2022-04-18 2022-05-13 宁德时代新能源科技股份有限公司 水冷板组件、水冷系统、电池及其箱体以及用电装置

Also Published As

Publication number Publication date
CN116802898A (zh) 2023-09-22
CN219534642U (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
CN216872113U (zh) 电池和用电设备
CN216872114U (zh) 电池和用电设备
WO2023050969A1 (zh) 一种电池单体、电池及用电装置
CN217182265U (zh) 电池和用电设备
CN217719768U (zh) 热管理部件、电池以及用电设备
WO2024007419A1 (zh) 一种隔离组件、电池模组、电池和用电装置
CN216872134U (zh) 电池和用电设备
WO2024021248A1 (zh) 电池单体、电池及用电设备
WO2023134110A1 (zh) 电池和用电设备
WO2023134107A1 (zh) 电池和用电设备
EP4181281A1 (en) Battery, electric device, and method and device for preparing battery
CN219303742U (zh) 电池单体、电池及用电设备
WO2023185244A1 (zh) 一种散热结构、高压盒、电池和用电装置
US20230268586A1 (en) Battery, power consumption device, and method and device for producing battery
US20230071423A1 (en) Battery, apparatus using battery, and preparation method and preparation device of battery
WO2024031418A1 (zh) 电池、用电装置以及电池的成型方法
WO2023245501A1 (zh) 热管理部件、热管理系统、电池及用电装置
CN216698599U (zh) 箱体、电池以及用电装置
WO2023159486A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023240460A1 (zh) 一种热管理组件、电池和用电装置
CN116615830A (zh) 电池、用电设备、制备电池的方法和设备
WO2023133737A1 (zh) 电池、用电设备、制备电池的方法和设备
CN217114547U (zh) 电池单体、电池及用电装置
WO2023230746A1 (zh) 电池单体、电池及用电装置
CN219017730U (zh) 电池单体、电池及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946159

Country of ref document: EP

Kind code of ref document: A1