WO2024000084A1 - 热管理装置、电池及用电装置 - Google Patents

热管理装置、电池及用电装置 Download PDF

Info

Publication number
WO2024000084A1
WO2024000084A1 PCT/CN2022/101392 CN2022101392W WO2024000084A1 WO 2024000084 A1 WO2024000084 A1 WO 2024000084A1 CN 2022101392 W CN2022101392 W CN 2022101392W WO 2024000084 A1 WO2024000084 A1 WO 2024000084A1
Authority
WO
WIPO (PCT)
Prior art keywords
management device
thermal management
heat exchange
bottom wall
top wall
Prior art date
Application number
PCT/CN2022/101392
Other languages
English (en)
French (fr)
Inventor
胡利军
侯跃攀
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280005915.4A priority Critical patent/CN116157948A/zh
Priority to PCT/CN2022/101392 priority patent/WO2024000084A1/zh
Priority to CN202380008511.5A priority patent/CN116724443A/zh
Priority to PCT/CN2023/070126 priority patent/WO2023155621A1/zh
Priority to CN202380008509.8A priority patent/CN116802897A/zh
Priority to PCT/CN2023/070125 priority patent/WO2023155620A1/zh
Priority to PCT/CN2023/070131 priority patent/WO2023155622A1/zh
Priority to CN202320014404.0U priority patent/CN219575742U/zh
Priority to CN202380008508.3A priority patent/CN116491016A/zh
Priority to PCT/CN2023/070136 priority patent/WO2023155625A1/zh
Priority to PCT/CN2023/070133 priority patent/WO2023155623A1/zh
Priority to CN202320014583.8U priority patent/CN219203337U/zh
Priority to CN202380008507.9A priority patent/CN116745978A/zh
Priority to CN202320014474.6U priority patent/CN220042013U/zh
Priority to CN202320014354.6U priority patent/CN219203336U/zh
Priority to PCT/CN2023/070135 priority patent/WO2023155624A1/zh
Priority to CN202320014214.9U priority patent/CN219203335U/zh
Priority to CN202380008512.XA priority patent/CN116848705A/zh
Priority to CN202380008510.0A priority patent/CN116868417A/zh
Priority to CN202320187954.2U priority patent/CN220341304U/zh
Publication of WO2024000084A1 publication Critical patent/WO2024000084A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of batteries, and in particular to a thermal management device, a battery and an electrical device.
  • a thermal management device needs to be installed around the module to Ensure that the temperature of the battery cells is within the normal operating range. In some cases, the thermal management device is easily squeezed by the battery cells, resulting in increased flow resistance and reduced heat exchange efficiency.
  • thermal management device that can absorb battery expansion stress and corresponding batteries and power devices.
  • the present application provides a thermal management device, a battery and an electrical device.
  • the thermal management device can provide expansion space for the expansion of battery cells, is not susceptible to increased flow resistance due to extrusion of battery cells, and has high heat exchange efficiency.
  • the application provides a thermal management device for exchanging heat with a battery cell.
  • the thermal management device includes a heat exchange body, including a top wall, a bottom wall, and a top wall and a bottom wall that are oppositely arranged in the thickness direction of the device. There is an accommodation cavity between them, and the accommodation cavity is used to accommodate the heat exchange medium; wherein, along the thickness direction, at least one of the top wall and the bottom wall is recessed in a direction close to the other and forms a cavity, and the cavity is used for
  • the battery cells provide room for expansion.
  • the thermal management device in the embodiment of the present application has a cavity in its thickness direction.
  • the space provided by the cavity can absorb the expansion of the battery cells to be cooled during use and prevent the battery cells from expanding during the process.
  • squeezing the top wall or bottom wall causes the accommodation cavity inside the heat exchange body to be compressed, making the thermal management device less susceptible to battery extrusion, resulting in an increase in flow resistance, and ensuring parameters such as the flow rate of the heat exchange medium in the accommodation cavity.
  • the monomer enters the groove of the heat exchange body and contacts the heat exchange body, and exchanges heat with the heat exchange medium in the heat exchange body to ensure the heat exchange rate.
  • At least one of the top wall and the bottom wall is an arc-shaped plate that is recessed toward the other.
  • the curved plate can make it easier for the thermal management device to fit on the surface of the battery cell to be cooled.
  • the top wall and the bottom wall are respectively arc-shaped plates that are recessed toward the other. Setting both the top wall and the bottom wall into curved plates allows the thermal management device to be placed between two adjacent battery cells to absorb the expansion on both sides respectively.
  • the top wall and the bottom wall are spaced apart and symmetrically distributed along the thickness direction.
  • the symmetrical arrangement can make the entire thermal management device evenly stressed and facilitate processing.
  • the heat exchange body in the first direction, has a first area and a second area, and the distance between the top wall and the bottom wall along the thickness direction in the first area is smaller than the distance along the thickness direction in the second area. The distance where the first direction intersects the thickness direction.
  • the heat exchange body itself may have different thicknesses in the first direction where the thickness directions intersect, so as to adjust the position of the groove accordingly.
  • the first area is provided with second areas on both sides of the first direction.
  • the heat exchange body may have a thin area in the first direction and thick areas located on both sides of the thin area, and the thickness changes are matched to the expansion of the battery cells.
  • the distance along the thickness direction between the top wall and the bottom wall first decreases and then increases.
  • the thickness of the heat exchange body can generally decrease first and then increase, so as to match the expansion of the battery cells and better absorb the expansion.
  • the heat exchange body further includes a first side wall and a second side wall arranged oppositely in the first direction.
  • the first side wall is connected to the top wall and the bottom wall respectively
  • the second side wall is connected to the top wall and the bottom wall respectively.
  • the top wall and the bottom wall are connected, and along the first direction, at least one of the first side wall and the second side wall is recessed in a direction away from the other.
  • the accommodation cavity of the heat exchange body may be jointly enclosed by a top wall, a first side wall, and a second side wall, wherein the first side wall and/or the second side wall that are recessed in a direction away from the other can Increase the cross-sectional area of the accommodation cavity and improve heat exchange efficiency.
  • the first side wall and the second side wall are respectively arc-shaped plates that are concavely disposed away from each other. Arranging the first side wall and the second side wall as arc-shaped plates that are concave in a direction away from each other can further expand the cross-sectional area of the accommodation cavity under the same thickness.
  • the heat exchange body is an axisymmetric structure.
  • the heat exchange body with an axially symmetrical structure is easy to design and process, and the force is evenly distributed.
  • the thermal management device further includes a support component, which is disposed in the accommodation cavity and used to support at least one of the top wall and the bottom wall.
  • the support component can maintain a certain distance between the top wall and the bottom wall to facilitate the circulation of the heat exchange medium.
  • the support component includes a plurality of support units.
  • the plurality of support units are spaced apart and divide the accommodation cavity to form a plurality of flow channels.
  • Each support unit is connected to at least one of the top wall and the bottom wall. .
  • the support unit can provide certain support to the top and bottom walls of the heat exchange body and maintain the fluidity of the internal flow channel.
  • multiple support units are arranged in parallel at intervals.
  • the support units arranged in parallel enable the thermal management device to have a uniform load-bearing capacity in the distribution direction of the support units.
  • the support unit is in the form of a plate-shaped structure, and an included angle between at least one support unit and at least one of the top wall and the bottom wall is less than 90°.
  • the support unit with an included angle less than 90°, that is, an inclined support unit, can provide a space for further compression when the heat exchange body is squeezed in the thickness direction to avoid damage to the battery cells.
  • the included angle between each support unit and the top wall is in the range of 30°-60°; and/or the included angle between each support unit and the bottom wall is in the range of 30°-60°. . Keeping the intersection angle between the support unit and the top or bottom wall within a suitable range enables the support unit to have a suitable shrinkage deformation margin.
  • the distance between each two adjacent support units along the first direction is equal, and the first direction intersects with the thickness direction.
  • the support units can be arranged at equal intervals to provide uniform support for the heat exchange body.
  • the heat exchange body and the supporting component are an integrated structure.
  • the integrated molding of the heat exchange body and the supporting component can improve the overall production efficiency of the thermal management device.
  • the present application provides a battery, including: a plurality of battery cells and the thermal management device in any embodiment of the first aspect, at least part of the thermal management device is located between adjacent battery cells and is used to communicate with the battery cells.
  • the battery cells exchange heat, and the cavity is used to provide expansion space for the battery cells.
  • the present application provides an electrical device, including the battery in any embodiment of the second aspect, and the battery is used to provide electrical energy.
  • the thermal management device provided by the embodiment of the present application has a cavity, which during use can provide space margin for the expansion of the battery cells and the grouping tolerance when the batteries are arranged in groups, so as to avoid damage to the battery cells, and The thermal management device can be kept in contact with the battery cells to improve the cooling effect.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Figure 2 is a schematic structural diagram of a battery provided by some embodiments of the present application.
  • Figure 3 is an exploded view of the battery shown in Figure 2;
  • Figure 4 is an exploded view of a battery provided by other embodiments of the present application.
  • Figure 5 is a usage status diagram of the thermal management device provided by some embodiments of the present application.
  • Figure 6 is a schematic structural diagram of a thermal management device provided by some embodiments of the present application.
  • Figure 7 is a partial structural diagram of a thermal management device provided by some embodiments of the present application.
  • Figure 8 is a cross-sectional view of a thermal management device provided by some embodiments of the present application.
  • 100-thermal management device 200-battery cell; 300-casing;
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • orientation or positional relationship is only to facilitate the description of the embodiments of the present application and simplify the description, but does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation of the implementation of the present application.
  • the thermal management device used in the battery is a hollow cooling plate, and heat exchange is performed by filling the interior of the cooling plate with a flowing cooling medium.
  • battery cells usually expand during operation, and the degree of expansion of a certain surface of the battery cell is usually positively correlated with the surface area of the battery. Therefore, in order to avoid being affected by expansion and extrusion, the existing cooling system Plates are usually placed on the bottom or sides of a rectangular battery cell with a smaller area, resulting in lower heat exchange efficiency; while cooling plates placed near the sides with a larger area are correspondingly susceptible to battery expansion and extrusion.
  • the cooling plate The surface is flat and not easily compressed in the direction of its thickness, so it cannot absorb the tolerances of the group and the expansion allowance of the battery cells.
  • the applicant proposed a thermal management device, which includes a heat exchange body, and the heat exchange body is relatively opposite in the thickness direction of itself. At least one of the provided top wall and bottom wall is recessed in a direction closer to the other to form a cavity through which a group tolerance generated between the battery cell and the heat exchange body during battery assembly is absorbed, and The expansion of the battery cell during operation can be absorbed through the cavity. When the battery cell expands, it can extend into the cavity and conduct heat exchange with the heat exchange body to ensure good heat exchange efficiency.
  • the electrical devices can be vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the batteries disclosed in the embodiments of the present application can be used in, but are not limited to, the aforementioned electrical devices such as vehicles, ships, or aircrafts.
  • a power supply system including the thermal management device disclosed in this application, batteries, etc. can be used to form the electrical device.
  • the thermal management device is arranged on the side of a battery cell as an example for description.
  • the present application is not limited to this, and the embodiments of the present application may also be provided. Thermal management devices are used in scenarios where other components to be cooled may expand, and are used to protect them at the same time.
  • the following embodiments take the electrical device as a vehicle as an example.
  • FIG. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • a battery 2000 is disposed inside the vehicle 1000 .
  • the battery 2000 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 2000 may be used to power the vehicle 1000 , for example, the battery 2000 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 3000 and a motor 4000.
  • the controller 3000 is used to control the battery 2000 to provide power to the motor 4000, for example, to meet the power requirements for starting, navigation and driving of the vehicle 1000.
  • the battery 2000 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • Figure 2 is a schematic structural diagram of a battery provided by some embodiments of the present application.
  • Figure 3 is an exploded view of the battery shown in Figure 2.
  • Figure 4 is a diagram of a battery provided by other embodiments of the present application. Exploded view.
  • the battery 2000 in the embodiment of the present application may include a thermal management device 100 and a battery cell 200, where the thermal management device 100 and the battery cell 200 may be alternately arranged along the thickness direction Z.
  • the battery 2000 may also include a case 300 and an upper cover.
  • the case 300 is used to accommodate and support the battery cells 200.
  • the case 300 may have different structures.
  • the housing 300 may be coupled with the upper cover to jointly define a cavity for accommodating the battery cell 200 .
  • the housing 300 is a hollow structure with one end open, and the upper cover can be a plate-like structure and cover the open side of the housing 300 to form a corresponding cavity for accommodating the battery cells; or, the housing 300 and the upper cover can both be hollow structures with one side open, that is, the interface between the casing 300 and the upper cover is located in the middle of the battery cell 200. At this time, the open side of the upper cover is closed with the open side of the casing 300 to form a A corresponding cavity is used to accommodate the battery cell 200 .
  • the housing 300 and the upper cover can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • a sealing member such as sealant, sealing ring, etc., can be provided between the housing 300 and the upper cover.
  • the battery 2000 there may be a plurality of battery cells 200.
  • the multiple battery cells 200 can be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the multiple battery cells 200 are connected in series and in parallel.
  • Multiple battery cells 200 can be directly connected in series, parallel, or mixed together.
  • multiple battery cells 200 can also be connected in series, parallel, or mixed to form a battery module, and then multiple battery modules can be connected in series or mixed. They are connected in parallel or mixed to form a whole, and are accommodated in the casing 300 .
  • Figure 5 is a usage state diagram of the thermal management device provided by some embodiments of the present application.
  • Figure 6 is a structural schematic diagram of the thermal management device provided by some embodiments of the present application.
  • Figure 7 is a schematic diagram of the thermal management device provided by some embodiments of the present application. Some embodiments provide a partial structural diagram of a thermal management device.
  • the present application provides a thermal management device 100.
  • the thermal management device 100 includes a heat exchange body 10.
  • the heat exchange body 10 has a top wall 11 and a bottom wall 12 that are oppositely arranged in the thickness direction X of itself.
  • the accommodation cavity 13 between 12 is used to accommodate the heat exchange medium; wherein, along the thickness direction X, at least one of the top wall 11 and the bottom wall 12 is recessed toward the other and forms a cavity , the cavity is used to provide expansion space for the battery cell 200 .
  • the thermal management device 100 in the embodiment of the present application can be arranged adjacent to the battery cell 200 by connecting the top wall 11 and/or the bottom wall 12 with a larger area in the heat exchange body 10 and the battery cell 200 with a larger area.
  • the side surfaces of the top wall 11 and the bottom wall 12 are in contact with each other to improve the heat exchange efficiency.
  • at least one of the top wall 11 and the bottom wall 12 is recessed in a direction closer to the other, so as to form a recess that is recessed toward the inside of the heat exchange body 10 in the thickness direction X.
  • the cavity thus forms a surplus space that can absorb the expansion force of the battery cell 200.
  • the expanded part can be embedded in the cavity, so as to This avoids any impact on the accommodating cavity 13 inside the thermal management device 100 , and also prevents the thermal management device 100 from being unable to be compressed in the thickness direction X, causing the battery cell 200 to expand and be damaged.
  • the cavity in the embodiment of the present application can adopt different shapes according to the expansion conditions of the battery cells 200, so as to have more contact area with the expanded surface of the battery cells 200, thereby increasing the heat transfer rate. exchange efficiency.
  • the cavity can be a rectangular groove, an arc-shaped groove, a stepped groove, etc., and can be designed according to the use requirements and processing conditions. This application does not impose a specific limit on this.
  • the heat exchange body 10 in the embodiment of the present application has a cavity in the thickness direction 200 can contact the bottom of the cavity after expansion, so that the contact area between the battery cell 200 and the heat exchange body 10 exceeds a certain size, thereby ensuring the heat exchange effect between the two.
  • the battery cell 200 when the battery cell 200 is not expanded, its temperature is low, and the requirement for heat exchange efficiency is also low. At this time, there can be a certain gap between the battery cell 200 and the heat exchange body 10 .
  • the battery cell 200 can work normally, and after the battery cell 200 heats up and expands, the expansion volume is greater than or equal to the cavity volume, so the battery cell 200 can contact the heat exchange body 10, thereby correspondingly improving the heat exchange efficiency, so that the battery cell The body 200 can still maintain normal operation within a certain temperature range.
  • the shapes and positions of the recesses formed by them may be the same, or they may adopt different designs according to the different expansion conditions of adjacent battery cells 200 .
  • the thermal management device 100 in the embodiment of the present application has a cavity in the thickness direction During the expansion process, squeezing the top wall 11 or the bottom wall 12 causes the accommodation cavity 13 inside the heat exchange body 10 to be compressed, thereby making the thermal management device 100 less susceptible to being squeezed by the battery cells 200 and causing an increase in flow resistance, thereby ensuring Parameters such as the flow rate of the heat exchange medium in the accommodation cavity 13.
  • the battery cell 200 thermally expands and enters the cavity of the heat exchange body 10 to contact the heat exchange body 10
  • the battery cell 200 can relatively directly heat exchange with the heat exchange medium in the heat exchange body 10, ensuring heat exchange. rate.
  • the thermal management device 100 in the embodiment of the present application includes a heat exchange body 10, and the heat exchange body 10 includes a top wall 11, a bottom wall 12, and an accommodation cavity 13.
  • the accommodation cavity 13 is filled with heat exchange medium, which passes through the top wall 11 and/or Or the contact with the bottom wall 12, the heat exchange medium can form heat exchange with the battery cell 200, thereby exchanging and taking away heat when the battery cell 200 generates heat during operation, thereby achieving the effect of cooling the battery cell 200.
  • the heat exchange body 10 in the embodiment of the present application has an accommodation cavity 13.
  • the accommodation cavity 13 can be filled with a heat exchange medium capable of absorbing heat.
  • the heat exchange medium can It is a form of coolant, cooling gas, etc. commonly used in the field of battery technology.
  • the heat exchange medium in the accommodation cavity 13 may be flowing, and a good cooling effect can be achieved by using circulating flow heat exchange medium.
  • the heat exchange medium in the thermal management device 100 is cooled by circulating flow, its flow direction can be the same as the extension direction of the heat exchange body 10 itself, so as to fully contact the battery cells 200 to be cooled and optimize the heat exchange efficiency.
  • At least one of the top wall 11 and the bottom wall 12 is an arc-shaped plate that is concavely disposed toward the other.
  • the top wall 11 and the bottom wall 12 in the heat exchange body 10 is recessed toward each other to form a cavity.
  • the cavity may be a cavity with an arc-shaped bottom surface, that is, the top wall 11
  • At least one of the bottom walls 12 has an arc-shaped surface, and the arc-shaped surface may occupy at least part of the top wall 11 / bottom wall 12 , that is, at least part of the top wall 11 / bottom wall 12 is an arc-shaped plate.
  • this part of the area may extend in the same direction along the extension direction of the heat exchange body 10 itself and be rectangularly distributed, and may be centered on the heat exchange body 10 in the first direction Y.
  • the axis is symmetrically arranged to form a structure with a relatively uniform bearing capacity in this direction. Adopting the form of a curved plate can make it easier for the thermal management device 100 to adhere to the surface of the battery cell 200 to be cooled, thereby providing a better heat exchange effect.
  • the top wall 11 and the bottom wall 12 are respectively arc-shaped plates that are recessed toward the other.
  • the top wall 11 and the bottom wall 12 can be configured as arc-shaped plates to form a cavity to avoid the expansion of the battery cell 200 .
  • Setting both the top wall 11 and the bottom wall 12 as arc-shaped plates enables the heat exchange body 10 to absorb the expansion on both sides at the same time. Therefore, the thermal management device 100 can be placed between two adjacent battery cells 200 while simultaneously providing The battery cells 200 on both sides provide a heat exchange effect, so that the final battery can be compact and have good heat dissipation.
  • the top wall 11 and the bottom wall 12 are spaced apart and symmetrically distributed.
  • the top wall 11 and the bottom wall 12 are both recessed toward each other, the top wall 11 and the bottom wall 12 can be spaced apart and symmetrically arranged in the thickness direction X.
  • the accommodation cavity 13 of the heat exchange body 10 is Regarding a cavity that is symmetrical about the central axis in the thickness direction
  • FIG. 8 is a cross-sectional view of a thermal management device provided by some embodiments of the present application.
  • the heat exchange body 10 in the first direction Y, has a first area 14 and a second area 15, between the top wall 11 and the bottom wall 12 along the thickness direction X of the first area 14 The distance is smaller than the distance along the thickness direction X in the second region 15, and the first direction Y intersects the thickness direction X.
  • the heat exchange body 10 in the embodiment of the present application has a top wall 11 and a bottom wall 12 that are oppositely arranged in the thickness direction
  • the heat exchange body 10 may have different extension dimensions in the thickness direction area, and set the thinner area corresponding to the area where the battery cell 200 expands more seriously.
  • the thickness at different locations can be adjusted accordingly to achieve desired design effect.
  • the first area 14 is provided with second areas 15 on both sides of the first direction Y respectively.
  • the heat exchange body 10 in the embodiment of the present application may have multiple second areas 15.
  • the multiple second areas 15 may be respectively disposed on both sides of the first area 14 in the first direction Y.
  • the first area 14 is set corresponding to the position where the battery cell 200 has a large expansion degree, so as to avoid the expanded protruding part of the battery cell 200 through a deeper cavity.
  • the second area 15 can have a larger thickness to accommodate more heat exchangers. medium, providing better cooling effect.
  • the thermal management device 100 in the embodiment of the present application may also have multiple first areas 14 , and these first areas 14 may be spaced apart in the first direction Y.
  • each thermal management device 100 may be provided with multiple battery cells 200 correspondingly in this direction. At this time, it may be in contact with each battery cell 200 .
  • at least one first region 14 with a smaller thickness is provided, and a second region 15 with a larger thickness is provided between adjacent first regions 14.
  • each first region 14 can also correspond to multiple regions at the same time.
  • Each battery cell 200 is configured to accommodate the expansion margin of multiple battery cells 200 at the same time.
  • the specific corresponding setting method between the first area 14 and the battery cell 200 can be based on the position of the battery cell 200 in the first direction Y.
  • the extension size and expansion degree are designed and are not specifically limited in this application.
  • the distance between the top wall 11 and the bottom wall 12 in the thickness direction X first decreases and then increases.
  • the heat exchange body 10 in the embodiment of the present application may have a thin first region 14 located in the middle in the first direction Y, and a thicker second region 15 disposed on both sides of the first region 14, whereby The distance between the top wall 11 and the bottom wall 12 along the thickness direction and conduct heat exchange.
  • the heat exchange body 10 further includes a first side wall 16 and a second side wall 17 that are oppositely arranged in the first direction Y.
  • the first side wall 16 is connected to the top wall 11 and the bottom wall 12 respectively.
  • the second side wall 17 is connected to the top wall 11 and the bottom wall 12 respectively, and along the first direction Y, at least one of the first side wall 16 and the second side wall 17 is recessed in a direction away from the other.
  • the accommodation cavity 13 of the heat exchange body 10 may be enclosed by a cavity wall composed of a top wall 11, a first side wall 16, a bottom wall 12 and a second side wall 17 connected end to end.
  • the first side wall 16 and/or the second side wall 17 that are recessed in a direction away from the other can increase the cross-sectional area of the accommodation cavity 13, thereby improving heat exchange efficiency.
  • the recesses of the first side wall 16 and the second side wall 17 can also be rectangular recesses, arc-shaped recesses, stepped recesses, and other structures, and The two side walls can respectively adopt different shaped recesses.
  • the first side wall 16 and the second side wall 17 are respectively arc-shaped plates that are concavely disposed away from each other.
  • the first side wall 16 and the second side wall 17 in the embodiment of the present application can be arranged as arc-shaped plates at the same time, and the two arc-shaped plates are oriented away from each other.
  • the direction is concave to form an arc-shaped side wall of the accommodation cavity 13 .
  • Setting the first side wall 16 and the second side wall 17 as arc-shaped plates that are concave in the direction away from each other can further expand the cross-sectional area of the accommodation cavity 13 and increase the heat exchange medium while the thickness of the heat exchange body 10 remains unchanged. The flow rate and capacity further improve the heat transfer effect.
  • the heat exchange body 10 is an axisymmetric structure.
  • the heat exchange body 10 in the embodiment of the present application can be a symmetrical structure, that is, the top wall 11 and the bottom wall 12 are symmetrically arranged, and the first side wall 16 and the second side wall 17 are symmetrically arranged to form a uniform and symmetrical structure.
  • the heat exchange body 10 can form a uniform force-bearing structure and is easy to process.
  • an axially symmetrical accommodation cavity 13 can be formed accordingly, so that the internal heat exchange medium flows more uniformly.
  • the thermal management device 100 further includes a support component 20 , which is disposed in the accommodation cavity 13 and used to support at least one of the top wall 11 and the bottom wall 12 .
  • a support member 20 may be provided in the accommodation cavity 13 of the thermal management device 100 .
  • the support member 20 may be connected to at least one of the top wall 11 and the bottom wall 12 and be used to connect the top wall 11 to the top wall 11 .
  • a support structure is formed between the bottom wall 12 and the bottom wall 12 .
  • the support component 20 in the embodiment of the present application can adopt a structural form such as multiple support columns or support plates arranged at intervals, as long as the heat exchange medium can flow smoothly inside the accommodation cavity 13 .
  • the support member 20 in the embodiment of the present application can provide supporting force to maintain a certain distance between the top wall 11 and the bottom wall 12 to facilitate the circulation of the heat exchange medium.
  • the support component 20 includes a plurality of support units 21 that are spaced apart and separate the accommodation cavity 13 to form multiple flow channels.
  • Each support unit 21 is connected to the top wall 11 and the bottom wall. At least one of 12 connection settings.
  • the support unit 21 in the embodiment of the present application may be a support plate.
  • the support unit 21 divides the accommodation cavity 13 into multiple parts and forms a flow channel for passing the heat exchange medium between adjacent support plates.
  • the support unit 21 The provided supporting force can provide supporting force for the flow channel after the thermal management device 100 is subjected to extrusion stress in the thickness direction X, thereby improving the problem of increased flow resistance after extrusion.
  • the channels formed between adjacent support units 21 should be in the same direction as the heat exchange medium flows inside the accommodation cavity 13 to form a flow channel for the heat exchange medium to pass, so that the inside of the thermal management device 100 has a better Low flow resistance, thereby further improving cooling efficiency.
  • multiple support units 21 are arranged in parallel and spaced apart.
  • the support units 21 in the embodiment of the present application can be arranged in parallel to form a smooth flow channel with small flow resistance, improve the fluidity of the heat exchange medium between the multiple support units 21, and thereby ensure that the thermal management device 100 has good heat exchange effect.
  • the support units 21 arranged in parallel can provide uniform support force between the top wall 11 and the bottom wall 12, so that the heat exchange body 10 has a uniform and reliable load-bearing capacity in the thickness direction X, and the support units 21 arranged in parallel facilitate processing.
  • the plurality of support units 21 can all extend along the length direction of the heat exchange body 10 itself. At the same time, the plurality of support units 21 can extend in parallel straight lines, wavy extensions, zigzag extensions, etc. The shape only needs to be able to ensure smooth passage of the heat exchange medium, and this application does not impose specific restrictions on this.
  • the support unit 21 is in the form of a plate-shaped structure, and the angle between at least one support unit 21 and at least one of the top wall 11 and the bottom wall 12 is less than 90°.
  • the support unit 21 in the embodiment of the present application may be arranged at an angle, that is, forming an included angle of less than 90° with at least one of the top wall 11 and the bottom wall 12 , thereby enabling the thermal management device 100 to be tilted in the thickness direction.
  • the compressive stress on X is, its support strength is less than a certain threshold. That is, when the heat exchange body 10 is subjected to the extrusion force in the thickness direction The expansion of the battery cell 200 prevents damage to the battery cell 200 .
  • the included angle may refer to the plane where the two edges of the arc-shaped plate in the first direction Y are located and the support unit 21 the angle between them.
  • the angle between each support unit 21 and the top wall 11 ranges from 30° to 60°; and/or the angle between each support unit 21 and the bottom wall 12 ranges from 30° to 60°; Value range is 30°-60°.
  • each support unit 21 is connected to the top wall 11 and the bottom wall 12 .
  • the angle between the wall 11 and the bottom wall 12 can be maintained between 30° and 60°, so that the support unit 21 maintains a certain extension distance in the thickness direction
  • the shrinkage deformation absorbs the extrusion stress caused by the expansion and further avoids the expansion area of the battery cell 200 .
  • the distance between every two adjacent support units 21 is equal.
  • the support units 21 in the embodiment of the present application can be arranged at equal intervals to provide uniform and stable support for the top wall 11 and the bottom wall 12 with the cavity, so that the thermal management device 100 is expanded and squeezed by the battery cells 200 It has a relatively uniform and reliable load-bearing capacity as a whole.
  • the heat exchange body 10 and the supporting component 20 are an integrated structure.
  • the heat exchange body 10 in the embodiment of the present application has an accommodation cavity 13, and the accommodation cavity 13 also has a support component 20 for providing support.
  • the support component 20 is connected to the top wall 11 and/or the bottom wall 12
  • the support member 20 can be integrally formed with the heat exchange body 10 , thereby improving the overall production efficiency of the thermal management device 100 and improving the overall strength of the thermal management device 100 .
  • the heat exchange body 10 has an inlet 18 and an outlet 19, and the inlet 18 and the outlet 19 are respectively connected with the accommodation cavity 13.
  • the heat exchange body 10 in the embodiment of the present application may have an inlet 18 and an outlet 19 that are respectively connected with the accommodation cavity 13.
  • the inlet 18 and the outlet 19 may be respectively provided at both ends of the heat exchange body 10 in its length direction.
  • the thermal management device 100 in the embodiment of the present application can realize the cooling function by filling the inside of the accommodation cavity 13 formed between the top wall 11 and the bottom wall 12 with flowing heat exchange medium. Therefore, the heat exchange body 10 can be installed along its own length.
  • An inlet 18 and an outlet 19 are respectively provided at both ends in the direction, and the heat exchange medium is input from the inlet 18 and output from the outlet 19, so that the heat exchange medium flows along the aforementioned length between the inlet 18 and the outlet 19, thereby improving the thermal management device 100 The overall heat exchange efficiency with the battery cell 200.
  • the embodiment of the present application provides a thermal management device 100, which includes a heat exchange body 10 and a support member 20.
  • the heat exchange body 10 has a top wall 11 and a bottom wall that are oppositely arranged in its thickness direction.
  • the wall 12 and the first side wall 16 and the second side wall 17 respectively connected therebetween, the top wall 11, the bottom wall 12, the first side wall 16 and the second side wall 17 together form a receiving cavity 13.
  • the support component 20 is disposed in the accommodation cavity 13 .
  • the top wall 11 and the bottom wall 12 are arc-shaped plates that are concave toward each other.
  • the first side wall 16 and the second side wall 17 are both arc-shaped plates that are concave in the direction away from each other.
  • the support component 20 includes a plurality of support units 21 arranged in parallel at equal intervals, and the angle between the support units 21 and the top wall 11 and the bottom wall 12 is 30°-60°.
  • the present application provides a battery 2000, including: a plurality of battery cells 200 and the thermal management device 100 in any embodiment of the first aspect. At least part of the thermal management device 100 is located on adjacent battery cells 200. The cavity is used to exchange heat with the battery cell 200 , and the cavity is used to provide expansion space for the battery cell 200 .
  • multiple battery cells 200 and multiple thermal management devices 100 may be alternately arranged.
  • the thermal management devices 100 and the battery cells 200 may be alternately arranged along the thickness direction
  • the thermal management device 100 on the side of the body 200 cools the battery cells 200 .
  • an embodiment of the present application provides an electrical device, including the battery 2000 in the second aspect.
  • the battery 2000 and the electrical device provided in the embodiment of the present application have all the beneficial effects of the thermal management device 100 in the first aspect.
  • the thermal management device 100 please refer to the specific description of the thermal management device 100 in the above embodiments. This embodiment is This will not be described again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本申请公开了一种热管理装置、电池及用电装置。本申请实施例提供的热管理装置包括:换热本体,包括在自身厚度方向相对设置的顶壁、底壁以及位于所述顶壁以及所述底壁之间的容纳腔,所述容纳腔用于容纳换热介质;其中,沿所述厚度方向,所述顶壁和所述底壁中的至少一者向靠近另一者的方向凹陷设置并形成凹腔,所述凹腔用于为电池单体提供膨胀空间。本申请实施例提供的热管理装置能够吸收挤压应力、保持冷却效果。

Description

热管理装置、电池及用电装置 技术领域
本申请涉及电池领域,特别是涉及一种热管理装置、电池及用电装置。
背景技术
在现有的汽车行业中,电动车辆因其自身节能环保的优势成为了汽车产业可持续发展的重要组成部分,而在电动车辆中,作为车辆动力来源的电池是决定车辆性能的重要因素之一,也即电池技术是关乎电动车辆发展的一项重要因素。
在一些情况下,组成电池模组的多个电池单体在快速充放电过程中会产生大量的热量,此时,为了保证电池模组的正常工作,需要在模组周围设置热管理装置,以保证电池单体的温度在能够正常工作的范围内。在一些情况下,热管理装置易受到电池单体挤压导致流阻增大、换热效率下降。
因此,亟需一种能够吸收电池膨胀应力的热管理装置及相应的电池和用电装置。
发明内容
本申请提供一种热管理装置、电池及用电装置,其中的热管理装置能为电池单体的膨胀提供膨胀空间,不易受到电池单体挤压导致流阻增大,换热效率高。
第一方面,本申请提供一种热管理装置,用于与电池单体换热,热管理装置包括换热本体,包括在自身厚度方向相对设置的顶壁、底壁以及位于顶壁与底壁之间的容纳腔,容纳腔用于容纳换热介质;其中,沿厚度方向,顶壁和底壁中的至少一者向靠近另一者的方向凹陷设置并形成凹腔,凹腔用于为电池单体提供膨胀空间。
本申请实施例中的热管理装置在自身厚度方向上具有凹腔,该凹腔所提供的空间能够吸收待冷却的电池单体在使用过程中产生的膨胀,避免电池单体在膨胀的过程中,挤压顶壁或者底壁导致换热本体内部的容纳腔被 压缩,使得热管理装置不易受到电池挤压导致流阻增大,保证容纳腔内换热介质的流速等参数,同时,当电池单体热膨胀后进入换热本体的凹槽内与换热本体接触,与换热本体内的换热介质热交换,保证换热速率。
根据本申请实施例的一个方面,沿厚度方向,顶壁以及底壁中的至少一者为向靠近另一者凹陷设置的弧形板。弧形板能够使得热管理装置更易于与待冷却的电池单体表面相贴合。
根据本申请实施例的一个方面,沿厚度方向,顶壁以及底壁分别为向靠近另一者的方向凹陷设置的弧形板。将顶壁和底壁均设置为弧形板能够将热管理装置设置在相邻两个电池单体之间,分别吸收两侧的膨胀。
根据本申请实施例的一个方面,沿厚度方向,顶壁与底壁间隔且对称分布。对称设置能够使得热管理装置整体受力均匀,且便于加工。
根据本申请实施例的一个方面,在第一方向上,换热本体具有第一区以及第二区,顶壁与底壁在第一区沿厚度方向的距离小于在第二区沿厚度方向的距离,第一方向与厚度方向相交。换热本体自身在于厚度方向相交的第一方向上可以具有不同的厚度,以相应调整凹槽的位置。
根据本申请实施例的一个方面,第一区在第一方向的两侧分别设置有第二区。换热本体在第一方向上可以具有薄区以及位于薄区两侧的厚区,通过厚度变化与电池单体的膨胀相匹配。
根据本申请实施例的一个方面,沿第一方向,顶壁与底壁之间沿厚度方向的距离先减小后增大。换热本体的厚度整体上可以呈先减小后增大趋势,以便于与电池单体的膨胀相匹配,更好地吸收膨胀。
根据本申请实施例的一个方面,换热本体还包括在第一方向相对设置的第一侧壁以及第二侧壁,第一侧壁分别与顶壁以及底壁连接,第二侧壁分别与顶壁以及底壁连接,沿第一方向,第一侧壁以及第二侧壁中的至少一者向远离另一者的方向凹陷设置。换热本体的容纳腔可以为由顶壁、第一侧壁以及第二侧壁共同围合而成,其中向远离另一者的方向凹陷设置的第一侧壁和/或第二侧壁能够增大容纳腔的截面面积,提高热交换效率。
根据本申请实施例的一个方面,沿第一方向,第一侧壁以及第二侧壁分别为向远离彼此凹陷设置的弧形板。将第一侧壁和第二侧壁均设置为向 远离彼此方向凹陷的弧形板能够在厚度相同的情况下进一步扩大容纳腔的截面积。
根据本申请实施例的一个方面,沿第一方向,换热本体为轴对称结构体。轴对称结构的换热本体便于设计、加工,且受力均匀。
根据本申请实施例的一个方面,热管理装置还包括支撑部件,支撑部件设置于容纳腔并用于支撑顶壁以及底壁中的至少一者。支撑部件能够使得顶壁与底壁之间保持一定的距离,便于换热介质的流通。
根据本申请实施例的一个方面,支撑部件包括多个支撑单元,多个支撑单元间隔分布并将容纳腔分隔形成多个流道,每个支撑单元与顶壁和底壁中的至少一者连接。支撑单元能够对换热本体的顶壁与底壁提供一定的支撑作用,保持内部流道的流通性。
根据本申请实施例的一个方面,多个支撑单元间隔平行设置。平行设置的支撑单元使得热管理装置在支撑单元的分布方向上具有均匀的承载能力。
根据本申请实施例的一个方面,支撑单元呈板状结构体,至少一个支撑单元与顶壁和底壁中的至少一者之间的夹角小于90°。夹角小于90°、即倾斜设置的支撑单元能够在换热本体受到厚度方向上的挤压作用时提供被进一步压缩的空间,避免对电池单体造成损伤。
根据本申请实施例的一个方面,每个支撑单元与顶壁的夹角的范围为30°-60°;和/或,每个支撑单元与底壁的夹角的范围为30°-60°。支撑单元与顶壁或底壁之间的交角保持在合适范围内能够使得支撑单元具有合适的收缩形变余量。
根据本申请实施例的一个方面,多个支撑单元中,每相邻两个支撑单元沿第一方向的距离相等,第一方向与厚度方向相交。支撑单元可以为等间隔设置,为换热本体提供均匀的支撑。
根据本申请实施例的一个方面,换热本体与支撑部件为一体式结构体。换热本体与支撑部件一体成型能够提高热管理装置整体的生产效率。
第二方面,本申请提供一种电池,包括:多个电池单体以及第一方面任一实施例中的热管理装置,热管理装置的至少部分位于相邻的电池单体 之间并用于与电池单体换热,凹腔用于为电池单体提供膨胀空间。
第三方面,本申请提供一种用电装置,包括第二方面任一实施例中的电池,该电池用于提供电能。
本申请实施例提供的热管理装置具有凹腔,在使用过程中,能够为电池单体的膨胀以及电池成组设置时具有的成组公差提供空间余量,避免对电池单体造成损伤,并且能够使得热管理装置与电池单体保持接触,以改善冷却效果。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的结构示意图;
图3为图2所示电池的爆炸图;
图4为本申请另一些实施例提供的电池的爆炸图;
图5为本申请一些实施例提供的热管理装置的使用状态图;
图6为本申请一些实施例提供的热管理装置的结构示意图;
图7为本申请一些实施例提供的热管理装置的局部结构图;
图8为本申请一些实施例提供的热管理装置的剖视图。
附图标记:
1000-车辆;2000-电池;3000-控制器;4000-马达;
100-热管理装置;200-电池单体;300-壳体;
10-换热本体;20-支撑部件;
11-顶壁;12-底壁;13-容纳腔;14-第一区;15-第二区;16-第一侧壁;17-第二侧壁;18-入口;19-出口;21-支撑单元;
X-厚度方向;Y-第一方向。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系, 仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在现有的电池领域中,动力电池的应用规模逐渐增大,广泛应用于发电站的能源储存系统、交通工具的动力源乃至航空航天机械等领域中,由此,市场中对动力电池的需求量也在逐渐增大。为了达到一定的输出功率或输出电压,现有的电池通常是由多个串联或并联的电池单体连接组成的,而这些电池单体在充放电的过程中会出现发热及膨胀,通常需要在电池单体外部设置热管理装置以使电池能够保持在可以正常工作的温度范围内。
申请人注意到,在一些情况下,电池所采用的热管理装置为中空的冷却板,通过在冷却板内部填充流动的冷却介质进行热交换。在此基础上,电池单体在工作过程中通常会发生膨胀,而电池单体某一表面的膨胀程度通常与电池的表面积存在正相关,因此为了避免受到膨胀挤压的影响,现有的冷却板通常设置于矩形电池单体面积较小的底面或侧面,热交换效率较低;而设置于面积较大的侧面附近的冷却板相应地容易受到电池膨胀挤压,在一些情况下,冷却板的表面平直,在自身厚度方向上不易压缩,因此不能够吸收成组的公差以及电池单体的膨胀余量。
基于以上考虑,为了解决热管理装置在受到电池膨胀挤压时无法吸收电池膨胀力的问题,申请人提出一种热管理装置,该装置中包括换热本体,换热本体在自身厚度方向上相对设置的顶壁和底壁中的至少一者向靠近另一者的方向凹陷以形成凹腔,通过该凹腔吸收电池单体与换热本体之间在电池装配时产生的成组公差,并且能够通过该凹腔吸收电池单体在工作过程中产生的膨胀,当电池单体膨胀时,能够伸入凹腔并与换热本体进行热 交换,保证良好的热交换效率。
本申请实施例描述的技术方案适用于电池以及使用该电池的用电装置。
其中的用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
可以理解的是,本申请实施例公开的电池可以但不限用于前述车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的热管理装置、电池等组成该用电装置的电源系统,这样,能够在电池单体发生膨胀后仍保持结构的稳定性以及良好的热交换效率。在此基础上,本申请以下实施例以及附图中以将该热管理装置设置于电池单体的侧面为例进行说明,但应理解本申请并不限于此,还可以将本申请实施例提供的热管理装置应用于其他待冷却部件可能产生膨胀的场景中,并一同对其进行保护。
以下实施例为了方便说明,以用电装置为车辆为例进行说明。
图1为本申请一些实施例提供的车辆的结构示意图。如图1所示,车辆1000的内部设置有电池2000,电池2000可以设置在车辆1000的底部或头部或尾部。电池2000可以用于车辆1000的供电,例如,电池2000可以作为车辆1000的操作电源。
车辆1000还可以包括控制器3000和马达4000,控制器3000用来控制电池2000为马达4000供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池2000不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请一并参阅图2至图4,图2为本申请一些实施例提供的电池的结构示意图,图3为图2所示电池的爆炸图,图4为本申请另一些实施例提供的电池的爆炸图。
本申请实施例中的电池2000可以包括热管理装置100和电池单体200,其中热管理装置100和电池单体200可以为沿厚度方向Z依次交替设置。除此之外,电池2000还可以包括壳体300以及上盖,壳体300用于容纳并支撑电池单体200,壳体300可以具有不同的结构。在一些可选的实施例中,壳体300可以为与上盖相互盖合,共同限定出用于容纳电池单体200的腔体。其中,壳体300为一端开口的空心结构,同时上盖可以为板状结构,且盖合于壳体300的开口侧,以形成相应的用于容纳电池单体的腔体;或者,壳体300与上盖可以均为一侧开口的空心结构,即壳体300与上盖交界面位于电池单体200的中部,此时上盖的开口侧盖合于壳体300的开口侧,以形成相应的用于容纳电池单体200的腔体。当然,壳体300与上盖可以是多种形状,比如,圆柱体、长方体等。
为了提高壳体300与上盖连接后的密封性,壳体300与上盖之间还可以设置密封件,比如,密封胶、密封圈等。
可选地,在电池2000中,电池单体200可以是多个。若电池单体200为多个,多个电池单体200之间可串联或并联或混联,混联是指多个电池单体200中既有串联又有并联。多个电池单体200之间可直接串联或并联或混联在一起,当然,也可以是多个电池单体200先串联或并联或混联组成电池模组,多个电池模组再串联或并联或混联形成一个整体,并容纳于壳体300之内。
请一并参阅图5至图7,图5为本申请一些实施例提供的热管理装置的使用状态图,图6为本申请一些实施例提供的热管理装置的结构示意图,图7为本申请一些实施例提供的热管理装置的局部结构图。
本申请提供一种热管理装置100,该热管理装置100包括换热本体10,换热本体10具有在自身厚度方向X上相对设置的顶壁11、底壁12以及位于顶壁11与底壁12之间的容纳腔13,容纳腔13用于容纳换热介质;其中,沿厚度方向X,顶壁11和底壁12中的至少一者向靠近另一者的方向 凹陷设置并形成凹腔,凹腔用于为电池单体200提供膨胀空间。
本申请实施例中的热管理装置100可以为与电池单体200相邻设置,通过将换热本体10中面积较大的顶壁11和/或底壁12与电池单体200中面积较大的侧面相接触来提高换热效率,此时顶壁11以及底壁12中的至少一者向靠近另一者的方向凹陷设置,以在厚度方向X上形成向换热本体10内部凹陷的凹腔,由此形成能够吸收电池单体200膨胀力的富余空间,当电池单体200在工作过程中向靠近热管理装置100的方向膨胀凸出时,膨胀的部分可以嵌入该凹腔中,以避免对热管理装置100内部的容纳腔13造成影响,同时还能够避免热管理装置100在厚度方向X上无法压缩导致电池单体200膨胀后受损。
可以理解的是,本申请实施例中的凹腔可以为根据电池单体200的膨胀情况不同而采用不同的形状,以与电池单体200膨胀后的表面具有更多的接触面积,从而提高热交换效率。例如,可以为首先对与热管理装置100相邻设置的电池单体200的膨胀程度进行实验测试,采集电池单体200的膨胀程度与位置对应关系的相关数据,并据此对凹腔的形状及位置进行设计,使得凹腔的凹陷程度与电池单体200在对应位置的膨胀程度成正比,使得热管理装置100与电池单体200之间形成良好的匹配效果,在吸收膨胀造成的挤压作用力后能够保持平衡、稳定的受力状态,且能够具有较大的接触面积,以提供较好的热交换效果。示例性地,该凹腔可以为矩形凹槽、圆弧形凹槽、阶梯型凹槽等,可以根据使用需求及加工条件自行设计,本申请对此不做特定的限定。
本申请实施例中的换热本体10在厚度方向X上具有凹腔,可选地,该凹腔的体积可以为小于或等于电池单体200在工作工程中膨胀的体积,即使得电池单体200在膨胀后能够与凹腔的底部相抵接,使得电池单体200与换热本体10之间具有超过一定大小的接触面积,进而保证两者之间的热交换效果。相应地,在电池单体200未膨胀时,其温度较低,对热交换效率的要求同样较低,此时电池单体200与换热本体10之间可以为具有一定的间隙,电池单体200能够正常工作,而在电池单体200发热膨胀后,膨胀体积大于或等于凹腔体积,因此能够使得电池单体200与换热本体10抵 接,进而相应地提高热交换效率,使得电池单体200仍能够保持在一定温度范围内正常工作。
可选地,当顶壁11与底壁12均具有凹陷时,其形成的凹腔形状、位置可以相同,也可以分别根据相邻电池单体200膨胀情况的不同采用不同的设计。
本申请实施例中的热管理装置100在自身厚度方向X上具有凹腔,该凹腔所提供的空间能够吸收待冷却的电池单体200在使用过程中产生的膨胀,避免电池单体200在膨胀的过程中挤压顶壁11或者底壁12导致换热本体10内部的容纳腔13被压缩,由此能够使得热管理装置100不易受到电池单体200挤压导致流阻增大,从而保证容纳腔13内换热介质的流速等参数。同时,当电池单体200热膨胀后进入换热本体10的凹腔内与换热本体10接触时,电池单体200能够较为直接地与换热本体10内的换热介质热交换,保证换热速率。
本申请实施例中的热管理装置100包括换热本体10,而换热本体10包括顶壁11、底壁12以及容纳腔13,容纳腔13中填充有换热介质,通过顶壁11和/或底壁12的接触,换热介质能够与电池单体200之间形成热交换,从而在电池单体200工作过程中发热时交换并带走热量,达成冷却电池单体200的效果。
具体地,本申请实施例中的换热本体10具有容纳腔13,在使用该热管理装置100时,可以为在该容纳腔13中填充入能够吸收热量的换热介质,该换热介质可以为电池技术领域中常用的冷却液、冷却气体等形式。可选地,容纳腔13中的换热介质可以为流动的,通过采用循环流动的换热介质能够达到良好的冷却效果。当热管理装置100中的换热介质为循环流动冷却时,其流动方向可以为与换热本体10自身的延伸方向相同,从而充分地与待冷却的电池单体200接触,优化热交换效率。
在一些可选的实施例中,沿厚度方向X,顶壁11以及底壁12中的至少一者为向靠近另一者凹陷设置的弧形板。
本申请实施例中换热本体10中的顶壁11以及底壁12至少一者向靠近彼此的方向凹陷以形成凹腔,该凹腔可以为具有圆弧形底面的凹腔,即顶 壁11与底壁12中的至少一者具有弧形面,该弧形面可以为占据顶壁11/底壁12的至少部分区域,即顶壁11/底壁12中的至少部分区域为弧形板,当仅部分区域为弧形板时,这部分区域可以为沿着换热本体10自身的延伸方向同向延伸且呈矩形分布,并且可以为以换热本体10在第一方向Y上的中轴线为对称轴对称设置,以在该方向上形成承载力较为均匀的结构。采用弧形板的形式能够使得热管理装置100更易于与待冷却的电池单体200表面相贴合,从而提供更好的热交换效果。
在一些可选的实施例中,沿厚度方向X,顶壁11以及底壁12分别为向靠近另一者的方向凹陷设置的弧形板。
如前所述地,本申请实施例中可以为通过将顶壁11和底壁12设置为弧形板来形成避让电池单体200膨胀量的凹腔。将顶壁11和底壁12均设置为弧形板能够使得换热本体10同时吸收两侧的膨胀,由此可以将热管理装置100设置在相邻两个电池单体200之间,同时为两侧的电池单体200提供热交换效果,因此能够使得最终形成的电池结构紧凑且散热性良好。
在一些可选的实施例中,沿厚度方向X,顶壁11与底壁12间隔且对称分布。
在顶壁11以及底壁12均向靠近彼此的方向凹陷的实施例中,顶壁11与底壁12可以为在厚度方向X上间隔且对称设置,此时换热本体10的容纳腔13为关于厚度方向X上的中轴面对称的腔体,将顶壁11与底壁12间隔且对称设置能够使得换热本体10整体受力均匀,且便于加工。
请参阅图8,图8为本申请一些实施例提供的热管理装置的剖视图。在一些可选的实施例中,在第一方向Y上,换热本体10具有第一区14以及第二区15,顶壁11与底壁12之间在第一区14的沿厚度方向X的距离小于在第二区15的沿厚度方向X的距离,第一方向Y与厚度方向X相交。
本申请实施例中的换热本体10具有在厚度方向X上相对设置的顶壁11以及底壁12,这两个腔壁中的至少一者向靠近另一者所在方向凹陷,因此本申请实施例中的换热本体10各处在厚度方向X上延伸的尺寸可以不相同,形成一各处厚度不完全相同的容纳腔13,此时可以在第一方向上Y排列有至少两个厚度不同的区域,并将较薄的区域与电池单体200膨胀较为 严重的区域对应设置,通过调整顶壁11和/或底壁12的凹陷程度以及凹陷位置就能够相应地调整不同位置的厚度,达成所需的设计效果。
在一些可选的实施例中,第一区14在第一方向Y的两侧分别设置有第二区15。
本申请实施例中的换热本体10可以为具有多个第二区15,多个第二区15可以为分别设置于第一区14在第一方向Y上的两侧,此时第一区14对应电池单体200膨胀程度大的位置设置,以通过较深的凹腔避让电池单体200的膨胀凸出部分,第二区15则可以具有较大的厚度以便于容纳更多的换热介质,提供更好的冷却效果。
示例性地,本申请实施例中的热管理装置100中也可以为具有多个第一区14,这些第一区14可以为在第一方向Y上间隔设置。当热管理装置100在第一方向Y上延伸一定的尺寸时,每个热管理装置100可以在该方向上对应设置有多个电池单体200,此时可以为与每个电池单体200相对应地设置有至少一个厚度较小的第一区14,并在相邻的第一区14之间设置厚度较大的第二区15,或者,也可以为每个第一区14同时对应多个电池单体200设置,即同时容纳多个电池单体200的膨胀余量,第一区14与电池单体200之间的具体对应设置方法可以根据电池单体200在第一方向Y上的延伸尺寸以及膨胀程度进行设计,本申请对此不作特定的限定。
在一些可选的实施例中,沿第一方向Y,顶壁11与底壁12在厚度方向X上的距离先减小后增大。
本申请实施例中的换热本体10可以为在第一方向Y上具有位于中部且较薄的第一区14,以及设置于第一区14两侧且较厚的第二区15,由此能够使得顶壁11与底壁12之间沿厚度方向X的距离呈现先减小后增大的趋势,以便于与每个电池单体200的膨胀一一对应地进行匹配,更好地吸收膨胀并进行热交换。
在一些可选的实施例中,换热本体10还包括在第一方向Y相对设置的第一侧壁16以及第二侧壁17,第一侧壁16分别与顶壁11以及底壁12连接,第二侧壁17分别与顶壁11以及底壁12连接,沿第一方向Y,第一侧壁16以及第二侧壁17中的至少一者向远离另一者的方向凹陷设置。
本申请实施例中换热本体10的容纳腔13可以为由顶壁11、第一侧壁16、底壁12以及第二侧壁17依次首尾相接组成的腔壁围合而成,其中向远离另一者的方向凹陷设置的第一侧壁16和/或第二侧壁17能够增大容纳腔13的截面面积,从而提高热交换效率。
可以理解的是,与顶壁11以及底壁12相类似地,第一侧壁16以及第二侧壁17的凹陷也可以为矩形凹陷、圆弧形凹陷以及阶梯形凹陷等多种结构,且两个侧壁可以分别采用不同形状的凹陷。
在一些可选的实施例中,沿第一方向Y,第一侧壁16以及第二侧壁17分别为向远离彼此凹陷设置的弧形板。
与顶壁11、底壁12的设置相类似地,本申请实施例中的第一侧壁16和第二侧壁17可以同时设置为弧形板,且两块弧形板均向远离彼此的方向凹陷,形成容纳腔13的圆弧状侧壁。将第一侧壁16和第二侧壁17均设置为向远离彼此方向凹陷的弧形板能够在换热本体10的厚度不变的情况下进一步扩大容纳腔13的截面积,提高换热介质的流速以及容量,进一步提高换热效果。
在一些可选的实施例中,沿第一方向Y,换热本体10为轴对称结构体。
本申请实施例中的换热本体10可以为对称结构体,即顶壁11与底壁12对称设置,第一侧壁16与第二侧壁17对称设置,形成均匀对称的结构体,此时换热本体10能够形成均匀的受力结构且便于加工,同时,当换热本体10为轴对称结构体时还能够相应地形成轴对称的容纳腔13,使得内部换热介质流动更为均匀。
如图7所示,在一些可选的实施例中,热管理装置100还包括支撑部件20,支撑部件20设置于容纳腔13并用于支撑顶壁11以及底壁12中的至少一者。
本申请实施例中的热管理装置100的容纳腔13中可以设置有支撑部件20,该支撑部件20可以为与顶壁11以及底壁12中的至少一者连接设置,并用于在顶壁11与底壁12之间形成支撑结构。本申请实施例中的支撑部件20可以采用间隔设置的多个支撑柱或者支撑板等结构形式,只需保证换热介质能够在容纳腔13内部顺畅地流动即可。本申请实施例中的支撑部件 20能够提供支撑力,使得顶壁11与底壁12之间保持一定的距离,便于换热介质的流通。
在一些可选的实施例中,支撑部件20包括多个支撑单元21,多个支撑单元21间隔分布并将容纳腔13分隔形成多个流道,每个支撑单元21与顶壁11和底壁12中的至少一者连接设置。
本申请实施例中的支撑单元21可以为支撑板,通过支撑单元21将容纳腔13分割为多个部分并在相邻的支撑板之间形成用于通过换热介质的流道,支撑单元21所提供的支撑力能够在热管理装置100受到厚度方向X上的挤压应力后为流道提供支撑力,改善挤压后流阻增大的问题。
可以理解的是,相邻的支撑单元21之间形成的通道应当与换热介质在容纳腔13内部流动的方向相同,以形成供换热介质通过的流道,使得热管理装置100内部具有更低的流阻,从而进一步提高冷却效率。
在一些可选的实施例中,多个支撑单元21间隔平行设置。
本申请实施例中的支撑单元21可以为平行设置,以形成通畅、流阻较小的流道,提高换热介质在多个支撑单元21之间的流动性,进而保证热管理装置100具有良好的换热效果。并且平行设置的支撑单元21能够在顶壁11与底壁12之间提供均匀的支撑力,使得换热本体10在厚度方向X上具有均匀可靠的承载能力,并且平行设置的支撑单元21便于进行加工。
可以理解的是,多个支撑单元21可以为均沿着换热本体10自身的长度方向延伸,同时多个支撑单元21可以为采用相互平行的直线延伸、波浪形延伸、折线形延伸等多种形状,只需能够保证换热介质流畅通过即可,本申请对此不作特定的限定。
在一些可选的实施例中,支撑单元21呈板状结构体,至少一个支撑单元21与顶壁11和底壁12中的至少一者之间的夹角小于90°。
本申请实施例中的支撑单元21可以为倾斜设置,即与顶壁11和底壁12中的至少一者之间形成小于90°的夹角,由此能够使得热管理装置100在受到厚度方向X上的挤压应力时,其支撑强度小于一定的阈值。即在换热本体10受到电池单体200膨胀所施加的厚度方向X上的挤压作用力时,能够使得支撑单元21产生压缩形变,从而减小换热本体10在该处的厚度, 进一步避让电池单体200产生的膨胀,避免对电池单体200造成损伤。
可以理解的是,在一些顶壁11和/或底壁12为弧形板的实施例中,该夹角可以指弧形板在第一方向Y上的两侧边缘所在的平面与支撑单元21之间的夹角。
在一些可选的实施例中,每个支撑单元21与顶壁11的夹角的取值范围为30°-60°;和/或,每个支撑单元21与底壁12的夹角的取值范围为30°-60°。
如前所述地,在支撑单元21与顶壁11以及底壁12之间的夹角小于90°的实施例中,即在支撑单元21倾斜设置的实施例中,每个支撑单元21与顶壁11以及底壁12之间的夹角可以为保持在30°-60°之间,以使得支撑单元21在厚度方向X上保持一定的延伸距离,同时能够在受到该方向上的作用力时收缩形变,吸收膨胀造成的挤压应力,进一步避让电池单体200的膨胀区域。
在一些可选的实施例中,多个支撑单元21中,每相邻两个支撑单元21之间的距离相等。
本申请实施例中的支撑单元21可以为等间隔设置,从而为具有凹腔的顶壁11以及底壁12提供均匀、稳定的支撑,使得热管理装置100在受到电池单体200的膨胀挤压时整体上具有较为均匀可靠的承载能力。
在一些可选的实施例中,换热本体10与支撑部件20为一体式结构体。
本申请实施例中的换热本体10具有容纳腔13,该容纳腔13中则还有用于提供支撑作用的支撑部件20,在支撑部件20与顶壁11和/或底壁12相连接的实施例中,支撑部件20可以为与换热本体10一体成型设置,由此能够提高热管理装置100整体的生产效率,且能够提高热管理装置100整体的强度。
在一些可选的实施例中,换热本体10具有入口18和出口19,入口18与出口19分别与容纳腔13相连通。
本申请实施例中的换热本体10可以具有分别与容纳腔13相连通的入口18和出口19,其中入口18以及出口19可以为分别设置于换热本体10在自身长度方向上的两端。本申请实施例中的热管理装置100可以为通过 在顶壁11与底壁12之间形成的容纳腔13内部填充流动的换热介质来实现冷却功能,因此可以在换热本体10在自身长度方向上的两端分别设置入口18和出口19,并将换热介质由入口18输入,由出口19输出,使得换热介质在入口18与出口19之间沿前述长度流动,提高热管理装置100与电池单体200之间的整体热交换效率。
如图7和图8所示,本申请实施例提供一种热管理装置100,包括换热本体10以及支撑部件20,其中换热本体10具有在自身厚度方向上相对设置的顶壁11、底壁12以及分别连接于二者之间的第一侧壁16、第二侧壁17,顶壁11、底壁12、第一侧壁16以及第二侧壁17共同围合形成容纳腔13,支撑部件20设置于容纳腔13中。本申请实施例中的顶壁11、底壁12均为向靠近彼此的方向凹陷设置的弧形板,第一侧壁16、第二侧壁17均为向远离彼此的方向凹陷设置的弧形板,换热本体10的厚度在第一方向Y上先减小后增大,且整体呈轴对称设置。支撑部件20包括多个等间隔平行设置的支撑单元21,支撑单元21与顶壁11、底壁12之间的夹角为30°-60°。
第二方面,本申请提供一种电池2000,包括:多个电池单体200以及第一方面任一实施例中的热管理装置100,热管理装置100的至少部分位于相邻的电池单体200之间并用于与电池单体200换热,凹腔用于为电池单体200提供膨胀空间。
本申请实施例中的电池2000中可以交替设置有多个电池单体200以及多个热管理装置100,热管理装置100与电池单体200可以为沿厚度方向X交替设置,通过设置在电池单体200侧面的热管理装置100对电池单体200进行冷却。
第三方面,本申请实施例提供一种用电装置,包括第二方面中的电池2000。
本申请实施例中提供的的电池2000和用电装置具有前述第一方面中的热管理装置100的全部有益效果,具体可以参考上述各实施例对于热管理装置100的具体说明,本实施例在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非 对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (19)

  1. 一种热管理装置,用于与电池单体换热,所述热管理装置包括:
    换热本体,包括在自身厚度方向相对设置的顶壁、底壁以及位于所述顶壁以及所述底壁之间的容纳腔,所述容纳腔用于容纳换热介质,以与电池单体热交换;
    其中,沿所述厚度方向,所述顶壁和所述底壁中的至少一者向靠近另一者的方向凹陷设置并形成凹腔,所述凹腔用于为所述电池单体提供膨胀空间。
  2. 根据权利要求1所述的热管理装置,其中,沿所述厚度方向,所述顶壁以及所述底壁中的至少一者为向靠近另一者凹陷设置的弧形板。
  3. 根据权利要求2所述的热管理装置,其中,沿所述厚度方向,所述顶壁以及所述底壁分别为向靠近另一者的方向凹陷设置的弧形板。
  4. 根据权利要求2所述的热管理装置,其中,沿所述厚度方向,所述顶壁与所述底壁间隔且对称分布。
  5. 根据权利要求1至4任意一项所述的热管理装置,其中,在第一方向上,所述换热本体具有第一区以及第二区,所述顶壁与所述底壁在所述第一区沿所述厚度方向的距离小于在所述第二区沿所述厚度方向的距离,所述第一方向与所述厚度方向相交。
  6. 根据权利要求5所述的热管理装置,其中,所述第一区在所述第一方向的两侧分别设置有所述第二区。
  7. 根据权利要求5所述的热管理装置,其中,沿所述第一方向,所述顶壁与所述底壁在所述厚度方向的距离先减小后增大。
  8. 根据权利要求5至7任意一项所述的热管理装置,其中,所述换热本体还包括在所述第一方向相对设置的第一侧壁以及第二侧壁,所述第一 侧壁分别与所述顶壁以及所述底壁连接,所述第二侧壁分别与所述顶壁以及所述底壁连接,沿所述第一方向,所述第一侧壁以及所述第二侧壁中的至少一者向远离另一者的方向凹陷设置。
  9. 根据权利要求8所述的热管理装置,其中,沿所述第一方向,所述第一侧壁以及所述第二侧壁分别为向远离彼此凹陷设置的弧形板。
  10. 根据权利要求5至9任意一项所述的热管理装置,其中,沿所述第一方向,所述换热本体为轴对称结构体。
  11. 根据权利要求1至10任意一项所述的热管理装置,其中,所述热管理装置还包括支撑部件,所述支撑部件设置于所述容纳腔并用于支撑所述顶壁以及所述底壁中的至少一者。
  12. 根据权利要求11所述的热管理装置,其中,所述支撑部件包括多个支撑单元,多个所述支撑单元间隔分布并将所述容纳腔分隔形成多个流道,每个所述支撑单元与所述顶壁和所述底壁中的至少一者连接。
  13. 根据权利要求12所述的热管理装置,其中,多个所述支撑单元平行设置。
  14. 根据权利要求12所述的热管理装置,其中,所述支撑单元呈板状结构体,至少一个所述支撑单元与所述顶壁和所述底壁中的至少一者之间的夹角小于90°。
  15. 根据权利要求14所述的热管理装置,其中,每个所述支撑单元与所述顶壁的夹角的范围为30°-60°;
    和/或,每个所述支撑单元与所述底壁的交角的取值范围为30°-60°。
  16. 根据权利要求12所述的热管理装置,其中,多个所述支撑单元中,每相邻两个所述支撑单元沿所述第一方向的距离相等,所述第一方向与所述厚度方向相交。
  17. 根据权利要求11至16任意一项所述的热管理装置,其中,所述换热本体与支撑部件为一体式结构体。
  18. 一种电池,包括:
    多个电池单体;
    如权利要求1至17任意一项所述的热管理装置,所述热管理装置的至少部分位于相邻的所述电池单体之间并用于与所述电池单体热交换,所述凹腔用于为电池单体提供膨胀空间。
  19. 一种用电装置,包括如权利要求18所述的电池,所述电池用于提供电能。
PCT/CN2022/101392 2022-02-21 2022-06-27 热管理装置、电池及用电装置 WO2024000084A1 (zh)

Priority Applications (20)

Application Number Priority Date Filing Date Title
CN202280005915.4A CN116157948A (zh) 2022-06-27 2022-06-27 热管理装置、电池及用电装置
PCT/CN2022/101392 WO2024000084A1 (zh) 2022-06-27 2022-06-27 热管理装置、电池及用电装置
CN202380008511.5A CN116724443A (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070126 WO2023155621A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008509.8A CN116802897A (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070125 WO2023155620A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070131 WO2023155622A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014404.0U CN219575742U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008508.3A CN116491016A (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070136 WO2023155625A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070133 WO2023155623A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014583.8U CN219203337U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008507.9A CN116745978A (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014474.6U CN220042013U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014354.6U CN219203336U (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070135 WO2023155624A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014214.9U CN219203335U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008512.XA CN116848705A (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008510.0A CN116868417A (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320187954.2U CN220341304U (zh) 2022-06-27 2023-02-07 热管理装置、电池及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/101392 WO2024000084A1 (zh) 2022-06-27 2022-06-27 热管理装置、电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024000084A1 true WO2024000084A1 (zh) 2024-01-04

Family

ID=86351071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101392 WO2024000084A1 (zh) 2022-02-21 2022-06-27 热管理装置、电池及用电装置

Country Status (2)

Country Link
CN (2) CN116157948A (zh)
WO (1) WO2024000084A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020072004A (ja) * 2018-10-31 2020-05-07 イビデン株式会社 組電池用熱伝達抑制シート、シート構造体および組電池
CN112103420A (zh) * 2019-06-18 2020-12-18 宁德时代新能源科技股份有限公司 温控组件及电池包
CN214411366U (zh) * 2021-01-28 2021-10-15 江苏塔菲尔动力系统有限公司 电池模组端板、电池模组及电池包
CN215184212U (zh) * 2021-07-16 2021-12-14 中航锂电科技有限公司 一种电池组
CN113906624A (zh) * 2019-06-28 2022-01-07 三洋电机株式会社 电源装置和具有该电源装置的电动车辆以及蓄电装置
CN215644645U (zh) * 2021-06-03 2022-01-25 凯博能源科技有限公司 散热组件及电池组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020072004A (ja) * 2018-10-31 2020-05-07 イビデン株式会社 組電池用熱伝達抑制シート、シート構造体および組電池
CN112103420A (zh) * 2019-06-18 2020-12-18 宁德时代新能源科技股份有限公司 温控组件及电池包
CN113906624A (zh) * 2019-06-28 2022-01-07 三洋电机株式会社 电源装置和具有该电源装置的电动车辆以及蓄电装置
CN214411366U (zh) * 2021-01-28 2021-10-15 江苏塔菲尔动力系统有限公司 电池模组端板、电池模组及电池包
CN215644645U (zh) * 2021-06-03 2022-01-25 凯博能源科技有限公司 散热组件及电池组
CN215184212U (zh) * 2021-07-16 2021-12-14 中航锂电科技有限公司 一种电池组

Also Published As

Publication number Publication date
CN116157948A (zh) 2023-05-23
CN220341304U (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
WO2023201923A1 (zh) 水冷板组件、水冷系统、电池及其箱体以及用电装置
WO2023207798A1 (zh) 热管理部件、电池及用电装置
CN217719768U (zh) 热管理部件、电池以及用电设备
WO2024031413A1 (zh) 电池以及用电装置
WO2024051044A1 (zh) 冷却结构、电池及用电装置
WO2024021248A1 (zh) 电池单体、电池及用电设备
WO2023165377A1 (zh) 箱体结构、电池及用电装置
WO2024000084A1 (zh) 热管理装置、电池及用电装置
WO2024031418A1 (zh) 电池、用电装置以及电池的成型方法
CN219321458U (zh) 一种换热板、电池装置
WO2023160030A1 (zh) 箱体、电池、用电装置以及制备电池的装置
CN219642916U (zh) 热管理部件、电池及用电设备
WO2023185244A1 (zh) 一种散热结构、高压盒、电池和用电装置
CN219203302U (zh) 热管理部件、热管理系统、电池及用电装置
WO2024021293A1 (zh) 热管理部件、电池以及用电装置
CN216903119U (zh) 电池热管理系统、电池及用电装置
WO2023245501A1 (zh) 热管理部件、热管理系统、电池及用电装置
CN216250955U (zh) 电池和用电设备
WO2023060714A1 (zh) 电池、用电设备、制造电池的方法和设备
CN218414776U (zh) 冷却装置、电池及用电装置
WO2024031416A1 (zh) 电池以及用电装置
WO2023240460A1 (zh) 一种热管理组件、电池和用电装置
CN219979666U (zh) 电池和用电装置
CN219303778U (zh) 电池及用电设备
CN218827514U (zh) 热管理部件、电池以及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948209

Country of ref document: EP

Kind code of ref document: A1