WO2023155212A1 - 电池、用电设备、制备电池的方法和设备 - Google Patents

电池、用电设备、制备电池的方法和设备 Download PDF

Info

Publication number
WO2023155212A1
WO2023155212A1 PCT/CN2022/077153 CN2022077153W WO2023155212A1 WO 2023155212 A1 WO2023155212 A1 WO 2023155212A1 CN 2022077153 W CN2022077153 W CN 2022077153W WO 2023155212 A1 WO2023155212 A1 WO 2023155212A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
wall
heat
heat conduction
heat conducting
Prior art date
Application number
PCT/CN2022/077153
Other languages
English (en)
French (fr)
Inventor
孙占宇
陈兴地
王鹏
秦峰
黄小腾
郑陈铃
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280006604.XA priority Critical patent/CN116261804A/zh
Priority to KR1020227016545A priority patent/KR20230126177A/ko
Priority to JP2022529674A priority patent/JP2024510856A/ja
Priority to EP22722113.2A priority patent/EP4258437A1/en
Priority to PCT/CN2022/077153 priority patent/WO2023155212A1/zh
Priority to US17/751,969 priority patent/US20230268579A1/en
Priority to PCT/CN2023/070136 priority patent/WO2023155625A1/zh
Priority to PCT/CN2023/070131 priority patent/WO2023155622A1/zh
Priority to CN202320014583.8U priority patent/CN219203337U/zh
Priority to CN202320014354.6U priority patent/CN219203336U/zh
Priority to CN202320014347.6U priority patent/CN219203386U/zh
Priority to CN202380008512.XA priority patent/CN116848705A/zh
Priority to PCT/CN2023/070135 priority patent/WO2023155624A1/zh
Priority to PCT/CN2023/070133 priority patent/WO2023155623A1/zh
Priority to CN202320014214.9U priority patent/CN219203335U/zh
Priority to CN202380008511.5A priority patent/CN116724443A/zh
Priority to CN202320014474.6U priority patent/CN220042013U/zh
Priority to CN202380008508.3A priority patent/CN116491016A/zh
Priority to CN202380008509.8A priority patent/CN116802897A/zh
Priority to CN202380008507.9A priority patent/CN116745978A/zh
Priority to PCT/CN2023/070126 priority patent/WO2023155621A1/zh
Priority to PCT/CN2023/070125 priority patent/WO2023155620A1/zh
Priority to CN202320014404.0U priority patent/CN219575742U/zh
Priority to CN202380008510.0A priority patent/CN116868417A/zh
Publication of WO2023155212A1 publication Critical patent/WO2023155212A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/231Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to a battery, an electrical device, a method and a device for preparing a battery.
  • the energy density of the battery is an important parameter in the performance of the battery.
  • other performance parameters of the battery need to be considered when improving the energy density of the battery. Therefore, how to improve the performance of the battery is a technical problem to be solved urgently in the battery technology.
  • the present application provides a battery, an electrical device, a method and a device for preparing the battery, which can ensure the electrical insulation and heat conduction in the battery while increasing the energy density of the battery, thereby improving the performance of the battery.
  • a battery including: a plurality of battery cells arranged along a first direction; The first wall of each battery cell is connected, the first wall is the wall with the largest surface area among the battery cells, the heat conduction member is used to conduct the heat of the battery cell, the heat conduction member and the The surface connected to the first wall is an insulating surface; wherein, the size of the heat conducting element in the second direction is 0.1-100 mm, and the second direction is perpendicular to the first wall.
  • the heat conduction member is arranged in the battery to be connected to the first wall with the largest surface area of each battery cell among a plurality of battery cells arranged in a row along the first direction, wherein the heat conduction member is used for conducting battery
  • the surface of the heat conduction element connected to the first wall is an insulating surface
  • the size of the heat conduction element in the second direction perpendicular to the first wall is 0.1-100 mm.
  • the technical solutions of the embodiments of the present application can ensure the electrical insulation and heat conduction in the battery while improving the energy density of the battery, thereby improving the performance of the battery.
  • the heat conducting member includes a metal plate and an insulating layer, and the insulating layer is disposed on a surface of the metal plate.
  • the metal plate can ensure the strength of the heat conducting element, and the insulating layer can make the surface of the heat conducting element connected to the first wall an insulating surface.
  • the heat conducting member is a non-metal material plate.
  • a cavity is provided in the heat conducting member.
  • the cavity can reduce the weight of the heat-conducting element while ensuring the strength of the heat-conducting element.
  • the cavity can make the heat-conducting element have a larger compression space in the second direction, thereby providing a larger expansion space for the battery cell.
  • the cavity is used for containing fluid to regulate the temperature of the battery cells, so that the temperature of the battery cells can be effectively managed.
  • the dimension T1 of the battery cell in the second direction and the dimension T2 of the heat conducting member in the second direction satisfy: 0 ⁇ T2/T1 ⁇ 7. This can ensure the energy density of the battery and ensure the safety performance of the battery.
  • 0 ⁇ T2/T1 ⁇ 1 0 ⁇ T2/T1 ⁇ 1, so as to further increase the energy density of the battery and ensure the safety performance of the battery.
  • the weight M1 of the battery cell and the weight M2 of the heat conducting member satisfy: 0 ⁇ M2/M1 ⁇ 20. This can ensure the weight energy density of the battery and ensure the safety performance of the battery.
  • 0.1 ⁇ M2/M1 ⁇ 1 so as to further increase the energy density of the battery and ensure the safety performance of the battery.
  • the area S1 of the first wall and the area S2 of the surface of the heat conducting member connected to the first walls of the plurality of battery cells satisfy: 0.2 ⁇ S2/S1 ⁇ 30. This can ensure the energy density of the battery and ensure the safety performance of the battery.
  • 2 ⁇ S2/S1 ⁇ 10 so as to further increase the energy density of the battery and ensure the safety performance of the battery.
  • the specific heat capacity Q of the heat conduction element and the weight M2 of the heat conduction element satisfy: 0.02KJ/(kg 2 *°C) ⁇ Q/M2 ⁇ 100KJ/(kg 2 *°C).
  • Q/M2 ⁇ 0.02KJ/(kg 2 *°C) the heat conduction parts will absorb more energy, causing the temperature of the battery cell to be too low, which may cause lithium precipitation; when Q/M2>100KJ/(kg 2 *°C) , The thermal conductivity of the heat-conducting parts is poor, and the heat cannot be taken away in time.
  • 0.02KJ/(kg 2 *°C) ⁇ Q/M2 ⁇ 100KJ/(kg 2 *°C) the safety performance of the battery can be guaranteed.
  • the battery cell includes two first walls oppositely arranged in the second direction and two second walls oppositely arranged in the first direction, wherein , in the first direction, the second walls of two adjacent battery cells face each other.
  • the large-area first wall is used to connect with the heat conducting member, which is beneficial to the heat exchange of the battery cells and ensures the performance of the battery.
  • the battery includes multiple rows of battery cells and multiple thermal conductors arranged along the first direction, wherein multiple rows of battery cells and multiple The heat conducting elements are arranged alternately in the second direction.
  • multiple rows of battery cells and multiple heat-conducting members are connected to each other to form a whole and accommodated in the box, which can not only conduct effective heat conduction to each row of battery cells, but also ensure the overall structural strength of the battery, thereby improving the battery life. performance.
  • the battery includes a plurality of battery modules, and the battery module includes at least one row of a plurality of battery cells arranged along the first direction and at least one of the heat conducting members, and at least A row of the battery cells and at least one of the heat conducting members are arranged alternately in the second direction.
  • the battery module includes N rows of battery cells and N-1 heat conducting elements, the heat conducting elements are arranged between two adjacent rows of battery cells, N is an integer greater than 1. In this way, fewer heat-conducting elements can be arranged in the battery, but at the same time, it can be ensured that each battery cell can be connected to the heat-conducting elements.
  • a plurality of the battery modules are arranged along the second direction, and there are gaps between adjacent battery modules. This gap can provide expansion space for the battery cells.
  • the heat conduction element is bonded to the first wall.
  • an electric device including: the battery in the above first aspect or any possible implementation manner of the first aspect, where the battery is used to provide electric energy.
  • a method for preparing a battery including: providing a plurality of battery cells arranged along a first direction; providing a heat conducting member extending along the first direction and connecting with the plurality of batteries
  • the first wall of each battery cell in the cells is connected, the first wall is the wall with the largest surface area among the battery cells, the heat conduction member is used to conduct heat from the battery cells, and the heat conduction
  • the surface of the part connected to the first wall is an insulating surface; wherein, the size of the heat conducting part in the second direction is 0.1-100 mm, and the second direction is perpendicular to the first wall.
  • a device for preparing a battery including a module for performing the method of the third aspect above.
  • the thermal conduction member is arranged in the battery to be connected to the first wall with the largest surface area of each battery cell among a plurality of battery cells arranged in a row along the first direction, wherein the heat conduction member is used for conduction
  • the surface of the heat conduction member connected to the first wall is an insulating surface
  • the size of the heat conduction member in the second direction perpendicular to the first wall is 0.1-100 mm.
  • Fig. 1 is the schematic diagram of the vehicle of an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a battery according to an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a battery cell according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a battery according to an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a heat conducting element according to an embodiment of the present application.
  • Fig. 6 is a schematic diagram of a heat conducting element according to an embodiment of the present application.
  • Fig. 7 is a schematic diagram of a battery according to an embodiment of the present application.
  • FIG. 8 is a schematic flow chart of a method for preparing a battery according to an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of a device for preparing a battery according to an embodiment of the present application.
  • first, second, third, etc. are used for descriptive purposes only and should not be construed as indicating or implying relative importance. “Vertical” is not strictly vertical, but within the allowable range of error. “Parallel” is not strictly parallel, but within the allowable range of error.
  • connection should be interpreted in a broad sense, for example, it can be a fixed connection or a flexible connection. Disassembled connection, or integral connection; it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in the embodiments of the present application.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • batteries mentioned in this application may include battery packs and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet, and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative plates.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector not coated with the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector without the negative electrode active material layer protrudes from the current collector coated with the negative electrode active material layer.
  • the current collector coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the isolation film can be polypropylene (PP) or polyethylene (PE).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel or in parallel, and the hybrid connection refers to a mixture of series and parallel connections.
  • a plurality of battery cells can be connected in series, parallel or mixed to form a battery module, and then a plurality of battery modules can be connected in series, parallel or mixed to form a battery. That is to say, multiple battery cells can directly form a battery, or form a battery module first, and then form a battery from the battery module.
  • the battery is further arranged in the electric device to provide electric energy for the electric device.
  • the embodiment of the present application provides a technical solution, in which the heat conduction member is arranged in the battery to be connected to the first wall with the largest surface area of each battery cell in a row of multiple battery cells arranged along the first direction, wherein , the heat conduction element is used to conduct the heat of the battery cell, the surface of the heat conduction element connected to the first wall is an insulating surface, and the size of the heat conduction element in the second direction perpendicular to the first wall is 0.1-100mm.
  • the technical solutions of the embodiments of the present application can ensure the electrical insulation and heat conduction in the battery while increasing the energy density of the battery, thereby improving the performance of the battery.
  • batteries such as mobile phones, portable devices, notebook computers, battery cars, electric toys, electric tools, electric vehicles, ships and spacecraft, etc.
  • spacecraft include Airplanes, rockets, space shuttles and spaceships, etc.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or Extended range cars, etc.
  • a motor 40 , a controller 30 and a battery 10 can be arranged inside the vehicle 1 , and the controller 30 is used to control the battery 10 to supply power to the motor 40 .
  • the battery 10 may be provided at the bottom or front or rear of the vehicle 1 .
  • the battery 10 can be used for power supply of the vehicle 1 , for example, the battery 10 can be used as an operating power source of the vehicle 1 , for a circuit system of the vehicle 1 , for example, for starting, navigating and running power requirements of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery 10 may include multiple battery cells.
  • FIG. 2 which is a schematic structural diagram of a battery 10 according to an embodiment of the present application
  • the battery 10 may include a plurality of battery cells 20 .
  • the battery 10 may further include a box body 11 , the inside of which is a hollow structure, and a plurality of battery cells 20 are accommodated in the box body 11 .
  • a plurality of battery cells 20 are placed in the case 11 after being connected in parallel, in series or in parallel.
  • the battery 10 may also include other structures, which will not be repeated here.
  • the battery 10 may also include a confluence part, which is used to realize the electrical connection between a plurality of battery cells 20, such as parallel connection, series connection or mixed connection.
  • the current-combining component can realize the electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus member may be fixed to the electrode terminal of the battery cell 20 by welding. The electric energy of the plurality of battery cells 20 can be further drawn out through the box through the conductive mechanism.
  • the conduction means can also belong to the current-collecting part.
  • the number of battery cells 20 can be set to any value. Multiple battery cells 20 can be connected in series, in parallel or in parallel to achieve greater capacity or power. Since the number of battery cells 20 included in each battery 10 may be large, for the convenience of installation, the battery cells 20 may be arranged in groups, and each group of battery cells 20 constitutes a battery module. The number of battery cells 20 included in the battery module is not limited and can be set according to requirements.
  • a battery may include a plurality of battery modules, which may be connected in series, in parallel or in parallel.
  • the battery cell 20 includes one or more electrode assemblies 22 , a casing 211 and a cover plate 212 .
  • the housing 211 and the cover plate 212 form the housing or battery compartment 21 .
  • the walls of the casing 211 and the cover plate 212 are both called the walls of the battery cell 20 , wherein for the rectangular parallelepiped battery cell 20 , the walls of the casing 211 include a bottom wall and four side walls.
  • the housing 211 depends on the combined shape of one or more electrode assemblies 22.
  • the housing 211 can be a hollow cuboid or cube or cylinder, and one of the surfaces of the housing 211 has an opening so that one or more electrodes Assembly 22 may be placed within housing 211 .
  • one of the planes of the housing 211 is an open surface, that is, the plane does not have a wall so that the inside and outside of the housing 211 communicate.
  • the casing 211 can be a hollow cylinder, the end surface of the casing 211 is an open surface, that is, the end surface does not have a wall so that the inside and outside of the casing 211 communicate.
  • the cover plate 212 covers the opening and is connected with the casing 211 to form a closed cavity for placing the electrode assembly 22 .
  • the casing 211 is filled with electrolyte, such as electrolytic solution.
  • the battery cell 20 may further include two electrode terminals 214 , and the two electrode terminals 214 may be disposed on the cover plate 212 .
  • the cover plate 212 is usually in the shape of a flat plate, and two electrode terminals 214 are fixed on the flat plate surface of the cover plate 212, and the two electrode terminals 214 are positive electrode terminals 214a and negative electrode terminals 214b respectively.
  • Each electrode terminal 214 is respectively provided with a connecting member 23 , or also referred to as a current collecting member 23 , which is located between the cover plate 212 and the electrode assembly 22 for electrically connecting the electrode assembly 22 and the electrode terminal 214 .
  • each electrode assembly 22 has a first tab 221a and a second tab 222a.
  • the polarities of the first tab 221a and the second tab 222a are opposite.
  • the first tab 221a is a positive tab
  • the second tab 222a is a negative tab.
  • the first tabs 221a of one or more electrode assemblies 22 are connected to one electrode terminal through one connection member 23
  • the second tabs 222a of one or more electrode assemblies 22 are connected to another electrode terminal through another connection member 23 .
  • the positive electrode terminal 214 a is connected to the positive electrode tab through one connection member 23
  • the negative electrode terminal 214 b is connected to the negative electrode tab through the other connection member 23 .
  • the electrode assembly 22 can be arranged as a single one or in multiples. As shown in FIG. 3 , four independent electrode assemblies 22 are arranged in the battery cell 20 .
  • a pressure relief mechanism 213 may also be provided on the battery cell 20 .
  • the pressure relief mechanism 213 is activated to release the internal pressure or temperature when the internal pressure or temperature of the battery cell 20 reaches a threshold.
  • the pressure relief mechanism 213 may be various possible pressure relief structures, which are not limited in this embodiment of the present application.
  • the pressure relief mechanism 213 may be a temperature-sensitive pressure relief mechanism configured to melt when the internal temperature of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold; and/or, the pressure relief mechanism 213 may be a pressure-sensitive pressure relief mechanism configured to rupture when the internal air pressure of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold value.
  • FIG. 4 shows a schematic structural diagram of a battery 10 according to an embodiment of the present application.
  • the battery 10 includes a plurality of battery cells 20 arranged along a first direction x and a heat conducting member 101 .
  • the first direction x is an arrangement direction of a row of battery cells 20 in the battery 10 . That is, a column of battery cells 20 in the battery 10 is arranged along the x direction.
  • the number of battery cells 20 in a row of battery cells 20 may be 2-20, but this is not limited in the embodiment of the present application.
  • the heat conducting member 101 extends along the first direction x and is connected to the first wall 2111 of each battery cell 20 in the plurality of battery cells 20 , and the first wall 2111 is the wall with the largest surface area among the battery cells 20 .
  • the battery cell 20 may include a plurality of walls, and the first wall 2111 of the battery cell 20 with the largest surface area is connected to the heat conducting member 101 . That is to say, the first wall 2111 of the battery cell 20 faces the heat conductor 101 , that is, the first wall 2111 of the battery cell 20 is parallel to the first direction x.
  • the heat conduction element 101 is used to conduct heat from the battery cell 20 , and the surface of the heat conduction element 101 connected to the first wall 2111 is an insulating surface. Using the heat conducting member 101 to conduct the heat of the battery cell 20 can ensure that the temperature of the battery cell 20 is in a normal state.
  • the surface of the heat conduction element 101 connected to the first wall 2111 is an insulating surface to ensure electrical insulation between the heat conduction element 101 and the battery cell 20 .
  • the size of the heat conducting element 101 in the second direction y is 0.1-100 mm, and the second direction y is perpendicular to the first wall 2111 .
  • the heat conducting member 101 is arranged in the battery 10 to be connected to the first wall 2111 with the largest surface area of each battery cell 20 in a row of multiple battery cells 20 arranged along the first direction x.
  • the middle part of the box body 11 of the battery 10 does not need to install beams and other structures, which can maximize the space utilization rate inside the battery 10 , thereby increasing the energy density of the battery 10 .
  • the heat conduction member 101 should take into account the requirement of strength.
  • the dimension T2 of the heat-conducting member 101 in the second direction y is 0.1-100 mm, the strength and space requirement can be taken into account at the same time.
  • the dimension T2 of the heat conduction element 101 in the second direction y that is, the thickness of the heat conduction element 101
  • the strength of the heat conduction element 101 is high; when T2 is smaller, it occupies less space.
  • T2 ⁇ 0.1 mm the heat conduction element 101 is easily damaged under the action of external force; when T2>100 mm, it takes up too much space and affects the energy density. Therefore, when the dimension T2 of the heat conduction element 101 in the second direction y is 0.1-100 mm, the space utilization rate can be improved while ensuring the strength.
  • the heat conducting member 101 is arranged in the battery 10 to be connected to the first wall 2111 with the largest surface area of each battery cell 20 in a row of multiple battery cells 20 arranged along the first direction x, wherein, The heat conduction member 101 is used to conduct the heat of the battery cell 20, the surface of the heat conduction member 101 connected to the first wall 2111 is an insulating surface, and the size of the heat conduction member 101 in the second direction y perpendicular to the first wall 2111 is 0.1 ⁇ 100mm.
  • the middle part of the box body 11 of the battery 10 does not need to be provided with structures such as beams, which can maximize the space utilization rate inside the battery 10, thereby improving the energy density of the battery 10; Electrical insulation and thermal conduction in battery 10 . Therefore, the technical solutions of the embodiments of the present application can improve the energy density of the battery 10 while ensuring the electrical insulation and heat conduction in the battery 10 , thereby improving the performance of the battery 10 .
  • the heat conducting member 101 may be a non-metal material plate. That is to say, the heat conduction element 101 is made of non-metal insulating material as a whole.
  • the heat conducting member 101 may include a metal plate and an insulating layer, and the insulating layer is disposed on a surface of the metal plate.
  • FIG. 5 is a schematic diagram of a heat conducting element 101 according to an embodiment of the present application.
  • the heat conducting element 101 includes a metal plate 1011 and an insulating layer 1012 , and the insulating layer 1012 is disposed on the surface of the metal plate 1011 .
  • the metal plate 1011 can ensure the strength of the heat conduction element 101
  • the insulating layer 1012 can make the surface of the heat conduction element 101 connected to the first wall 2111 an insulating surface.
  • the insulating layer 1012 may be an insulating film bonded on the surface of the metal plate 1011 or an insulating varnish coated on the surface of the metal plate 1011 .
  • a cavity 1013 may be provided in the heat conducting member 101 .
  • the cavity 1013 can reduce the weight of the heat-conducting element while ensuring the strength of the heat-conducting element 101 , for example, it can be applied when the thickness T2 of the heat-conducting element 101 is relatively large.
  • the cavity 1013 can make the heat conducting member 101 have a larger compression space in the second direction y, so as to provide the battery cell 20 with a larger expansion space.
  • the cavity 1013 can be used to contain fluid to adjust the temperature of the battery cell 20 .
  • the fluid may be a liquid or a gas, and regulating the temperature refers to heating or cooling the plurality of battery cells 20 .
  • the cavity 1013 can contain a cooling medium to adjust the temperature of the multiple battery cells 20.
  • the fluid can also be called a cooling medium or a cooling fluid, and more specifically, it can be called Coolant or cooling gas.
  • the fluid may also be used for heating, which is not limited in this embodiment of the present application.
  • the fluid can be circulated for better temperature regulation.
  • the fluid may be water, a mixture of water and glycol, refrigerant or air.
  • the dimension T1 of the battery cell 20 in the second direction y and the dimension T2 of the heat conducting member 101 in the second direction y satisfy: 0 ⁇ T2/T1 ⁇ 7.
  • the heat conducting element 101 takes up a large space, which affects the energy density.
  • the heat conduction element 101 conducts heat to the battery cell 20 too quickly, which may also cause safety problems. For example, thermal runaway of one battery cell 20 may cause thermal runaway of other battery cells 20 connected to the same heat conducting member 101 .
  • the energy density of the battery 10 and the safety performance of the battery 10 can be guaranteed.
  • the dimension T1 of the battery cell 20 in the second direction y and the dimension T2 of the heat conducting member 101 in the second direction y may further satisfy 0 ⁇ T2/T1 ⁇ 1, so that The energy density of the battery 10 is further improved and the safety performance of the battery 10 is ensured.
  • the weight M1 of the battery cell 20 and the weight M2 of the heat conducting member 101 satisfy: 0 ⁇ M2/M1 ⁇ 20.
  • the weight M1 of the battery cell 20 and the weight M2 of the heat conducting member 101 may further satisfy 0.1 ⁇ M2/M1 ⁇ 1, so as to further increase the energy density of the battery 10 and ensure the energy density of the battery 10. safety performance.
  • the area S1 of the first wall 2111 and the area S2 of the surface of the heat conducting member 101 connected to the first walls 2111 of a plurality of battery cells 20 in a row satisfy: 0.2 ⁇ S2/ S1 ⁇ 30.
  • S2 is the total area of one side surface of the heat conducting member 101 connected to the battery cell 20 .
  • S2/S1 is too large, the energy density is affected.
  • S2/S1 is too small, the heat conduction effect is too poor, which affects the safety performance.
  • 0.2 ⁇ S2/S1 ⁇ 30 the energy density of the battery 10 and the safety performance of the battery 10 can be ensured.
  • S2 and S1 may further satisfy 2 ⁇ S2/S1 ⁇ 10, so as to further increase the energy density of the battery 10 and ensure the safety performance of the battery 10 .
  • the specific heat capacity Q of the heat conduction element 101 and the weight M2 of the heat conduction element 101 satisfy: 0.02KJ/(kg 2 *°C) ⁇ Q/M2 ⁇ 100KJ/(kg 2 *°C).
  • the heat conduction member 101 When Q/M2 ⁇ 0.02KJ/(kg 2 *°C), the heat conduction member 101 will absorb more energy, causing the temperature of the battery cell 20 to be too low, which may produce lithium precipitation; Q/M2>100KJ/(kg 2 *°C ), the heat conduction element 101 has poor heat conduction capability and cannot take away heat in time. When 0.02KJ/(kg 2 *°C) ⁇ Q/M2 ⁇ 100KJ/(kg 2 *°C), the safety performance of the battery 10 can be guaranteed.
  • Q and M2 may further satisfy 0.3KJ/(kg 2 *°C) ⁇ Q/M2 ⁇ 20KJ/(kg 2 *°C), so as to further improve the safety performance of the battery 10 .
  • the battery cell 20 includes two first walls 2111 oppositely arranged in the second direction y and two second walls 2112 oppositely arranged in the first direction x, wherein , in the first direction x, the second walls 2112 of two adjacent battery cells 20 face each other. That is to say, for a rectangular battery cell 20, its large side, that is, the first wall 2111 is connected to the heat conducting member 101, and its small side, that is, the second wall 2112 is connected to the second wall 2112 of the adjacent battery cell 20, to be arranged in a column in the first direction x. In this way, the large-area first wall 2111 is used to connect with the heat conducting member 101 , which is beneficial to the heat exchange of the battery cells 20 and ensures the performance of the battery 10 .
  • the battery 10 includes multiple rows of battery cells 20 and multiple thermal conductors 101 arranged along the first direction x, wherein the multiple rows of battery cells 20 and multiple thermal conductors 101 are arranged alternately in the second direction y. That is to say, multiple rows of battery cells 20 and multiple thermal conductors 101 can be arranged according to thermal conductors 101, 20 rows of battery cells, thermal conductors 101..., or, 20 rows of battery cells, thermal conductors 101, 20 rows of battery cells ...set up.
  • FIG. 7 shows a schematic structural diagram of a battery 10 according to another embodiment of the present application.
  • the battery 10 may include a plurality of battery modules 100 .
  • the battery module 100 may include at least one row of battery cells 20 and at least one heat conducting member 101 arranged along the first direction x, and at least one row of battery cells 20 and at least one heat conducting member 101 are arranged alternately in the second direction y. That is to say, for each battery module 100 , the rows of battery cells 20 and the heat conducting members 101 are arranged alternately in the second direction y, and a plurality of battery modules 100 are accommodated in the case 11 to form the battery 10 .
  • the battery module 100 may include N rows of battery cells 20 and N ⁇ 1 thermal conductors 101 , the thermal conductors 101 are disposed between two adjacent rows of battery cells 20 , and N is an integer greater than 1. That is to say, the heat conduction element 101 is disposed inside the battery module 100 , and the heat conduction element 101 is not disposed outside the battery module 100 .
  • one heat conduction member 101 is arranged between two rows of battery cells 20 , two heat conduction members 101 are arranged between three rows of battery cells 20 , and so on.
  • the battery module 100 includes two rows of battery cells 20 , that is, N is two.
  • one heat conducting member 101 is provided in two rows of battery cells 20 .
  • No heat conduction member 101 is provided between adjacent battery modules 100, so that in this embodiment, fewer heat conduction members 101 can be provided in the battery 10, but at the same time, it can ensure that each battery cell 20 can be connected to the heat conduction member 101 .
  • a plurality of battery modules 100 are arranged along the second direction y, and there are gaps between adjacent battery modules 100 .
  • There is no heat conducting member 101 between adjacent battery modules 100 and there is a certain gap.
  • the gap between adjacent battery modules 100 can provide expansion space for the battery cells 20 .
  • a fixing structure is provided at the end of the heat conducting element 101 in the first direction x, and the heat conducting element 101 is fixed to the box body 11 through the fixing structure.
  • the fixing structure may include a fixing plate 104, which is fixedly connected to the end of the heat conducting element 101, and connected to the battery cell 20 located at the end of the heat conducting element 101, thereby strengthening the support of the battery cell 20. The fixed effect.
  • the heat conduction element 101 is bonded to the first wall 2111 . That is to say, the heat conducting member 101 and the battery cell 20 may be fixedly connected by bonding, for example, bonding by structural adhesive, but this embodiment of the present application is not limited thereto.
  • the battery cells 20 can be glued and fixed on the box body 11 .
  • the adjacent battery cells 20 in each row of battery cells 20 can also be bonded, for example, the second walls 2112 of two adjacent battery cells 20 are bonded by structural glue, but this application implements Examples are not limited to this.
  • the fixing effect of the battery cells 20 can be further enhanced by bonding and fixing adjacent battery cells 20 in each row of battery cells 20 .
  • An embodiment of the present application also provides an electric device, which may include the battery 10 in the foregoing embodiments.
  • the electrical device may be a vehicle 1, a ship, or a spacecraft, etc., but this is not limited in this embodiment of the present application.
  • the battery 10 and the electrical device of the embodiment of the present application are described above, and the method and device for preparing the battery of the embodiment of the present application will be described below, and the parts that are not described in detail can be referred to the foregoing embodiments.
  • FIG. 8 shows a schematic flowchart of a method 300 for preparing a battery according to an embodiment of the present application. As shown in Figure 8, the method 300 may include:
  • the heat conduction member 101 extends along the first direction x and is connected to the first wall 2111 of each battery cell 20 in the plurality of battery cells 20, the first wall 2111 is the wall with the largest surface area in the battery cell 20, the heat conduction member 101 is used to conduct the heat of the battery cell 20, and the surface of the heat conduction member 101 connected to the first wall 2111 is an insulating surface ;
  • the size of the heat conducting member 101 in the second direction y is 0.1-100 mm, and the second direction y is perpendicular to the first wall 2111 .
  • FIG. 9 shows a schematic block diagram of a device 400 for preparing a battery according to an embodiment of the present application.
  • the equipment 400 for preparing a battery may include:
  • a first providing module 410 configured to provide a plurality of battery cells 20 arranged along a first direction x;
  • the second providing module 420 is used for providing the heat conduction member 101 , the heat conduction member 101 extends along the first direction x and is connected to the first wall 2111 of each battery cell 20 in the plurality of battery cells 20 , the first wall 2111 is the wall with the largest surface area in the battery cell 20 , the heat conduction member 101 is used to conduct the heat of the battery cell 20 , the heat conduction member 101 and the first wall 2111
  • the connected surface is an insulating surface; wherein, the size of the heat conducting member 101 in the second direction y is 0.1-100 mm, and the second direction y is perpendicular to the first wall 2111 .
  • the number of battery cells 20 in a row of battery cells 20 is 2-20, and the safety test of the battery 10 is carried out according to GB38031-2020, and the test results are shown in Table 1 - Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Algebra (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

提供了一种电池(10)、用电设备、制备电池的方法(300)和设备(400)。该电池(10)包括:沿第一方向(x)排列的多个电池单体(20);导热件(101),所述导热件(101)沿所述第一方向(x)延伸且与所述多个电池单体(20)中的每个电池单体(20)的第一壁(2111)连接,所述第一壁(2111)为所述电池单体(20)中表面积最大的壁,所述导热件(101)用于传导所述电池单体(20)的热量,所述导热件(101)的与所述第一壁(2111)连接的表面为绝缘表面;其中,所述导热件(101)在第二方向(y)上的尺寸为0.1~100mm,所述第二方向(y)垂直于所述第一壁(2111)。本申请实施例的技术方案,能够提升电池的性能。

Description

电池、用电设备、制备电池的方法和设备 技术领域
本申请涉及电池技术领域,特别是涉及一种电池、用电设备、制备电池的方法和设备。
背景技术
随着环境污染的日益加剧,新能源产业越来越受到人们的关注。在新能源产业中,电池技术是关乎其发展的一项重要因素。
电池的能量密度是电池的性能中的一项重要参数,然而,在提升电池的能量密度时还需要考虑电池的其他性能参数。因此,如何提升电池的性能,是电池技术中一个亟待解决的技术问题。
发明内容
本申请提供了一种电池、用电设备、制备电池的方法和设备,能够在提升电池的能量密度的同时保障电池中的电绝缘和热传导,从而能够提升电池的性能。
第一方面,提供了一种电池,包括:沿第一方向排列的多个电池单体;导热件,所述导热件沿所述第一方向延伸且与所述多个电池单体中的每个电池单体的第一壁连接,所述第一壁为所述电池单体中表面积最大的壁,所述导热件用于传导所述电池单体的热量,所述导热件的与所述第一壁连接的表面为绝缘表面;其中,所述导热件在第二方向上的尺寸为0.1~100mm,所述第二方向垂直于所述第一壁。
在本申请实施例中,在电池中设置导热件与一列沿第一方向排列的多个电池单体中的每个电池单体的表面积最大的第一壁连接,其中,导热件用于传导电池单体的热量,导热件的与第一壁连接的表面为绝缘表面,导热件在垂直于第一壁的第二方向上的尺寸为0.1~100mm。这样,电池的箱体中部可以不需要再设置梁等结构,可以较大限度地提升电池内部的空间利用率,从而提升电池的能量密度;同时,利用上述导热件还可以保障电池中的电绝缘和热传导。因此,本申请实施例的技术方案能够在 提升电池的能量密度的同时保障电池中的电绝缘和热传导,从而能够提升电池的性能。
在一种可能的实现方式中,所述导热件包括金属板和绝缘层,所述绝缘层设置于所述金属板的表面。通过这种设置,金属板可以保证导热件的强度,绝缘层可以使得导热件的与第一壁连接的表面为绝缘表面。
在一种可能的实现方式中,所述导热件为非金属材料板。
在一种可能的实现方式中,所述导热件内设置有空腔。空腔可以在保证导热件的强度的同时减轻导热件的重量,另外,空腔可以使得导热件在第二方向上有较大的压缩空间,从而可以给电池单体提供较大的膨胀空间。
在一种可能的实现方式中,所述空腔用于容纳流体以给所述电池单体调节温度,这样可以有效地管理电池单体的温度。
在一种可能的实现方式中,所述电池单体在所述第二方向上的尺寸T1与所述导热件在所述第二方向上的尺寸T2满足:0<T2/T1≤7。这样可以保障电池的能量密度并保障电池的安全性能。
在一种可能的实现方式中,0<T2/T1≤1,以进一步提升电池的能量密度并保障电池的安全性能。
在一种可能的实现方式中,所述电池单体的重量M1与所述导热件的重量M2满足:0<M2/M1≤20。这样可以保障电池的重量能量密度并保障电池的安全性能。
在一种可能的实现方式中,0.1≤M2/M1≤1,以进一步提升电池的能量密度并保障电池的安全性能。
在一种可能的实现方式中,所述第一壁的面积S1与所述导热件的与所述多个电池单体的所述第一壁连接的表面的面积S2满足:0.2≤S2/S1≤30。这样可以保障电池的能量密度并保障电池的安全性能。
在一种可能的实现方式中,2≤S2/S1≤10,以进一步提升电池的能量密度并保障电池的安全性能。
在一种可能的实现方式中,所述导热件的比热容Q与所述导热件的重量M2满足:0.02KJ/(kg 2*℃)≤Q/M2≤100KJ/(kg 2*℃)。当Q/M2<0.02KJ/(kg 2*℃)时,导热件会吸收较多能量,造成电池单体温度过低,可能产生析锂;Q/M2>100KJ/(kg 2*℃) 时,导热件导热能力差,无法及时带走热量。0.02KJ/(kg 2*℃)≤Q/M2≤100KJ/(kg 2*℃)时,可以保障电池的安全性能。
在一种可能的实现方式中,0.3KJ/(kg 2*℃)≤Q/M2≤20KJ/(kg 2*℃),以进一步提升电池的安全性能。
在一种可能的实现方式中,所述电池单体包括在所述第二方向上相对设置的两个所述第一壁和在所述第一方向上相对设置的两个第二壁,其中,在所述第一方向上,相邻的两个所述电池单体的所述第二壁相对。这样,采用大面积的第一壁与导热件连接,有利于电池单体的热交换,保障电池的性能。
在一种可能的实现方式中,所述电池包括多列沿所述第一方向排列的多个所述电池单体和多个所述导热件,其中,多列所述电池单体和多个所述导热件在所述第二方向上交替设置。这样,多列电池单体和多个导热件相互连接形成一个整体,容纳于箱体内,既能够对每一列电池单体进行有效的热传导,又能够保证电池整体的结构强度,从而能够提升电池的性能。
在一种可能的实现方式中,所述电池包括多个电池模块,所述电池模块包括至少一列沿所述第一方向排列的多个所述电池单体和至少一个所述导热件,且至少一列所述电池单体和至少一个所述导热件在所述第二方向上交替设置。
在一种可能的实现方式中,所述电池模块包括N列所述电池单体和N-1个所述导热件,所述导热件设置于相邻的两列所述电池单体之间,N为大于1的整数。这样,在电池内可以设置较少的导热件,但同时能够保证每个电池单体均能够连接到导热件上。
在一种可能的实现方式中,多个所述电池模块沿所述第二方向排列,相邻的所述电池模块间具有间隙。该间隙可以给电池单体提供膨胀空间。
在一种可能的实现方式中,所述导热件与所述第一壁粘接。
第二方面,提供了一种用电设备,包括:上述第一方面或第一方面的任意可能的实现方式中的电池,所述电池用于提供电能。
第三方面,提供了一种制备电池的方法,包括:提供沿第一方向排列的多个电池单体;提供导热件,所述导热件沿所述第一方向延伸且与所述多个电池单体中的每个电池单体的第一壁连接,所述第一壁为所述电池单体中表面积最大的壁,所述导热件用于传导所述电池单体的热量,所述导热件的与所述第一壁连接的表面为绝缘 表面;其中,所述导热件在第二方向上的尺寸为0.1~100mm,所述第二方向垂直于所述第一壁。
第四方面,提供了一种制备电池的设备,包括执行上述第三方面的方法的模块。
本申请实施例的技术方案,在电池中设置导热件与一列沿第一方向排列的多个电池单体中的每个电池单体的表面积最大的第一壁连接,其中,导热件用于传导电池单体的热量,导热件的与第一壁连接的表面为绝缘表面,导热件在垂直于第一壁的第二方向上的尺寸为0.1~100mm。这样,电池的箱体中部不需要再设置梁等结构,可以较大限度地提升电池内部的空间利用率,从而提升电池的能量密度;同时,利用上述导热件还可以保障电池中的电绝缘和热传导。因此,本申请实施例的技术方案能够在提升电池的能量密度的同时保障电池中的电绝缘和热传导,从而能够提升电池的性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例的车辆的示意图;
图2是本申请一实施例的电池的示意图;
图3是本申请一实施例的电池单体的示意图;
图4是本申请一实施例的电池的示意图;
图5是本申请一实施例的导热件的示意图;
图6是本申请一实施例的导热件的示意图;
图7是本申请一实施例的电池的示意图;
图8是本申请一实施例的制备电池的方法的示意性流程图;
图9是本申请一实施例的制备电池的设备的示意性框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含;“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为聚丙烯(PP)或聚乙烯(PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
为了满足不同的电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。可选地,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。电池再进一步设置于用电设备中,为用电设备提供电能。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率、安全性等。其中,在电池内部空间一定的情况下,提升电池内部空间的利用率,是提升电池能量密度的有效手段。然而,在提升电池内部空 间的利用率的同时,还需要考虑电池的其他参数,例如,绝缘和热传导等。
鉴于此,本申请实施例提供了一种技术方案,在电池中设置导热件与一列沿第一方向排列的多个电池单体中的每个电池单体的表面积最大的第一壁连接,其中,导热件用于传导电池单体的热量,导热件的与第一壁连接的表面为绝缘表面,导热件在垂直于第一壁的第二方向上的尺寸为0.1~100mm。这样,电池的箱体中部可以不需要再设置梁等结构,可以较大限度地提升电池内部的空间利用率,从而提升电池的能量密度;同时,利用上述导热件还可以保障电池中的电绝缘和热传导。因此,本申请实施例的技术方案能够在提升电池的能量密度的同时保障电池中的电绝缘和热传导,从而能够提升电池的性能。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池10可以包括多个电池单体。例如,如图2所示,为本申请一个实施例的一种电池10的结构示意图,电池10可以包括多个电池单体20。电池10还可以包括箱体11,箱体11内部为中空结构,多个电池单体20容纳于箱体11内。例如,多个电池单体20相互并联或串联或混联组合后置于箱体11内。
可选地,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池 10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体而引出。可选地,导电机构也可属于汇流部件。
根据不同的电力需求,电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体20的数量可能较多,为了便于安装,可以将电池单体20分组设置,每组电池单体20组成电池模块。电池模块中包括的电池单体20的数量不限,可以根据需求设置。电池可以包括多个电池模块,这些电池模块可通过串联、并联或混联的方式进行连接。
如图3所示,为本申请一个实施例的一种电池单体20的结构示意图,电池单体20包括一个或多个电极组件22、壳体211和盖板212。壳体211和盖板212形成外壳或电池盒21。壳体211的壁以及盖板212均称为电池单体20的壁,其中对于长方体型电池单体20,壳体211的壁包括底壁和四个侧壁。壳体211根据一个或多个电极组件22组合后的形状而定,例如,壳体211可以为中空的长方体或正方体或圆柱体,且壳体211的其中一个面具有开口以便一个或多个电极组件22可以放置于壳体211内。例如,当壳体211为中空的长方体或正方体时,壳体211的其中一个平面为开口面,即该平面不具有壁体而使得壳体211内外相通。当壳体211可以为中空的圆柱体时,壳体211的端面为开口面,即该端面不具有壁体而使得壳体211内外相通。盖板212覆盖开口并且与壳体211连接,以形成放置电极组件22的封闭的腔体。壳体211内填充有电解质,例如电解液。
该电池单体20还可以包括两个电极端子214,两个电极端子214可以设置在盖板212上。盖板212通常是平板形状,两个电极端子214固定在盖板212的平板面上,两个电极端子214分别为正电极端子214a和负电极端子214b。每个电极端子214各对应设置一个连接构件23,或者也可以称为集流构件23,其位于盖板212与电极组件22之间,用于将电极组件22和电极端子214实现电连接。
如图3所示,每个电极组件22具有第一极耳221a和第二极耳222a。第一极耳221a和第二极耳222a的极性相反。例如,当第一极耳221a为正极极耳时,第二 极耳222a为负极极耳。一个或多个电极组件22的第一极耳221a通过一个连接构件23与一个电极端子连接,一个或多个电极组件22的第二极耳222a通过另一个连接构件23与另一个电极端子连接。例如,正电极端子214a通过一个连接构件23与正极极耳连接,负电极端子214b通过另一个连接构件23与负极极耳连接。
在该电池单体20中,根据实际使用需求,电极组件22可设置为单个,或多个,如图3所示,电池单体20内设置有4个独立的电极组件22。
电池单体20上还可设置泄压机构213。泄压机构213用于电池单体20的内部压力或温度达到阈值时致动以泄放内部压力或温度。
泄压机构213可以为各种可能的泄压结构,本申请实施例对此并不限定。例如,泄压机构213可以为温敏泄压机构,温敏泄压机构被配置为在设有泄压机构213的电池单体20的内部温度达到阈值时能够熔化;和/或,泄压机构213可以为压敏泄压机构,压敏泄压机构被配置为在设有泄压机构213的电池单体20的内部气压达到阈值时能够破裂。
图4示出了本申请一个实施例的电池10的结构示意图。
电池10包括沿第一方向x排列的多个电池单体20以及导热件101。
第一方向x为电池10中的一列电池单体20的排列方向。也就是说,电池10中的一列电池单体20沿x方向排列。一列电池单体20中电池单体20的数量可以为2-20,但本申请实施例对此并不限定。
导热件101沿第一方向x延伸且与多个电池单体20中的每个电池单体20的第一壁2111连接,第一壁2111为电池单体20中表面积最大的壁。
电池单体20可以包括多个壁,电池单体20中表面积最大的第一壁2111与导热件101连接。也就是说,电池单体20的第一壁2111面向导热件101,即,电池单体20的第一壁2111平行于第一方向x。
导热件101用于传导电池单体20的热量,导热件101的与第一壁2111连接的表面为绝缘表面。利用导热件101传导电池单体20的热量,可以保证电池单体20的温度处于正常状态。导热件101的与第一壁2111连接的表面为绝缘表面可保障导热件101与电池单体20之间的电绝缘。
导热件101在第二方向y上的尺寸为0.1~100mm,第二方向y垂直于第一壁2111。
在本申请实施例中,在电池10中设置导热件101与一列沿第一方向x排列的多个电池单体20中的每个电池单体20的表面积最大的第一壁2111连接。这样,电池10的箱体11中部可以不需要再设置梁等结构,可以较大限度地提升电池10内部的空间利用率,从而提升电池10的能量密度。
相应地,为了保障电池10的性能,导热件101要兼顾强度需求。在本申请实施例中,导热件101在第二方向y上的尺寸T2为0.1~100mm时,可同时兼顾强度与空间需求。
具体而言,导热件101在第二方向y上的尺寸T2,即导热件101的厚度,其较大时,导热件101的强度高;T2较小时,占用空间少。当T2<0.1mm时,导热件101在外力作用下容易损坏;当T2>100mm时,占用太多空间,影响能量密度。因此,导热件101在第二方向y上的尺寸T2为0.1~100mm时,可在保证强度的情况下提升空间利用率。
在本申请实施例中,在电池10中设置导热件101与一列沿第一方向x排列的多个电池单体20中的每个电池单体20的表面积最大的第一壁2111连接,其中,导热件101用于传导电池单体20的热量,导热件101的与第一壁2111连接的表面为绝缘表面,导热件101在垂直于第一壁2111的第二方向y上的尺寸为0.1~100mm。这样,电池10的箱体11中部可以不需要再设置梁等结构,可以较大限度地提升电池10内部的空间利用率,从而提升电池10的能量密度;同时,利用上述导热件101还可以保障电池10中的电绝缘和热传导。因此,本申请实施例的技术方案能够在提升电池10的能量密度的同时保障电池10中的电绝缘和热传导,从而能够提升电池10的性能。
可选地,在本申请一个实施例中,导热件101可以为非金属材料板。也就是说,导热件101整体为非金属的绝缘材料。
可选地,在本申请一个实施例中,导热件101可以包括金属板和绝缘层,绝缘层设置于金属板的表面。
图5为本申请一个实施例的导热件101的示意图。如图5所示,导热件101包括金属板1011和绝缘层1012,绝缘层1012设置于金属板1011的表面。通过这种设置,金属板1011可以保证导热件101的强度,绝缘层1012可以使得导热件101的与第一壁2111连接的表面为绝缘表面。可选地,绝缘层1012可以为粘接在金属板1011表面的绝缘膜或者涂覆在金属板1011表面的绝缘漆。
可选地,在本申请一个实施例中,如图6所示,导热件101内可以设置有空腔1013。空腔1013可以在保证导热件101的强度的同时减轻导热件的重量,例如,可应用于导热件101的厚度T2较大的情况。另外,空腔1013可以使得导热件101在第二方向y上有较大的压缩空间,从而可以给电池单体20提供较大的膨胀空间。
可选地,在本申请一个实施例中,空腔1013可以用于容纳流体以给电池单体20调节温度。
流体可以是液体或气体,调节温度是指给多个电池单体20加热或者冷却。在给电池单体20降温的情况下,空腔1013可以容纳冷却介质以给多个电池单体20调节温度,此时,流体也可以称为冷却介质或冷却流体,更具体地,可以称为冷却液或冷却气体。另外,流体也可以用于加热,本申请实施例对此并不限定。可选地,流体可以是循环流动的,以达到更好的温度调节的效果。可选地,流体可以为水、水和乙二醇的混合液、制冷剂或者空气等。
可选地,在本申请一个实施例中,电池单体20在第二方向y上的尺寸T1与导热件101在第二方向y上的尺寸T2满足:0<T2/T1≤7。
当T2/T1过大时,导热件101占用较大空间,影响能量密度。另外,导热件101对于电池单体20导热过快,也可能产生安全问题。例如,一个电池单体20热失控时可能会引发与同一个导热件101连接的其他电池单体20热失控。0<T2/T1≤7时,可以保障电池10的能量密度并保障电池10的安全性能。
可选地,在本申请一个实施例中,电池单体20在第二方向y上的尺寸T1与导热件101在第二方向y上的尺寸T2可进一步满足0<T2/T1≤1,以进一步提升电池10的能量密度并保障电池10的安全性能。
可选地,在本申请一个实施例中,电池单体20的重量M1与导热件101的重量M2满足:0<M2/M1≤20。
当M2/M1过大时,会损失重量能量密度。0<M2/M1≤20时,可以保障电池10的重量能量密度并保障电池10的安全性能。
可选地,在本申请一个实施例中,电池单体20的重量M1与导热件101的重量M2可进一步满足0.1≤M2/M1≤1,以进一步提升电池10的能量密度并保障电池10的安全性能。
可选地,在本申请一个实施例中,第一壁2111的面积S1与导热件101的 与一列的多个电池单体20的第一壁2111连接的表面的面积S2满足:0.2≤S2/S1≤30。
S2为导热件101与电池单体20连接的一侧表面的总面积。当S2/S1过大时,影响能量密度。当S2/S1过小时,导热效果太差,影响安全性能。0.2≤S2/S1≤30时,可以保障电池10的能量密度并保障电池10的安全性能。
可选地,在本申请一个实施例中,S2与S1可进一步满足2≤S2/S1≤10,以进一步提升电池10的能量密度并保障电池10的安全性能。
可选地,在本申请一个实施例中,导热件101的比热容Q与导热件101的重量M2满足:0.02KJ/(kg 2*℃)≤Q/M2≤100KJ/(kg 2*℃)。
当Q/M2<0.02KJ/(kg 2*℃)时,导热件101会吸收较多能量,造成电池单体20温度过低,可能产生析锂;Q/M2>100KJ/(kg 2*℃)时,导热件101导热能力差,无法及时带走热量。0.02KJ/(kg 2*℃)≤Q/M2≤100KJ/(kg 2*℃)时,可以保障电池10的安全性能。
可选地,在本申请一个实施例中,Q与M2可进一步满足0.3KJ/(kg 2*℃)≤Q/M2≤20KJ/(kg 2*℃),以进一步提升电池10的安全性能。
可选地,在本申请一个实施例中,电池单体20包括在第二方向y上相对设置的两个第一壁2111和在第一方向x上相对设置的两个第二壁2112,其中,在第一方向x上,相邻的两个电池单体20的第二壁2112相对。也就是说,对于方形电池单体20,其大侧面,即第一壁2111与导热件101连接,其小侧面,即第二壁2112与相邻的电池单体20的第二壁2112连接,以在第一方向x上排列为一列。这样,采用大面积的第一壁2111与导热件101连接,有利于电池单体20的热交换,保障电池10的性能。
可选地,在本申请一个实施例中,电池10包括多列沿第一方向x排列的多个电池单体20和多个导热件101,其中,多列电池单体20和多个导热件101在第二方向y上交替设置。也就是说,多列电池单体20和多个导热件101可以按照导热件101、电池单体20列、导热件101…,或者,电池单体20列、导热件101、电池单体20列…设置。这样,多列电池单体20和多个导热件101相互连接形成一个整体,容纳于箱体11内,既能够对每一列电池单体20进行有效的热传导,又能够保证电池10整体的结构强度,从而能够提升电池10的性能。
图7示出了本申请另一个实施例的电池10的结构示意图。如图7所示,电池10可以包括多个电池模块100。电池模块100可以包括至少一列沿第一方向x排列的多个电池单体20和至少一个导热件101,且至少一列电池单体20和至少一个导热件101在第二方向y上交替设置。也就是说,对于每一个电池模块100,其中的电池单体20列和导热件101在第二方向y上交替设置,多个电池模块100容纳于箱体11内,形成电池10。
可选地,电池模块100可以包括N列电池单体20和N-1个导热件101,导热件101设置于相邻的两列电池单体20之间,N为大于1的整数。也就是说,导热件101设置于电池模块100的内部,电池模块100的外侧不设置导热件101。例如,两列电池单体20之间设置一个导热件101,三列电池单体20之间设置两个导热件101,以此类推。
可选地,在本申请一个实施例中,如图7所示,电池模块100包括两列电池单体20,即,N为2。相应地,两列电池单体20中设置一个导热件101。在相邻的电池模块100间不设置导热件101,这样,该实施例在电池10内可以设置较少的导热件101,但同时能够保证每个电池单体20均能够连接到导热件101上。
可选地,在本申请一个实施例中,多个电池模块100沿第二方向y排列,相邻的电池模块100间具有间隙。相邻的电池模块100间没有导热件101,具有一定的间隙。相邻的电池模块100间的间隙可以给电池单体20提供膨胀空间。
可选地,导热件101在第一方向x上的端部设置有固定结构,导热件101通过固定结构固定于箱体11。如图7所示,固定结构可以包括固定板104,固定板104与导热件101的端部固定连接,且与位于导热件101的端部的电池单体20连接,从而加强对电池单体20的固定效果。
可选地,在本申请一个实施例中,导热件101与第一壁2111粘接。也就是说,导热件101与电池单体20之间可以通过粘接的方式固定连接,例如,通过结构胶粘接,但本申请实施例对此并不限定。
可选地,电池单体20可以粘接固定到箱体11上。可选地,每列电池单体20中相邻的电池单体20间也可以粘接,例如,相邻的两个电池单体20的第二壁2112通过结构胶粘接,但本申请实施例对此并不限定。通过每列电池单体20中相邻的电池单体20间的粘接固定可以进一步增强电池单体20的固定效果。
应理解,本申请各实施例中相关的部分可以相互参考,为了简洁不再赘述。
本申请一个实施例还提供了一种用电设备,该用电设备可以包括前述实施例中的电池10。可选地,该用电设备可以为车辆1、船舶或航天器等,但本申请实施例对此并不限定。
上文描述了本申请实施例的电池10和用电设备,下面将描述本申请实施例的制备电池的方法和设备,其中未详细描述的部分可参见前述各实施例。
图8示出了本申请一个实施例的制备电池的方法300的示意性流程图。如图8所示,该方法300可以包括:
310,提供沿第一方向x排列的多个电池单体20;
320,提供导热件101,所述导热件101沿所述第一方向x延伸且与所述多个电池单体20中的每个电池单体20的第一壁2111连接,所述第一壁2111为所述电池单体20中表面积最大的壁,所述导热件101用于传导所述电池单体20的热量,所述导热件101的与所述第一壁2111连接的表面为绝缘表面;其中,所述导热件101在第二方向y上的尺寸为0.1~100mm,所述第二方向y垂直于所述第一壁2111。
图9示出了本申请一个实施例的制备电池的设备400的示意性框图。如图9所示,制备电池的设备400可以包括:
第一提供模块410,用于提供沿第一方向x排列的多个电池单体20;
第二提供模块420,用于提供导热件101,所述导热件101沿所述第一方向x延伸且与所述多个电池单体20中的每个电池单体20的第一壁2111连接,所述第一壁2111为所述电池单体20中表面积最大的壁,所述导热件101用于传导所述电池单体20的热量,所述导热件101的与所述第一壁2111连接的表面为绝缘表面;其中,所述导热件101在第二方向y上的尺寸为0.1~100mm,所述第二方向y垂直于所述第一壁2111。
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。
采用附图中示出的电池单体20和导热件101,其中一列电池单体20中电池单体20的数量取2-20,根据GB38031-2020对电池10进行安全测试,测试结果如表1- 表4所示。
表1
编号 T2/mm T1/mm T2/T1 测试结果
1 0.2 40 0.005 不起火,不爆炸
2 0.4 50 0.008 不起火,不爆炸
3 0.7 45 0.016 不起火,不爆炸
4 4 10 0.4 不起火,不爆炸
5 4 40 0.1 不起火,不爆炸
6 45 15 3 不起火,不爆炸
7 150 10 15 起火,爆炸
表2
编号 M2/Kg M1/Kg M2/M1 测试结果
1 0.2 3 0.068 不起火,不爆炸
2 0.4 2.5 0.16 不起火,不爆炸
3 0.7 1.5 0.467 不起火,不爆炸
4 10 1.5 6.7 不起火,不爆炸
5 15 1 15 不起火,不爆炸
表3
编号 S2/mm 2 S1/mm 2 S2/S1 测试结果
1 3120 21728 0.14 起火,爆炸
2 19500 38800 0.5 不起火,不爆炸
3 65000 16800 3.87 不起火,不爆炸
4 130000 16576 7.84 不起火,不爆炸
5 216000 9600 22.5 不起火,不爆炸
6 250000 7200 34.72 起火,爆炸
表4
编号 Q/KJ/(Kg*℃) M2/kg Q/M2(KJ/(kg 2*℃)) 测试结果
1 0.39 25 0.016 起火,爆炸
2 0.46 5 0.092 不起火,不爆炸
3 0.88 0.5 1.76 不起火,不爆炸
4 4 0.4 10 不起火,不爆炸
5 4 0.1 40 不起火,不爆炸
6 4 0.025 160 起火,爆炸
从上述测试结果可以看出,本申请提供的电池10可以满足安全性能要求。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (22)

  1. 一种电池,其特征在于,包括:
    沿第一方向(x)排列的多个电池单体(20);
    导热件(101),所述导热件(101)沿所述第一方向(x)延伸且与所述多个电池单体(20)中的每个电池单体(20)的第一壁(2111)连接,所述第一壁(2111)为所述电池单体(20)中表面积最大的壁,所述导热件(101)用于传导所述电池单体(20)的热量,所述导热件(101)的与所述第一壁(2111)连接的表面为绝缘表面;
    其中,所述导热件(101)在第二方向(y)上的尺寸为0.1~100mm,所述第二方向(y)垂直于所述第一壁(2111)。
  2. 根据权利要求1所述的电池,其特征在于,所述导热件(101)包括金属板(1011)和绝缘层(1012),所述绝缘层(1012)设置于所述金属板(1011)的表面。
  3. 根据权利要求1所述的电池,其特征在于,所述导热件(101)为非金属材料板。
  4. 根据权利要求1至3中任一项所述的电池,其特征在于,所述导热件(101)内设置有空腔(1013)。
  5. 根据权利要求4所述的电池,其特征在于,所述空腔(1013)用于容纳流体以给所述电池单体(20)调节温度。
  6. 根据权利要求1至5中任一项所述的电池,其特征在于,所述电池单体(20)在所述第二方向(y)上的尺寸T1与所述导热件(101)在所述第二方向(y)上的尺寸T2满足:0<T2/T1≤7。
  7. 根据权利要求6所述的电池,其特征在于,0<T2/T1≤1。
  8. 根据权利要求1至7中任一项所述的电池,其特征在于,所述电池单体(20)的重量M1与所述导热件(101)的重量M2满足:0<M2/M1≤20。
  9. 根据权利要求8所述的电池,其特征在于,0.1≤M2/M1≤1。
  10. 根据权利要求1至9中任一项所述的电池,其特征在于,所述第一壁(2111)的面积S1与所述导热件(101)的与所述多个电池单体(20)的所述第一壁(2111)连接的表面的面积S2满足:0.2≤S2/S1≤30。
  11. 根据权利要求10所述的电池,其特征在于,2≤S2/S1≤10。
  12. 根据权利要求1至11中任一项所述的电池,其特征在于,所述导热件(101)的比热容Q与所述导热件(101)的重量M2满足:0.02KJ/(kg 2*℃)≤Q/M2≤100KJ/(kg 2*℃)。
  13. 根据权利要求12所述的电池,其特征在于,0.3KJ/(kg 2*℃)≤Q/M2≤20KJ/(kg 2*℃)。
  14. 根据权利要求1至13中任一项所述的电池,其特征在于,所述电池单体(20)包括在所述第二方向(y)上相对设置的两个所述第一壁(2111)和在所述第一方向(x)上相对设置的两个第二壁(2112),其中,在所述第一方向(x)上,相邻的两个所述电池单体(20)的所述第二壁(2112)相对。
  15. 根据权利要求1至14中任一项所述的电池,其特征在于,所述电池包括多列沿所述第一方向(x)排列的多个所述电池单体(20)和多个所述导热件(101),其中,多列所述电池单体(20)和多个所述导热件(101)在所述第二方向(y)上交替设置。
  16. 根据权利要求1至14中任一项所述的电池,其特征在于,所述电池包括多个电池模块(100),所述电池模块(100)包括至少一列沿所述第一方向(x)排列的多个所述电池单体(20)和至少一个所述导热件(101),且至少一列所述电池单体(20)和至少一个所述导热件(101)在所述第二方向(y)上交替设置。
  17. 根据权利要求16所述的电池,其特征在于,所述电池模块(100)包括N列所述电池单体(20)和N-1个所述导热件(101),所述导热件(101)设置于相邻的两列所述电池单体(20)之间,N为大于1的整数。
  18. 根据权利要求16或17所述的电池,其特征在于,多个所述电池模块(100)沿所述第二方向(y)排列,相邻的所述电池模块(100)间具有间隙。
  19. 根据权利要求1至18中任一项所述的电池,其特征在于,所述导热件(101)与所述第一壁(2111)粘接。
  20. 一种用电设备,其特征在于,包括:根据权利要求1至19中任一项所述的电池(10),所述电池(10)用于提供电能。
  21. 一种制备电池的方法,其特征在于,包括:
    提供(310)沿第一方向(x)排列的多个电池单体(20);
    提供(320)导热件(101),所述导热件(101)沿所述第一方向(x)延伸且与所述多个电池单体(20)中的每个电池单体(20)的第一壁(2111)连接,所述第一壁(2111)为所述电池单体(20)中表面积最大的壁,所述导热件(101)用于传导所述电池单体(20)的热量,所述导热件(101)的与所述第一壁(2111)连接的表面为绝缘表面;其中,所述导热件(101)在第二方向(y)上的尺寸为0.1~100mm,所述第二方向(y)垂直于所述第一壁(2111)。
  22. 一种制备电池的设备,其特征在于,包括:
    第一提供模块(410),用于提供沿第一方向(x)排列的多个电池单体(20);
    第二提供模块(420),用于提供导热件(101),所述导热件(101)沿所述第一方向(x)延伸且与所述多个电池单体(20)中的每个电池单体(20)的第一壁(2111)连接,所述第一壁(2111)为所述电池单体(20)中表面积最大的壁,所述导热件(101)用于传导所述电池单体(20)的热量,所述导热件(101)的与所述第一壁(2111)连接的表面为绝缘表面;其中,所述导热件(101)在第二方向(y)上的尺寸为0.1~100mm,所述第二方向(y)垂直于所述第一壁(2111)。
PCT/CN2022/077153 2022-02-21 2022-02-21 电池、用电设备、制备电池的方法和设备 WO2023155212A1 (zh)

Priority Applications (24)

Application Number Priority Date Filing Date Title
CN202280006604.XA CN116261804A (zh) 2022-02-21 2022-02-21 电池、用电设备、制备电池的方法和设备
KR1020227016545A KR20230126177A (ko) 2022-02-21 2022-02-21 배터리, 전기 장치, 배터리 제조 방법 및 장치
JP2022529674A JP2024510856A (ja) 2022-02-21 2022-02-21 電池、電力消費装置、電池の製造方法及び装置
EP22722113.2A EP4258437A1 (en) 2022-02-21 2022-02-21 Battery, electric device, and battery preparation method and device
PCT/CN2022/077153 WO2023155212A1 (zh) 2022-02-21 2022-02-21 电池、用电设备、制备电池的方法和设备
US17/751,969 US20230268579A1 (en) 2022-02-21 2022-05-24 Battery, power consumption device, and method and device for producing battery
PCT/CN2023/070136 WO2023155625A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070131 WO2023155622A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014583.8U CN219203337U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014354.6U CN219203336U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014347.6U CN219203386U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008512.XA CN116848705A (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070135 WO2023155624A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070133 WO2023155623A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014214.9U CN219203335U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008511.5A CN116724443A (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014474.6U CN220042013U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008508.3A CN116491016A (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008509.8A CN116802897A (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008507.9A CN116745978A (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070126 WO2023155621A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070125 WO2023155620A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014404.0U CN219575742U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008510.0A CN116868417A (zh) 2022-02-21 2023-01-03 电池和用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/077153 WO2023155212A1 (zh) 2022-02-21 2022-02-21 电池、用电设备、制备电池的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/751,969 Continuation US20230268579A1 (en) 2022-02-21 2022-05-24 Battery, power consumption device, and method and device for producing battery

Publications (1)

Publication Number Publication Date
WO2023155212A1 true WO2023155212A1 (zh) 2023-08-24

Family

ID=86679698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077153 WO2023155212A1 (zh) 2022-02-21 2022-02-21 电池、用电设备、制备电池的方法和设备

Country Status (6)

Country Link
US (1) US20230268579A1 (zh)
EP (1) EP4258437A1 (zh)
JP (1) JP2024510856A (zh)
KR (1) KR20230126177A (zh)
CN (1) CN116261804A (zh)
WO (1) WO2023155212A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1328705A (zh) * 1998-11-27 2001-12-26 松下电器产业株式会社 组合蓄电池
JP2006244756A (ja) * 2005-03-01 2006-09-14 Nec Lamilion Energy Ltd フィルム外装電気デバイス及びフィルム外装電気デバイス集合体
US20130022856A1 (en) * 2009-12-23 2013-01-24 MAGNA E-Car Sysems GmbH & Co.OG Battery with voltage-generating cells and an i-shaped or h-shaped intermediate element arranged therebetween
CN209496928U (zh) * 2019-04-12 2019-10-15 宁德时代新能源科技股份有限公司 一种电池模组
CN111009629A (zh) * 2019-11-18 2020-04-14 比亚迪股份有限公司 一种电池包和电动车

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1328705A (zh) * 1998-11-27 2001-12-26 松下电器产业株式会社 组合蓄电池
JP2006244756A (ja) * 2005-03-01 2006-09-14 Nec Lamilion Energy Ltd フィルム外装電気デバイス及びフィルム外装電気デバイス集合体
US20130022856A1 (en) * 2009-12-23 2013-01-24 MAGNA E-Car Sysems GmbH & Co.OG Battery with voltage-generating cells and an i-shaped or h-shaped intermediate element arranged therebetween
CN209496928U (zh) * 2019-04-12 2019-10-15 宁德时代新能源科技股份有限公司 一种电池模组
CN111009629A (zh) * 2019-11-18 2020-04-14 比亚迪股份有限公司 一种电池包和电动车

Also Published As

Publication number Publication date
JP2024510856A (ja) 2024-03-12
US20230268579A1 (en) 2023-08-24
EP4258437A1 (en) 2023-10-11
CN116261804A (zh) 2023-06-13
KR20230126177A (ko) 2023-08-29

Similar Documents

Publication Publication Date Title
CN216872113U (zh) 电池和用电设备
CN216872114U (zh) 电池和用电设备
CN217182265U (zh) 电池和用电设备
CN216872134U (zh) 电池和用电设备
CN216872137U (zh) 电池和用电设备
WO2024021248A1 (zh) 电池单体、电池及用电设备
US20240088477A1 (en) Battery, power consumption device, and method and device for producing battery
WO2023159486A1 (zh) 电池、用电设备、制备电池的方法和设备
US20230268588A1 (en) Battery, power consumption device, and method and device for producing battery
WO2023185244A1 (zh) 一种散热结构、高压盒、电池和用电装置
WO2023155133A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2023000511A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
CN216872190U (zh) 一种电池和用电设备
WO2023004726A1 (zh) 电池的箱体、电池、用电设备、制备电池的方法和设备
WO2023155212A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023155211A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023155209A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023159487A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023155210A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023133737A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023004780A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023173721A1 (zh) 电池单体、电池模组、电池和用电装置
WO2024016329A1 (zh) 电池和用电设备
WO2023082192A1 (zh) 电池单体、电池、用电装置、制备电池的方法和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022529674

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022722113

Country of ref document: EP

Effective date: 20220518