CN219203336U - 电池和用电装置 - Google Patents

电池和用电装置 Download PDF

Info

Publication number
CN219203336U
CN219203336U CN202320014354.6U CN202320014354U CN219203336U CN 219203336 U CN219203336 U CN 219203336U CN 202320014354 U CN202320014354 U CN 202320014354U CN 219203336 U CN219203336 U CN 219203336U
Authority
CN
China
Prior art keywords
battery
wall
separator
battery cell
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202320014354.6U
Other languages
English (en)
Inventor
张文辉
姚鹏程
陈兴地
王鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Contemporary Amperex Technology Co Ltd
Original Assignee
Contemporary Amperex Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2022/077150 external-priority patent/WO2023155209A1/zh
Priority claimed from PCT/CN2022/077152 external-priority patent/WO2023155211A1/zh
Priority claimed from PCT/CN2022/077151 external-priority patent/WO2023155210A1/zh
Priority claimed from PCT/CN2022/077147 external-priority patent/WO2023155207A1/zh
Priority claimed from PCT/CN2022/077153 external-priority patent/WO2023155212A1/zh
Priority claimed from PCT/CN2022/077149 external-priority patent/WO2023155208A1/zh
Priority claimed from PCT/CN2022/098447 external-priority patent/WO2023240407A1/zh
Priority claimed from PCT/CN2022/098727 external-priority patent/WO2023240460A1/zh
Priority claimed from PCT/CN2022/099229 external-priority patent/WO2023240552A1/zh
Priority claimed from PCT/CN2022/099786 external-priority patent/WO2023245330A1/zh
Priority claimed from PCT/CN2022/100486 external-priority patent/WO2023245501A1/zh
Priority claimed from PCT/CN2022/100488 external-priority patent/WO2023245502A1/zh
Priority claimed from PCT/CN2022/101395 external-priority patent/WO2024000086A1/zh
Priority claimed from PCT/CN2022/101392 external-priority patent/WO2024000084A1/zh
Priority claimed from PCT/CN2022/111347 external-priority patent/WO2024031413A1/zh
Application filed by Contemporary Amperex Technology Co Ltd filed Critical Contemporary Amperex Technology Co Ltd
Publication of CN219203336U publication Critical patent/CN219203336U/zh
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请公开了一种电池和用电装置,电池包括箱体、至少两个电池单体和加强件,箱体具有容纳腔,至少两个电池单体容纳于容纳腔内,每个电池单体包括电极组件和电极端子,电极组件与电极端子电连接,电池单体包括第一壁,第一壁为电池单体中面积最大的壁,加强件与至少两个电池单体相连,加强件与至少两个电池单体的第一壁导热连接。根据本申请的电池,提升能量密度的同时保障电池中的热传导,从而能够提升电池的性能。

Description

电池和用电装置
本申请基于申请号为PCT/CN2022/077152、申请日为2022年02月21日的国际专利申请,申请号为PCT/CN2022/077153、申请日为2022年02月21日的国际专利申请,申请号为PCT/CN2022/077151、申请日为2022年02月21日的国际专利申请,申请号为PCT/CN2022/077147、申请日为2022年02月21日的国际专利申请,申请号为PCT/CN2022/077149、申请日为2022年02月21日的国际专利申请,申请号为PCT/CN2022/077150、申请日为2022年02月21日的国际专利申请,申请号为PCT/CN2022/098447、申请日为2022年06月13日的国际专利申请,申请号为PCT/CN2022/098727、申请日为2022年06月14日的国际专利申请,申请号为PCT/CN2022/099229、申请日为2022年06月16日的国际专利申请,申请号为PCT/CN2022/100488、申请日为2022年06月22日的国际专利申请,申请号为PCT/CN2022/100486、申请日为2022年06月22日的国际专利申请,申请号为PCT/CN2022/111347、申请日为2022年08月10日的国际专利申请,申请号为PCT/CN2022/099786、申请日为2022年06月20日的国际专利申请,申请号为PCT/CN2022/101392、申请日为2022年06月27日的国际专利申请,申请号为PCT/CN2022/101395、申请日为2022年06月27日的国际专利申请提出,并要求上述国际专利申请的优先权,上述国际专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电池技术,尤其是涉及一种电池和用电装置。
背景技术
近些年,新能源汽车有了飞跃式的发展,在电动汽车领域,动力电池作为电动汽车的动力源,起着不可替代的重要作用。
电池的能量密度是电池的性能中的一项重要参数,然而,在提升电池的能量密度时还需要考虑电池的其他性能参数。因此,如何提升电池的性能,是电池技术中一个亟待解决的技术问题。
实用新型内容
本申请旨在至少解决相关技术中存在的技术问题之一。为此,本申请提出一种电池,所述电池提升能量密度的同时保障电池中的热传导,从而能够提升电池的性能。
本申请还提出一种具有上述电池的用电装置。
根据本申请第一方面实施例的电池,包括:箱体,所述箱体具有容纳腔;至少两个电池单体,所述至少两个电池单体容纳于所述容纳腔内,每个所述电池单体包括电极组件和电极端子,所述电极组件与所述电极端子电连接,所述电池单体包括第一壁,所述第一壁为所述电池单体中面积最大的壁;加强件,所述加强件与至少两个所述电池单体相连,所述加强件与至少两个所述电池单体的所述第一壁导热连接。
根据本申请实施例的电池,容纳至少两个电池单体的箱体中可以不需要再设置梁等结构,可以较大限度地提升电池内部的空间利用率,从而提升电池的能量密度;同时,利用上述加强件还可以保障电池中的热传导。
在一些实施例中,每个所述电池单体还包括与所述第一壁相连的第二壁,所述第一壁与所述第二壁相交设置,所述电极端子设置于所述第二壁。
在一些实施例中,每个所述电池单体包括相对设置的两个所述第一壁和相对设置的两个所述第二壁,所述电极端子设置为至少两个;至少两个所述电极端子设置于同一个所述第二壁;或者,每个所述第二壁设置有至少一个所述电极端子。
在一些实施例中,所述电极端子设于所述第一壁。
在一些实施例中,至少两个所述电池单体在第一方向排布设置,在所述第一方向上,每个所述电池单体设有与所述第一壁相对设置的第一表面,所述第一表面设有避让槽,相邻的两个所述电池单体中的其中一个所述电池单体的所述避让槽用于容纳另一个所述电池单体的所述电极端子,所述第一方向垂直于所述第一壁。
在一些实施例中,所述第一壁形成为圆筒状。
在一些实施例中,所述第一壁的轴向两端均设有第二壁,至少一个所述第二壁设有所述电极端子。
在一些实施例中,其中一个所述第二壁设有外露的所述电极端子,所述电极组件包括正极片和负极片,所述正极片和所述负极片中的其中一个与所述电极端子电连接,所述正极片和所述负极片中的另一个与所述第一壁或另一个所述第二壁电连接。
在一些实施例中,至少一个所述电池单体为软包电池单体。
在一些实施例中,所述电池单体还包括泄压机构,所述泄压机构与所述电极端子设置于所述电池单体的同一个壁。
在一些实施例中,所述电池单体还包括泄压机构,所述泄压机构与所述电极端子分别设置于所述电池单体的两个壁。
在一些实施例中,所述加强件通过第一胶层粘接至至少两个所述电池单体的所述第一壁。
在一些实施例中,所述加强件的底部通过第二胶层粘接至所述容纳腔的底壁;和/或,所述电池单体的底部通过第三胶层粘接至所述容纳腔的底壁。
在一些实施例中,所述第一胶层的厚度小于或等于所述第二胶层的厚度;和/或,所述第一胶层的厚度小于或等于所述第三胶层的厚度。
在一些实施例中,所述第一胶层的导热系数大于或等于所述第二胶层的导热系数;和/或,所述第一胶层的导热系数大于或等于所述第三胶层的导热系数。
在一些实施例中,所述第一胶层的厚度与所述第一胶层的导热系数之间的比值为第一比值;所述第二胶层的厚度与所述第二胶层的导热系数之间的比值为第二比值;所述第三胶层的厚度与所述第三胶层的导热系数之间的比值为第三比值;其中,所述第一比值小于或等于所述第二比值;和/或,所述第一比值小于或等于所述第三比值。
在一些实施例中,所述加强件为导热件,所述导热件用于与所述电池单体换热。
在一些实施例中,所述导热件包括金属材料和/或非金属材料。
在一些实施例中,所述导热件包括金属板和绝缘层,所述绝缘层设置在所述金属板的表面;或者,所述导热件为非金属材料板。
在一些实施例中,所述导热件内设置有空腔。
在一些实施例中,所述空腔用于容纳换热介质以给所述电池单体调节温度。
在一些实施例中,所述电池单体为多个且沿第二方向排列;所述加强件包括隔板,所述隔板沿所述第二方向延伸且与所述多个电池单体中的每个电池单体的所述第一壁连接,所述第二方向平行于所述第一壁。
在一些实施例中,所述加强件还包括绝缘层,所述绝缘层用于绝缘隔离所述电池单体的所述第一壁和所述隔板。
在一些实施例中,所述绝缘层的导热系数大于或等于0.1W/(m·K)。
在一些实施例中,所述隔板在第一方向上的尺寸T1小于0.5mm,所述第一方向垂直于所述第一壁。
在一些实施例中,所述隔板在第一方向上的尺寸T1大于5mm,所述第一方向垂直于所述第一壁。
在一些实施例中,所述加强件的与所述第一壁连接的表面为绝缘表面;其中,所述加强件在第一方向上的尺寸为0.1mm~100mm,所述第一方向垂直于所述第一壁。
在一些实施例中,在第三方向上,所述隔板的尺寸H1与所述第一壁的尺寸H2满足:0.1≤H1/H2≤2,所述第三方向垂直于所述第二方向且平行于所述第一壁。
在一些实施例中,所述隔板内部设置有空腔。
在一些实施例中,所述空腔内用于容纳换热介质以给所述电池单体调节温度。
在一些实施例中,在第一方向上,所述空腔的尺寸为W,所述电池单体的容量Q与所述空腔的尺寸W满足:1.0Ah/mm≤Q/W≤400Ah/mm,所述第一方向垂直于所述第一壁。
在一些实施例中,所述隔板还包括沿第一方向相对设置的一对导热板,所述空腔设置于所述一对导热板之间,所述第一方向垂直于所述第一壁。
在一些实施例中,所述隔板还包括加强筋,所述加强筋设于所述一对导热板之间。
在一些实施例中,所述加强筋连接于所述一对导热板中的至少一者。
在一些实施例中,所述加强筋包括第一加强筋,所述第一加强筋的两端分别连接于所述一对导热板,且所述第一加强筋相对于所述第一方向倾斜设置。
在一些实施例中,所述第一加强筋与所述第一方向的夹角范围为30°-60°。
在一些实施例中,所述加强筋还包括第二加强筋,所述第二加强筋的一端连接于所述一对导热板中的一者,所述第二加强筋的另一端与所述一对导热板中的另一者间隔设置。
在一些实施例中,所述第二加强筋沿所述第一方向延伸并凸出于所述一对导热板中的一者。
在一些实施例中,所述第一加强筋与所述第二加强筋间隔设置。
在一些实施例中,在所述第一方向上,所述导热板的厚度D与所述空腔的尺寸W满足:0.01≤D/W≤25。
在一些实施例中,所述隔板设有介质入口和介质出口,所述空腔连通所述介质入口和所述介质出口,所述隔板的内部设有与所述介质入口和所述介质出口均断开的腔体。
在一些实施例中,所述空腔内设有分隔件,所述分隔件用于将所述空腔内分隔形成至少两个流道。
在一些实施例中,所述加强件包括层叠设置的第一导热板、第二导热板和所述分隔件,所述分隔件设置于所述第一导热板和所述第二导热板之间,所述第一导热板和所述分隔件共同限定出第一流道,所述第二导热板和所述分隔件共同限定出第二流道。
在一些实施例中,所述加强件的至少一部分被构造成在受压时可变形。
在一些实施例中,所述加强件包括:层叠布置的换热层和可压缩层;所述可压缩层的弹性模量小于所述换热层的弹性模量。
在一些实施例中,所述可压缩层包括可压缩腔,所述可压缩腔内填充有相变材料或弹性材料。
在一些实施例中,所述加强件包括外壳和支撑部件,所述支撑部件容纳于所述外壳内并用于在所述外壳内限定出分隔设置的空腔和变形腔,所述空腔用于供换热介质流动,所述变形腔被配置为在所述外壳受压时可变形。
在一些实施例中,所述加强件包括外壳和隔离组件,所述隔离组件容纳于所述外壳内并与所述外壳连接,以在所述外壳和所述隔离组件之间形成空腔,所述空腔用于供换热介质流动,所述隔离组件被配置为在所述外壳受压时可变形。
在一些实施例中,所述加强件设有避让结构,所述避让结构用于为所述电池单体的膨胀提供空间。
在一些实施例中,所述避让结构的至少部分位于两个相邻的所述电池单体之间,并用于为至少一个所述电池单体的膨胀提供空间。
在一些实施例中,在第一方向上,所述加强件包括相对设置的第一导热板和第二导热板,所述第一导热板和所述第二导热板之间设有空腔,所述空腔用于容纳换热介质,沿所述第一方向,所述第一导热板和所述第二导热板中的至少一者朝向靠近另一者的方向凹陷设置以形成所述避让结构,所述第一方向垂直于所述第一壁。
在一些实施例中,所述箱体内设有电池组,所述电池组为的数量为两个以上并沿第一方向排列,每个所述电池组包括两个以上沿第二方向排列的所述电池单体,所述第二方向垂直于所述第一方向,所述第一方向垂直于所述第一壁。
在一些实施例中,相邻两组所述电池组之间夹持有所述加强件。
在一些实施例中,所述电池还包括连接管组,所述加强件内设置有用于容纳换热介质的空腔,所述连接管组用于将两个以上所述加强件的所述空腔连通。
在一些实施例中,所述连接管组包括联通道、进管以及出管,沿所述第一方向,相邻两个所述加强件的所述空腔通过所述联通道连通,所述进管以及所述出管与同一所述加强件的所述空腔连通。
在一些实施例中,每个所述电池单体还包括电池盒,所述电极组件容纳于所述电池盒内,所述电池盒设置有泄压机构,所述泄压机构与所述电池盒一体成型。
在一些实施例中,所述电池盒包括一体成型的非薄弱区和薄弱区,所述电池盒设置有槽部,所述非薄弱区形成于所述槽部的周围,所述薄弱区形成于所述槽部的底部,所述薄弱区被配置为在所述电池单体泄放内部压力时被破坏,所述泄压机构包括所述薄弱区。
在一些实施例中,所述薄弱区的平均晶粒尺寸为S1,所述非薄弱区的平均晶粒尺寸为S2,满足:0.05≤S1/S2≤0.9。
在一些实施例中,所述薄弱区的最小厚度为A1,满足:1≤A1/S1≤100。
在一些实施例中,所述薄弱区的最小厚度为A1,所述薄弱区的硬度为B1,满足:5HBW/mm≤B1/A1≤10000HBW/mm。
在一些实施例中,所述薄弱区的硬度为B1,所述非薄弱区的硬度为B2,满足:1<B1/B2≤5。
在一些实施例中,所述薄弱区的最小厚度为A1,所述非薄弱区的最小厚度为A2,满足:0.05≤A1/A2≤0.95。
在一些实施例中,所述电极组件包括正极片和负极片,所述正极片和/或所述负极片包括集流体和活性物质层,所述集流体包括支撑层和导电层,所述支撑层用于承载所述导电层,所述导电层用于承载所述活性物质层。
在一些实施例中,沿所述支撑层的厚度方向,所述导电层设置于所述支撑层的至少一侧。
在一些实施例中,所述导电层的常温薄膜电阻RS满足:0.016Ω/□≤RS≤420Ω/□。
在一些实施例中,所述导电层的材料选自铝、铜、钛、银、镍铜合金、铝锆合金中的至少一种。
在一些实施例中,所述支撑层的材料包括高分子材料及高分子基复合材料中的一种或多种。
在一些实施例中,所述支撑层的厚度d1与所述支撑层的透光率k满足:当12μm≤d1≤30μm时,30%≤k≤80%;或者,当8μm≤d1<12μm时,40%≤k≤90%;或者,当1μm≤d1<8μm时,50%≤k≤98%。
在一些实施例中,所述电极组件包括正极片,所述正极片包括正极集流体和涂覆于所述正极集流体表面的正极活性物质层,所述正极活性物质层包括正极活性材料,所述正极活性材料具有内核及包覆所述内核的壳,所述内核包括三元材料、dLi2MnO3·(1-d)LiMO2以及LiMPO4中的至少一种,0<d<1,所述M包括选自Fe、Ni、Co、Mn中的一种或多种,所述壳含有结晶态无机物,所述结晶态无机物使用X射线衍射测量的主峰的半高全宽为0-3°,所述结晶态无机物包括选自金属氧化物以及无机盐中的一种或多种。
在一些实施例中,所述壳包括所述金属氧化物以及所述无机盐中的至少之一,以及碳。
在一些实施例中,所述电极组件包括正极片,所述正极片包括正极集流体和涂覆于所述正极集流体表面的正极活性物质层,所述正极活性物质层包括正极活性材料,所述正极活性材料具有LiMPO4,所述M包括Mn,以及非Mn元素,所述非Mn元素满足以下条件的至少之一:所述非Mn元素的离子半径为a,锰元素的离子半径为b,|a-b|/b不大于10%;所述非Mn元素的化合价变价电压为U,2V<U<5.5V;所述非Mn元素和O形成的化学键的化学活性不小于P-O键的化学活性;所述非Mn元素的最高化合价不大于6。
在一些实施例中,所述非Mn元素包括第一掺杂元素和第二掺杂元素中的一种或两种,所述第一掺杂元素为锰位掺杂,所述第二掺杂元素为磷位掺杂。
在一些实施例中,所述第一掺杂元素满足以下条件的至少之一:所述第一掺杂元素的离子半径为a,锰元素的离子半径为b,|a-b|/b不大于10%;所述第一掺杂元素的化合价变价电压为U,2V<U<5.5V。
在一些实施例中,所述第二掺杂元素满足以下条件的至少之一:所述第二掺杂元素和O形成的化学键的化学活性不小于P-O键的化学活性;所述第二掺杂元素的最高化合价不大于6。
在一些实施例中,所述正极活性材料还具有包覆层。
在一些实施例中,所述包覆层包括碳。
在一些实施例中,所述包覆层中的碳为SP2形态碳与SP3形态碳的混合物。
在一些实施例中,所述SP2形态碳与SP3形态碳的摩尔比为在0.1-10范围内的任意数值。
根据本申请第二方面实施例的用电装置,包括根据本申请上述第一方面实施例的电池,所述电池用于提供电能。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请一个实施例的用电装置的示意图;
图2是根据本申请一个实施例的电池的爆炸图;
图3是根据本申请另一个实施例的电池的爆炸图;
图4是根据本申请一个实施例的电池单体的爆炸图;
图5是图4中所示的电池单体的示意图;
图6是根据本申请另一个实施例的电池单体的排布示意图;
图7是根据本申请一个实施例的电池的爆炸图;
图8是图7中所示的电池单体的排布示意图;
图9是根据本申请一个实施例的电池单体的示意图;
图10是根据本申请一个实施例的电池的示意图;
图11是图10中所示的导热件示意图;
图12是图10中所示的导热件和多个电池单体的示意图;
图13是图10中所示的电池的另一个示意图;
图14是本申请一个实施例的电池的部分结构示意图;
图15是图14中所示的电池的另一个示意图;
图16是图14中所示的电池单体的排布示意图;
图17是根据本申请一个实施例的电池的部分结构示意图;
图18是图17中所示的电池的另一个示意图;
图19是图17中所示的电池的再一个示意图;
图20是根据本申请一个实施例的电池的部分结构的示意图;
图21是图20中所示的热管理部件的示意图;
图22是图21中所示的热管理部件的剖视图;
图23是图22中圈示的A部的放大图;
图24是根据本申请一个实施例的内部设有分隔件的加强件的剖视图;
图25是图22中圈示的B部的放大图;
图26是图22中圈示的C部的放大图;
图27是根据本申请一个实施例的加强件的剖视图;
图28是图27中圈示的D部的放大图;
图29是图27中圈示的E部的放大图;
图30是根据本申请一个实施例的电池的部分结构示意图;
图31是图30中所示的电池的局部截面图;
图32是图31中圈示的F部的放大图;
图33是根据本申请一些实施例的隔板的多种结构示意图;
图34是根据本申请一个实施例的电池的爆炸图;
图35是根据本申请一个实施例的电池的示意图
图36是图35中所示的电池单体与热管理部件连接的示意图;
图37是图36中沿A-A方向的截面图;
图38是图37中圈示的G部的放大图;
图39是根据本申请一个实施例的电池的示意图;
图40是根据本申请一个实施例的电池的爆炸图;
图41是根据本申请一个实施例的电池的爆炸图;
图42是根据本申请一个实施例的电池的示意图;
图43是图42所示的电池的另一个示意图;
图44是图42所示的电池的再一个示意图;
图45是图44中沿B-B方向的截面图;
图46是根据本申请一个实施例的电池的示意图;
图47是图46所示的加强件的示意图;
图48是图47中所示的主体板的剖视图;
图49是图47中所示的主体板的另一个剖视图;
图50是根据本申请一个实施例的主体板的剖视图;
图51是根据本申请一个实施例的主体板的剖视图;
图52是根据本申请一个实施例的加强件的示意图;
图53是根据本申请一个实施例的加强件的剖视图;
图54是图53中的加强件的另一个剖视图;
图55是根据本申请一个实施例的分隔件的剖视图;
图56是根据本申请一个实施例的加强件的剖视图;
图57是根据本申请一个实施例的分隔件的剖视图;
图58是根据本申请一个实施例的加强件的剖视图;
图59是根据本申请一个实施例的分隔件的示意图;
图60是根据本申请一个实施例的加强件的剖视图;
图61是根据本申请一个实施例的电池的剖视图;
图62是根据本申请一个实施例的电池的剖视图;
图63是根据本申请一个实施例的电池的剖视图;
图64是根据本申请一个实施例的电池的剖视图;
图65是根据本申请一个实施例的加强件的示意图;
图66是根据本申请一个实施例的加强件的剖视图;
图67是根据本申请一个实施例的加强件的剖视图;
图68是根据本申请一个实施例的加强件的剖视图;
图69是根据本申请一个实施例的加强件的剖视图;
图70是根据本申请一个实施例的加强件的剖视图;
图71是根据本申请一个实施例的可压缩腔的示意图;
图72是根据本申请一个实施例的加强件的局部示意图;
图73是图72中所示的加强件的另一个示意图;
图74是根据本申请一个实施例的加强件的示意图;
图75是根据本申请一个实施例的加强件的示意图;
图76是根据本申请一个实施例的加强件的示意图;
图77是根据本申请一个实施例的加强件的示意图;
图78是根据本申请一个实施例的加强件的示意图;
图79是根据本申请一个实施例的加强件的爆炸图;
图80是图79中所示的集流元件的示意图;
图81是根据本申请一个实施例的电池的示意图;
图82是根据本申请一个实施例的加强件的示意图;
图83是根据本申请一个实施例的加强件的示意图;
图84是图83中圈示的H部的放大图;
图85是根据本申请一个实施例的电池的示意图;
图86是根据本申请一个实施例的加强件的示意图;
图87是图86中所示的加强件另一个示意图;
图88是根据本申请一个实施例的加强件的示意图;
图89是图87中圈示的I部的放大图;
图90是图88中圈示的J部的放大图;
图91是图90中加强件的另一个示意图;
图92是根据本申请一个实施例的加强件的示意图;
图93是根据本申请一个实施例的加强件的示意图;
图94是图93中圈示的K部的放大图;
图95是根据本申请一个实施例的加强件的示意图;
图96是图95中圈示的L部的放大图;
图97是根据本申请一个实施例的加强件的局部示意图;
图98是根据本申请一个实施例的加强件的局部示意图;
图99是根据本申请一个实施例的加强件的示意图;
图100是根据本申请一个实施例的电池的示意图;
图101是图100中所示的电池的爆炸图;
图102是根据本申请一个实施例的电池的示意图;
图103是根据本申请一个实施例的加强件的示意图;
图104是根据本申请一个实施例的加强件的示意图;
图105是根据本申请一个实施例的加强件的示意图;
图106是根据本申请一个实施例的加强件的示意图;
图107是根据本申请一个实施例的电池的示意图;
图108是根据本申请一个实施例的电池的示意图;
图109是根据本申请一个实施例的电池的示意图;
图110是根据本申请一个实施例的电池单体的示意图;
图111是根据本申请一个实施例的电池的示意图;
图112是根据本申请一个实施例的电池的示意图;
图113是图112中所示的加强件的示意图;
图114是根据本申请一个实施例的加强件的示意图;
图115是图114中加强件的另一个示意图;
图116为本申请一些实施例提供的外壳的结构示意图;
图117为图116所示的外壳的C-C剖视图;
图118为图117所示的外壳的晶粒图(示意图);
图119为图117所示的外壳的E处的局部放大图;
图120为本申请另一些实施提供的外壳的局部放大图;
图121为本申请又一些实施例提供的外壳的结构示意图(示出一级刻痕槽);
图122为图121所示的外壳的E-E剖视图;
图123为本申请再一些实施例提供的外壳的结构示意图(示出一级刻痕槽);
图124为图123所示的外壳的F-F剖视图;
图125为本申请另一些实施例提供的外壳的结构示意图(示出一级刻痕槽);
图126为图125所示的外壳的G-G剖视图;
图127为本申请又一些实施例提供的外壳的结构示意图(示出两级刻痕槽);
图128为图127所示的外壳的K-K剖视图;
图129为本申请再一些实施例提供的外壳的结构示意图(示出两级刻痕槽);
图130为图129所示的外壳的M-M剖视图;
图131为本申请另一些实施例提供的外壳的结构示意图(示出两级刻痕槽);
图132为图131所示的外壳的N-N剖视图;
图133为本申请一些实施例提供的外壳的轴测图;
图134为图133所示的外壳的结构示意图(示出一级刻痕槽和一级沉槽);
图135为图134所示的外壳的O-O剖视图;
图136为本申请再一些实施例提供的外壳的结构示意图(示出一级刻痕槽和一级沉槽);
图137为图136所示的外壳的P-P剖视图;
图138为本申请另一些实施例提供的外壳的结构示意图(示出一级刻痕槽和一级沉槽);
图139为图138所示的外壳部件的Q-Q剖视图;
图140为本申请一些实施例提供的外壳的结构示意图(示出一级刻痕槽和两级沉槽);
图141为图140所示的外壳部件的R-R剖视图;
图142为本申请再一些实施例提供的外壳的结构示意图(示出一级刻痕槽和两级沉槽);
图143为图142所示的外壳的S-S剖视图;
图144为本申请另一些实施例提供的外壳部件的结构示意图(示出一级刻痕槽和两级沉槽);图145为图144所示的外壳的T-T剖视图;
图146为本申请其他实施例提供的外壳的结构示意图;
图147为本申请另一些实施例提供的外壳的晶粒图(示意图);
图148为本申请一些实施例提供的端盖的结构示意图;
图149为本申请一些实施例提供的壳体的结构示意图;
图150为本申请另一些实施例提供的壳体的结构示意图;
图151为本申请一些实施例提供的电池单体的结构示意图;
图152为本申请某一具体实施方式的正极集流体的结构示意图;
图153为本申请又一具体实施方式的正极集流体的结构示意图;
图154为本申请某一具体实施方式的负极集流体的结构示意图;
图155为本申请又一具体实施方式的负极集流体的结构示意图;
图156为本申请某一具体实施方式的正极片的结构示意图;
图157为本申请又一具体实施方式的正极片的结构示意图;
图158为本申请某一具体实施方式的负极片的结构示意图;
图159为本申请又一具体实施方式的负极片的结构示意图;
图160为本申请一次穿钉实验示意图;
图161为锂离子电池1#和锂离子电池4#在一次穿钉实验后的温度变化曲线;
图162为锂离子电池1#和锂离子电池4#在一次穿钉实验后的电压变化曲线;
图163为未掺杂的LiMnPO4和实施例2制备的正极活性材料的X射线衍射图谱(XRD)图;
图164为实施例2制备的正极活性材料的X射线能量色散谱(EDS)图;
图165为本申请所述的具有核-壳结构的正极活性材料的示意图;
图166为本申请一实施方式的具有核壳结构的正极活性材料的示意图;
图167为本申请一些实施例提供的电池的爆炸图;
图168为图167中所示的底盖、边框和加强件的示意图;
图169为图168中所示的底盖和边框的爆炸图;
图170为图168中所示的边框和加强件、底盖的局部示意图;
图171为沿图170中U-U线的剖视图;
图172为沿图170中V-V线的剖视图。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含;“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”;更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);或A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。任意下限可以与任何上限组合形成未明确记载的范围;以及任意下限可以与其它下限组合形成未明确记载的范围,同样任意上限可以与任意其它上限组合形成未明确记载的范围。此外,尽管未明确记载,但是范围端点间的每个点或单个数值都包含在该范围内。因而,每个点或单个数值可以作为自身的下限或上限与任意其它点或单个数值组合或与其它下限或上限组合形成未明确记载的范围。
例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。本申请中,“约”某个数值表示一个范围,表示该数值±10%的范围。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
需要说明的是,在本文中,术语“包覆层”、“包覆”是指包覆在磷酸锰锂等内核材料上的物质层,所述物质层可以完全或部分地包覆内核,使用“包覆层”只是为了便于描述,并不意图限制本申请。另外,每一层包覆层可以是完全包覆,也可以是部分包覆。同样地,术语“包覆层的厚度”是指包覆在内核上的所述物质层在内核径向上的厚度。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
箱体10可以包括第一部分101和第二部分102(如图2和图3所示),第一部分101与第二部分102相互盖合,第一部分101和第二部分102共同限定出用于容纳电池单体20的容纳空间。第二部分102可以是一端开口的空心结构,第一部分101为板状结构,第一部分101盖合于第二部分102的开口侧,以形成具有容纳空间的箱体;第一部分101和第二部分102也均可以是一侧开口的空心结构,第一部分101的开口侧盖合于第二部分102的开口侧,以形成具有容纳空间的箱体。当然,第一部分101和第二部分102可以是多种形状,比如,圆柱体、长方体等。
为提高第一部分101与第二部分102连接后的密封性,第一部分101与第二部分102之间也可以设置密封件,比如,密封胶、密封圈等。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。
对上述隔离膜没有特别的限制,可以选用任意公知的具有电化学稳定性和化学稳定性的多孔结构隔离膜,例如可以是玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的一种或多种的单层或多层薄膜。隔离膜的材质可以为聚丙烯(PP)或聚乙烯(PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
上述电解液包括有机溶剂和电解质盐,其中电解质盐在正负两极之间起传输离子的作用,有机溶剂作为传输离子的介质。电解质盐可以是本领域已知的用于电池单体的电解液的电解质盐,例如LiPF6(六氟磷酸锂)、LiBF4(四氟硼酸锂)、LiClO4(高氯酸锂)、LiAsF6(六氟砷酸锂)、LiFSI(双氟磺酰亚胺锂)、LiTFSI(双三氟甲磺酰亚胺锂)、LiTFS(三氟甲磺酸锂)、LiDFOB(二氟草酸硼酸锂)、LiBOB(二草酸硼酸锂)、LiPO2F2(二氟磷酸锂)、LiDFOP(二氟二草酸磷酸锂)及LiTFOP(四氟草酸磷酸锂)中的一种或多种;有机溶剂可以是本领域已知的用于电池单体的电解液的有机溶剂,例如碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸丁烯酯(BC)、氟代碳酸乙烯酯(FEC)、甲酸甲酯(MF)、乙酸甲酯(MA)、乙酸乙酯(EA)、乙酸丙酯(PA)、丙酸甲酯(MP)、丙酸乙酯(EP)、丙酸丙酯(PP)、丁酸甲酯(MB)、丁酸乙酯(EB)、1,4-丁内酯(GBL)、环丁砜(SF)、二甲砜(MSM)、甲乙砜(EMS)及二乙砜(ESE)中的一种或多种,优选为两种以上,可以根据实际需求选择合适的电解质盐和有机溶剂。
当然,电池单体还可以不包括电解液。
为了满足不同的电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。可选地,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块或电池组,电池模块再组成电池。电池再进一步设置于用电装置中,为用电装置提供电能。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率、安全性等。其中,在电池内部空间一定的情况下,提升电池内部空间的利用率,是提升电池能量密度的有效手段。然而,在提升电池内部空间的利用率的同时,还需要考虑电池的其他参数,例如热传导或热管理等,而且提升电池内部空间利用率时,有可能会降低电池的结构强度,例如,在电池的箱体内部通常会设置用于挂载电池模块的梁,另外,电池中的电池模块也会设置侧板和端板。上述梁、侧板和端板在实现电池的固定的同时,也占用了电池的内部空间。但是,若不设置梁、侧板和端板,则会导致电池的结构强度不足,影响电池的性能。
在电池充放电过程中,会产生大量的热量,尤其是在快充的过程中,电池单体会产生大量的热量,这些热量不断累积、叠加,使得电池温度急剧升高。当电池单体的热量不能及时散发出去时,就可能会导致电池的热失控,出现冒烟、起火和爆炸等安全事故。同时,长期的严重的温度不均匀会极大降低电池的使用寿命。另外,当温度很低时,电池的放电效率很低,甚至在低温下难以启动,影响电池的正常使用。因此,如何保证电池对热管理的需求至关重要。
鉴于此,本申请实施例提供了一种技术方案,在本申请实施例中,在电池中设置至少两个电池单体容纳于箱体的容纳腔内,并设置加强件与至少两个电池单体相连,且加强件与至少两个电池单体的第一壁导热连接,以使加强件用于传导电池单体的热量。这样,电池的箱体中部可以不需要再设置梁等结构,电池内可以不再设置侧板,可以较大限度地提升电池内部的空间利用率,从而提升电池的能量密度;同时,利用上述加强件还可以保障电池中的热传导。因此,本申请实施例的技术方案能够在提升电池的能量密度的同时保障电池中的热传导,从而能够提升电池的性能。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的装置,还可以适用于所有使用电池的装置,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1000的结构示意图,车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部可以设置马达101、控制器102以及电池100,控制器102用来控制电池100为马达101的供电。例如,在车辆1000的底部或车头或车尾可以设置电池100。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源,用于车辆1000的电路系统,例如,用于车辆1000的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池100不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,替代或部分地替代燃油或天然气为车辆1000提供驱动动力。
为了满足不同的使用电力需求,电池100可以包括一个或多个电池单体20。例如,如图2和图3所示,为本申请一个实施例的一种电池100的结构示意图,电池100可以包括多个电池单体20。电池100还可以包括箱体10,箱体10内部为中空结构,多个电池单体20容纳于箱体10内。例如,多个电池单体20相互并联或串联或混联组合后置于箱体10内。
可选地,电池100还可以包括其他结构,在此不再一一赘述。例如,该电池100还可以包括汇流部件(图未示出),汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体而引出。可选地,导电机构也可属于汇流部件。
根据不同的电力需求,电池单体20的数量可以设置为任意数值,例如电池单体20可以为一个。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池100中包括的电池单体20的数量可能较多,为了便于安装,可以将电池单体20分组设置,每组电池单体20组成电池模块。电池模块中包括的电池单体20的数量不限,可以根据需求设置。电池可以包括多个电池模块,这些电池模块可通过串联、并联或混联的方式进行连接。
如图4所示,为本申请一个实施例的一种电池单体20的结构示意图,电池单体20包括一个或多个电极组件22、壳体211和盖板212。壳体211和盖板212形成电池单体20的外壳或电池盒21。壳体211的壁以及盖板212均称为电池单体20的壁,其中对于长方体型电池单体20,壳体211的壁包括底壁和四个侧壁。壳体211根据一个或多个电极组件22组合后的形状而定,例如,壳体211可以为中空的长方体或正方体或圆柱体,且壳体211的其中一个面具有开口以便一个或多个电极组件22可以放置于壳体211内,盖板212盖合于壳体211的开口处以将电池单体20内部环境隔绝于外部环境。例如,当壳体211为中空的长方体或正方体时,壳体211的其中一个平面为开口面,即该平面不具有壁体而使得壳体211内外相通。当壳体211可以为中空的圆柱体时,壳体211的端面为开口面,即该端面不具有壁体而使得壳体211内外相通。盖板212覆盖开口并且与壳体211连接,以形成放置电极组件22的封闭的腔体。壳体211内填充有电解质,例如电解液。
该电池单体20还可以包括两个电极端子214,两个电极端子214可以设置在盖板212上。盖板212通常是平板形状,两个电极端子214固定在盖板212的平板面上,两个电极端子214分别为正电极端子214a和负电极端子214b。每个电极端子214各对应设置一个连接构件23,或者也可以称为集流构件,其位于盖板212与电极组件22之间,用于将电极组件22和电极端子214实现电连接。
如图4所示,每个电极组件22具有第一极耳221a和第二极耳222a。第一极耳221a和第二极耳222a的极性相反。例如,当第一极耳221a为正极极耳时,第二极耳222a为负极极耳。一个或多个电极组件22的第一极耳221a通过一个连接构件23与一个电极端子连接,一个或多个电极组件22的第二极耳222a通过另一个连接构件23与另一个电极端子连接。例如,正电极端子214a通过一个连接构件23与正极极耳连接,负电极端子214b通过另一个连接构件23与负极极耳连接。
在该电池单体20中,根据实际使用需求,电极组件22可设置为单个,或多个,如图4所示,电池单体20内设置有4个独立的电极组件22。
电池单体20上还可设置泄压机构213。泄压机构213用于电池单体20的内部压力或温度达到阈值时致动以泄放内部压力或温度。
泄压机构213可以为各种可能的泄压结构,本申请实施例对此并不限定。例如,泄压机构213可以为温敏泄压机构,温敏泄压机构被配置为在设有泄压机构213的电池单体20的内部温度达到阈值时能够熔化;和/或,泄压机构213可以为压敏泄压机构,压敏泄压机构被配置为在设有泄压机构213的电池单体20的内部气压达到阈值时能够破裂。
图10示出了本申请一个实施例的电池100的结构示意图。
如图10所示,电池100包括箱体10、至少两个电池单体20和加强件30,箱体10具有容纳腔10a,上述至少两个电池单体20容纳于容纳腔10a内,每个电池单体20包括电极组件22和电极端子214,电极组件22与电极端子214电连接,以使电池单体20用于提供电能;且电池单体20包括第一壁201,第一壁201为电池单体20中面积最大的壁,则第一壁201可以理解为电池单体20的“大面”,加强件30与至少两个电池单体20相连,且加强件30与至少两个电池单体20的第一壁201导热连接。
可见,每个电池单体20均与加强件30相连,通过加强件30可以将上述至少两个电池单体20连接成整体,这种情况下,电池100内可以不再设置侧板,也可以不需要再设置梁等结构,可以较大限度地提升电池100内部的空间利用率,提高电池100的能量密度。而且,电池单体20的大面第一壁201与加强件30导热连接,使得加强件30与上述至少两个电池单体20之间存在热交换,且加强件30与电池单体20之间的换热面积较大,以有效利用加强件30传导上述至少两个电池单体20的热量,可以保证电池单体20的温度处于正常状态,提升电池单体20的使用寿命以及安全性能;当某一个电池单体20出现热失控时,热失控电池单体20产生的热量会被与其换热的加强件30带走,降低热失控电池单体20温度,避免相邻电池单体20也出现热失控问题,从而保证了电池单体20的安全性能。
例如,当电池单体20的温度过高时,加强件30可以冷却电池单体20,以降低电池单体20的温度。当电池单体20的温度过低时,加强件30可以加热电池单体20,以提高电池单体20的温度。
示例性的,电池100的电池单体20为多个,多个电池单体20沿第二方向y排列,即第二方向y为电池100中的一列电池单体20的多个电池单体20的排列方向。也就是说,电池100中的一列电池单体20沿第二方向y排列,电池100具有至少一列电池单体20。一列电池单体20中电池单体20的数量可以为2-20,但本申请实施例对此并不限定;加强件30沿第二方向y延伸,加强件30与多个电池单体20中的每个分别相连,且加强件30与多个电池单体20中的每个电池单体20的第一壁201导热连接,则电池单体20的第一壁201可以面向加强件30,即电池单体20的第一壁201可以平行于第二方向y。
可选地,加强件30与第一壁201固定连接,以实现加强件20与电池单体20的相连,且便于保证电池单体20与加强件30之间的可靠连接;当然,加强件30还可以与电池单体20的其他壁固定连接,而不限于第一壁201。
可选地,第一壁201与加强件30直接抵靠,以实现电池单体20和加强件30之间的热量传递;或者第一壁201与加强件30间接抵靠,例如第一壁201通过导热件例如导热胶等抵接于加强件30,同样可以实现电池单体20和加强件30的热量传递。显然,加强件30与第一壁201导热连接,是指第一壁201与加强件30之间能进行换热,保证加强件30对电池单体20的热管理能力。
在一些实施例中,如图4-图6所示,每个电池单体20还包括与第一壁201相连的第二壁202,第一壁201与第二壁202相交设置,则第一壁201和第二壁202不平行,且第一壁201和第二壁202具有一条公共线;其中,电极端子214设置于第二壁202,则电极端子214设于电池单体20的除第一壁201以外的、且与第一壁201相交的壁上,以便于电极端子214的设置,同时便于实现电极端子214和加强件30的避让,使得加强件30上可以无需设置避让电极端子214的避让部,有利于简化加强件30的结构。
例如,在图4和图5的示例中,电池单体20大致形成为长方体结构,且电池单体20的长度大于的电池单体20的宽度和电池单体20的高度,第一壁201位于电池单体20在第一方向x上的一侧,且电池单体20在第二方向y上的两侧中的至少一侧具有第二壁202,电池单体20在第三方向z上的两侧中的至少一侧具有第二壁202,电极端子214可以设于电池单体20的在第三方向z上的第二壁202;当然,如图6所示,电极端子214还可以设于电池单体20的在第二方向y上的第二壁202。
可选地,在图6的示例中,电池单体20可以为刀片电池,电池单体20的长度>电池单体20的宽度>电池单体20的高度,电池单体20在第二方向y上的长度>电池单体20在第三方向z上的宽度>电池单体20在第一方向x上的高度,第一壁201位于电池单体20的高度方向上的一端,电极端子214设于第二壁202,则电极端子214可以位于电池单体20长度方向上的一端或两端、和/或、电极端子214位于电池单体20宽度方向上的一端或两端。
当然,本申请中,电极端子214的设置位置不限于此。如图7和图8所示,电极端子214还可以设于第一壁201,同样便于电极端子214的布置;例如电池单体20为One-Stop电池单体。可见,本申请实施例中的电池100,电极端子的设置位置具有良好的灵活性。
在一些实施例中,如图8所示,电机端子214设于第一壁201,至少两个电池单体20在第一方向x排布设置,在第一方向x上,每个电池单体20设有与第一壁201相对设置的第一表面203,第一表面203设有避让槽203a,相邻的两个电池单体20中的其中一个电池单体20的避让槽203a用于容纳另一个电池单体20的电极端子214,第一方向x垂直于第一壁201,以便于实现多个电池单体20在第一方向上紧凑排布,节省占用空间。
在一些实施例中,如图4-图6所示,电极端子214设于第二壁202,每个电池单体20包括相对设置的两个第一壁201和相对设置的两个第二壁202,电极端子214设置为至少两个,多个电极端子214包括正极电极端子214a和负极电极端子214b。
其中,至少两个电极端子214设置于同一个第二壁202,以在保证相邻电极端子214具有合适间距的前提下,有利于节省电池单体20的占用空间;或者,每个第二壁202设置有至少一个电极端子214,以使位于不同第二壁202上的电极端子214具有足够的间距。
例如,在图4和图5的示例中,电池单体20包括沿第一方向x相对设置的两个第一壁201和沿第三方向z相对设置的两个第二壁202,第三方向z与第一方向x不平行,例如第三方向z与第一方向x垂直;多个电极端子214均位于电池单体20在第三方向z上的同一个第二壁202。
当然,对于长方体形状的电池单体20,电池单体20还可以包括沿第二方向y相对设置的两个第二壁202,第二方向y与第一方向x不平行,例如第二方向y与第一方向x垂直;多个电极端子214均位于电池单体20在第二方向y上的同一个第二壁202。
无论多个电极端子214位于电池单体20在第二方向y上的一侧,还是位于电池单体20在第三方向z上的一侧,当电池单体20为多个、且多个电池单体20沿第二方向y依次布置时,在第二方向y上,相邻的两个电池单体20的第二壁202相对。
需要说明的是,本申请中,第一壁201可以为平面或曲面,第二壁202为平面或曲面。
在一些实施例中,如图9所示,第一壁201形成为圆筒状;此时电池单体20可以大致为圆柱电池单体。
在一些实施例中,如图9所示,第一壁201的轴向两端均设有第二壁202,至少一个第二壁202设有电极端子214,则电池单体20的所有电极端子214均设于其中一个第二壁202上,或者,电池单体20的至少一个电极端子214设于其中一个第二壁202上,且电池单体20的其余电极端子214设于另一个第二壁202上。由此,便于实现电极端子214的灵活布置。
在一些实施例中,如图9所示,其中一个第二壁202设有外露的电极端子214,电极组件22包括正极片221和负极片222,正极片221和负极片222中的其中一个与电极端子214电连接,正极片221和负极片222中的另一个与第一壁201电连接,以便实现电池单体20的正常供电。
当然,正极片221和负极片222中的上述另一个还可以与另一个第二壁202电连接,也就是说,设有外露的电极端子214的第二壁202跟与正极片221和负极片222中的上述另一个电连接的第二壁202并非同一个壁,同样便于实现电池单体20的正常供电。
在一些实施例中,至少一个电池单体20为软包电池单体,则电池100包括一个电池单体20时,该电池单体20为软包电池单体;电池100包括多个电池单体20时,多个电池单体20中的至少一个为软包电池单体。由此,便于丰富电池100的种类、结构以及电池单体20的布局等,从而有利于使得电池100满足实际差异化需求。
在一些实施例中,如图4和图5所示,电池单体20还包括泄压机构213,泄压机构213与电极端子214设置于电池单体20的同一个壁,例如泄压机构213与电极端子214均设于第二壁202。
当然,在本申请其他实施例中,电池单体20还包括泄压机构213,泄压机构213与电极端子214分别设置于电池单体20的两个壁。
由此,泄压机构213相对于电极端子214的位置具有一定的灵活性。
在一些实施例中,加强件30通过第一胶层粘接至至少两个电池单体20的第一壁201,使得加强件30与第一壁201粘接,以实现加强件30与电池单体20的可靠、稳定连接,以保证电池100整体具有一定的刚度及强度,同时,降低耗材以及总体重量,利于实现电池100的轻量化设计,且结构简单,使得结构更加紧凑,便于加工和组装。
可选地,第一胶层可以包括导热结构胶,不仅粘接效果好,还具有导热功能、耐老化、耐疲劳、耐腐蚀等特性,能够提高电池单体20与加强件30的连接强度以及热管理效率,使电池单体20与加强件30之间热量传递的更加迅速。当然,第一胶层还包括双面胶等。
应理解,加强件30与第一壁201还可以通过其他方式连接,例如,铆接、焊接等,本申请对此不做限定。
在一些实施例中,加强件30的底部通过第二胶层粘接至容纳腔10a的底壁,使得加强件30的底部与容纳腔10a的底壁粘接,以实现加强件30与容纳腔10a的底壁的固定连接,结构简单,便于加工和组装;此时,加强件30与第一壁201和容纳腔10a的底壁分别粘接固定,以保证加强件30的可靠设置。
在一些实施例中,电池单体20的底部通过第三胶层粘接至容纳腔10a的底壁,使得电池单体20的底部与容纳腔10a的底壁粘接,以实现电池单体20与容纳腔10a的底壁的固定连接,结构简单,便于加工和组装;此时,加强件30与第一壁201粘接固定,且电池单体20与容纳腔10a的底壁粘接固定,则加强件30通过电池单体20与容纳腔10a的底壁间接固定连接。
在一些实施例中,加强件30的底部通过第二胶层粘接至容纳腔10a的底壁,电池单体20的底部通过第三胶层粘接至容纳腔10a的底壁。
在一些实施例中,电池单体20的热量的至少部分可以通过第一胶层传递至加强件30,第一胶层的厚度小于或等于第二胶层的厚度,以便在保证电池单体20与加强件30连接可靠、加强件30与容纳腔10a底壁连接可靠的前提下,有利于减小电池单体20和加强件30之间的传热热阻,保证电池单体20和加强件30之间的传热效率。
在一些实施例中,第一胶层的厚度小于或等于第三胶层的厚度,以在保证电池单体20与加强件30和容纳腔10a底壁分别连接可靠的前提下,同样有利于减小电池单体20和加强件30之间的传热热阻,保证电池单体20和加强件30之间的传热效率。
在一些实施例中,第一胶层的厚度小于或等于第二胶层的厚度,且第一胶层的厚度小于或等于第三胶层的厚度,则第一胶层的厚度、第二胶层的厚度和第三胶层的厚度设置合理,以便保证对胶的合理分配利用,实现电池单体20和加强件30在容纳腔10a内的可靠设置。
在一些实施例中,第一胶层的导热系数大于或等于第二胶层的导热系数,而电池单体20的热量的至少部分可以通过第一胶层传递至加强件30,以便在保证电池单体20与加强件30连接可靠、加强件30与容纳腔10a底壁连接可靠的前提下,有利于减小电池单体20和加强件30之间的传热热阻,保证电池单体20和加强件30之间的传热效率。
在一些实施例中,第一胶层的导热系数大于或等于第三胶层的导热系数,以在保证电池单体20与加强件30和容纳腔10a底壁分别连接可靠的前提下,同样有利于减小电池单体20和加强件30之间的传热热阻,保证电池单体20和加强件3之间的传热效率。
当然,电池单体20的部分热量也可以通过第三胶层传递至容纳腔10a的底壁进行散发。
在一些实施例中,第一胶层的导热系数大于或等于第二胶层的导热系数,且第一胶层的导热系数大于或等于第二胶层的导热系数,以便实现对胶的合理分配利用,保证电池单体20和加强件30的稳定设置,同时保证电池单体20热量的快速散发。
在一些实施例中,第一胶层的厚度与第一胶层的导热系数之间的比值为第一比值,第二胶层的厚度与第二胶层的导热系数之间的比值为第二比值,第三胶层的厚度与第三胶层的导热系数之间的比值为第三比值。
其中,第一比值小于或等于第二比值;和/或,第一比值小于或等于第三比值。由此,在保证电池单体20换热效果的前提下,有效合理利用胶体,便于实现胶体的合理分配。
在一些实施例中,第一胶层的材料和第二胶层的材料不同;或者,第一胶层的材料和第三胶层的材料不同;或者,第一胶层的材料与第二胶层的材料和第三胶层的材料分别不同。
在一些实施例中,电池100包括多个电池模块100a,电池模块100a包括至少一列电池组20A和至少一个加强件30,电池组20A包括一列沿第二方向y排列的多个电池单体20,电池组20A的每个电池单体20的第一壁201分别与加强件30固定且导热连接。电池组20A和加强件30可以分别为多个,多个电池组20A和多个加强件30沿第一方向x上交替设置,第一方向垂直于第一壁201。
可选地,电池模块100a包括N组电池组20A和N-1个加强件30,加强件30设置于相邻的两组电池组20A之间,N为大于1的整数;以N为2为示例说明,多个电池模块100a沿第一方向x排列,相邻的电池模块100a间具有间隙。当然,加强件30还可以设于电池组20A和箱体10的内壁之间。
在一些实施例中,沿第二方向y排列的一列电池单体20可以只有第一方向x上的一侧与加强件30连接,也可以第一方向x上的两侧均与加强件30连接,本申请实施例对此不作限制。
在一些实施例中,加强件30为导热件3a,导热件3a用于与电池单体20换热,以便于保证加强件30的导热效率,保证电池单体20具有合适的温度。当然,加强件30也可以为热管理部件3b,热管理部件3b也用于与电池单体20换热,以使电池单体20具有合适的温度。
可以理解的是,本申请中,导热件3a也可称为热管理部件3b;当然,导热件3a也可以称为后文所述的具有导热与电池单体20换热功能的隔板33。
在一些实施例中,导热件3a包括金属材料和/或非金属材料,使得导热件3a具有灵活的选材设置,便于使得导热件3a除了具有良好的导热能力外,还可以具有其他良好的性能,以便更好地满足实际差异化需求。
在一些实施例中,如图10-图13所示,导热件3a包括金属板31和绝缘层32,绝缘层32设置在金属板31的表面。通过这种设置,金属板31可以保证导热件3a的强度,绝缘层32可以使得导热件3a的与第一壁201连接的表面为绝缘表面,避免金属板31与电池单体20的电连接,以保证电池100中的电绝缘。
可选地,绝缘层32可以为粘接在金属板31表面的绝缘膜或者涂覆在金属板31表面的绝缘漆。
在一些实施例中,导热件3a为非金属材料板;也就是说,导热件3a整体为非金属的绝缘材料。当然,在其实施例中,导热件3a的一部分为非金属材料。
在一些实施例中,如图12所示,导热件3a内设置有空腔30a。空腔30a可以在保证导热件3a的强度的同时减轻导热件3a的重量,例如,可应用于导热件3a的厚度较大的情况。另外,空腔30a可以使得导热件3a在垂直于第一壁201的方向(例如第一方向x)上有较大的压缩空间,从而可以给电池单体20提供较大的膨胀空间。
可选地,空腔30a可以用于容纳流体以给至少两个电池单体20调节温度。
流体为换热介质,可以是液体或气体,调节温度是指给一个或多个电池单体20加热或者冷却。在给电池单体20降温的情况下,空腔30a可以容纳冷却介质以给一个或多个电池单体20调节温度,此时,流体也可以称为冷却介质或冷却流体,更具体地,可以称为冷却液或冷却气体。另外,流体也可以用于加热,本申请实施例对此并不限定。可选地,流体可以是循环流动的,以达到更好的温度调节的效果。可选地,流体可以为水、水和乙二醇的混合液、导热油、制冷剂或者空气等。
在一些实施例中,如图14、图15和图30所示,电池单体20为多个,且多个电池单体20沿第二方向y排列;加强件30包括隔板33,隔板33沿第二方向y延伸,且隔板33与多个电池单体20中的每个电池单体20的第一壁201连接,第二方向y平行于第一壁201。
由此,将多个电池单体20中的每个电池单体20的表面积最大的第一壁201都与隔板33连接,通过隔板33将多个电池单体20连接成整体,则电池100内可以不再设置侧板,也可以不需要再设置梁等结构,可以较大限度地提升电池100内部的空间利用率,提高电池100的能量密度。
随着电池的使用,电池单体表面的蓝膜容易破损,在蓝膜破损的情况下,相邻的电池单体之间以及电池单体和箱体之间发生绝缘失效,电池短路的风险增大。且为了调节电池单体的温度,且相邻的电池单体之间设置有水冷板或加热板,水冷板或加热板的表面无绝缘防护,在电池内部的水蒸气容易液化在水冷板或加热板的表面,在蓝膜破损的情况下,电池短路风险进一步增大。
基于上述考虑,为了缓解因蓝膜破损而导致电池短路的问题,发明人经过深入研究,设置加强件30还包括绝缘层32,绝缘层32用于绝缘隔离电池单体20的第一壁201和隔板33。
绝缘层32设置于隔板33的表面,不容易受电池单体外形膨胀或自发热的原因造成损坏,在电池单体的表面未设置绝缘结构或者电池单体的表面蓝膜破损情况下,当电池单体内部的水蒸气液化在隔板的表面时,设置于隔板33表面的绝缘层32能够在电池单体20和隔板33之间起到绝缘作用,有利于缓解电池100因电池单体20蓝膜破损或水蒸气液化于隔板33表面导致电池100短路的问题,降低电池100短路的风险,提升用电装置的用电安全。
其中,绝缘层32连接于隔板33的表面,以使绝缘层32能够覆盖隔板33的部分表面或全部表面。
在一些实施例中,隔板33为热管理部件3b,热管理部件3b用于与电池单体20热交换。热管理部件3b是和电池单体20进行热交换的结构,比如发热电阻丝、通有热交换介质的导热件以及根据所处的环境变化能够发生化学反应而产生温度变化的一些材料。通过热管理部件3b自身的温度变化从而实现和电池单体20热交换。这种情况下,若是热管理部件3b的温度低于电池单体20的温度,热管理部件3b可以对电池单体20降温,避免电池单体20温度过高出现热失控;若是热管理部件3b的温度高于电池单体20的温度,热管理部件3b可以对电池单体20加热,以保证电池100能够正常工作。
热管理部件3b也可以是能够容纳流体介质的结构,通过热管理部件3b和绝缘层32在电池单体20和流体介质之间传递热量,从而实现电池单体20和流体介质之间热交换。流体介质可以是液体(如,水)、气体(如,空气)。这种情况下,若是容纳在热管理部件3b内部的流体介质的温度低于电池单体20的温度,热管理部件3b可以对电池单体20降温,避免电池单体20温度过高出现热失控;若是容纳在热管理部件3b内部的流体介质的温度高于电池单体20的温度,热管理部件3b可以对电池单体20加热,以保证电池100能够正常工作。
可选地,热管理部件3b可以设置于电池单体20的一侧并位于电池单体20和箱体10之间、也可以设于相邻两个电池单体20之间。
在一些实施例中,绝缘层32可以只绝缘隔离电池单体20和隔板33。在另一些实施例中,绝缘层32既可以绝缘隔离电池单体20和隔板33,也可以绝缘隔离隔板33和箱体10的内壁,进一步降低电池100短路的风险,从而进一步提高电池100的安全。
例如,多个电池单体20沿第一方向x堆叠布置,相邻的两个电池单体20之间可以设置隔板33,隔板33的相对两侧分别设有绝缘层32,使得相邻的两个电池单体20中的每个电池单体20与隔板33之间通过绝缘层32进行绝缘隔离。
又例如,沿多个电池单体20的堆叠方向,位于最端部的两个电池单体20和箱体10的内壁之间也可以设置隔板33,连接在该隔板33上的绝缘层32可以只绝缘隔离电池单体20和隔板33;当然,连接在该隔板33上的绝缘层32既可以绝缘隔离电池单体20和隔板33,也可以绝缘隔离隔板33和箱体10的内壁,进一步降低电池100短路的风险,从而进一步提高电池100的安全。
在一些实施例中,绝缘层32的导热系数λ大于或等于0.1W/(m·K),则绝缘层32具有较好的导热性能,以便于绝缘层32能够起到传递热量的作用,使得电池单体20和隔板33之间具有较好的热传导能力,从而提高电池单体20和隔板33之间的换热效率;例如隔板33为热管理部件3b时,便于有效保证电池单体20具有合适的温度。
导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时,通过1平方米面积传递的热量,单位为瓦/米·度(W/(m·K),此处为K可用℃代替)。
在一些实施例中,绝缘层32的密度G≤1.5g/cm3
在隔板33的表面设置有绝缘层32,会增加电池100的重量。绝缘层32的密度越小,绝缘层32的质量越小,绝缘层32的密度越大,绝缘层32的质量越大。绝缘层32的密度G≤1.5g/cm3,使得绝缘层32的重量较小,从而使得电池100的重量较小,降低绝缘层32的设置对电池100的重量的影响,有利于电池100的轻量化。
在一些实施例中,绝缘层32的压缩强度P满足0.01Mpa≤P≤200Mpa,可以使得绝缘层32具有一定的弹性,可以使得绝缘层32能够在电池单体20膨胀变形时通过自身的形变以降低对电池100整体的影响,或者,具有弹性的绝缘层32还能够在电池100经受冲击时通过自身的形变起缓冲作用,对电池单体20起一定的防护作用,提高电池100的安全性。
压缩强度是指,在压缩试验中,试样直至破裂或产生屈服时所承受的最大压缩应力。
绝缘层32的材质有多种选择,比如,在一些实施例中,绝缘层32的材质包括聚对苯二甲酸乙二醇酯、聚酰亚胺、聚碳酸酯中的至少一种。
绝缘层32的材质可以只包括聚对苯二甲酸乙二醇酯、聚酰亚胺、聚碳酸酯中的一种。在另一些实施例中,绝缘层32的材质可以包括聚对苯二甲酸乙二醇酯、聚酰亚胺、聚碳酸酯中的两种或者三种。比如绝缘层32包括层叠设置的第一绝缘部和第二绝缘部,第一绝缘部的材质为聚对苯二甲酸乙二醇酯,第二绝缘部的材质为聚酰亚胺,或者第一绝缘部的材质为聚酰亚胺,第二绝缘部的材质为聚碳酸酯,或者第一绝缘部的材质为聚对苯二甲酸乙二醇酯,第二绝缘部的材质为聚碳酸酯。在又一些实施例中,绝缘层32包括层叠设置的第一绝缘部、第二绝缘部和第三绝缘部,第一绝缘部的材质为聚对苯二甲酸乙二醇酯,第二绝缘部的材质为聚酰亚胺,第三绝缘部的材质为聚碳酸酯。
聚对苯二甲酸乙二醇酯、聚酰亚胺、聚碳酸酯具有抗冲击强度好、耐热老化性能好等优点。因此,绝缘层32的材质包括聚对苯二甲酸乙二醇酯、聚酰亚胺、聚碳酸酯中的至少一种,绝缘层32具有抗冲击强度好、耐热老化性能好等优点。此外,聚对苯二甲酸乙二醇酯导热系数一般为0.24W/m·K、聚酰亚胺导热系数一般为0.1-0.5W/m·K,聚碳酸酯导热系数一般为0.16-0.25W/m·K,因此,三种材质均具有较好的导热能力,采用三种材质中的至少一种形成绝缘层32,则绝缘层32具有较好的导热性能,提高电池单体20和隔板33之间的换热性能和换热效率。
将绝缘层32连接于隔板33的方式有很多,比如,在一些实施例中,绝缘层32为涂设于隔板33的表面的涂层。即,绝缘层32以涂覆的方式连接隔板33。这种情况下,绝缘层32可以与电池单体20连接,也可以不与电池单体20连接。绝缘层32为涂设于隔板33的表面的涂层,能够使得绝缘层32与隔板33贴合的更紧密,从而提高绝缘层32与隔板33的连接稳定性,降低绝缘层32从隔板33脱落的风险。
再比如,在另一些实施例中,绝缘层32与隔板33通过粘接层连接。粘接层可以是设置在绝缘层32和/或隔板33上的胶层。粘接层粘接隔板33和绝缘层32后,粘接层位于隔板33和绝缘层32之间。这种情况下,绝缘层32可以通过另一个粘接层与电池单体20连接,也可以不与电池单体20连接。通过粘接层连接绝缘层32和隔板33,连接方式简单方便。
再比如,在另一些实施例中,绝缘层32灌封于隔板33与电池单体20之间。灌封就是将液态复合物用机械或手工方式灌入器件内,在常温或加热条件下固化成为性能优异的热固性高分子绝缘材料的工艺。通过灌封的方式在隔板33和电池单体20之间设置绝缘层32,能够强化电池单体20、绝缘层32和隔板33形成的整体结构的整体性,提高抵抗外部冲击和震动的能力。
在一些实施例中,如图14所示,隔板33在第一方向x上的尺寸T1小于0.5mm,第一方向x垂直于第一壁201。这样可以避免隔板33在第一方向x上的尺寸过大而占用过多电池100内部的空间,进一步提升电池100内部的空间利用率,从而提升电池100的能量密度。
在一些实施例中,隔板33在第一方向x上的尺寸T1不小于0.05mm。这样可以避免因隔板33在第一方向x上的尺寸过小,即隔板33的厚度较小,隔板33的刚度较小而无法满足电池100的强度需求。
在一些实施例中,如图14的(c)所示,隔板33的表面设置有绝缘层32,避免隔板33与电池单体20的电连接,提高电池100的安全性。可选地,绝缘层32可以为粘接在隔板33表面的绝缘膜或者涂覆在隔板33表面的绝缘漆。
在一些实施例中,绝缘层32在第一方向x上的尺寸T2满足:0.01mm≤T2≤0.3mm。
当绝缘层32在第一方向x上的尺寸T2过小时,绝缘层32无法有效避免电池单体20和隔板33的电连接,电池100会出现绝缘不良的情况,存在安全隐患,当绝缘层22在第一方向x上的尺寸T2过大时,会过多占用电池100内部的空间,不利于提高电池100的能量密度,因此设置T2的值为0.01mm~0.3mm,这样既可以提高电池100的能量密度,又可以保证电池100的安全性。
在本申请实施例中,电池100的电压E与绝缘层32在第一方向x上的尺寸T2满足:0.01×10-3mm/V≤T2/E≤3×10-3mm/V。
绝缘层32的绝缘效果不仅与绝缘层32的厚度有关,还与单位电压对应的绝缘层32厚度有关,当T2/E过小,即单位电压的绝缘层32在第一方向x上的尺寸T2过小时,绝缘层32无法有效避免电池单体20和隔板33的电连接,电池100会出现绝缘不良的情况,存在安全隐患,当T2/E过大,即单位电压的绝缘层32在第一方向x上的尺寸T2过大时,会过多占用电池100内部的空间,不利于提高电池100的能量密度,因此设置T2/E的值为0.01×10-3~3×10-3mm/V,这样既可以提高电池100的能量密度,又可以保证电池100的安全性。
在一些实施例中,隔板33的与多个电池单体20的第一壁201连接的表面的面积S1与多个电池单体20的与隔板33的同一侧连接的第一壁201的总面积S2满足:0.25≤S1/S2≤4,其中,S1=H1*L1,S2=H2*L2。如图15所示,H1为隔板33在第三方向z上的尺寸,L1为隔板33在第二方向y上的尺寸,H2为单个电池单体20在第三方向z上的尺寸,L2为多个电池单体20在第二方向y上的尺寸的总和。
当S1/S2的值过小,即隔板33的与多个电池单体20的第一壁201连接的表面的面积S1远小于多个电池单体20的与隔板33的同一侧连接的第一壁201的总面积S2时,第一壁201与隔板33的接触面积过小,无法满足电池100的强度需求;当S1/S2的值过大,即隔板33的与第一壁201连接的表面的面积S1远大于多个电池单体20的与隔板33的同一侧连接的第一壁201的总面积S2时,相较于电池单体20,隔板33占用电池100内部的空间过多,不利于提高电池100的能量密度;因此设置S1/S2的20值为0.25~4,这样既可以提高电池100的能量密度,又可以提升电池100的强度。
在一些实施例中,如图15所示,在第三方向z上,隔板33的尺寸H1与电池单体20的第一壁201的尺寸H2满足:0.2≤H1/H2≤2,该第三方向z垂直于第一方向x和第二方向y。
当H1/H2过小,即在第三方向z上,隔板33的尺寸H1远小于电池单体20的第一壁201的尺寸H2时,第一壁201与隔板33的接触面积过小,无法满足电池100的强度需求;当H1/H2过大,即在第三方向z上,隔板33的尺寸H1远大于电池单体20的第一壁201的尺寸H2时,相较于电池单体20,隔板33占用电池100内部的空间过多,不利于提高电池100的能量密度,因此设置H1/H2的值为0.2~2,这样既可以提高电池100的能量密度,又可以提升电池100的强度。
在一些实施例中,如图15所示,在第二方向y上,隔板33的尺寸L1与多个电池单体20的尺寸L2满足:0.5≤L1/L2≤2。
当L1/L2过小,即在第二方向y上,隔板33的尺寸L1远小于电池单体20的第一壁201的尺寸L2时,第一壁201与隔板33的接触面积过小,无法满足电池100的强度需求;当H1/H2过大,即在第二方向y上,隔板33的尺寸H1远大于电池单体20的第一壁201的尺寸L2时,相较于电池单体20,隔板33占用电池100内部的空间过多,不利于提高电池100的能量密度,因此设置L1/L2的值为0.5~2,这样既可以提高电池100的能量密度,又可以提升电池100的强度。
可选地,隔板33在第二方向y上的端部设置有固定结构103,该固定结构103与隔板33在第二方向y上的端部的固定件104连接,固定隔板33。
采用附图14中示出的电池单体20和隔板33,在GB38031-2020《电动汽车用动力蓄电池安全要求》标准下进行隔板抗振动冲击测试,测试结果如表1所示。表1中T1为隔板在第一方向x上的尺寸,H1为隔板在第三方向z上的尺寸,L1为隔板在第二方向y上尺寸,H2为单个电池单体在第三方向z上的尺寸,L2为多个电池单体在第二方向y上的尺寸的总和,S1=H1*L1,S2=H2*L2。
表1
Figure BDA0004035636100000261
采用附图14和图15中示出的电池单体20和隔板33,参考IEC60664-1,在绝缘测试施加1000VDC,绝缘阻值≥500MΩ;耐压测试施加2700VDC并持续60S,漏电流≤1mA条件下对隔板的绝缘耐压能力进行测试,测试结果如表2所示。表2中T2为绝缘层在第一方向x上的尺寸,E为电池电压。
表2
Figure BDA0004035636100000262
/>
Figure BDA0004035636100000271
在一些实施例中,如图30和图31所示,隔板33在第一方向x上的尺寸T1大于5mm,第一方向垂直于第一壁201,以保证隔板33具有良好的使用可靠性。
例如,如图30所示,电池10包括沿第二方向Y排列的多个电池单体20和隔板33,隔板33沿第二方向Y延伸且与多个电池单体20中的每个电池单体20的第一壁201连接。
在一些实施例中,隔板在第一方向x的尺寸T1不大于100mm。
当隔板在第一方向x上的尺寸T1过大时,会占据电池100内部过多的空间,不利于提高电池100的能量密度,因此设置T1的值不大于100mm,可以有效提高电池100的能量密度。
在一些实施例中,如图31所示,隔板33在第一方向x上的尺寸T1与电池单体20在第一方向x上的尺寸T3满足:0.04≤T1/T3≤2。
当T1/T3过小,即隔板33在第一方向x上的尺寸T1远小于电池单体20在第一方向x上的尺寸T3时,隔板33可吸收变形能力弱,无法匹配电池单体20的膨胀变形量,会降低电池单体20的使用性能,当T1/T3过大,即隔板33在第一方向x上的尺寸T1远大于电池单体20在第一方向x上的尺寸T3时,隔板33可吸收变形能力过强,远超电池单体20需要的膨胀变形空间,相较于电池单体20,隔板33占据了电池10内部过多的空间,不利于提高电池10的能量密度,因此设置T1/T3的值为0.04~2,这样既可以提高电池10的能量密度,又可以吸收电池单体20的膨胀变形量。
在一些实施例中,隔板33的外表面设置有绝缘层32,该绝缘层32沿第一方向x的尺寸T2为0.01mm~0.3mm。
通过在隔板33的外表面设置绝缘层32,避免电池单体20和隔板33的电连接,提高电池10的安全性,当绝缘层31在第一方向x上的尺寸T2过小时,绝缘层32无法有效避免电池单体20和隔板33的电连接,电池100会出现绝缘不良的情况,当绝缘层32在第一方向x上的尺寸T2过大时,会过多占用电池100内部的空间,不利于提高电池100的能量密度,因此设置T2的值为0.01mm~0.3mm,这样既可以提高电池100的能量密度,又可以保证电池单体20与隔板33间的有效绝缘。
可选地,隔板33在第二方向y上的端部设置有集流元件106,电池100内部设置有管道107,管道107用于输送流体,集流元件106用于对流体进行集流。例如,后文所述的连接管组42可以包括管道107。
本申请还提出了制备电池100的方法,该方法可以包括:提供沿第二方向y排列的多个电池单体20;提供隔板33,该隔板33沿第二方向y延伸且与多个电池单体20中的每个电池单体20的第一壁201连接,该第一壁201为电池单体20中表面积最大的壁,其中,隔板33在第一方向x上的尺寸T1大于5mm,该第一方向x垂直于第一壁201。
采用附图30-图34中示出的电池单体20和隔板33,在60℃下进行1C/1C充放电循环,直到容量衰减到80%SOC,进行循环耐久加速实验结果,测试结果如表3所示。表3中T1为隔板在第一方向x上的尺寸,T3为电池单体在第一方向x上的尺寸。
表3
T3(mm) T1(mm) T1/T3 循环耐久加速实验结果
125 5.1 0.041 结构未破损,未出现跳水
26.5 6 0.226 结构未破损,未出现跳水
12.5 25 2.000 结构未破损,未出现跳水
47.4 5.1 0.108 结构未破损,未出现跳水
44 20 0.455 结构未破损,未出现跳水
44 60 1.364 结构未破损,未出现跳水
70.7 70 0.990 结构未破损,未出现跳水
10 15 1.500 结构未破损,未出现跳水
44 30 0.682 结构未破损,未出现跳水
10.72 6 0.085 结构未破损,未出现跳水
10 6 0.6 结构未破损,未出现跳水
在一些实施例中,如图10-图13所示,由于加强件30与一个或多个电池单体20的第一壁201分别固定连接,为了保证电池100的性能,加强件30要兼顾强度需求,设置加强件30在第一方向x上的尺寸为0.1mm~100mm,第一方向垂直于第一壁201,以同时兼顾强度与空间需求。
具体而言,加强件30在第一方向上的尺寸T4,即加强件30的厚度,其较大时,加强件30的强度高;T4较小时,占用空间少。当T4<0.1mm时,加强件30在外力作用下容易损坏;当T4>100mm时,占用太多空间,影响能量密度。因此,加强件30在第一方向x上的尺寸T4为0.1mm~100mm时,可在保证强度的情况下提升空间利用率。
在本申请一些实施例中,在电池100中设置加强件30与一列沿第二方向y排列的多个电池单体20中的每个电池单体20的表面积最大的第一壁201连接,其中,加强件30用于传导电池单体20的热量,加强件30的与第一壁201连接的表面为绝缘表面,加强件30在垂直于第一壁201的第一方向x上的尺寸为0.1mm~100mm。这样,电池100的箱体10中部可以不需要再设置梁等结构,可以较大限度地提升电池100内部的空间利用率,从而提升电池100的能量密度;同时,利用上述加强件30还可以保障电池100中的电绝缘和热传导。因此,本申请实施例的技术方案能够在提升电池100的能量密度的同时保障电池100中的电绝缘和热传导,从而能够提升电池100的性能。
在一些实施例中,电池单体20在第一方向x上的尺寸T3与导热件3a在第一方向x上的尺寸T5满足:0<T5/T3≤7。
当T5/T3过大时,导热件3a占用较大空间,影响能量密度。另外,导热件对于电池单体20导热过快,也可能产生安全问题。例如,一个电池单体20热失控时可能会引发与同一个导热件连接的其他电池单体20热失控。0<T5/T3≤7时,可以保障电池100的能量密度并保障电池100的安全性能。
在一些实施例中,电池单体20在第一方向x上的尺寸T3与导热件3a在第一方向x上的尺寸T5可进一步满足0<T5/T3≤1,以进一步提升电池100的能量密度并保障电池100的安全性能。
在一些可选实施例中,电池单体20的重量M1与导热件3a的重量M2满足:0<M2/M1≤20。
当M2/M1过大时,会损失重量能量密度。0<M2/M1≤20时,可以保障电池100的重量能量密度并保障电池100的安全性能。
可选地,在本申请一个实施例中,电池单体20的重量M1与导热件3a的重量M2可进一步满足0.1≤M2/M1≤1,以进一步提升电池100的能量密度并保障电池100的安全性能。
在一些实施例中,第一壁201的面积S3与导热件3a的与一列的多个电池单体20的第一壁201连接的表面的面积S4满足0.2≤S4/S3≤30。
S4为导热件3a与电池单体20连接的一侧表面的总面积。当S4/S3过大时,影响能量密度。当S4/S3过小时,导热效果太差,影响安全性能。0.2≤S4/S3≤30时,可以保障电池10的能量密度并保障电池10的安全性能。
可选地,S4与S3可进一步满足2≤S4/S3≤10,以进一步提升电池100的能量密度并保障电池100的安全性能。
在一些实施例中,导热件3a的比热容C与导热件3a的重量M2满足:0.02KJ/(kg2*℃)≤C/M2≤100KJ/(kg2*℃)。
当C/M2<0.02KJ/(kg2*℃)时,导热件3a会吸收较多能量,造成电池单体20温度过低,可能产生析锂;C/M2>100KJ/(kg2*℃)时,导热件3a导热能力差,无法及时带走热量。0.02KJ/(kg2*℃)≤C/M2≤100KJ/(kg2*℃)时,可以保障电池100的安全性能。
可选地,C与M2可进一步满足以下关系:
0.3KJ/(kg2*℃)≤C/M2≤20KJ/(kg2*℃),以进一步提升电池100的安全性能。
在一些实施例中,电池100可以包括多个电池模块100a。电池模块100a可以包括至少一列沿第二方向y排列的多个电池单体20和至少一个导热件3a,且至少一列电池单体20和至少一个导热件3a在第一方向x上交替设置。也就是说,对于每一个电池模块100a,其中的电池单体列和导热件3a在第一方向x上交替设置,多个电池模块100容纳于箱体10内,形成电池100。
可选地,电池模块100a包括两列电池单体20,两列电池单体20中设置一个导热件3a。在相邻的电池模块100a间不设置导热件3a,这样,该实施例在电池100内可以设置较少的导热件3a,但同时能够保证每个电池单体20均能够连接到导热件3a上。
可选地,多个电池模块100沿第一方向x排列,相邻的电池模块100间具有间隙,且相邻的电池模块100间没有导热件3a,则相邻的电池模块100a间的间隙可以给电池单体20提供膨胀空间。
可选地,导热件3a在第一方向x上的端部设置有固定结构103,导热件3a通过固定结构103固定于箱体10。如图19所示,固定结构103可以包括固定件104,固定件104与导热件3a的端部固定连接,且与位于导热件3a的端部的电池单体20连接,从而加强对电池单体20的固定效果。
可选地,导热件3a与第一壁201粘接。也就是说,导热件3a与电池单体20之间可以通过粘接的方式固定连接,例如,通过结构胶粘接,但本申请实施例对此并不限定。
可选地,电池单体20可以粘接固定到箱体11上。可选地,每列电池单体20中相邻的电池单体20间也可以粘接,例如,相邻的两个电池单体20的第二壁2112通过结构胶粘接,但本申请实施例对此并不限定。通过每列电池单体20中相邻的电池单体20间的粘接固定可以进一步增强电池单体20的固定效果。
采用附图10-13中示出的电池单体20和导热件3a,其中一列电池单体20中电池单体20的数量取2-20,根据GB38031-2020对电池10进行安全测试,测试结果如表4-表7所示,可以看出,本申请实施例的电池100可以满足安全性能要求。
表4
编号 T5/mm T3/mm T5/T3 测试结果
1 0.2 40 0.005 不起火,不爆炸
2 0.4 50 0.008 不起火,不爆炸
3 0.7 45 0.016 不起火,不爆炸
4 4 10 0.4 不起火,不爆炸
5 4 40 0.1 不起火,不爆炸
6 45 15 3 不起火,不爆炸
7 150 10 15 起火,爆炸
表5
编号 M2/Kg M1/Kg M2/M1 测试结果
1 0.2 3 0.068 不起火,不爆炸
2 0.4 2.5 0.16 不起火,不爆炸
3 0.7 1.5 0.467 不起火,不爆炸
4 10 1.5 6.7 不起火,不爆炸
5 15 1 15 不起火,不爆炸
表6
Figure BDA0004035636100000301
Figure BDA0004035636100000311
表7
编号 C/KJ/(Kg*℃) M2/kg C/M2(KJ/(kg2*℃)) 测试结果
1 0.39 25 0.016 起火,爆炸
2 0.46 5 0.092 不起火,不爆炸
3 0.88 0.5 1.76 不起火,不爆炸
4 4 0.4 10 不起火,不爆炸
5 4 0.1 40 不起火,不爆炸
6 4 0.025 160 起火,爆炸
在一些实施例中,如图15和图35所示,在第三方向z上,隔板33的尺寸H1与第一壁201的尺寸H2满足:0.1≤H1/H2≤2,第三方向垂直于第二方向,且第三方向平行于第一壁。这样,可以进一步较大限度地提升电池100内部的空间利用率,从而提升电池100的能量密度。
在第三方向z上,隔板的尺寸H1可以为隔板的高度,第一壁201的尺寸H2可以为第一壁201的高度。H1与H2的关系满足:0.1≤H1/H2≤2。
当H1/H2<0.1时,电池单体20与隔板的换热面积较小,无法及时冷却或加热电池单体20,难以满足电池的热管理需求。
当H1/H2>2时,虽然能够满足电池100的热管理的需求,但此时隔板33占用了较多的空间,浪费了在第三方向z上的空间利用率,从而难以保证电池100对能量密度的要求。
可选地,H1/H2可以为0.1、或0.4、或0.6、或0.9、或1.2、或1.5、或1.8、或2等。
在一些示例中,隔板33为热管理部件3b,热管理部件3b用于调节电池单体20的温度,热管理部件3b在第三方向z上的高度为H1。
可选地,热管理部件3b可以为水冷板,用于在快充过程中冷却电池单体20或在温度过低时加热电池单体20。
可选地,热管理部件3b可以由导热性能好的材质制成,例如铝等金属材料。
在一些实施例中,隔板33的尺寸H1与第一壁201的尺寸H2还满足:0.3≤H1/H2≤1.3。这样,可以保证在快充过程中,电池单体20的温度不超过55℃。
可选地,H1/H2可以为0.3、或0.5、或0.8、或1.0、或1.1、或1.3等。
可选地,在本申请一实施例中,第一壁201与隔板之间的换热面积为S,电池单体20的容量Q与换热面积S之间的关系满足:0.03Ah/cm2≤Q/S≤6.66Ah/cm2
换热面积S可以为第一壁201与隔板33的接触面积,换热面积S满足:S=H1*L,其中L为每个电池单体20沿第一方向的尺寸。
当Q/S<0.03Ah/cm2时,换热面积S足够大,满足电池的热管理的要求,但此时热管理部件3b的占用空间过大,难以满足电池100的能量密度的要求。
当Q/S>6.66Ah/cm2时,换热面积S较小,电池单体20的热量无法及时通过隔板33导出,不能及时快速冷却电池单体20,难以满足热管理的需求。
通过调节换热面积S和电池单体20的容量Q之间的关系,可以在电池的充电过程中,尤其是快充过程中,将电池单体20的温度维持在一个合适的范围;此外,当电池单体的容量Q一定时,可以通过调节换热面积S,灵活地满足电池的热管理需求。
在一种可能的实现方式中,隔板33的尺寸H1为1.5cm~30cm。这样,可以保证电池在快充的过程中,电池单体20的温度不超过55℃。
对电池进行充电测试,测试结果如表8所示。
表8不同规格的电池单体和热管理部件的充电过程中的温度测试
Figure BDA0004035636100000321
在一些实施例中,如图12和图32所示,隔板33内部设置有空腔30a。
这样,设置有空腔结构的隔板33具有吸收变形能力,可以吸收电池单体20的膨胀变形量,提高电池100的性能;换言之,空腔30a可以使得隔板33在第一方向x上有较大的压缩空间,从而可以给电池单体20提供较大的膨胀空间。
此外,空腔30a可以在保证隔板33的强度的同时减轻隔板的重量,例如,可应用于隔板33的厚度较大的情况。
可选地,空腔30a可用于容纳换热介质以给电池单体20调节温度,这样可以随时方便调节电池单体20的温度在合适的范围,提高电池单体20的稳定性和安全性。可见,此时空腔30a也可以称为换热腔,且空腔30a对应一个或多个用于容纳换热介质的流道30c。
应理解,这里所说的流体可以是能够调节温度,且不与空腔30a材料发生化学反应的液体,比如水,本申请对此不做限定。
在一些实施例中,如图12和图32所示,在第一方向x上,空腔30a的尺寸为W,电池单体20的容量Q与空腔30a的尺寸W满足:1.0Ah/mm≤Q/W≤400Ah/mm,第一方向x垂直于第一壁201,以便有效利用隔板33防止电池单体20之间的热扩散。通过对温度过高的电池单体20的快速冷却降温,可以防止该电池单体20的热量扩散传递到相邻的电池单体20,从而导致相邻的电池单体20的温度过高。
当Q/W>400Ah/mm时,此时空腔30a的尺寸W较小,空腔30a中可以容纳或流过的流体的体积较小,无法及时冷却电池单体20。这样,当某个电池单体20的温度过高时,由于未及时对该电池单体20冷却,该电池单体20的热量扩散到相邻的电池单体20,导致相邻的电池单体20温度过高,发生异常,影响整个电池10的性能。
当Q/W<1.0Ah/mm时,此时空腔30a的尺寸W较大,空腔104中可以容纳或流过的流体的体积较大,可以充分冷却电池单体20。但是,较大的空腔30a的尺寸导致隔板33的占用空间较大,无法保证电池100的能量密度,同时过大体积的隔板33也导致了成本的上升。
空腔30a可以由隔板33中的一对导热板333形成,沿第一方向x上空腔30a的尺寸W可以为两个导热板333的内壁之间的沿第一方向x的距离。空腔30a的尺寸W越大,空腔30a的容积越大,空腔30a中可容纳或流过的流体的体积就越大,因而电池单体20与隔板33之间的热传递就更快。例如,该隔板33为水冷板时,空腔30a的尺寸W越大,电池单体20的热量散失的更快,因而对电池单体20的降温就更快,可以防止电池单体20的热量扩散到相邻的电池单体20。可选地,流体可以是循环流动的,以达到更好的温度调节的效果。可选地,流体可以为水、水和乙醇的混合液、制冷剂或者空气等。
图36为本申请一实施例的电池单体与热管理部件连接的结构示意图。图37为图36中沿A-A方向的截面图,图38为图37中G区域的放大示意图。在本申请一实施例中,结合图36至图38,电池单体20沿第一方向x的尺寸T3与热管理部件3b沿第三方向的尺寸H满足:0.03≤T3/H≤5.5,第三方向垂直于第一方向和第二方向。
电池单体20沿第一方向x的尺寸T3可以为电池单体20的厚度T3,电池单体20的厚度T3与电池单体20的容量Q相关,厚度T3越大,容量Q越大。
隔板33沿第三方向的尺寸H1可以为热管理部件3b沿第三方向的高度H,H越大,热管理部件3b的体积越大,占用空间越大,同时热管理能力越强。例如,当热管理部件3b为水冷板时,H越大,对电池单体20的冷却能力越强,越能有效防止电池单体20的热量扩散到相邻的电池单体20。
当T3/H<0.03时,热管理部件3b的沿第三方向的尺寸H较大,可以充分满足防止电池单体20的热量扩散的要求,但难以满足电池10的能量密度的要求,同时较大体积的热管理部件3b也会导致生产成本的降低。
当T3/H>5.5时,此时热管理部件3b难以满足对电池单体20的热管理需求,即不能及时将电池单体20的热量导出,从而导致该热量扩散到相邻的电池单体20,引起其它电池单体20的温度异常,进而影响电池10的性能。
在一些实施例中,隔板33沿第三方向的尺寸H1为15mm~300mm。这样,隔板33可以兼顾强度与热管理性能的需求。
在一些实施例中,空腔30a的尺寸W为0.8mm~50mm。这样,可以兼顾强度与热管理性能的需求。
下面采用两列电池单体20与两个隔板33的组合方式,根据GB38031-2020对电池100进行热扩散测试,测试结果如表9所示。
表9不同规格的电池单体和隔板的热扩散测试
(Q/Ah) (T3/mm) (H/mm) (W/mm) Q/W T3/H 是否热扩散
280 88 260 50 5.6 0.3385
280 88 260 6 46.6667 0.3385
280 88 102 6 46.6667 0.8627
280 88 102 3 93.3333 0.8627
280 88 102 0.8 350 0.8627
280 88 30 6 46.6667 2.9333
280 88 13 0.6 466.6667 6.7692
248 66.5 80 2 124 0.8313
248 66.5 102 0.8 310 0.652
169 70 102 3 56.6666 0.6863
70 28.5 102 2 35 0.2794
180 79 80 2 90 0.9875
117 33.2 102 0.8 146.25 0.3255
5 12.5 50 3 1.6667 0.25
5 12.5 150 3 1.6667 0.0833
5 12.5 102 0.8 6.25 0.1225
在一些实施例中,如图32、图33和图38所示,隔板33还包括沿第一方向相对设置的一对导热板333,空腔30a设置于一对导热板333之间,第一方向垂直于第一壁201。
例如,每个导热板333沿第二方向延伸,且两个导热板333沿第一方向相对,以在两个导热板333之间形成空腔30a,空腔30a可以作为换热介质的流道,以使隔板33形成为导热件3a或热管理部件3b。
在一些实施例中,如图32所示,导热板333在第一方向x上的尺寸D为0.1mm~5mm。
当导热板333在第一方向上的尺寸D过小时,在隔板33内空间一定的情况下,空腔30a占据了隔板33的绝大部分空间,这种情况下,隔板33的刚度很差,不能有效提高电池10的结构强度,当导热板333在第一方向上的尺寸D过大时,隔板33内部的空腔30a很小,能容纳的流体很少,不能有效调节电池单体20的温度,所以设置D的值为0.1mm~5mm。
可选地,隔板333的一对导热板333在第一方向上的尺寸D可以相同,也可以不同。
可选地,两个导热板333可以由导热性能好的材质制成,例如铝等金属材料。
在一些实施例中,如图33和图38所示,隔板33还包括加强筋334,加强筋334设于一对导热板33之间,以增强隔板33的结构强度。
可选地,加强筋334的数量为一条,这样,可以在一对导热板333之间形成一个或多个空腔30a。
可选地,当空腔30a的数量为多个时,不同的空腔30a之间可以互相独立,也可以通过转接头连通。
当加强筋334只与一对导热板333中的其中一个连接时,加强筋334为一端与导热板333连接的悬臂,此时,空腔30a可以对应一条流道30c;当加强筋334与一对导热板333分别连接时,空腔30a可以对应多条流道30c。加强筋334的数量可以根据需求具体设置,本申请实施例对此不作限制
在一些实施例中,如图33和图45所示,加强筋334连接于一对导热板333中的至少一者,以便进一步保证隔板333的结构强度。
可选地,如图33所示,加强筋334可以只设置于一个导热板333上,加强筋334也可以设置于一对导热板333之间,与该一对导热板333连接。
可选地,如图33所示,加强筋334与一对导热板333连接时,加强筋334与导热板333间的夹角可以为锐角,以为电池单体20提供更多的膨胀空间;如图33所示,加强筋334与一个导热板333连接时,加强筋334与导热板333间的夹角也可以为直角,使得隔板可以承受较大的压力。
可选地,加强筋334可以为异形,如C型、波浪形或十字形等,可以有效吸收膨胀,也可以增加扰流,增强换热效果。
在一些实施例中,如图45所示,加强筋334包括第一加强筋3341,第一加强筋3341的两端分别连接于一对导热板333,第一加强筋3341用于支撑一对导热板333,当隔板333形变以吸收电池单体20的膨胀力时,第一加强筋3341可以形变以适应一对导热板33至少部分沿第一方向x能够向靠近彼此的方向运动。
其中,第一加强筋3341相对于第一方向x倾斜设置,则第一加强筋3341与一对导热板333中的一个的夹角小于90°,能够提高第一加强筋3341的弯折性,能够更好地形变以满足隔板33吸收膨胀力的需求,避免平直的形状而造成其变形空间小,且容易断裂失效的风险。
可选地,第一加强筋3341可以为一个或多个,多个第一加强筋3341可以沿第三方向z间隔设置;其中,相邻两个第一加强筋3341之间的间隔尺寸可以相同、也可以不同。
可选地,第一加强筋3341的材料可以采用加强筋结构制成,在保证支撑作用的同时,实现隔板333的轻量化设计,从而实现电池100整体的轻量化设计。
可选地,第一加强筋3341连接于一对导热板333,且第一加强筋3341沿第二方向y延伸,以增大第一加强筋3341与每个导热板333的连接面积,提高支撑强度。
可选地,第一加强筋3341呈板状结构体,以使其能够更好的发生形变,以满足隔板吸收电池单体20的膨胀力的需求;并且,利于生产加工、提高制作效率。
在一些实施例中,如图45所示,第一加强筋3341与第一方向x的夹角范围为30°-60°,则第一加强筋3341与一对导热板333中的上述一个的夹角范围为30°-60°,利于更好地在满足支撑需求的同时发生形变,且不易断裂。
可选地,当第一加强筋3341为多个时,相邻两个第一加强筋3341的倾斜方向可以相同、也可以不同。
在一些实施例中,如图45所示,加强筋334还包括第二加强筋3342,第二加强筋3341的一端连接于一对导热板333中的一者,第二加强筋3342的另一端与一对导热板333中的另一者间隔设置,例如第二加强筋3342在第一方向x上的延伸尺寸小于一对导热板333之间的距离。
由此,通过设置上述第二加强筋3342,既能与第一加强筋3341共同作用达到更好的支撑效果,还能控制隔板33的形变范围,当一对导热板333中的一者的第二加强筋3342接触到另一者时,可以进一步限制隔板33形变,避免空腔30a对应的流道30c堵塞,保证流道30c的有效性,从而保证隔板33的有效性。
可选地,一对导热板333分别为第一导热板3331和第二导热板3332,第二加强筋3342可以设置在第一导热板3331,还可以设置在第二导热板3332,示例性地,第一导热板3331和第二导热板3332均设置有第二加强筋3342。
在一些实施例中,如图45所示,在第三方向z上,相邻两个第一加强筋3341之间均设置有第二加强筋3342。可选地,相邻两个第二加强筋3342中的一个设置在第一导热板3331,另一个设置在第二导热板3332,以保证第一导热板3331和第二导热板3332受力均匀,同时不会承担太大的重量。
在一些实施例中,如图45所示,第二加强筋3342沿第一方向x延伸并凸出于一对导热板333中的一者,简化第二加强筋3342的结构,便于加工。
可选地,第二加强筋3342呈多棱柱状体,以使第二加强筋3342具有足够的横截面积,当隔板33吸收电池单体20的膨胀力形变至设置在一对导热板333中的一者上的第二加强筋3342接触另一者的时候,第二加强筋3342能够有足够的接触面积,以更好的提高支撑能力,避免第二加强筋3342损坏甚至失效导致两个导热板333接触,从而保证隔板33的有效性。
在一些实施例中,如图45所示,第一加强筋3341与第二加强筋3342间隔设置,以便保证两个导热板333受力较为均匀。
在一些实施例中,沿第三方向z(例如箱体10的高度方向),第一加强筋3341和第二加强筋3342交替分布,例如,相邻两个第一加强筋3341和第二加强筋3342可以交替设置于第一导热板3331和第二导热板3332,当然,也可以按照一定排布规律进行设置第二加强筋3342的位置。
示例性的,在第三方向z上,相邻两个第二加强筋3342中的一个设置在第一导热板3331,另一设置在第二导热板3332,以保证第一导热板3331和第二导热板3332受力均匀,同时不会承担太大的重量。
通过此方式设置,既能保证对两个导热板333支撑作用的均匀性,还能使空腔30a对应的流道30c沿第二方向y上的每个部分都不会发生堵塞现象,能够好的保证流道30c的有效性。
在一些实施例中,如图32和图45所示,在第一方向x上,导热板333的厚度D与空腔的尺寸W满足:0.01≤D/W≤25,以同时兼顾强度和热管理性能需求。
具体而言,空腔30a的尺寸W较大时,空腔30a中流体的流阻低,可提升隔板33单位时间的换热量;导热板333的厚度D较大时,隔板33的强度高。当D/W小于0.01时,空腔30a的尺寸W足够大,但占用空间过大;或在既定隔板33的空间下,可能存在导热板333的厚度D过薄,导致强度不足,例如,无法满足电池20振动冲击要求,甚至出现初成组时隔板33就被压溃的情况。当D/W≥25时,导热板333的厚度D足够厚,但在既定隔板33的空间下,可能导致空腔30a的尺寸W过小,空腔30a中流体的流阻增大,换热性能变差或使用过程中空腔30a堵塞;同时,由于导热板333的壁厚过大,电池单体20膨胀产生的力无法满足电池单体20所需膨胀空间对应的对隔板33的压溃力,即隔板33无法及时让出电池单体20所需求的膨胀空间,将加速电池单体20的容量下降。因此,导热板333的厚度D与空腔30a的尺寸W满足0.01≤D/W≤25时,可同时兼顾强度与热管理性能需求,保障电池100的性能。
可选地,在0.01≤D/W≤0.1时,流体可采用固液相变材料或液态工质,隔板33外层可以为膜状材质做为蒙皮,内部可以填骨架结构作加强,该方案可用于对强度要求较低或隔板33可压缩性能要求较高的情况。
可选地,在0.1≤D/W≤1范围时,隔板33内部可采用流体工质对流换热或汽液相变冷却方案,用液体工质作为换热介质,以保证隔板33的换热性能。
可选地,在1≤D/W≤25时,隔板33可采用汽液相变冷却方案,通过内部间隙调整,将整体压力提升,保证工质在隔板33内部以液体形式存在,防止产生因压力损失造成的汽液两种状态共存现象,提供换热性能;同时导热板333的厚度D足够厚,可以在加热时防止因内部工质汽化压力升高导致隔板33破裂。
可选地,导热板333的厚度D与空腔30a的尺寸W进一步满足0.05≤D/W≤15,更进一步满足0.1≤D/W≤1,以更佳地兼顾空间、强度和热管理,进一步提升电池100的性能。
可选地,隔板33在第一方向x上的尺寸T1为0.3mm~100mm。
T1为热管理部件隔板33的总厚度,即T1=2*D+W。T1太大会导致占用太多空间,T1太小则会导致强度太低或空腔30a太窄而影响热管理性能。因此,隔板33的总厚度T1为0.3mm~100mm时,可以兼顾空间、强度和热管理,保障电池100的性能。
可选地,导热板333的厚度D为0.1mm~25mm。
导热板333的厚度D太大会导致占用太多空间以及隔板33无法及时让出电池单体20所需求的膨胀空间,D太小则会导致强度太低。因此,导热板333的厚度D为0.1mm~25mm时,可以兼顾空间、强度和电池单体20的膨胀需求,保障电池100的性能。
可选地,空腔30a在第一方向上的尺寸W为0.1mm~50mm。
具体而言,空腔30a的尺寸W需至少大于内部可能出现杂质颗粒度尺寸,以免在应用过程中出现堵塞,而且空腔30a的尺寸W过小,空腔30a中流体的流阻增大,换热性能变差,因此空腔30a的尺寸W不小于0.1mm。空腔30a的尺寸W太大会导致占用太多空间或者强度不够。因此,空腔30a的尺寸W为0.1mm~50mm时,可以兼顾空间、强度和热管理性能,保障电池100的性能。
可选地,隔板33在第一方向x上的尺寸T1与第一壁201的面积S3满足:0.03mm-1≤T1/S3*1000≤2mm-1
T1与S3满足上述条件,可以满足电池单体20的换热性能需求及尺寸空间要求。具体而言,电池单体20的第一壁201的面积A较大时,冷却面积较大,可降低隔板33到电池单体20表面的传热热阻;隔板33的总厚度W1较大时,可提高强度。若T1/S3*1000小于0.03mm-1,电池单体20的第一壁201的面积A足够大,但隔板33过薄,导致强度不足,隔板33在使用过程中可能出现破损或开裂问题。若T1/S3*1000大于2mm-1,隔板33足够厚,但电池单体20的第一壁201的面积S3过小,隔板33可供给电池单体20的冷却面不足,存在无法满足电池单体20散热需求的风险。因此,隔板33的总厚度T1与第一壁201的面积S3满足0.03mm-1≤T1/S3*1000≤2mm-1时,可同时兼顾强度与热管理性能需求,保障电池100的性能。
可选地,隔板33还包括加强筋334,加强筋334设于一对导热板333之间,加强筋334的厚度X不小于(-0.0005*F+0.4738)mm,其中,F为加强筋334的材料的抗拉强度,单位为Mpa。也就是说,加强筋334的厚度X最小可以为(-0.0005*F+0.4738)mm。
加强筋334的厚度X与其材料的抗拉强度相关。根据如上关系式,为满足隔板33的受力需求,选用强度越高的材料,内部加强筋334的厚度X可以越薄,从而节省空间,提高能量密度。可选地,加强筋334的厚度X可以为0.2mm~1mm。
采用附图45中示出的电池单体20和隔板33,进行加热速率和隔板33变形力仿真测试,测试结果如表10所示。表10中L为电池单体20在第二方向y上的尺寸,T3为电池单体20在第一方向x上的尺寸,H2为电池单体20的第一壁201在第三方向z上的尺寸,第三方向垂直于第一方向x和第二方向y。
表10
Figure BDA0004035636100000381
/>
Figure BDA0004035636100000391
在一些实施例中,如图47、图48、图50和图51所示,隔板33设有介质入口3412和介质出口3422,空腔30a连通介质入口3412和介质出口3422,以使空腔30a能够容纳换热介质以调节电池单体20的温度;隔板33的内部设有与介质入口3412和介质出口3422均断开的腔体30b,使得腔体30b能够阻止换热介质进入,以在对电池单体20的温度起到调节作用的同时还能减轻隔板33的重量,从而能够实现隔板33的轻量化,且在使用过程中能够缓解换热介质进入至腔体30b内而造成隔板33的重量增加的现象,进而能够有效减少具有这种隔板33的电池100的重量,有利于提升电池100的能量密度,以提升电池100的使用性能。
例如,介质入口3412和介质出口3422分别设置于隔板33的两端,空腔30a和腔体30b均设置于隔板33的内部。空腔30a连通介质入口3412和介质出口3422,即空腔30a的两端均分别与介质入口3412和介质出口3422相互连通,以使流体介质能够流入或流出空腔30a。腔体30b与介质入口3412和介质出口3422均断开,即腔体30b与介质入口3412和介质出口3422均未形成连通关系,使得流体介质无法进入至腔体30b内。
需要说明的是,设置于隔板33的内部的腔体30b可以是一个,也可以是多个,同样的设置于隔板33的内部的空腔30a可以是一个,也可以是多个;当空腔30a为多个时,每个空腔30a均连通介质入口3412和介质出口3422,即多个空腔30a的两端均分别与介质入口3412和介质出口3422相互连通。示例性的,在本申请实施例中,隔板33内部设置的空腔30a和腔体30b均为多个。
在一些实施例中,参照图47和图48,隔板33包括主体板331(或称为本体部)、第一汇流件341和第二汇流件342。主体板331设置有空腔30a和腔体30b。沿主体板331的长度方向(即第二方向y),第一汇流件341和第二汇流件342分别设置于主体板331的两端,介质入口3412和介质出口3422分别设置于第一汇流件341和第二汇流件342。
其中,空腔30a和腔体30b均设置于主体板331的内部。示例性的,在图48中,空腔30a和腔体30b均沿主体板331的长度方向延伸,且空腔30a的两端分别贯穿主体板331的两端,以使空腔30a能够与第一汇流件341的介质入口3412和第二汇流件342的介质出口3422连通。
需要说明的是,主体板331、第一汇流件341和第二汇流件342可以是一体式结构,也可以是分体式结构,当主体板331、第一汇流件341和第二汇流件342为一体式结构时,主体板331、第一汇流件341和第二汇流件342可以采用铸造或注塑工艺制成,当主体板3315、第一汇流件341和第二汇流件342为分体式结构时,第一汇流件341和第二汇流件342可以采用螺栓螺接、卡接或粘接等方式连接于主体板331的两端。
在一些实施例中,如图48-图51所示,主体板331的内部设置有通道3151,通道3151贯穿主体板331在主体板331的长度方向上的两端。隔板33还包括封堵件318,封堵件318连接于主体板331,封堵件318封堵通道3151的两端,以形成腔体30b。
其中,沿主体板331的长度方向,通道3151贯穿主体板331的两端均设置有封堵件318,通过封堵件318对通道3151的两端进行封堵后能够形成密闭的腔体30b,从而实现腔体30b与介质入口3412和介质出口3422均断开。
示例性的,封堵件318可以为金属片、橡胶塞或硅胶塞等,在实际生产过程中,可以根据通道3151的大小采用不同的封堵件318,比如,当通道3151较大时,可采用金属片焊接的方式连接于主体板331的一端,以对通道3151进行封堵,也可以采用橡胶塞或硅胶塞对通道3151进行封堵,当通道3151较小时,金属片存在焊接难度较大的问题,可采用橡胶塞或硅胶塞卡于通道3151内,以实现对通道3151的封堵作用。
在一些实施例中,参见图48-图51所示,封堵件318可拆卸地连接于主体板331。采用可拆卸的方式将封堵件318连接在主体板331上,从而能够对封堵件318进行快速拆卸和更换,一方面在使用过程中便于根据实际需求封堵不同的通道3151,以满足不同的使用需求,另一方面能够对封堵件318进行维修和更换,有利于提升隔板33的使用寿命。
示例性的,封堵件318卡接于通道3151的一端,以实现对通道3151进行封堵。当然,在其他实施例中,封堵件318也可以采用螺栓螺接或扣接等方式可拆卸地连接于主体板331。
需要说明的是,在图48-图51中,腔体30b为有封堵件318封堵主体板331内部的通道3151形成的密闭结构,在其他实施例中,参见图50所示,腔体30b也可以为主体板331一体成型而形成的结构,也就是说,腔体30b为主体板331通过铸造或冲压等工艺形成内部具有空腔的结构,即封堵件318与主体板331为一体式结构。
主体板331的内部形成有在主体板331的长度方向上贯穿主体板331两端的通道3151,并通过在主体板331上设置封堵件318,以使封堵件318对通道3151的两端进行封堵,从而形成与介质入口3412和介质出口3422均断开的腔体30b,结构简单,便于制造和加工,且能够根据实际需求封堵不同的通道3151,以扩大隔板33的适用范围。
在一些实施例中,第一汇流件341的内部形成有与介质入口3412连通的第一腔室,第二汇流件342的内部形成有与介质出口3422连通的第二腔室,流道30c贯穿主体板331在主体板331的长度方向上的两端,以与第一腔室和第二腔室连通。
其中,第一汇流件341的内部形成有与介质入口3412连通的第一腔室,即第一汇流件341的内部形成有第一腔室,且介质入口3412贯穿第一腔室的腔壁,使得第一汇流件341安装于主体板331的一端时,贯穿主体板331的一端的流道30c能够与第一汇流件341的内部的第一腔室连通,从而使得多个流道30c均与第一汇流件341的第一腔室相互连通,以实现多个流道30c与介质入口3412连通。
同样的,第二汇流件342的内部形成有与介质出口3422连通的第二腔室,即第二汇流件342的内部形成有第二腔室,且介质出口3422贯穿第二腔室的腔壁,使得第二汇流件342安装于主体板331的一端时,贯穿主体板331的一端的流道30c能够与第二汇流件342的内部的第二腔室连通,从而使得多个流道30c均与第二汇流件342的第二腔室相互连通,以实现多个流道30c均与介质出口3422连通。
需要说明的是,腔体30b与第一汇流件341的第一腔室和第二汇流件342的第二腔室均未连通,从而使得腔体30b与介质入口3412和介质出口3422均断开。
第一汇流件341设置有与流道30c连通的第一腔室,第二汇流件342设置有与介质出口3422连通的第二腔室,使得流道30c在贯穿主体板331的两端后能够与第一腔室和第二腔室均连通,以实现流道30c与介质入口3412和介质出口3422均连通,从而在使用过程中能够实现通过介质入口3412和介质出口3422同时向多个流道30c内注入流体介质,以提升使用效率。
在一些实施例中,参见图47和图48所示,腔体30b和空腔30a均沿主体板331的长度方向延伸,并沿主体板331的宽度方向(即第三方向z)排布。
其中,隔板33设置有空腔30a和多个腔体30b,空腔30a对应多个流道30c,腔体30b和流道30c均沿主体板331的长度方向延伸,且多个腔体30b和多个流道30c均沿主体板331的宽度方向排布。多个腔体30b和多个流道30c的排布方式可以是多种,比如,腔体30b和流道30c可以是交替排布,也可以是沿主体板331的宽度方向,多个腔体30b位于多个流道30c的一侧,还可以是沿主体板331的宽度方向,主体板331的中间位置设置有多个腔体30b,且多个腔体30b的两侧均设置有流道30c。示例性的,在图48中,沿主体板331的宽度方向,主体板331的中间位置设置有两个流道30c,且两个流道30c的两侧分别设置有三个腔体30b,并在主体板331的两端均设置有一个流道30c。
腔体30b和流道30c均沿主体板331的长度方向延伸,且沿主体板331的宽度方向排布,从而便于对腔体30b和流道30c进行加工和制造,且便于优化流道30c的排布位置,进而有利于提升隔板33对电池100的温度的调节能力。
在一些实施例中,参见图48和图49所示,沿主体板331的宽度方向,主体板331的中间位置设置有流道30c。
其中,主体板331的中间位置设置有流道30c,若流道30c为一个,则流道30c设置于主体板331的中间位置,若流道30c为多个,则多个流道30c中的至少部分流道30c位于主体板331在主体板331的宽度方向上的中间位置。示例性的,在图48和图49中,沿主体板1的宽度方向,主体板331的中间位置设置有两个流道30c,当然,在其他实施例中,沿主体板331的宽度方向,主体板331的中间位置也可以设置一个、三个或四个等流道30c。
主体板331在其宽度方向上的中间位置设置有流道30c,从而能够对电池100内部热量较为集中的地方进行热交换,有利于提升隔板33对电池100的热管理性能。
在一些实施例中,参照图51,图51为本申请再一些实施例提供的隔板33的主体板331的剖视图。隔板33设置有多个流道30c和多个腔体30b,沿主体板331的宽度方向,腔体30b和流道30c交替布置。
其中,腔体30b和流道30c交替布置,即腔体30b和流道30c沿主体板331的宽度方向依次交替布置,也就是说,沿主体板331的宽度方向,相邻的两个流道30c之间设置有腔体30b,且相邻的两个腔体30b之间设置有流道30c。
腔体30b与流道30c为沿主体板331的宽度方向交替布置,也就是说,腔体30b和流道30c均为多个,且腔体30b和流道30c相互交替排布,以实现流道30c沿主体板331的宽度方向分散排布,从而能够有效减少因流道30c集中而造成隔板33的热交换能力不均衡的现象,进而有利于提升隔板33的使用性能。
在一些实施例中,参见图49所示,沿主体板331的厚度方向(即第一方向x),主体板331具有相对的两个侧表面3312,一个侧表面3312的面积为S3,流道30c在侧表面3312上的投影的总面积为S4,满足,S4/S3≥0.2。
其中,一个侧表面3312的面积为5,流道30c在侧表面3312上的投影的总面积为S6,S6/S5≥0.2,即多个流道30c在主体板331的侧表面3312上占用的总面积大于或等于20%。
通过将多个流道30c在主体板331的侧表面3312上占用的面积大于或等于20%,从而能够减少因流道30c占用的面积过少而导致热交换能力较差的现象,进而能够保证隔板33的热交换性能。
在一些实施例中,参见图46和图47所示,多个隔板33的空腔30a相互串联,即一个隔板33的介质入口3412与另一个隔板33的介质出口3422连通,当然,多个隔板33的流道30c也可以是相互并联,即多个隔板33的介质入口3412相互连通,且多个隔板33的介质出口3422相互连通。电池100设置有多个隔板33,使得在这种电池100中,有利于提升隔板33对电池单体20的热管理能力,以降低电池100因内部温升带来的安全隐患。
在一些实施例中,参见图46和图47所示,一个隔板33的介质出口3422与另一个隔板33的介质入口3412连通。
其中,一个隔板33的介质出口3422与另一个隔板33的介质入口3412连通的结构可以是多种,可以是一个隔板33的介质出口3422与另一个隔板33的介质入口3412相连,也可以通过其他部件连通,比如,连通管道等,以实现多个隔板33的串联结构。
通过将多个隔板33中的一个隔板33的介质出口3422与另一个隔板33的介质入口3412相互连通,以实现多个隔板33的串联结构,从而便于装配和加工,且在使用过程中能够便于向多个隔板33的流道30c内注入流体介质。
在一些实施例中,隔板33设置有多个流道30c,沿流体介质在多个隔板33的流道30c内的流动方向,在相邻的两个隔板33中,位于下游的隔板33的流道30c的数量大于位于上游的隔板33的流道30c的数量。
其中,沿流体介质在多个隔板33的流道30c内的流动方向,即流体介质流经多个隔板33的流道30c时的方向。在相邻的两个隔板33中,位于下游的隔板33的流道30c的数量大于位于上游的隔板33的流道30c的数量,即在流体介质的流动方向上,相邻的两个隔板33中,流体介质先经过的隔板33为位于上游的隔板33,流体介质后经过的隔板33为位于下游的隔板33,也就是说,流体介质为从位于上游的隔板33的流道30c流向位于下游的隔板33的流道30c中。
通过将位于下游的隔板33的流道30c的数量多于位于上游的隔板33的流道30c的数量,有利于提升位于下游的隔板33的热交换能力,从而能够保证多个隔板33的热交换能力相互均衡,以提升整体的热管理能力,进而能够有效缓解电池100的内部出现局部温升的现象。
在一些实施例中,多个隔板33的介质入口3412相互连通,且多个隔板33的介质出口3422相互连通。
其中,多个隔板33的介质入口3412可以是直接连通,也可以是通过其他部件连通,比如,连通管道等,同样的,多个隔板33的介质出口3422也是如此,以实现多个隔板33的并联结构。
通过将多个隔板33的介质入口3412相互连通,且多个隔板33的介质出口3422相互连通,以实现多个隔板33的并联结构,从而一方面能够实现同时向多个隔板33的流道30c内注入流体介质的功能,另一方面能够有效保证每个隔板33的热交换能力均衡,进而能够有效缓解电池100的内部出现局部温升的现象。
在一些实施例中,如图24所示,空腔30a内设有分隔件335,分隔件335用于将空腔30a内分隔形成至少两个流道30c,便于根据实际需要控制流体介质在空腔内部的分布,以便合理调节电池单体20的温度。
例如,多个流道30c可以沿第三方向z依次排列,每个流道30c沿第二方向y延伸,第三方向垂直于第二方向且平行于第一壁201。
各个流道30c可以彼此独立,也可以彼此连通。多个流道30c中可以只有部分流道30c容纳有流体介质,也可以是每个流道30c内均容纳有流体介质。因此,分隔件335将隔板33的内部分隔形成多个流道30c,便于根据实际需要控制流体介质在隔板33内部的分布,以便合理调节电池单体20的温度。
可选地,分隔件335与隔板33一体成型,比如分隔件335和隔板33通过浇筑、挤压等一体成型的工艺形成。分隔件335与隔板33也可以是分体设置后通过焊接、粘接、卡接等方式连接于隔板的内壁。
当然,空腔30a内还可以只形成一个流道30c。
在一些实施例中,隔板33包括主体板331,主体板331内部设置有空腔30a,空腔30a可以具有一个或多个流道30c,绝缘层32包括第一绝缘层32a,第一绝缘层32a的至少部分设于主体板331和电池单体20之间。
进一步地,参见图20和图21,隔板33还包括汇流管332,汇流管332包括汇流腔室332a(图26、图28中示出),汇流腔室332a与多个流道30c连通,绝缘层32包括第二绝缘层32b,第二绝缘层32b的至少部分设置于汇流管332和电池单体20之间,以绝缘隔离电池单体20和汇流管332。
“第二绝缘层32b覆盖汇流管332的至少部分外表面”,可以理解为,第二绝缘层32b的部分覆盖汇流管332的至少部分外表面,以绝缘隔离电池单体20和汇流管332。
其中,隔板33两端的两个汇流管332可以分别为第一汇流件341和第二汇流件342。
可以仅只有第二绝缘层32b的部分覆盖第一汇流件341的至少部分外表面或只有第二绝缘层32b的部分覆盖第二汇流件342的至少部分外表面,或者第二绝缘层32b的部分覆盖第一汇流件341的至少部分外表面且第二绝缘层32b的部分覆盖第二汇流件342的至少部分外表面。
在第二绝缘层32b的部分覆盖第一汇流件341的至少部分表面的情况下,第二绝缘层32b的部分可以只覆盖第一汇流件341的部分外表面,比如第二绝缘层32b的部分只是覆盖第一汇流件341的外周面,而第一汇流件341沿第三方向z的两个端面未被绝缘层32覆盖,相对于绝缘层32仅覆盖主体板331的情况,能够增大电池单体20与第一汇流件341未覆盖绝缘层32的部分之间的爬电距离,从而降低电池100短路的风险;或者绝缘层32的部分覆盖第一汇流件341的全部外表面。
在另一些实施例中,绝缘层32也可以不覆盖第一汇流件341的外表面。第一汇流件341沿第三方向z延伸,第二汇流件342沿第三方向z延伸。
在第二绝缘层32b的部分覆盖第二汇流件342的至少部分表面的情况下,绝缘层32的部分可以只覆盖第二汇流件342的部分外表面,比如绝缘层32的部分只是覆盖第二汇流件342的外周面,而第二汇流件342沿第三方向z的两个端面未被第二绝缘层32b覆盖,相对于绝缘层32仅覆盖主体板331的情况,能够增大电池单体20与第二汇流件342未覆盖绝缘层32的部分之间的爬电距离,从而降低电池100短路的风险;或者第二绝缘层32b的部分覆盖第二汇流件342的全部外表面。
在另一些实施例中,如图27、图29所示,绝缘层32也可以不覆盖第二汇流件342的外表面。
因此,第二绝缘层32b覆盖汇流管332的至少部分外表面,第二绝缘层32b可以完全覆盖汇流管332的外表面,也可以仅覆盖汇流管332朝向电池单体20的一侧表面,第二绝缘层32b能够用于绝缘隔离汇流管332和电池单体20,从而降低电池短路的风险,提高电池的安全性能。
在本实施例中,汇流管332可以位于电池单体20的一侧,由于汇流管332中同样容纳有流体介质,因此,汇流管332同样可以用于对电池单体20进行换热,第二绝缘层32b覆盖汇流管332的至少部分外表面,第二绝缘层32b可以完全覆盖汇流管332的外表面,也可以仅覆盖汇流管332朝向电池单体20的一侧表面,第二绝缘层32b能够用于绝缘隔离汇流管332和电池单体20,从而降低电池短路的风险,提高电池的安全性能。
请结合参见图20、图21、图25和图26,在本实施例中,两个汇流管332分别为第一汇流件341和第二汇流件342;第一汇流件341设置有介质入口3412,第一汇流件341的内部形成有与介质入口3412连通的第一汇流室3411,第二汇流件342设置有介质出口3422,第二汇流件342的内部形成有与介质出口3422连通的第二汇流室3421,第一汇流室3411和第二汇流室3421均与每个流道30c连通。
介质入口3412设置于第一汇流件341,介质出口3422设置于第二汇流件342,第一汇流件341的第一汇流室3411和第二汇流件342的第二汇流室3421均与每个流道30c连通,则流体介质能够从介质入口3412进入第一汇流室3411,再经第一汇流室3411分配置至每个流道30c,每个流道30c的流体介质能够沿第二方向Y流向第二汇流件342并汇集在第二汇流室3421,从介质出口3422排出。
在另一些实施例中,隔板33也可以不设置汇流管332,每个流道30c对应设置一个介质入口3412和介质出口3422,流体介质从每个流道30c各自的介质入口3412进入流道30c,并从各自的流道30c排出。这种设置方式便于独立控制每个流道30c内的流体介质的总量和流速。
而本实施例中,第一汇流件341的设置有利于流体介质分配至每个流道30c,有利于电池单体20温度调节的均匀性,第二汇流件342的设置有利于流体介质快速排出,提高换热效率。
在一些实施例中,如图25和图26所示,第二绝缘层32b的厚度为h3,主体板331的壁厚为h2,h3/h2≥0.00625,使得汇流管332和电池单体20之间的爬电距离越大,安全性越高,从而降低两者在各种使用场景下产生电接触的风险。
h3/h2可以为0.01、0.015、0.1、0.15、0.2、0.25、0.3、0.35、0.4等。
在一些实施例中,绝缘层32为等厚结构,即第一绝缘层30a的厚度h1与第二绝缘层30b的厚度h3相等,h1=h3。在另一些实施例中,第一绝缘层的厚度与第二绝缘层的厚度不相等。
在一些实施例中,请结合参照图20、图21、图25-图29,介质入口3412设有第一导流管343,介质出口3422设有第二导流管344;绝缘层32还包括第三绝缘层32c;第三绝缘层32c的部分覆盖第一导流管343的外表面,以使绝缘隔离电池单体20和第一导流管343;和/或,第三绝缘层32c的部分覆盖第二导流管344的外表面,以使绝缘隔离电池单体20和第二导流管344。
可以仅只有介质入口3412设置有第一导流管343,或者可以仅只有介质出口3422设有第二导流管344,或者介质入口3412设置有第一导流管343且介质出口3422设置有第二导流管344。图21和图21中示出了介质入口3412设置有第一导流管343且介质出口3422设置有第二导流管344的情况。
如图20、图21、图25-图29所示,在绝缘层32的部分覆盖第一导流管343的外表面的情况下,绝缘层32的部分可以只覆盖第一导流管343的部分外表面,比如绝缘层32的部分只是覆盖第一导流管343的外周面,而第一导流管343沿轴向的两个端面未被绝缘层32覆盖,相对于绝缘层32仅覆盖主体板331、第一汇流件341和第二汇流件342的情况,能够增大电池单体20与第一导流管343未覆盖绝缘层32的部分之间的爬电距离,从而降低电池100短路的风险;或者绝缘层32的部分覆盖第一导流管343的全部外表面。在另一些实施例中,如图25所示,绝缘层32也可以不覆盖第一导流管343的外表面。
如图20、图21、图25-图29所示,在绝缘层32的部分覆盖第二导流管344的外表面的情况下,绝缘层32的部分可以只覆盖第二导流管344的部分外表面,比如绝缘层32的部分只是覆盖第二导流管344的外周面,而第二导流管344沿轴向的两个端面未被绝缘层32覆盖,相对于绝缘层32仅覆盖主体板331、第一汇流件341和第二汇流件342的情况,能够增大电池单体20与第二导流管344未覆盖绝缘层32的部分之间的爬电距离,从而降低电池100短路的风险;或者绝缘层32的部分覆盖第二导流管344的全部外表面。
在另一些实施例中,绝缘层32也可以不覆盖第二导流管344的外表面。
如图20、图21、图25-图29所示,第一导流管343和第二导流管344同轴布置,第一导流管343的轴向和第二导流管344的轴向均与第二方向y平行。
如图20、图21、图25-图29所示,第一导流管343的一端插设于第一汇流件341上的介质入口3412内,并和第一汇流件341焊接。第二导流管344的一端插设于第二汇流件342上的介质出口3422内,并和第二汇流件342焊接。
第一导流管343的外周面设有第一限位部361,第一限位部361沿第一导流管343的径向凸出第一导流管343的外周面,第一限位部361用于限制第一导流管343向第一汇流件341内部插设的距离。当第一导流管343插设于第一汇流件341的介质入口3412后,第一限位部361与第一汇流件341的外壁相抵。第一导流管343可以通过第一限位部361与第一汇流件341焊接。
第二导流管344的外周面设有第二限位部371,第二限位部371沿第二导流管344的径向凸出第二导流管344的外周面,第二限位部371用于限制第二导流管344向第二汇流件342内部插设的距离。当第二导流管344插设于第二汇流件342的介质流出口后,第二限位部371与第二汇流件342的外壁相抵。第二导流管344可以通过第二限位部371与第二汇流件342焊接。
在另一些实施例中,介质入口3412可以不设置第一导流管343,介质出口3422可以不设置第二导流管344。
第一导流管343的设置便于流体介质进入第一汇流件341的第一汇流室3411,第二导流管344的设置便于流体介质从第二汇流件342的第二汇流室3421排出。绝缘层32的部分覆盖第一导流管343的外表面,能够绝缘隔离第一导流管343和电池单体20,和/或绝缘层32的部分覆盖第二导流管344的外表面,能够绝缘隔离第二导流管344和电池单体20,从而降低电池100短路的风险,提高电池100的安全性能。
在一些实施例中,沿第二方向y,第一汇流件341和第二汇流件342分别位于电池单体20的两侧,第三方向z和第二方向y垂直。
第一汇流件341和第二汇流件342分别位于电池单体20的两侧,使得第一汇流件341和第二汇流件342的布置方向与电池单体20的极耳伸出方向错开,从而使得第一汇流件341和第二汇流件342均与电池单体20的电能输出极错开设置,避免第一汇流件341和第二汇流件342影响电池单体20充放电或者避免第一汇流件341和第二汇流件342影响各个电池单体20之间串联、并联或者混联。
如图20所示,主体板331沿第二方向y超出电池单体20沿第二方向y的两端。第一汇流件341和第二汇流件342分别连接于主体板331沿第二方向y两端。多个电池单体20能够沿第二方向y对叠布置而不会与第一汇流件341和第二汇流件342干涉,使得多个电池单体20能够布置的更加紧凑,有利于减小电池100的体积。
在一些实施例中,电池单体20包括电池盒21和连接于电池盒21的外表面的绝缘层(图中未示出),该绝缘层用于绝缘隔离加强件30和电池盒21。
绝缘层可以包覆在电池盒21的外表面的蓝膜或者是涂覆在电池盒21的外表面的绝缘涂层。电池单体20的电池盒21的表面连接有绝缘层,电池单体20上的绝缘层和加强件30上的绝缘层32共同绝缘隔离电池单体20和加强件30,进一步降低电池100短路的风险。
在一些实施例中,如图52-图64所示,加强件30包括层叠设置的第一导热板3331、第二导热板3332和分隔件335,分隔件335设置于第一导热板3331和第二导热板3332之间,第一导热板3331和分隔件335共同限定出第一流道34,第二导热板3332和分隔件335共同限定出第二流道35。
在加强件30设置于相邻的两个电池单体20之间时,第一流道34和第二流道35分别对应相邻的两个电池单体20,第一流道34内的流体介质和第二流道35内的流体介质可以分别与该两个电池单体20进行热交换,减小相邻的两个电池单体20的温度差异,一个电池单体20的膨胀不会挤压减小另一个电池单体20对应的流道的尺寸或者对另一个电池单体20对应的流道的尺寸影响很小,从而保证另一个电池单体20对应的流道的换热效果,从而保证使用加强件30的电池100的安全性能。
此外,第一流道34和第二流道35分别对应相邻的两个电池单体20,可以独立承受各自对应的电池单体20膨胀导致的变形,因此,一个电池单体20膨胀对另一个电池单体20的膨胀干涉很小或者不会对另一个电池单体20的膨胀造成影响,有利于相邻的两个电池单体20的膨胀释放,降低相邻的两个电池单体20的膨胀相互干涉导致电池单体20提前泄压或者发生严重的热失控事故,提高电池100的安全性能。
第一流道34和第二流道35均用于容纳流体介质,流体介质可以在第一流道34和第二流道35内流通。其中,第一流道34和第二流道35可以彼此独立,第一流道34内的流体介质不会进入第二流道35内,第二流道35内的流体介质不会进入第一流道34内。
示例性地,沿第一流道34的延伸方向,第一流道34具有位于第一流道34两端的第一进口和第一出口,流体介质从第一进口进入第一流道34,并从第一出口排出第一流道34;沿第二流道35的延伸方向,第二流道35具有位于第二流道35两端的第二进口和第二出口,流体介质从第二进口进入第二流道35,并从第二出口排出第二流道35。
第一流道34和第二流道35可以彼此连通,第一流道34内的流体介质能够进入第二流道35或者第二流道35内的流体介质能够进入第一流道34。
在电池单体20为一个的实施例中,加强件30设置于电池单体20的一侧并位于电池单体20和箱体10的内壁之间。第一流道34相对第二流道35更加靠近电池单体20设置,第二流道35相对第一流道34更靠近箱体10的内壁设置。
在电池单体20为多个的实施例中,多个电池单体20沿某一方向(第一导热板3331、第二导热板3332和分隔件335的层叠方向,第一方向x)堆叠布置。
如图53和图54所示,相邻的两个电池单体20之间可以设置加强件30。为了方便叙述,定义相邻的两个电池单体20分别为第一电池单体21和第二电池单体22,第一流道34和第二流道35的布置方向与第一电池单体21和第二电池单体22的堆叠方向相同,第一流道34和第二流道35的布置方向与第一导热板3331、第二导热板3332和分隔件335的层叠方向相同。第一流道34对应第一电池单体21设置,第一导热板3331用于与第一电池单体21导热连接,第一流道34内的流体介质用于与第一电池单体21热交换以调节第一电池单体21的温度;第二流道35对应第二电池单体22设置,第二导热板3332用于与第二电池单体22导热连接,第二流道35内的流体介质用于与第二电池单体22热交换以调节第二电池单体22的温度。
导热连接是指两者之间能够进行热量传递,比如第一导热板3331与第一电池单体21导热连接,则第一电池单体21和第一导热板3331之间能够进行热量传动,则能够通过第一导热板3331在第一流道34内的流体介质和第一电池单体21之间进行热量传递,从而实现第一流道34内的流体介质和第一电池单体21热交换。第二导热板3332与第二电池单体22导热连接,则第二电池单体22和第二导热板3332之间能够进行热量传动,则能够通过第二导热板3332在第二流道35内的流体介质和第二电池单体22之间进行热量传递,从而实现第二流道35内的流体介质和第二电池单体22热交换。
如图53和图54所示,第一流道34内的流体介质和第二流道35内的流体介质可以分别与该两个电池单体20进行热交换,减小相邻的两个电池单体20的温度差异,一个电池单体20的膨胀不会挤压减小另一个电池单体20对应的流道的尺寸或者对另一个电池单体20对应的流道的尺寸影响很小,从而保证另一个电池单体20对应的流道的换热效果,从而保证使用加强件30的电池100的安全性能。比如,第一流道34对应的电池单体20(第一电池单体21)膨胀,会使得第一流道34在第一导热件、第二导热件和分隔件的层叠方向(即第一方向x)上的尺寸减小,但是第一电池单体21不会影响第二流道35在第一导热板3331、第二导热板3332和分隔件335的层叠方向的尺寸或者对第二流道35在第一导热板3331、第二导热板3332和分隔件335的层叠方向的尺寸影响很小,从而保证第二流道35对对应的电池单体20(第二电池单体22)换热能力。同样的,第二流道35对应的电池单体20(第二电池单体22)膨胀,会使得第二流道35在第一导热板3331、第二导热板3332和分隔件335的层叠方向上的尺寸减小,但是第二电池单体22不会影响第一流道34在第一导热板3331、第二导热板3332和分隔件335的层叠方向的尺寸或者对第一流道34在第一导热板3331、第二导热板3332和分隔件335的层叠方向的尺寸影响很小,从而保证第一流道34对对应的电池单体20(第二电池单体22)换热能力。
由于第一流道34和第二流道35分别对应相邻的两个电池单体20,因此可以独立承受各自对应的电池单体20膨胀导致的变形,因此,一个电池单体20膨胀对另一个电池单体20的膨胀干涉很小或者不会对另一个电池单体20的膨胀造成影响,有利于相邻的两个电池单体20的膨胀释放,降低相邻的两个电池单体20的膨胀相互干涉导致电池单体20提前泄压或者发生严重的热失控事故,进一步提高电池100的安全性能。此外,第一流道34内的流体介质和第二流道35内的流体介质可以分别与该两个电池单体20进行热交换,减小相邻的两个电池单体20的温度差异,从而保证使用该加强件30的电池100的安全性能。
第一流道34的数量可以是一个或者多个,第二流道35的数量可以是一个或者多个。在一些实施例中,第一流道34为多个,和/或,第二流道35为多个。
可以是第一流道34的数量为多个,第二流道35的数量为一个;也可以是第一流道34的数量为一个,第二流道35的数量为多个;也可以是第一流道34的数量为多个且第二流道35的数量为多个。在第一流道34为多个的实施例中,即第一导热板3331和分隔件33共同限定出多个第一流道34,多个第一流道34沿第三方向z依次排布,每个第一流道34沿第二方向y延伸。第三方向z垂直第二方向y。在第二流道35为多个的实施例中,即第二导热板3332和分隔件33共同限定出多个第二流道35,多个第二流道35沿第三方向z依次排布,每个第二流道35沿第二方向y延伸。
在另一些实施例中,多个第一流道34的排布方向和多个第二流道35的排布方向可以不相同。第一流道34的延伸方向和第二流道35的延伸方向可以不相同。当然,多个第一流道34的延伸方向可以不相同,多个第二流道35的延伸方向也可以不相同。
第一流道34为多个和/或第二流道35为多个,使得加强件30能够容纳更多的流体介质和使得流体介质分布更加均匀,有利于提高换热效率和换热均匀性,减小电池单体20不同区域的温度差异。
第一流道34的成型方式有多种,在一些实施例中,如图55-图59所示,分隔件335设置有第一凹槽3351,第一凹槽3351形成第一流道34的部分。
“第一凹槽3351形成第一流道34的部分”是指第一凹槽3351的槽壁作为第一流道34的壁的部分。第一凹槽3351有多种形式,比如,如图56所示,沿第一导热板3331、第二导热板3332和分隔件335的层叠方向,分隔件335具有面向第一导热板3331的第一表面3352和面向第二导热板3332的第二表面3353,第一表面3352和第二表面3353相对布置,第一凹槽3351设置于第一表面3352并向靠近第二表面3353的方向凹陷。再比如,如图58所示,第一凹槽3351设置于第一表面3352,第一凹槽3351从第一表面3352向靠近第二表面3353的方向凹陷,且在第二表面3353的与第一凹槽3351对应的位置形成第一凸部3354。
第一凹槽3351沿第二方向y贯穿分隔件335的至少一端。在本实施例中,第一凹槽3351沿第二方向y贯穿分隔件335的两端,则流体介质可以从第一流道34沿第二方向y的一端流入,从第一流道34沿第二方向y的另一端流出。
设置在分隔件335上的第一凹槽3351形成第一流道34的部分,在保证第一流道34的截面积足够的情况下,减小了热管理部件30沿第一导热板3331、第二导热板3332和分隔件335的层叠方向上的尺寸。
如图55-图58所示,在一些实施例种,第一导热板3331封堵第一凹槽3351面向第一导热板3331的槽口,以形成第一流道34。
在一些实施例中,第一导热板3331面向分隔件335的一侧与第一表面3352相抵,以使第一导热板3331封堵第一凹槽3351的面向第一导热板3331的槽口,从而形成第一流道34,换句话说,第一导热板3331形成第一流道34的另一部分。因此,在第一导热板3331面向分隔件335的一侧与第一表面3352相抵的实施例中,第一凹槽3351的槽壁作为第一流道34的壁的部分,第一导热板3331面向分隔件335的表面作为第一流道34的壁的另一部分。第一导热板3331面向分隔件335的一侧与第一表面3352相抵,可以是第一导热板3331面向分隔件335的表面与第一表面3352接触,但没有连接关系,也可以是第一导热板3331面向分隔件335的表面与第一表面3352接触连接,比如焊接。
另一些实施例中,第一表面3352未设置第一凹槽3351,第一导热板3331面向分隔件33的一侧与第一表面3352之间存在间隙,则第一凹槽3351、第一表面3352和第一导热板3331共同限定出第一流道34。
第一导热板3331封堵第一凹槽3351面向第一导热板3331的槽口,以形成第一流道34,使得第一导热板3331和分隔件335在第一导热板3331、第二导热板3332和分隔件445的层叠方向上设置的更加紧凑,从而减小了热管理部件30沿第一导热板3331、第二导热板3332和分隔件445的层叠方向上的尺寸。
在另一些实施例中,分隔件335的第一表面3352未设置第一凹槽3351,第一导热板3331面向分隔件335的一侧与第一表面3352之间存在间隙,第一表面3352形成第一流道34的壁的部分,第一导热板3331面向分隔件335的表面形成第一流道34的壁的另一部分。
第二流道35的成型方式有多种,如图55-图58所示,在一些实施例中,分隔件33设置有第二凹槽3355,第二凹槽3355形成第二流道35的部分。
“第二凹槽3355形成第二流道35的部分”是指第二凹槽3355的槽壁作为第二流道35的壁的部分。第二凹槽3355有多种形式,比如,如图55所示,沿第一导热板3331、第二导热板3332和分隔件的层叠方向,第二凹槽3355设置于第二表面3353并向靠近第一表面3352的方向凹陷。再比如,如图57所示,第二凹槽3355设置于第二表面3353,第二凹槽3355从第二表面3353向靠近第一表面3352的方向凹陷,且在第一表面3352的与第二凹槽3355对应的位置形成第二凸部3356。
第二凹槽3355沿第二方向y贯穿分隔件335的至少一端。在本实施例中,第二凹槽3355沿第二方向y贯穿分隔件335的两端,则流体介质可以从第二流道35沿第二方向Z的一端流入,从第二流道35沿第二方向Z的另一端流出。
设置在分隔件335上的第二凹槽3355形成第二流道35的部分,在保证第二流道35的截面积足够的情况下,减小了热管理部件30沿第一导热板3331、第二导热板3332和分隔件335的层叠方向上的尺寸。
如图55-图58所示,在一些实施例中,第二导热板3332封堵第二凹槽3355面向第二导热板3332的槽口,以形成第二流道35。
在一些实施例中,第二导热板3332面向分隔件335的一侧与第二表面3353相抵,以使第二导热板3332封堵第二凹槽3355的面向第二导热板3332的槽口,从而形成第二流道35,换句话说,第二导热板3332形成第一流道34的另一部分。因此,在第二导热板3332面向分隔件335的一侧与第二表面3353相抵的实施例中,第二凹槽3355的槽壁作为第二流道35的壁的部分,第二导热板3332面向分隔件335的表面作为第二流道35的壁的另一部分。第二导热板3332面向分隔件335的一侧与第二表面3353相抵,可以是第二导热板3332面向分隔件335的表面与第二表面3353接触,但没有连接关系,也可以是第二导热板3332面向分隔件335的表面与第二表面3353接触连接,比如焊接。
另一些实施例中,第二表面3353未设置第二凹槽3355,第二导热板3332面向分隔件335的一侧与第二表面3353之间存在间隙,则第二凹槽3355、第二表面3353和第二导热板3332共同限定出第二流道35。
第二导热板3332封堵第二凹槽3355面向第二导热板3332的槽口,以形成第二流道35,使得第二导热板3332和分隔件335在第一导热板3331、第二导热板3332和分隔件的层叠方向上设置的更加紧凑,从而减小了加强件30沿第一导热板3331、第二导热板3332和分隔件335的层叠方向上的尺寸。
请继续参照图55-图58,在第一流道34为多个的实施例中,第一凹槽3351为多个,多个第一凹槽3351沿第三方向z排列,第三方向z垂直于第一导热板3331、第二导热板3332和分隔件335的层叠方向。第一导热板3331封堵多个第一凹槽3351面向第一导热板3331的槽口,从而形成多个第一流道34。
在第二流道35为多个的实施例中,第二凹槽3355为多个,多个第二凹槽3355沿第三方向z排列,第三方向z垂直于第一导热板3331、第二导热板3332和分隔件335的层叠方向。第二导热板3332封堵多个第二凹槽3355面向第二导热板3332的槽口,从而形成多个第二流道35。
其中,分隔件335可以仅在第一表面3352设置多个第一凹槽3351,第二表面3353设置一个第二凹槽3355或者不设置第二凹槽3355;或者分隔件335仅在第二表面3353设置多个第二凹槽3355,第一表面3352设置一个第一凹槽3351或者不设置第一凹槽3351;或者分隔件335在第一表面3352设置多个第一凹槽3351且第二表面3353设置多个第二凹槽3355。
第一凹槽3351为多个,能够形成多个第一流道34;和/或第二凹槽3355为多个,能够形成多个第二流道35,使得加强件30能够容纳更多的流体介质和使得流体介质分布更加均匀,有利于提高换热效率和换热均匀性,减小电池单体20不同区域的温度差异。
请参照图55-图58,第一凹槽3351和第二凹槽3355沿第三方向z交替布置。
“第一凹槽3351和第二凹槽3355在第三方向z交替布置”,是指沿第一导热板3331、第二导热板3331和分隔件335的层叠方向,每个第二凹槽3355在第一表面3352上的投影沿第三方向z的至少部分位于相邻的两个第一凹槽3351之间;和/或,沿第一导热板3331、第二导热板3331和分隔件335的层叠方向,每个第一凹槽3351在第二表面3353上的投影沿第三方向z的至少部分位于相邻的两个第二凹槽3355之间,以使第一流道34和第二流道35在第三方向z交替布置。
图55-图56中示出了沿第一导热板3331、第二导热板3332和分隔件的层叠方向,每个第二凹槽3355在第一表面3352上的投影全部位于相邻的两个第一凹槽3351之间的情况。图57-图58中示出了沿第一导热板3331、第二导热板3332和分隔件的层叠方向,每个第二凹槽3355在第一表面3352上的投影沿第三方向z的一部分位于相邻的两个第一凹槽3351之间,每个第二凹槽3355在第一表面3352上的投影沿第三方向z的另一部分与第一凹槽3351重叠的情况。
第一凹槽3351和第二凹槽3355沿第三方向z交替布置,使得第一流道34和第二流道35沿第三方向z交替布置,热管理部件30位于相邻的两个电池单体20之间时,与第一流道34对应的电池单体20沿第三方向z温度分度较为均匀和与第二流道35对应的电池单体20沿第三方向z温度分度较为均匀。
请参照图57-图59,在一些实施例中,分隔件335为波纹板,结构简单,制造方便。
在本实施例中,第一凹槽3351设置于第一表面3352,第一凹槽3351从第一表面3352向靠近第二表面3353的方向凹陷,且在第二表面3353的与第一凹槽3351对应的位置形成第一凸部3354;第二凹槽3355设置于第二表面3353,第二凹槽3355从第二表面3353向靠近第一表面3352的方向凹陷,且在第一表面3352的与第二凹槽3355对应的位置形成第二凸部3356,第一凹槽3351和第二凹槽3355沿第三方向z交替布置,第一凸部3354和第二凸部3356沿第三方向z交替布置,从而形成波纹板。
在另一些实施例中,分隔件335也可以是其他结构形式的部件,如图55和图56所示。
如图60所示,第一流道34的形成也可以是采用其他形式形成,比如,在另一些实施例中,分隔件335包括本体部3357和第一分隔部3358,第一分隔部3358沿第一方向x的两端分别连接于本体部3357和第一导热板3331,本体部3357、第一分隔部3358和第一导热板3331共同限定出第一流道34。
本体部3357和第一分隔部3358均为平板结构,本体部3357和第一导热板3331之间限定出第一空间。第一分隔部3358的数量可以是一个或者多个,在第一分隔部3358为多个的实施例中,多个第一分隔部3358沿第一方向Y间隔布置,多个第一分隔部3358将第一空间分隔成多个第一子空间,从而本体部3357、第一导热板3331和多个第一分隔部3358共同限定出多个第一流道34。本体部3357和第一分隔部3358可以一体成型,比如本体部3357和第一分隔部3358通过浇筑、挤压等一体成型工艺成型。本体部3357和第一分隔部3358分体设置,再通过焊接、焊接、螺钉连接等放置连接为整体。
本体部3357、第一分隔部3358和第一导热板3331共同限定出多个第一流道34,使得加强件30能够容纳更多的流体介质和使得流体介质分布更加均匀,有利于提高换热效率和换热均匀性,减小电池单体20不同区域的温度差异,且第一分隔部3358能够支撑第一导热板3331,增强第一导热板3331抵抗变形的能力。
第二流道35的形成也可以是采用其他形式形成,比如,请继续参照图13,分隔件33还包括第二分隔部3359,第二分隔部3359沿第二方向Z的两端分别连接于本体部3357和第二导热板3332,本体部3357、第二分隔部3359和第二导热板3332共同限定出第二流道35。
本体部3357和第二分隔部3359均为平板结构,本体部3357和第二导热板3332之间限定出第二空间。第二分隔部3359的数量可以是一个或者多个,在第二分隔部3359为多个的实施例中,多个第二分隔部3359沿第一方向Y间隔布置,多个第二分隔部3359将第二空间分隔成多个第二子空间,从而本体部3357、第二导热板3332和多个第二分隔部3359共同限定出多个第二流道35。本体部3357和第二分隔部3359可以一体成型,比如本体部3357和第二分隔部3359通过浇筑、挤压等一体成型工艺成型。本体部3357和第二分隔部3359分体设置,再通过焊接、焊接、螺钉连接等放置连接为整体。此外,本体部3357、第一分隔部3358和第二分隔部3359三者可以一体成型。
本体部3357、第二分隔部3359和第二导热板3332共同限定出多个第二流道35,使得加强件30能够容纳更多的流体介质和使得流体介质分布更加均匀,有利于提高换热效率和换热均匀性,减小电池单体20不同区域的温度差异,且第二分隔部3359能够支撑第一导热板3331,增强第二导热板3332抵抗变形的能力。
第一流道34和第二流道35可以沿相同的方向延伸,也可以沿不同的方向延伸。在本实施例中,第一流道34的延伸方向和第二流道35的延伸方向一致。第一流道34和第二流道35均沿第二方向y延伸,方便制造。
对在第一流道34和第二流道35内流动的流体介质而言,沿流体介质的流动方向,第一流道34内的流体介质与对应的电池单体20的换热能力逐渐减弱,比如加强件30用于对电池单体20降温,沿流体介质的流动方向,位于第一流道34和第二流道35内的流体介质的温度会逐渐升高,温度较高的流体介质对电池单体20的降温能力减弱。
基于上述考虑,在一些实施例中,沿第一流道34和第二流道35的延伸方向,第一流道34具有第一进口(图中未示出)和第一出口(图中未示出),第二流道35具有第二进口(图中未示出)和第二出口(图中未示出),第一进口至第一出口的方向与第二进口至第二出口的方向相反。
第一进口供流体介质进入第一流道34,第一出口供流体介质排出第一流道34;第二进口供流体介质进入第二流道35,第二出口供流体介质排出第二流道35。
示例性地,如图61所示,在电池单体20的两侧均设有加强件30的实施例中,电池单体20一侧于一个加强件30的第一流道34对应,电池单体20另一侧与另一个加强件30的第二流道35对应,则该电池单体20的两侧的流体介质沿相反的方向流通,沿第一流道34和第二流道35的延伸方向(第二方向y),第一流道34内的流体介质和第二流道35内的流体介质的换热能力能够互补,从而减小该电池单体20的局部温度的差异性。
因此,第一进口至第一出口的方向与第二进口至第二出口的方向相反,即第一流道34内的流体介质的流动方向和第二流道35内的流体介质的流动方向相反,电池单体20越靠近对应的流道的进口处的区域的换热效果越好,电池单体20越靠近对应的流道的出口处的区域的换热效果越差,第一流道34和第二流道35的这种布置方式能够减少电池100内电池单体20热管理的局部差异性,使得换热更加均匀。
如图62所示,在一些实施例中,加强件30包括位于分隔件335的一端的连通腔36,第一流道34与连通腔36连通,第二流道35与连通腔36连通。
连通腔36位于分隔件33的一端,分隔件335、第一导热板3331和第二导热板3332共同限定出连通腔36。在本实施例中,连通腔36为在第二方向y位于分隔件335的一端和第一导热板3331以及第二导热板3332之间的间隙。
在另一些实施例中,连通腔36也可以是由其他结构形成,比如,加强件30还包括连通管,第一流道34和第二流道35通过连通管连通,连通管的内部通道即为连通腔36。
第一流道34和第二流道35的数量可以均为多个。在第一流道34数量为多个的实施例中,可以是全部第一流道34与连通腔36连通,则每个第一流道34内的流体介质从第一出口排出第一流道34后,经过连通腔36从第二进口进入第二流道35。在另一些实施例中,可以是多个第一流道34中的部分第一流道34与连通腔36连通,这些第一流道34中的流体介质从第一出口经过连通腔36后从第二进口进入第二流道35;多个第一流道34中的另一部分第一流道34未与连通腔36连通,这些第一流道34中的流体介质不能进入第二流道35。图62中的空心箭头所指的方向为流体介质在第一流道34和第二流道35内的流向。
在第二流道35数量为多个的实施例中,可以是全部第二流道35与连通腔36连通,则第一流道34内的流体介质从第一出口排出第一流道34后,经过连通腔36从第二进口可以进入每个第二流道35。在另一些实施例中,可以是多个第二流道35中的部分第二流道35与连通腔36连通,与连通腔36连通的第一流道34内的流体介质经过连通腔36后从第二进口进入与连通腔36连通的第二流道35;多个第二流道35中的另一部分第二流道35未与连通腔36连通,则第一流道34内的流体介质不能进入这些第二流道35。
在本实施例中,第一流道34和第二流道35的数量均为多个,每个第一流道34和每个第二流道35均与连通腔36连通。
第一流道34和第二流道35的数量可以相同也可以不同。
第一流道34和连通腔36连通以及第二流道35和连通腔36连通,则第一流道34的流体介质能够流进第二流道35,且从第一流道34的出口(第一出口)流出的流体介质从第二流道35的进口(第二进口)流进第二流道35,这种布置方式能够减少电池100内电池单体20热管理的局部差异性,使得换热更加均匀。
请参照图25、图26、图62、图63,在一些实施例中,加强件30包括介质入口3412和介质出口3422,介质入口3412通过第一流道34与连通腔36连通,介质出口3422通过第二流道35与所述连通腔36连通。
介质入口3412设置于第一导热板3331,并与第一流道34连通,介质出口3422设置于第二导热板3332,并与第二流道35连通。
流体介质从介质入口3412进入第一流道34,并经过连通腔36流进第二流道35后,从介质出口3422排出。流体介质在流动的过程中与电池单体20进行热交换。图62和图63中的空心箭头所指的方向均为流体介质在第一流道34和第二流道35内的流向。
介质入口3412和介质出口3422的设置,便于流体介质进入第一流道34和第二流道35,且便于流体介质与电池单体20换热后排出第一流道34和第二流道35,以使未进行换热的流体介质进入第一流道34和第二流道35,从而保证第一流道34和第二流道35内的流体介质的换热能力。
请参照图62、图63,在一些实施例中,沿第一流道34的延伸方向,介质入口3412设置于第一导热板3331远离连通腔36的一端;沿第二流道35的延伸方向,介质出口3422设置于第二导热板3332远离连通腔36的一端。
第一流道34的延伸方向和第二流道35的延伸方向均与第二方向y平行。在另一些实施例中,第一流道34的延伸方向和第二流道35的延伸方向可以不同,比如,第一流道34的延伸方向与第二方向y平行,第二流道35的延伸方向与预设平行,预设方向与第二方向Z的夹角为锐角或者预设与第二方向y垂直,预设方向垂直第一方向x。
介质入口3412插设有介质流入管37,方便介质入口3412与提供流体介质的设备连通。介质出口3422插设有介质流出管38,便于介质出口3422与回收流体介质的设备连通。
介质入口3412设置于第一导热板3331远离连通腔36的一端,介质出口3422设置于第二导热板3332远离连通腔36的一端,则流体介质从介质入口3412进入第一流道34后沿第一流道34的延伸方向流经整个第一流道34并进入第二流道35,并沿第二流道35的延伸方向流经整个第二流道35后从介质出口3422排出,以使流体介质在热管理部件30内流经的路径最长,以与电池单体20充分换热,提高换热效率和换热均匀性。
如图62、图63所示,在一些实施例中,第一流道34沿其延伸方向远离连通腔36的一端与第二流道35沿其延伸方向远离连通腔36的一端彼此不连通。
本实施例中,第一流道34的延伸方向和第二流道35的延伸方向均与第二方向y平行。连通腔36位于分隔件33沿第二方向y的一端。如图63所示,加强件30还包括堵封件39(或称为封堵件),堵封件39设置于分隔件335沿第二方向y远离连通腔36的一端,以封堵第二流道35沿第二方向y远离连通腔36的一端,以阻止从介质入口3412进入第一流道34的流体介质在第一流道34内沿背离连通腔36的方向流进第二流道35。当然,在另一些实施例中,堵封件39设置于分隔件335沿第二方向y远离连通腔36的一端,也可以用于封堵第一流道34沿第二方向y远离连通腔36的一40端,以阻止从介质入口3412进入第一流道34的流体介质在第一流道34内沿背离连通腔36的方向流进第二流道35。
堵封件39与分隔件335可以是分体设置,再将分体设置的堵封件39和分隔件335连接为整体结构,比如堵封件39和分隔件335通过焊接、粘接等方式连接为整体。堵封件39与分隔件335也可以是一体成型,比如通过浇筑、冲压等一体成型的工艺形成。
沿第一导热板3331、第二导热吧3332和分隔件335的层叠方向,介质出口3422在分隔件353上的投影位于堵封件39面向连通腔36的一侧,以使第二流道35内的流体介质能够从介质入口3412排出。
第一流道34沿其延伸方向远离连通腔36的一端与第二流道35沿其延伸方向远离连通腔36的一端彼此不连通,则流体介质进入第一流道34后只能流经整个第一流道34后从连通腔36进入第二流道35并流经整个第二流道35后从介质出口3422排出,以使流体介质在热管理部件30内流经的路径最长,以与电池单体20充分换热,提高换热效率和换热均匀性。
在一些实施例中,第一流道34和第二流道35均为多个,每个第一流道34和每个第二流道35均与连通腔36连通。
在另一些实施例中,第一流道34的数量可以是一个,第二流道35的数量为多个,每个第二流道35均与连通腔36连通;或者第一流道34的数量和第二流道35的数量均为一个;或者第二流道35的数量可以是一个,第一流道34的数量为多个,每个第一流道34均与连通腔36连通。
第一流道34和第二流道35均为多个且均匀连通腔36连通,每个第一流道34的流体介质能够流进每个第二流道35,且从第一流道34的出口流出的流体介质从第二流道35的进口流进第二流道35,这种布置方式能够减少电池100内电池单体20热管理的局部差异性,使得换热更加均匀。
在第一流道34为多个的实施例中,介质入口3412的数量可以有不同的设置,比如,请结合参照图53、图63,在一些实施例中,介质入口3412为一个,每个第一流道34连通连通腔36和介质入口3412。
在堵封件39封堵第二流道35远离连通腔36的一端的实施例中,如图63所示,堵封件39背离连通腔36的一侧与第一导热板3331和第二导热板3332之间形成分流间隙310,介质入口3412与每个第一流道34通过分流间隙310连通。从介质入口3412流入的流体介质,进入分流间隙310,再从分流间隙310分配至每个第一流道34。
因此,介质入口3412为一个,便于实现各个第一流道34同步流入流体介质,且第一导热板3331上设置的介质入口3412的数量较少,降低介质入口3412的设置对第一导热板3331的结构强度的影响。也使得结构加强件30的结构更加简单、便于制造。
在另一些实施例中,介质入口3412为多个,每个第一流道34连通连通腔36和一个介质入口3412。
介质入口3412的数量和第一流道34的数量相同,且一一对应。每个介质入口3412供流体介质流入对应的第一流道34内,便于独立控制各个第一流道34的流体介质进入情况以及便于根据实际需要控制流体介质进入需要的第一流道34,从而控制流体介质在热调节管内部的分布,以便合理调节电池单体20的温度。
在第二流道35为多个的实施例中,如图52所示,介质出口3422为多个,每个第二流道35连通连通腔36和一个介质出口3422。
第二流道35为多个,介质出口3422为多个,介质出口3422和第二流道35一一对应设置,各个第二流道35内的流体介质从对应的介质出口3422排出。
在另一些实施例中,介质出口3422也可以为一个,该介质出口3422与每个第二流道35连通,所有第二流道35内的流体介质均从该介质出口3422排出。
而每个第二流道35连通连通腔36和一个介质出口3422,以使流体介质能够更快的排出第二流道35,提高换热效率。
在一些实施例中,分隔件335为一体成型结构。
分隔件335可以是采用冲压、浇筑等一体成型方式形成的结构。在分隔件335为波纹板的实施例中,波纹板采用冲压成型。分隔件335为一体成型结构,便于制造且结构强度较好。
在一些实施例中,第一导热板3331可以是一体成型结构,第二导热板3332可以是一体成型结构,比如第一导热板3331和第二导热板3332均采用浇筑或者冲压成型。
在一些实施例中,第一导热板3331与分隔件335焊接,和/或,第二导热板3332与分隔件335焊接。
可以是第一导热板3331与分隔件335焊接,第二导热板3332和分隔件335采用其他方式(比如粘接)连接或者第二导热板3332与分隔件335接触而没有连接关系。也可以是第二导热板3332与分隔件335焊接,第一导热板3331和分隔件335采用其他方式(比如粘接)连接或者第一导热板3331与分隔件335接触而没有连接关系,在本实施例中,第一导热板3331和第二导热板3332均与分隔件335焊接。
在分隔板335为波纹板的实施例中,第一导热板3331与第二凸部3356焊接,第二导热板3332与第一凸部3354焊接(请参照图58),这样的连接方式使得分隔件335能够起到支撑第一导热板3331和第二导热板3332的作用,提高第一导热板3331和第二导热板3332抵抗电池单体20膨胀变形的能力。
通过焊接实现第一导热板3331和分隔件335,使得第一导热板3331和分隔件335的连接稳定性更好;通过焊接实现第二导热板3332和分隔件335,使得第二导热板3332和分隔件335的连接稳定性更好。
如图64所示,电池100包括相邻的第一电池单体21、第二电池单体22和加强件30,加强件30设置于第一电池单体21和第二电池单体22之间,第一导热板3331与第一电池单体21导热连接,第二导热板3332与第二电池单体22导热连接。
第一流道34内的流体介质和第二流道35内的流体介质可以分别与第一电池单体21和第二电池单体22进行热交换,减小第一电池单体21和第二电池单体22的温度差异。
第一电池单体21的膨胀不会挤压减小第二电池单体22对应的第二流道35的尺寸或者对第二电池单体对应的第二流道35的尺寸影响很小,从而保证第二电池单体22对应的第二流道35的换热能力;第二电池单体22的膨胀不会挤压减小第一电池单体21对应的第一流道34的尺寸或者对第一电池单体对应的第一流道34的尺寸影响很小,从而保证第一电池单体21对应的第一流道34的换热能力,从而保证使用该加强件30的电池100的安全性能。
此外,第一流道34和第二流道35分别对应第一电池单体21和第二电池单体22,因此第一流道34可以承受因第一电池单体21的膨胀导致的变形,第二流道35可以承受因第二电池单体22膨胀导致的变形,因此,第一电池单体21膨胀对第二电池单体22的膨胀干涉很小或者不会对第二电池单体22的膨胀造成影响,第二电池单体22膨胀对第一电池单体21的膨胀干涉很小或者不会对第一电池单体21的膨胀造成影响,有利于第一电池单体21和第二电池单体22的膨胀释放,降低第一电池单体21和第二电池单体22的膨胀相互干涉导致第一电池单体21和第二电池单体22提前泄压或者发生严重的热失控事故,进一步提高电池100的安全性能。
请继续参照图64,在一些实施例中,第一电池单体21背离第二电池单体22的一侧也可以设置加强件30,第二电池单体22背离第一电池单体21的一侧也可以设置加强部件30。
为方便叙述,定义位于第一电池单体21和第二电池单体22之间的加强件30为第一加强件,位于第一电池单体21背离第二电池单体22的一侧的加强件30为第二加强件,位于第二电池单体22背离第一电池单体21的一侧的加强件30为第三加强件。
第一加强件的第一流道34内的流体介质和第二流道35内的流体介质的流动方向相反。第二加强件的第一流道34内的流体介质和第二流道35内的流体介质的流动方向相反。第三加强件的第一流道34内的流体介质和第二流道35内的流体介质的流动方向相反。
第二加强件的第二导热板3332与第一电池单体21背离第二电池单体22的一侧导热连接,第一加强件的第一流道34的流体介质的流动方向和第二加强件的第二流道35的加强件30的方向相反。这样位于第一电池单体21的两侧的流体介质沿第二方向y的换热能力能够互补,从而减小第一电池单体21的局部温度的差异性。
第三加强件的第一导热板3331与第二电池单体22背离第一池单体的一侧导热连接,第一加强件的第二流道35的流体介质的流动方向和第三加强件的第一流道34的加强件30的方向相反。这样位于第二电池单体22的两侧的流体介质沿第二方向y的换热能力能够互补,从而减小第二电池单体22的局部温度的差异性。
在一些实施例中,如图65-图82所示,加强件30的至少一部分被构造成在受压时可变形,以便于使得加强件30为电池单体20提供一定的膨胀空间,有利于减小加强件30和电池单体20之间的挤压力。
在一些实施例中,如图65所示,加强件30包括层叠布置的换热层400和可压缩层500,换热层400可以提高电池单体20的换热效率,提高电池单体20的散热能力,可压缩层500的弹性模量小于换热层400的弹性模量,在受到电池单体20释放的膨胀力后,可压缩层500可沿电池单体20的膨胀力作用方向产生形变,从而吸收电池单体20膨胀的部分,保证电池单体20膨胀空间,避免整个电池100产生较大的形变,并且可压缩层500有利于在装配电池时吸收公差,便于安装以及保持电池的紧凑结构。
换热层400为用于与电池单体20进行换热的层状结构。当电池单体20的温度比换热层400的温度高时,电池单体20的热量传导至换热层400,使得电池单体20的温度下降;当电池单体20的温度比换热的温度低时,换热层400的热量传导至电池单体20,使得电池单体20的温度升高。
可压缩层500为受到作用力后压缩形变较大的层状结构。
可选地,当可压缩层500受到沿层叠方向的作用力后,可压缩层500可沿层叠方向压缩并产生较大的形变。
弹性模量是材料或结构在弹性变形阶段,其应力和应变成正比例关系。在弹性变形阶段且应力相同的前提下,弹性模量越大,材料或结构的可形变能力越小;弹性模量越小,材料或结构的可形变能力越大。
换热层400的层数可以是一层或多层,可压缩层500的层数也可以是一层或多层。
作为示例,如图66所示,加强件30包括一层换热层400和一层可压缩层500;如图67所示,加强件30包括两层换热层400和一层可压缩层500,可压缩层500设置于两层换热层400之间;如图68所示,加强件30包括一层换热层400和两层可压缩层500,换热层400设置于两层可压缩层500之间。
在一些实施例中,可压缩层500包括可压缩腔501,可压缩腔501为受到可压缩层500受到作用力后体积变小的腔体。
在受到电池单体20释放的膨胀力后,可压缩腔501的气体被压缩从而使得可压缩层500沿电池单体20的膨胀力作用方向产生形变。
在一些实施例中,可压缩腔501内填充有相变材料或弹性材料。
相变材料是指温度不变的情况下而改变物质状态并能提供潜热的物质。转变物理性质的过程称为相变过程,此时相变材料将吸收或释放大量的潜热。
弹性材料是指弹性模量较低的材料,弹性材料可在电池单体的膨胀力作用下发生较大形变。
当可压缩腔501中填充有相变材料时,可以提高电池的热容,使得加强件30能够实现给电池单体20保温或吸收电池单体20热量的作用;当可压缩腔501中填充有弹性材料时,弹性材料具有较好的弹性,在受到电池单体释放的膨胀力后,弹性材料被压缩从而使得可压缩层500沿电池单体20的膨胀力作用方向产生形变,并在膨胀力消失后实现回弹,此外,弹性材料还能够增加可压缩层500的支撑强度。
可选地,弹性材料包括橡胶材料。
在一些实施例中,换热层400包括用于容纳换热介质的换热腔401(也可称为上文所述的空腔30a)。换热介质为用于与电池单体进行换热的介质,一般为比热容较大且可以在电池工作温度下保持流动性的液体等。
可选地,换热腔401可以为密封的或开放的。
在一些实施例中,如图69所示,换热腔401中设置有第一支撑件410(也可称为上文所述的加强筋),第一支撑件410为支撑于换热腔401中以防止换热腔401被挤压发生形变的结构。第一支撑件410能够用于提高换热层400的强度,从而避免在受到电池单体释放的膨胀力后,换热层400产生较大的形变。
可选地,第一支撑件410的弹性模量大于可压缩层500的弹性模量。
由于可压缩层500的弹性模量小于第一支撑件410的弹性模量,更容易发生形变,加强件30在受到电池单体释放的膨胀力后,可压缩层500可沿电池单体20的膨胀力作用方向产生较大的形变,而换热层400基本不会产生形变。
在一些实施例中,换热层400和可压缩层500沿第一方向层叠布置,第一支撑件410沿第一方向x支撑于换热腔401中。
在将加强件30应用于电池中时,一般使得电池单体20沿第一方向x抵接于加强件30,后续电池单体20释放的膨胀力也基本沿第一方向x,沿第一方向x支撑于换热腔401中的第一支撑件410能够较大程度提高换热层400的弹性模量,使得加强件30在受到电池单体释放的沿第一方向x的膨胀力后,可压缩层500可沿第一方向x产生较大的形变,而换热层400基本不会产生形变。
在一些实施例中,参阅图67,可压缩层500设置于换热腔401中。
加强件30沿层叠方向的两端均为换热腔401,可以有效提高加强件30的两端的电池单体的换热效率,使得整个电池的温度保持的较低水平。
在一些实施例中,如图70所示,换热腔401中还设置有用于将可压缩层500固定于换热腔401中的第一连接结构420(也可称为上文所述的第一加强筋)。
第一连接结构420为两端分别连接于换热腔401内壁和可压缩层500外壁的结构。第一连接结构420能够固定可压缩层500,以防止可压缩层500相对于换热腔401的位置改变。
可选地,至少部分第一连接结构420沿层叠方向设置于换热腔401中。第一连接结构420一方面能够固定可压缩层500,另一方面能够用于提高换热层400的强度,从而避免在受到电池单体释放的膨胀力后,换热层400产生较大的形变。
在一些实施例中,可压缩层500的外壁和换热腔401的内壁之间限定出换热空间,第一连接结构420设置于换热空间中并将换热空间划分为个流道402(也可称为流道30c)。
多个流道402有利于换热介质在换热空间中循环流通,避免局部加强件30的温度较高。
可选地,换热腔401中设置有多个第一连接结构420。
可选地,第一连接结构420的弹性模量大于可压缩层500的弹性模量。
在一些实施例中,请参阅图71-图74,可压缩层500包括第一可压缩管510,换热层400包括第一换热管430,第一可压缩管510套设在第一换热管430中。
第一可压缩管510为内部具有可压缩腔501且可被挤压变形的管状结构。
第一换热管430为内部具有换热腔401的管状结构,且换热腔410中设置有至少一个第一连接结构420的管状结构,至少一个第一连接结构420的末端限定出设置第一可压缩管510的第一安装腔431。
本申请的加强件30由第一可压缩管510和第一换热管430套设而成,有利于加强件30的成型。
可选地,第一可压缩管510和第一换热管430套设后,第一换热管430中的至少一个第一连接结构420的末端抵接于第一可压缩管510的外壁。
可选地,加强件30具有安装于电池中后对应电池单体的高度方向的第三方向z,第一换热管430内设置有两个沿第三方向z延伸的第一连接结构420,且两个第一连接结构420分别设置于第一换热管430沿第三方向z的两端。
可选地,第一换热管430具有两个相对且用于与电池单体的大面即第一壁201抵接的第一抵接面432。第一抵接面432能够提高第一换热管430与电池单体的接触面积,从而提高加强件30对电池单体的换热能力。
可选地,第一可压缩管510具有两个相对且用于与电池单体的大面即第一壁201配合的第一配合面511。电池单体的膨胀变形一般沿垂直于大面的方向,第一配合面511能够在电池单体的膨胀力的作用下发生形变,从而吸收电池单体膨胀的部分。
在一些实施例中,可选地,请参阅图68,换热层400设置于可压缩腔501中。
加强件30沿层叠方向的两端均为换热腔401,可以有效提高加强件30的形变能力,使其在受到沿层叠方向的两端的电池单体释放的膨胀力后,加强件30能够产生较好的形变,以吸收电池单体释放膨胀的部分。
在一些实施例中,可压缩层500包括导热壁,导热壁限定出可压缩腔501。
导热壁为可压缩层500的具有较好导热效果的壁结构。
作为示例,导热壁的材料可以为导热硅胶、金属等。
可压缩层500的外壁为导热壁,从而有效将电池单体的热量传导至内部的换热层400中进行换热。
在一些实施例中,请参阅图75-图78,图75为本申请一些实施例的第二换热管的结构示意图,图76为本申请一些实施例的第二可压缩管的结构示意图,图77为本申请一些实施例的第二可压缩管的侧视图,图78为本申请一些实施例的第二可压缩管和第二换热管装配后的结构示意图。可压缩层500包括第二可压缩管520,换热层400包括第二换热管440,第二换热管440套设在第二可压缩管520中。
第二换热管440为内部具有换热腔401的管状结构。
第二可压缩管520为内部具有可压缩腔501的管状结构,且可压缩腔501中设置有至少一个第二连接结构530的管状结构,至少一个第二连接结构530的末端限定出设置第二换热管440的第二安装腔521。
本申请的加强件30由第二可压缩管520和第二换热管440套设而成,有利于加强件30的成型。
可选地,第二可压缩管520和第二换热管440套设后,第二可压缩管520中的至少一个第二连接结构530的末端抵接于第二换热管440的外壁。
可选地,加强件30具有安装于电池中后对应电池单体的高度方向的第三方向z,第二可压缩管520内设置有两个沿第三方向z延伸的第二连接结构530,且两个第二连接结构530分别设置于第二可压缩管520沿第三方向z的两端。
可选地,第二可压缩管520具有两个相对且用于与电池单体20的大面即第一壁201抵接的第二配合面522。第二配合面522能够提高第二可压缩管520与电池单体20的接触面积,从而提高加强件30对电池单体20的换热能力。并且电池单体20的膨胀变形一般沿垂直于大面的方向,第二配合面522能够在电池单体20的膨胀力的作用下发生形变,从而吸收电池单体20膨胀的能力。
可选地,第二换热管440具有两个相对且用于与电池单体20的大面即第一壁201配合的第二抵接面441。两个第二抵接面441对应两个第二配合面522,并吸收两个第二配合面522传导过来的热量。
可选地,第二换热管440内部设置有多个第二支撑件450。
换热腔401的内壁限定出换热空间,多个第二支撑件450设置于换热空间中并将换热空间划分为多个流道402。
可选地,第二支撑件450的弹性模量大于可压缩层500的弹性模量。
在一些实施例中,请参阅图65、图79和图80,加强件30还包括集流元件106,集流元件106包括流液腔1061,流液腔1061连通于换热腔401,流液腔1061和换热腔401均密封隔绝于可压缩腔501。
集流元件106为连接换热层400与储存换热介质容器的部件。
流液腔1061为集流元件106内连通换热腔401和储存换热介质容器的腔体。
集流元件106能够用于连通储存换热介质的容器,使换热腔401中的换热介质流通,可压缩腔501和换热腔401不连通,使得换热介质无法进入到可压缩腔501中,避免可压缩腔501在受到电池单体20释放的膨胀力后发生形变导致换热介质溢出。
可选地,集流元件106还包括进出液口1062,进出液口1062连通于流液腔1061。
可选地,加强件30包括一个集流元件106,集流元件106设置于换热层400的一端,换热层400一端开口,流液腔1061通过一端开口连通于换热腔401。
可选地,加强件30包括两个集流元件106,两个集流元件106分别设置于换热层400的两端,换热层400两端开口,两个流液腔1061分别通过两端开口连通于换热腔401。
可选地,加强件30还包括连接件,连接件为中空结构,连接件以其一端开口密封连接于进出液口1062。
请参阅图64和84,图81为本申请一些实施例的加强件30和电池单体装配20后的结构示意图。将加强件30应用于电池100中时,加强件30可以设置于相邻两个电池单体20之间,且加强件30的两个相对面分别抵接于相邻两个电池单体20的两个相邻的大面;加强件30还可以设置于箱体10和靠近箱体10的电池单体20之间。
每个加强件30可以单独与储存换热介质容器连接,或是相邻的加强件30的进出液口1062通过管道107连接。
在一些实施例中,参阅图65和图82,换热层400和可压缩层500沿第二方向33延伸布置,可压缩层500沿第二方向33的至少一端凸出于换热层400。
可压缩层500凸出于换热层400有利于集流元件106的流液腔1061密封隔绝于可压缩腔501,使得换热介质无法进入到可压缩腔501中,避免可压缩腔501在受到电池单体释放的膨胀力后发生形变导致换热介质溢出。
可选地,可压缩层500设置于换热腔401中,集流元件106包括沿第二方向y贯穿的通孔,可压缩层500凸出于换热层400的部分穿过通孔并与通孔的一端密封连接,通孔的另一端密封连接于换热层400的外壁。可压缩层500凸出于换热层400的部分的外壁和集流元件106的内壁之间限定出流液腔1061。
在一些实施例中,可选地,请参阅图65,可压缩腔501设置有进风口502和出风口503。
可压缩层500可通过进风口502和出风口503进行风冷,并配合换热层400进一步提高加强件30对于电池的换热效率。
在一些实施例中,如图83-图92所示,加强件30包括外壳50和支撑部件60,支撑部件60容纳于外壳50内并用于在外壳50内限定出分隔设置的空腔30a和变形腔40a,空腔30a用于供换热介质流动,变形腔40a被配置为在外壳50受压时可变形。
由此,通过空腔30a中的换热介质为电池单体20进行加热或冷却,当箱体10内部的电池单体20在使用过程中发生膨胀时,由于外壳50的内部具有变形腔40a,外壳50受到电池单体20的作用力时能够发生形变,防止加强件30的外壳50对电池单体20的反作用过大,为电池单体20成组吸收公差,避免损坏电池单体20,降低加强件30和电池单体20热交换面积的减小幅度,改善电池单体20的循环性能。
加强件30可设置在箱体的底部或侧部,以与电池单体20充分接触,或者设置在相邻的两个电池单体20之间。
空腔30a的两端为开口设计,可供换热介质流动,换热介质使得空腔30a具有一定强度,一般不会被压缩变形。变形腔40a的两端为封口设计,换热介质不会进入变形腔40a内,变形腔40a体积占比10%-90%,因此容易发生形变。外壳50和支撑部件60可采用同一种材料通过一体成型的工艺制备,外壳50也可以采用相比支撑部件60弹性更大的材料制备,以便于外壳50受到电池单体20膨胀作用力时,变形腔40a能够变形。
可选地,电池单体20位于相邻的两个加强件30之间,多个加强件30通过连接管连接,以实现各个加强件30之间的连接,以及换热介质的循环。
在一些实施例中,支撑部件60与外壳50围合形成空腔30a。支撑部件60可与外壳50连接形成空腔30a,空腔30a的数量可为多个,多个空腔30a相邻或间隔设置,以对电池单体20进行充分地换热。
上述方案中,外壳50被配置为与电池单体20直接接触,通过支撑部件60与外壳50共同围合形成空腔30a,换热介质可通过外壳50与电池单体20接触,提高电池单体20的换热效率。
如图86和图88所示,支撑部件60包括分隔组件61和支撑组件62,分隔组件61用于在外壳50内限定出分隔设置的空腔30a和变形腔40a;支撑组件62用于设置在空腔30a内或者与分隔组件61共同限定出空腔30a,以对空腔30a进行支撑。
分隔组件61与支撑组件62连接,且分别与外壳50连接,以限定出空腔30a和变形腔40a。支撑组件62可设置在空腔30a的内部,对空腔30a进行支撑,或者支撑组件62作为空腔30a的侧边,与外壳50、分隔组件61连接,围合形成空腔30a,也能够实现对空腔30a支撑。
上述方案中,通过分隔组件61将外壳50的内部分隔为空腔30a和变形腔40a,通过支撑组件62对空腔30a进行支撑,提高了空腔30a的强度,使得加强件30在吸收膨胀以及公差时,避免空腔30a内部的容积减小,空腔30a内部的换热介质的流量发生变化,防止换热介质溢出,在电池生命周期的末期,空腔30a不会被压溃堵塞。
外壳50包括第一侧壁50a(例如,也可称为上文所述的第一导热板3331)和第二侧壁50b(例如,也可称为上文所述的第二导热板3332),第二侧壁50b沿第一方向x(可以为加强件30的厚度方向)与第一侧壁50a相对设置,分隔组件61分别与第一侧壁50a和第二侧壁50b连接。
第一侧壁50a和第二侧壁50b可被配置为加强件30面积最大的侧壁,加强件30可设置在箱体10的底部或侧部,第一侧壁50a或第二侧壁50b与电池单体20接触,以对电池单体20进行充分换热;加强件30还可以设置在相邻的两个电池单体20之间,第一侧壁50a和第二侧壁50b分别与相邻的两个电池单体20接触,以能够对不同的电池单体20进行换热,提高电池的换热效率。
上述方案中,通过分隔组件61(例如,也可称为上文所述的第一加强筋)分别与第一侧壁50a和第二侧壁50b连接,可加强第一侧壁50a和第二侧壁50b的连接强度,提高加强件30的整体强度。
如图89和图90所示,分隔组件61包括第一弯折板611和第二弯折板612,第一弯折板611与第一侧壁50a连接;第二弯折板612与第二侧壁50b连接,第一弯折板611和第二弯折板612限定出变形腔40a。
第一弯折板611与第一侧壁50a连接,可限定出靠近第一侧壁50a的变形腔40a,第二弯折板612与第二侧壁50b连接,可限定出靠近第二侧壁50b的变形腔40a;或者变形腔40a形成于第一弯折板611和第二弯折板612之间。
上述方案中,第一弯折板611和第二弯折板612均具有弯折形状,第一弯折板611和第二弯折板612能够限定出的空间较大的变形腔40a,保证了加强件30的形变空间,提高了外壳50内部的空间利用率。
在一些实施例中,支撑组件62包括第一支撑筋621和第二支撑筋622,第一支撑筋621分别与第一弯折板611和第二侧壁50b连接;第二支撑筋622分别与第二弯折板612和第一侧壁50a连接。
第一支撑筋621和第二支撑筋622可以分别位于空腔30a内,也可以作为空腔30a的侧边,都可以对空腔30a进行支撑,第一支撑筋621提高了第一弯折板611与外壳50的连接强度,第二支撑筋622提高了第二弯折板612与外壳50的连接强度,而且第一支撑筋621和第二支撑筋622均提高了空腔30a的强度,当加强件30受电池单体20的膨胀力被压缩时,第一支撑筋621和第二支撑筋622可以是的空腔30a不变形,从而保证空腔30a内部容积不发生变化,换热介质不会溢出,同时在电池的生命周期末期,能够防止空腔30a被压溃导致堵塞,热性能失效。
在如图90和图91所示的实施例中,第一弯折板611的两端与第一侧壁50a连接,第二弯折板612的两端与第二侧壁50b连接;在第一方向X上,第一弯折板611和第二弯折板612呈错位设置,第一支撑筋621和第二支撑筋622之间形成空腔30a。
第一弯折板611与第一侧壁50a连接,以形成靠近第一侧壁50a的变形腔40a,第二弯折板612与第二侧壁50b连接,以形成靠近第二侧壁50b的变形腔40a,空腔30a位于两个变形腔40a之间。多个空腔30a相邻设置,第一支撑筋621和第二支撑筋622共同对空腔30a进行支撑,提高了空腔30a的强度。第一侧壁50a和第二侧壁50b可分别用于与两个相邻的电池单体20接触,使得第一侧壁50a和第二侧壁50b对应变形腔40a的位置均能够发生形变,加强件30能够同时吸收两个电池单体20的膨胀。第一侧壁50a和第二侧壁50b为外壳50面积最大的侧壁,分别与电池单体20的面积最大的侧部接触,以提高对电池单体20膨胀的吸收力。
在一些实施例中,第一弯折板611的数量为多个,相邻的两个第一弯折板611之间间隔预设距离,第一侧壁50a包括相邻两个第一弯折板611之间的第一间隔L1,空腔30a通过第一间隔L1能够与贴靠于第一侧壁50a的电池单体20接触,提高贴靠于第一侧壁50a的电池单体20的接触面积,增大换热效率。
在一些实施例中,第二弯折板612的数量为多个,相邻的两个第二弯折板612之间间隔预设距离,第二侧壁50b包括相邻两个第二弯折板612之间的第二间隔L2,空腔30a通过第二间隔L2能够与贴靠于第二侧壁50b的电池单体20接触,提高贴靠于第二侧壁50b的电池单体20的接触面积,增大换热效率。
在另一些实施例中,第一弯折板611的数量为多个,相邻的两个第一弯折板611之间间隔预设距离,第二弯折板612的数量为多个,相邻的两个第二弯折板612之间间隔预设距离,能同时提高贴靠于第一侧壁50a的电池单体20以及贴靠于第二侧壁50b的电池单体20的换热效率。
在如图91所示的实施例中,第一弯折板611的两端与第一侧壁50a连接,以形成靠近第一侧壁50a的空腔30a;第二弯折板612的两端与第二侧壁50b连接,以形成靠近第二侧壁50b的空腔30a。
靠近第一侧壁50a的空腔30a和靠近第二侧壁50b的空腔30a可沿第一方向x相对设置,即在第一方向x上,具有两个空腔30a。第一弯折板611和第二弯折板612围合可形成菱形的变形腔40a。靠近第一侧壁50a的空腔30a用于与贴靠于第一侧壁50a的电池单体20接触,靠近第二侧壁50b的空腔30a用于与贴靠于第二侧壁50b的电池单体20接触。
上述方案中,两个空腔30a可分别与相邻的两个电池单体20接触,提高了加强件30的换热面积。
在一些实施例中,在第一方向x上,第一弯折板611和第二弯折板612相对设置;第一弯折板611的弯折处与第二弯折板612的弯折处连接。
第一弯折板611和第二弯折板612可呈三角形,空腔30a和空间较大,第一弯折板611的弯折处远离第一侧壁50a,第二弯折板612的弯折处远离第二侧壁50b,两个弯折处连接,结构稳定。在其它实施例中,第一弯折板611和第二弯折板612也可以为L型、弧形等其它形状。
上述方案中,第一弯折板611弯折处和第二弯折板612的弯折处连接,可加强分隔组件61的强度。
如图91所示,第一弯折板611包括互相连接的第一倾斜段611a和第二倾斜段611b,第一支撑筋621分别与第一倾斜段611a和第二倾斜段611b连接。第一支撑筋621的弯折处与第一侧壁50a连接,两端分别与第一倾斜段611a和第二倾斜段611b连接,提高了第一弯折板611与第一侧壁50a的连接强度,提高了靠近第一侧壁50a的空腔30a的强度。第一支撑筋621可以为三角形,结构稳固。在其它实施例中,还可以将第一支撑筋621设置为L型或弧形等形状,或者第一支撑筋621包括分隔的两段,一段分别与第一侧壁50a以及第一倾斜段611a连接,另一段分别与第二侧壁50b以及第二倾斜段611b连接。
在一些实施例中,第二弯折板612包括互相连接的第三倾斜段612a和第四倾斜段613b,第二支撑筋622分别与第三倾斜段612a和第四倾斜段613b连接。第二支撑筋622的弯折处与第二侧壁50b连接,两端分别与第三倾斜段612a和第四倾斜段613b连接,提高了第二弯折板612与第二侧壁50b的连接强度,提高了靠近第二侧壁50b的空腔30a的强度。
第二支撑筋622可以为三角形,结构稳固。在其它实施例中,还可以将第二支撑筋622设置为L型或弧形等形状,或者第二支撑筋622包括分隔的两段,一段分别与第二侧壁50b以及第三倾斜段612a连接,另一段分别与第二侧壁50b以及第四倾斜段613b连接。
在另一些实施例中,第一弯折板611包括互相连接的第一倾斜段15611a和第二倾斜段611b,第一支撑筋621分别与第一倾斜段611a和第二倾斜段611b连接,且第二弯折板612包括互相连接的第三倾斜段612a和第四倾斜段613b,第二支撑筋622分别与第三倾斜段612a和第四倾斜段613b连接。能够加强第一弯折板611和第二弯折板612的连接强度,以及提高靠近第一侧壁50a的空腔30a的强度和靠近第二侧壁50b的空腔30a的强度。
图92为本申请又一些实施例提供的加强件30的侧视图。在如图92所示的实施例中,分隔组件61包括第一隔离板613和第二隔板614,第一隔离板613沿第二方向y延伸,第二隔板614沿第一方向x延伸,第一方向x和第二方向y相交设置,第二隔板614分别与第一侧壁50a和第二侧壁50b连接,以将外壳50内限定出分隔设置的空腔30a和变形腔40a。
第一方向x和第二方向y可垂直设置,使得空腔30a和变形腔40a为矩形。第二隔板614能够支撑第一侧壁50a和第二侧壁50b,提高了加强件30的结构强度。
在一些实施例中,在第二方向y上,变形腔40a和空调40b呈交替设置。变形腔40a和空腔30a交替设置,既能保证电池单体20的换热效率,又能均匀吸收电池单体20的膨胀。
在第一方向x上,变形腔40a和空腔30a相邻设置,提高了外壳50内部的空间利用率。保证了靠近第一侧壁50a均匀交替设置有空腔30a和变形腔40a,对贴靠于第一侧壁50a的电池单体20进行充分换热,且能够吸收该电池单体20的膨胀力。保证了以及靠近第二侧壁50b均匀交替设置有空腔30a和变形40a,对贴靠于第二侧壁50b的电池单体20进行充分换热,且能够吸收该电池单体20的膨胀力。
在一些实施例中,第一支撑筋621分别与第一隔离板613和第一侧壁50a连接,第二支撑筋622分别与第一隔离板613和第二侧壁50b连接。
第一支撑筋621位于靠近第一侧壁50a的空腔30a中,第二支撑筋622位于靠近第二侧壁50b的空腔30a中。第一支撑筋621和第二支撑筋622分别沿第一方向x延伸,第一侧壁50a和第二侧壁50b受到电池单体20的膨胀挤压时,能够避免空腔30a沿第一方向的高度被压缩,防止空腔30a的容积发生变化,保证对靠近第一侧壁50a的电池单体20以及靠近第二侧壁50b的电池单体20的换热效果。
在一些实施例中,如图93-99所示,加强件30包括外壳50和隔离组件70,隔离组件70容纳于外壳50内并与外壳50连接,以在外壳50和隔离组件70之间形成空腔30a,空腔30a用于供换热介质流动,隔离组件70被配置为在外壳受压时可变形。
由此,通过空腔30a中的换热介质为电池单体20进行加热或冷却,当箱体10内部的电池单体20在使用过程中发生膨胀时,由于外壳50的内部具有隔板组件70,隔板组件70受到电池单体20的作用力时能够发生形变,防止加强件30的外壳50对电池单体20的反作用过大,为电池单体20成组吸收公差,避免损坏电池单体20,提高电池100的可靠性;而且降低加强件30和电池单体20热交换面积的减小幅度,改善电池单体20的循环性能。
可选地,外壳50和隔离组件70可采用同一种材料通过一体成型的工艺制备。隔离组件70可采用柔性材料制备得到,以在外壳50受到电池单体20的膨胀挤压时,隔离组件70能够发生形变。还可以在隔离组件70内设置柔性材料,或者在隔离组件70内设置变形腔40a,以使得隔离组件70能够具有形变空间。隔离组件70随着电池单体20的膨胀发生形变,不会影响空腔30a的空间,防止溢出
在一些实施例中,如图95所示,外壳50包括第一侧壁50a和第二侧壁50b,第二侧壁50b沿第一方向x与第一侧壁50a相对设置,隔离组件70与第一侧壁50a连接限定出第一流道34,隔离组件70与第二侧壁50b连接限定出第二流道35。
加强件30可以设置在沿第一方向x相邻的两个电池单体20之间,第一侧壁50a和第二侧壁50b分别与该相邻的两个电池单体20接触。在第一侧壁50a的旁侧,可以设置多个电池单体20;在第二侧壁50b的旁侧,也可以设置多个电池单体20,以在加强件30沿第一方向x的两侧放置两排电池单体20,以提高电池100的容量。
上述方案中,第一流道34可以对靠近第一侧壁50a的电池单体20进行换热,第二流道35可以对靠近第二侧壁50b的电池单体20进行换热,提高了加强件30的换热效率。
在一些实施例中,隔离组件70包括第一隔离板71和第二隔离板72,第一隔离板71沿第二方向y延伸,第一方向x和第二方向y相交设置,第一隔离板71与第一侧壁50a连接,与第一隔离板71连接限定出第一流道34;第二隔离板72沿第二方向y延伸,与第二隔离板72连接限定出第二流道35。第一方向y和第二方向y可互相垂直设置。
第一隔离板71和第二隔离板72具有一定柔性,当靠近第一侧壁50a的电池单体20发生膨胀挤压第一侧壁50a时,第一隔离板71能够随之发生相应的形变,第一流道34的容积不会受影响,第一隔离板71吸收了膨胀力,防止第一侧壁50a对电池单体20的反作用力过大,损坏该电池单体20。同样地,当靠近第二侧壁50b的电池单体20发生膨胀挤压第二侧壁50b时,第二隔离板72能够随之发生相应的形变,第二流道35的容积不会受影响,第二隔离板72吸收了膨胀力,防止第二侧壁50b对电池单体20的反作用力过大,损坏该电池单体20。
上述方案中,第一隔离板71与第一侧壁50a连接,能够吸收靠近第一侧壁50a的电池单体20的膨胀力;第二隔离板72与第二侧壁50b连接,能够吸收靠近第二侧壁50b的电池单体20的膨胀力,使得隔离组件70能同时随着不同电池单体20的膨胀发生形变。
在一些实施例中,第一隔离板71与第二隔离板72之间限定出在外壳50受压时可变形的变形腔40a。
第一流道34和第二流道35的两端均为开口设计,以供换热介质的流入和流出,形成循环。变形腔40a的两端做封口设计,以防止换热介质流入。变形腔40a为压缩形变区域,当靠近第一侧壁50a的电池单体20挤压第一侧壁50a时,第一隔离板71可向变形腔40a的方向发生形变,变形40a被压缩;当靠近第二侧壁50b的电池单体20挤压第二侧壁50b时,第二隔离板72可向变形腔40a的方向发生形变,变形腔40a被压缩。变形腔40a位于第一流道34和第二流道35之间,第一流道34和第二流道35能够与电池单体20直接接触,既不影响换热效果,又能保证加强件30可以吸收电池单体20膨胀力。
上述方案中,第一隔离板71和第二隔离板72之间的变形腔40a可压缩,变形腔40a易形成,制造工艺简单,能够降低成本。当电池单体20膨胀时,变形腔40a能够吸收膨胀力,避免加强件30对电池单体20的作用力过大,损坏电池单体20,而且降低加强件30和电池单体20热交换面积的减小幅度,改善电池单体20的循环性能。
在一些实施例中,第一隔离板71呈弯曲折叠状沿第三方向z延伸,能够增大第一隔离板71的长度,使得第一隔离板71更容易发生形变。在第一侧壁50a形成第一流道34,在远离第一流道34的一侧形成变形腔40a,充分利用了外壳50内部的空间。
在一些实施例中,第二隔离板72呈弯曲折叠状沿第三方向z延伸,能够增大第二隔离板72的长度,使得第二隔离板72更容易发生形变。在第二侧壁50b形成第二流道35,在远离第二流道35的一侧形成变形腔40a,充分利用了外壳50内部的空间。
在另一些实施例中,还可以将第一隔离板71和第二隔离板72均设置为呈弯曲折叠状沿第三方向z延伸。
如图96所示,第一隔离板71包括多个沿第三方向z依次排布的第一弯曲段711;第二隔离板72包括多个沿第三方向z依次排布的第二弯曲段721,第一弯曲段711和第二弯曲段721沿第一方向x相对设置。
第一弯曲段711向第一侧壁50a的方向隆起,第二弯曲段721向第二侧壁50b的方向隆起,第一弯曲段711和第二弯曲段721相对设置,限定出变形腔40a,能够增大变形腔40a的体积,变形腔40a由多个菱形空间组成,增大了隔离组件70的形变空间。
在一些实施例中,相邻的两个第一弯曲段711与第一侧壁50a围合形成第一流道34;相邻的两个第二弯曲段721与第二侧壁50b围合形成第二流道35,第一流道34与第二流道35沿第一方向X相对设置。
第一流道34和第二流道35呈三角状,能够提高第一流道34对靠近第一侧壁50a的电池单体20的换热效果,以及提高第二流道35对靠近第二侧壁50b的电池单体20的换热效果。变形腔40a位于第一流道34和第二流道35之间,多个第一弯曲段711与第一侧壁50a之间围合形成多个第一流道34,多个第二弯曲段721与第二侧壁50b之间围合形成多个第二流道35,提高了外壳50内部的空间利用率,增大加强件30的换热效率。
在一些实施例中,第一弯曲段711呈弧形设置,可增大第一弯曲段711的长度,第一隔离板71呈平滑波浪型,使得第一隔离板71更容易发生形变。
在一些实施例中,第二弯曲段721呈弧形设置,可增大第二弯曲段721的长度,第二隔离板72呈平滑波浪型,使得第二隔离板72更容易发生形变。
在另一些实施例中,还可以将第一弯曲段711和第二弯曲段721均设置为呈弧形设置。
在一些实施例中,如图97所示,至少一个第一弯曲段711设置有折叠区73,折叠区73呈褶皱弯曲状,折叠区73增大了第一弯曲段711的长度,该区域的形变可更大,更利于第一弯曲段711发生形变。
在一些实施例中,至少一个第二弯曲段721设置有折叠区73,折叠区73呈褶皱弯曲状,折叠区73增大了第二弯曲段721的长度,该区域的形变可更大,更利于第一弯曲段711和/或第二弯曲段721发生形变。
在另一些实施例中,还可以将至少一个第一弯曲段711和至少一个第二弯曲段721均设置有折叠区73。
图98为本申请一些实施例提供的加强件30的部分结构示意图;如图98所示,第一隔离板71与第二隔离板72之间的最小间距为t1,外壳50沿第一方向X的厚度为t2,最小间距满足以下公式:0<t1/t2≤0.5。第一隔离板71与第二隔离板72之间的最小间隙与外壳50的厚度比值大于0,以保证有足够的变形位移区域,比值小于或等于0.5,可避免空腔30a空间不足,保证了加强件30的换热效果。
在一些实施例中,沿垂直于冷却介质流动方向的平面,空腔30a和隔离组件70的截面积分别为S7和S8,S7与S8满足以下公式:0<S7/S8<1。隔离组件70的截面积具体可为变形腔40a沿垂直于空腔30a方向的平面的截面积。
上述方案中,隔离组件70的截面积大于空腔30a的截面积,保证了加强件30可变形区域较大,能够吸收足够多的电池单体20膨胀力。
图99为本申请一些实施例提供的加强件30的另一角度的结构示意图。如图99所示,外壳50包括第三侧壁50c和第四侧壁50d,第四侧壁50d沿第三方向z与第三侧壁50c相对设置,隔离组件70的两端分别与第三侧壁50c和第四侧壁50d连接。在第一方向x上,隔离组件70分别与第一侧壁50a以及第二侧壁50b连接;在第二方向y上,隔离组件70分别与第三侧壁50c以及第四侧壁50d连接,且增强了隔离组件70与外壳50之间的连接强度,且在第二方向y上能够形成多个空腔30a,变形腔40a的容积也较大。
在一些实施例中,如图100-图110所示,加强件30设有避让结构301,避让结构301用于为电池单体20的膨胀提供空间,即避让结构301形成避让空间,当电池单体20膨胀时,电池单体20膨胀的至少部分可以进入避让空间,从而减小电池单体20与加强件30之间的压力,降低加强件30破裂的风险,改善电池单体20的循环性能。
避让结构301可以为一个电池单体20的膨胀提供空间,也可以同时为多个电池单体20的膨胀提供空间。
避让结构301可以为一个,也可以为多个,本申请实施例对此不作限制。
示例性地,避让结构301可包括槽、孔、缺口等结构。
在一些实施例中,避让结构301的至少部分位于两个相邻的电池单体20之间,并用于为至少一个电池单体20的膨胀提供空间。
多个电池单体20可以排成一列,也可以排成多列。两个电池单体20相邻是指:在这两个电池单体20的排列方向上,两个电池单体20之间没有其它的电池单体20。
避让结构301可以仅为一个电池单体20的膨胀提供空间,也可同时为两个电池单体20的膨胀提供空间。
加强件30的至少部分位于两个相邻的电池单体20之间,以使加强件30能够同时与两个电池单体20换热,从而提高换热效率,改善加强件30两侧的电池单体20的温度一致性。避让结构301可以为至少一个电池单体20的膨胀提供空间,从而减小电池单体20与加强件30之间的压力,降低加强件30破裂的风险,改善电池单体20的循环性能,提高安全性。
在一些实施例中,避让结构301用于为位于加强件30两侧且与加强件30相邻的电池单体20的膨胀提供空间。
加强件30与电池单体20相邻是指:该加强件30和该电池单体20之间没有其它的加强件30和其它的电池单体20。
避让结构301可以同时为加强件30两侧的电池单体20的膨胀提供空间,从而进一步减小电池单体20与加强件30之间的压力,降低加强件30破裂的风险,改善电池单体20的循环性能,提高安全性。
参照图101至图105,在一些实施例中,加强件30还包括沿第一方向X相背设置的两个表面,两个表面中的至少一个上连接有电池单体20,以使电池单体20与加强件30的对应表面进行换热。
电池单体20可以与加强件30的上述表面直接连接,例如电池单体20与加强件30的表面直接相抵接。可替代地,电池单体20也可以通过其它导热结构与加强件30的表面间接连接,例如,电池单体20可通过导热胶与加强件30的表面粘接。
连接于加强件30同一表面的电池单体20可以是一个,也可以是多个。
可选地,与电池单体20换热的加强件30的表面可以为平面,该平面垂直于第一方向x。
在一些实施例中,加强件30还包括沿第一方向x相背设置的两个表面可以分别为第一面和第二面,避让结构301包括第一凹部3011,第一凹部3011从第一面沿靠近第二面的方向凹陷,第一凹部3011用于为连接于第一面的电池单体20的膨胀提供空间。
第一凹部3011可以是一个,也可以是多个。
第一凹部3011可以为连接于第一面的一个电池单体20的膨胀提供空间,也可以为连接于第一面的多个电池单体20的膨胀提供空间。
本实施例通过设置第一凹部3011,可以减小第一面与电池单体20的接触面积;当电池单体20膨胀时,第一凹部3011可以为电池单体20的膨胀提供空间,并减小加强件30的受到电池单体20挤压的部分,从而减小电池单体20与加强件30之间的压力,降低加强件30破裂的风险,改善电池单体20的循环性能,提高安全性。
在一些实施例中,如图104所示,加强件30包括沿第一方向x设置的第一板体336(例如,也可称为上文所述的第一导热板3331)和第二板体337(例如,也可称为上文所述的第二导热板3332),第一板体336包括第一主体3361和第一凸部3362,第一凸部3362凸出于第一主体3361的背离第二板体337的表面,第一板体336在面向第二板体337的一侧设有第二凹部3363,第二凹部3363形成于第一板体336的与第一凸部3362相对应的位置,第二凹部3363用于供换热介质流动。第一面包括第一凸部3362背离第一主体3361的端面,第一凸部3362和第一主体3361围成第一凹部3011。
第一板体336和第二板体337沿第一方向x层叠并连接,示例性地,第一板体336焊接于第二板体337。可选地,第一主体3361焊接于第二板体337。
第一主体3361具有面向第二板体337的内表面和背离第二板体337的外表面。可选地,第一主体3361为平板状,第一主体3361的内表面和外表面均为平面。
第二凹部3363从第一主体3361的内表面沿背离第二板体337的方向凹陷。第二板体337连接于第一主体3361并覆盖第二凹部3363。
在本实施例中,换热介质可以在第二凹部3363内流动,以通过第一凸部3362与电池单体20换热。第一板体336的第一凸部3362可通过冲压形成,经过冲压后,第一板体336在面向第二板体337的一侧形成第二凹部3363,第一板体336的背离第二板体337的一侧形成第一凹部3011。本实施例可以简化加强件30的成型工艺。
在一些实施例中,第一凸部3362环绕在第一凹部3011的外侧。
在一些实施例中,第二面上连接有电池单体20。避让结构301还包括第三凹部3012,第三凹部3012从第二面沿靠近第一面的方向凹陷,第三凹部3012用于为连接于第二面的电池单体20的膨胀提供空间。
连接于第二面的电池单体20位于第二面的背离第一面的一侧。连接于第二面的电池单体20和连接于第一面的电池单体20为不同的电池单体,且分别设置在加强件30沿第一方向x的两侧。
第三凹部3012可以是一个,也可以是多个。
第三凹部3012可以为连接于第二面的一个电池单体20的膨胀提供空间,也可以为连接于第二面的多个电池单体20的膨胀提供空间。
第一凹部3011可以为连接于第一面的电池单体20的膨胀提供空间,第三凹部3012可以为连接于第二面的电池单体20的膨胀提供空间,从而减小电池单体20与加强件30之间的压力,降低加强件30破裂的风险,改善电池单体20的循环性能,提高安全性。
在一些实施例中,第一凹部的底面3011a在第一方向x上的投影与第三凹部的底面3012a在第一方向x上的投影至少部分重叠。
在一些实施例中,第一凹部的底面3011a在第一方向x上的投影与第三凹部的底面3012a在第一方向x上的投影完全重合。本实施例使第一凹部3011和第二凹部3363沿第一方向x相对设置,可改善位于加强件30两侧的电池单体20受力的一致性。
在一些实施例中,如图102和图104所示,第二板体337包括第二主体3371和第二凸部3372,第二凸部3372凸出于第二主体3371的背离第一板体336的表面,第二板体337在面向第一板体336的一侧设有第四凹部3373,第四凹部3373形成于第二板体337的与第二凸部3372相对应的位置。第二凹部3363和第四凹部3373相对设置并形成供换热介质流动的空腔30a。第二面包括第二凸部3372背离第二主体3371的端面,第二凸部3372和第二板体337围成第三凹部3012。
在一些实施例中,如图102所示,避让结构301还包括第一通孔3013,第一通孔3013从第一凹部的底面3011a延伸至第三凹部的底面3012a,以连通第一凹部3011和第三凹部3012。
第一通孔3013可以是一个,也可以是多个。第一通孔3013可以是圆形孔、方形孔、跑道形孔或其它形状的孔。
在本实施例中,通过设置第一通孔3013可以进一步增大避让空间,并平衡加强件30两侧的电池单体20的膨胀量的差异。示例性地,如果连接于第一面的某个电池单体20的膨胀量过大,那么该电池单体20膨胀的部分可以经由第一通孔3013进入第二凹部3363。
在一些实施例中,第一通孔3013贯通第一主体3361和第二主体3371。
在一些实施例中,加强件30内部设有供换热介质流动的空腔30a,空腔30a环绕避让结构301。换热介质可以有效地与电池单体20换热,提高换热效率。示例性地,空腔30a包括第二凹部3363和第四凹部3373。
在一些实施例中,如图105所示,避让结构301还包括第一通孔3013,第一通孔3013从第一凹部的底面3011a延伸至第二面。在本实施例中,可以省去第二凹部3363。
连接于第二面的电池单体20膨胀时,电池单体20膨胀的部分可以经由第一通孔3013进入第一凹部3011。换言之,第一凹部3011也可以为连接于第二面的电池单体20的膨胀提供空间,以减小电池单体20与加强件30之间的压力,降低加强件30破裂的风险,改善电池单体20的循环性能,提高安全性。
在一些实施例中,加强件30包括沿第一方向x设置的第一板体336和第二板体337,第一板体336包括第一主体3361和第一凸部3362,第一凸部3362凸出于第一主体221的背离第二板体337的表面,第一板体336在面向第二板体337的一侧设有第二凹部3363,第二凹部3363形成于第一板体336的与第一凸部3362相对应的位置,第二凹部23用于供换热介质流动。第一面包括第一凸部3362背离第一主体3361的端面,第一凸部3362和第一板体336围成第一凹部3011。第二板体337为平板状。
图106为本申请另一些实施例提供的电池的加强件30的剖视示意图。
如图106所示,避让结构301包括第二通孔3014,第二通孔3014从第一面延伸10至第二面,以贯通加强件30。
第二通孔3014可以为一个,也可以为多个。
第二通孔3014可以为连接于第一面的电池单体20的膨胀提供空间、为连接于第二面的电池单体20的膨胀提供空间,从而减小电池单体20与加强件30之间的压力,降低加强件30破裂的风险,改善电池单体20的循环性能,提高安全性。
在一些实施例中,加强件30为一体成型结构。
图107为本申请另一些实施例提供的电池的局部剖视示意图。
如图107所示,在一些实施例中,电池100还包括隔热件40,隔热件40的至少部分容纳于避让结构301,隔热件40的热导率小于加强件30的热导率。
隔热件40可以整体容纳于避让结构301,也可以仅部分容纳于避让结构301。
隔热件40可以连接于电池单体20,也可以连接于加强件30。
当连接于加强件30的电池单体20热失控时,隔热件40可以起到隔热防护的功能,阻止热量的快速扩散,以降低安全风险。
在一些实施例中,隔热件40的杨氏模量小于加强件30的杨氏模量。
相对于加强件30,隔热件40具有较好的弹性。当电池单体20膨胀并挤压隔热件40时,隔热件40可以压缩,以为电池单体20的膨胀提供空间,进而减小电池单体20的受力,改善电池单体20的循环性能。
在一些实施例中,隔热件40的材质包括气凝胶、玻璃纤维和陶瓷纤维中的至少一种。
在一些实施例中,隔热件40固定于电池单体20。可选地,隔热件40通过粘接固定于电池单体20。
电池单体20可以固定隔热件40,以降低隔热件40在避让结构301内的晃动,降低隔热件40错位的风险。
在一些实施例中,隔热件40与加强件30分离设置。
加强件30和隔热件40之间设有间隙,以使隔热件40和加强件30不接触。
隔热件40与加强件30分离设置,以减少隔热件40与加强件30之间的传热,降低热量损失。
在一些实施例中,隔热件40位于相邻的电池单体20之间。
隔热件40能够减少热量在电池单体20之间的传递,降低电池单体20彼此的影响。当某个电池单体20热失控时,隔热件40可以减少传导至与该电池单体20相邻的正常的电池单体20的热量,降低正常的电池单体20热失控的风险。
如图101、图108和图109所示,在一些实施例中,加强件30包括介质入口3412、介质出口3422以及连通介质入口3412和介质出口3422的空腔30a。介质入口3412可为一个,也可为多个。介质出口3422可为一个,也可为多个。
在一些实施例中,加强件30设置为多个,多个加强件30沿第一方向X设置。相邻的加强件30之间设有电池单体20。多个加强件30的空腔30a连通。
相邻的加强件30之间可以设置一个电池单体20,也可以设置多个电池单体20。
多个加强件30的空腔30a可以串联、并联或混联,混联是指多个加强件30的空腔30a之间既有串联也有并联。
多个加强件30可以与多个电池单体20换热,以改善多个电池单体20温度的一致性。多个加强件30的空腔30a连通,换热介质可以在多个加强件30之间流动。
在一些实施例中,多个加强件30的介质入口3412连通,多个加强件30的介质出口3422连通,以使多个加强件30的空腔30a并联。
多个加强件30的介质入口3412可以直接连通,也可以通过管路连通。多个加强件30的介质出口3422可以直接连通,也可以通过管路连通。
多个加强件30的空腔30a并联,这样可以减小多个加强件30的空腔30a中的换热介质的温度差,改善多个电池单体20的温度一致性。
在一些实施例中,相邻的加强件30的介质入口3412通过管道107连通,相邻的加强件30的介质出口3422通过管道107连通。
在一些实施例中,所有的介质入口3412、所有的介质出口3422以及所有的管道107大致在同一个平面上(或者说,在第三方向z上大致在同一个高度),可使空间利用率最大化,减少加强件30之间的热量损失。
在一些实施例中,至少一个加强件30设有两个介质入口3412和两个介质出口3422,两个介质入口3412分别位于空腔30a沿第一方向x的两侧,两个介质出口3422分别位于空腔30a沿第一方向x的两侧。
某个加强件30的两个介质入口3412可以分别与位于该加强件30的两侧的加强件30连通,该加强件30的两个介质出口3422可以分别与位于该加强件30的两侧的加强件30连通。本实施例可以简化多个加强件30之间的连接结构。
在一些实施例中,加强件30的两个介质入口3412沿第一方向X相对,加强件30的两个介质出口3422沿第一方向X相对。
在一些实施例中,各加强件30均设有两个介质入口3412和两个介质出口3422。
在一些实施例中,介质入口3412和介质出口3422分别连通于空腔30a沿第二方向y的两端,第二方向y垂直于第一方向x。
本实施例可以缩短换热介质在空腔30a内流动的路径,以降低介质入口3412处的换热介质的温度与介质出口3422处的换热介质的温度差,改善电池单体20的温度一致性。
在一些实施例中,如图109所示,空腔30a为环形且空腔30a包括两个换热段30d和两个汇流段30e,两个换热段30d沿第二方向Y延伸,两个汇流段30e沿第二方向Y布置。一个汇流段30e连接两个汇流段30e的靠近介质入口3412的端部,并与介质入口3412连通;另一个汇流段30e连接两个汇流段30e的靠近介质出口3422的端部,并与介质出口3422连通。
在一些实施例中,电池100包括沿第一方向x布置的多个电池组10A,各电池组10A包括沿第二方向y布置的多个电池单体20,第二方向y垂直于第一方向x。至少两个相邻的电池组10A之间设有加强件30。
本实施例使加强件30同时与电池组10A的多个电池单体20进行换热,以提高换热效率,改善电池组10A的多个电池单体20的温度一致性,并减少加强件30的数量,简化电池100的结构,提高电池100的能量密度。
在一些实施例中,避让结构301位于相邻的电池组10A之间并用于为电池100的多个电池单体20的膨胀提供空间。
避让结构301可以为一个,一个避让结构301同时为电池组10A的多个电池单体20的膨胀提供空间。
避让结构301也可以为多个,多个避让结构301沿第一方向X间隔设置,并用于为电池组10A的多个电池单体20的膨胀提供空间。可选地,避让结构301的数量与电池组10A的电池单体20的数量相同,且多个避让结构301与电池组10A的多个电池单体20一一对应设置。
避让结构301可以仅为加强件30一侧的电池组10A的多个电池单体20提供膨胀空间,也可以同时为加强件30两侧的电池组10A的多个电池单体20提供膨胀空间。
避让结构301可以为电池组10A的多个电池单体20的膨胀提供空间,从而减小多个电池单体20与加强件30之间的压力,降低加强件30破裂的风险,减小电池组10A的多个电池单体20受力的差异,改善电池单体20的循环性能。
在一些实施例中,避让结构301设置为一个,以简化加强件30的成型工艺。
可选地,第三表面11和第四表面12均为平面。
在一些实施例中,加强件30与第一壁201之间的换热面积为S,第一壁201的面积为S3,S/S3≥0.2。
第一壁201具有第一区域201a和第二区域201b,第一区域201a用于与加强件30相连接,以与加强件30进行换热。第二区域201b用于与避让结构301相对,其不与加强件30接触。
第一区域201a可为一个或多个。示例性地,第一区域201a的总面积可为加强件30与第一壁201之间的换热面积。
示例性地,第一区域201a可直接与加强件30相抵接,也可通过导热胶与加强件30粘接。
加强件30与第一壁201之间的换热面积为S,第一壁201的面积为S3,S/S2的值越小,加强件30与电池单体20之间的换热效率越低。本申请实施例使S/S3≥0.2,以使加强件30与电池单体20之间的换热效率满足要求,改善电池单体20的循环性能。可选地,S/S3≥0.5。
在一些实施例中,第一区域201a为两个,两个第一区域201a分别位于第二区域201b的两侧。
第二区域201b位于第三表面11的中部,其膨胀变形的程度大于第一区域201a膨胀变形的程度。本申请实施例使第二区域201b与避让结构301相对,以减小加强件30与电池单体20之间的压力
在一些实施例中,如图111-图115所示,在第一方向x上,加强件30包括相对设置的第一导热板3331和第二导热板3332,第一导热板和第二导热板之间设有空腔30a,空腔30a用于容纳换热介质,以与电池单体20热交换,沿第一方向,第一导热板3331和第二导热板3332中的至少一者朝向靠近另一者的方向凹陷设置以形成避让结构301,第一方向x垂直于第一壁201。
在图111-图115的示例中,加强件30包括相对设置的第一腔壁30h(或称为第一导热板3331)和第二腔壁30i(或称为第二导热板3332),第一腔壁30h和第二腔壁30i之间形成有空腔30a;第一腔壁30h和第二腔壁30i中的至少一个沿第一方向朝向另一个凹槽以形成避让结构301。
由此,形成能够吸收电池单体20膨胀力的富余空间,当电池单体20在工作过程中向靠近加强件30的方向膨胀凸出时,膨胀的部分可以嵌入该凹陷位置,以避免对加强件30内部的空腔30a造成影响,同时还能够避免加强件30在厚度方向上无法压缩导致电池单体20膨胀后受损。
可见,避让结构301所提供的避让空间能够吸收待冷却的电池单体20在使用过程中产生的膨胀,避免电池单体20在膨胀的过程中挤压第一导热板3331或第二导热板3332导致加强件30内部的空腔30a被压缩,由此能够使得加强件30不易受到电池单体20挤压导致流阻增大,从而保证空腔30a内换热介质的流速等参数。同时,当电池单体20热膨胀后进入加强件30的避让结构301内与第一导热板3331或第二导热板3332接触时,电池单体20能够较为直接地与空腔30a内的换热介质热交换,保证换热速率。
可以理解的是,避让结构301(例如可以形成为凹腔)可以为根据电池单体20的膨胀情况不同而采用不同的形状,以与电池单体20膨胀后的表面具有更多的接触面积,从而提高热交换效率。例如,可以为首先对与加强件30相邻设置的电池单体20的膨胀程度进行实验测试,采集电池单体20的膨胀程度与位置对应关系的相关数据,并据此对避让结构301的形状及位置进行设计,使得避让结构301的凹陷程度与电池单体20在对应位置的膨胀程度成正比,使得加强件30与电池单体20之间形成良好的匹配效果,在吸收膨胀造成的挤压作用力后能够保持平衡、稳定的受力状态,且能够具有较大的接触面积,以提供较好的热交换效果。示例性地,该避让结构301可以为矩形凹槽、圆弧形凹槽、阶梯型凹槽等,可以根据使用需求及加工条件自行设计,本申请对此不做特定的限定。
可选地,凹陷形成的避让结构301的避让空间(例如形成为凹腔)的体积可以为小于或等于电池单体20在工作工程中膨胀的体积,即使得电池单体20在膨胀后能够与避让空间的底部相抵接,使得电池单体20与加强件30之间具有超过一定大小的接触面积,进而保证两者之间的热交换效果。相应地,在电池单体20未膨胀时,其温度较低,对热交换效率的要求同样较低,此时电池单体20与加强件30之间可以为具有一定的间隙,电池单体20能够正常工作,而在电池单体20发热膨胀后,膨胀体积大于或等于避让空间体积,因此能够使得电池单体20与加强件30抵接,进而相应地提高热交换效率,使得电池单体20仍能够保持在一定温度范围内正常工作。
可选地,当第一导热板3331和第二导热板3332均具有避让结构301时,则第一腔壁30h和第二腔壁30i均具有避让结构301,其形成的避让空间形状、位置可以相同,也可以分别根据相邻电池单体20膨胀情况的不同采用不同的设计。
在一些可选的实施例中,沿第一方向x,第一导热板3331和第二导热板中3332的至少一者为向靠近另一者凹陷设置的弧形板。在图114和图115的示例中,第一腔壁30h和第二腔壁30i中的至少一个为向靠近另一个凹陷设置的弧形板。
本申请实施例中加强件30中的第一腔壁30h和第二腔壁30i至少一者向靠近彼此的方向凹陷以形成弧形板,以限定出避让结构301,例如避让结构301可以为具有圆弧形底面的凹腔,即第一腔壁30h和第二腔壁30i中的至少一者(即第一导热板3331和第二导热板中3332的至少一者)具有弧形面,该弧形面可以为占据第一腔壁30h或第二腔壁30i的至少部分区域,即第一腔壁30h或第二腔壁30i中的至少部分区域为弧形板,当仅部分区域为弧形板时,这部分区域可以为沿着加强件30自身的延伸方向同向延伸且呈矩形分布,并且可以为以加强件30在第三方向z上的中轴线为对称轴对称设置,以在该方向上形成承载力较为均匀的结构。采用弧形板的形式能够使得加强件30更易于与待冷却的电池单体20表面相贴合,从而提供更好的热交换效果。
在一些可选的实施例中,沿厚度方向(即第一方向x),第一腔壁30h和第二腔壁30i分别为向靠近另一者的方向凹陷设置的弧形板。
如前所述地,本申请实施例中可以为通过将第一腔壁30h和第二腔壁30i设置为弧形板,来形成避让电池单体20膨胀量的凹腔。将第一腔壁30h和第二腔壁30i均设置为弧形板能够使得加强件30同时吸收两侧的膨胀,由此可以将加强件30设置在相邻两个电池单体20之间,同时为两侧的电池单体20提供热交换效果,因此能够使得最终形成的电池结构紧凑且散热性良好。
在一些可选的实施例中,沿厚度方向(即第一方向x),第一腔壁30h和第二腔壁30i间隔且对称分布。
在第一腔壁30h和第二腔壁30i均向靠近彼此的方向凹陷的实施例中,第一腔壁30h和第二腔壁30i可以为在厚度方向上间隔且对称设置,此时加强件30的空腔30a为关于厚度方向上的中轴面对称的腔体,将第一腔壁30h和第二腔壁30i间隔且对称设置能够使得加强件30整体受力均匀,且便于加工。
在一些可选的实施例中,如图113-图115所示,在第三方向z上,加强件30具有第一区30f以及第二区30g,第一腔壁30h和第二腔壁30i之间在第一区30f的沿厚度方向的距离小于在第二区30g的沿厚度方向的距离,第三方向z与厚度方向相交。
本申请实施例中的加强件30具有在厚度方向上相对设置的第一腔壁30h和第二腔壁30i,这两个腔壁中的至少一者向靠近另一者所在方向凹陷,因此本申请实施例中的加强件30各处在厚度方向上延伸的尺寸可以不相同,形成一各处厚度不完全相同的空腔30a,此时可以在第三方向上z排列有至少两个厚度不同的区域,并将较薄的区域与电池单体20膨胀较为严重的区域对应设置,通过调整第一腔壁30h和/或第二腔壁30i的凹陷程度以及凹陷位置就能够相应地调整不同位置的厚度,达成所需的设计效果。
在一些可选的实施例中,第一区30f在第三方向z的两侧分别设置有第二区30g。
本申请实施例中的加强件30可以为具有多个第二区30g,多个第二区30g可以为分别设置于第一区30f在第三方向z上的两侧,此时第一区30f对应电池单体20膨胀程度大的位置设置,以通过较深的凹腔避让电池单体20的膨胀凸出部分,第二区30g则可以具有较大的厚度以便于容纳更多的换热介质,提供更好的冷却效果。
示例性地,本申请实施例中的加强件30中也可以为具有多个第一区30f,这些第一区30f可以为在第三方向z上间隔设置。当加强件30在第三方向z上延伸一定的尺寸时,每个加强件30可以在该方向上对应设置有多个电池单体20,此时可以为与每个电池单体20相对应地设置有至少一个厚度较小的第一区30f,并在相邻的第一区30f之间设置厚度较大的第二区30g,或者,也可以为每个第一区30f同时对应多个电池单体20设置,即同时容纳多个电池单体20的膨胀余量,第一区30f与电池单体20之间的具体对应设置方法可以根据电池单体20在第三方向z上的延伸尺寸以及膨胀程度进行设计,本申请对此不作特定的限定。
在一些可选的实施例中,沿第三方向z,第一墙壁30h和第二腔壁30i在厚度方向上的距离先减小后增大。本申请实施例中的加强件30可以为在第三方向z上具有位于中部且较薄的第一区30f,以及设置于第一区30f两侧且较厚的第二区30g,由此能够使得第一腔壁30h和第二腔壁30i之间沿厚度方向的距离呈现先减小后增大的趋势,以便于与每个电池单体20的膨胀一一对应地进行匹配,更好地吸收膨胀并进行热交换。
在一些可选的实施例中,加强件30还包括在第三方向z相对设置的第三腔壁30j以及第四腔壁30k,第三腔壁30j分别与第一腔壁30h和第二腔壁30i连接,第四腔壁30k分别与第一腔壁30h和第二腔壁30i连接,沿第三方向z,第三腔壁30j以及第四腔壁30k中的至少一者向远离另一者的方向凹陷设置。
本申请实施例中加强件30的空腔30a可以为由第一腔壁30h、第三腔壁30j、第二腔壁30i以及第四腔壁30k依次首尾相接围合而成,其中向远离另一者的方向凹陷设置的第三腔壁30j和/或第四腔壁30k能够增大空腔30a的截面面积,从而提高热交换效率。
可以理解的是,与第一腔壁30h以及第二腔壁30i相类似地,第三腔壁30j以及第四腔壁30k的凹陷也可以为矩形凹陷、圆弧形凹陷以及阶梯形凹陷等多种结构,且两个侧壁可以分别采用不同形状的凹陷。
在一些可选的实施例中,沿第三向z,第三腔壁30j以及第四腔壁30k
分别为向远离彼此凹陷设置的弧形板。
与第一腔壁30h、第二腔壁30i的设置相类似地,本申请实施例中的第三腔壁30j和第四腔壁30k可以同时设置为弧形板,且两块弧形板均向远离彼此的方向凹陷,形成空腔30a的圆弧状侧壁。将第三腔壁30j和第四腔壁30k均设置为向远离彼此方向凹陷的弧形板能够在加强件30的厚度不变的情况下进一步扩大空腔30a的截面积,提高换热介质的流速以及容量,进一步提高换热效果。
在一些可选的实施例中,沿第三方向z,加强件30为轴对称结构体。
本申请实施例中的加强件30可以为对称结构体,即第一腔壁30h与第二腔壁30i对称设置,第三腔壁30j与第四腔壁30k对称设置,形成均匀对称的结构体,此时加强件30能够形成均匀的受力结构且便于加工,同时,当加强件30为轴对称结构体时还能够相应地形成轴对称的空腔30a,使得内部换热介质流动更为均匀。
如图114所示,在一些可选的实施例中,加强件30还包括分隔件335,分隔件335设置于空腔30a并用于支撑第一腔壁30h以及第二腔壁30i中的至少一者。
本申请实施例中的加强件30的空腔30a中可以设置有分隔件335(也可以称为支撑部件、或加强筋),该分隔件335可以为与第一腔壁30h以及第二腔壁30i中的至少一者连接设置,并用于在第一腔壁30h与第二腔壁30i之间形成支撑结构。本申请实施例中的分隔件335可以采用间隔设置的多个支撑柱或者支撑板等结构形式,只需保证换热介质能够在空腔30a内部顺畅地流动即可。本申请实施例中的分隔件335能够提供支撑力,使得第一腔壁30h与第二腔壁30i之间保持一定的距离,便于换热介质的流通。
在一些可选的实施例中,分隔件335为多个,多个分隔件335间隔分布并将空腔30a分隔形成多个流道30c,每个分隔件335与第一腔壁30h和第二腔壁30i中的至少一者连接设置。
本申请实施例中的分隔件335可以为支撑板,通过分隔件335将空腔30a分割为多个部分并在相邻的支撑板之间形成用于通过换热介质的流道30c,分隔件335所提供的支撑力能够在加强件30受到厚度方向上的挤压应力后为流道提供支撑力,改善挤压后流阻增大的问题。
可以理解的是,相邻的分隔件335之间形成的通道应当与换热介质在空腔30a内部流动的方向相同,以形成供换热介质通过的流道30c,使得加强件30内部具有更低的流阻,从而进一步提高冷却效率。
在一些可选的实施例中,多个分隔件335间隔平行设置。
本申请实施例中的分隔件335可以为平行设置,以形成通畅、流阻较小的流道,提高换热介质在多个分隔件335之间的流动性,进而保证加强件30具有良好的换热效果。并且平行设置的分隔件335能够在第一腔壁30h与第二腔壁30i之间提供均匀的支撑力,使得加强件30在厚度方向上具有均匀可靠的承载能力,并且平行设置的分隔件335便于进行加工。可以理解的是,多个分隔件335可以为均沿着加强件30自身的长度方向延伸,同时多个分隔件335可以为采用相互平行的直线延伸、波浪形延伸、折线形延伸等多种形状,只需能够保证换热介质流畅通过即可,本申请对此不作特定的限定。
在一些可选的实施例中,分隔件335呈板状结构体,至少一个分隔件335(例如,也可以称为上文所述的第一加强筋)与第一腔壁30h和第二腔壁30i中的至少一者之间的夹角小于90°。
本申请实施例中的分隔件335可以为倾斜设置,即与第一腔壁30h和第二腔壁30i中的至少一者之间形成小于90°的夹角,由此能够使得加强件30在受到厚度方向上的挤压应力时,其支撑强度小于一定的阈值。即在加强件30受到电池单体20膨胀所施加的厚度方向上的挤压作用力时,能够使得分隔件335产生压缩形变,从而减小加强件30在该处的厚度,进一步避让电池单体20产生的膨胀,避免对电池单体20造成损伤。
可以理解的是,在第一腔壁30h和/或第二腔壁30i为弧形板的实施例中,该夹角可以指弧形板在第三方向z上的两侧边缘所在的平面与分隔件335之间的夹角。
在一些可选的实施例中,每个分隔件335与第一腔壁30h的夹角的取值范围为30°-60°;和/或,每个分隔件335与第二腔壁30i的夹角的取值范围为30°-60°。
如前所述地,在分隔件335与第一腔壁30h以及第二腔壁30i之间的夹角小于90°的实施例中,即在分隔件335倾斜设置的实施例中,每个分隔件335与第一腔壁30h以及第二腔壁30i之间的夹角可以为保持在30°-60°之间,以使得分隔件335在厚度方向上保持一定的延伸距离,同时能够在受到该方向上的作用力时收缩形变,吸收膨胀造成的挤压应力,进一步避让电池单体20的膨胀区域。
在一些可选的实施例中,多个分隔件335中,每相邻两个分隔件335之间的距离相等。
本申请实施例中的分隔件335可以为等间隔设置,从而为具有避让结构301的第一腔壁30h以及第二腔壁30i提供均匀、稳定的支撑,使得加强件30在受到电池单体20的膨胀挤压时整体上具有较为均匀可靠的承载能力。
在一些可选的实施例中,加强件30与分隔件335为一体式结构体。本申请实施例中的加强件30具有空腔30a,该空腔30a中则还有用于提供支撑作用的分隔件335,在分隔件335与第一腔壁30h和/或第二腔壁30i相连接的实施例中,分隔件335可以为与加强件30一体成型设置,由此能够提高加强件30整体的生产效率,且能够提高加强件30整体的强度。
在一些实施例中,如图41-图45所示,箱体10内设有电池组20A,电池组20A为的数量为两个以上并沿第一方向x排列,每个电池组20A包括两个以上沿第二方向y排列的电池单体20,第二方向垂直于第一方向,第一方向x垂直于第一壁201。此时,加强件30为一个或多个。
可选地,第一方向x为箱体10的长度方向,第二方向y为箱体10的宽度方向;或者,第二方向y为箱体10的长度方向,第一方向x为箱体10的宽度方向。
可选地,加强件30为多个,多个加强件30沿第一方向依次设置,且在第一方向上,相邻两个加强件30之间夹持有一组电池组20A,以利用两个加强件30对对应电池单体20进行热管理,且加强件30与电池单体20之间具有较大的换热面积,便于保证电池单体20的热管理效率。
此外,将结构强度功能集成在加强件30上,并将其设置在箱体10的内部且间隔分布,能够避免将加强件30仅设置在箱体10内的一侧因振动或者碰撞等其他工况条件导致加强件30破损而出现漏液的风险,从而保证了电池100的安全性能。
可以理解为,加强件30的数量多于电池组20A的数量,以更好的提高热管理效率、结构强度以及防止热失控问题。
可选地,在第三方向z上,加强件30的高度与电池单体20的高度相同,以增加加强件30与第一壁201的连接面积,使加强件30能够更好的与电池单体20进行热量交换,从而提高加强件30的热管理效果,提高电池100的安全可靠。
可选地,在第三方向z上,加强件30的高度与电池单体20的高度不同,例如加强件30在第三方向z上的延伸长度超出电池单体20的高度,此设置不仅能够提高热管理效果,还能通过加强件30对电池单体20进行支撑,防止外界碰撞、振动时的力直接作用于电池单体20上,能够提高对电池单体20的保护,可使电池单体20及加强件30的结构强度相互加强,从而提高电池100的结构强度。
在一些实施例中,电池单体20还具有第二壁202,第二壁202与第一壁201相交设置,相邻两个电池单体20的第二壁202沿第二方向y相对设置。在成型时,可以先将同一组电池组20A的各电池单体20的第二壁202相对设置,以形成两个以上电池组20A;然后,将加强件30连接于相邻电池单体20的第一壁201,使加强件30与电池组20A层叠设置形成一个整体并将其放入箱体10内,封闭箱体10以完成电池100的制备。通过此成型方式,能够在满足热管理及结构强度的需求下,提高箱体10空间利用率、实现轻量化设计,且制备简单、利于成型。
可选地,在上述成型过程中,可以在每组电池组20A中各电池单体20的第一壁201上均连接有加强件30,即加强件30与电池组20A层叠设置形成一个整体放入箱体10内,电池组20A通过加强件30与箱体10连接,以更好的保护电池单体20的安全性。
可选地,每个电池单体20可以具有相对设置的两个第一壁201,例如电池单体20形成为方形结构,每个电池单体20的两个第一壁201分别与加强件30连接,以更好的提高热管理效率,保证电池单体20的温度稳定。
在一些实施例中,相邻两组电池组20A之间夹持有加强件30,使得相邻两组电池组20A的各电池单体20的第一壁201均与加强件30连接,能够更好地提高对电池单体20的热管理效率以及电池100整体的结构强度需求。
在一些实施例中,如图41所示,电池100还包括连接管组42,加强件30内设置有用于容纳换热介质的空腔30a,连接管组42用于将两个以上加强件30的空腔30a连通。
连接管组42是用于连接加强件30的空腔30a的组件,能够与外界提供换热介质的设备进行连接,换热介质通过连接管组42进入以及排出各个加强件30的空腔30a,以对各电池单体20进行换热管理。
通过设置连接管组42,并通过连接管组42将两个以上加强件30的空腔30a连通,无需每个加强件30均对应设置与提供换热介质的设备直接连接的管路,在满足对各个加强件30提供换热介质,从而对各电池单体20进行有效的热管理的基础上,还能够简化电池100的结构,提高箱体10空间利用率。
可选地,连接管组42可以设置在电池单体20的第二壁202与箱体10之间,并将每个加强件30的空腔30a连通设置,以实现对电池单体20进行热管理。
在一些实施例中,如图42-图44所示,连接管组42包括联通道421、进管422以及出管423,沿第一方向,相邻两个加强件30的空腔30a通过联通道421连通,进管422以及出管423与同一加强件30的空腔30a连通。其中,进管422可以与上文所述的介质入口3412连通,出管423可以与上文所述的介质出口3422连通。
可选地,换热介质能够由进管422流入加强件30,经由联通道421以分别流入各个加强件30的空腔30a,换热介质在空腔30a内流动至另一侧的联通道421,经由联通道421流至出管423以流出加强件30,通过此方式设置,完成对电池单体20的热管理,满足热管理需求,保证电池单体20的安全性能。
通过此方式设置,使得各加强件30仅通过一个进管422以及一个出管423即可满足对换热介质的需求,减小连接管组42的空间占用率,并且能够简化连接管组42的结构,利于装配以及更换,且可适用于不同数量的加强件30的换热介质供应,提高灵活性及通用性。
可选地,联通道421、进管422以及出管423可以设置在加强件30沿第二方向y延伸的同一侧,当然,也可以分别设置在加强件30沿第二方向y延伸的两侧。
可选地,进管422的延伸方向与出管423的延伸方向可以相同,也可以不相同。
可选地,一个加强件30沿第二方向y延伸的两侧均设置有联通道421,每个换热板41两侧的联通道421依次连接并分别连接于进管422以及出管423,便于组装以及更换,灵活性更强。
并且,将连接管组42设置为包括联通道421、进管422以及出管423的形式,其可以任意搭配以适用于各种数量的加强件30,利于提高灵活性及通用性。
可选地,加强件30沿第二方向y延伸的两侧可设置有连接件,以与联通道421连接,提高连接强度。
在一些实施例中,箱体10上设置有通孔,进管422以及出管423分别通过通孔延伸出箱体10。
通过此方式设置,将进管422以及出管423的一端延伸至箱体10的外面,进管422能够与外部提供换热介质的设备连接,利于获取换热介质并输送至加强件30内的空腔30a,出管423能够与外部储存换热介质的设备连接,以排出与电池单体20进行热交换的换热介质,利于换热介质的获取以及排出,同时能够减少换热介质在箱体10内的泄漏风险,从而保证电池100的安全可靠。
可选地,外部提供换热介质的设备与储存换热介质的设备可设置为同一设备,当然,也可以是单独的两个设备。
请参阅图45,在一些实施例中,加强件30具有沿第一方向X相对设置的第一导热板3331、第二导热板3331以及与第一导热板3331、第二导热板3332连接的侧壁41d,第一导热板3331、第二导热板3332以及侧壁41d围合形成空腔30a。在预定压力下,第一导热板3331以及第二导热板3332至少部分沿第一方向x能够向靠近彼此的方向运动,以吸收电池单体20的膨胀力。
第一导热板3331、第二导热板3332以及侧壁41d围合形成空腔30a,且空腔30a与连接管组42连通设置,以使连接管组42能够将换热介质传递至空腔30a内,以与电池单体20进行热量交换,经过热量交换后的换热介质再由空腔30a传递至连接管组42流出,以完成对电池单体20的热管理。
在预定压力下,第一导热板3331以及第二导热板3332至少部分沿第一方向x能够向靠近彼此的方向运动,可以理解为,当电池单体20在工作过程中发生膨胀且对加强件30的作用力超过预定压力时,加强件30能够发生形变以吸收电池单体20的膨胀力,即加强件30在第一方向X上的横截面积变小,以提高电池100的安全性能。同时,换热板41能够始终保持与电池单体20连接的更加紧凑,提高连接强度。
在一些实施例中,如图41-图43所示,电池100还包括限位件80,设置于箱体10内并与箱体10固定连接,限位件80用于限制电池单体20在第一方向x形变。
通过设置限位件80,能够对电池组20A及加强件30提供定位,利于电池组20及加强件30准确、快速地安装在箱体10内预设位置上,避免安装时发生偏移导其他部件无法准确安装,提高了安装效率以及安装精度,从而保证电池100具有良好品质。并且,限位件80与箱体10固定连接,还能作为箱体10的结构件以满足结构强度需求,集成度高。
并且,还能限制电池单体20在第一方向x形变,以保护电池单体20的运行安全,从而保证了电池100的安全性能。
可选地,限位件80与箱体10可以呈一体成型结构,通过弯折、冲压等工艺形成。当然,限位件80与箱体10还可以分开提供,再通过焊接、粘接等方式连接为一体。
可选地,限位件80的数量可以为一个、两个,当然,还可以设为多个。
在一些实施例中,将限位件80的高度尺寸与电池单体20的高度尺寸的比值设置在2/3至11/10之间,且包括2/3、11/10两个端值,既能满足结构强度作用以及抵抗形变效果,又能节省空间、提高空间利用率。
在一些实施例中,限位件80包括限位梁,限位梁沿第二方向y延伸,限位梁在第二方向Y的两端与箱体10连接,限位梁抵压于加强件30并与加强件30连接。
将限位件80设置为限位梁的形式,利于减少限位梁布置空间,使箱体10能够容纳更多的电池单体20,提升箱体10内部空间利用率。
示例性的,限位梁在高度方向z上的各个部分的横截面积都相同,利于生产制作,节省箱体10内部空间。
限位梁抵压于加强件30并与加强件30连接,以提供支撑作用,且限位梁与加强件30能够共同起到加强结构强度以及抵抗电池单体20形变的作用。
在一些实施例中,如图43所示,电池单体20还包括汇流件217以及两个输出件215,汇流件217用于电连接相邻的两个电池单体20,两个输出件215设置于第一方向x的同一侧。位于沿第一方向x最外侧的电池组21设置有两个输出端,两个输出端沿第二方向y分布,两个输出件215分别电连接于两个输出端,以与汇流件217共同形成供电通路。
可选地,汇流件217的数量可以设置为一个、两个,当然,也可设置为多个。
相邻两个电池单体20能够通过汇流件217实现电连接,可选地,汇流件217可以连接于相邻电池单体20上的电极端子214,以实现同一电池组20A中或者相邻两个电池组20A中的多个电池单体20的串联或并联或混联。
位于沿第一方向X最外侧的电池组20A设置有两个输出端,两个输出端即两个没有连接汇流件217的电极端子214。
两个输出件215分别电连接于两个输出端且设置于第一方向x的同一侧,以与汇流件217共同形成供电通路,通过此方式设置,能够避免采用横跨电池组20A的大尺寸的输出件215,利于提高电池100的紧凑度及能量密度。
可选地,输出件215的形状可以为弯折形板状,还可以为其他形状,本申请对此不做限定。
在一些实施例中,两个输出端分别设置于最外侧的电池组20A中位于第二方向Y端部的两个电池单体20上。
通过此方式设置,利于保证两个输出件215设置于第一方向X的同一侧,使得两个输出件215与两个输出端形成输出接口以与外部用电装置连接。
在一些实施例中,限位件80上设置有输出件底座216,输出件底座216设置于限位件80并用于支撑输出件215。可选地,输出件底座216包括绝缘材料。
通过此方式设置,便于输出件215的安装和固定,也能避免发生接触短路,从而保证电池100的安全性能。
在一些实施例中,如图41和图43所示,限位件80上设置有容纳槽80a,输出件底座216至少部分伸入容纳槽80a内。
可选地,容纳槽80a的数量可以为一个、两个,当然,还可以设置为多个。可选地,容纳槽80a的形状可以设置与输出件底座216相匹配的形状,并使容纳槽80a刚好能够放入输出件底座216,以对其进行限位,防止发生位移。
容纳槽80a能够对输出件底座216起到限位作用,防止其发生位移导致电池100出现安全问题,同时,还能起到定位作用,便于安装输出件底座216,提高制作效率。
可选地,容纳槽80a与输出件底座216之间的数量可以一一对应,也可以为多对一设置,即多个输出件底座216可以设置在同一个容纳槽80a内。
示例性地,限位件80上设置有两个以上容纳槽80a,两个及以上的容纳槽80a间隔设置。
可选地,容纳槽80a可以采用冲压成型,即能在限位件80上快速的形成容纳槽80a,工艺简单,同时,还能节约材料,利于实现轻量化设计。
请继续参阅图41,在一些实施例中,箱体10包括顶盖13、底盖11以及容纳框12,底盖11以及顶盖13在箱体10的高度方向Z上相对设置于容纳框12的两端,限位件80分别与容纳框12以及底盖11和顶盖13中的至少一者连接。
顶盖13、底盖11以及容纳框12共同围合成容纳电池单体20的箱体10,以保证密封性要求。
可选地,容纳框12可以具有开口,可选地,容纳框12可以一侧设有开口,即容纳框12与顶盖13及底盖11中的一者一体成型,另一者封闭此开口并以容纳框12连接以围合形成箱体10,对电池组20A进行密封保护。当然,容纳框12还可以两侧均设有开口,使用顶盖13与底盖11分别将两个开口封闭设置并与容纳框12连接并围合形成箱体10,以对电池组20A进行密封保护。
为提高容纳框12与顶盖13及底盖11连接后的密封性,容纳框12与顶盖13或与底盖11之间可以设置密封件,比如,密封胶、密封圈等。
可选地,顶盖13、底盖11与容纳框12可以通过螺栓、热熔自攻螺接(FlowdrillScrews,FDS)、粘接以及焊接等方式进行连接,本申请对此不做限定。
可选地,顶盖13或者底盖11可以由具有一定高硬度和高强度的材质(如铝合金)制成,不易发生形变,具备更高的结构强度,以提升安全性能。
示例性的,顶盖13的至少部分能够沿高度方向Z凹陷以形成凹部,加强件30可与凹部连接,凹部与电池单体20之间存在间隙,当发生碰撞、振动等其他工况条件时,凹部能够更好的吸收加强件30受到的作用力,以提升安全性及可靠性。
可选地,凹部与电池单体20之间的间隙内还可设置有防护层。在防护层的设置下,可防止顶盖13在电池单体20热失控时被烧穿。
可选地,底盖11与容纳框12可以呈一体成型结构,通过弯折、冲压等工艺以形成箱体10。当然,底盖11与容纳框12还可以分开提供,再通过焊接、粘接等方式连接为一体。
示例性的,底盖11与容纳框12可拆卸连接,能够降低成本,且当出现损坏等问题时易于底盖11或者容纳框12的更换。
可选地,底盖11与容纳框12可以采用相同的材料制成,当然,还能采用不同的材料制成。
在一些实施例中,底盖11可以采用比容纳框12的材料更具有强度的材料制成,利于吸收外界的碰撞力以达到对电池100的缓冲作用,防止振动、撞击等时电池100出现变形失效,以提高电池100的安全性及可靠性,进一步提高电池100整体的结构强度,以适应多种工况条件。
可选地,底盖11还可以设有加强筋结构,能够更好的提高电池100的结构强度。
可选地,限位件80可以连接于容纳框12以及底盖11,当然,还可以连接于容纳框12以及顶盖13,当然,还可以连接于容纳框12、顶盖13以及底盖11。通过此方式设置,能够根据不同需求设置电池100整体的结构,提高通用性。
在一些实施例中,箱体10还包括连接座14,连接座14沿第二方向Y凸出于容纳框12设置,连接座14用于将电池100安装于用电装置。
通过设置连接座14,利于电池100整体在其所应用的用电装置中的连接固定,例如固定在车辆底盘等,提高连接稳定性,连接得更加牢固,同时,避免连接失效导致电池100出现安全风险问题,保证电池100的安全可靠性能。
可选地,连接座14沿第二方向y凸出于容纳框12的一侧设置,当然,容纳框12沿第二方向y的两侧均设置有凸出的连接座14。
对于一般的电池单体而言,泄压机构焊接于电池盒,以将泄压机构固定于电池盒,在电池单体热失控时,通过泄压机构泄放电池单体内部的压力,以提高电池单体的安全性。以泄压机构为设置于电池盒的端盖上的防爆片为例,在电池单体热失控时,防爆片被破坏,以将电池单体内部的排放物排出,以达到泄放电池单体内部的压力的目的。由于泄压机构与电池盒焊接连接,在电池单体长期使用过程中焊接位置可能会出现裂纹,导致焊接位置的强度降低,容易出现焊接位置在电池单体内部的压力未达到泄压机构的起爆压力时被破坏的情况,导致泄压机构失效,泄压机构的可靠性较低。
为提高泄压机构的可靠性,发明人研究发现,可以将泄压机构与电池单体的电池盒设置成一体成型结构,即将电池盒的一部分作为泄压机构。比如,将端盖的局部进行弱化处理,使得端盖的局部的强度降低,形成薄弱区,从而形成一体式泄压机构,这样,可以有效提高泄压机构的可靠性。
由此,在一些实施例中,如图116-图151所示,每个电池单体20还包括电池盒21,电极组件22容纳于电池盒21内,电池盒21设置有泄压机构213,泄压机构213与电池盒21一体成型,以提高泄压结构213的可靠性。
在一些实施例中,如图116和图117所示,电池盒21包括一体成型的非薄弱区51和薄弱区52,电池盒21设置有槽部53,非薄弱区52形成于槽部53的周围,薄弱区52形成于槽部53的底部,薄弱区52被配置为在电池单体20泄放内部压力时被破坏,泄压机构213包括薄弱区52,以便进一步保证泄压结构213使用可靠。
电池盒21为能够与其他部件共同容纳电极组件22的部件,电池盒21为电池单体20的外壳的一部分,可以是外壳的端盖(或称为盖板)为电池盒21,也可以是外壳的壳体211为电池盒21。电池盒21可以是金属材质,比如,铜、铁、铝、钢、铝合金等,电池盒21可以是铝塑膜。
薄弱区52为电池盒较其他区域更为薄弱的部分,在电池单体20内部压力达到阈值时,电池盒21的薄弱区52能够被破坏,以泄放电池单体20内部的压力。薄弱区52可以破裂、脱离等方式被破坏。比如,在电池单体20内部压力达到阈值时,薄弱区52在电池单体20内部的排放物(气体、电解液等)的作用下破裂,使得电池单体20内部的排放物能够顺利排出。薄弱区52可以是多种形状,比如,矩形、圆形、椭圆形、环形、圆弧形、U形、H形等。薄弱区52的厚度可以是均匀的,也可以是不均匀的。
薄弱区52形成于槽部53的底部,槽部53可以通过冲压的方式成型,以实现薄弱区52与非薄弱区51一体成型。在电池盒上冲压成型槽部53后,电池盒在设置槽部53的区域减薄,对应形成薄弱区52。槽部53可以是一级槽,沿槽部53的深度方向,槽部53的槽侧面是连续的,比如,槽部53为内部空间呈长方体、柱型体等的槽。槽部53也可以是多级槽,多级槽沿槽部53的深度方向排布,在相邻的两级槽中,内侧(更深位置)的一级槽设置于外侧(更浅位置)的一级槽的槽底面,比如,槽部53为阶梯槽。在成型时,可以沿槽部53的深度方向逐级冲压成型多级槽,薄弱区52形成于多级槽中位于最深位置(最内侧)的一级槽的底部。
非薄弱区51形成于槽部53的周围,非薄弱区51的强度大于薄弱区52的强度,薄弱区52相较于非薄弱区51更容易被破坏。通过冲压的方式在电池盒上形成槽部53时,非薄弱区51可以是电池盒未被冲压的部分。非薄弱区51的厚度可以是均匀的,也可以是不均匀的。
平均晶粒尺寸的测量方法可以参见GB6394-2017中的截点法,在此不在赘述。在测量薄弱区52的平均晶粒尺寸时,可以沿薄弱区52的厚度方向进行测量;在测量非薄弱区51的平均晶粒尺寸时,可以沿非薄弱区51的厚度方向进行测量。
在图117中,薄弱区52的厚度方向与非薄弱区51的厚度方向一致,均为z向。
发明人还注意到,在电池盒上形成一体式泄压机构后,电池盒的薄弱区的力学性能较差,在电池单体正常使用条件下,容易出现薄弱区因电池单体内部压力长期变化而疲劳破坏,影响电池单体的使用寿命。
为此,在一些实施例中,薄弱区52的平均晶粒尺寸为S1,非薄弱区51的平均晶粒尺寸为S2,满足:0.05≤S1/S2≤0.9。
在本申请实施例中,薄弱区52和非薄弱区51一体成型,具有良好的可靠性。由于S1/S2≤0.9,薄弱区52的平均晶粒尺寸与非薄弱区51的平均晶粒尺寸相差较大,减小薄弱区52的平均晶粒尺寸,达到细化薄弱区52晶粒的目的,提高了薄弱区52材料力学性能,提高了薄弱区52的韧性和抗疲劳强度,降低薄弱区52在电池单体20正常使用条件下被破坏的风险,提高了电池单体20的使用寿命。
当S1/S2<0.05时,薄弱区52的成型难度增大,且薄弱区52的强度过大,薄弱区52在电池单体20热失控时被破坏的难度加大,容易出现泄压不及时的情况。
因此,S1/S2≥0.05,降低成型薄弱区52的成型难度,提高电池单体20在热失控时的泄压及时性。
例如,S1/S2可以是0.01、0.03、0.04、0.05、0.1、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9中任意一者点值或者任意两者之间的范围值。
在一些实施例中,0.1≤S1/S2≤0.5,使得电池盒21的综合性能更优,保证薄弱区52在电池单体20热失控时能够及时被破坏的情况下,保证薄弱区52在电池单体20正常使用条件下具有足够的强度。
例如,S1/S2可以是0.1、0.12、0.15、0.17、0.2、0.22、0.25、0.27、0.3、0.32、0.35、0.37、0.4、0.42、0.45、0.47、0.5中任意一者点值或者任意两者之间的范围值。
在一些实施例中,0.4μm≤S1≤75μm。
S1可以是0.4μm、0.5μm、1μm、2μm、3μm、4μm、5μm、10μm、15μm、20μm、25μm、28μm、30μm、35μm、36μm、40μm、45μm、49μm、50μm、55μm、60μm、65μm、70μm、72μm、75μm中任意一者点值或者任意两者之间的范围值。
发明人注意到,S1>75μm,薄弱区52的韧性和抗疲劳强度较差;S1<0.4μm,薄弱区52的成型难度较大,且薄弱区52的强度过大,薄弱区52在电池单体20热失控时被破坏的难度加大,容易出现泄压不及时的情况。
因此,0.4μm≤S1≤75μm,一方面,降低薄弱区52的成型难度,提高电池单体20在热失控时的泄压及时性;另一方面,提高了薄弱区52的韧性和抗疲劳强度,降低薄弱区52在电池单体20正常使用条件下被破坏的风险。
在一些实施例中,1μm≤S1≤10μm。
S1可以是1μm、1.5μm、1.6μm、2μm、2.5μm、2.6μm、3μm、3.5μm、3.6μm、4μm、4.5μm、4.6μm、5μm、5.5μm、5.6μm、6μm、6.5μm、6.6μm、7μm、7.5μm、7.6μm、8μm、8.5μm、8.6μm、9μm、9.5μm、9.6μm、10μm中任意一者点值或者任意两者之间的范围值。
在本实施例中,1μm≤S1≤10μm,使得电池盒21的综合性能更优,保证薄弱区52在电池单体20热失控时能够及时被破坏的情况下,保证薄弱区52在电池单体20正常使用条件下具有足够的强度。
在一些实施例中,10μm≤S2≤150μm。
S2可以是10μm、15μm、20μm、25μm、30μm、35μm、40μm、45μm、50μm、55μm、60μm、65μm、70μm、75μm、80μm、85μm、90μm、95μm、100μm、105μm、110μm、115μm、120μm、125μm、130μm、135μm、140μm、145μm、150μm中任意一者点值或者任意两者之间的范围值。
进一步地,30μm≤S2≤100μm。
S2可以是30μm、32μm、35μm、37μm、40μm、42μm、45μm、47μm、50μm、52μm、55μm、57μm、60μm、62μm、65μm、67μm、70μm、72μm、75μm、77μm、80μm、82μm、85μm、87μm、90μm、92μm、95μm、97μm、100μm中任意一者点值或者任意两者之间的范围值。
在一些实施例中,薄弱区的最小厚度为A1,满足:1≤A1/S1≤100。
A1/S1可以是1、2、4、5、10、15、20、21、22、23、25、30、33、34、35、37、38、40、45、50、55、60、65、70、75、80、85、90、93、94、95、100中任意一者点值或者任意两者之间的范围值。
当A1/S1<1时,在薄弱区52的厚度方向,薄弱区52的晶粒层数越少,薄弱区52的抗疲劳强度过小;当A1/S1>100时,在薄弱区52的厚度方向,薄弱区52的晶粒层数过多,薄弱区52的强度过大,容易出现薄弱区52在电池单体20热失控时不能及时被破坏的风险。
因此,1≤A1/S1≤100,一方面,使得薄弱区52在厚度方向的晶粒层数较多,提高薄弱区52的抗疲劳强度,降低薄弱区52在电池单体20正常使用条件下被破坏的风险;另一方面,使得薄弱区52能够在电池单体20热失控时能够更为及时的被破坏,以达到及时泄压的目的。
在一些实施例中,5≤A1/S1≤20。
A1/S1可以是5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、10.5、11、11.5、12、12.5、13、13.5、14、14.5、15、15.5、16、16.5、17、17.5、18、18.5、19、19.5、20中任意一者点值或者任意两者之间的范围值。
在本实施例中,5≤A1/S1≤20,使得电池盒的综合性能更优,保证薄弱区52在电池单体20热失控时能够及时被破坏的情况下,保证了薄弱区52在电池单体20正常使用条件下具有足够的抗疲劳强度,提高电池单体20的使用寿命。
在一些实施例中,薄弱区的最小厚度为A1,薄弱区的硬度为B1,满足:5HBW/mm≤B1/A1≤10000HBW/mm。
B1/A1可以是5HBW/mm、6HBW/mm、7HBW/mm、20HBW/mm、50HBW/mm、61HBW/mm、62HBW/mm、63HBW/mm、64HBW/mm、75HBW/mm、90HBW/mm、100HBW/mm、120HBW/mm、150HBW/mm、190HBW/mm、500HBW/mm、1000HBW/mm、1200HBW/mm、1750HBW/mm、1800HBW/mm、2100HBW/mm、4000HBW/mm、5000HBW/mm、8000HBW/mm、9000HBW/mm、10000HBW/mm中任意一者点值或者任意两者之间的范围值。
薄弱区52的硬度为布氏硬度,单位为HBW。布氏硬度的测量方法可参见GB/T23.1-2018中的测量原理进行实施。在实际测量过程中,薄弱区52的硬度可以在薄弱区52厚度方向上的内表面或外表面进行测量获得。以电池盒为电池单体20的端盖11为例,可以在薄弱区52背离电池单体20内部的外表面上测量薄弱区52的硬度,也可以在薄弱区52面向电池单体20内部的内表面上测量薄弱区52的硬度。
当B1/A1>10000HBW/mm时,薄弱区52较薄且硬度较大,这样会导致薄弱区52非常薄脆,薄弱区52在电池单体20的正常使用条件下容易被破坏,电池单体20的使用寿命较短。当B1/A1<5HBW/mm时,薄弱区52较厚且硬度较小,在电池单体20热失控时,薄弱区52会被拉伸延展,泄压及时性较差。
在本实施例中,不仅考虑到薄弱区52的厚度对电池盒的性能的影响,还考虑到薄弱区52的硬度对电池盒的性能的影响,5HBW/mm≤B1/A1≤10000HBW/mm,既能够使得薄弱区52在电池单体20正常使用条件下具有足够的强度,薄弱区52不易因疲劳而破坏,提高电池单体20的使用寿命;又能够使得电池盒在电池单体20热失控时通过薄弱区52及时泄压,降低电池单体20发生爆炸的风险,提高电池单体20的安全性。
在一些实施例中,190HBW/mm≤B1/A1≤4000HBW/mm。
B1/A1可以是190HBW/mm、250HBW/mm、280HBW/mm、300HBW/mm、350HBW/mm、400HBW/mm、450HBW/mm、500HBW/mm、600HBW/mm、700HBW/mm、875HBW/mm、1000HBW/mm、1200HBW/mm、1500HBW/mm、1750HBW/mm、1800HBW/mm、2000HBW/mm、2100HBW/mm、2500HBW/mm、3000HBW/mm、3500HBW/mm、4000HBW/mm中任意一者点值或者任意两者之间的范围值。
在本实施例中,190HBW/mm≤B1/A1≤4000HBW/mm,使得电池盒综合性能更优,保证薄弱区52在电池单体20热失控时能够及时被破坏的情况下,保证薄弱区52在电池单体20正常使用条件下具有足够的强度。在保证电池单体20的安全性的前提下,提高了电池单体20的使用寿命。
在一些实施例中,0.02mm≤A1≤1.6mm。
A1可以是0.02mm、0.04mm、0.05mm、0.06mm、0.1mm、0.15mm、0.2mm、0.25mm、0.3mm、0.35mm、0.4mm、0.45mm、0.5mm、0.55mm、0.6mm、0.7mm、0.75mm、0.8mm、0.85mm、0.9mm、0.95mm、1mm、1.05mm、1.1mm、1.15mm、1.2mm、1.25mm、1.3mm、1.35mm、1.4mm、1.42mm、1.43mm、1.45mm、1.47mm、1.5mm、1.55mm、1.6mm中任意一者点值或者任意两者之间的范围值。
当A1<0.02mm时,薄弱区52的成型难度困难,且在成型过程中,容易造成薄弱区52损伤;当薄弱区52的>1.6mm,薄弱区52在电池单体20热失控时被破坏的难度加大,容易出现泄压不及时的情况。
因此,0.02mm≤A1≤1.6mm,在降低电池盒的泄压区56的成型难度的情况下,提高了电池单体20在热失控时的泄压及时性。
在一些实施例中,0.06mm≤A1≤0.4mm。
A1可以是0.06mm、0.07mm、0.08mm、0.1mm、0.15mm、0.18mm、0.2mm、0.25mm、0.3mm、0.35mm、0.4mm中任意一者点值或者任意两者之间的范围值。
在本实施例中,0.06mm≤A1≤0.4mm,进一步降低薄弱区52的成型难度,并提高电池单体20在热失控时的泄压及时性。
在一些实施例中,薄弱区的硬度为B1,非薄弱区的硬度为B2,满足:1<B1/B2≤5。
非薄弱区51的硬度为布氏硬度,单位为HBW。在实际测量过程中,非薄弱区51的硬度可以在非薄弱区51厚度方向上的内表面或外表面进行测量获得。以电池盒为电池单体20的端盖11为例,可以在非薄弱区51背离电池单体20内部的外表面上测量非薄弱区51的硬度,也可以在非薄弱区51面向电池单体20内部的内表面上测量非薄弱区51的硬度。
在本实施例中,B1>B2,相当于提高了薄弱区52的硬度,从而提高了薄弱区52的强度,降低薄弱区52在电池单体20正常使用条件下被破坏的风险。
B1/B2可以是1.1、1.5、2、2.5、3、3.5、3.6、4、4.5、5中任意一者点值或者任意两者之间的范围值。
当B1/B2>5时,可能会导致薄弱区52的硬度过大,可能会出现薄弱区52在电池单体20热失控时很难被破坏的情况。
因此,B1/B2≤5,降低薄弱区52在电池单体20热失控时无法及时被破坏的风险,提高电池单体20的安全性。
在一些实施例中,B1/B2≤2.5。
B1/B2可以是1.1、1.11、1.12、1.2、1.25、1.3、1.4、1.5、1.6、1.7、1.71、1.72、1.8、1.9、2、2.1、2.2、2.3、2.4、2.5中任意一者点值或者任意两者之间的范围值。
在本实施例中,B1/B2≤2.5,能够进一步降低薄弱区52在电池单体20热失控时无法及时被破坏的风险。
在一些实施例中,5HBW≤B2≤150HBW。
B2可以是5HBW、8HBW、9HBW、9.5HBW、10HBW、15HBW、16HBW、19HBW、20HBW、30HBW、40HBW、50HBW、52HBW、52.5HBW、53HBW、60HBW、70HBW、90HBW、100HBW、110HBW、120HBW、130HBW、140HBW、150HBW中任意一者点值或者任意两者之间的范围值。
在一些实施例中,5HBW≤B1≤200HBW。
B1可以是5HBW、6HBW、8HBW、10HBW、15HBW、19HBW、20HBW、30HBW、50HBW、60HBW、70HBW、90HBW、100HBW、110HBW、120HBW、130HBW、140HBW、150HBW、160HBW、170HBW、180HBW、190HBW、200HBW中任意一者点值或者任意两者之间的范围值。
在一些实施例中,请参照图119和图120,图120为本申请另一些实施提供的电池盒21的局部放大图。薄弱区52的最小厚度为A1,非薄弱区51的最小厚度为A2,满足:0.05≤A1/A2≤0.95。
薄弱区52的最小厚度为薄弱区52最薄位置的厚度。非薄弱区51的最小厚度为非薄弱区51最薄位置的厚度。
如图119和图120所示,电池盒21具有相对设置的第一侧面54和第二侧面55,槽部53从第一侧面54向靠近第二侧面55的方向凹陷,电池盒位于槽部53的槽底面531与第二侧面55之间的部分为薄弱区52。
第一侧面54与第二侧面55可以平行设置,也可以呈小角度设置,若第一侧面54与第二侧面55呈小角度设置,比如,两者所呈角度在10度以内,第一侧面54与第二侧面55之间的最小距离即为非薄弱区51的最小厚度;如图119和图120所示,若第一侧面54与第二侧面55平行,第一侧面54与第二侧面55之间的距离即为非薄弱区51的最小厚度。
槽部53的槽底面531可以是平面,也可以是曲面。若槽部53的槽底面531为平面,槽部53的槽底面531与第二侧面55可以平行,也可以呈小角度设置。若槽部53的槽底面531与第二侧面55呈小角度设置,比如,两者所呈角度在10度以内,槽部53的槽底面531与第二侧面55之间的最小距离即为薄弱区52的最小厚度;如图119所示,若槽部53的槽底面531与第二侧面55平行,槽部53的槽底面531与第二侧面55之间的距离即为薄弱区52的最小厚度。如图120所示,若槽部的槽底面531为曲面,比如,槽部53的槽底面531为圆弧面,槽部53的槽底面531与第二侧面55之间的最小距离即为薄弱区52的最小厚度。
A1/A2可以是0.05、0.06、0.07、0.08、0.1、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.8、0.85、0.9、0.95中任意一者点值或者任意两者之间的范围值。
当A1/A2<0.05时,可能会出现薄弱区52的强度不足的情况。当A1/A2>0.95时,可能会出现薄弱区52在电池单体20热失控时不容易被破坏的情况,泄压不及时,导致电池单体20爆炸。因此,0.05≤A1/A2≤0.95,既能够降低薄弱区52在电池单体20正常使用条件下破裂的概率,又能够降低电池单体20热失控时发生爆炸的概率。
在一些实施例中,0.12≤A1/A2≤0.8。
A1/A2可以是0.12、0.13、0.14、0.15、0.17、0.2、0.22、0.25、0.27、0.3、0.32、0.35、0.37、0.4、0.42、0.45、0.47、0.5、0.52、0.55、0.57、0.6、0.62、0.65、0.66、0.67、0.7、0.72、0.75、0.77、0.8中任意一者点值或者任意两者之间的范围值。
在本实施例中,0.12≤A1/A2≤0.8,使得外部部件综合性能更优,在保证薄弱区52在电池单体20热失控时能够及时被破坏的情况下,保证薄弱区52在电池单体20正常使用条件下具有足够的强度。在通过冲压的方式成型槽部53时,将A1/A2控制在0.12~0.8之间,能够更容易使得S1/S2≤0.5,以达到细化薄弱区52晶粒的目的。
在一些实施例中,0.2≤A1/A2≤0.5。
A1/A2可以是0.2、0.21、0.22、0.23、0.24、0.25、0.26、0.27、0.28、0.29、0.3、0.31、0.32、0.33、0.34、0.35、0.36、0.37、0.38、0.39、0.4、0.41、0.42、0.43、0.44、0.45、0.46、0.47、0.48、0.49、0.5中任意一者点值或者任意两者之间的范围值。
在本实施例中,将A1/A2控制在0.2~0.5之间,细化晶粒对薄弱区52的加强效果会更优于厚度减薄对薄弱区52的削弱效果,使得薄弱区52具有更好的抗疲劳性能,进一步降低薄弱区52在电池单体20正常使用条件下被破坏的风险,并保证薄弱区52在电池单体20热失控时及时被破坏,提高泄压及时性。
在一些实施例中,0.02mm≤A1≤1.6mm。进一步地,0.06mm≤A1≤0.4mm。
在一些实施例中,1mm≤A2≤5mm。A2可以是1mm、2mm、3mm、4mm、5mm中任意一者点值或者任意两者之间的范围值。
A2>5mm,非薄弱区51的厚度较大,电池盒的用料更多,电池盒的重量大,经济性差。A2<1mm,非薄弱区51的厚度较小,电池盒的抗变形能力较差。因此,1mm≤A2≤5mm,使得电池盒具有较好的经济性,且具有较好的抗变形能力。
进一步地,1.2mm≤A2≤3.5mm。
A2可以是1.2mm、1.25mm、1.3mm、1.4mm、1.5mm、1.6mm、1.7mm、1.8mm、1.9mm、2mm、2.1mm、2.2mm、2.3mm、2.4mm、2.5mm、2.6mm、2.7mm、2.8mm、2.9mm、3mm、3.1mm、3.2mm、3.3mm、3.4mm、3.5mm中任意一者点值或者任意两者之间的范围值。
在本实施例中,1.2mm≤A2≤3.5mm,使得电池盒具有更好的经济性和抗变形能力。进一步地,2mm≤A2≤3mm。
在一些实施例中,请参照图121,图121为本申请又一些实施例提供的电池盒21的结构示意图(示出一级刻痕槽532);图122为图121所示的电池盒21的E-E剖视图;图123为本申请再一些实施例提供的电池盒21的结构示意图(示出一级刻痕槽532);图124为图124所示的电池盒的F-F剖视图;图125为本申请另一些实施例提供的电池盒的结构示意图(示出一级刻痕槽532);图126为图125所示的电池盒的G-G剖视图。电池盒21具有泄压区56,槽部53包括一级刻痕槽532,刻痕槽532沿着泄压区56的边缘设置,泄压区56被配置为能够以刻痕槽532为边界打开,薄弱区52形成刻痕槽532的底部。
泄压区56为电池盒在薄弱区52被破坏后能够打开的区域。比如,在电池单体20内部压力达到阈值时,薄弱区52裂开,泄压区56在电池单体20内部的排放物的作用下向外打开。泄压区56打开后,电池盒在与泄压区56相对应的位置可以形成排放口,电池单体20内部的排放物可以通过排放口排出,以泄放电池单体20内部的压力。
刻痕槽532可以通过冲压成型的方式成型于电池盒。槽部53中的刻痕槽532仅为一级,通过一次冲压则可成型该一级刻痕槽532。刻痕槽532可以是多种形状的槽,比如,环形槽、弧形槽、U形槽、H形槽等。薄弱区52形成于刻痕槽532的底部,薄弱区52的形状与刻痕槽532的形状相同,比如,薄弱区52为U形槽,薄弱区52则沿U形轨迹延伸。
在本实施例中,薄弱区52形成刻痕槽532的底部,在薄弱区52被破坏时,泄压区56能够以薄弱区52为边界打开,以实现泄压,增大了电池盒的泄压面积。
在一些实施例中,请继续参照图122、图124和图126所示,电池盒21具有相对设置的第一侧面54和第二侧面55,刻痕槽532从第一侧面54向靠近第二侧面55的方向凹陷。
可以是第一侧面54为电池盒21面向电池单体20内部的内表面,第二侧面55为电池盒背离电池单体20内部的外表面;也可以是第一侧面54为电池盒背离电池单体20内部的外表面,第二侧面55为电池盒面向电池单体20内部的内表面。示例性的,第一侧面54平行于第二侧面55,非薄弱区51的最小厚度即为第一侧面54与第二侧面55之间的距离。
刻痕槽532的槽底面即为槽部的槽底面531。电池盒21在刻痕槽532的槽底面与第二侧面55之间的部分为刻痕槽532的槽底壁,刻痕槽532的槽底壁即为薄弱区52。
在本实施例中,槽部53中仅包括一级刻痕槽532,刻痕槽532即为槽部53,槽部53为一级槽,结构简单。在成型时,可以在第一侧面54成型刻痕槽532,成型简单,提高生产效率,降低生产成本。
在一些实施例中,请参照图127-图132,图127为本申请又一些实施例提供的电池盒21的结构示意图(示出两级刻痕槽532);图128为图127所示的电池盒21的K-K剖视图;图129为本申请再一些实施例提供的电池盒的结构示意图(示出两级刻痕槽532);图130为图129所示的电池盒的M-M剖视图;图131为本申请另一些实施例提供的电池盒的结构示意图(示出两级刻痕槽532);图132为图131所示的电池盒的N-N剖视图。电池盒21包括相对设置的第一侧面54和第二侧面55,槽部53包括多级刻痕槽532,多级刻痕槽532沿第一侧面54到第二侧面55的方向依次设置于电池盒,薄弱区52形成于最远离第一侧面54的一级刻痕槽532的底部。其中,电池盒具有泄压区56,刻痕槽532沿着泄压区56的边缘设置,泄压区56被配置为能够以最远离第一侧面54的一级刻痕槽532为边界打开。
槽部53包括多级刻痕槽532,可理解的,槽部53为多级槽。每级刻痕槽532沿着泄压区56的边缘设置,多级刻痕槽532的形状相同。槽部53中的刻痕槽532可以是两级、三级、四级或者更多。各级刻痕槽532可以通过冲压成型的方式成型于电池盒。在成型时,可以沿第一侧面54到第二侧面55的方向依次冲压成型出各级刻痕槽532。在冲压成型多级刻痕槽532时,可以通过多次冲压对应形成多级刻痕槽532,每冲压一次成型一级刻痕槽532。刻痕槽532可以是多种形状的槽,比如,环形槽、弧形槽、U形槽、H形槽等。
薄弱区52形成于最远离于第一侧面54的一级刻痕槽532的底部,最远离于第一侧面54的一级刻痕槽532为最深位置(最内侧)的一级刻痕槽532。在相邻的两级刻痕槽532中,远离第一侧面54的一级刻痕槽532设置于靠近第一侧面54的一级刻痕槽532的底面。电池盒在最远离第一侧面54的一级刻痕槽532的槽底面与第二侧面55之间的部分为最远离第一侧面54的一级刻痕槽532的槽底壁,该槽底壁即为薄弱区52。最远离第一侧面54的一级刻痕槽532的槽底面即为槽部的槽底面531。
在成型时,可以在电池盒上逐级成型多级刻痕槽532,可以降低每级刻痕槽532的成型深度,从而降低电池盒在成型每级刻痕槽532时所受到的成型力,降低电池盒产生裂纹的风险,电池盒不易因在设置刻痕槽532的位置产生裂纹而失效,提高了电池盒的使用寿命。
在一些实施例中,请参照图128、图130、图132,最远离第二侧面55的一级刻痕槽532从第一侧面54向靠近第二侧面55的方向凹陷。
以槽部53中的刻痕槽532为两级为例,两级刻痕槽532分别为第一级刻痕槽和第二级刻痕槽。第一级刻痕槽设置于第一侧面54,即第一级刻痕槽从第一侧面54向靠近第二侧面55的方向凹陷,第二级刻痕槽设置于第一级刻痕槽的槽底面;即第二级刻痕槽从第一级刻痕槽的槽底面向靠近第二侧面55的方向凹陷。第一级刻痕槽为最外侧的一级刻痕槽532,第二级刻痕槽为最内侧的一级刻痕槽532。
槽部53由多级刻痕槽532构成,在成型时,可以从第一侧面54到第二侧面55的方向逐渐加工出多级刻痕槽532,成型效率高。
在一些实施例中,请参照图133-图139,图132为本申请一些实施例提供的电池盒的轴测图;图134为图132所示的电池盒的结构示意图(示出一级刻痕槽532和一级沉槽533);图135为图134所示的电池盒的O-O剖视图;图136为本申请再一些实施例提供的电池盒的结构示意图(示出一级刻痕槽532和一级沉槽533);图137为图136所示的电池盒的P-P剖视图;图138为本申请另一些实施例提供的电池盒的结构示意图(示出一级刻痕槽532和一级沉槽533);图139为图138所示的电池盒的Q-Q剖视图。电池盒21包括相对设置的第一侧面54和第二侧面55,槽部53还包括一级沉槽533,沉槽533从第一侧面54向靠近第二侧面55的方向凹陷,泄压区56形成于沉槽的槽底壁5331。
需要说明的是,无论槽部53中的刻痕槽532是一级,还是多级,槽部53中均可以包括一级沉槽533。可理解的,槽部53中既有刻痕槽532,又有沉槽533,槽部53为多级槽。沉槽533和刻痕槽532沿第一侧面54到第二侧面55的方向设置。在成型时,可以先在电池盒上成型沉槽533,然后,再在沉槽的槽底壁5331上成型刻痕槽532。
沉槽的槽底壁5331为电池盒位于沉槽533的槽底面以下的部分,在第一侧面54上成型沉槽533后,电池盒在设置沉槽533的区域的残留部分即为沉槽的槽底壁5331。如图135、图137、图139所示,电池盒21位于沉槽533的槽底面与第二侧面55之间的部分为沉槽的槽底壁5331。其中,泄压区56可以是沉槽的槽底壁5331的一部分。
沉槽533的设置,在保证最终的薄弱区52的厚度一定的情况下,可以降低刻痕槽532的深度,从而降低电池盒在成型刻痕槽532时所受到的成型力,降低电池盒产生裂纹的风险。此外,沉槽533能够为泄压区56在打开过程中提供避让空间,即使第一侧面54被障碍物遮挡,泄压区56仍然能够打开泄压。
在一些实施例中,请参照图140-图145,图140为本申请一些实施例提供的电池盒的结构示意图(示出一级刻痕槽532和两级沉槽533);图141为图140所示的电池盒的R-R剖视图;图142为本申请再一些实施例提供的电池盒的结构示意图(示出一级刻痕槽532和两级沉槽533);图143为图142所示的电池盒的S-S剖视图;图144为本申请另一些实施例提供的电池盒的结构示意图(示出一级刻痕槽532和两级沉槽533);图145为图144所示的电池盒的T-T剖视图。电池盒包括相对设置的第一侧面54和第二侧面55,槽部53还包括多级沉槽533,多级沉槽533沿第一侧面54到第二侧面55的方向依次设置于电池盒21,最远离第二侧面55的一级沉槽533从第一侧面54向靠近第二侧面55凹陷,泄压区56形成于最远离第一侧面54的一级沉槽的槽底壁5331。
需要说明的是,无论槽部53中的刻痕槽532是一级,还是多级,槽部53中均可以包括多级沉槽533。可理解的,槽部53中既有刻痕槽532,又有沉槽533,槽部53为多级槽。沉槽533和刻痕槽532沿第一侧面54到第二侧面55的方向设置。在成型时,可以先在电池盒上成型多级沉槽533,然后,再在最远离第一侧面54的一级沉槽的槽底壁5331上成型刻痕槽532。
最远离第二侧面55的一级沉槽533为最外侧的一级沉槽533,最远离第一侧面54的一级沉槽533为最内侧的一级沉槽533。最外侧的一级沉槽533设置于第一侧面54,最外侧的一级沉槽533从第一侧面54向靠近第二侧面55凹陷。
最远离第一侧面54的一级沉槽的槽底壁5331为电池盒位于最远离第一侧面54的一级沉槽533的槽底面以下的部分,在电池盒上成型多级沉槽533后,电池盒在设置最远离第一侧面54的一级沉槽533的区域的残留部分即为沉槽的槽底壁5331。如图141、图143、图145所示,电池盒位于最远离第一侧面54的一级沉槽533的槽底面与第二侧面55之间的部分为最远离第一侧面54的一级沉槽的槽底壁5331。其中,泄压区56可以是最远离第一侧面54的一级沉槽的槽底壁5331的一部分。
槽部53中的沉槽533可以是两级、三级、四级或者更多。在相邻的两级沉槽533中,远离第一侧面54的一级沉槽533设置于靠近第一侧面54的一级沉槽533的底面。沿第一侧面54到第二侧面55的方向,多级沉槽533的槽底面的轮廓逐级减小。各级沉槽533可以通过冲压成型的方式成型于电池盒。在成型时,可以沿第一侧面54到第二侧面55的方向依次冲压成型出各级沉槽533,再冲压成型刻痕槽532。以槽部53中的沉槽533为两级,刻痕槽532为一级为例,在冲压成型时,可以先进行两次冲压,以对应形成两级沉槽533,再进行一次冲压,以对应形成一级刻痕槽532。示例性的,在图140-图145中,槽部53中的沉槽533为两级。
在成型多级沉槽533时,能够减小每级沉槽533的成型深度,能够降低成型每级沉槽533时电池盒受到的成型力,降低电池盒产生裂纹的风险。此外,多级沉槽533能够为泄压区56在打开过程中提供避让空间,即使第一侧面54被障碍物遮挡,泄压区56仍然能够打开泄压。
在一些实施例中,沉槽533的内部空间为圆柱体、棱柱体、圆台体或棱台体。
沉槽533的内部空间为沉槽533的槽侧面和槽底面共同限定出来的空间。其中,棱柱体可以是三棱柱、四棱柱、五棱柱、六棱柱等;棱台体可以是三棱台、四棱台、五棱台或六棱台等。示例性的,在图133-图145中,槽部53的内部空间为四棱柱,具体的,槽部53的内部空间为长方体。
在本实施例中,沉槽533结构简单,易于成型,能够为泄压区56在打开过程中提供更多地避让空间。
在一些实施例中,请参照图121、图127、图134和图140,刻痕槽532包括第一槽段5321、第二槽段5322和第三槽段5323,第一槽段5321和第三槽段5323相对设置,第二槽段5322连接第一槽段5321和第三槽段5323,第一槽段5321、第二槽段5322和第三槽段5323沿着泄压区56的边缘设置。
第一槽段5321、第二槽段5322和第三槽段5323均可以是直线形槽,也可以是非直线形槽,比如,圆弧形槽。在第一槽段5321、第二槽段5322和第三槽段5323均为直线形槽的实施例中,可理解的,第一槽段5321、第二槽段5322和第三槽段5323均沿直线延伸,第一槽段5321与第三槽段5323两者可以平行设置,两者也可以呈夹角设置。第一槽段5321和第三槽段5323两者可以与第二槽段5322垂直,两者也可以与第二槽段5322不垂直。
第二槽段5322与第一槽段5321的连接位置可以位于第一槽段5321的一端,也可以位于偏离第一槽段5321的一端的位置,比如,第二槽段5322与第一槽段5321的连接位置位于第一槽段5321在延伸方向的中点位置;第二槽段5322与第三槽段5323的连接位置可以位于第三槽段5323的一端,也可以位置偏离第三槽段5323的一端的位置,比如,第二槽段5322与第三槽段5323的连接位置位于第三槽段5323在延伸方向的中点位置。
需要说明的是,在槽部53包括多级刻痕槽532的实施例中,可理解的,在相邻的两级刻痕槽532中,远离第一侧面54的一级刻痕槽532的第一槽段5321设置于靠近第一侧面54的一级刻痕槽532的第一槽段5321的槽底面;远离第一侧面54的一级刻痕槽532的第二槽段5322设置于靠近第一侧面54的一级刻痕槽532的第二槽段5322的槽底面;远离第一侧面54的一级刻痕槽532的第三槽段5323设置于靠近第一侧面54的一级刻痕槽532的第三槽段5323的槽底面。
在本实施例中,泄压区56能够以第一槽段5321、第二槽段5322和第三槽段5323为边界打开,在电池单体20泄压时,泄压区56打开更加容易,实现电池盒的大面积泄压。
在一些实施例中,请继续参照图121、图127、图134和图140,第一槽段5321、第二槽段5322和第三槽段5323限定出两个泄压区56,两个泄压区56分别位于第二槽段5322的两侧。
示例性的,第一槽段5321、第二槽段5322和第三槽段5323形成H形刻痕槽532,第二槽段5322与第一槽段5321的连接位置位于第一槽段5321的中点位置,第三槽段5323与第二槽段5322的连接位置位于第三槽段5323的中点位置。两个泄压区56对称设置于第二槽段5322的两侧。
两个泄压区56分别位于第二槽段5322的两侧,使得两个泄压区56以第二槽段5322分界,电池盒在第二槽段5322的位置破裂后,两个泄压区56能够沿着第一槽段5321和第三槽段5323以对开的形式打开,以实现泄压,可有效提高电池盒的泄压效率。
在另一些实施例中,第一槽段5321、第二槽段5322和第三槽段5323依次连接,第一槽段5321、第二槽段5322和第三槽段5323限定出一个泄压区56。
第一槽段5321、第二槽段5322和第三槽段5323依次连接可以形成U形刻痕槽532。
在一些实施例中,刻痕槽532为沿非封闭轨迹延伸的槽。
非封闭轨迹是指在延伸方向上的两端未相连的轨迹,非封闭轨迹可以是弧形轨迹、U形轨迹等。
在本实施例中,刻痕槽532为沿非封闭轨迹的槽,泄压区56可以以翻转的方式打开,泄压区56打开后最终与电池盒的其他区域相连,降低泄压区56打开后发生飞溅的风险。
在一些实施例中,请参照图123、图129、图136和图142所示,刻痕槽532为圆弧形槽。
圆弧形槽为沿圆弧形轨迹延伸的槽,圆弧形轨迹为非封闭轨迹。圆弧形槽的圆心角可以小于、等于或大于180°。
圆弧形槽结构简单,易于成型。在泄压过程中,泄压区56能够沿着圆弧形槽快速破裂,以使泄压区56快速打开。
在一些实施例中,请参照图125、图131、图38和图144,刻痕槽532为沿封闭轨迹延伸的槽。
封闭轨迹是指首尾两端相连的轨迹,封闭轨迹可以是圆形轨迹、矩形轨迹等。
在泄压过程中,电池盒21能够沿刻痕槽532破裂,使得泄压区56可以以脱离的方式打开,增大了电池盒21的泄压面积,提高电池盒21的泄压速率。
在一些实施例中,刻痕槽532为环形槽。
环形槽可以是矩形环槽,也可以是圆形环槽。
环形槽结构简单,易于成型,在泄压过程中,电池盒21可以沿着环形槽快速破裂,以使泄压区56快速打开。
在一些实施例中,泄压区56的面积为E1,满足:90mm2≤E1≤1500mm2
在图121、图123、图125、图127、图129、图131、图134、图136、图138、图140、图142和图144中,阴影部分的面积为泄压区56的面积。
需要说明的是,在槽部53中包括多级刻痕槽532的实施例中,泄压区56的面积为最深位置(最内侧)的一级刻痕槽532所限定出的区域的面积。
泄压区56的面积E1可以是90mm2、95mm2、100mm2、150mm2、200mm2、250mm2、300mm2、350mm2、400mm2、450mm2、500mm2、550mm2、600mm2、650mm2、700mm2、750mm2、800mm2、900mm2、950mm2、1000mm2、1050mm2、1100mm2、1150mm2、1200mm2、1250mm2、1300mm2、1350mm2、1400mm2、1450mm2、1500mm2中任意一者点值或者任意两者之间的范围值。
当泄压区56的面积E1<90mm2时,电池盒的泄压面积较小,电池单体20热失控时的泄压及时性较差;E1>1500mm2,泄压区56的抗冲击能力较差,泄压区56受力后的变形增大,薄弱区52在电池单体20正常使用条件下容易被破坏,影响电池单体20的使用寿命。因此,90mm2≤泄压区56的面积E1≤1500mm2,既能够提高电池单体20的使用寿命,又能够提高电池单体20的安全性。
进一步地,150mm2≤泄压区56的面积E1≤1200mm2。使得电池盒的综合性能更优,在使得电池盒具有较大的泄压面积,且有较好的抗冲击能力。
进一步地,200mm2≤泄压区56的面积E1≤1000mm2
进一步地,250mm2≤泄压区56的面积E1≤800mm2
在一些实施例中,请参照图116-图145,电池盒21具有相对设置的第一侧面54和第二侧面55,槽部53从第一侧面54向靠近第二侧面55的方向凹陷,槽部53在第一侧面54形成外边缘534,电池盒距离外边缘534第一距离以外的区域为非薄弱区51,第一距离为g,g=5mm。
在图121-图126所示的实施例中,槽部53仅包括一级刻痕槽532,刻痕槽532设置于第一侧面54,刻痕槽532的槽侧面与第一侧面54相交形成外边缘534,刻痕槽532的槽侧面围设在刻痕槽532的槽底面的周围。需要说明的是,在图125所示的实施例中,由于刻痕槽532为沿封闭轨迹延伸的槽,刻痕槽532的槽侧面与第一侧面54相交形成内环线和位于内环线外侧的外环线,外环线为外边缘534。
在图127-图132所示的实施例中,槽部53仅包括多级刻痕槽532,最外侧的刻痕槽532设置于第一侧面54,最外侧的刻痕槽532的槽侧面与第一侧面54相交形成外边缘534。需要说明的是,在图131所示的实施例中,由于刻痕槽532为沿封闭轨迹延伸的槽,最外侧的刻痕槽532与第一侧面54相交形成内环线和位于内环线外侧的外环线,外环线为外边缘534。
在图133-图139所示的实施例中,槽部53还包括一级沉槽533,沉槽533设置于第一侧面54,沉槽533的槽侧面与第一侧面54相交形成外边缘534,沉槽533的槽侧面围设于沉槽533的槽底面的周围。在图140-图145所示的实施例中,槽部53还包括多级沉槽533,最外侧的一级沉槽533设置与第一侧面54,最外侧的一级槽侧面与第一侧面54相交形成外边缘534。
可理解的,外边缘534与非薄弱区51的内边缘511之间的距离为第一距离g,非薄弱区51的内边缘511的形状可以与外边缘534的形状基本相同。第一距离g所在方向可以与非薄弱区51的厚度方向垂直,也就是说,第一距离可以沿着垂直于非薄弱区51的厚度方向测量。在测量非薄弱区51的平均晶粒尺寸时,可以在距离外边缘534以外的区域进行测量。
在本实施例中,非薄弱区51不易受到在成型槽部53的过程中的影响,使得非薄弱区51的晶粒更加均匀。
需要说明的是,如图121和图127所示,在刻痕槽532的第一槽段5321与第三槽段5323相对设置的实施例中,以第一槽段5321和第三槽段5323平行为例,当第一槽段5321与第三槽段5323之间的间距大于2*g时,非薄弱区51的内边缘511局部位于泄压区56,使得泄压区56部分位于非薄弱区51。在其他实施例中,请参照图146,图146为本申请其他实施例提供的电池盒的结构示意图,当第一槽段5321与第三槽段5323之间的间距小于或等于2*g,非薄弱区51的内边缘511并未位于泄压区56,非薄弱区51的内边缘511大致呈矩形。沿第一槽段5321的宽度方向,第一槽段5321与非薄弱区51的内边缘511的间距为g;沿第一槽段5321的长度方向,第一槽段5321与非薄弱区51的内边缘511的间距为g;沿第三槽段5323的宽度方向,第三槽段5323与非薄弱区51的内边缘511的间距为g;沿第三槽段5323的长度方向,第三槽段5323与非薄弱区51的内边缘511的间距为g。
在一些实施例中,请参照图147,图147为本申请另一些实施例提供的电池盒的晶粒图(示意图)。电池盒21还包括过渡区57,过渡区57连接薄弱区52和非薄弱区51,过渡区57的平均晶粒尺寸为S3,满足:S3≤S2
示例性的,S3>S1
过渡区57为电池盒21连接薄弱区52和非薄弱区51的部分,过渡区57环绕设置于薄弱区52的外侧,非薄弱区51环绕在过渡区57的外侧,薄弱区52、过渡区57和非薄弱区51一体成型。
过渡区57的平均晶粒尺寸可以从非薄弱区51到薄弱区52逐渐减小。示例性的,如图147所示,以槽部53包括一级沉槽533和一级刻痕槽532为例,过渡区57位于沉槽533的外侧区域的平均晶粒尺寸可以大于过渡区57位于沉槽533的底部区域的平均晶粒尺寸,过渡区57位于沉槽533的外侧区域的平均晶粒尺寸可以小于或等于非薄弱区51的平均晶粒尺寸S2,过渡区57位于沉槽533的底部区域的平均晶粒尺寸可以大于薄弱区52的平均晶粒尺寸S1
在本实施例中,过渡区57起到连接薄弱区52和非薄弱区51的作用,实现薄弱区52和非薄弱区51一体成型。
在一些实施例中,请参照图148和图149,图148为本申请一些实施例提供的端盖11的结构示意图。电池盒21为端盖11,端盖11用于封闭壳体211的开口,壳体211用于容纳电极组件22。
可理解的,端盖11设置有槽部53,以对应形成薄弱区52和非薄弱区51。电池盒的第一侧面54和第二侧面55分别为端盖11在厚度方向上相对的两个表面,即第一侧面54和第二侧面55中的一者为端盖11在厚度方向上的内表面,另一者为端盖11在厚度方向上的外表面。
端盖11可以是圆形、矩形板状结构。
示例性的,在图148示出的实施例中,端盖11为矩形板状结构。
在本实施例中,端盖11具有泄压功能,保证电池单体20的安全性。
在一些实施例中,请参照图149和图150,图149为本申请一些实施例提供的壳体211的结构示意图;图150为本申请另一些实施例提供的壳体211的结构示意图。电池盒为壳体211,壳体211具有开口,壳体211用于容纳电极组件2。
在本实施例中,壳体211为电池盒,端盖11用于封闭壳体211的开口。壳体211可以是一端形成开口的空心结构,也可以是相对的两端形成开口的空心结构,壳体211和端盖11可以形成电池单体20的外壳1。壳体211可以是长方体、圆柱体等。
在本实施例中,电池盒21为壳体211,使得壳体211具有泄压功能,保证电池单体20的安全性。
在一些实施例中,壳体211包括一体成型的多个壁部121,多个壁部121共同限定出壳体211的内部空间,至少一个壁部121设置有槽部53。
在壳体211中,可以是一个壁部121上设置槽部53,以在该壁部121上对应形成一体成型的薄弱区52和非薄弱区51;也可以是多个壁部121上设置槽部53,以在设置槽部53的每个壁部121上形成一体成型的薄弱区52和非薄弱区51。对于设置有槽部53的壁部121而言,电池盒的第一侧面54和第二侧面55分别为壁部121在厚度方向上相对的两个表面,即第一侧面54和第二侧面55中的一者为壁部121在厚度方向上的内表面,另一者为壁部121在厚度方向上的外表面。
在本实施例中,多个壁部121一体成型,使得设置槽部53的壁部121具有更好的可靠性。
在一些实施例中,请继续参照图149和图150,多个壁部121包括底壁121b和围设于底壁121b的周围的多个侧壁121a,壳体211在与底壁121b相对的一端形成开口。底壁121b设置有槽部53;和/或,至少一个侧壁121a设置有槽部53。
在本实施例中,壳体211为一端形成开口的空心结构。壳体211中的侧壁121a可以是三个、四个、五个、六个或者更多。可以是一个、两个、三个、四个、五个、六个或者更多侧壁121a设置有槽部53。
示例性的,在图149中,仅一个侧壁121a设置有槽部53,以在该侧壁121a上对应形成薄弱区52和非薄弱区51;在图150中,仅第二腔壁30i 1b设置有槽部53,以在底壁121b上对应形成薄弱区52和非薄弱区51。
在一些实施例中,请继续参照图149和图159,壳体211为长方体。可理解的,壳体211中的侧壁121a为四个。
长方体壳体211适用于方形电池单体,能够满足电池单体20的大容量要求。
在一些实施例中,电池盒21的材质包括铝合金。
铝合金的电池盒重量轻,具有很好的延展性,具有很好的塑性变形能力,易于成型。由于铝合金具有很好的延展性,在通过冲压的方式在电池盒上成型槽部53时,更容易将S1/S2控制在0.5以下(包括0.5),成型优率更高。
在一些实施例中,铝合金包括以下质量百分含量的成分:铝≥99.6%,铜≤0.05%,铁≤0.35%,镁≤0.03%,锰≤0.03%,硅≤0.25%,钛≤0.03%,钒≤0.05%,锌≤0.05%,其他单个元素≤0.03%。这种铝合金硬度更低,具有更好的成型能力,降低槽部53的成型难度,提高了槽部53的成型精度,提高了电池盒的泄压一致性。
在一些实施例中,铝合金包括以下质量百分含量的成分:铝≥96.7%,0.05%≤铜≤0.2%,铁≤0.7%,锰≤1.5%,硅≤0.6%,锌≤0.1%,其他单个元素成分≤0.05%,其他元素总成分≤0.15%。由这种铝合金制成的电池盒硬度更高,强度大,具有良好的抗破坏能力。
在一些实施例中,电池单体20还包括壳体211,壳体211具有开口,壳体211用于容纳电极组件22。电池盒21为端盖11,端盖11封闭开口。
在一些实施例中,电池盒21为壳体211,壳体211具有开口,壳体211用于容纳电极组件22。电池单体20还包括端盖11,端盖11封闭开口。
在一些实施例中,请参照图151,图151为本申请一些实施例提供的电池单体20的结构示意图,薄弱区52位于电池单体20的下部。
在电池单体20中,沿电池单体20的电池盒21的高度方向,电池单体20位于电池盒21的中平面Y以下的部分即为电池单体20的下部,其中,中平面Y垂直于电池盒21的高度方向,中平面Y到电池盒21在高度方向上的两端面的距离相等。比如,电池盒21包括壳体211和端盖11,端盖11封闭壳体211的开口。壳体211和端盖11沿电池盒21的高度方向排布,沿电池盒21的高度方向,中平面Y位于端盖11背离壳体211的外表面与壳体211背离端盖11的外表面的中间位置。
薄弱区52位于电池单体20的下部,则槽部53位于电池单体20的下部,薄弱区52和槽部53均位于中平面Y的下方。薄弱区52可以位于壳体211,薄弱区52也可以位于端盖11。薄弱区52可以位于壳体211的侧壁121a,也可以位于壳体211的底壁121b。如图151所示,以薄弱区52位于壳体211的侧壁121a为例,可以是壳体211的底壁121b位于端盖11的下方,薄弱区52位于中平面Y以下,使得薄弱区52到壳体211的底壁121b的距离大于薄弱区52到端盖11的距离。
由于薄弱区52位于电池单体20的下部,在电池100使用过程中,在电池单体20内部的电极组件2、电解液等的重力作用下,薄弱区52会受到较大的作用力,由于薄弱区52与非薄弱区51为一体成型结构,具有很好的结构强度,具有更好的可靠性,提高电池单体20的使用寿命。
在一些实施例中,电池单体20包括壳体211,壳体211用于容纳电极组件2,壳体211包括一体成型的底壁121b和围设于底壁121b的周围的多个侧壁121a,底壁121b与侧壁121a一体成型,壳体211在与底壁121b相对的一端形成开口,薄弱区52位于底壁121b。
可理解的,底壁121b位于中平面Y的下方。
在本实施例中,薄弱区52位于底壁121b,使得薄弱区52朝下设置,在电池单体20热失控时,薄弱区52被破坏后,电池单体20中的排放物将朝下喷出,降低发生安全事故的风险。比如,在车辆1000中,电池100一般安装于乘客舱的下方,薄弱区52朝下设置,使得电池单体20热失控排出的排放物向背离乘客舱的方向喷出,降低排放物对乘客舱的影响,降低发生安全事故的风险。
在一些实施例中,电池单体20包括端盖11,端盖11用于封闭壳体211的开口,壳体211用于容纳电极组件22,薄弱区52位于端盖11。
可理解的,端盖11位于中平面Y的下方。
在本实施例中,薄弱区52位于端盖11,使得薄弱区52朝下设置,在电池单体20热失控时,薄弱区52被破坏后,电池单体20中的排放物将朝下喷出,降低发生安全事故的风险。
在一些实施例中,本申请实施例提供一种端盖11,用于电池单体20,端盖11包括一体成型的非薄弱区51和薄弱区52。端盖11设置一级槽部53,非薄弱区51形成于槽部53的周围,薄弱区52形成于槽部53的底部,薄弱区52被配置为在电池单体20泄放内部压力时被破坏。具有背离电池单体20的内部的第一侧面54,槽部53在第一侧面54形成外边缘534,端盖11距离外边缘534以外的区域为非薄弱区51。薄弱区52的平均晶粒尺寸为S1,非薄弱区51的平均晶粒尺寸为S2,薄弱区52的最小厚度为A,非薄弱区51的最小厚度为B,薄弱区52的硬度为H1,非薄弱区51的硬度为H2,满足:0.1≤S1/S2≤0.5,5≤A/S1≤20,190HBW/mm≤H1/A≤4000HBW/mm,1<H1/H2≤2.5,0.2≤A/B≤0.5。
在一些实施例中,本申请实施例提供一种壳体211,用于电池单体20,壳体211包括一体成型的非薄弱区51和薄弱区52。壳体211设置一级槽部53,非薄弱区51形成于槽部53的周围,薄弱区52形成于槽部53的底部,薄弱区52被配置为在电池单体20泄放内部压力时被破坏。具有背离电池单体20的内部的第一侧面54,槽部53在第一侧面54形成外边缘534,端盖11距离外边缘534以外的区域为非薄弱区51。薄弱区52的平均晶粒尺寸为S1,非薄弱区51的平均晶粒尺寸为S2,薄弱区52的最小厚度为A,非薄弱区51的最小厚度为B,薄弱区52的硬度为H1,非薄弱区51的硬度为H2,满足:0.1≤S1/S2≤0.5,5≤A/S1≤20,190HBW/mm≤H1/A≤4000HBW/mm,1<H1/H2≤2.5,0.2≤A/B≤0.5。
以下结合实施例对本申请的特征和性能作进一步的详细描述。
在各实施例和对比例中,电池单体20为方形电池单体20,电池单体20中的端盖11作为电池盒,容量为150Ah,化学体系为NCM。
一、测试方法:
(1)薄弱区52和非薄弱区51的平均晶粒尺寸测试。
薄弱区52和非薄弱区51的平均晶粒尺寸测试采用电子背散射衍射(EBSD)法。将电池盒切开成3段,中间段两端的截面都有薄弱区52和非薄弱区51。切割方向与薄弱区52长度方向垂直,切割设备不改变晶粒结构。选择中间段进行取样,样品厚度尺寸小于5mm,长度小于10mm。然后将样品进行电解抛光后,将试样固定在倾斜70°的样品台上,选择合适的放大倍数,使用安装有电子背散射衍射(EBSD)附件的扫描电子显微镜(SEM)进行EBSD扫描,根据扫描结果,最后计算出平均晶粒尺寸(即检验面内完整晶粒的等积圆直径)。
(2)薄弱区52和非薄弱区51的最小厚度测试。
将电池盒切开成3段,取中间段作为试样,试样两端的截面都有薄弱区52和非薄弱区51。切割方向与薄弱区52长度方向垂直。对中间段截面进行抛光充分去除毛刺后,将试样放置在三次元坐标量测仪,对截面上的薄弱区52和非薄弱区51进行厚度测量。
(3)薄弱区52和非薄弱区51的硬度测试。
将电池盒切开成3段,取中间段作为试样,试样两端的截面都有薄弱区52和非薄弱区51。切割方向与薄弱区52长度方向垂直,对试验截面进行抛光充分去除毛刺后,将试样水平放置(试样截面方向与硬度测量仪挤压方向平行)在布氏硬度测量仪上进行硬度测量。若薄弱区52宽度尺寸<1mm或布氏硬度测量仪的压头尺寸远大于薄弱区52宽度,应按照布氏硬度测量和换算原理,加工非标压头进行硬度测量。
(4)薄弱区52在电池单体20正常使用条件下的开裂率。
将电池100放置在25±2℃条件下,进行循环充放电,充放电区间5%-97%SOC,同时监控电池单体20内部产气气压,同时进行500组试验。试验截止条件为:电池单体20寿命下降至80%SOH或任意一组电池单体20在循环过程中薄弱区52开裂。其中,薄弱区52开裂判定条件为:电池单体20内部气压值下降,其下降值>最大气压的10%。统计薄弱区52的开裂率,开裂率=开裂数量/总数量*100%。
(5)电池单体20在热失控时的爆炸率。
在电池单体20内内置一个小型加热膜,给加热膜通电,给电池单体20加热,直至电池单体20发生热失控,观察电池单体20是否爆炸。重复进行500组试验,统计电池单体20的爆炸率,爆炸率=爆炸的数量/总数量*100%。
二、测试结果
在各实施例和对比例中,薄弱区52的平均晶粒尺寸S1、非薄弱区51的平均晶粒尺寸S2、薄弱区52的最小厚度A1、非薄弱区51的最小厚度A2、薄弱区52的硬度B1、非薄弱区51的硬度B2的测试结果如表11所示;薄弱区52在电池单体20正常使用条件下的开裂率Q1和电池单体20在热失控时的爆炸率Q2如表11所示。
表11
Figure BDA0004035636100001031
/>
Figure BDA0004035636100001041
/>
Figure BDA0004035636100001051
/>
Figure BDA0004035636100001061
/>
Figure BDA0004035636100001071
表12
Figure BDA0004035636100001072
/>
Figure BDA0004035636100001081
结合表11和表12,根据实施例1~7可知,在S1/S2≤0.9时,薄弱区52在电池单体20正常使用条件下开裂率较低。在对比例1中,0.9<S1/S2<1,薄弱区52在电池单体20正常使用条件下开裂率明显升高;在对比例2中,S1/S2=1,薄弱区52在电池单体20正常使用条件下开裂率明显升高;在对比例3中,S1/S2>1,薄弱区52在电池单体20正常使用条件下开裂率也明显升高。比较实施例1~7和对比例1~3可知,将S1/S2控制在不超过0.9,能够有效降低薄弱区52在电池单体20正常使用条件下被破坏的风险,从而提高电池单体20的使用寿命。
根据实施例7可知,当S1/S2<0.5时,薄弱区52在电池单体20热失控时被破坏的难度增大,泄压不及时,电池单体20发生爆炸的风险明显增大。从实施例3~5可以看出,当0.1≤S1/S2≤0.5时,薄弱区52在电池单体20正常使用条件下的开裂率以及电池单体20在热失控时的爆炸率均较低,保证薄弱区52在电池单体20热失控时能够及时被破坏的情况下,保证薄弱区52在电池单体20正常使用条件下具有足够的强度。
从实施例9~12与实施例8比较可以看出,当1≤A1/S1≤100时,电池单体20在热失控时能够及时泄压,电池单体20爆炸率较低。当5≤A1/S1≤20时,电池单体20的综合性能更优,薄弱区52在电池单体20正常使用条件下的开裂率以及电池单体20在热失控时的爆炸率均较低。
从实施例14~17与实施例13比较可以看出,当B1/A1>10000HBW/mm时,薄弱区52在电池单体20正常使用条件下的开裂率较高,比较实施例14~17和实施例18可知,当B1/A1<5HBW/mm时,电池单体20在热失控时的爆炸率较高。而5HBW/mm≤B1/A1≤10000HBW/mm,既能够降低薄弱区52在电池单体20正常使用条件下破裂的风险,又能够在电池单体20热失控时通过薄弱区52及时泄压,降低电池单体20发生爆炸的风险。从实施例15~16可以看出,当190HBW/mm≤B1/A1≤4000HBW/mm时,电池单体20的综合性能更优,薄弱区52在电池单体20正常使用条件下的开裂率以及电池单体20在热失控时的爆炸率均较低。
从实施例19~21与实施例22~23比较可以看出,当B1/B2≤1时,薄弱区52在电池单体20正常使用条件下的开裂率较高。而B1/B2>1能够有效降低薄弱区52在电池单体20正常使用条件下的开裂率。比较实施例20~21和实施例19可知,当B1/B2>5时,电池单体20在热失控时的爆炸率较高。而B1/B2≤5能够降低电池单体20发生爆炸的风险。
从实施例25~30与实施例24比较可以看出,当A1/A2>0.95时,电池单体20在热失控时的爆炸率较高。比较实施例25~30和实施例31可知,当A1/A2<0.05时,薄弱区52在电池单体20正常使用条件下的开裂率较高。而0.05≤A1/A2≤0.95,既能够降低薄弱区52在电池单体20正常使用条件下破裂的风险,又能够在电池单体20热失控时通过薄弱区52及时泄压,降低电池单体20发生爆炸的风险。从实施例26~29可以看出,当0.12≤A1/A2≤0.8时,电池单体20的综合性能更优,薄弱区52在电池单体20正常使用条件下的开裂率以及电池单体20在热失控时的爆炸率均较低,0.2≤A1/A2≤0.5,效果更优。
在一些实施例中,如图4、图152-图162所示,电极组件22包括正极片1B和负极片2B,正极片1B和/或负极片2B包括集流体22A和活性物质层22B,集流体22A包括支撑层22A1和导电层22A2,支撑层22A1用于承载导电层22A2,支撑层22A1具有适当的刚性,以对导电层22A2起到支撑和保护的作用,确保集流体22A的整体强度,同时具有适当的柔性以使集流体22A及极片能够在加工过程中进行卷绕;导电层22A2用于承载活性物质层22B,用于为活性物质层22B提供电子,即起到导电和集流的作用。
其中,由于支撑层22A1的密度较导电层22A2的密度低,使得本申请的集流体22A较传统集流体的重量显著减轻,因此采用本申请的集流体22A,能够显著提高电化学装置的重量能量密度。
可选地,支撑层22A1为绝缘层。
在一些实施例中,如图152-图162所示,沿支撑层22A1的厚度方向,导电层22A2设置于支撑层22A1的至少一侧,可在支撑层22A1的相对的两个表面上均设置有导电层22A2,其结构示意图如图152和图154所示;也可在仅支撑层22A1的一面上设置有导电层22A2,其结构示意图如图153和图155所示。由此,便于实现导电层22A2的灵活设置。
在一些实施例中,导电层22A2的常温薄膜电阻RS满足:0.016Ω/□≤RS≤420Ω/□。
其中,薄膜电阻用欧姆/平方(Ω/□来计量,可被应用于将导电体考虑为一个二维实体的二维系统,其与三维系统下所用的电阻率的概念对等。当使用到薄膜电阻这一概念的时候,电流理论上假设为沿着薄膜的平面流动。
对于常规三维导体,电阻的计算公式为:
Figure BDA0004035636100001101
其中,ρ代表电阻率,A代表截面面积,L代表长度。截面面积可被分解为宽度W和薄膜厚度t,即,电阻可被记为:
Figure BDA0004035636100001102
其中,RS即为薄膜电阻。当膜片为正方形形状,L=W,所测得的电阻R即为膜片的薄膜电阻RS,而且RS与L或W的大小无关,RS是单位正方形的电阻值,因此RS的单位可以表示为欧姆每平方(Ω/□)。
本申请的常温薄膜电阻是指在常温条件下对导电层采用四探针法测量得到的电阻值。
在现有的锂离子电池单体中,当在异常情况下发生电池单体内短路时,瞬间产生大电流,并伴随着大量的短路产热,这些热量通常还会引发正极铝箔集流体处的铝热反应,进而使电池单体发生着火、爆炸等。
而在本申请中,通过提高集流体的常温薄膜电阻RS来解决上述技术问题。
电池单体的内阻通常包括电池欧姆内阻和电池极化内阻,其中活性物质电阻、集流体电阻、界面电阻、电解液组成等均会对电池单体内阻产生较明显的影响。
在异常情况下发生短路时,由于发生内短路,电池单体的内阻会大大降低。因此增大集流体的电阻,可增大电池单体短路后的内阻,由此改善电池单体的安全性能。在本申请中,当电池单体可将短路损坏对电池单体的影响局限于“点”范围,即可将短路损坏对电池单体的影响局限于损坏点位处,且由于集流体的高电阻使得短路电流大幅度减小,短路产热使电池单体的温升不明显,不影响电池单体在短时间内正常使用的特点,称为“点断路”。
当导电层的常温薄膜电阻RS不小于0.016Ω/□时,可以使电池单体在发生内短路的情况下,短路电流大幅减小,因此可极大地降低短路产热量,极大地改善电池单体的安全性能;此外,还可将短路产热量控制在电池单体可以完全吸收的范围,因此在发生内短路的位点处产生的热量可以被电池单体完全吸收,对电池单体造成的温升也很小,从而可以将短路损坏对电池单体的影响局限于“点”范围,仅形成“点断路”,而不影响电池单体在短时间内的正常工作。
然而,当导电层的常温薄膜电阻RS太大时,会影响导电层的导电和集流的作用,电子无法在集流体、电极活性材料层以及两者的界面之间进行有效地传导,即会增大导电层表面的电极活性材料层的极化,影响电池单体的电化学性能。因此导电层的常温薄膜电阻RS满足不大于420Ω/□。
在本申请中,常温薄膜电阻RS的上限可为420Ω/□、400Ω/□、350Ω/□、300Ω/□、250Ω/□、200Ω/□、150Ω/□、100Ω/□、80Ω/□、60Ω/□、40Ω/□、25Ω/□、20Ω/□、18Ω/□、16Ω/□、14Ω/□、12Ω/□、10Ω/□、8Ω/□、6Ω/□、4Ω/□、2Ω/□、1.8Ω/□,常温薄膜电阻RS的下限可为0.016Ω/□、0.032Ω/□、0.048Ω/□、0.064Ω/□、0.08Ω/□、0.09Ω/□、0.1Ω/□、0.2Ω/□、0.4Ω/□、0.6Ω/□、0.8Ω/□、1Ω/□、1.2Ω/□、1.4Ω/□、1.6Ω/□;常温薄膜电阻RS的范围可由上限或下限的任意数值组成。
在一些实施例中,导电层22A2的常温薄膜电阻满足:0.032Ω/□≤RS≤21Ω/□,更优选地0.080Ω/□≤RS≤8.4Ω/□。
在一些实施例中,导电层22A2的厚度d2满足:1nm≤D2≤1μm。
在本申请中,导电层22A2的厚度d2的上限可为1μm、900nm、800nm、700nm、600nm、500nm、450nm、400nm、350nm、300、250nm、200nm、150nm、120nm、100nm、80nm、60nm,导电层的厚度d2的下限可为1nm、5nm、10nm、15nm、20nm、25nm、30nm、35nm、40nm、45nm、50nm、55nm;导电层的厚度d2的范围可由上限或下限的任意数值组成。
在一些实施例中,导电层22A2的厚度d2满足:20nm≤d2≤500nm,更优选地50nm≤d2≤200nm。
若导电层22A2太薄的话,虽然有益于增大集流体22A的常温薄膜电阻RS,然而却易在极片加工工艺等过程中发生破损;若导电层22A2太厚的话,则会影响电池单体的重量能量密度,且会不利于增大导电层22A2的常温薄膜电阻RS
在一些实施例中,支撑层22A1的厚度为d1,d1满足1μm≤d1≤50μm。
在本申请中,支撑层22A1的厚度d1的上限可为50μm、45μm、40μm、35μm、30μm、25μm、20μm、15μm、12μm、10μm、8μm,支撑层22A1的厚度d1的下限可为1μm、1.5μm、2μm、3μm、4μm、5μm、6μm、7μm;支撑层的厚度d1的范围可由上限或下限的任意数值组成。
在一些实施例中,d1满足:2μm≤d1≤30μm;更优选地,5μm≤d1≤20μm。
支撑层22A1主要起到支撑和保护导电层的作用。若支撑层22A1太薄的话,很容易在极片加工工艺等过程中发生断裂;太厚的话,则会降低使用该集流体的电池单体的体积能量密度。
在一些实施例中,导电层22A2的材料选自金属导电材料、碳基导电材料中的至少一种。
其中,金属导电材料优选铝、铜、镍、钛、银、镍铜合金、铝锆合金中的至少一种;碳基导电材料优选石墨、乙炔黑、石墨烯、碳纳米管中的至少一种。
在一些实施例中,支撑层22A1的材料包括高分子材料及高分子基复合材料中的一种或多种。
上述高分子材料,例如是聚酰胺基聚合物、聚酰亚胺基聚合物、聚酯基聚合物、聚烯烃基聚合物、聚炔烃基聚合物、硅氧烷聚合物、聚醚、聚醇、聚砜、多糖类聚合物、氨基酸类聚合物、聚氮化硫类高分子材料、芳环聚合物、芳杂环聚合物、聚苯硫醚、聚砜类、环氧树脂、酚醛树脂、它们的衍生物、它们的交联物及它们的共聚物中的一种或多种。
作为示例,聚酰胺基聚合物可以是聚酰胺(Polyamide,简称PA,俗称尼龙)及聚对苯二甲酰对苯二胺(PPTA,俗称芳纶)中的一种或多种;聚酰亚胺基聚合物可以是聚酰亚胺(PI);聚酯基聚合物可以是聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚萘二甲酸乙二醇酯(PEN)及聚碳酸酯(PC)中的一种或多种;聚烯烃基聚合物可以是聚乙烯(PE)、聚丙烯(PP)及聚丙乙烯(PPE)中的一种或多种;聚烯烃基聚合物的衍生物可以是聚乙烯醇(PVA)、聚苯乙烯(PS)、聚氯乙烯(PVC)、聚偏氟乙烯(PVDF)、聚四氟乙烯(PTEE)及聚苯乙烯磺酸钠(PSS)中的一种或多种;聚炔烃基聚合物可以是聚乙炔(Polyacetylene,简称PA);硅氧烷聚合物可以是硅橡胶(Si licone rubber);聚醚例如可以是聚甲醛(POM)、聚苯醚(PPO)及聚苯硫醚(PPS)中的一种或多种;聚醇可以是聚乙二醇(PEG);多糖类聚合物例如可以是纤维素及淀粉中的一种或多种;氨基酸类聚合物可以是蛋白质;芳环聚合物可以是聚苯及聚对苯撑中的一种或多种;芳杂环聚合物可以是聚吡咯(Ppy)、聚苯胺(PAN)、聚噻吩(PT)及聚吡啶(PPY)中的一种或多种;聚烯烃基聚合物及其衍生物的共聚物可以是丙烯腈-丁二烯-苯乙烯共聚物(ABS)。
另外,上述高分子材料还可以采用氧化还原、离子化或电化学等手段进行掺杂处理。
上述高分子基复合材料可以是由上述的高分子材料和添加剂复合而成,其中添加剂可以是金属材料及无机非金属材料中的一种或多种。
作为示例,金属材料可以是铝、铝合金、铜、铜合金、镍、镍合金、钛、钛合金、铁、铁合金、银及银合金中的一种或多种;无机非金属材料可以是碳基材料、氧化铝、二氧化硅、氮化硅、碳化硅、氮化硼、硅酸盐及氧化钛中的一种或多种,如玻璃材料、陶瓷材料及陶瓷复合材料中的一种或多种。前述碳基材料可以是石墨、超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的一种或多种。
上述添加剂可以是金属材料包覆的碳基材料,例如镍包覆的石墨粉及镍包覆的碳纤维中的一种或多种。
在一些优选的实施例中,支撑层包括聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚萘二甲酸乙二醇酯(PEN)及聚酰亚胺(PI)中的一种或多种。
可以理解的是,支撑层可以是单层结构,也可以是由两层以上的子支撑层形成的复合层结构,如两层、三层、四层等。当支撑层是由两层以上的子支撑层形成的复合层结构时,各层的材料可以相同,也可以不同。
在一些实施例中,支撑层的材料选自有机聚合物绝缘材料、无机绝缘材料、复合材料中的一种。进一步优选地,复合材料由有机聚合物绝缘材料和无机绝缘材料组成。
在一些实施例中,有机聚合物绝缘材料选自聚酰胺(Polyamide,简称PA)、聚对苯二甲酸酯(Polyethylene terephthalate,简称PET)、聚酰亚胺(Polyimide,简称PI)、聚乙烯(Polyethylene,简称PE)、聚丙烯(Polypropylene,简称PP)、聚苯乙烯(Polystyrene,简称PS)、聚氯乙烯(Polyvinyl chloride,简称PVC)、丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile butadiene styrene copolymers,简称ABS)、聚对苯二甲酸丁二醇酯(Polybutylene terephthalat,简称PBT)、聚对苯二甲酰对苯二胺(Poly-p-phenyleneterephthamide,简称PPA)、环氧树脂(epoxy resin)、聚丙乙烯(polyphenylene ether,简称PPE)、聚甲醛(Polyformaldehyde,简称POM)、酚醛树脂(Phenol-formaldehyde resin)、聚四氟乙烯(Polytetrafluoroethylene,简称PTFE)、硅橡胶(Silicone rubber)、聚偏氟乙烯(Polyvinylidenefluoride,简称PVDF)、聚碳酸酯(Polycarbonate,简称PC)中的至少一种。
无机绝缘材料优选氧化铝(Al2O3)、碳化硅(SiC)、二氧化硅(SiO2)中的至少一种;复合物优选环氧树脂玻璃纤维增强复合材料、聚酯树脂玻璃纤维增强复合材料中的至少一种。
由于支撑层的密度通常较金属小,因此本申请实施例在提升电池单体安全性能的同时,还可以提升电池单体的重量能量密度。并且由于绝缘层可以对位于其表面的导电层起到良好的承载和保护作用,因而不易产生传统集流体中常见的极片断裂现象。
在一些实施例中,导电层可通过机械辊轧、粘结、气相沉积法(vapordeposition)、化学镀(Electroless plating)中的至少一种形成于绝缘层上,气相沉积法优选物理气相沉积法(Physical Vapor Deposition,PVD);物理气相沉积法优选蒸发法、溅射法中的至少一种;蒸发法优选真空蒸镀法(vacuum evaporating)、热蒸发法(ThermalEvaporation Deposition)、电子束蒸发法(electron beam evaporation method,EBEM)中的至少一种,溅射法优选磁控溅射法(Magnetron sputtering)。
在一些实施例中,为了有利于电解液渗透入电极活性材料层中,减小电池单体的极化,可对集流体的结构做进一步的改进,例如,可在导电层内设置孔,10μm≤孔的直径≤100μm,孔的面积占导电层的总面积的比例可为5%~50%;或者在集流体内设置贯穿支撑层和导电层的通孔,10μm≤通孔的直径≤100μm,集流体的孔隙率可为5%~50%。
具体地,例如可采用化学镀的方法在导电层中形成孔,可以采用机械打孔法在集流体中形成贯穿支撑层和导电层的通孔。
在一些实施例中,正极片1B包括集流体(或称正极集流体10B)和形成于集流体表面的活性物质层(或称正极活性物质层11B),正极集流体10包括正极支撑层101和正极导电层102。其中,正极集流体10B结构示意图如图152和图153所示,正极片1B结构示意图如图156和图157所示。
在一些实施例中,负极片2B包括集流体(或称负极集流体20B)和形成于集流体表面的活性物质层(或称负极活性物质层21B),负极集流体20B包括负极支撑层201B和负极导电层202B。其中,负极集流体20B结构示意图如图154和图155所示,负极片2B结构示意图如图158和图159所示。
在一些实施例中,如图152和图154所示,当支撑层的双面分别设置有导电层,集流体双面涂覆活性物质,制备得到的极片如图156和图157所示,可直接应用于电池单体中。如图153和图155所示,当绝缘层的单面设置有导电层时,集流体单面涂覆活性物质,制备得到的极片如图157和图159所示,可折叠后应用于电池单体中。
优选地,本申请的电池单体的正极片采用上述包括集流体和活性物质层的设置。因为常规正极集流体中的铝含量高,在电池单体异常情况下发生短路时,短路点处产生的热量可以引发剧烈的铝热反应,从而产生大量的热并引起电池单体发生爆炸等事故,所以当电池单体的正极片采用上述结构时,由于正极集流体中铝的量仅为纳米级的厚度,因此大大减少了正极集流体中铝的量,因此可以避免产生铝热反应,从而显著改善电池单体的安全性能。
下面采用穿钉实验来模拟电池单体的异常情况,并观察穿钉后电池单体的变化。图160为本申请一次穿钉实验示意图。为了简单起见,图中仅仅示出了钉子4B穿透电池单体的一层正极片1B、一层隔膜3B和一层负极片2B,需要说明的是,实际的穿钉实验是钉子4B穿透整个电池单体,通常包括多层正极片1B、多层隔膜3B和多层负极片2B。
此外,通过大量的实验发现,电池单体的容量越大,则电池单体的内阻越小,则电池单体的安全性能就越差,即电池单体容量(Cap)与电池单体
Figure BDA0004035636100001141
呈反比关系:
r=A/Cap
式中r表示电池单体的内阻,Cap表示电池单体的容量,A为系数。
电池单体容量Cap为电池单体的理论容量,通常为电池单体正极片的理论容量。
R可以通过内阻仪测试得到。
对于由常规正极片和常规负极片组成的常规锂离子电池单体来说,由于在异常情况下发生内短路时,基本所有的常规锂离子电池单体均会发生不同程度的冒烟、起火、爆炸等。
而对于本申请实施例中采用包括集流体和活性物质层的极片的电池单体来说,由于在电池单体容量相同的情况下,具有比较大的电池单体内阻,因此可以具有较大的A值。
对于本申请实施例中采用包括集流体和活性物质层的极片的电池单体来说,当系数A满足40Ah·mΩ≤A≤2000Ah·mΩ时,电池单体可以兼具良好的电化学性能和良好的安全性能。
当A值太大时,电池单体由于内阻过大,电化学性能会劣化,因此没有实用性。
当A值太小时,电池单体发生内短路时温升过高,电池单体安全性能降低。
进一步优选地,系数A满足40Ah·mΩ≤A≤1000Ah·mΩ;更优选地,系数A满足60Ah·mΩ≤A≤600Ah·mΩ。
本申请实施例中采用包括集流体和活性物质层的极片的电池单体还涉及:集流体在制备受到引发短路的异常情况时仅形成点断路以自身保护的电池单体中的应用。在本申请实施例中,当电池单体可将短路损坏对电池单体的影响局限于“点”范围,不影响电池单体在短时间内正常使用的特点,称为“点断路”。
另一方面,本申请实施例还涉及该集流体作为受到引发短路的异常情况时仅形成点断路的电池单体的集流体的用途。
优选地,引发短路的异常情况包括撞击、挤压、异物刺入等,由于在这些损伤过程中引发短路的均由具备一定导电性的材料将正负极电连接而引发,因此在本申请实施例中将这些异常情况统称为穿钉。并在本申请具体实施方式中通过穿钉实验来模拟电池单体的异常情况。
实施例
1、集流体的制备:
选取一定厚度的支撑层例如绝缘层,在其表面通过真空蒸镀、机械辊轧或粘结的方式形成一定厚度的导电层,并对导电层的常温薄膜电阻进行测定。
其中,
(1)真空蒸镀方式的形成条件如下:将经过表面清洁处理的绝缘层置于真空镀室内,以1600℃至2000℃的高温将金属蒸发室内的高纯金属丝熔化蒸发,蒸发后的金属经过真空镀室内的冷却系统,最后沉积于绝缘层的表面,形成导电层。
(2)机械辊轧方式的形成条件如下:将导电层材料的箔片置于机械辊中,通过施加20t至40t的压力将其碾压为预定的厚度,然后将其置于经过表面清洁处理的绝缘层的表面,最后将两者置于机械辊中,通过施加30t至50t的压力使两者紧密结合。
(3)粘结方式的形成条件如下:将导电层材料的箔片置于机械辊中,通过施加20t至40t的压力将其碾压为预定的厚度;然后在经过表面清洁处理的绝缘层的表面涂布PVDF与NMP的混合溶液;最后将上述预定厚度的导电层粘结于绝缘层的表面,并于100℃下烘干。
(4)常温薄膜电阻测定方法为:
使用RTS-9型双电测四探针测试仪,测试环境为:常温23±2℃,相对湿度≤65%。
测试时,将待测材料进行表面清洁,然后水平置于测试台上,将四探针放下,使探针与待测材料表面有良好接触,然后调节自动测试模式标定材料的电流量程,在合适的电流量程下进行薄膜方阻测量,并采集相同样品的8至10个数据点作为数据测量准确性和误差分析。
本申请实施例的集流体及其极片具体参数如表12-1所示,对比例集流体及其极片具体参数如表13所示。
2、极片的制备:
通过常规的电池单体涂布工艺,在集流体的表面涂布正极浆料或负极浆料,100℃干燥后得到正极片或负极片。
常规正极片:集流体是厚度为12μm的Al箔片,电极活性物质层是一定厚度的三元(NCM)材料层。
常规负极片:集流体是厚度为8μm的Cu箔片,电极活性物质层是一定厚度的石墨材料层。
本申请实施例的集流体及其极片具体参数如表12-1所示,对比例集流体及其极片具体参数如表13所示。
3、电池单体的制备:
通过常规的电池单体制作工艺,将正极片(压实密度:3.4g/cm3)、PP/PE/PP隔膜和负极片(压实密度:1.6g/cm3)一起卷绕成裸电芯,然后置入电池单体壳体中,注入电解液(EC:EMC体积比为3:7,LiPF6为1mol/L),随之进行密封、化成等工序,最终得到锂离子电池单体。
本申请的实施例制作的锂离子电池单体以及对比例锂离子电池单体的具体组成如表14所示。
表12-1
Figure BDA0004035636100001161
表13
Figure BDA0004035636100001162
表14
Figure BDA0004035636100001163
/>
Figure BDA0004035636100001171
其中,通过进一步增加电芯的卷绕层数,制备容量得到进一步提高的锂离子电池单体14#和锂离子电池单体15#
实验例:
1、电池单体测试方法:
对锂离子电池单体进行循环寿命测试,具体测试方法如下:
将锂离子电池单体1#与锂离子电池单体4#分别于25℃和45℃两种温度下进行充放电,即先以1C的电流充电至4.2V,然后再以1C的电流放电至2.8V,记录下第一周的放电容量;然后使电池单体进行1C/1C充放电循环1000周,记录第1000周的电池单体放电容量,将第1000周的放电容量除以第一周的放电容量,得到第1000周的容量保有率。
实验结果如表15所示。
2、电池单体内阻的测试
使用内阻仪(型号为HIOKI-BT3562)进行测试,测试环境为:常温23±2℃。测试前,将内阻仪正负极两端短接校准电阻为零;测试时,将待测锂离子电池单体进行正负极极耳清洁,然后将内阻仪正负极测试端分别连接到锂离子电池单体的正负极极耳,进行测试并记录。并根据公式r=A/Cap计算系数A。
3、一次穿钉实验和六次连续穿钉实验的实验方法和测试方法:
(1)一次穿钉实验:电池单体满充后,固定,在常温下将直径为8mm的钢针,以25mm/s的速度贯穿电池单体,将钢针保留于电池单体中,穿钉完毕,然后观察和测试。
(2)六次穿钉实验:电池单体满充后,固定,在常温下将六根直径为8mm的钢针,以25mm/s的速度先后迅速地贯穿电池单体,将钢针保留于电池单体中,穿钉完毕,然后进行观察和测试。
(3)电池单体温度的测试:使用多路测温仪,分别于待穿钉的电池单体的针刺面和背面的几何中心附上感温线,待穿钉完毕后,进行五分钟的电池单体温度跟踪测试,然后记录下五分钟时的电池单体的温度。
(4)电池单体电压的测试:将待穿钉的电池单体的正极和负极连接至内阻仪的测量端,待穿钉完毕后,进行五分钟的电池单体电压跟踪测试,然后记录下五分钟时的电池单体的电压。
记录的电池单体的温度和电压的数据如表16所示。
表15
Figure BDA0004035636100001172
/>
Figure BDA0004035636100001181
表16
Figure BDA0004035636100001182
注:“N/A”表示一根钢针贯穿入电池单体瞬间发生热失控和毁坏。
表17
Figure BDA0004035636100001183
其中,锂离子电池单体1#和锂离子电池单体4#的电池单体温度随时间的变化曲线如图161所示,电压随时间的变化曲线如图162所示。
根据表15中的结果来看,与采用常规的正极片和常规的负极片的锂离子电池单体1#相比,采用本申请实施例集流体的锂离子电池单体4#的循环寿命良好,与常规的电池单体的循环性能相当。这说明本申请实施例的集流体并不会对制得的极片和电池单体有任何明显的不利影响。
此外,本申请实施例的集流体可以大大改善锂离子电池单体的安全性能。从表16以及图161和图162中的结果来看,未采用本申请实施例的集流体的锂离子电池单体1#、6#、11#,在穿钉的瞬间,电池单体温度骤升几百度,电压骤降至零,这说明在穿钉的瞬间,电池单体发生内短路,产生大量的热,电池单体瞬间发生热失控和毁坏,无法继续工作;而且由于在第一根钢针穿入电池单体之后的瞬间,电池单体就发生了热失控和毁坏,因此无法对这类电池单体进行六根钢针连续穿钉实验。
而采用了本申请实施例集流体的锂离子电池单体2#~5#、7#~10#、12#和13#,无论对其进行一次穿钉实验还是六次连续穿钉实验,电池单体温升基本都可以被控制在10℃左右或10℃以下,电压基本保持稳定,电芯可以正常工作。
表17中的数据表明,未采用本申请实施例的集流体的锂离子电池单体6#和锂离子电池单体11#,系数A较小。而采用了本申请实施例集流体的锂离子电池单体4#、5#、14#~15#的系数A越大。从而证实了系数A越大,则电池单体在异常情况下发生内短路时,温升越小,则电池单体的安全性能越好。
可见,在电池单体发生内短路的情况下,本申请实施例的集流体可极大地降低短路产热量,从而改善电池单体的安全性能;此外,还可将短路损坏对电池单体的影响局限于“点”范围,仅形成“点断路”,而不影响电池单体在短时间内的正常工作。
进一步地,支撑层的透光率k满足:0%≤k≤98%。
在一些实施例中,对于集流体包括支撑层和导电层,集流体对激光能量具有较高的吸收率,从而实现集流体以及采用该集流体的电极极片及电化学装置在激光切割处理时较高的可加工性能及加工效率,特别地,其在低功率激光切割处理时具有较高的可加工性能及加工效率。前述激光切割处理时的激光功率例如是小于等于100W。
优选地,支撑层的透光率k满足0≤k≤95%,更好地提高集流体以及采用该集流体的极片及电化学装置在激光切割处理时的可加工性能及加工效率,特别地,提高在低功率激光切割处理时的可加工性能及加工效率。更优选地,支撑层的透光率k满足15%≤k≤90%。
在一些实施例中,支撑层中含有着色剂。通过在支撑层中添加着色剂,并调控着色剂的含量,可以调节支撑层的透光率。
着色剂可以使得支撑层显示一定程度的黑色、蓝色或红色,但并不限于此,例如还可以是使得支撑层显示一定程度的黄色、绿色或紫色等。
着色剂可以是无机颜料及有机颜料中的一种或多种。
无机颜料例如是炭黑、钴蓝、群青、氧化铁、镉红、铬橙、钼橙、镉黄、铬黄、镍钛黄、钛白、锌钡白及锌白中的一种或多种。
有机颜料可以是酞菁类颜料、偶氮类颜料、蒽醌类颜料、靛类颜料及金属络合颜料中的一种或多种。作为示例,有机颜料可以为塑料红GR、塑料紫RL、耐晒黄G、永固黄、橡胶大红LC、酞菁蓝及酞菁绿中的一种或多种。
在一些实施例中,支撑层的厚度d1优选为1μm≤d1≤30μm,有利于提高集流体在激光切割处理时的可加工性能及加工效率,特别地,提高集流体在低功率激光切割处理时的可加工性能及加工效率。同时保证支撑层的机械强度,防止支撑层在集流体、电极极片及电化学装置的加工过程中发生断裂,并确保电化学装置具有较高的重量能量密度。
其中,支撑层的厚度d1的上限可以为30μm、25μm、20μm、15μm、12μm、10μm、8μm,下限可以为1μm、1.5μm、2μm、3μm、4μm、5μm、6μm、7μm;支撑层的厚度d1的范围可以由任意上限和任意下限组成。优选地,支撑层的厚度d1为1μm≤d≤20μm;进一步优选为2μm≤d1≤15μm;更优选为3μm≤d1≤12μm。
在一些实施例中,支撑层的厚度d1与支撑层的透光率k满足:
当12μm≤d1≤30μm时,30%≤k≤80%;和/或,
当8μm≤d1<12μm时,40%≤k≤90%;和/或,
当1μm≤d1<8μm时,50%≤k≤98%。
支撑层的厚度与透光率满足上述关系,使激光照射支撑层时,支撑层能够尽可能多地吸收激光能量,使得集流体在激光切割处理时具有较高的可加工性能及加工效率,特别地,使得集流体在低功率激光切割处理时具有较高的可加工性能及加工效率,避免发生胶连。支撑层的厚度与透光率满足上述关系,还有利于使支撑层具有合适的机械强度,防止支撑层在集流体、电极极片及电化学装置的加工过程中发生断裂。
优选地,支撑层MD方向(Mechine Direction,机械方向)的拉伸强度大于等于100Mpa,进一步优选为100Mpa~400Mpa。
支撑层MD方向的拉伸强度可以采用本领域已知的设备和方法进行测试,例如根据DIN53455-6-5测量标准,使用拉力强度测试仪,优选采用日本ALGOL拉力测试头,测试支撑层MD方向断裂时所受的最大拉伸应力,支撑层MD方向断裂时所受的最大拉伸应力与支撑层横截面积的比值即为支撑层MD方向的拉伸强度。
可以通过调整高分子材料的化学组成、分子量及分布、链结构和链构筑、聚集态结构、相结构等,使支撑层具有上述的拉伸强度。
在一些实施例中,导电层的导电材料可以是金属材料、碳基导电材料及导电高分子材料中的一种或多种。
作为示例,上述金属材料可以为铝、铝合金、铜、铜合金、镍、镍合金、铁、铁合金、钛、钛合金、银及银合金中的一种或多种,优选为铝、铜、镍、铁、钛、银、镍铜合金及铝锆合金中的一种或多种。
导电层采用金属材料时,可以是通过机械辊轧、粘结、气相沉积法(vapordeposition)及化学镀(Electroless plating)中的至少一种手段形成于支撑层上,其中气相沉积法优选物理气相沉积法(Physical Vapor Deposition,PVD);物理气相沉积法优选蒸发法及溅射法中的至少一种;蒸发法优选真空蒸镀法(vacuum evaporating)、热蒸发法(ThermalEvaporation Deposition)及电子束蒸发法(electron beamevaporationmethod,EBEM)中的至少一种,溅射法优选磁控溅射法(Magnetronsputtering)。
优选地,金属材料的导电层可以通过气相沉积法及化学镀中的至少一种手段形成于支撑层上,以使得支撑层与导电层之间的结合更牢固。
作为一个示例,上述通过机械辊轧形成导电层的条件如下:将金属箔片置于机械辊中,通过施加20t~40t的压力将其碾压为预定的厚度,将其置于经过表面清洁处理的支撑层的表面,然后将两者置于机械辊中,通过施加30t~50t的压力使两者紧密结合。
作为另一个示例,上述通过粘结形成导电层的条件如下:将金属箔片置于机械辊中,通过施加20t~40t的压力将其碾压为预定的厚度;然后在经过表面清洁处理的支撑层的表面涂布聚偏氟乙烯(PVDF)与N-甲基吡咯烷酮(NMP)的混合溶液;最后将上述预定厚度的导电层粘结于支撑层的表面,并于100℃下烘干。
作为再一个示例,上述通过真空蒸镀法形成导电层的条件如下:将经过表面清洁处理的支撑层置于真空镀室内,以1300℃~2000℃的高温将金属蒸发室内的高纯金属丝熔化蒸发,蒸发后的金属经过真空镀室内的冷却系统,最后沉积于支撑层的表面,形成导电层。
上述碳基导电材料,例如是石墨、超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的一种或多种。
导电层采用碳基导电材料时,可以通过机械辊轧、粘结、气相沉积法(vapordeposition)、原位形成法及涂布法中的至少一种手段形成于支撑层上。
上述导电高分子材料,例如是聚氮化硫类、脂肪族共轭聚合物、芳环共轭聚合物及芳杂环共轭聚合物中的一种或多种。脂肪族共轭聚合物例如是聚乙炔;芳环共轭聚合物例如是聚对苯撑、聚苯及聚萘中的一种或多种;芳杂环共轭聚合物例如是聚吡咯、聚乙炔、聚苯胺、聚噻吩及聚吡啶中的一种或多种。还可以通过掺杂使电子离域性增大,提高电导率,有利于进一步提高电化学装置的倍率性能。
导电层采用导电高分子材料时,可以通过机械辊轧、粘结、原位形成法及涂布法中的至少一种手段形成于支撑层上。
导电层优选采用金属材料,例如金属箔材、涂炭金属箔材或多孔金属板。
支撑层的设置能够使得本申请的集流体中导电层的厚度较传统的金属集流体显著降低,导电层的厚度d2优选为30nm≤d2≤3μm。导电层的厚度降低,能够减小集流体、电极极片及电化学装置的重量,提高电化学装置的重量能量密度,并且由于导电层的厚度降低,在被尖锐物体刺破电池单体等异常情况下,集流体产生的金属毛刺更小,从而更好地改善电化学装置的安全性能。采用厚度为30nm≤d2≤3μm的导电层,集流体具有良好的导电和集流的性能,有利于降低电池单体内阻、减小极化现象,从而提高电化学装置的倍率性能和循环性能。
导电层的厚度d2的上限可以为3μm、2.5μm、2μm、1.8μm、1.5μm、1.2μm、1μm、900nm,导电层的厚度D2的下限可为800nm、700nm、600nm、500nm、450nm、400nm、350nm、300nm、100nm、50nm、30nm,导电层的厚度d2的范围可由任意上限和任意下限组成。优选地,导电层的厚度D2为300nm≤d2≤2μm。
作为一个示例,在支撑层自身厚度方向上的两个表面上均设置有导电层,厚度分别为d21和d22,其中,30nm≤d21≤3μm,优选为300nm≤D21≤2μm;30nm≤d22≤3μm,优选为300nm≤d22≤2μm。
作为另一个示例,仅在支撑层自身厚度方向上的两个表面中的一个表面上设置有导电层,厚度为d23,其中,30nm≤d23≤3μm,优选为300nm≤d23≤2μm。
本申请的集流体可以用作正极集流体及负极集流体中的一个或两个。
当本申请的集流体用于正极片,例如用作正极集流体时,集流体的导电层可以采用金属箔材、涂炭金属箔材或多孔金属板,例如铝箔。
当本申请的集流体用于负极片,例如用作负极集流体时,集流体的导电层可以采用金属箔材、涂炭金属箔材或多孔金属板,例如铜箔。
当本申请的电极极片用作正极片时,活性物质层可以采用本领域已知的正极活性材料,能够可逆地进行离子的嵌入/脱嵌。
以锂离子二次电池单体为例,正极活性材料采用能够可逆地进行锂离子嵌入/脱嵌的化合物,例如含锂过渡金属氧化物,其中过渡金属可以是Mn、Fe、Ni、Co、Cr、Ti、Zn、V、Al、Zr、Ce及Mg中的一种或多种。作为示例,含锂过渡金属氧化物可以为LiMn2O4、LiNiO2、LiCoO2、LiNi1-yCoyO2(0<y<1)、LiNiaCobAl 1-a-bO2(0<a<1,0<b<1,0<a+b<1)、LiMn1-m-nNimConO2(0<m<1,0<n<1,0<m+n<1)、LiMPO4(M可以为Fe、Mn、Co中的一种或多种)及Li3V2(PO4)3中的一种或多种。
含锂过渡金属氧化物还可以进行掺杂或表面包覆处理,以使化合物具有更稳定的结构和更优异的电化学性能。
正极片的活性材料层还可以包括粘结剂和导电剂。本申请对粘结剂和导电剂并没有具体地限制,可以根据实际需求进行选择。
作为示例,上述粘结剂可以是丁苯橡胶(SBR)、水性丙烯酸树脂(water-basedacrylic resin)、羧甲基纤维素(CMC)、聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚乙烯醇缩丁醛(PVB)、乙烯-醋酸乙烯酯共聚物(EVA)及聚乙烯醇(PVA)中的一种或多种。
作为示例,上述导电剂可以是石墨、超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中一种或多种。
正极片可以按照本领域常规方法制备。通常将正极活性材料及可选的导电剂和粘结剂分散于溶剂(例如N-甲基吡咯烷酮,简称为NMP)中,形成均匀的正极浆料,将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,制得正极片。
当本申请的电极极片用作负极片时,活性材料层可以采用本领域已知的负极活性材料,能够可逆地进行离子的嵌入/脱嵌。
同样以锂离子二次电池单体为例,负极活性材料采用能够可逆地进行锂离子嵌入/脱嵌的物质,例如金属锂、天然石墨、人造石墨、中间相微碳球(简写为MCMB)、硬碳、软碳、硅、硅-碳复合物、SiO、Li-Sn合金、Li-Sn-O合金、Sn、SnO、SnO2、尖晶石结构的钛酸锂Li4Ti5O12及Li-Al合金中的一种或多种。
负极片的活性物质层还可以包括粘结剂和导电剂。本申请对粘结剂和导电剂并没有具体地限制,可以根据实际需求进行选择。
作为示例,上述粘结剂可以是丁苯橡胶(SBR)、水性丙烯酸树脂(water-basedacrylic resin)、羧甲基纤维素(CMC)、聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚乙烯醇缩丁醛(PVB)、乙烯-醋酸乙烯酯共聚物(EVA)及聚乙烯醇(PVA)中的一种或多种。
作为示例,上述导电剂可以是石墨、超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中一种或多种。
负极片中还可以包括增稠剂,例如羧甲基纤维素(CMC)。
负极片可以按照本领域常规方法制备。通常将负极活性材料及可选的导电剂、粘结剂和增稠剂分散于溶剂中,溶剂可以是去离子水或NMP,形成均匀的负极浆料,将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,制得负极片。
在一些实施例中,将电池单体单体的正极片、隔离膜、负极片按顺序堆叠好,使隔离膜处于正极片、负极片之间起到隔离的作用,得到电极组件,也可以是经卷绕后得到电极组件;将电极组件置于包装外壳中,注入电解液并封口,制备电池单体单体。
以锂离子二次电池单体为例对电池单体单体进行示例性地说明:
实施例1
支撑层的制备
支撑材料为PET,在PET中添加一定含量的着色剂炭黑,并混合均匀,在PET热熔状态下经挤压浇注、冷辊辊轧,并双向拉伸后,获得支撑层。
集流体的制备
将支撑层置于真空镀室内,以1300℃~2000℃的高温将金属蒸发室内的高纯铝丝熔化蒸发,蒸发后的金属经过真空镀室内的冷却系统,最后沉积于支撑层的两个表面,形成导电层,并且两个表面上导电层的厚度D2相等。
实施例2~10
与实施例1不同的是,调整制备过程中的相关参数,具体参数示于下面的表19中。
对比例1
与实施例4不同的是,支撑层中没有添加着色剂。
测试部分
(1)支撑层透光率的测试:
使用LS117透光率仪,按照GB2410-80标准检测支撑层的透光率,包括:首先仪器开机自校准,界面显示T=100%,即校准OK,然后将支撑层样品夹在探头与接收器中间,界面自动显示支撑层的透光率数值。
(2)支撑层MD方向的拉伸强度测试:
使用拉力强度测试仪,按照DIN53455-6-5标准测试支撑层MD方向的拉伸强度。其中采用日本ALGOL(1kg)拉力测试头,将支撑层样品安装在两测试头之间,测试支撑层MD方向断裂时所受的最大拉伸应力,支撑层MD方向断裂时所受的最大拉伸应力与支撑层样品横截面积的比值即为支撑层MD方向的拉伸强度。
(3)集流体切割性能测试:
使用IPG公司型号为YLP-V2-1-100-100-100的光钎激光器,设置功率为100W、频率为150kHz,将集流体安装于激光器的切割设备上进行切割,测试集流体的最大可切断速度。其中集流体的最大可切断速度指的是激光切割该集流体、不发生胶连现象时可以达到的最大切割速度。
实施例1~10及对比例1的测试结果示于下面的表19中。
表19
Figure BDA0004035636100001241
对比分析实施例4、5与对比例1可以看出,通过降低支撑层的透光率,集流体在低功率激光切割处理下、且不发生胶连现象的切割速度明显增大。
通过实施例1~10的测试结果,可以得出,本申请通过降低支撑层的透光率,使集流体在激光切割处理时的切割性能和切割速率得到显著提高,特别地,使集流体在低功率激光切割处理时的切割性能和切割速率得到显著提高。
以下,适当地参照附图详细说明具体公开了本申请的正极活性材料。
在一些实施例中,电极组件22包括正极片1B,正极片1B包括正极集流体10B和涂覆于正极集流体10B表面的正极活性物质层11B,正极活性物质层11B包括正极活性材料。
其中,正极活性材料具有内核及包覆内核的壳,内核包括三元材料、dLi2MnO3·(1-d)LiMO2以及LiMPO4中的至少一种,0<d<1,M包括选自Fe、Ni、Co、Mn中的一种或多种,壳含有结晶态无机物,结晶态无机物使用X射线衍射测量的主峰的半高全宽为0-3°,结晶态无机物包括选自金属氧化物以及无机盐中的一种或多种。结晶态的物质晶格结构稳定,对Mn等容易溶出的活泼金属离子有更好的截留作用。
本申请的发明人发现,目前用于锂离子二次电池单体的正极活性材料为了提高电池单体性能,如提高容量,改善倍率性能、循环性能等考虑,常在三元正极活性材料,或是可能应用于高电压体系的LiMPO4,如LiMnPO4、LiNiPO4、LiCoPO4,或是富Li锰基正极活性材料等材料中添加掺杂元素。上述掺杂元素可替换上述材料中的活性过渡金属等位点,从而起到提升材料的电池单体性能的作用。另一方面,磷酸铁锂等材料中可能添加有Mn元素,但是上述活性过渡金属等元素的添加或是掺杂,容易导致该材料在深度充放电的过程中造成Mn离子等活性金属的溶出。溶出的活性金属元素一方面会进一步向电解液迁移,在负极还原后造成类似催化剂的效应,导致负极表面SEI膜(solid electrolyte interphase,固态电解质界面膜)溶解。另一方面,上述金属元素的溶出也将导致正积极活性材料容量的损失,且溶出后正极活性材料的晶格产生缺陷,导致循环性能差等问题。因此,有必要基于上述含有活性金属元素的正极材料进行改进以缓解甚至解决上述问题。发明人发现,X射线衍射测量的主峰具有上述半高全宽的晶态无机物具有较好的截留溶出活性金属离子的能力,且晶态无机物和前述的内核材料可以较好的结合,具有稳定的结合力,不容易在使用过程中发生可的剥离的问题,且可以通过较为简便的方法实现面积恰当、均匀性较好的包覆层。
具体地,以磷酸锰锂正极活性材料为例,本申请发明人在实际作业中发现,目前现有的磷酸锰锂正极活性材料在深度充放电过程中,锰离子溶出比较严重。虽然现有技术中有尝试对磷酸锰锂进行磷酸铁锂包覆,从而减少界面副反应,但这种包覆无法阻止溶出的锰离子继续向电解液中迁移。溶出的锰离子在迁移到负极后,被还原成金属锰。这样产生的金属锰相当于“催化剂”,能够催化负极表面的SEI膜(solid electrolyte interphase,固态电解质界面膜)分解,产生副产物;所述副产物的一部分为气体,因此导致会二次电池单体发生膨胀,影响二次电池单体的安全性能;另外,所述副产物的另一部分沉积在负极表面,会阻碍锂离子进出负极的通道,造成二次电池单体阻抗增加,从而影响二次电池单体的动力学性能。此外,为补充损失的SEI膜,电解液和电池单体内部的活性锂被不断消耗,会给二次电池单体容量保持率带来不可逆的影响。通过对磷酸锰锂进行改性以及对磷酸锰锂的多层包覆,能够得到一种新型的具有核-壳结构的正极活性材料,所述正极活性材料能够实现显著降低的锰离子溶出以及降低的晶格变化率,其用于二次电池单体中,能够改善电池单体的循环性能、倍率性能、安全性能并且提高电池单体的容量。
在一些实施例中,电极组件22包括正极片1B,正极片1B包括正极集流体10B和涂覆于正极集流体10B表面的正极活性物质层11B,正极活性物质层11B包括正极活性材料;正极活性材料具有LiMPO4,M包括Mn,以及非Mn元素,非Mn元素满足以下条件的至少之一:非Mn元素的离子半径为a,锰元素的离子半径为b,|a-b|/b不大于10%;非Mn元素的化合价变价电压为U,2V<U<5.5V;非Mn元素和O形成的化学键的化学活性不小于P-O键的化学活性;非Mn元素的最高化合价不大于6。
作为锂离子二次电池单体的正极活性材料,磷酸锰锂、磷酸铁锂或是磷酸镍锂等未来可应用于高电压体系的化合物具有较低的成本以及较好的应用前景。但以磷酸锰锂为例,其与其他正极活性材料相比的缺点在于倍率性能较差,目前通常是通过包覆或掺杂等手段来解决这一问题。但仍然希望能够进一步提升磷酸锰锂正极活性材料的倍率性能、循环性能、高温稳定性等。
本申请的发明人反复研究了在磷酸锰锂的Li位、Mn位、P位和O位用各种元素进行掺杂时产生的影响,发现可以通过控制掺杂位点和具体的元素、掺杂量,改善正极活性材料的克容量、倍率性能以及循环性能等。
具体地,选择适当的Mn位掺杂元素,可改善该材料在脱嵌锂过程中磷酸锰锂的晶格变化率,提高正极材料的结构稳定性,大大减少锰的溶出,并降低颗粒表面的氧活性,进而可以提高材料的克容量,并降低该材料在使用过程中和电解液的界面副反应,进而提升材料的循环性能等。更具体地,选择离子半径和Mn元素相似的元素为Mn位掺杂元素,或是选择化合价可变价范围在Mn的化合价变价范围内的元素进行掺杂,可控制掺杂元素和O的键长与Mn-O键键长的变化量,从而有利于稳定掺杂后的正极材料晶格结构。此外,还可以在Mn为引入起到支撑晶格作用的空位元素,如该元素的化合价大于或等于Li与Mn的化合价之和,从而相当于在活泼的、容易溶出的Mn位引入了无法和Li结合的空位点,进而可以对晶格起到支撑的作用。
又例如,选择适当的P位掺杂元素,可助于改变Mn-O键长变化的难易程度,从而改善电子电导并降低锂离子迁移势垒,促进锂离子迁移,提高二次电池单体的倍率性能。具体地,P-O键自身的四面体结构相对稳固,使得Mn-O键长变化难度大,造成材料整体锂离子迁移势垒较高,而适当的P位掺杂元素可以改善P-O键四面体的坚固程度,从而促进材料的倍率性能改善。具体地,可以选择和O形成的化学键的化学活性不小于P-O键的化学活性的元素在P位进行掺杂,从而可以改善Mn-O键长变化的难易程度。在本申请中,如无特殊说明,“和O形成的化学键的化学活性不小于P-O键的化学活性”,可以通过本领域技术人员所公知的确定化学键活性的测试方式进行确定。例如,可以通过检测键能,或是参考用于打破该化学键的氧化、还原试剂的电化学电位等方式确定。或者,可选择化合价态不显著地高于P,例如低于6的元素在P位进行掺杂,从而有利于降低Mn和P元素的排斥作用,也可改善材料的克容量、倍率性能等。
类似地,在Li位进行恰当的元素掺杂,也可改善材料晶格变化率,并保持材料的电池单体容量。
O位掺杂元素可有助于改善材料和电解液的界面副反应,降低界面活性,从而有利于提升该正极活性材料的循环性能等。此外,还可以通过在O为进行掺杂,提升材料抗HF等酸腐蚀的性能,进而有利于提升材料的循环性能和寿命。
在本申请的一些实施方式中,内核包括LiMPO4且M包括Mn和非Mn元素,所述非Mn元素满足以下条件的至少之一:所述非Mn元素的离子半径为a,锰元素的离子半径为b,|a-b|/b不大于10%;所述非Mn元素的化合价变价电压为U,2V<U<5.5V;所述非Mn元素和O形成的化学键的化学活性不小于P-O键的化学活性;所述非Mn元素的最高化合价不大于6。
在一些实施例中,上述位点掺杂的非Mn元素可包括第一掺杂元素和第二掺杂元素中的一种或两种,所述第一掺杂元素为锰位掺杂,所述第二掺杂元素为磷位掺杂。第一掺杂元素满足以下条件的至少之一:第一掺杂元素的离子半径为a,锰元素的离子半径为b,|a-b|/b不大于10%;所述第一掺杂元素的化合价变价电压为U,2V<U<5.5V。第二掺杂元素满足以下条件的至少之一:所述第二掺杂元素和O形成的化学键的化学活性不小于P-O键的化学活性;所述掺杂元素M第二掺杂元素的最高化合价不大于6。在一些实施方式中,该正极活性材料还可以同时含有两种第一掺杂元素。
在一些实施例中,可在上述位置中的Mn位以及P位同时进行掺杂。由此,不仅可有效减少锰溶出,进而减少迁移到负极的锰离子,减少因SEI膜分解而消耗的电解液,提高二次电池单体的循环性能和安全性能,还能够促进Mn-O键调整,降低锂离子迁移势垒,促进锂离子迁移,提高二次电池单体的倍率性能。
在本申请的另一些实施例中,通过在上述四个位置同时以特定量掺杂特定的元素,能够获得明显改善的倍率性能,改善的循环性能和/或高温稳定性,由此获得了改进的磷酸锰锂正极活性材料。
本申请的正极活性材料例如可用于锂离子二次电池单体中。
第一掺杂元素包括选自Zn、Al、Na、K、Mg、Mo、W、Ti、V、Zr、Fe、Ni、Co、Ga、Sn、Sb、Nb和Ge中的一种或多种元素。第一掺杂元素包括选自Fe、Ti、V、Ni、Co和Mg中的至少两种。第二掺杂元素包括选自B(硼)、S、Si和N中的一种或多种元素。
上述掺杂元素应使得体系保持电中性,能够保证正极活性材料中的缺陷和杂相尽量少。如果正极活性材料中存在过量的过渡金属(例如锰),由于该材料体系本身结构较稳定,那么多余的过渡金属很可能会以单质的形式析出,或在晶格内部形成杂相,保持电中性可使这样的杂相尽量少。另外,保证体系电中性还可以在部分情况下使材料中产生锂空位,从而使材料的动力学性能更优异。
下面,以磷酸锰锂材料为例,详述本申请提出的正极活性材料的具体参数,以及能够获得上述有益效果的原理:
本申请发明人在实际作业中发现,目前现有的磷酸锰锂正极活性材料在深度充放电过程中,锰溶出比较严重。虽然现有技术中有尝试对磷酸锰锂进行磷酸铁锂包覆,从而减少界面副反应,但这种包覆无法阻止溶出的锰继续向电解液中迁移。溶出的锰在迁移到负极后,被还原成金属锰。这样产生的金属锰相当于“催化剂”,能够催化负极表面的SEI膜(solid electrolyte interphase,固态电解质界面膜)分解,产生副产物;所述副产物的一部分为气体,因此导致会二次电池单体发生膨胀,影响二次电池单体的安全性能;另外,所述副产物的另一部分沉积在负极表面,会阻碍锂离子进出负极的通道,造成二次电池单体阻抗增加,从而影响二次电池单体的动力学性能。此外,为补充损失的SEI膜,电解液和电池单体内部的活性锂被不断消耗,会给二次电池单体容量保持率带来不可逆的影响。
发明人在进行大量研究后发现,通过对磷酸锰锂进行改性能够得到一种新型的正极活性材料,所述正极活性材料能够实现显著降低的锰溶出以及降低的晶格变化率,其用于二次电池单体中,能够改善电池单体的循环性能、倍率性能、安全性能并且提高电池单体的容量。
在一些实施方式中,上述正极活性材料可以具有化学式为Li1+xMn1-yAyP1-zRzO4的化合物,其中x为在-0.100-0.100范围内的任意数值,y为在0.001-0.500范围内的任意数值,z为在0.001-0.100范围内的任意数值,所述A包括选自Zn、Al、Na、K、Mg、Mo、W、Ti、V、Zr、Fe、Ni、Co、Ga、Sn、Sb、Nb和Ge中的一种或多种元素,所述R包括选自B(硼)、S、Si和N中的一种或多种元素。其中,所述x、y和z的值满足以下条件:使整个化合物保持电中性。
在另一些实施方式中,上述正极活性材料可以具有化学式为Li1+xCmMn1-yAyP1-zRzO4-nDn的化合物,其中,所述C包括选自Zn、Al、Na、K、Mg、Nb、Mo和W中的一种或多种元素,所述A包括选自Zn、Al、Na、K、Mg、Mo、W、Ti、V、Zr、Fe、Ni、Mg、Co、Ga、Sn、Sb、Nb和Ge中的一种或多种元素,所述R包括选自B(硼)、S、Si和N中的一种或多种元素,所述D包括选自S、F、Cl和Br中的一种或多种元素,x为在0.100-0.100范围内的任意数值,y为在0.001-0.500范围内的任意数值,z为在0.001-0.100范围内的任意数值,n为在0.001至0.1范围内的任意数值,m为在0.9至1.1范围内的任意数值。类似地,上述x、y、z和m的值满足以下条件:使整个化合物保持电中性。
除非另有说明,否则上述内核的化学式中,当某掺杂位点具有两种以上元素时,上述对于x、y、z或m数值范围的限定不仅是对每种作为该位点的元素的化学计量数的限定,也是对各个作为该位点的元素的化学计量数之和的限定。例如,当具有化学式为Li1+xMn1-yAyP1-zRzO4的化合物时,当A为两种以上元素A1、A2……An时,A1、A2……An各自的化学计量数y1、y2……yn各自均需落入本申请对y限定的数值范围内,且y1、y2……yn之和也需落入该数值范围内。类似地,对于R为两种以上元素的情况,本申请中对R化学计量数的数值范围的限定也具有上述含义。
在一个可选的实施方式中,当A为选自Zn、Al、Na、K、Mg、Mo、W、Ti、V、Zr、Fe、Ni、Co、Ga、Sn、Sb、Nb和Ge中的一种、两种、三种或四种元素时,Ay为Gn1Dn2En3Kn4,其中n1+n2+n3+n4=y,且n1、n2、n3、n4均为正数且不同时为零,G、D、E、K各自独立地为选自Zn、Al、Na、K、Mg、Mo、W、Ti、V、Zr、Fe、Ni、Co、Ga、Sn、Sb、Nb和Ge的一种,可选地,G、D、E、K中至少一个为Fe。可选地,n1、n2、n3、n4之一为零,其余不为零;更可选地,n1、n2、n3、n4中的两个为零,其余不为零;还可选地,n1、n2、n3、n4中的三个为零,其余不为零。Li1+xMn1-yAyP1-zRzO4中,在锰位掺杂一种、两种、三种或四种上述A元素是有利的,可选地,掺杂一种、两种或三种上述A元素;此外,在磷位掺杂一种或两种R元素是有利的,这样有利于使掺杂元素均匀分布。
例如具体地,Mn位可同时具有Fe和V掺杂。
在一些实施方式中,在Li1+xMn1-yAyP1-zRzO4中,y与1-y的比值为1:10至1:1,可选为1:4至1:1。此处y表示Mn位掺杂元素A的化学计量数之和。在满足上述条件时,使用所述正极活性材料的二次电池单体的能量密度和循环性能可进一步提升。在一些实施方式中,z与1-z的比值为1:9至1:999,可选为1:499至1:249。此处z表示P位掺杂元素R的化学计量数之和。在满足上述条件时,使用所述正极活性材料的二次电池单体的能量密度和循环性能可进一步提升。
在本申请的另一些实施方式中,正极活性材料可含有Li1+xCmMn1-yAyP1-zRzO4-nDn。其中,x的大小受A和R的价态大小以及y和z的大小的影响,以保证整个体系呈现电中性。如果x的值过小,会导致整个内核体系的含锂量降低,影响材料的克容量发挥。Y值会限制所有掺杂元素的总量,如果y过小,即掺杂量过少,掺杂元素起不到作用,如果y超过0.5,会导致体系中的Mn含量较少,影响材料的电压平台。所述R元素掺杂在P的位置,由于P-O四面体较稳定,而z值过大会影响材料的稳定性,因此将z值限定为0.001-0.100。更具体地,x为在0.100-0.100范围内的任意数值,y为在0.001-0.500范围内的任意数值,z为在0.001-0.100范围内的任意数值,n为在0.001至0.1范围内的任意数值,m为在0.9至1.1范围内的任意数值。例如,所述1+x选自0.9至1.1的范围,例如为0.97、0.977、0.984、0.988、0.99、0.991、0.992、0.993、0.994、0.995、0.996、0.997、0.998、1.01,所述x选自0.001至0.1的范围,例如为0.001、0.005,所述y选自0.001至0.5的范围,例如为0.001、0.005、0.02、0.05、0.1、0.15、0.2、0.25、0.3、0.34、0.345、0.349、0.35、0.4,所述z选自0.001至0.1的范围,例如为0.001、0.005、0.08、0.1,所述n选自0.001至0.1的范围,例如为0.001、0.005、0.08、0.1,并且所述正极活性材料为电中性的。
如前所述,本申请的正极活性材料通过在化合物LiMnPO4等中进行元素掺杂而获得,不希望囿于理论,现认为磷酸锰锂的性能提升与减小脱嵌锂过程中磷酸锰锂的晶格变化率和降低表面活性有关。减小晶格变化率可减小晶界处两相间的晶格常数差异,减小界面应力,增强Li+在界面处的传输能力,从而提升正极活性材料的倍率性能。而表面活性高容易导致界面副反应严重,加剧产气、电解液消耗和破坏界面,从而影响电池单体的循环等性能。本申请中,通过Li和Mn位掺杂减小了晶格变化率。Mn位掺杂还有效降低表面活性,从而抑制Mn溶出和正极活性材料与电解液的界面副反应。P位掺杂使Mn-O键长的变化速率更快,降低材料的小极化子迁移势垒,从而有利于电子电导率。O位掺杂对减小界面副反应有良好的作用。P位和O位的掺杂还对反位缺陷的Mn溶出及动力学性能产生影响。因此,掺杂减小了材料中反位缺陷浓度,提高材料的动力学性能和克容量,还可以改变颗粒的形貌,从而提升压实密度。本申请人意外地发现:通过在化合物LiMnPO4的Li位、Mn位、P位和O位同时以特定量掺杂特定的元素,能够获得明显改善的倍率性能,同时显著减少了Mn与Mn位掺杂元素的溶出,获得了显著改善的循环性能和/或高温稳定性,并且材料的克容量和压实密度也可以得到提高。
通过在上述范围内对Li位掺杂元素进行选择,能够进一步减小脱锂过程中的晶格变化率,从而进一步改善电池单体的倍率性能。通过在上述范围内对Mn位掺杂元素进行选择,能够进一步提高电子电导率并进一步减小晶格变化率,从而提升电池单体的倍率性能和克容量。通过在上述范围内对P位掺杂元素进行选择,能够进一步改善电池单体的倍率性能。通过在上述范围内对O位掺杂元素进行选择,能够进一步减轻界面的副反应,提升电池单体的高温性能。
在一些实施方式中,所述x选自0.001至0.005的范围;和/或,所述y选自0.01至0.5的范围,可选地选自0.25至0.5的范围;和/或,所述z选自0.001至0.005的范围;和/或,所述n选自0.001至0.005的范围。通过在上述范围内对y值进行选择,能够进一步提升材料的克容量和倍率性能。通过在上述范围内对x值进行选择,能够进一步提升材料的动力学性能。通过在上述范围内对z值进行选择,能够进一步提升二次电池单体的倍率性能。通过在上述范围内对n值进行选择,能够进一步提升二次电池单体的高温性能。
在一些实施方式中,具有4个位点均掺杂有非Mn元素的所述正极活性材料满足:(1-y):y在1至4范围内,可选地在1.5至3范围内,且(1+x):m在9到1100范围内,可选地在190-998范围内。此处y表示Mn位掺杂元素的化学计量数之和。在满足上述条件时,正极活性材料的能量密度和循环性能可进一步提升。
在一些实施方式中,该正极活性材料可以具有Li1+xMn1-yAyP1-zRzO4和Li1+xCmMn1- yAyP1-zRzO4-nDn中的至少之一。其中,y与1-y的比值为1:10至1:1,可选为1:4至1:1。Z与1-z的比值为1:9至1:999,可选为1:499至1:249。C、R和D各自独立地为上述各自范围内的任一种元素,并且所述A为其范围内的至少两种元素;可选地,所述C为选自Mg和Nb中的任一种元素,和/或,所述A为选自Fe、Ti、V、Co和Mg中的至少两种元素,可选地为Fe与选自Ti、V、Co和Mg中的一种以上元素,和/或,所述R为S,和/或,所述D为F。其中,x选自0.001至0.005的范围;和/或,所述y选自0.01至0.5的范围,可选地选自0.25至0.5的范围;和/或,所述z选自0.001至0.005的范围;和/或,所述n选自0.001至0.005的范围。上述参数在无特殊说明的前提下,可自由进行组合,在此不再一一列举他们组合的情况。
在一些实施方式中,所述正极活性材料的晶格变化率为8%以下,可选地,晶格变化率为4%以下。通过降低晶格变化率,能够使得Li离子传输更容易,即Li离子在材料中的迁移能力更强,有利于改善二次电池单体的倍率性能。晶格变化率可通过本领域中已知的方法,例如X射线衍射图谱(XRD)测得。LiMnPO4的脱嵌锂过程是两相反应。两相的界面应力由晶格变化率大小决定,晶格变化率越小,界面应力越小,Li+传输越容易。因此,减小掺杂LiMnPO4的晶格变化率将有利于增强Li+的传输能力,从而改善二次电池单体的倍率性能。
在一些实施方式中,可选地,所述正极活性材料的扣电平均放电电压为3.5V以上,放电克容量在140mAh/g以上;可选为平均放电电压3.6V以上,放电克容量在145mAh/g以上。
尽管未掺杂的LiMnPO4的平均放电电压在4.0V以上,但它的放电克容量较低,通常小于120mAh/g,因此,能量密度较低;通过掺杂调整晶格变化率,可使其放电克容量大幅提升,在平均放电电压微降的情况下,整体能量密度有明显升高。
在一些实施方式中,所述正极活性材料的Li/Mn反位缺陷浓度为2%以下,可选地,Li/Mn反位缺陷浓度为0.5%以下。所谓Li/Mn反位缺陷,指的是LiMnPO4晶格中,Li+与Mn2+的位置发生互换。Li/Mn反位缺陷浓度指的是正极活性材料中与Mn2+发生互换的Li+占Li+总量的百分比。反位缺陷的Mn2+会阻碍Li+的传输,通过降低Li/Mn反位缺陷浓度,有利于提高正极活性材料的克容量和倍率性能。Li/Mn反位缺陷浓度可通过本领域中已知的方法,例如XRD测得。
在一些实施方式中,所述正极活性材料的表面氧价态为-1.82以下,可选地为-1.89~-1.98。通过降低表面氧价态,能够减轻正极活性材料与电解液的界面副反应,从而改善二次电池单体的循环性能和高温稳定性。表面氧价态可通过本领域中已知的方法测量,例如通过电子能量损失谱(EELS)测量。
在一些实施方式中,所述正极活性材料在3T(吨)下的压实密度为2.0g/cm3以上,可选地为2.2g/cm3以上。压实密度越高,单位体积活性材料的重量越大,因此提高压实密度有利于提高电芯的体积能量密度。压实密度可依据GB/T24533-2009测量。
在一些实施方式中,所述正极活性材料具有核-壳结构,所述核-壳结构包括内核及包覆所述内核的壳,所述内核具有所述LiMPO4。具有核-壳结构的正极活性材料可以进一步通过包覆的壳提升该正极材料的性能。
例如,在本申请的一些实施方式中,内核的表面包覆有碳。由此,可以改善正极活性材料的导电性。包覆层的碳为SP2形态碳与SP3形态碳的混合物,可选地,所述SP2形态碳与SP3形态碳的摩尔比为在0.1-10范围内的任意数值,可选为在2.0-3.0范围内的任意数值。
在一些实施方式中,所述SP2形态碳与SP3形态碳的摩尔比可为约0.1、约0.2、约03、约0.4、约0.5、约0.6、约0.7、约0.8、约0.9、约1、约2、约3、约4、约5、约6、约7、约8、约9或约10,或在上述任意值的任意范围内。
本申请中,“约”某个数值表示一个范围,表示该数值±10%的范围。
通过选择碳包覆层中碳的形态,从而提升二次电池单体的综合电性能。具体来说,通过使用SP2形态碳和SP3形态碳的混合形态并将SP2形态碳和SP3形态碳的比例限制在一定范围内,能够避免以下情况:如果包覆层中的碳都是无定形SP3形态,则导电性差;如果都是石墨化的SP2形态,则虽然导电性良好,但是锂离子通路少,不利于锂的脱嵌。另外,将SP2形态碳与SP3形态碳的摩尔比限制在上述范围内,既能实现良好的导电性,又能保证锂离子的通路,因此有利于二次电池单体功能的实现及其循环性能。
包覆层碳的SP2形态和SP3形态的混合比可以通过烧结条件例如烧结温度和烧结时间来控制。例如,在使用蔗糖作为碳源制备第三包覆层的情况下,使蔗糖在高温下进行裂解后,在第二包覆层上沉积同时在高温作用下,会产生既有SP3形态也有SP2形态的碳包覆层。SP2形态碳和SP3形态碳的比例可以通过选择高温裂解条件和烧结条件来调控。
包覆层碳的结构和特征可通过拉曼(Raman)光谱进行测定,具体测试方法如下:通过对Raman测试的能谱进行分峰,得到Id/Ig(其中Id为SP3形态碳的峰强度,Ig为SP2形态碳的峰强度),从而确认两者的摩尔比。
在本申请的一些实施方式中,壳包括无机包覆层以及碳包覆层,所述无机包覆层靠近所述内核设置。具体地,无机包覆层含有磷酸盐以及焦磷酸盐中的至少之一。具有核-壳结构的正极活性材料,能够进一步降低的锰溶出以及降低的晶格变化率,其用于二次电池单体中,能够改善电池单体的循环性能、倍率性能、安全性能并且提高电池单体的容量。通过进一步包覆具有优异导锂离子的能力的晶态磷酸盐、焦磷酸盐包覆层,可以使正极活性材料的表面的界面副反应有效降低,进而改善二次电池单体的高温循环及存储性能;通过再进一步包覆碳层,能够进一步提升二次电池单体的安全性能和动力学性能。
在本申请中,焦磷酸盐可包括QP2O7,具体可包括晶态焦磷酸盐LiaQP2O7和/或Qb(P2O7)c,其中,0≤a≤2,1≤b≤4,1≤c≤6,所述a、b和c的值满足以下条件:使所述晶态焦磷酸盐LiaQP2O7或Qb(P2O7)c保持电中性,所述晶态焦磷酸盐LiaQP2O7和Qb(P2O7)c中的Q各自独立地为选自Fe、Ni、Mg、Co、Cu、Zn、Ti、Ag、Zr、Nb或Al中的一种或多种元素。
晶态磷酸盐可包括XPO4,其中,所述X为选自Li、Fe、Ni、Mg、Co、Cu、Zn、Ti、Ag、Zr、Nb或Al中的一种或多种元素。
晶态焦磷酸盐和晶态磷酸盐的结晶情况不受特别限定,在本申请的一些实施方式中,晶态的焦磷酸盐和/或磷酸盐可以为单晶、多晶或是部分结晶的状态。发明人发现,结晶态的磷酸盐和焦磷酸盐的表面选择性较好,可以更好地和内核的晶态进行匹配,进而具有更好的结合力和界面状态,更加不容易在使用过程中发生剥落,且晶态的无机盐包覆层能够更好地提升正极活性材料导锂离子的能力,也能够更好地降低活性材料表面的界面副反应。
具体地,晶态焦磷酸盐的晶面间距范围为0.293-0.470nm,晶向(111)的夹角范围为18.00°-32.00°。晶态磷酸盐的晶面间距范围为0.244-0.425nm,晶向(111)的夹角范围为20.00°-37.00°。
本申请中,晶态意指结晶度在50%以上,即50%-100%。结晶度小于50%的称为玻璃态。本申请所述的晶态焦磷酸盐和晶态磷酸盐的结晶度为50%至100%。具备一定结晶度的焦磷酸盐和磷酸盐不但有利于充分发挥焦磷酸盐包覆层阻碍锰溶出和磷酸盐包覆层优异的导锂离子的能力、减少界面副反应的功能,而且能够使得焦磷酸盐包覆层和磷酸盐包覆层能够更好的进行晶格匹配,从而能够实现包覆层更紧密的结合。
本申请中,所述正极活性材料的晶态焦磷酸盐和晶态磷酸盐的结晶度可以通过本领域中常规的技术手段来测试,例如通过密度法、红外光谱法、差示扫描量热法和核磁共振吸收方法测量,也可以通过例如,X射线衍射法来测试。具体的X射线衍射法测试正极活性材料的晶态焦磷酸盐和晶态磷酸盐的结晶度的方法可以包括以下步骤:
取一定量的正极活性材料粉末,通过X射线测得总散射强度,它是整个空间物质的散射强度之和,只与初级射线的强度、正极活性材料粉末化学结构、参加衍射的总电子数即质量多少有关,而与样品的序态无关;然后从衍射图上将结晶散射和非结晶散射分开,结晶度即是结晶部分散射对散射总强度之比。
需要说明的是,在本申请中,包覆层中的焦磷酸盐和磷酸盐的结晶度例如可通过调整烧结过程的工艺条件例如烧结温度、烧结时间等进行调节。
本申请中,由于金属离子在焦磷酸盐中难以迁移,因此焦磷酸盐作为第一包覆层可以将掺杂金属离子与电解液进行有效隔离。晶态焦磷酸盐的结构稳定,因此,晶态焦磷酸盐包覆能够有效抑制过渡金属的溶出,改善循环性能。
包覆层与核之间的结合类似于异质结,其结合的牢固程度受晶格匹配程度的限制。晶格失配在5%以下时,晶格匹配较好,两者容易结合紧密。紧密的结合能够保证在后续的循环过程中,包覆层不会脱落,有利于保证材料的长期稳定性。包覆层与核之间的结合程度的衡量主要通过计算核与包覆各晶格常数的失配度来进行。本申请中,在所述内核中掺杂了元素后,特别是Mn位以及P位掺杂元素之后,与不掺杂元素相比,所述内核与包覆层的匹配度得到改善,内核与晶态无机盐包覆层之间能够更紧密地结合在一起。
在本申请中,磷酸盐和焦磷酸盐是否位于同一个包覆层中,二者之中谁更靠近内核设置均不受特别限制,本领域技术人员可以根据实际情况进行选择。例如,可令磷酸盐和焦磷酸盐形成一个无机盐包覆层,无机盐包覆层的外侧可进一步具有碳层。或者焦磷酸盐以及焦磷酸盐均单独形成独立的包覆层,二者中的一个靠近内核设置,另一个包覆靠近内核设置的晶态无机盐包覆层,最外侧再设置碳层。又或者,该核壳结构可以仅含有一个由磷酸盐或者焦磷酸盐构成的无机盐包覆层,外侧再设置碳层。
更具体地,壳包括包覆所述内核的第一包覆层以及包覆所述第一包覆层的第二包覆层,其中,所述第一包覆层包括焦磷酸盐QP2O7和磷酸盐XPO4,其中所述Q和X各自独立地选自Li、Fe、Ni、Mg、Co、Cu、Zn、Ti、Ag、Zr、Nb或Al中的一种或多种;所述第二包覆层包含碳。此时正极活性材料的结构可为如图4中所示出的,具有内核11,第一包覆层12以及第二包覆层13。
在一些实施方式中,第一包覆层12的磷酸盐的晶面间距为0.345-0.358nm,晶向(111)的夹角为24.25°-26.45°;第一包覆层12的焦磷酸盐的晶面间距为0.293-0.326nm,晶向(111)的夹角为26.41°-32.57°。当第一包覆层中磷酸盐和焦磷酸盐的晶面间距和晶向(111)的夹角在上述范围时,能够有效避免包覆层中的杂质相,从而提升材料的克容量,循环性能和倍率性能。
在一些实施方式中,可选地,所述第一包覆层的包覆量为大于0重量%且小于等于7重量%,可选为4-5.6重量%,基于所述内核的重量计。
当所述第一包覆层的包覆量在上述范围内时,能够进一步抑制锰溶出,同时进一步促进锂离子的传输。并能够有效避免以下情况:若第一包覆层的包覆量过小,则可能会导致焦磷酸盐对锰溶出的抑制作用不充分,同时对锂离子传输性能的改善也不显著;若第一包覆层的包覆量过大,则可能会导致包覆层过厚,增大电池单体阻抗,影响电池单体的动力学性能。
在一些实施方式中,可选地,所述第一包覆层中焦磷酸盐和磷酸盐的重量比为1:3至3:1,可选为1:3至1:1。
焦磷酸盐和磷酸盐的合适配比有利于充分发挥二者的协同作用。并能够有效避免以下情况:如果焦磷酸盐过多而磷酸盐过少,则可能导致电池单体阻抗增大;如果磷酸盐过多而焦磷酸盐过少,则抑制锰溶出的效果不显著。
在一些实施方式中,可选地,所述焦磷酸盐和磷酸盐的结晶度各自独立地为10%至100%,可选为50%至100%。
在本申请磷酸锰锂正极活性材料的第一包覆层中,具备一定结晶度的焦磷酸盐和磷酸盐有利于保持第一包覆层的结构稳定,减少晶格缺陷。这一方面有利于充分发挥焦磷酸盐阻碍锰溶出的作用,另一方面也有利于磷酸盐减少表面杂锂含量、降低表面氧的价态,从而减少正极材料与电解液的界面副反应,减少对电解液的消耗,改善电池单体的循环性能和安全性能。
在一些实施方式中,可选地,所述第二包覆层的包覆量为大于0重量%且小于等于6重量%,可选为3-5重量%,基于所述内核的重量计。
作为第二包覆层的含碳层一方面可以发挥“屏障”功能,避免正极活性材料与电解液直接接触,从而减少电解液对活性材料的腐蚀,提高电池单体在高温下的安全性能。另一方面,其具备较强的导电能力,可降低电池单体内阻,从而改善电池单体的动力学性能。然而,由于碳材料的克容量较低,因此当第二包覆层的用量过大时,可能会降低正极活性材料整体的克容量。因此,第二包覆层的包覆量在上述范围时,能够在不牺牲正极活性材料克容量的前提下,进一步改善电池单体的动力学性能和安全性能。
在另一些实施方式中,正极活性材料包括包覆所述内核的第一包覆层、包覆所述第一包覆层的第二包覆层以及包覆所述第二包覆层的第三包覆层,其中,所述第一包覆层包括晶态焦磷酸盐LiaQP2O7和/或Qb(P2O7)c,其中,0≤a≤2,1≤b≤4,1≤c≤6,所述a、b和c的值满足以下条件:使所述晶态焦磷酸盐LiaQP2O7或Qb(P2O7)c保持电中性,所述晶态焦磷酸盐LiaQP2O7和Qb(P2O7)c中的Q各自独立地为选自Fe、Ni、Mg、Co、Cu、Zn、Ti、Ag、Zr、Nb或Al中的一种或多种元素;所述第二包覆层包括晶态磷酸盐XPO4,其中,所述X为选自Li、Fe、Ni、Mg、Co、Cu、Zn、Ti、Ag、Zr、Nb或Al中的一种或多种元素;所述第三包覆层为碳。参考图166,该正极活性材料的结构可以大致如图中所示出的,可具有内核11,第一包覆层12,第二包覆层13以及第三包覆层14。图166为理想中的三层包覆结构的正极活性材料的示意图。如图166所示,最里面的圆示意表示内核,由内向外依次为第一包覆层、第二包覆层、第三包覆层。该图表示的是每层均完全包覆的理想状态,实践中,每一层包覆层可以是完全包覆,也可以是部分包覆。
在上述实施方式中,选择晶态磷酸盐作为第二包覆层,首先,是因为它与第一层包覆物晶态焦磷酸盐的晶格匹配度较高(失配度仅为3%);其次,磷酸盐本身的稳定性好于焦磷酸盐,用其包覆焦磷酸盐有利于提高材料的稳定性。晶态磷酸盐的结构很稳定,其具有优异导锂离子的能力,因此,使用晶态磷酸盐进行包覆能够使正极活性材料的表面的界面副反应得到有效降低,从而改善二次电池单体的高温循环及存储性能。第二包覆层和第一包覆层之间的晶格匹配方式等,与上述第一包覆层和核之间的结合情况相似,晶格失配在5%以下时,晶格匹配较好,两者容易结合紧密。碳作为第三层包覆的主要原因是碳层的电子导电性较好。由于在二次电池单体中应用时发生的是电化学反应,需要有电子的参与,因此,为了增加颗粒与颗粒之间的电子传输,以及颗粒上不同位置的电子传输,可以使用具有优异导电性能的碳来对正极活性材料进行包覆。碳包覆可有效改善正极活性材料的导电性能和去溶剂化能力。
在一些实施方式中,上述具有三层包覆层的正极活性材料的一次颗粒的平均粒径范围为50-500nm,体积中值粒径Dv50在200-300nm范围内。由于颗粒会发生团聚,因此实际测得团聚后的二次颗粒大小可能为500-40000nm。正极活性材料颗粒的大小会影响材料的加工和极片的压实密度性能。通过选择一次颗粒的平均粒径在上述范围内,从而能够避免以下情况:所述正极活性材料的一次颗粒的平均粒径太小,可能会引起颗粒团聚,分散困难,并且需要较多的粘结剂,导致极片脆性较差;所述正极活性材料的一次颗粒的平均粒径太大,可能会使颗粒间的空隙较大,压实密度降低。通过上述方案,能够有效抑制脱嵌锂过程中磷酸锰锂的晶格变化率和Mn溶出,从而提升二次电池单体的高温循环稳定性和高温储存性能。
在上述实施方式中,第一包覆层中的晶态焦磷酸盐的晶面间距范围为0.293-0.470nm,晶向(111)的夹角范围为18.00°-32.00°;所述第二包覆层中的晶态磷酸盐的晶面间距范围为0.244-0.425nm,晶向(111)的夹角范围为20.00°-37.00°。
本申请所述的正极活性材料中的第一包覆层和第二包覆层均使用晶态物质。对于包覆层中的晶态焦磷酸盐和晶态磷酸盐,可通过本领域中常规的技术手段进行表征,也可以例如借助透射电镜(TEM)进行表征。在TEM下,通过测试晶面间距可以区分内核和包覆层。
包覆层中的晶态焦磷酸盐和晶态磷酸盐的晶面间距和夹角的具体测试方法可以包括以下步骤:取一定量的经包覆的正极活性材料样品粉末于试管中,并在试管中注入溶剂如酒精,然后进行充分搅拌分散,然后用干净的一次性塑料吸管取适量上述溶液滴加在300目铜网上,此时,部分粉末将在铜网上残留,将铜网连带样品转移至TEM样品腔中进行测试,得到TEM测试原始图片,保存原始图片。将上述TEM测试所得原始图片在衍射仪软件中打开,并进行傅里叶变换得到衍射花样,量取衍射花样中衍射光斑到中心位置的距离,即可得到晶面间距,夹角根据布拉格方程进行计算得到。
晶态焦磷酸盐的晶面间距范围和晶态磷酸盐的存在差异,可通过晶面间距的数值直接进行判断。在上述晶面间距和夹角范围内的晶态焦磷酸盐和晶态磷酸盐,能够更有效地抑制脱嵌锂过程中磷酸锰锂的晶格变化率和Mn溶出,从而提升二次电池单体的高温循环性能、循环稳定性和高温储存性能。
在一些实施方式中,第一包覆层的包覆量为大于0且小于或等于6重量%,可选为大于0且小于或等于5.5重量%,更可选为大于0且小于或等于2重量%,基于所述内核的重量计;和/或所述第二包覆层的包覆量为大于0且小于或等于6重量%,可选为大于0且小于或等于5.5重量%,更可选为2-4重量%,基于所述内核的重量计;和/或所述第三包覆层的包覆量为大于0且小于或等于6重量%,可选为大于0且小于或等于5.5重量%,更可选为大于0且小于或等于2重量%,基于所述内核的重量计。本申请中,每一层的包覆量均不为零。本申请所述的具有核-壳结构的正极活性材料中,三层包覆层的包覆量优选在上述范围内,由此能够对所述内核进行充分包覆,并同时在不牺牲正极活性材料克容量的前提下,进一步改善二次电池单体的动力学性能和安全性能。
对于第一包覆层而言,通过包覆量在上述范围内,则能够避免以下情况:包覆量过少则意味着包覆层厚度较薄,可能无法有效阻碍过渡金属的迁移;包覆量过大则意味着包覆层过厚,会影响Li+的迁移,进而影响材料的倍率性能。对于第二包覆层而言,通过包覆量在上述范围内,则能够避免以下情况:包覆量过多,可能会影响材料整体的平台电压;包覆量过少,可能无法实现足够的包覆效果。对于第三包覆层而言,碳包覆主要起到增强颗粒间的电子传输的作用,然而由于结构中还含有大量的无定形碳,因此碳的密度较低,因此,如果包覆量过大,会影响极片的压实密度。
在上述实施方式中,第一包覆层的厚度为1-10nm;和/或所述第二包覆层的厚度为2-15nm;和/或所述第三包覆层的厚度为2-25nm。
在一些实施方式中,所述第一包覆层的厚度可为约2nm、约3nm、约4nm、约5nm、约6nm、约7nm、约8nm、约9nm或约10nm,或在上述任意数值的任意范围内。在一些实施方式中,所述第二包覆层的厚度可为约2nm、约3nm、约4nm、约5nm、约6nm、约7nm、约8nm、约9nm、约10nm、约11nm、约12nm、约13nm、约14nm、约15nm,或在上述任意数值的任意范围内。在一些实施方式中,所述第三层包覆层的厚度可为约2nm、约3nm、约4nm、约5nm、约6nm、约7nm、约8nm、约9nm、约10nm、约11nm、约12nm、约13nm、约14nm、约15nm、约16nm、约17nm、约18nm、约19nm、约20nm、约21nm、约22nm、约23nm、约24nm或约25nm,或在上述任意数值的任意范围内。
当所述第一包覆层的厚度范围为1-10nm时,能够避免过厚时可能产生的对材料的动力学性能的不利影响,且能够避免过薄时可能无法有效阻碍过渡金属离子的迁移的问题。
当所述第二包覆层的厚度在2-15nm范围内时,所述第二包覆层的表面结构稳定,与电解液的副反应小,因此能够有效减轻界面副反应,从而提升二次电池单体的高温性能。
当所述第三包覆层的厚度范围为2-25nm时,能够提升材料的电导性能并且改善使用所述正极活性材料制备的电池单体极片的压密性能。
包覆层的厚度大小测试主要通过FIB进行,具体方法可以包括以下步骤:从待测正极活性材料粉末中随机选取单个颗粒,从所选颗粒中间位置或中间位置附近切取100nm左右厚度的薄片,然后对薄片进行TEM测试,量取包覆层的厚度,测量3-5个位置,取平均值。
在一些实施方式中,当正极活性材料具有三层包覆层时,基于正极活性材料的重量计,锰元素含量在10重量%-35重量%范围内,可选在15重量%-30重量%范围内,更可选在17重量%-20重量%范围内,磷元素的含量在12重量%-25重量%范围内,可选在15重量%-20重量%范围内,锰元素和磷元素的重量比范围为0.90-1.25,可选为0.95-1.20。
在本申请中,在仅正极活性材料的内核中含有锰的情况下,锰的含量可与内核的含量相对应。在本申请中,将所述锰元素的含量限制在上述范围内,能够有效避免若锰元素含量过大可能会引起的材料结构稳定性变差、密度下降等问题,从而提升二次电池单体的循环、存储和压密等性能;且能够避免若锰元含量过小可能会导致的电压平台低等问题,从而提升二次电池单体的能量密度。本申请中,将所述磷元素的含量限制在上述范围内,能够有效避免以下情况:若磷元素的含量过大,可能会导致P-O的共价性过强而影响小极化子导电,从而影响材料的电导率;若磷含量过小,可能会使所述内核、所述第一包覆层中的焦磷酸盐和/或所述第二包覆层中的磷酸盐晶格结构的稳定性下降,从而影响材料整体的稳定性。锰与磷含量重量比大小对二次电池单体的性能具有以下影响:该重量比过大,意味着锰元素过多,锰溶出增加,影响正极活性材料的稳定性和克容量发挥,进而影响二次电池单体的循环性能及存储性能;该重量比过小,意味着磷元素过多,则容易形成杂相,会使材料的放电电压平台下降,从而使二次电池单体的能量密度降低。锰元素和磷元素的测量可采用本领域中常规的技术手段进行。特别地,采用以下方法测定锰元素和磷元素的含量:将材料在稀盐酸中(浓度10-30%)溶解,利用ICP测试溶液各元素的含量,然后对锰元素的含量进行测量和换算,得到其重量占比。
本申请的第二方面涉及一种制备本申请第一方面的正极活性材料的方法。具体地,该方法包括形成LiMPO4化合物的操作,其中LiMPO4化合物可具有前述的LiMPO4化合物的全部特征以及优点,在此不再赘述。简单来说,所述M包括Mn,以及非Mn元素,所述非Mn元素满足以下条件的至少之一:所述非Mn元素的离子半径为a,锰元素的离子半径为b,|a-b|/b不大于10%;所述非Mn元素的化合价变价电压为U,2V<U<5.5V;所述非Mn元素和O形成的化学键的化学活性不小于P-O键的化学活性;所述非Mn元素的最高化合价不大于6。
在一些实施方式中,所述非Mn元素包括第一和第二掺杂元素,所述方法包括:将锰源、所述锰位元素的掺杂剂和酸混合,得到具有第一掺杂元素的锰盐颗粒;将所述具有所述第一掺杂元素的锰盐颗粒与锂源、磷源和所述第二掺杂元素的掺杂剂在溶剂中混合并得到浆料,在惰性气体气氛保护下烧结后得到所述LiMPO4化合物。关于第一掺杂元素和第二掺杂元素的种类,前面已经进行了详细的描述,在此不再赘述。在一些实施方式中,第一掺杂元素包括选自Zn、Al、Na、K、Mg、Mo、W、Ti、V、Zr、Fe、Ni、Co、Ga、Sn、Sb、Nb和Ge中的一种或多种元素,所述第二掺杂元素包括选自B(硼)、S、Si和N中的一种或多种元素。
在一些实施方式中,按照化学式Li1+xMn1-yAyP1-zRzO4形成所述LiMPO4化合物,在另一些实施方式中,按照化学式Li1+xCmMn1-yAyP1-zRzO4-nDn形成所述LiMPO4化合物。关于各取代位点的元素及其选择原则、有益效果,以及原子比范围,前面已经进行了详细的描述,在此不再赘述。其中,元素C的源选自元素C的单质、氧化物、磷酸盐、草酸盐、碳酸盐和硫酸盐中的至少一种,元素A的源选自元素A的单质、氧化物、磷酸盐、草酸盐、碳酸盐、硫酸盐氯化盐、硝酸盐、有机酸盐、氢氧化物、卤化物中的至少一种,元素R的源选自元素R的硫酸盐、硼酸盐、硝酸盐和硅酸盐、有机酸、卤化物、有机酸盐、氧化物、氢氧化物中的至少一种,元素D的源选自元素D的单质和铵盐中的至少一种。
在一些实施方式中,所述酸选自盐酸、硫酸、硝酸、磷酸、有机酸如草酸等中的一种或多种,例如可为草酸。在一些实施方式中,所述酸为浓度为60重量%以下的稀酸。在一些实施方式中,所述锰源可为本领域已知的可用于制备磷酸锰锂的含锰物质,例如所述锰源可选自单质锰、二氧化锰、磷酸锰、草酸锰、碳酸锰中的一种或它们的组合。在一些实施方式中,所述锂源可为本领域已知的可用于制备磷酸锰锂的含锂物质,例如所述锂源可选自碳酸锂、氢氧化锂、磷酸锂、磷酸二氢锂中的一种或它们的组合。在一些实施方式中,所述磷源可为本领域已知的可用于制备磷酸锰锂的含磷物质,例如所述磷源可选自磷酸氢二铵、磷酸二氢铵、磷酸铵和磷酸中的一种或它们的组合。各位点掺杂元素各自的源的加入量取决于目标掺杂量,锂源、锰源和磷源的用量之比符合化学计量比。
在一些实施方式中,得到具有第一掺杂元素的锰盐颗粒满足以下条件的至少之一:在20-120℃、可选为40-120℃、可选地为60-120℃、更可选地为25-80℃的温度下将锰源、所述锰位元素和酸混合;和/或所述混合在搅拌下进行,所述搅拌在200-800rpm下,可选地400-700rpm下,更可选地500-700rpm进行1-9h,可选地为3-7h,更可选地为可选地为2-6h。
在一些实施方式中,正极活性物质可以具有第一掺杂元素和第二掺杂元素。该方法可以将所述具有第一掺杂元素的锰盐颗粒与锂源、磷源和所述第二掺杂元素的掺杂剂在溶剂中研磨并混合进行8-15小时。例如,将所述具有第一掺杂元素的锰盐颗粒与锂源、磷源和所述第二掺杂元素的掺杂剂在溶剂中混合是在20-120℃、可选为40-120℃的温度下进行1-10h。
具体地,该方法可按照化学式Li1+xCxMn1-yAyP1-zRzO4-nDn形成LiMPO4化合物。更具体地,可将所述具有第一掺杂元素的锰盐颗粒与锂源、磷源和所述第二掺杂元素的掺杂剂在溶剂中研磨并混合进行8-15小时。例如,可将锰源、元素A的源和酸在溶剂中溶解生成掺杂元素A的锰盐的悬浊液,将所述悬浊液过滤并烘干得到掺杂了元素A的锰盐;将锂源、磷源、元素C的源、元素R的源和元素D的源、溶剂和所述掺杂了元素A的锰盐加溶剂混合,得到浆料;将所述浆料进行喷雾干燥造粒,得到颗粒;将所述颗粒进行烧结,得到所述正极活性材料。烧结可以是在600-900℃的温度范围内进行6-14小时。
通过控制掺杂时的反应温度、搅拌速率和混合时间,能够使掺杂元素均匀分布,并且烧结后材料的结晶度更高,从而可提升材料的克容量和倍率性能等。
在一些具体地实施方式中,该方法可以包括以下步骤:(1)将锰源、元素B的源和酸在溶剂中溶解并搅拌,生成掺杂元素B的锰盐的悬浊液,将悬浊液过滤并烘干滤饼,得到掺杂了元素B的锰盐;(2)将锂源、磷源、元素A的源、元素C的源和元素D的源、溶剂和由步骤(1)获得的掺杂了元素B的锰盐加入反应容器中研磨并混合,得到浆料;(3)将由步骤(2)获得的浆料转移到喷雾干燥设备中进行喷雾干燥造粒,得到颗粒;(4)将由步骤(3)获得的颗粒进行烧结,得到正极活性材料。
在一些实施方式中,步骤(1)和步骤(2)中所述溶剂各自独立地可为本领域技术人员在锰盐和磷酸锰锂的制备中常规使用的溶剂,例如其可各自独立地选自乙醇、水(例如去离子水)中的至少一种等。
在一些实施方式中,步骤(1)的搅拌在60-120℃范围内的温度下进行。在一些实施方式中,步骤(1)的搅拌通过在200-800rpm,或300-800rpm,或400-800rpm的搅拌速率下进行。在一些实施方式中,步骤(1)的搅拌进行6-12小时。在一些实施方式中,步骤(2)的研磨并混合进行8-15小时。
通过控制掺杂时的反应温度、搅拌速率和混合时间,能够使掺杂元素均匀分布,并且烧结后材料的结晶度更高,从而可提升材料的克容量和倍率性能等。
在一些实施方式中,在步骤(1)中烘干滤饼之前可对滤饼进行洗涤。在一些实施方式中,步骤(1)中的烘干可通过本领域技术人员已知的方式和已知的条件进行,例如,烘干温度可在120-300℃范围内。可选地,可在烘干后将滤饼研磨成颗粒,例如研磨至颗粒的中值粒径Dv50在50-200nm范围内。其中,中值粒径Dv50是指,所述正极活性材料累计体积分布百分数达到50%时所对应的粒径。在本申请中,正极活性材料的中值粒径Dv50可采用激光衍射粒度分析法测定。例如参照标准GB/T19077-2016,使用激光粒度分析仪(例如MalvernMaster Size 3000)进行测定。
在一些实施方式中,在步骤(2)中还向反应容器中加入碳源一起进行研磨并混合。由此,所述方法可获得表面包覆有碳的正极活性材料。可选地,所述碳源包括淀粉、蔗糖、葡萄糖、聚乙烯醇、聚乙二醇、柠檬酸中的一种或几种的组合。所述碳源的用量相对于所述锂源的用量通常在摩尔比0.1%-5%的范围内。所述研磨可通过本领域已知的适合的研磨方式进行,例如可通过砂磨进行。
步骤(3)的喷雾干燥的温度和时间可为本领域中进行喷雾干燥时常规的温度和时间,例如,在100-300℃下,进行1-6小时。
在一些实施方式中,所述烧结在600-900℃的温度范围内进行6-14小时。通过控制烧结温度和时间,能够控制材料的结晶度,降低正极活性材料的循环后Mn与Mn位掺杂元素的溶出量,从而改善电池单体的高温稳定性和循环性能。在一些实施方式中,所述烧结在保护气氛下进行,所述保护气氛可为氮气、惰性气体、氢气或其混合物。
在另一些实施方式中,该正极活性材料可以仅具有Mn为以及P位掺杂元素。所述提供正极活性材料的步骤可包括:步骤(1):将锰源、元素A的掺杂剂和酸在容器中混合并搅拌,得到掺杂有元素A的锰盐颗粒;步骤(2):将所述掺杂有元素A的锰盐颗粒与锂源、磷源和元素R的掺杂剂在溶剂中混合并得到浆料,在惰性气体气氛保护下烧结后得到掺杂有元素A和元素R的内核。在一些可选实施方式中,在所述锰源、所述元素A的掺杂剂与所述酸在溶剂中反应得到掺杂有元素A的锰盐悬浮液后,将所述悬浮液过滤,烘干,并进行砂磨以得到粒径为50-200nm的经元素A掺杂的锰盐颗粒。在一些可选实施方式中,将步骤(2)中的浆料进行干燥得到粉料,然后将粉料烧结得到掺杂有元素A和元素R的正极活性物质。
在一些实施方式中,所述步骤(1)在20-120℃、可选为40-120℃的温度下进行混合;和/或所述步骤(1)中所述搅拌在400-700rpm下进行1-9h,可选地为3-7h。可选地,所述步骤(1)中的反应温度可在约30℃、约50℃、约60℃、约70℃、约80℃、约90℃、约100℃、约110℃或约120℃进行;所述步骤(1)中所述搅拌进行约2小时、约3小时、约4小时、约5小时、约6小时、约7小时、约8小时或约9小时;可选地,所述步骤(1)中的反应温度、搅拌时间可在上述任意数值的任意范围内。
在一些实施方式中,所述步骤(2)在20-120℃、可选为40-120℃的温度下进行混合1-12h。可选地,所述步骤(2)中的反应温度可在约30℃、约50℃、约60℃、约70℃、约80℃、约90℃、约100℃、约110℃或约120℃进行;所述步骤(2)中所述混合进行约2小时、约3小时、约4小时、约5小时、约6小时、约7小时、约8小时、约9小时、约10小时、约11小时或约12小时;可选地,所述步骤(2)中的反应温度、混合时间可在上述任意数值的任意范围内。
当正极活性颗粒制备过程中的温度和时间处于上述范围内时,制备获得的正极活性材料的晶格缺陷较少,有利于抑制锰溶出,减少正极活性材料与电解液的界面副反应,从而改善二次电池单体的循环性能和安全性能。
在一些实施方式中,可选地,在制备A元素和R元素掺杂的稀酸锰颗粒的过程中,控制溶液pH为3.5-6,可选地,控制溶液pH为4-6,更可选地,控制溶液pH为4-5。需要说明的是,在本申请中可通过本领域通常使用的方法调节所得混合物的pH,例如可通过添加酸或碱。在一些实施方式中,可选地,在步骤(2)中,所述锰盐颗粒与锂源、磷源的摩尔比为1:0.5-2.1:0.5-2.1,更可选地,所述掺杂有元素A的锰盐颗粒与锂源、磷源的摩尔比为约1:1:1。
在一些实施方式中,可选地,制备A元素和R元素掺杂的磷酸锰锂过程中的烧结条件为:在惰性气体或惰性气体与氢气混合气氛下在600-950℃下烧结4-10小时;可选地,所述烧结可在约650℃、约700℃、约750℃、约800℃、约850℃或约900℃下烧结约2小时、约3小时、约4小时、约5小时、约6小时、约7小时、约8小时、约9小时或约10小时;可选地,所述烧结的温度、烧结时间可在上述任意数值的任意范围内。在制备A元素和R元素掺杂的磷酸锰锂过程中,烧结温度过低以及烧结时间过短时,会导致材料内核的结晶度较低,会影响整体的性能发挥,而烧结温度过高时,材料内核中容易出现杂相,从而影响整体的性能发挥;烧结时间过长时,材料内核颗粒长的较大,从而影响克容量发挥,压实密度和倍率性能等。在一些可选实施方式中,可选地,保护气氛为70-90体积%氮气和10-30体积%氢气的混合气体。
在一些实施方式中,具有上述化学组成的颗粒可作为内核,该方法还包括形成包覆所述内核的壳的步骤。
具体地,包覆的步骤可以包括形成碳包覆层的步骤,具体地可以在形成具有第二掺杂元素颗粒的步骤中同时加入碳源并经过研磨混合等操作。可选地,所述碳源包括淀粉、蔗糖、葡萄糖、聚乙烯醇、聚乙二醇、柠檬酸中的一种或几种的组合。所述碳源的用量相对于所述锂源的用量通常在摩尔比0.1%-5%的范围内。所述研磨可通过本领域已知的适合的研磨方式进行,例如可通过砂磨进行。
或者,该方法还包括形成前述的无机包覆层的步骤。关于无机包覆层的组成、层数等,前面已经进行了详细的描述,在此不再赘述。
以包覆层包括第一包覆层和包覆所述第一包覆层的第二包覆层,所述第一包覆层含有焦磷酸盐QP2O7和磷酸盐XPO4,第二包覆层含碳为例,所述方法包括:提供QP2O7粉末和包含碳的源的XPO4悬浊液,将所述磷酸锰锂氧化物、QP2O7粉末加入到包含碳的源的XPO4悬浊液中并混合,经烧结获得正极活性材料。
其中,所述QP2O7粉末是市售产品,或者可选地所述提供QP2O7粉末包括:将元素Q的源和磷的源添加到溶剂中,得到混合物,调节混合物的pH为4-6,搅拌并充分反应,然后经干燥、烧结获得,且所述提供QP2O7粉末满足以下条件的至少之一:所述干燥为在100-300℃、可选150-200℃下干燥4-8h;所述烧结为在500-800℃、可选650-800℃下,在惰性气体气氛下烧结4-10h。例如,具体地,形成所述包覆层的烧结温度为500-800℃,烧结时间为4-10h。
在一些实施方式中,可选地,所述包含碳的源的XPO4悬浊液是市售可得的,或者可选地,通过以下方法来制备:将锂的源、X的源、磷的源和碳的源在溶剂中混合均匀,然后将反应混合物升温至60-120℃保持2-8小时即可获得包含碳的源的XPO4悬浊液。可选地,在制备包含碳的源的XPO4悬浊液的过程中,调节所述混合物的pH为4-6。
在一些实施方式中,可选地,本申请双层包覆的磷酸锰锂正极活性材料的一次颗粒的中值粒径Dv50为50-2000nm。
在另一些实施方式中,包覆层包括包覆所述LiMPO4化合物的第一包覆层、包覆所述第一包覆层的第二包覆层以及包覆所述第二包覆层的第三包覆层,其中,所述第一包覆层包括晶态焦磷酸盐LiaQP2O7和/或Qb(P2O7)c,其中,0≤a≤2,1≤b≤4,1≤c≤6,所述a、b和c的值满足以下条件:使所述晶态焦磷酸盐LiaQP2O7或Qb(P2O7)c保持电中性,所述晶态焦磷酸盐LiaQP2O7和Qb(P2O7)c中的Q各自独立地为选自Fe、Ni、Mg、Co、Cu、Zn、Ti、Ag、Zr、Nb或Al中的一种或多种元素;所述第二包覆层包括晶态磷酸盐XPO4,其中,所述X为选自Li、Fe、Ni、Mg、Co、Cu、Zn、Ti、Ag、Zr、Nb或Al中的一种或多种元素;所述第三包覆层为碳。
具体地,在第一包覆步骤中,控制溶解有元素Q的源、磷源和酸以及任选地锂源的溶液pH为3.5-6.5,然后搅拌并反应1-5h,然后将所述溶液升温至50-120℃,并保持该温度2-10h,和/或,烧结在650-800℃下进行2-6小时。可选地,在第一包覆步骤中,所述反应充分进行。可选地,在第一包覆步骤中,所述反应进行约1.5小时、约2小时、约3小时、约4小时、约4.5小时或约5小时。可选地,第一包覆步骤中,所述反应的反应时间可在上述任意数值的任意范围内。可选地,在第一包覆步骤中,控制溶液pH为4-6。可选地,在第一包覆步骤中,将所述溶液升温至约55℃、约60℃、约70℃、约80℃、约90℃、约100℃、约110℃或约120℃,并在该温度下保持约2小时、约3小时、约4小时、约5小时、约6小时、约7小时、约8小时、约9小时或约10小时;可选地,第一包覆步骤中,所述升温的温度和保持时间可在上述任意数值的任意范围内。可选地,在所述第一包覆步骤中,所述烧结可在约650℃、约700℃、约750℃、或约800℃下烧结约2小时、约3小时、约4小时、约5小时或约6小时;可选地,所述烧结的温度、烧结时间可在上述任意数值的任意范围内。
在所述第一包覆步骤中,通过将烧结温度和时间控制在以上范围内,可以避免以下情况:当所述第一包覆步骤中的烧结温度过低以及烧结时间过短时,会导致第一包覆层的结晶度低,非晶态物质较多,这样会导致抑制金属溶出的效果下降,从而影响二次电池单体的循环性能和高温存储性能;而烧结温度过高时,会导致第一包覆层出现杂相,也会影响到其抑制金属溶出的效果,从而影响二次电池单体的循环和高温存储性能等;烧结时间过长时,会使第一包覆层的厚度增加,影响Li+的迁移,从而影响材料的克容量发挥和倍率性能等。
在一些实施方式中,所述第二包覆步骤中,将元素X的源、磷源和酸溶于溶剂后,搅拌并反应1-10h,然后将所述溶液升温至60-150℃,并保持该温度2-10h,和/或,烧结在500-700℃下进行6-10小时。可选地,在第二包覆步骤中,所述反应充分进行。可选地,在第二包覆步骤中,所述反应进行约1.5小时、约2小时、约3小时、约4小时、约4.5小时、约5小时、约6小时、约7小时、约8小时、约9小时或约10小时。可选地,第二包覆步骤中,所述反应的反应时间可在上述任意数值的任意范围内。可选地,在第二包覆步骤中,将所述溶液升温至约65℃、约70℃、约80℃、约90℃、约100℃、约110℃、约120℃、约130℃、约140℃或约150℃,并在该温度下保持约2小时、约3小时、约4小时、约5小时、约6小时、约7小时、约8小时、约9小时或约10小时;可选地,第二包覆步骤中,所述升温的温度和保持时间可在上述任意数值的任意范围内。
在所述提供内核材料的步骤和所述第一包覆步骤和所述第二包覆步骤中,在烧结之前,即,在发生化学反应的内核材料的制备中,以及在第一包覆层悬浮液和第二包覆层悬浮液的制备中,通过如上所述选择适当的反应温度和反应时间,从而能够避免以下情况:反应温度过低时,则反应无法发生或反应速率较慢;温度过高时,产物分解或形成杂相;反应时间过长时,产物粒径较大,可能会增加后续工艺的时间和难度;反应时间过短时,则反应不完全,获得的产物较少。
可选地,在第二包覆步骤中,所述烧结可在约550℃、约600℃或约700℃下烧结约6小时、约7小时、约8小时、约9小时或约10小时;可选地,所述烧结的温度、烧结时间可在上述任意数值的任意范围内。在所述第二包覆步骤中,通过将烧结温度和时间控制在以上范围内,可以避免以下情况:当所述第二包覆步骤中的烧结温度过低以及烧结时间过短时,会导致第二包覆层的结晶度低,非晶态较多,降低材料表面反应活性的性能下降,从而影响二次电池单体的循环和高温存储性能等;而烧结温度过高时,会导致第二包覆层出现杂相,也会影响到其降低材料表面反应活性的效果,从而影响二次电池单体的循环和高温存储性能等;烧结时间过长时,会使第二包覆层的厚度增加,影响材料的电压平台,从而使材料的能量密度下降等。
在一些实施方式中,所述第三包覆步骤中的烧结在700-800℃下进行6-10小时。可选地,在第三包覆步骤中,所述烧结可在约700℃、约750℃或约800℃下烧结约6小时、约7小时、约8小时、约9小时或约10小时;可选地,所述烧结的温度、烧结时间可在上述任意数值的任意范围内。在所述第三包覆步骤中,通过将烧结温度和时间控制在以上范围内,可以避免以下情况:当所述第三包覆步骤中的烧结温度过低时,会导致第三包覆层的石墨化程度下降,影响其导电性,从而影响材料的克容量发挥;烧结温度过高时,会造成第三包覆层的石墨化程度过高,影响Li+的传输,从而影响材料的克容量发挥等;烧结时间过短时,会导致包覆层过薄,影响其导电性,从而影响材料的克容量发挥;烧结时间过长时,会导致包覆层过厚,影响材料的压实密度等。
在上述第一包覆步骤、第二包覆步骤、第三包覆步骤中,所述干燥均在100℃至200℃、可选为110℃至190℃、更可选为120℃至180℃、甚至更可选为120℃至170℃、最可选为120℃至160℃的干燥温度下进行,干燥时间为3-9h、可选为4-8h,更可选为5-7h,最可选为约6h。
本申请的第三方面提供一种正极片,其包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包括本申请第一方面的正极活性材料或通过本申请第二方面的方法制备的正极活性材料,并且所述正极活性材料在所述正极膜层中的含量为10重量%以上,基于所述正极膜层的总重量计。
在一些实施方式中,所述正极活性材料在所述正极膜层中的含量为95-99.5重量%,基于所述正极膜层的总重量计。
本申请的第四方面提供一种二次电池单体,其包括本申请第一方面的正极活性材料或通过本申请第二方面的方法制备的正极活性材料或本申请第三方面的正极片。
通常情况下,二次电池单体包括正极片、负极片、电解质和隔离膜。在电池单体充放电过程中,活性离子在正极片和负极片之间往返嵌入和脱出。电解质在正极片和负极片之间起到传导离子的作用。隔离膜设置在正极片和负极片之间,主要起到防止正负极短路的作用,同时可以使离子通过。
以下适当参照附图对本申请的二次电池单体、电池单体模块、电池单体包和用电装置进行说明。
[正极片]
正极片包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包括本申请第一方面的正极活性材料。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极膜层设置在正极集流体相对的两个表面的其中任意一者或两者上。
在一些实施方式中,所述正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,正极膜层还可选地包括粘结剂。作为示例,所述粘结剂可以包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的至少一种。
在一些实施方式中,正极膜层还可选地包括导电剂。作为示例,所述导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,可以通过以下方式制备正极片:将上述用于制备正极片的组分,例如正极活性材料、导电剂、粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极片。
[负极片]
负极片包括负极集流体以及设置在负极集流体至少一个表面上的负极膜层,所述负极膜层包括负极活性材料。
作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极膜层设置在负极集流体相对的两个表面中的任意一者或两者上。
在一些实施方式中,所述负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,负极活性材料可采用本领域公知的用于电池单体的负极活性材料。作为示例,负极活性材料可包括以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。所述锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池单体负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在一些实施方式中,负极膜层还可选地包括粘结剂。所述粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
在一些实施方式中,负极膜层还可选地包括导电剂。导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,负极膜层还可选地包括其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。
在一些实施方式中,可以通过以下方式制备负极片:将上述用于制备负极片的组分,例如负极活性材料、导电剂、粘结剂和任意其他组分分散于溶剂(例如去离子水)中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极片。
[电解质]
电解质在正极片和负极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可以是液态的、凝胶态的或全固态的。
在一些实施方式中,所述电解质采用电解液。所述电解液包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂、双氟磺酰亚胺锂、双三氟甲磺酰亚胺锂、三氟甲磺酸锂、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂、二氟二草酸磷酸锂及四氟草酸磷酸锂中的至少一种。
在一些实施方式中,溶剂可选自碳酸亚乙酯、碳酸亚丙酯、碳酸甲乙酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚丁酯、氟代碳酸亚乙酯、甲酸甲酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、丁酸乙酯、1,4-丁内酯、环丁砜、二甲砜、甲乙砜及二乙砜中的至少一种。
在一些实施方式中,所述电解液还可选地包括添加剂。例如添加剂可以包括负极成膜添加剂、正极成膜添加剂,还可以包括能够改善电池单体某些性能的添加剂,例如改善电池单体过充性能的添加剂、改善电池单体高温或低温性能的添加剂等。
[隔离膜]
在一些实施方式中,二次电池单体中还包括隔离膜。本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
在一些实施方式中,正极片、负极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,二次电池单体可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,二次电池单体的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池单体的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
本申请对二次电池单体的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。
在一些实施方式中,电池单体盒可包括壳体和盖板。其中,壳体可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体具有与容纳腔连通的开口,盖板能够盖设于所述开口,以封闭容纳腔。正极片、负极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件。电极组件封装于所述容纳腔内。电解液浸润于电极组件中。二次电池单体所含电极组件的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
在一些实施方式中,二次电池单体可以组装成电池单体模块,电池单体模块所含二次电池单体的数量可以为一个或多个,具体数量本领域技术人员可根据电池单体模块的应用和容量进行选择。
在电池单体中,多个二次电池单体可以是沿电池单体的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个二次电池单体进行固定。
在一些实施方式中,上述电池单体模块还可以组装成电池单体包,电池单体包所含电池单体模块的数量可以为一个或多个,具体数量本领域技术人员可根据电池单体包的应用和容量进行选择。
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
一、正极活性材料性质及电池单体性能测试方法
1.晶格变化率测量方法
在25℃恒温环境下,将正极活性材料样品置于XRD(型号为Bruker D8 Discover)中,采用1°/min对样品进行测试,并对测试数据进行整理分析,参照标准PDF卡片,计算出此时的晶格常数a0、b0、c0和v0(a0,b0和c0表示晶胞各个方面上的长度大小,v0表示晶胞体积,可通过XRD精修结果直接获取)。
采用上述实施例中扣电制备方法,将所述正极活性材料样品制备成扣电,并对上述扣电以0.05C小倍率进行充电,直至电流减小至0.01C。然后将扣电中的正极片取出,并置于DMC中浸泡8小时。然后烘干,刮粉,并筛选出其中粒径小于500nm的颗粒。取样并按照与上述测试新鲜样品同样的方式计算出其晶格常数v1,将(v0-v1)/v0×100%作为其完全脱嵌锂前后的晶格变化率示于表中。
2.Li/Mn反位缺陷浓度测量方法
将“晶格变化率测量方法”中测试的XRD结果与标准晶体的PDF(PowderDiffraction File)卡片对比,得出Li/Mn反位缺陷浓度。具体而言,将“晶格变化率测量方法”中测试的XRD结果导入通用结构分析系统(GSAS)软件中,自动获得精修结果,其中包含了不同原子的占位情况,通过读取精修结果获得Li/Mn反位缺陷浓度。
3.表面氧价态测量方法
取5g正极活性材料样品按照上述实施例中所述扣电制备方法制备成扣电。对扣电采用0.05C小倍率进行充电,直至电流减小至0.01C。然后将扣电中的正极片取出,并置于DMC中浸泡8小时。然后烘干,刮粉,并筛选出其中粒径小于500nm的颗粒。将所得颗粒用电子能量损失谱(EELS,所用仪器型号为Talos F200S)进行测量,获取能量损失近边结构(ELNES),其反映元素的态密度和能级分布情况。根据态密度和能级分布,通过对价带态密度数据进行积分,算出占据的电子数,从而推算出充电后的表面氧的价态。
4.压实密度测量方法
取5g的粉末放于压实专用模具(美国CARVER模具,型号13mm)中,然后将模具放在压实密度仪器上。施加3T的压力,在设备上读出压力下粉末的厚度(卸压后的厚度),通过ρ=m/v,计算出压实密度。其中使用的面积值为标准的小图片面积1540.25mm2
5.循环后Mn(以及Mn位掺杂的Fe)溶出量测量方法
将45℃下循环至容量衰减至80%后的全电池单体采用0.1C倍率进行放电至截止电压2.0V。然后将电池单体拆开,取出负极片,在负极片上随机取30个单位面积(1540.25mm2)的圆片,用Agilent ICP-OES730测试电感耦合等离子体发射光谱(ICP)。根据ICP结果计算其中Fe(如果正极活性材料的Mn位掺杂有Fe的话)和Mn的量,从而计算循环后Mn(以及Mn位掺杂的Fe)的溶出量。测试标准依据EPA-6010D-2014。
6.扣式电池单体初始克容量测量方法
在2.5~4.3V下,将扣式电池单体按照0.1C充电至4.3V,然后在4.3V下恒压充电至电流小于等于0.05mA,静置5min,然后按照0.1C放电至2.0V,此时的放电容量为初始克容量,记为D0。
7.3C充电恒流比测量方法
在25℃恒温环境下,将新鲜全电池单体静置5min,按照1/3C放电至2.5V。静置5min,按照1/3C充电至4.3V,然后在4.3V下恒压充电至电流小于等于0.05mA。静置5min,记录此时的充电容量为C0。按照1/3C放电至2.5V,静置5min,再按照3C充电至4.3V,静置5min,记录此时的充电容量为C1。3C充电恒流比即为C1/C0×100%。3C充电恒流比越高,说明电池单体的倍率性能越好。
8.全电池单体45℃循环性能测试
在45℃的恒温环境下,在2.5~4.3V下,将全电池单体按照1C充电至4.3V,然后在4.3V下恒压充电至电流小于等于0.05mA。静置5min,然后按照1C放电至2.5V,记录此时的放电容量为D0。重复前述充放电循环,直至放电容量降低到D0的80%。记录此时电池单体经过的循环圈数。
9.全电池单体60℃胀气测试
在60℃下,存储100%充电状态(SOC)的全电池单体。在存储前后及过程中测量电芯的开路电压(OCV)和交流内阻(IMP)以监控SOC,并测量电芯的体积。其中在每存储48h后取出全电池单体,静置1h后测试开路电压(OCV)、内阻(IMP),并在冷却至室温后用排水法测量电芯体积。排水法即先用表盘数据自动进行单位转换的天平单独测量电芯的重力F1,然后将电芯完全置于去离子水(密度已知为1g/cm3)中,测量此时的电芯的重力F2,电芯受到的浮力F即为F1-F2,然后根据阿基米德原理F=ρ×g×V,计算得到电芯体积V=(F1-F2)/(ρ×g)。
由OCV、IMP测试结果来看,本实验过程中直至存储结束,实施例的电池单体始终保持99%以上的SOC。
存储30天后,测量电芯体积,并计算相对于存储前的电芯体积,存储后的电芯体积增加的百分比。
另外,测量电芯残余容量。在2.5~4.3V下,将全电池单体按照1C充电至4.3V,然后在4.3V下恒压充电至电流小于等于0.05mA。静置5min,记录此时的充电容量为电芯残余容量。
10.正极活性材料中锰元素和磷元素的测量
将5g上述制得的正极活性材料在100ml逆王水(浓盐酸:浓硝酸=1:3)中(浓盐酸浓度~37%,浓硝酸浓度~65%)溶解,利用ICP测试溶液各元素的含量,然后对锰元素或磷元素的含量进行测量和换算(锰元素或磷元素的量/正极活性材料的量*100%),得到其重量占比。
11.晶面间距和夹角测试
取1g上述制得的各正极活性材料粉末于50mL的试管中,并在试管中注入10mL质量分数为75%的酒精,然后进行充分搅拌分散30分钟,然后用干净的一次性塑料吸管取适量上述溶液滴加在300目铜网上,此时,部分粉末将在铜网上残留,将铜网连带样品转移至TEM(Talos F200s G2)样品腔中进行测试,得到TEM测试原始图片,保存原始图片格式(xx.dm3)。将上述TEM测试所得原始图片在DigitalMicrograph软件中打开,并进行傅里叶变换(点击操作后由软件自动完成)得到衍射花样,量取衍射花样中衍射光斑到中心位置的距离,即可得到晶面间距,夹角根据布拉格方程进行计算得到。通过得到的晶面间距和相应夹角数据,与其标准值比对,即可对包覆层的不同物质进行识别。
12.包覆层厚度测试
包覆层的厚度大小测试主要通过FIB从上述制得的正极活性材料单个颗粒中间切取100nm左右厚度的薄片,然后对薄片进行TEM测试,得到TEM测试原始图片,保存原始图片格式(xx.dm3)。
将上述TEM测试所得原始图片在DigitalMicrograph软件中打开,通过晶格间距和夹角信息,识别出包覆层,量取包覆层的厚度。
对所选颗粒测量三个位置处的厚度,取平均值。
13.第三层包覆层碳中SP2形态和SP3形态摩尔比的测定
本测试通过拉曼(Raman)光谱进行。通过对Raman测试的能谱进行分峰,得到Id/Ig,其中Id为SP3形态碳的峰强度,Ig为SP2形态碳的峰强度,从而确认两者的摩尔比。
二、正极材料以及二次电池单体的制备
本申请实施例涉及的原材料来源如下:
名称 化学式 厂家 规格
碳酸锰 MnCO3 山东西亚化学工业有限公司 1Kg
碳酸锂 Li2CO3 山东西亚化学工业有限公司 1Kg
碳酸镁 MgCO3 山东西亚化学工业有限公司 1Kg
碳酸锌 ZnCO3 武汉鑫儒化工有限公司 25Kg
碳酸亚铁 FeCO3 西安兰之光精细材料有限公司 1Kg
硫酸镍 NiCO3 山东西亚化学工业有限公司 1Kg
硫酸钛 Ti(SO4)2 山东西亚化学工业有限公司 1Kg
硫酸钴 CoSO4 厦门志信化学有限公司 500g
二氯化钒 VCl2 上海金锦乐实业有限公司 1Kg
二水合草酸 C2H2O4·2H2O 上海金锦乐实业有限公司 1Kg
磷酸二氢铵 NH4H2PO4 上海澄绍生物科技有限公司 500g
蔗糖 C12H22O11 上海源叶生物科技有限公司 100g
硫酸 H2SO4 深圳海思安生物技术有限公司 质量分数60%
硝酸 HNO3 安徽凌天精细化工有限公司 质量分数60%
亚硅酸 H2SiO3 上海源叶生物科技有限公司 100g
硼酸 H3BO3 常州市启迪化工有限公司 1Kg
实施例1
1)正极活性材料的制备
制备掺杂的草酸锰:将1.3mol的MnSO4﹒H2O、0.7mol的FeSO4﹒H2O在混料机中充分混合6小时。将混合物转移至反应釜中,并加入10L去离子水和2mol二水合草酸(以草酸计)。将反应釜加热至80℃,以600rpm的转速搅拌6小时,反应终止(无气泡产生),得到Fe掺杂的草酸锰悬浮液。然后过滤所述悬浮液,将滤饼在120℃下烘干,之后进行研磨,得到中值粒径Dv50为100nm左右的Fe掺杂的草酸锰颗粒。
制备掺杂的磷酸锰锂:取1mol上述草酸锰颗粒、0.497mol碳酸锂、0.001mol的Mo(SO4)3、含有0.999mol磷酸的浓度为85%的磷酸水溶液、0.001mol的H4SiO4、0.0005mol的NH4HF2和0.005mol蔗糖加入到20L去离子水中。将混合物转入砂磨机中充分研磨搅拌10小时,得到浆料。将所述浆料转移到喷雾干燥设备中进行喷雾干燥造粒,设定干燥温度为250℃,干燥4小时,得到颗粒。在氮气(90体积%)+氢气(10体积%)保护气氛中,将上述粉料在700℃下烧结10小时,得到碳包覆的Li0.994Mo0.001Mn0.65Fe0.35P0.999Si0.001O3.999F0.001。正极活性材料可用电感耦合等离子体发射光谱(ICP)进行元素含量的检测。
2)扣式电池单体的制备
将上述正极活性材料、聚偏二氟乙烯(PVDF)、乙炔黑以90:5:5的重量比加入至N-甲基吡咯烷酮(NMP)中,在干燥房中搅拌制成浆料。在铝箔上涂覆上述浆料,干燥、冷压制成正极片。涂覆量为0.2g/cm2,压实密度为2.0g/cm3
采用锂片作为负极,采用1mol/L的LiPF6在体积比1:1:1的碳酸乙烯酯(EC)、碳酸二乙酯(DEC)和碳酸二甲酯(DMC)中的溶液为电解液,与上述制备的正极片一起在扣电箱中组装成扣式电池单体(下文也称“扣电”)。
3)全电池单体的制备
将上述正极活性材料与导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)按重量比92:2.5:5.5在N-甲基吡咯烷酮溶剂体系中混合均匀后,涂覆于铝箔上并烘干、冷压,得到正极片。涂覆量为0.4g/cm2,压实密度为2.4g/cm3
将负极活性材料人造石墨、硬碳、导电剂乙炔黑、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC)按照重量比90:5:2:2:1在去离子水中混合均匀后,涂覆于铜箔上烘干、冷压,得到负极片。涂覆量为0.2g/cm2,压实密度为1.7g/cm3
以聚乙烯(PE)多孔聚合薄膜作为隔离膜,将正极片、隔离膜、负极片按顺序叠好,使隔离膜处于正负极中间起到隔离的作用,并卷绕得到裸电芯。将裸电芯置于外包装中,注入与上述制备扣电时相同的电解液并封装,得到全电池单体(下文也称“全电”)。
实施例2
除了在“1)正极活性材料的制备”中,将高纯Li2CO3的量改变为0.4885mol,将Mo(SO4)3换成MgSO4,将FeSO4﹒H2O的量改变为0.68mol,在制备掺杂的草酸锰时还加入0.02mol的Ti(SO4)2,并将H4SiO4换成HNO3之外,其他与实施例1相同。
实施例3
除了在“1)正极活性材料的制备”中,将高纯Li2CO3的量改变为0.496mol,将Mo(SO4)3换成W(SO4)3,将H4SiO4换成H2SO4之外,其他与实施例1相同。
实施例4
除了在“1)正极活性材料的制备”中,将高纯Li2CO3的量改变为0.4985mol,将0.001mol的Mo(SO4)3换成0.0005mol的Al2(SO4)3和NH4HF2换成NH4HCl2之外,其他与实施例1相同。
实施例5
除了在“1)正极活性材料的制备”中,将0.7mol的FeSO4﹒H2O改为0.69mol,在制备掺杂的草酸锰时还加入0.01molVCl2,将Li2CO3的量改变为0.4965mol,将0.001mol的Mo(SO4)3换成0.0005mol的Nb2(SO4)5和H4SiO4换成H2SO4之外,其他与实施例1相同。
实施例6
除了在“1)正极活性材料的制备”中,将FeSO4﹒H2O的量改为0.68mol,在制备掺杂的草酸锰时还加入0.01mol的VCl2和0.01mol的MgSO4,将Li2CO3的量改变为0.4965mol,将0.001mol的Mo(SO4)3换成0.0005mol的Nb2(SO4)5和H4SiO4换成H2SO4之外,其他与实施例1相同。
实施例7
除了在“1)正极活性材料的制备”中,将MgSO4换成CoSO4之外,其他与实施例6相同。
实施例8
除了在“1)正极活性材料的制备”中,将MgSO4换成NiSO4之外,其他与实施例6相同。
实施例9
除了在“1)正极活性材料的制备”中,将FeSO4﹒H2O的量改为0.698mol,在制备掺杂的草酸锰时还加入0.002mol的Ti(SO4)2,将Li2CO3的量改变为0.4955mol,将0.001mol的Mo(SO4)3换成0.0005mol的Nb2(SO4)5,H4SiO4换成H2SO4,NH4HF2制成NH4HCl2之外,其他与实施例1相同。
实施例10
除了在“1)正极活性材料的制备”中,将FeSO4﹒H2O的量改为0.68mol,在制备掺杂的草酸锰时还加入0.01mol的VCl2和0.01mol的MgSO4,将Li2CO3的量改变为0.4975mol,将0.001mol的Mo(SO4)3换成0.0005mol的Nb2(SO4)5和NH4HF2换成NH4HBr2之外,其他与实施例1相同。
实施例11
除了在“1)正极活性材料的制备”中,将FeSO4﹒H2O的量改为0.69mol,在制备掺杂的草酸锰时还加入0.01mol的VCl2,将Li2CO3的量改变为0.499mol,将Mo(SO4)3换成MgSO4和NH4HF2换成NH4HBr2之外,其他与实施例1相同。
实施例12
除了在“1)正极活性材料的制备”中,将MnSO4﹒H2O的量改为1.36mol,将FeSO4﹒H2O的量改为0.6mol,在制备掺杂的草酸锰时还加入0.04mol的VCl2,将Li2CO3的量改变为0.4985mol,将Mo(SO4)3换成MgSO4和H4SiO4换成HNO3之外,其他与实施例1相同。
实施例13
除了在“1)正极活性材料的制备”中,将MnSO4﹒H2O的量改为1.16mol,FeSO4﹒H2O的量改为0.8mol之外,其他与实施例12相同。
实施例14
除了在“1)正极活性材料的制备”中,将MnSO4﹒H2O的量改为1.3mol,VCl2的量改为0.1mol之外,其他与实施例12相同。
实施例15
除了在“1)正极活性材料的制备”中,将MnSO4﹒H2O的量改为1.2mol,在制备掺杂的草酸锰时还加入0.1mol的VCl2,将Li2CO3的量改变为0.494mol,将0.001mol的Mo(SO4)3换成0.005mol的MgSO4和H4SiO4换成H2SO4之外,其他与实施例1相同。
实施例16
除了在“1)正极活性材料的制备”中,将MnSO4﹒H2O的量改为1.2mol,在制备掺杂的草酸锰时还加入0.1mol的VCl2,将Li2CO3的量改变为0.467mol,将0.001mol的Mo(SO4)3换成0.005mol的MgSO4,0.001mol的H4SiO4换成0.005mol的H2SO4和1.175mol浓度为85%的磷酸换成1.171mol浓度为85%的磷酸之外,其他与实施例1相同。
实施例17
除了在“1)正极活性材料的制备”中,将MnSO4﹒H2O的量改为1.2mol,在制备掺杂的草酸锰时还加入0.1mol的VCl2,将Li2CO3的量改变为0.492mol,将0.001mol的Mo(SO4)3换成0.005mol的MgSO4,H4SiO4换成H2SO4和0.0005mol的NH4HF2改成0.0025mol之外,其他与实施例1相同。
实施例18
除了在“1)正极活性材料的制备”中,将FeSO4﹒H2O的量改为0.5mol,在制备掺杂的草酸锰时还加入0.1mol的VCl2和0.1mol的CoSO4,将Li2CO3的量改变为0.492mol,将0.001mol的Mo(SO4)3换成0.005mol的MgSO4,H4SiO4换成H2SO4和0.0005mol的NH4HF2改成0.0025mol之外,其他与实施例1相同。
实施例19
除了在“1)正极活性材料的制备”中,将FeSO4﹒H2O的量改为0.4mol,将0.1mol的CoSO4改为0.2mol之外,其他与实施例18相同。
实施例20
除了在“1)正极活性材料的制备”中,将MnSO4﹒H2O的量改为1.5mol,FeSO4﹒H2O的量改为0.1mol,CoSO4的量改为0.3mol之外,其他与实施例18相同。
实施例21
除了在“1)正极活性材料的制备”中,将0.1mol的CoSO4换成0.1mol的NiSO4之外,其他与实施例18相同。
实施例22
除了在“1)正极活性材料的制备”中,将MnSO4﹒H2O的量改为1.5mol,FeSO4﹒H2O的量改为0.2mol,将0.1mol的CoSO4换成0.2mol的NiSO4之外,其他与实施例18相同。
实施例23
除了在“1)正极活性材料的制备”中,将MnSO4﹒H2O的量改为1.4mol,FeSO4﹒H2O的量改为0.3mol,CoSO4的量改为0.2mol之外,其他与实施例18相同。
实施例24
除了在“1)正极活性材料的制备”中,将1.3mol的MnSO4﹒H2O改为1.2mol,0.7mol的FeSO4﹒H2O改为0.5mol,在制备掺杂的草酸锰时还加入0.1mol的VCl2和0.2mol的CoSO4,将Li2CO3的量改变为0.497mol,将0.001mol的Mo(SO4)3换成0.005mol的MgSO4,H4SiO4换成H2SO4和0.0005mol的NH4HF2改成0.0025mol之外,其他与实施例1相同。
实施例25
除了在“1)正极活性材料的制备”中,将MnSO4﹒H2O的量改为1.0mol,FeSO4﹒H2O的量改为0.7mol,CoSO4的量改为0.2mol之外,其他与实施例18相同。
实施例26
除了在“1)正极活性材料的制备”中,将MnSO4﹒H2O的量改为1.4mol,FeSO4﹒H2O的量改为0.3mol,在制备掺杂的草酸锰时还加入0.1mol的VCl2和0.2mol的CoSO4,将Li2CO3的量改变为0.4825mol,将0.001mol的Mo(SO4)3换成0.005mol的MgSO4,H4SiO4的量改成0.1mol,磷酸的量改成0.9mol和NH4HF2的量改成0.04mol之外,其他与实施例1相同。
实施例27
除了在“1)正极活性材料的制备”中,将MnSO4﹒H2O的量改为1.4mol,FeSO4﹒H2O的量改为0.3mol,在制备掺杂的草酸锰时还加入0.1mol的VCl2和0.2mol的CoSO4,将Li2CO3的量改变为0.485mol,将0.001mol的Mo(SO4)3换成0.005mol的MgSO4,H4SiO4的量改成0.08mol,磷酸的量改成0.92mol和NH4HF2的量改成0.05mol之外,其他与实施例1相同。
对比例1
制备草酸锰:将1mol的MnSO4﹒H2O加至反应釜中,并加入10L去离子水和1mol二水合草酸(以草酸计)。将反应釜加热至80℃,以600rpm的转速搅拌6小时,反应终止(无气泡产生),得到草酸锰悬浮液。然后过滤所述悬浮液,将滤饼在120℃下烘干,之后进行研磨,得到中值粒径Dv50为50-200nm的草酸锰颗粒。
制备磷酸锰锂:取1mol上述草酸锰颗粒、0.5mol碳酸锂、含有1mol磷酸的浓度为85%的磷酸水溶液和0.005mol蔗糖加入到20L去离子水中。将混合物转入砂磨机中充分研磨搅拌10小时,得到浆料。将所述浆料转移到喷雾干燥设备中进行喷雾干燥造粒,设定干燥温度为250℃,干燥4小时,得到颗粒。在氮气(90体积%)+氢气(10体积%)保护气氛中,将上述粉料在700℃下烧结10小时,得到碳包覆的LiMnPO4
实施例55
除了在对比例1中,将1mol的MnSO4﹒H2O换成0.85mol的MnSO4﹒H2O和0.15mol的FeSO4﹒H2O,并加入到混料机中充分混合6小时之后再加入反应釜之外,其它与对比例1相同。
实施例56
除了在“1)正极活性材料的制备”中,将MnSO4﹒H2O的量改为1.9mol,0.7mol的FeSO4﹒H2O换成0.1mol的ZnSO4,将Li2CO3的量改变为0.495mol,将0.001mol的Mo(SO4)3换成0.005mol的MgSO4,将磷酸的量改成1mol,不加入H4SiO4和NH4HF2之外,其他与实施例1相同。
实施例57
除了在“1)正极活性材料的制备”中,将MnSO4﹒H2O的量改为1.2mol,FeSO4﹒H2O的量改为0.8mol,将Li2CO3的量改变为0.45mol,将0.001mol的Mo(SO4)3换成0.005mol的Nb2(SO4)5,将0.999mol的磷酸改成1mol,0.0005mol的NH4HF2改成0.025mol,不加入H4SiO4之外,其他与实施例1相同。
实施例58
除了在“1)正极活性材料的制备”中,将MnSO4﹒H2O的量改为1.4mol,FeSO4﹒H2O的量改为0.6mol,将Li2CO3的量改变为0.38mol,将0.001mol的Mo(SO4)3换成0.12mol的MgSO4之外,其他与实施例1相同。
实施例59
除了在“1)正极活性材料的制备”中,将MnSO4﹒H2O的量改为0.8mol,0.7mol的FeSO4﹒H2O换成1.2mol的ZnSO4,将Li2CO3的量改变为0.499mol,将0.001mol的Mo(SO4)3换成0.001mol的MgSO4之外,其他与实施例1相同。
实施例60
除了在“1)正极活性材料的制备”中,将MnSO4﹒H2O的量改为1.4mol,FeSO4﹒H2O的量改为0.6mol,将Li2CO3的量改变为0.534mol,将0.001mol的Mo(SO4)3换成0.001mol的MgSO4,将磷酸的量改成0.88mol,H4SiO4的量改成0.12mol,NH4HF2的量改成0.025mol之外,其他与实施例1相同。
实施例61
除了在“1)正极活性材料的制备”中,将MnSO4﹒H2O的量改为1.2mol,FeSO4﹒H2O的量改为0.8mol,将Li2CO3的量改变为0.474mol,将0.001mol的Mo(SO4)3换成0.001mol的MgSO4,将磷酸的量改成0.93mol,H4SiO4的量改成0.07mol,NH4HF2的量改成0.06mol之外,其他与实施例1相同。
表20中示出实施例1-11,55-61和对比例1的正极活性材料组成。
表21中示出实施例1-11,55-61和对比例1的正极活性材料或扣电或全电按照上述性能测试方法测得的性能数据。表22示出实施例12-27的正极活性材料组成。表23中示出实施例12-27的正极活性材料或扣电或全电按照上述性能测试方法测得的性能数据。
表20实施例1-11,55-61和对比例1的正极活性材料组成
Figure BDA0004035636100001531
Figure BDA0004035636100001541
表21实施例1-11,55-61和对比例1的正极活性材料或扣电或全电按照上述性能测试方法测得的性能数据
Figure BDA0004035636100001542
/>
Figure BDA0004035636100001551
表22实施例12-27的正极活性材料组成
正极活性材料 (1-y):y a:x
实施例12 Li0.997Mg0.001Mn0.68Fe0.3V0.02P0.999N0.001O3.999F0.001 2.26 997
实施例13 Li0.997Mg0.001Mn0.58Fe0.4V0.02P0.999N0.001O3.999F0.001 1.45 997
实施例14 Li0.997Mg0.001Mn0.65Fe0.3V0.05P0.999N0.001O3.999F0.001 2.17 997
实施例15 Li0.988Mg0.005Mn0.6Fe0.35V0.05P0.999S0.001O3.999F0.001 1.71 197.6
实施例16 Li0.984Mg0.005Mn0.6Fe0.35V0.05P0.995S0.005O3.999F0.001 1.71 196.8
实施例17 Li0.984Mg0.005Mn0.6Fe0.35V0.05P0.999S0.001O3.995F0.005 1.71 196.8
实施例18 Li0.984Mg0.005Mn0.65Fe0.25V0.05Co0.05P0.999S0.001O3.995F0.005 2.60 196.8
实施例19 Li0.984Mg0.005Mn0.65Fe0.20V0.05Co0.10P0.999S0.001O3.995F0.005 3.25 196.8
实施例20 Li0.984Mg0.005Mn0.75Fe0.05V0.05Co0.15P0.999S0.001O3.995F0.005 15.0 196.8
实施例21 Li0.984Mg0.005Mn0.65Fe0.25V0.05Ni0.05P0.999S0.001O3.995F0.005 2.60 196.8
实施例22 Li0.984Mg0.005Mn0.75Fe0.10V0.05Ni0.10P0.999S0.001O3.995F0.005 7.50 196.8
实施例23 Li0.984Mg0.005Mn0.7Fe0.15V0.05Co0.10P0.999S0.001O3.995F0.005 4.67 196.8
实施例24 Li0.984Mg0.005Mn0.6Fe0.25V0.05Co0.10P0.999S0.001O3.995F0.005 2.40 196.8
实施例25 Li0.984Mg0.005Mn0.5Fe0.35V0.05Co0.10P0.999S0.001O3.995F0.005 1.43 196.8
实施例26 Li1.01Mg0.005Mn0.7Fe0.15V0.05Co0.10P0.9Si0.1O3.92F0.08 4.67 202
实施例27 Li0.97Mg0.005Mn0.7Fe0.15V0.05Co0.10P0.92Si0.08O3.9F0.1 4.67 194
表23实施例12-27的正极活性材料或扣电或全电按照上述性能测试方法测得的性能数据
Figure BDA0004035636100001561
/>
Figure BDA0004035636100001571
实施例28-41
按照与实施例1相同的方式制备正极活性材料、扣电和全电,但改变制备掺杂的草酸锰时的搅拌转速、温度、在砂磨机中研磨搅拌的时间、烧结温度和烧结时间,具体如下表24所示。
并且,对实施例28-41的正极活性材料或扣电或全电按照上述性能测试方法测得性能数据,如表25所示。
表24实施例28-41中制备掺杂的草酸锰时的搅拌转速、温度、在砂磨机中研磨搅拌的时间、烧结温度和烧结时间
Figure BDA0004035636100001572
表25实施例28-41的正极活性材料或扣电或全电按照上述性能测试方法测得性能数据
Figure BDA0004035636100001573
Figure BDA0004035636100001581
实施例42-54
按照与实施例1相同的方式制备正极活性材料、扣电和全电,但改变锂源、锰源、磷源和Li位、Mn位、P位以及O位掺杂元素的源,具体如下表26所示。制得的正极活性材料组成与实施例1相同,即,均为Li0.994Mo0.001Mn0.65Fe0.35P0.999Si0.001O3.999F0.001
并且,对实施例42-54的正极活性材料或扣电或全电按照上述性能测试方法测得性能数据,如表27所示。
表26实施例42-54中锂源、锰源、磷源和掺杂元素C、A、R、D的源
Figure BDA0004035636100001582
Figure BDA0004035636100001591
表27实施例42-54的正极活性材料或扣电或全电按照上述性能测试方法测得性能数据
Figure BDA0004035636100001592
由上述表21、23、25、27可见,本申请实施例的各正极活性材料均在循环性能、高温稳定性、克容量和压实密度中的一个甚至全部方面实现了比对比例更优的效果。
由实施例18-20、23-25之间相比,可以看出,在其他元素相同的情况下,(1-y):y在1至4范围内,能够进一步提升二次电池单体的能量密度和循环性能。
图163示出了未掺杂的LiMnPO4和实施例2制备的正极活性材料的XRD图。由图中可以看出,实施例2的正极活性材料的XRD图中主要特征峰位置与未掺杂的LiMnPO4的一致,说明掺杂过程没有引入杂质相,性能的改善主要是来自元素掺杂,而不是杂相导致的。
图164示出实施例2制备的正极活性材料的EDS谱图。图中点状分布的为各掺杂元素。由图中可以看出实施例2的正极活性材料中,元素掺杂均匀。
以下提供内核为Li1+xMn1-yAyP1-zRzO4,包覆层包括焦磷酸盐层、磷酸盐层以及碳层三层包覆结构的正极活性材料的实施例、对比例以及性能测试分析:
实施例62
步骤1:正极活性材料的制备
步骤S1:制备Fe、Co、V和S共掺杂的草酸锰
将689.6g碳酸锰、455.27g碳酸亚铁、4.65g硫酸钴、4.87g二氯化钒加入混料机中充分混合6h。然后将得到的混合物转入反应釜中,并加入5L去离子水和1260.6g二水合草酸,加热至80℃,以500rpm的转速充分搅拌6h,混合均匀,直至反应终止无气泡产生,得到Fe、Co、和V共掺杂的草酸锰悬浮液。然后将悬浮液过滤,在120℃下烘干,再进行砂磨,得到粒径为100nm的草酸锰颗粒。
步骤S2:制备内核Li0.997Mn0.60Fe0.393V0.004Co0.003P0.997S0.003O4
取(1)中制备的草酸锰1793.1g以及368.3g碳酸锂、1146.6g磷酸二氢铵和4.9g稀硫酸,将它们加入到20L去离子水中,充分搅拌,在80℃下均匀混合反应10h,得到浆料。将所述浆料转入喷雾干燥设备中进行喷雾干燥造粒,在250℃的温度下进行干燥,得到粉料。在保护气氛(90%氮气和10%氢气)中,在700℃下将所述粉料在辊道窑中进行烧结4h,得到上述内核材料。
步骤S3:第一包覆层悬浊液的制备
制备Li2FeP2O7溶液,将7.4g碳酸锂,11.6g碳酸亚铁,23.0g磷酸二氢铵和12.6g二水合草酸溶于500mL去离子水中,控制pH为5,然后搅拌并在室温下反应2h得到溶液,之后将该溶液升温到80℃并保持此温度4h,得到第一包覆层悬浊液。
步骤S4:第一包覆层的包覆
将步骤S2中获得的掺杂后的1571.9g磷酸锰锂内核材料加入到步骤S3中获得的第一包覆层悬浊液(包覆物质含量为15.7g)中,充分搅拌混合6h,混合均匀后,转入120℃烘箱中干燥6h,然后在650℃下烧结6h得到焦磷酸盐包覆后的材料。
步骤S5:第二包覆层悬浊液的制备
将3.7g碳酸锂、11.6g碳酸亚铁、11.5g磷酸二氢铵和12.6g二水合草酸溶于1500mL去离子水中,然后搅拌并反应6h得到溶液,之后将该溶液升温到120℃并保持此温度6h,得到第二包覆层悬浊液。
步骤S6:第二包覆层的包覆
将步骤S4中获得的1586.8g的焦磷酸盐包覆后的材料加入到步骤S5中得到的第二包覆层悬浊液(包覆物质含量为47.1g)中,充分搅拌混合6h,混合均匀后,转入120℃烘箱中干燥6h,然后700℃烧结8h得到两层包覆后的材料。
步骤S7:第三包覆层水溶液的制备
将37.3g蔗糖溶于500g去离子水中,然后搅拌并充分溶解,得到蔗糖水溶液。
步骤S8:第三包覆层的包覆
将步骤S6中获得的两层包覆的材料1633.9g加入到步骤S7中得到的蔗糖溶液中,一同搅拌混合6h,混合均匀后,转入150℃烘箱中干燥6h,然后在700℃下烧结10h得到三层包覆后的材料。
步骤2:正极片的制备
将上述制备的三层包覆后的正极活性材料、导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)按重量比为97.0:1.2:1.8加入到N-甲基吡咯烷酮(NMP)中,搅拌混合均匀,得到正极浆料。然后将正极浆料按0.280g/1540.25mm2均匀涂覆于铝箔上,经烘干、冷压、分切,得到正极片。
步骤3:负极片的制备
将负极活性物质人造石墨、硬碳、导电剂乙炔黑、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC)按照重量比为90:5:2:2:1溶于溶剂去离子水中,搅拌混合均匀后制备成负极浆料。将负极浆料按0.117g/1540.25mm2均匀涂覆在负极集流体铜箔上,经过烘干、冷压、分切,得到负极片。
步骤4:电解液的制备
在氩气气氛手套箱中(H2O<0.1ppm,O2<0.1ppm),将有机溶剂碳酸乙烯酯(EC)/碳酸甲乙酯(EMC)按照体积比3/7混合均匀,加入12.5重量%(基于碳酸乙烯酯/碳酸甲乙酯溶剂的重量计)LiPF6溶解于上述有机溶剂中,搅拌均匀,得到电解液。
步骤5:隔离膜的制备
使用市售的厚度为20μm、平均孔径为80nm的PP-PE共聚物微孔薄膜(来自卓高电子科技公司,型号20)。
步骤6:全电池单体的制备
将上述获得的正极片、隔离膜、负极片按顺序叠好,使隔离膜处于正负极中间起到隔离的作用,并卷绕得到裸电芯。将裸电芯置于外包装中,注入上述电解液并封装,得到全电池单体(下文也称“全电”)。
【扣式电池单体的制备】
各项参数同实施例1,在此不再赘述。
实施例63-90,91-105和对比例2、3
以类似于实施例62的方式制备实施例63至90,91-105和对比例2、39中的正极活性材料和电池单体,正极活性材料的制备中的不同之处参见表28-33,其中对比例2、实施例91、实施例93-99、实施例101未包覆第一层,因此没有步骤S3、S4;对比例2、实施例91-100未包覆第二层,因此没有步骤S5-S6。本申请所有实施例和对比例中,如未标明,则使用的第一包覆层物质和/或第二包覆层物质均默认为晶态。
表28内核的制备原料编号
Figure BDA0004035636100001611
/>
Figure BDA0004035636100001621
/>
Figure BDA0004035636100001631
/>
Figure BDA0004035636100001641
/>
Figure BDA0004035636100001651
/>
Figure BDA0004035636100001661
表29第一包覆层悬浊液的制备(步骤S3)
Figure BDA0004035636100001671
表30第一包覆层的包覆(步骤S4)
Figure BDA0004035636100001672
/>
Figure BDA0004035636100001681
表31第二包覆层悬浊液的制备(步骤S5)
Figure BDA0004035636100001682
/>
Figure BDA0004035636100001691
表32第二包覆层的包覆(步骤S6)
Figure BDA0004035636100001692
/>
Figure BDA0004035636100001701
表33第三层包覆层的包覆(步骤S8)
Figure BDA0004035636100001702
/>
Figure BDA0004035636100001711
/>
Figure BDA0004035636100001721
实施例89-116:其他包覆层物质的考察
实施例89-116以类似于实施例62中的方法进行,不同之处参见下表34和表35。
表34第一包覆层物质的考察
Figure BDA0004035636100001722
表35第二包覆层物质的考察
Figure BDA0004035636100001723
/>
Figure BDA0004035636100001731
上述内核为Li1+xMn1-yAyP1-zRzO4,包覆层包括焦磷酸盐层、磷酸盐层以及碳层三层包覆结构的正极活性材料的实施例和对比例的性能测试结果参见下面的表格。
表36实施例62-105和对比例2、3中正极活性材料的粉料性能及所制备的电池单体的电池单体性能
Figure BDA0004035636100001732
/>
Figure BDA0004035636100001741
/>
Figure BDA0004035636100001751
/>
Figure BDA0004035636100001761
由表36可见,与对比例相比,实施例实现了更小的晶格变化率、更小的Li/Mn反位缺陷浓度、更大的压实密度、更接近于-2价的表面氧价态、更少的循环后Mn和Fe溶出量以及更好的电池单体性能,例如更好的高温存储性能和高温循环性能。
表37正极活性材料每一层的厚度以及锰元素和磷元素的重量比
Figure BDA0004035636100001762
/>
Figure BDA0004035636100001771
/>
Figure BDA0004035636100001781
由表37可以看出,通过对磷酸锰铁锂(含锰量35%,含磷量约20%)的锰位和磷位进行掺杂以及三层包覆,正极活性材料中的锰元素含量以及锰元素与磷元素的重量含量比明显降低;此外,将实施例62-75与实施例92、实施例93、实施例101相比,结合表38可知,正极活性材料中锰元素和磷元素的降低会导致锰铁溶出量降低并且其制备的二次电池单体的电池单体性能提升。
表38正极活性材料的粉料性能及所制备的电池单体的电池单体性能
Figure BDA0004035636100001791
/>
Figure BDA0004035636100001801
由表38可知,采用包含本申请范围内的其他元素的第一包覆层和第二包覆层同样获得了具有良好性能的正极活性材料并实现了良好的电池单体性能结果。
表39第一包覆层物质和第二包覆层物质的晶面间距和夹角
Figure BDA0004035636100001802
由表39可知,本申请第一包覆层和第二包覆层的晶面间距和夹角均在本申请所述范围内。
I II.考察包覆层烧结方法对对正极活性材料性能和二次电池单体性能的影响
下表中的实施例和对比例的电池单体制备类似于实施例62,不同之处使用下表中的方法参数。
结果参见下表40。
Figure BDA0004035636100001811
/>
Figure BDA0004035636100001821
/>
Figure BDA0004035636100001831
/>
Figure BDA0004035636100001841
/>
Figure BDA0004035636100001851
/>
Figure BDA0004035636100001861
/>
Figure BDA0004035636100001871
由表41可以看出,当步骤S1中的反应温度范围为60-120℃、反应时间为2-9小时且步骤S2中的反应温度范围为40-120℃、反应时间为1-10小时时,正极活性材料粉料性能(晶格变化率、Li/Mn反位缺陷浓度、表面氧价态、压实密度)和所制备的电池单体性能(电容量、高温循环性能、高温存储性能)均表现优异。
下面详述包覆层具有第一包覆层(焦磷酸盐和磷酸盐),第二包覆层是碳的正极活性材料的制备以及性能测试:
实施例1-1
【双层包覆的磷酸锰锂正极活性材料的制备】
(1)共掺杂磷酸锰锂内核的制备
制备Fe、Co和V共掺杂的草酸锰:将689.5g碳酸锰(以MnCO3计,下同)、455.2g碳酸亚铁(以FeCO3计,下同)、4.6g硫酸钴(以CoSO4计,下同)和4.9g二氯化钒(以VCl2计,下同)在混料机中充分混合6小时。将混合物转移至反应釜中,并加入5升去离子水和1260.6g二水合草酸(以C2H2O4.2H2O计,下同)。将反应釜加热至80℃,以600rpm的转速搅拌6小时,直至反应终止(无气泡产生),得到Fe、Co、V和S共掺杂的草酸锰悬浮液。然后过滤所述悬浮液,将滤饼在120℃下烘干,之后进行研磨,得到中值粒径Dv50为100nm的Fe、Co和V共掺杂的二水草酸锰颗粒。
制备Fe、Co、V和S共掺杂的磷酸锰锂:将前一步骤获得的二水草酸锰颗粒(1793.4g)、369.0g碳酸锂(以Li2CO3计,下同),1.6g浓度为60%的稀硫酸(以60%H2SO4计,下同)和1148.9g磷酸二氢铵(以NH4H2PO4计,下同)加入到20升去离子水中,将混合物搅拌10小时使其混合均匀,得到浆料。将所述浆料转移到喷雾干燥设备中进行喷雾干燥造粒,设定干燥温度为250℃,干燥4小时,得到粉料。在氮气(90体积%)+氢气(10体积%)保护气氛中,将上述粉料在700℃下烧结4小时,得到1572.1g的Fe、Co、V和S共掺杂的磷酸锰锂。
(2)焦磷酸铁锂和磷酸铁锂的制备
制备焦磷酸铁锂粉末:将4.77g碳酸锂、7.47g碳酸亚铁、14.84g磷酸二氢铵和1.3g二水合草酸溶于50ml去离子水中。混合物的pH为5,搅拌2小时使反应混合物充分反应。然后将反应后的溶液升温到80℃并保持该温度4小时,得到包含Li2FeP2O7的悬浊液,将悬浊液进行过滤,用去离子水洗涤,并在120℃下干燥4h,得到粉末。将所述粉末在650℃、氮气气氛下烧结8小时,并自然冷却至室温后进行研磨,得到Li2FeP2O7粉末。
制备磷酸铁锂悬浊液:将11.1g碳酸锂、34.8g碳酸亚铁、34.5g磷酸二氢铵、1.3g二水合草酸和74.6g蔗糖(以C12H22O11计,下同)溶于150ml去离子水中,得到混合物,然后搅拌6小时使上述混合物充分反应。然后将反应后的溶液升温到120℃并保持该温度6小时,得到包含LiFePO4的悬浊液。
(3)包覆
将1572.1g上述Fe、Co、V和S共掺杂的磷酸锰锂与15.72g上述焦磷酸铁锂(Li2FeP2O7)粉末加入到上一步骤制备获得的磷酸铁锂(LiFePO4)悬浊液中,搅拌混合均匀后转入真空烘箱中在150℃下干燥6小时。然后通过砂磨分散所得产物。在分散后,将所得产物在氮气气氛中、在700℃下烧结6小时,得到目标产物双层包覆的磷酸锰锂。
【正极片的制备】
将上述制备的双层包覆的磷酸锰锂正极活性材料、导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)按重量比为92:2.5:5.5加入到N-甲基吡咯烷酮(NMP)中,搅拌混合均匀,得到正极浆料。然后将正极浆料按0.280g/1540.25mm2均匀涂覆于铝箔上,经烘干、冷压、分切,得到正极片。
【负极片的制备】
将负极活性物质人造石墨、硬碳、导电剂乙炔黑、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC-Na)按照重量比为90:5:2:2:1溶于溶剂去离子水中,搅拌混合均匀后制备成负极浆料。将负极浆料按0.117g/1540.25mm2均匀涂覆在负极集流体铜箔上,经过烘干、冷压、分切得到负极片。
【电解液的制备】
在氩气气氛手套箱中(H2O<0.1ppm,O2<0.1ppm),作为有机溶剂,将碳酸亚乙酯(EC)/碳酸甲乙酯(EMC)按照体积比3/7混合均匀,加入12.5重量%(基于所述有机溶剂的重量计)LiPF6溶解于上述有机溶剂中,搅拌均匀,得到电解液。
【隔离膜】
使用市售的厚度为20μm、平均孔径为80nm的PP-PE共聚物微孔薄膜(来自卓高电子科技公司,型号20)。
【全电池单体的制备】
将上述获得的正极片、隔离膜、负极片按顺序叠好,使隔离膜处于正负极中间起到隔离的作用,并卷绕得到裸电芯。将裸电芯置于外包装中,注入上述电解液并封装,得到全电池单体(下文也称“全电”)。
【扣式电池单体的制备】
各项参数同实施例1,在此不再赘述。
实施例1-2至1-6
在共掺杂磷酸锰锂内核的制备过程中,除不使用二氯化钒和硫酸钴、使用463.4g的碳酸亚铁,1.6g的60%浓度的稀硫酸,1148.9g的磷酸二氢铵和369.0g碳酸锂以外,实施例1-2至1-6中磷酸锰锂内核的制备条件与实施例1-1相同。
此外,在焦磷酸铁锂和磷酸铁锂的制备过程以及包覆第一包覆层和第二包覆层的过程中,除所使用的原料按照表20中所示包覆量与实施例1-1对应的包覆量的比值对应调整,以使实施例1-2至1-6中Li2FeP2O7/LiFePO4的用量分别为12.6g/37.7g、15.7g/47.1g、18.8g/56.5g、22.0/66.0g和25.1g/75.4g,实施例1-2至1-6中蔗糖的用量为37.3g以外,其他条件与实施例1-1相同。
实施例1-7至1-10
除蔗糖的用量分别为74.6g、149.1g、186.4g和223.7g以使作为第二包覆层的碳层的对应包覆量分别为31.4g、62.9g、78.6g和94.3g以外,实施例1-7至1-10的条件与实施例1-3相同。
实施例1-11至1-14
除在焦磷酸铁锂和磷酸铁锂的制备过程中按照表20中所示包覆量对应调整各种原料的用量以使Li2FeP2O7/LiFePO4的用量分别为23.6g/39.3g、31.4g/31.4g、39.3g/23.6g和47.2g/15.7g以外,实施例1-11至1-14的条件与实施例1-7相同。
实施例1-15
除在共掺杂磷酸锰锂内核的制备过程中使用492.80gZnCO3代替碳酸亚铁以外,实施例1-15的条件与实施例1-14相同。
实施例1-16至1-18
除实施例1-16在共掺杂磷酸锰锂内核的制备过程中使用466.4g的NiCO3、5.0g的碳酸锌和7.2g的硫酸钛代替碳酸亚铁,实施例1-17在共掺杂的磷酸锰锂内核的制备过程中使用455.2g的碳酸亚铁和8.5g的二氯化钒,实施例1-18在共掺杂的磷酸锰锂内核的制备过程中使用455.2g的碳酸亚铁、4.9g的二氯化钒和2.5g的碳酸镁以外,实施例1-17至1-19的条件与实施例1-7相同。
实施例1-19至1-20
除实施例1-19在共掺杂磷酸锰锂内核的制备过程中使用369.4g的碳酸锂、和以1.05g的60%浓度的稀硝酸代替稀硫酸,实施例1-20在共掺杂的磷酸锰锂内核的制备过程中使用369.7g的碳酸锂、和以0.78g的亚硅酸代替稀硫酸以外,实施例1-19至1-20的条件与实施例1-18相同。
实施例1-21至1-22
除实施例1-21在共掺杂磷酸锰锂内核的制备过程中使用632.0g碳酸锰、463.30g碳酸亚铁、30.5g的二氯化钒、21.0g的碳酸镁和0.78g的亚硅酸;实施例1-22在共掺杂磷酸锰锂内核的制备过程中使用746.9g碳酸锰、289.6g碳酸亚铁、60.9g的二氯化钒、42.1g的碳酸镁和0.78g的亚硅酸以外,实施例1-21至1-22的条件与实施例1-20相同。
实施例1-23至1-24
除实施例1-23在共掺杂磷酸锰锂内核的制备过程中使用804.6g碳酸锰、231.7g碳酸亚铁、1156.2g的磷酸二氢铵、1.2g的硼酸(质量分数99.5%)和370.8g碳酸锂;实施例1-24在共掺杂磷酸锰锂内核的制备过程中使用862.1g碳酸锰、173.8g碳酸亚铁、1155.1g的磷酸二氢铵、1.86g的硼酸(质量分数99.5%)和371.6g碳酸锂以外,实施例1-23至1-24的条件与实施例1-22相同。
实施例1-25
除实施例1-25在共掺杂磷酸锰锂内核的制备过程中使用370.1g碳酸锂、1.56g的亚硅酸和1147.7g的磷酸二氢铵以外,实施例1-25的条件与实施例1-20相同。
实施例1-26
除实施例1-26在共掺杂磷酸锰锂内核的制备过程中使用368.3g碳酸锂、4.9g质量分数为60%的稀硫酸、919.6g碳酸锰、224.8g碳酸亚铁、3.7g二氯化钒、2.5g碳酸镁和1146.8g的磷酸二氢铵以外,实施例1-26的条件与实施例1-20相同。
实施例1-27
除实施例1-27在共掺杂磷酸锰锂内核的制备过程中使用367.9g碳酸锂、6.5g浓度为60%的稀硫酸和1145.4g的磷酸二氢铵以外,实施例1-27的条件与实施例1-20相同。
实施例1-28至1-33
除实施例1-28至1-33在共掺杂磷酸锰锂内核的制备过程中使用1034.5g碳酸锰、108.9g碳酸亚铁、3.7g二氯化钒和2.5g碳酸镁,碳酸锂的使用量分别为:367.6g、367.2g、366.8g、366.4g、366.0g和332.4g,磷酸二氢铵的使用量分别为:1144.5g、1143.4g、1142.2g、1141.1g、1139.9g和1138.8g,浓度为60%的稀硫酸的使用量分别为:8.2g、9.8g、11.4g、13.1g、14.7g和16.3g以外,实施例1-28至1-33的条件与实施例1-20相同。
实施例2-1至2-4
实施例2-1
除在焦磷酸铁锂(Li2FeP2O7)的制备过程中在粉末烧结步骤中的烧结温度为550℃,烧结时间为1h以控制Li2FeP2O7的结晶度为30%,在磷酸铁锂(LiFePO4)的制备过程中在包覆烧结步骤中的烧结温度为650℃,烧结时间为2h以控制LiFePO4的结晶度为30%以外,其他条件与实施例1-1相同。
实施例2-2
除在焦磷酸铁锂(Li2FeP2O7)的制备过程中在粉末烧结步骤中的烧结温度为550℃,烧结时间为2h以控制Li2FeP2O7的结晶度为50%,在磷酸铁锂(LiFePO4)的制备过程中在包覆烧结步骤中的烧结温度为650℃,烧结时间为3h以控制LiFePO4的结晶度为50%以外,其他条件与实施例1-1相同。
实施例2-3
除在焦磷酸铁锂(Li2FeP2O7)的制备过程中在粉末烧结步骤中的烧结温度为600℃,烧结时间为3h以控制Li2FeP2O7的结晶度为70%,在磷酸铁锂(LiFePO4)的制备过程中在包覆烧结步骤中的烧结温度为650℃,烧结时间为4h以控制LiFePO4的结晶度为70%以外,其他条件与实施例1-1相同。
实施例2-4
除在焦磷酸铁锂(Li2FeP2O7)的制备过程中在粉末烧结步骤中的烧结温度为650℃,烧结时间为4h以控制Li2FeP2O7的结晶度为100%,在磷酸铁锂(LiFePO4)的制备过程中在包覆烧结步骤中的烧结温度为700℃,烧结时间为6h以控制LiFePO4的结晶度为100%以外,其他条件与实施例1-1相同。
实施例3-1至3-12
除制备Fe、Co和V共掺杂的草酸锰颗粒的过程中,实施例3-1反应釜内的加热温度/搅拌时间分别为60℃/120分钟;实施例3-2反应釜内的加热温度/搅拌时间分别为70℃/120分钟;实施例3-3反应釜内的加热温度/搅拌时间分别为80℃/120分钟;实施例3-4反应釜内的加热温度/搅拌时间分别为90℃/120分钟;实施例3-5反应釜内的加热温度/搅拌时间分别为100℃/120分钟;实施例3-6反应釜内的加热温度/搅拌时间分别为110℃/120分钟;实施例3-7反应釜内的加热温度/搅拌时间分别为120℃/120分钟;实施例3-8反应釜内的加热温度/搅拌时间分别为130℃/120分钟;实施例3-9反应釜内的加热温度/搅拌时间分别为100℃/60分钟;实施例3-10反应釜内的加热温度/搅拌时间分别为100℃/90分钟;实施例3-11反应釜内的加热温度/搅拌时间分别为100℃/150分钟;实施例3-12反应釜内的加热温度/搅拌时间分别为100℃/180分钟以外,实施例3-1至3-12的其他条件与实施例1-1相同。
实施例4-1至4-7
实施例4-1至4-4:除在焦磷酸铁锂(Li2FeP2O7)的制备过程中在干燥步骤中的干燥温度/干燥时间分别为100℃/4h、150℃/6h、200℃/6h和200℃/6h;在焦磷酸铁锂(Li2FeP2O7)的制备过程中在烧结步骤中的烧结温度和烧结时间分别为700℃/6h、700℃/6h、700℃/6h和600℃/6h以外,其它条件与实例1-7相同。
实施例4-5至4-7:除在包覆过程中在干燥步骤中的干燥温度/干燥时间分别为150℃/6h、150℃/6h和150℃/6h;在包覆过程中在烧结步骤中的烧结温度和烧结时间分别为600℃/4h、600℃/6h和800℃/8h以外,其它条件与实例1-12相同。
对比例1-1
制备草酸锰:将1149.3g碳酸锰加至反应釜中,并加入5升去离子水和1260.6g二水合草酸(以C2H2O4·2H2O计,下同)。将反应釜加热至80℃,以600rpm的转速搅拌6小时,直至反应终止(无气泡产生),得到草酸锰悬浮液,然后过滤所述悬浮液,将滤饼在120℃下烘干,之后进行研磨,得到中值粒径Dv50为100nm的二水草酸锰颗粒。
制备碳包覆的磷酸锰锂:取1789.6g上述获得的二水草酸锰颗粒、369.4g碳酸锂(以Li2CO3计,下同),1150.1g磷酸二氢铵(以NH4H2PO4计,下同)和31g蔗糖(以C12H22O11计,下同)加入到20升去离子水中,将混合物搅拌10小时使其混合均匀,得到浆料。将所述浆料转移到喷雾干燥设备中进行喷雾干燥造粒,设定干燥温度为250℃,干燥4小时,得到粉料。在氮气(90体积%)+氢气(10体积%)保护气氛中,将上述粉料在700℃下烧结4小时,得到碳包覆的磷酸锰锂。
实施例1-34
除使用689.5g的碳酸锰和额外添加463.3g的碳酸亚铁以外,其他条件与对比例1-1相同。
实施例1-35
除使用1148.9g的磷酸二氢铵和369.0g碳酸锂,并额外添加1.6g的60%浓度的稀硫酸以外,其他条件与对比例1-1相同。
实施例1-36
除使用689.5g的碳酸锰、1148.9g的磷酸二氢铵和369.0g碳酸锂,并额外添加463.3g的碳酸亚铁、1.6g的60%浓度的稀硫酸以外,其他条件与对比例1-1相同。
实施例1-37
除额外增加以下步骤:制备焦磷酸铁锂粉末:将9.52g碳酸锂、29.9g碳酸亚铁、29.6g磷酸二氢铵和32.5g二水合草酸溶于50ml去离子水中。混合物的pH为5,搅拌2小时使反应混合物充分反应。然后将反应后的溶液升温到80℃并保持该温度4小时,得到包含Li2FeP2O7的悬浊液,将悬浊液进行过滤,用去离子水洗涤,并在120℃下干燥4h,得到粉末。将所述粉末在500℃、氮气气氛下烧结4小时,并自然冷却至室温后进行研磨,控制Li2FeP2O7的结晶度为5%,制备碳包覆的材料时,Li2FeP2O7的用量为62.8g以外,其它条件与实施例1-36相同。
实施例1-38
除额外增加以下步骤:制备磷酸铁锂悬浊液:将14.7g碳酸锂、46.1g碳酸亚铁、45.8g磷酸二氢铵和50.2g二水合草酸溶于500ml去离子水中,然后搅拌6小时使混合物充分反应。然后将反应后的溶液升温到120℃并保持该温度6小时,得到包含LiFePO4的悬浊液,在磷酸铁锂(LiFePO4)的制备过程中在包覆烧结步骤中的烧结温度为600℃,烧结时间为4h以控制LiFePO4的结晶度为8%以外,制备碳包覆的材料时,LiFePO4的用量为62.8g以外,其它条件与实施例1-36相同。
实施例1-39
制备焦磷酸铁锂粉末:将2.38g碳酸锂、7.5g碳酸亚铁、7.4g磷酸二氢铵和8.1g二水合草酸溶于50ml去离子水中。混合物的pH为5,搅拌2小时使反应混合物充分反应。然后将反应后的溶液升温到80℃并保持该温度4小时,得到包含Li2FeP2O7的悬浊液,将悬浊液进行过滤,用去离子水洗涤,并在120℃下干燥4h,得到粉末。将所述粉末在500℃、氮气气氛下烧结4小时,并自然冷却至室温后进行研磨,控制Li2FeP2O7的结晶度为5%。
制备磷酸铁锂悬浊液:将11.1g碳酸锂、34.7g碳酸亚铁、34.4g磷酸二氢铵、37.7g二水合草酸和37.3g蔗糖(以C12H22O11计,下同)溶于1500ml去离子水中,然后搅拌6小时使混合物充分反应。然后将反应后的溶液升温到120℃并保持该温度6小时,得到包含LiFePO4的悬浊液。
将得到的焦磷酸铁锂粉末15.7g,加入上述磷酸铁锂(LiFePO4)和蔗糖悬浊液中,制备过程中在包覆烧结步骤中的烧结温度为600℃,烧结时间为4h以控制LiFePO4的结晶度为8%以外,对比例7的其它条件与对比例4相同,得到非晶态焦磷酸铁锂、非晶态磷酸铁锂、碳包覆的正极活性材料。
实施例(1-40)-(1-43)
除在焦磷酸铁锂(Li2FeP2O7)的制备过程中在干燥步骤中的干燥温度/干燥时间在实施例1-40至1-42中分别为80℃/3h、80℃/3h、80℃/3h;在焦磷酸铁锂(Li2FeP2O7)的制备过程中在烧结步骤中的烧结温度和烧结时间在实施例1-40至1-42中分别为400℃/3h、400℃/3h、350℃/2h,实施例1-43在磷酸铁锂(LiFePO4)的制备过程中在干燥步骤中的干燥温度/干燥时间为80℃/3h;以及在实施例1-40至1-42中Li2FeP2O7/LiFePO4的用量分别为47.2g/15.7g、15.7g/47.2g、62.8g/0g、0g/62.8g以外,其他条件与实施例1-7相同。
上述实施例和对比例的【正极片的制备】、【负极片的制备】、【电解液的制备】、【隔离膜】和【电池单体的制备】均与实施例1-1的工艺相同。
表42实施例1-1至1-33以及对比例1-7的性能测试结果
Figure BDA0004035636100001941
/>
Figure BDA0004035636100001951
/>
Figure BDA0004035636100001961
/>
Figure BDA0004035636100001971
/>
Figure BDA0004035636100001981
/>
Figure BDA0004035636100001991
/>
Figure BDA0004035636100002001
/>
Figure BDA0004035636100002011
/>
Figure BDA0004035636100002021
综合上述实施例以及对比例可知,第一包覆层的存在有利于降低所得材料的Li/Mn反位缺陷浓度和循环后Fe和Mn溶出量,提高电池单体的扣电克容量,并改善电池单体的安全性能和循环性能。当在Mn位和磷位分别掺杂其他元素时,可显著降低所得材料的晶格变化率、反位缺陷浓度和Fe和Mn溶出量,提高电池单体的克容量,并改善电池单体的安全性能和循环性能。
综合实施例1-1至1-6可知,随着第一包覆层的量从3.2%增加至6.4%,所得材料的Li/Mn反位缺陷浓度逐渐下降,循环后Fe和Mn溶出量逐渐下降,对应电池单体的安全性能和45℃下的循环性能也得到改善,但扣电克容量略有下降。可选地,当第一包覆层的总量为4-5.6重量%时,对应电池单体的综合性能最佳。
综合实施例1-3以及实施例1-7至1-10可知,随着第二包覆层的量从1%增加至6%,所得材料的Li/Mn反位缺陷浓度逐渐下降,循环后Fe和Mn溶出量逐渐下降,对应电池单体的安全性能和45℃下的循环性能也得到改善,但扣电克容量却略有下降。可选地,当第二包覆层的总量为3-5重量%时,对应电池单体的综合性能最佳。
综合实施例1-11至1-15以及实施例1-37、1-38可知,当第一包覆层中同时存在Li2FeP2O7和LiFePO4、特别是Li2FeP2O7和LiFePO4的重量比为1:3至3:1,并且尤其是1:3至1:1时,对电池单体性能的改善更加明显。
Figure BDA0004035636100002041
/>
Figure BDA0004035636100002051
/>
Figure BDA0004035636100002061
/>
Figure BDA0004035636100002071
从表45中可以看出,在通过本申请的方法制备焦磷酸铁锂时,通过调节制备过程中的干燥温度/时间和烧结温度/时间,可以改善所得材料的性能,从而改善电池单体性能。从实施例1-40至1-43可以看出,当焦磷酸铁锂制备过程中的干燥温度低于100℃或烧结步骤的温度低于400℃时,将无法获得本申请所希望制得的Li2FeP2O7,从而无法改善材料性能以及包含所得材料的电池的性能。
在一些实施例中,如图167-图172所示,箱体10包括底盖11和容纳框12,底盖11设在容纳腔12在第三方向Z上的一端,容纳框12环绕容纳腔10a的多个电池单体20设置,且容纳框12包括多个首尾依次相连的边框122,加强件30的长度两端与对应边框122固定相连,以提升电池100在第一方向x或第二方向y上的侧柱碰刚度,保护电池单体20或电池单体20的电极组件不易损坏,从而提高电池100的安全性,同时便于实现加强件30与边框122的集成,且加强件30与边框122的连接不会占用过多的容纳腔10a的空间,有利于提高电池100的能量密度。
可选地,加强件30与对应边框122焊接固定;例如,当箱体10为钣金件时,加强件30与对应边框122焊接或粘接固定。
可选地,底盖11和容纳框12可以通过FDS或FWS的方式连接。
在一些实施例中,加强件30为导热件3a,导热件3a内设置有空腔30a,空腔30a用于容纳换热介质以给电池单体20调节温度;其中,空腔30a具有进口和出口,与加强件30相连的边框122形成有第一通道1221和/或第二通道1222,第一通道1221与空腔30a的进口连通,第二通道1222与空腔30a的出口连通,以便实现换热介质在空腔30a中的循环流动。
可以理解的是,当空腔30a的进口和出口分别形成在加强件30的长度两端时,与加强件30长度一端相连的边框122可以形成有第一通道1221,与加强件30长度另一端相连的边框122可以形成有第二通道1222;如图167-图172所示,当空腔30a的进口和出口形成在加强件30的长度同一端时,与加强件30上述长度一端相连的边框122形成有间隔的第一通道1221和第二通道1222。
在一些实施例中,如图167-图172所示,加强件30为多个,多个加强件30沿垂直于电池单体20的第一壁201的第一方向x间隔设置,相邻两个加强件30之间设有至少一个电池单体20;此时,第一通道1221与每个加强件30的进口连通,第二通道1222与每个加强件30的出口连通,使得多个加强件30的空腔30a并联在第一通道1221和第二通道1222之间,则第一通道1221具有多个出口1221b,第二通道1222具有多个进口1222a,换热介质通过第一通道1221的进口1221a流至第一通道1221,并通过多个出口1221b分配至多个空腔30a中,而后多个空腔30a中的换热介质可以通过多个进口1222a汇聚至第二通道1222,并通过第二通道1222的出口1222b流出。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
以上实施例仅用以说明本申请的技术方案,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (79)

1.一种电池,其特征在于,包括:
箱体,所述箱体具有容纳腔;
至少两个电池单体,所述至少两个电池单体容纳于所述容纳腔内,每个所述电池单体包括电极组件和电极端子,所述电极组件与所述电极端子电连接,所述电池单体包括第一壁,所述第一壁为所述电池单体中面积最大的壁;
加强件,所述加强件与至少两个所述电池单体相连,所述加强件与至少两个所述电池单体的所述第一壁导热连接。
2.根据权利要求1所述的电池,其特征在于,每个所述电池单体还包括与所述第一壁相连的第二壁,所述第一壁与所述第二壁相交设置,所述电极端子设置于所述第二壁。
3.根据权利要求2所述的电池,其特征在于,每个所述电池单体包括相对设置的两个所述第一壁和相对设置的两个所述第二壁,所述电极端子设置为至少两个;
至少两个所述电极端子设置于同一个所述第二壁;或者,每个所述第二壁设置有至少一个所述电极端子。
4.根据权利要求1所述的电池,其特征在于,所述电极端子设于所述第一壁。
5.根据权利要求4所述的电池,其特征在于,至少两个所述电池单体在第一方向排布设置,在所述第一方向上,每个所述电池单体设有与所述第一壁相对设置的第一表面,所述第一表面设有避让槽,相邻的两个所述电池单体中的其中一个所述电池单体的所述避让槽用于容纳另一个所述电池单体的所述电极端子,所述第一方向垂直于所述第一壁。
6.根据权利要求1所述的电池,其特征在于,所述第一壁形成为圆筒状。
7.根据权利要求6所述的电池,其特征在于,所述第一壁的轴向两端均设有第二壁,至少一个所述第二壁设有所述电极端子。
8.根据权利要求7所述的电池,其特征在于,其中一个所述第二壁设有外露的所述电极端子,所述电极组件包括正极片和负极片,所述正极片和所述负极片中的其中一个与所述电极端子电连接,所述正极片和所述负极片中的另一个与所述第一壁或另一个所述第二壁电连接。
9.根据权利要求1所述的电池,其特征在于,至少一个所述电池单体为软包电池单体。
10.根据权利要求1所述的电池,其特征在于,所述电池单体还包括泄压机构,所述泄压机构与所述电极端子设置于所述电池单体的同一个壁。
11.根据权利要求1所述的电池,其特征在于,所述电池单体还包括泄压机构,所述泄压机构与所述电极端子分别设置于所述电池单体的两个壁。
12.根据权利要求1所述的电池,其特征在于,所述加强件通过第一胶层粘接至至少两个所述电池单体的所述第一壁。
13.根据权利要求12所述的电池,其特征在于,所述加强件的底部通过第二胶层粘接至所述容纳腔的底壁;和/或,
所述电池单体的底部通过第三胶层粘接至所述容纳腔的底壁。
14.根据权利要求13所述的电池,其特征在于,所述第一胶层的厚度小于或等于所述第二胶层的厚度;和/或,
所述第一胶层的厚度小于或等于所述第三胶层的厚度。
15.根据权利要求13所述的电池,其特征在于,所述第一胶层的导热系数大于或等于所述第二胶层的导热系数;和/或,
所述第一胶层的导热系数大于或等于所述第三胶层的导热系数。
16.根据权利要求13所述的电池,其特征在于,所述第一胶层的厚度与所述第一胶层的导热系数之间的比值为第一比值;所述第二胶层的厚度与所述第二胶层的导热系数之间的比值为第二比值;所述第三胶层的厚度与所述第三胶层的导热系数之间的比值为第三比值;
其中,所述第一比值小于或等于所述第二比值;和/或
所述第一比值小于或等于所述第三比值。
17.根据权利要求1-16中任一项所述的电池,其特征在于,所述加强件为导热件,所述导热件用于与所述电池单体换热。
18.根据权利要求17所述的电池,其特征在于,所述导热件包括金属材料和/或非金属材料。
19.根据权利要求18所述的电池,其特征在于,所述导热件包括金属板和绝缘层,所述绝缘层设置在所述金属板的表面;或者
所述导热件为非金属材料板。
20.根据权利要求17所述的电池,其特征在于,所述导热件内设置有空腔。
21.根据权利要求20所述的电池,其特征在于,所述空腔用于容纳换热介质以给所述电池单体调节温度。
22.根据权利要求1-16中任一项所述的电池,其特征在于,所述电池单体为多个且沿第二方向排列;
所述加强件包括隔板,所述隔板沿所述第二方向延伸且与所述多个电池单体中的每个电池单体的所述第一壁连接,所述第二方向平行于所述第一壁。
23.根据权利要求22所述的电池,其特征在于,所述加强件还包括绝缘层,所述绝缘层用于绝缘隔离所述电池单体的所述第一壁和所述隔板。
24.根据权利要求23所述的电池,其特征在于,所述绝缘层的导热系数大于或等于0.1W/(m·K)。
25.根据权利要求22所述的电池,其特征在于,所述隔板在第一方向上的尺寸T1小于0.5mm,所述第一方向垂直于所述第一壁。
26.根据权利要求22所述的电池,其特征在于,所述隔板在第一方向上的尺寸T1大于5mm,所述第一方向垂直于所述第一壁。
27.根据权利要求22所述的电池,其特征在于,所述加强件的与所述第一壁连接的表面为绝缘表面;
其中,所述加强件在第一方向上的尺寸为0.1mm~100mm,所述第一方向垂直于所述第一壁。
28.根据权利要求22所述的电池,其特征在于,在第三方向上,所述隔板的尺寸H1与所述第一壁的尺寸H2满足:0.1≤H1/H2≤2,所述第三方向垂直于所述第二方向且平行于所述第一壁。
29.根据权利要求22所述的电池,其特征在于,所述隔板内部设置有空腔。
30.根据权利要求29所述的电池,其特征在于,所述空腔内用于容纳换热介质以给所述电池单体调节温度。
31.根据权利要求29所述的电池,其特征在于,在第一方向上,所述空腔的尺寸为W,所述电池单体的容量Q与所述空腔的尺寸W满足:1.0Ah/mm≤Q/W≤400Ah/mm,所述第一方向垂直于所述第一壁。
32.根据权利要求30所述的电池,其特征在于,所述隔板还包括沿第一方向相对设置的一对导热板,所述空腔设置于所述一对导热板之间,所述第一方向垂直于所述第一壁。
33.根据权利要求32所述的电池,其特征在于,所述隔板还包括加强筋,所述加强筋设于所述一对导热板之间。
34.根据权利要求33所述的电池,其特征在于,所述加强筋连接于所述一对导热板中的至少一者。
35.根据权利要求34所述的电池,其特征在于,所述加强筋包括第一加强筋,所述第一加强筋的两端分别连接于所述一对导热板,且所述第一加强筋相对于所述第一方向倾斜设置。
36.根据权利要求35所述的电池,其特征在于,所述第一加强筋与所述第一方向的夹角范围为30°-60°。
37.根据权利要求35所述的电池,其特征在于,所述加强筋还包括第二加强筋,所述第二加强筋的一端连接于所述一对导热板中的一者,所述第二加强筋的另一端与所述一对导热板中的另一者间隔设置。
38.根据权利要求37所述的电池,其特征在于,所述第二加强筋沿所述第一方向延伸并凸出于所述一对导热板中的一者。
39.根据权利要求37所述的电池,其特征在于,所述第一加强筋与所述第二加强筋间隔设置。
40.根据权利要求32所述的电池,其特征在于,在所述第一方向上,所述导热板的厚度D与所述空腔的尺寸W满足:0.01≤D/W≤25。
41.根据权利要求30所述的电池,其特征在于,所述隔板设有介质入口和介质出口,所述空腔连通所述介质入口和所述介质出口,所述隔板的内部设有与所述介质入口和所述介质出口均断开的腔体。
42.根据权利要求29所述的电池,其特征在于,所述空腔内设有分隔件,所述分隔件用于将所述空腔内分隔形成至少两个流道。
43.根据权利要求42所述的电池,其特征在于,所述加强件包括层叠设置的第一导热板、第二导热板和所述分隔件,所述分隔件设置于所述第一导热板和所述第二导热板之间,所述第一导热板和所述分隔件共同限定出第一流道,所述第二导热板和所述分隔件共同限定出第二流道。
44.根据权利要求1-16中任一项所述的电池,其特征在于,所述加强件的至少一部分被构造成在受压时可变形。
45.根据权利要求44所述的电池,其特征在于,所述加强件包括:
层叠布置的换热层和可压缩层;
所述可压缩层的弹性模量小于所述换热层的弹性模量。
46.根据权利要求45所述的电池,其特征在于,所述可压缩层包括可压缩腔,所述可压缩腔内填充有相变材料或弹性材料。
47.根据权利要求44所述的电池,其特征在于,所述加强件包括外壳和支撑部件,所述支撑部件容纳于所述外壳内并用于在所述外壳内限定出分隔设置的空腔和变形腔,所述空腔用于供换热介质流动,所述变形腔被配置为在所述外壳受压时可变形。
48.根据权利要求44所述的电池,其特征在于,所述加强件包括外壳和隔离组件,所述隔离组件容纳于所述外壳内并与所述外壳连接,以在所述外壳和所述隔离组件之间形成空腔,所述空腔用于供换热介质流动,所述隔离组件被配置为在所述外壳受压时可变形。
49.根据权利要求1-16中任一项所述的电池,其特征在于,所述加强件设有避让结构,所述避让结构用于为所述电池单体的膨胀提供空间。
50.根据权利要求49所述的电池,其特征在于,所述避让结构的至少部分位于两个相邻的所述电池单体之间,并用于为至少一个所述电池单体的膨胀提供空间。
51.根据权利要求49所述的电池,其特征在于,在第一方向上,所述加强件包括相对设置的第一导热板和第二导热板,所述第一导热板和所述第二导热板之间设有空腔,所述空腔用于容纳换热介质,沿所述第一方向,所述第一导热板和所述第二导热板中的至少一者朝向靠近另一者的方向凹陷设置以形成所述避让结构,所述第一方向垂直于所述第一壁。
52.根据权利要求1-16中任一项所述的电池,其特征在于,所述箱体内设有电池组,所述电池组为的数量为两个以上并沿第一方向排列,每个所述电池组包括两个以上沿第二方向排列的所述电池单体,所述第二方向垂直于所述第一方向,所述第一方向垂直于所述第一壁。
53.根据权利要求52所述的电池,其特征在于,相邻两组所述电池组之间夹持有所述加强件。
54.根据权利要求53所述的电池,其特征在于,还包括连接管组,所述加强件内设置有用于容纳换热介质的空腔,所述连接管组用于将两个以上所述加强件的所述空腔连通。
55.根据权利要求54所述的电池,其特征在于,所述连接管组包括联通道、进管以及出管,沿所述第一方向,相邻两个所述加强件的所述空腔通过所述联通道连通,所述进管以及所述出管与同一所述加强件的所述空腔连通。
56.根据权利要求1-16中任一项所述的电池,其特征在于,每个所述电池单体还包括电池盒,所述电极组件容纳于所述电池盒内,所述电池盒设置有泄压机构,所述泄压机构与所述电池盒一体成型。
57.根据权利要求56所述的电池,其特征在于,所述电池盒包括一体成型的非薄弱区和薄弱区,所述电池盒设置有槽部,所述非薄弱区形成于所述槽部的周围,所述薄弱区形成于所述槽部的底部,所述薄弱区被配置为在所述电池单体泄放内部压力时被破坏,所述泄压机构包括所述薄弱区。
58.根据权利要求57所述的电池,其特征在于,所述薄弱区的平均晶粒尺寸为S1,所述非薄弱区的平均晶粒尺寸为S2,满足:0.05≤S1/S2≤0.9。
59.根据权利要求58所述的电池,其特征在于,所述薄弱区的最小厚度为A1,满足:1≤A1/S1≤100。
60.根据权利要求57所述的电池,其特征在于,所述薄弱区的最小厚度为A1,所述薄弱区的硬度为B1,满足:5HBW/mm≤B1/A1≤10000HBW/mm。
61.根据权利要求57所述的电池,其特征在于,所述薄弱区的硬度为B1,所述非薄弱区的硬度为B2,满足:1<B1/B2≤5。
62.根据权利要求57所述的电池,其特征在于,所述薄弱区的最小厚度为A1,所述非薄弱区的最小厚度为A2,满足:0.05≤A1/A2≤0.95。
63.根据权利要求1-16中任一项所述的电池,其特征在于,所述电极组件包括正极片和负极片,所述正极片和/或所述负极片包括集流体和活性物质层,所述集流体包括支撑层和导电层,所述支撑层用于承载所述导电层,所述导电层用于承载所述活性物质层。
64.根据权利要求63所述的电池,其特征在于,沿所述支撑层的厚度方向,所述导电层设置于所述支撑层的至少一侧。
65.根据权利要求63所述的电池,其特征在于,所述导电层的常温薄膜电阻RS满足:
Figure QLYQS_1
Figure QLYQS_2
66.根据权利要求63所述的电池,其特征在于,所述导电层的材料选自铝、铜、钛、银、镍铜合金、铝锆合金中的至少一种。
67.根据权利要求63所述的电池,其特征在于,所述支撑层的材料包括高分子材料及高分子基复合材料中的一种或多种。
68.根据权利要求63所述的电池,其特征在于,所述支撑层的厚度d1与所述支撑层的透光率k满足:
当12μm≤d1≤30μm时,30%≤k≤80%;或者,
当8μm≤d1<12μm时,40%≤k≤90%;或者,
当1μm≤d1<8μm时,50%≤k≤98%。
69.根据权利要求1-16中任一项所述的电池,其特征在于,所述电极组件包括正极片,所述正极片包括正极集流体和涂覆于所述正极集流体表面的正极活性物质层,所述正极活性物质层包括正极活性材料,所述正极活性材料具有内核及包覆所述内核的壳,所述内核包括三元材料、dLi2MnO3·(1-d)LiMO2以及LiMPO4中的至少一种,0<d<1,所述M包括选自Fe、Ni、Co、Mn中的一种或多种,
所述壳含有结晶态无机物,所述结晶态无机物使用X射线衍射测量的主峰的半高全宽为0-3°,所述结晶态无机物包括选自金属氧化物以及无机盐中的一种或多种。
70.根据权利要求69所述的电池,其特征在于,所述壳包括所述金属氧化物以及所述无机盐中的至少之一,以及碳。
71.根据权利要求1-16中任一项所述的电池,其特征在于,所述电极组件包括正极片,所述正极片包括正极集流体和涂覆于所述正极集流体表面的正极活性物质层,所述正极活性物质层包括正极活性材料,所述正极活性材料具有LiMPO4,所述M包括Mn,以及非Mn元素,所述非Mn元素满足以下条件的至少之一:
所述非Mn元素的离子半径为a,锰元素的离子半径为b,|a-b|/b不大于10%;
所述非Mn元素的化合价变价电压为U,2V<U<5.5V;
所述非Mn元素和O形成的化学键的化学活性不小于P-O键的化学活性;
所述非Mn元素的最高化合价不大于6。
72.根据权利要求71所述的电池,其特征在于,所述非Mn元素包括第一掺杂元素和第二掺杂元素中的一种或两种,所述第一掺杂元素为锰位掺杂,所述第二掺杂元素为磷位掺杂。
73.根据权利要求72所述的电池,其特征在于,所述第一掺杂元素满足以下条件的至少之一:
所述第一掺杂元素的离子半径为a,锰元素的离子半径为b,|a-b|/b不大于10%;
所述第一掺杂元素的化合价变价电压为U,2V<U<5.5V。
74.根据权利要求72所述的电池,其特征在于,所述第二掺杂元素满足以下条件的至少之一:
所述第二掺杂元素和O形成的化学键的化学活性不小于P-O键的化学活性;
所述第二掺杂元素的最高化合价不大于6。
75.根据权利要求71所述的电池,其特征在于,所述正极活性材料还具有包覆层。
76.根据权利要求75所述的电池,其特征在于,所述包覆层包括碳。
77.根据权利要求76所述的电池,其特征在于,所述包覆层中的碳为SP2形态碳与SP3形态碳的混合物。
78.根据权利要求77所述的电池,其特征在于,所述SP2形态碳与SP3形态碳的摩尔比为在0.1-10范围内的任意数值。
79.一种用电装置,其特征在于,包括根据权利要求1-78中任一项所述的电池,所述电池用于提供电能。
CN202320014354.6U 2022-02-21 2023-01-03 电池和用电装置 Active CN219203336U (zh)

Applications Claiming Priority (30)

Application Number Priority Date Filing Date Title
PCT/CN2022/077151 WO2023155210A1 (zh) 2022-02-21 2022-02-21 电池、用电设备、制备电池的方法和设备
PCT/CN2022/077147 WO2023155207A1 (zh) 2022-02-21 2022-02-21 电池、用电设备、制备电池的方法和设备
PCT/CN2022/077153 WO2023155212A1 (zh) 2022-02-21 2022-02-21 电池、用电设备、制备电池的方法和设备
CNPCT/CN2022/077147 2022-02-21
CNPCT/CN2022/077153 2022-02-21
CNPCT/CN2022/077152 2022-02-21
PCT/CN2022/077149 WO2023155208A1 (zh) 2022-02-21 2022-02-21 电池、用电设备、制备电池的方法和设备
CNPCT/CN2022/077151 2022-02-21
PCT/CN2022/077150 WO2023155209A1 (zh) 2022-02-21 2022-02-21 电池、用电设备、制备电池的方法和设备
CNPCT/CN2022/077150 2022-02-21
CNPCT/CN2022/077149 2022-02-21
PCT/CN2022/077152 WO2023155211A1 (zh) 2022-02-21 2022-02-21 电池、用电设备、制备电池的方法和设备
CNPCT/CN2022/098447 2022-06-13
PCT/CN2022/098447 WO2023240407A1 (zh) 2022-06-13 2022-06-13 热管理部件、热管理系统、电池及用电装置
PCT/CN2022/098727 WO2023240460A1 (zh) 2022-06-14 2022-06-14 一种热管理组件、电池和用电装置
CNPCT/CN2022/098727 2022-06-14
CNPCT/CN2022/099229 2022-06-16
PCT/CN2022/099229 WO2023240552A1 (zh) 2022-06-16 2022-06-16 热管理部件、电池及用电设备
PCT/CN2022/099786 WO2023245330A1 (zh) 2022-06-20 2022-06-20 电池及用电设备
CNPCT/CN2022/099786 2022-06-20
CNPCT/CN2022/100486 2022-06-22
PCT/CN2022/100486 WO2023245501A1 (zh) 2022-06-22 2022-06-22 热管理部件、热管理系统、电池及用电装置
CNPCT/CN2022/100488 2022-06-22
PCT/CN2022/100488 WO2023245502A1 (zh) 2022-06-22 2022-06-22 热管理部件、热管理系统、电池及用电装置
CNPCT/CN2022/101395 2022-06-27
PCT/CN2022/101395 WO2024000086A1 (zh) 2022-06-27 2022-06-27 电池和用电装置
PCT/CN2022/101392 WO2024000084A1 (zh) 2022-06-27 2022-06-27 热管理装置、电池及用电装置
CNPCT/CN2022/101392 2022-06-27
PCT/CN2022/111347 WO2024031413A1 (zh) 2022-08-10 2022-08-10 电池以及用电装置
CNPCT/CN2022/111347 2022-08-10

Publications (1)

Publication Number Publication Date
CN219203336U true CN219203336U (zh) 2023-06-16

Family

ID=86704041

Family Applications (7)

Application Number Title Priority Date Filing Date
CN202380008509.8A Pending CN116802897A (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014474.6U Active CN220042013U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014354.6U Active CN219203336U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008511.5A Pending CN116724443A (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014404.0U Active CN219575742U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008507.9A Pending CN116745978A (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014214.9U Active CN219203335U (zh) 2022-02-21 2023-01-03 电池和用电装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN202380008509.8A Pending CN116802897A (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014474.6U Active CN220042013U (zh) 2022-02-21 2023-01-03 电池和用电装置

Family Applications After (4)

Application Number Title Priority Date Filing Date
CN202380008511.5A Pending CN116724443A (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014404.0U Active CN219575742U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008507.9A Pending CN116745978A (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014214.9U Active CN219203335U (zh) 2022-02-21 2023-01-03 电池和用电装置

Country Status (2)

Country Link
CN (7) CN116802897A (zh)
WO (4) WO2023155622A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116802897A (zh) * 2022-02-21 2023-09-22 宁德时代新能源科技股份有限公司 电池和用电装置
CN117147344B (zh) * 2023-10-31 2024-03-29 宁德时代新能源科技股份有限公司 电池包换热板疲劳测试设备
CN117393910B (zh) * 2023-12-11 2024-03-22 合肥国轩高科动力能源有限公司 储能电池装置及储能电站
CN117740792A (zh) * 2024-02-20 2024-03-22 宁德时代新能源科技股份有限公司 裸电芯检测系统及裸电芯检测系统的点检方法
CN117810641A (zh) * 2024-02-28 2024-04-02 宁德新能源科技有限公司 电芯及用电装置

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100547831C (zh) * 2006-03-14 2009-10-07 深圳市比克电池有限公司 改性尖晶石锰酸锂材料、制备方法及锂二次电池
CN101212033B (zh) * 2006-12-25 2010-06-23 比亚迪股份有限公司 一种二次电池防爆壳体及电池
DE102008031175A1 (de) * 2008-07-03 2010-01-07 Johnson Controls Hybrid And Recycling Gmbh Rundzellenakkumulator
KR101084933B1 (ko) * 2009-12-04 2011-11-17 삼성에스디아이 주식회사 이차 전지 모듈 및 이차 전지 모듈의 전지 스페이서
JP2012119156A (ja) * 2010-11-30 2012-06-21 Sanyo Electric Co Ltd 組電池及びこれを装備する電動車両
JP2014170697A (ja) * 2013-03-05 2014-09-18 Honda Motor Co Ltd 組電池
US9577227B2 (en) * 2013-10-17 2017-02-21 Tesla Motors, Inc. Cell module assemblies
CN203631701U (zh) * 2013-12-30 2014-06-04 成都凯迈科技有限公司 电池温控装置
US9806381B2 (en) * 2014-01-16 2017-10-31 Ford Global Technologies, Llc Serpentine cooling element for battery assembly
DE102014101358B4 (de) * 2014-02-04 2017-03-02 Dr. Schneider Kunststoffwerke Gmbh Verfahren zum Herstellen eines plattenförmigen Wärmetauschers, plattenförmiger Wärmetauscher und Verbund mit plattenförmigen Wärmetauschern
WO2016080696A1 (ko) * 2014-11-17 2016-05-26 주식회사 엘지화학 이차전지용 냉각 플레이트 및 이를 포함하는 이차전지 모듈
CN205900637U (zh) * 2016-07-21 2017-01-18 北京新能源汽车股份有限公司 动力电池和具有其的汽车
CN206864555U (zh) * 2017-04-07 2018-01-09 肖裕达 一种组合电池
DE102018000759A1 (de) * 2018-01-31 2018-07-12 Daimler Ag Kühleinrichtung zum Kühlen einer Batterie eines Kraftfahrzeugs, insbesondere eines Kraftwagens
CN110247056A (zh) * 2018-03-30 2019-09-17 宁德时代新能源科技股份有限公司 一种集流体,其极片和电化学装置
CN108598330B (zh) * 2018-07-03 2023-08-18 华霆(合肥)动力技术有限公司 一种换热组件及电池模组
CN108987697B (zh) * 2018-07-12 2020-10-27 西安交通大学 一种高比能量的橄榄石型磷酸锰锂锂离子电池正极材料的制备方法
DE102018117059B4 (de) * 2018-07-13 2023-06-22 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batteriemodul für eine Traktionsbatterie eines elektrisch antreibbaren Kraftfahrzeugs
KR102345048B1 (ko) * 2018-09-04 2021-12-28 주식회사 엘지에너지솔루션 방열 플레이트가 구비된 이차전지 팩
CN111816950A (zh) * 2019-04-10 2020-10-23 河南平高电气股份有限公司 电池储能模块
CN114207923A (zh) * 2019-05-02 2022-03-18 欧瑞康摩擦系统(德国)有限公司 尤其是用于锂离子电池单体的压力模块
CN112103421B (zh) * 2019-06-18 2021-10-22 宁德时代新能源科技股份有限公司 温控组件及电池包
JP7218691B2 (ja) * 2019-08-29 2023-02-07 トヨタ紡織株式会社 電池モジュール
CN112447968A (zh) * 2019-09-02 2021-03-05 宁德时代新能源科技股份有限公司 正极活性材料、正极极片及锂离子二次电池
CN110571379A (zh) * 2019-09-03 2019-12-13 四川四美科技有限公司 低温自加热高温散热锂电池及控制方法
CN111009629B (zh) * 2019-11-18 2022-02-08 比亚迪股份有限公司 一种电池包和电动车
CN110994068B (zh) * 2019-11-28 2022-11-04 重庆长安新能源汽车科技有限公司 一种集成式动力电池冷却结构及动力电池
CN111276657A (zh) * 2020-04-09 2020-06-12 广东电网有限责任公司东莞供电局 气冷电池模组
CN213026293U (zh) * 2020-04-24 2021-04-20 比亚迪股份有限公司 电池包及电动车
CN113871746A (zh) * 2020-06-30 2021-12-31 宝能汽车集团有限公司 电池以及电池模组
CN213584016U (zh) * 2020-07-10 2021-06-29 宁德时代新能源科技股份有限公司 电池、用电装置和制备电池的装置
CN213026310U (zh) * 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池盒、电池单体、电池和用电设备
CN212648279U (zh) * 2020-08-10 2021-03-02 深圳市海鸿新能源技术有限公司 复合集流体及二次电池
CN215119052U (zh) * 2021-03-04 2021-12-10 宁德时代新能源科技股份有限公司 电池壳体、电池及装置
CN113097461B (zh) * 2021-03-29 2022-03-29 清华大学 一种三元正极材料@氧化钇核壳结构复合材料及其制备方法
CN112768748B (zh) * 2021-04-07 2021-08-03 江苏时代新能源科技有限公司 电池单体、电池、用电设备及制备电池单体的方法和装置
CN214672895U (zh) * 2021-05-14 2021-11-09 中航锂电科技有限公司 电池及电池组
CN214957237U (zh) * 2021-05-20 2021-11-30 贵州梅岭电源有限公司 一种圆柱形锂电池泄压结构
CN215644645U (zh) * 2021-06-03 2022-01-25 凯博能源科技有限公司 散热组件及电池组
CN116802897A (zh) * 2022-02-21 2023-09-22 宁德时代新能源科技股份有限公司 电池和用电装置

Also Published As

Publication number Publication date
WO2023155622A1 (zh) 2023-08-24
CN219203335U (zh) 2023-06-16
CN116745978A (zh) 2023-09-12
CN219575742U (zh) 2023-08-22
CN116724443A (zh) 2023-09-08
WO2023155623A1 (zh) 2023-08-24
WO2023155625A1 (zh) 2023-08-24
CN116802897A (zh) 2023-09-22
CN220042013U (zh) 2023-11-17
WO2023155624A1 (zh) 2023-08-24

Similar Documents

Publication Publication Date Title
CN219203337U (zh) 电池和用电装置
CN219203336U (zh) 电池和用电装置
EP2963707B1 (en) Nonaqueous-electrolyte secondary cell with active substance in electrode material of positive electrode
KR20220041903A (ko) 인조 흑연, 이차 전지, 제조 방법 및 장치
JP2006140138A (ja) 高出力型の非水電解質二次電池
KR20160035039A (ko) 비수전해질 이차 전지용 정극 및 이것을 사용한 비수전해질 이차 전지
KR20080073220A (ko) 전지 유닛
JP7171656B2 (ja) 正極活物質およびこれを含むリチウム二次電池
Zhang et al. Brief review of batteries for XEV applications
JP7321932B2 (ja) 電力機器を始動するためのバッテリーモジュール
CN219203386U (zh) 电池和用电装置
CN116682936B (zh) 电池及其制备方法、用电装置
KR102599884B1 (ko) 이차 전지 및 이차 전지를 포함하는 장치
CN219575787U (zh) 电池和用电装置
CN116491016A (zh) 电池和用电装置
WO2022168233A1 (ja) 非水電解質電池及び電池パック
CN115668535A (zh) 锂离子二次电池、电池模块、电池包以及用电装置
CN117254113B (zh) 二次电池及用电装置
US20240079587A1 (en) Composite cathodes for li-ion batteries
WO2024007198A1 (zh) 正极极片、二次电池及用电装置
EP4358192A1 (en) Negative electrode sheet and preparation method therefor, secondary battery, battery module, battery pack, and electric device
EP4195349A1 (en) Secondary battery
WO2024007196A1 (zh) 正极极片、二次电池及用电装置
JP2024503177A (ja) スピネル型のニッケルマンガンリチウム含有複合酸化物、その製造方法及びそれを含有する二次電池と電力消費装置
CN116888767A (zh) 新型正极极片、二次电池、电池模块、电池包及用电装置

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant