WO2024051044A1 - 冷却结构、电池及用电装置 - Google Patents

冷却结构、电池及用电装置 Download PDF

Info

Publication number
WO2024051044A1
WO2024051044A1 PCT/CN2022/142788 CN2022142788W WO2024051044A1 WO 2024051044 A1 WO2024051044 A1 WO 2024051044A1 CN 2022142788 W CN2022142788 W CN 2022142788W WO 2024051044 A1 WO2024051044 A1 WO 2024051044A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
cooling structure
cooling body
cooling
top wall
Prior art date
Application number
PCT/CN2022/142788
Other languages
English (en)
French (fr)
Other versions
WO2024051044A8 (zh
Inventor
胡利军
侯跃攀
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2024051044A1 publication Critical patent/WO2024051044A1/zh
Publication of WO2024051044A8 publication Critical patent/WO2024051044A8/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of secondary batteries, and in particular to a cooling structure, a battery and an electrical device.
  • the battery cells in the battery assembly will squeeze each other due to thermal expansion, causing both the battery cells and the cooling structure to bear greater stress, causing the battery to be easily damaged and affecting normal use.
  • an embodiment of the present application provides a cooling structure, including: a cooling body, a flow channel is provided in the cooling body; and a support member, which is provided in the flow channel; the support member includes at least two connecting sections and a plurality of Each two adjacent connecting segments are fixedly connected to two opposite inner surfaces of the cooling body along the thickness direction.
  • the buffering segments connect the two adjacent connecting segments and are configured to produce elastic deformation after being stressed. .
  • the above-mentioned cooling structure by arranging a support member in the flow channel of the cooling body, and each two adjacent connecting sections of the support member are fixedly connected to the two opposite inner surfaces of the cooling body along the thickness direction, can achieve the cooling structure in the thickness direction of the cooling body. It plays a supporting role.
  • the buffer section connects two adjacent connection sections and is structured to produce elastic deformation after being stressed. In this way, when the cooling body is pressed, the buffer section can absorb part of the stress and produce elasticity. deformation, and disperse the stress on the cold plate through the entire support to avoid stress concentration and reduce the impact of stress on the cooling structure and battery cells, making the battery less likely to be damaged and ensuring its normal use.
  • each connecting segment is attached to the inner surface of the cooling body, and at least one connecting segment is provided with a protruding portion protruding toward the center of the flow channel along the thickness direction of the cooling body.
  • the protruding portion includes a top wall and side walls respectively connected to both sides of the top wall; the angle between the top wall and the side walls is greater than or equal to 90° and less than 180°.
  • the plane of the top wall is parallel to the inner surface of the cooling body; the distance between the top wall and the inner surface of the cooling body connected to the top wall through the side wall is greater than or equal to 1 millimeter (mm) and Less than or equal to 3 millimeters (mm).
  • the protruding portion is arranged symmetrically about the center line of the connecting section where it is located. Such a design allows the protruding portion to be located at the center of the connecting end where it is located. In this way, the force distribution between the protruding portion and the connecting section is more uniform and the structural stability is higher.
  • the cross-sectional shape of the buffer section is a straight line, a broken line or an arc.
  • connection between the connecting section and the buffering section has a smooth transition.
  • the connections between the connecting section and the buffer section are all on the inner surface of the cooling body.
  • the cooling structure further includes a driving member connected to the buffer segment to drive the buffer segment to elastically deform, or to drive the buffer segment to return to a state before elastic deformation.
  • a driving part connected to the buffer section in the cooling structure even if the cooling body is not subject to external pressure, the driving part can drive the buffer section to elastically deform, and the shape of the cooling body can be changed in advance with the help of the active deformation of the buffer section. This prevents it from being subject to greater pressure, protects the cooling body, and makes it more flexible to use.
  • an embodiment of the present application also provides a battery, including: a box; a battery cell, the battery cell is contained in the box; and a cooling structure as described above, the cooling structure is attached to the battery cell one or more sides of the body.
  • the above-mentioned battery adopts the above-mentioned cooling structure and provides a support member in the flow channel of the cooling body.
  • Each two adjacent connecting sections of the support member are fixedly connected to two opposite inner surfaces of the cooling body along the thickness direction, so that the cooling body can be cooled.
  • the main body plays a supporting role in the thickness direction of the main body.
  • the buffer section connects two adjacent connecting sections and is configured to produce elastic deformation after being stressed.
  • the buffer section can It absorbs part of the stress to produce elastic deformation, and disperses the stress on the cold plate through the entire support to avoid stress concentration and reduce the impact of stress on the cooling structure and battery cells, making the battery less likely to be damaged and ensuring its normal use.
  • an embodiment of the present application also provides an electrical device, including: the above-mentioned battery, and the battery is used to provide electric energy.
  • the above-mentioned electric device uses the above-mentioned battery to provide electric energy. Since the battery is not easily damaged, the safety and reliability of the electric device are also improved.
  • Figure 1 is a schematic diagram of the overall structure of a vehicle provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of the overall structure of a battery provided by an embodiment of the present application.
  • Figure 3 is an exploded view of the overall structure of the battery provided by one embodiment of the present application.
  • Figure 4 is a schematic diagram of the overall structure of the cooling structure provided by an embodiment of the present application.
  • Figure 5 is a cross-sectional view of a cooling structure provided by an embodiment of the present application.
  • Figure 6 is a partial enlarged schematic diagram of position A in Figure 5;
  • Figure 7 is a cross-sectional view of a cooling structure provided by another embodiment of the present application.
  • Figure 8 is a partially enlarged schematic diagram of position B in Figure 7.
  • Cooling body 111: Flow channel
  • 120 support member, 121: connecting section, 122: buffer section, 123: protruding portion, 1231: top wall, 1232: side wall;
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified limitations. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • Power batteries are not only used in energy storage power systems such as hydraulic, thermal, wind and solar power stations, but also widely used in electric bicycles and electric motorcycles. vehicles, electric vehicles and other electric vehicles, as well as military equipment and aerospace and other fields. As the application fields of power batteries continue to expand, the safety of battery use has gradually become the focus of attention.
  • the applicant has conducted in-depth research and designed a cooling structure that passes through the flow of the cooling body.
  • a support member is provided in the channel, and each two adjacent connecting sections of the support member are fixedly connected to two opposite inner surfaces of the cooling body along the thickness direction, which can support the cooling body in the thickness direction.
  • the buffer section Connects two adjacent connecting sections and is configured to produce elastic deformation after being stressed. In this way, when the cooling body is pressurized, the buffer section can absorb part of the stress and produce elastic deformation, and the cold plate can be moved through the entire support member.
  • the stress is dispersed to avoid stress concentration and reduce the impact of stress on the cooling structure and battery cells, making the battery less susceptible to damage and ensuring its normal use.
  • the cooling structure disclosed in the embodiment of the present application is applied to a battery.
  • the buffer section can absorb part of the stress and produce elastic deformation, and the entire support member can The stress on the cold plate is dispersed to avoid stress concentration and reduce the impact of stress on the cooling structure and battery cells, making the battery less likely to be damaged and making the battery more reliable.
  • Embodiments of the present application provide an electrical device that uses a battery as a power source.
  • the electrical device may be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric vehicle, a ship, a spacecraft, etc.
  • electric toys may include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft may include airplanes, rockets, space shuttles, spaceships, etc.
  • FIG. 1 is a schematic diagram of the overall structure of a vehicle provided by an embodiment of the present application.
  • the vehicle can be a fuel vehicle, a gas vehicle or a new energy vehicle, where the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 10 is disposed inside the vehicle, and the battery 10 can be disposed at the bottom, head, or tail of the vehicle.
  • the battery 10 may be used to power a vehicle.
  • the battery 10 may be used as an operating power source for the vehicle.
  • the vehicle may also include a controller and a motor, and the controller is used to control the battery 10 to provide power to the motor, for example, for starting, navigating and driving the vehicle to meet its power requirements.
  • the battery 10 can not only be used as the operating power source of the vehicle, but also can be used as the driving power source of the vehicle, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle.
  • FIG. 2 is a schematic diagram of the overall structure of the battery 10 provided by one embodiment of the present application.
  • FIG. 3 is an exploded view of the overall structure of the battery 10 provided by one embodiment of the present application.
  • the battery 10 composed of battery cells 300 can be used as a power supply system of the electrical device 1 , and several battery cells 300 are arranged in the box 200 .
  • the battery cell 300 refers to the smallest unit that makes up the battery 10.
  • the multiple battery cells 300 can be connected in series or in parallel or in a mixed connection.
  • a mixed connection refers to multiple batteries. There are both series and parallel connections in the monomer 300.
  • Multiple battery cells 300 can be directly connected in series or in parallel or mixed together to form a battery module, and be accommodated in the box 200 of the battery 10; of course, multiple battery cells 300 can also be connected in series or in parallel or A battery module is formed by mixed connection, and multiple battery modules are connected in series, parallel, or mixed to form a battery module, and are accommodated in the box 200 of the battery 10 .
  • the box 200 is used to provide a storage space for the battery cells 300, and the box 200 can adopt a variety of structures.
  • the box 200 may include a bottom plate and several side plates.
  • the several side plates are connected end-to-end.
  • the bottom plate is connected to the bottom of each side plate and together with the side plates, it is used to accommodate the battery cells 300 .
  • the accommodation space that is, the bottom plate and the side plates are surrounded to form an accommodation groove.
  • the receiving groove formed by the bottom plate and the side plate can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • a cooling structure 100 is provided in the box 200 between two adjacent battery cells 300 .
  • the cooling structure 100 is located at different locations.
  • multiple battery cells 300 are arranged in a rectangular array in the box 200.
  • the cooling structure 100 is extended along the direction of the long side of the rectangle, and The plurality of cooling structures 100 are spaced apart along the direction of the short side of the rectangle.
  • the utilization rate of the space inside the box 200 can be improved, and the contact area between the cooling structure 100 and the battery cell 300 is also larger, which is beneficial to The cooling effect of the battery cell 300 is better.
  • the battery cells 300 and the cooling structure 100 can also be arranged in other directions within the box 200 , which will not be described again here.
  • Figure 4 is a schematic diagram of the overall structure of the cooling structure 100 provided by one embodiment of the present application.
  • Figure 5 is a cross-sectional view of the cooling structure 100 provided by one embodiment of the present application.
  • Figure 6 is a partial enlarged schematic diagram of position A in Figure 5.
  • the embodiment of the present application provides a cooling structure 100.
  • the cooling structure 100 includes a cooling body 110 and a support member 120.
  • the cooling body 110 is provided with a flow channel 111;
  • the support member 120 is provided in the flow channel 111;
  • the support member 120 includes at least Two connecting sections 121 and several buffer sections 122.
  • Each two adjacent connecting sections 121 are fixedly connected to two opposite inner surfaces of the cooling body 110 along the thickness direction.
  • the buffering section 122 connects the two adjacent connecting sections 121. and is constructed to produce elastic deformation upon application of force.
  • the cooling structure 100 is used to cool the battery 10, wherein the flow channel 111 is a channel opened on the cooling body 110 for fluid circulation.
  • the flow channel 111 can confine the fluid therein so that the fluid flows in a specific direction.
  • the cross-sectional shape, cross-sectional size, extension direction, etc. of the flow channel 111 are not limited here.
  • the heat transfer fluid can be filled in the flow channel 111.
  • the heat transfer fluid flows in the flow channel 111, it flows through one or more sides of the battery cell 300, taking away the heat generated by the battery cell 300 and flowing to the outside. After the heat is dissipated and cooled down, it flows through one or more sides of the battery cell 300 again, forming a cycle to achieve the effect of cooling the battery cell 300 .
  • the cooling body 110 may be a plate-like structure, which may include two opposite support plates.
  • the two support plates are at the ends. Fixed connection to form a sealed structure, a flow channel 111 is formed between the two support plates.
  • the two support plates may be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc. This embodiment of the present application does not impose any special restrictions on this.
  • the cooling structure 100 also includes a support member 120 .
  • the support member 120 is provided in the flow channel 111 of the cooling body 110 to support the cooling body 110 .
  • the support member 120 includes at least two connecting sections 121 and a plurality of buffer sections 122. Each two adjacent connecting sections 121 are fixedly connected to two opposite inner surfaces of the cooling body 110 along the thickness direction, that is, the cooling body 110 is located on its inner surface. It has two opposite inner surfaces in the thickness direction.
  • any two adjacent connecting sections 121 one of them is fixedly connected to one inner surface of the cooling body 110, and the other one is fixedly connected to the other inner surface of the cooling body 110.
  • the two connecting sections 121 can support the cooling body 110 in the thickness direction.
  • a buffer section 122 is provided between each two adjacent connecting sections 121.
  • the buffer section 122 connects the two adjacent connecting sections 121.
  • the length of each connecting end and the number of connecting segments 121 can be adjusted according to the size of the flow channel 111 in the cooling body 110.
  • the length and number of the buffer segments 122 are determined according to the parameters of the connecting segments 121. Adaptation is performed to ensure that the support member 120 can provide good support to the cooling body 110 .
  • the cooling structure 100 of the embodiment of the present application is provided with a support member 120 in the flow channel 111 of the cooling body 110.
  • Each two adjacent connecting sections 121 of the support member 120 are fixedly connected to two opposite inner sides of the cooling body 110 along the thickness direction.
  • the surface can support the cooling body 110 in the direction of pressure.
  • the buffer section 122 connects the two adjacent connecting sections 121 and is configured to produce elastic deformation after being stressed. In this way, when When the cooling body 110 is under pressure, the buffer section 122 can absorb part of the stress to produce elastic deformation, and disperse the stress on the cold plate through the entire support member 120 to avoid stress concentration and reduce the stress on the cooling structure 100 and the battery cell 300 influence, making the battery 10 less susceptible to damage and ensuring its normal use.
  • each connecting segment 121 is attached to the inner surface of the cooling body 110 , and at least one connecting segment 121 is provided with a protruding portion 123 protruding toward the center of the flow channel 111 along the thickness direction of the cooling body 110 .
  • each two adjacent connecting sections 121 are fixedly connected to the two opposite inner surfaces of the cooling body 110 in the thickness direction.
  • the fixed connection between the two can be welding, screwing, etc., in order to ensure the connection.
  • the connection between the segment 121 and the cooling body 110 is tight.
  • the connecting segment 121 is attached to the inner surface of the cooling body 110. In this way, the contact area between the connecting segment 121 and the cooling body 110 is larger.
  • one, more or all of the connecting sections 121 are provided with a protruding portion 123 that protrudes toward the center of the flow channel 111 along the thickness direction of the cooling body 110.
  • the protruding portion 123 It can contact the inner surface of the cooling body 110 that is opposite to the protruding portion 123, so that a certain gap is maintained between the two opposite inner surfaces of the cooling body 110 in the thickness direction, thereby ensuring the normal use of the flow channel 111 and avoiding the occurrence of The flow channel 111 is crushed.
  • the protruding portion 123 includes a top wall 1231 and side walls 1232 respectively connected to both sides of the top wall 1231; the angle between the top wall 1231 and the side walls 1232 is greater than or equal to 90 degrees (°) and less than 180 degrees. Degree (°).
  • the protruding portion 123 extends toward the center of the flow channel 111, so its top wall 1231 is opposite to and spaced apart from the inner surface of the cooling body 110.
  • the top wall 1231 and the inner surface of the cooling body 110 are connected through the side wall 1232.
  • the cross-sectional shape of the protruding portion 123 is also different depending on the angle between the top wall 1231 and the side wall 1232. For example, if the angle between the top wall 1231 and the side wall 1232 is 90°, then the protruding portion 123
  • the cross-sectional shape is a rectangle.
  • the cross-sectional shape of the protruding portion 123 is a trapezoid.
  • the angle between the top wall 1231 and the side wall 1232 may be 90°, 100°, 110°, 120°, 135°, etc.
  • the above data are only examples. In actual embodiments, the angle between the top wall 1231 and the side wall 1231 may be 90°, 100°, 110°, 120°, 135°, etc.
  • the angle between the walls 1232 is not limited to the above data.
  • the angles between the two side walls 1232 and the top wall 1231 are equal.
  • the angles between the two side walls 1232 and the top wall 1231 may not be equal.
  • the minimum angle between the top wall 1231 and the side walls 1232 refers to the two side walls 1232
  • the angle between the two side walls 1232 and the top wall 1231 is the smaller one.
  • the maximum angle between the top wall 1231 and the side wall 1232 refers to the larger angle between the two side walls 1232 and the top wall 1231 . angle.
  • the plane where the top wall 1231 is located is parallel to the inner surface of the cooling body 110; the distance between the top wall 1231 and the inner surface of the cooling body 110 connected to the top wall 1231 through the side wall 1232 is greater than or equal to 1 mm. (mm) and less than or equal to 3 millimeters (mm).
  • the top wall 1231 of the protrusion 123 is opposite to and spaced apart from the inner surface of the cooling body 110.
  • the contact area between the protruding part 123 and the inner surface of the cooling main body 110 can be increased, so that the force of the protruding part 123 is more uniform. , the structure is more stable.
  • the protruding height of the protruding portion 123 is changed, making it easier to adjust the protruding degree of the protruding portion 123 .
  • the distance between the top wall 1231 and the inner surface of the cooling body 110 connected to the top wall 1231 through the side wall 1232 may be 1 mm, 1.5 mm, 2 mm, 2.4 mm, 3 mm, etc., the above data is only an example, The distance between the top wall 1231 and the inner surface of the cooling body 110 connected to the top wall 1231 through the side wall 1232 in the actual embodiment is not limited to the above data.
  • the protruding portion 123 is arranged symmetrically about the center line of the connecting section 121 where it is located.
  • the protruding portion 123 is arranged symmetrically about the center line of the connecting section 121 where it is located. At this time, the lengths of the two side walls 1232 of the protruding portion 123 are equal. , and the angles between the two side walls 1232 and the top wall 1231 are also equal. This design makes the protruding portion 123 be located at the center of the connecting end where it is located. In this way, the force between the protruding portion 123 and the connecting section 121 More uniform distribution and higher structural stability.
  • FIG. 7 is a cross-sectional view of the cooling structure 100 provided by another embodiment of the present application.
  • FIG. 8 is a partially enlarged schematic view of position B in FIG. 7 .
  • the cross-sectional shape of the buffer section 122 is a straight line, a polygonal line, or an arc shape.
  • the cross-sectional shape of the buffer section 122 is an arc shape. In the embodiment shown in FIGS. 7 to 8 , the cross-sectional shape of the buffer section 122 is a polygonal shape. In other cases, In the illustrated embodiment, the cross-sectional shape of the buffer section 122 may also be linear. By changing the cross-sectional shape of the buffer section 122, that is, changing the force distribution of the buffer section 122 and the direction of its elastic deformation, the buffer section 122 can be adjusted according to different conditions. Flexible selection according to usage requirements.
  • connection between the connecting section 121 and the buffering section 122 transitions smoothly.
  • connection section 121 and the buffer section 122 is located on the inner surface of the cooling body 110.
  • the smooth transition can be achieved by rounding the connection between the connecting section 121 and the buffering section 122 .
  • the cooling structure 100 further includes a driving member connected to the buffer segment 122 to drive the buffer segment 122 to elastically deform, or to drive the buffer segment 122 to return to a state before elastic deformation.
  • the driving member can actively drive the buffer section 122 to elastically deform or return to the state before the elastic deformation.
  • the driving member drives the buffer section 122 to elastically deform, and uses the active deformation of the buffer section 122 to change the shape of the cooling body 110 in advance to prevent it from being subjected to greater pressure, thereby protecting the cooling body 110 and making it more flexible to use.
  • a control device may be provided in the cooling structure 100.
  • the control device is electrically connected to the driving member and can send signals to control the action of the driving member.
  • a sensing device can also be provided in the cooling structure 100 .
  • the sensing device can sense temperature or pressure changes in the cooling body 110 to help the user determine the current state of the cooling structure 100 .
  • the embodiment of the present application also provides a battery 10.
  • the battery 10 includes a box 200, a battery cell 300, and a cooling structure 100 as in any of the above embodiments.
  • the battery cell 300 is accommodated in the box 200; the cooling structure 100 attached to one or more sides of the battery cell 300 .
  • the cooling structure 100 is attached to one or more sides of the battery cell 300 to contact one or more surfaces of the battery cell 300 and cool it.
  • the battery 10 in the embodiment of the present application adopts the above cooling structure. 100.
  • a support member 120 is provided in the flow channel 111 of the cooling body 110.
  • Each two adjacent connecting sections 121 of the support member 120 are fixedly connected to two opposite inner surfaces of the cooling body 110 along the thickness direction, so that the cooling body 110 can It supports it in the thickness direction.
  • the buffer section 122 connects two adjacent connection sections 121 and is configured to produce elastic deformation after being stressed.
  • the buffer section 122 can absorb part of the stress to produce elastic deformation, and disperse the stress on the cold plate through the entire support member 120 to avoid stress concentration and reduce the impact of stress on the cooling structure 100 and the battery cell 300, making the battery 10 less likely to be damaged. , to ensure its normal use.
  • the embodiment of the present application also provides an electric device 1.
  • the electric device 1 includes the battery 10 as in any of the above embodiments, and the battery 10 is used to provide electric energy.
  • the electrical device 1 in the embodiment of the present application uses the above-mentioned battery 10 to provide electrical energy. Since the battery 10 is not easily damaged, the safety and reliability of the electrical device 1 are also improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请涉及一种冷却结构、电池及用电装置,冷却结构包括冷却主体及支撑件,冷却主体内设有流道;支撑件设于流道内,支撑件包括至少两个连接段和若干个缓冲段,每相邻的两个连接段固定连接于冷却主体沿厚度方向上相对的两内侧表面,缓冲段连接相邻的两个连接段,且被构造为能够在受力后产生弹性形变。本申请的冷却结构中,支撑件能够在冷却主体的厚度方向上对其起到支撑作用,缓冲段被构造为能够在受力后产生弹性形变,如此,当冷却主体受压时,缓冲段能够吸收一部分应力产生弹性形变,并通过整个支撑件将冷板上的应力分散开来,避免出现应力集中,降低应力对冷却结构和电池单体的影响,使得电池不易损坏,确保其正常使用。

Description

冷却结构、电池及用电装置
交叉引用
本申请要求享有2022年09月05日提交的名称为“冷却结构、电池及用电装置”的中国专利申请CN202222344157.9的优先权,其全部内容通过引用并入本文中。
技术领域
本申请涉及二次电池技术领域,特别是涉及一种冷却结构、电池及用电装置。
背景技术
为了满足日益增长的大功率放电和快速充电等需求,电池的能量密度不断提高,电池在使用过程中的发热量也越来越大,因此,需要在电池内加冷却结构以对电池进行冷却。
在一些情形下,电池组件中的电池单体会由于受热膨胀而相互挤压,使得电池单体和冷却结构均承受较大的应力作用,导致电池容易损坏,影响正常使用。
发明内容
基于此,有必要针对电池单体和冷却结构均承受较大的应力作用,导致电池容易损坏,影响正常使用的问题,提供一种冷却结构、电池及用电装置。
根据本申请的一个方面,本申请实施例提供了一种冷却结构,包括:冷却主体,冷却主体内设有流道;及支撑件,设于流道内;支撑件包括至少两个连接段和若干个缓冲段,每相邻的两个连接段固定连接于冷却主体沿厚度方向上相对的两内侧表面,缓冲段连接相邻的两个连接段,且被构造为能够在受 力后产生弹性形变。
上述的冷却结构,通过在冷却主体的流道内设置支撑件,支撑件的每相邻的两个连接段固定连接于冷却主体沿厚度方向上相对的两内侧表面,能够在冷却主体的厚度方向上对其起到支撑作用,同时,缓冲段连接相邻的两个连接段,且被构造为能够在受力后产生弹性形变,如此,当冷却主体受压时,缓冲段能够吸收一部分应力产生弹性形变,并通过整个支撑件将冷板上的应力分散开来,避免出现应力集中,降低应力对冷却结构和电池单体的影响,使得电池不易损坏,确保其正常使用。
在其中一个实施例中,各连接段贴设于冷却主体的内侧表面,至少一个连接段上设有沿冷却主体的厚度方向向流道中心凸伸的凸出部。通过在连接段上设置沿冷却主体的厚度方向向流道中心凸伸的凸出部,如此,当冷却主体受压时,凸出部能够与冷却主体上与该凸出部相对的内侧表面抵接,使得冷却主体厚度方向上的相对的两内侧表面之间保持一定的间隙,从而确保流道的正常使用,避免出现流道被压溃的情况。
在其中一个实施例中,凸出部包括顶壁及分别连接于顶壁两侧的侧壁;顶壁和侧壁之间的夹角大于等于90°且小于180°。这样的设计使得凸出部的形状可变化,从而根据不同的使用需求进行调整,扩大了本实施例中冷却结构的适用范围。
在其中一个实施例中,顶壁所在的平面平行于冷却主体的内侧表面;顶壁和与顶壁通过侧壁相连接的的冷却主体的内侧表面之间的间距大于等于1毫米(mm)且小于等于3毫米(mm)。通过令顶壁所在的表面平行于冷却主体的内侧表面,如此,能够增加凸出部与冷却主体的内侧表面之间的接触面积,使得凸出部的受力更均匀,结构更稳定。而通过改变顶壁所在的表面与冷却主 体的内侧表面之间的间距,即改变了凸出部的凸出高度,便于调节凸出部的凸出程度。
在其中一个实施例中,凸出部关于其所在的连接段的中心线对称设置。这样的设计使得凸出部位于其所在的连接端的中心位置处,如此,凸出部与连接段之间的受力分布更均匀,结构稳定性更高。
在其中一个实施例中,缓冲段的截面形状为直线形、折线形或弧线形。通过改变缓冲段的截面形状,即改变了缓冲段的受力分布及其产生弹性形变的方向,可以根据不同的使用需求灵活选用。
在其中一个实施例中,连接段与缓冲段的连接处平滑过渡。连接段与缓冲段的连接处均处于冷却主体的内侧表面上,通过令连接段与缓冲段的连接处平滑过渡,能够分散该连接处的受力,避免出现应力集中,提升冷却结构的可靠性。
在其中一个实施例中,冷却结构还包括驱动件,驱动件连接于缓冲段,以驱动缓冲段产生弹性形变,或驱动缓冲段恢复至产生弹性形变前的状态。通过在冷却结构内设置连接于缓冲段的驱动件,即使冷却主体并未受到外界压力,也可以通过驱动件驱动缓冲段发生弹性形变,借助于缓冲段的主动形变来提前改变冷却主体的形状,避免其受到较大的压力,对冷却主体起到保护作用,且使用也更灵活。
根据本申请的另一个方面,本申请实施例还提供了一种电池,包括:箱体;电池单体,电池单体收容于箱体;及如上述的冷却结构,冷却结构贴设于电池单体的一侧或多侧。
上述的电池,通过采用上述的冷却结构,在冷却主体的流道内设置支撑件,支撑件的每相邻的两个连接段固定连接于冷却主体沿厚度方向上相对的 两内侧表面,能够在冷却主体的厚度方向上对其起到支撑作用,同时,缓冲段连接相邻的两个连接段,且被构造为能够在受力后产生弹性形变,如此,当冷却主体受压时,缓冲段能够吸收一部分应力产生弹性形变,并通过整个支撑件将冷板上的应力分散开来,避免出现应力集中,降低应力对冷却结构和电池单体的影响,使得电池不易损坏,确保其正常使用。
根据本申请的又一个方面,本申请实施例还提供了一种用电装置,包括:如上述的电池,电池用于提供电能。
上述的用电装置,通过采用上述的电池来提供电能,由于电池不易损坏,使得用电装置的安全性和可靠性也得到提高。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请一个实施例提供的车辆的整体结构示意图;
图2为本申请一个实施例提供的电池的整体结构示意图;
图3为本申请一个实施例提供的电池的整体结构爆炸图;
图4为本申请一个实施例提供的冷却结构的整体结构示意图;
图5为本申请一个实施例提供的冷却结构的剖视图;
图6为图5中A处的局部放大示意图;
图7为本申请另一个实施例提供的冷却结构的剖视图;
图8为图7中B处的局部放大示意图。
具体实施方式中的附图标号如下:
1:用电装置;
10:电池;
100:冷却结构;
110:冷却主体,111:流道;
120:支撑件,121:连接段,122:缓冲段,123:凸出部,1231:顶壁,1232:侧壁;
200:箱体;
300:电池单体。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的 描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
目前,随着技术的发展,动力电池的应用场景也越来越广泛,动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,电池使用时的安 全性也逐渐成为人们关注的重点。
本申请人注意到,为了满足日益增长的大功率放电和快速充电等需求,电池的能量密度不断提高,电池在使用过程中的发热量也越来越大,因此,需要在电池内加冷却结构以对电池进行冷却。而在相关技术中,电池组件中的电池单体会由于受热膨胀而相互挤压,使得电池单体和冷却结构均承受较大的应力作用,导致电池容易损坏,影响正常使用。
基于以上考虑,为了解决电池单体和冷却结构均承受较大的应力作用,导致电池容易损坏,影响正常使用的问题,申请人经过深入研究,设计了一种冷却结构,通过在冷却主体的流道内设置支撑件,支撑件的每相邻的两个连接段固定连接于冷却主体沿厚度方向上相对的两内侧表面,能够在冷却主体的厚度方向上对其起到支撑作用,同时,缓冲段连接相邻的两个连接段,且被构造为能够在受力后产生弹性形变,如此,当冷却主体受压时,缓冲段能够吸收一部分应力产生弹性形变,并通过整个支撑件将冷板上的应力分散开来,避免出现应力集中,降低应力对冷却结构和电池单体的影响,使得电池不易损坏,确保其正常使用。
本申请实施例公开的冷却结构应用于电池中,使用具备本申请实施例公开的冷却结构的电池,由于其冷却主体受压时,缓冲段能够吸收一部分应力产生弹性形变,并通过整个支撑件将冷板上的应力分散开来,避免出现应力集中,降低了应力对冷却结构和电池单体的影响,使得电池不易损坏,电池的使用可靠性高。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具, 例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例中的一种用电装置1为车辆为例进行说明。请参阅图1,图1为本申请一个实施例提供的车辆的整体结构示意图。
车辆可以为燃油汽车、燃气汽车或新能源汽车,其中,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆的内部设置有电池10,电池10可以设置在车辆的底部或头部或尾部。电池10可以用于车辆的供电,例如,电池10可以作为车辆的操作电源。车辆还可以包括控制器和马达,控制器用来控制电池10为马达供电,例如,用于车辆的启动、导航和行驶时的工作用电需求。在本申请一些实施例中,电池10不仅可以作为车辆的操作电源,还可以作为车辆的驱动电源,代替或部分地代替燃油或天然气为车辆提供驱动动力。
请参阅图2至图3,图2为本申请一个实施例提供的电池10的整体结构示意图,图3为本申请一个实施例提供的电池10的整体结构爆炸图。
由电池单体300构成的电池10可以作为用电装置1的电源系统,若干个电池单体300设置于箱体200内。电池单体300是指组成电池10的最小单元,在电池10中,可以有多个电池单体300,多个电池单体300之间可串联或并联或混联,混联是指多个电池单体300中既有串联又有并联。多个电池单体300之间可直接串联或并联或混联在一起形成电池模组,并容纳在电池10的箱体200内;当然,也可以是多个电池单体300先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联形成电池模组,并容纳于电池10的箱体200内。
箱体200用于为电池单体300提供容纳空间,箱体200可以采用多种结构。在一些实施例中,箱体200可以包括底板和若干个侧板,若干个侧板互相首尾连接,底板连接于每个侧板的底部并与侧板共同围设出用于容纳电池单体300的容纳空间,即底板和侧板围设形成容纳槽。当然,底板和侧板形成的容纳槽可以是多种形状,比如,圆柱体、长方体等。
箱体200内在相邻的两个电池单体300之间设置有冷却结构100,根据多个电池单体300在箱体200内的排布方式的不同,冷却结构100的设置位置也不同。在一些实施例中,如图2和图3所示,多个电池单体300在箱体200内呈矩形阵列排布,此时,冷却结构100沿该矩形的长边所在方向延伸设置,且多个冷却结构100之间沿矩形的短边所在方向间隔设置,如此,可以提高对箱体200内空间的利用率,且冷却结构100与电池单体300之间的接触面积也较大,对电池单体300的冷却效果较好。当然,在其它的实施例中,电池单体300和冷却结构100在箱体200内也可以沿其他方向排布,此处不再赘述。
根据本申请的一些实施例,参照图4至图6,图4为本申请一个实施例提供的冷却结构100的整体结构示意图,图5为本申请一个实施例提供的冷却结构100的剖视图,图6为图5中A处的局部放大示意图。
本申请实施例提供了一种冷却结构100,该冷却结构100包括冷却主体110及支撑件120,冷却主体110内设有流道111;支撑件120设于流道111内;支撑件120包括至少两个连接段121和若干个缓冲段122,每相邻的两个连接段121固定连接于冷却主体110沿厚度方向上相对的两内侧表面,缓冲段122连接相邻的两个连接段121,且被构造为能够在受力后产生弹性形变。
冷却结构100用于对电池10进行冷却,其中,流道111是冷却主体110上开设的一条用于供流体流通的通道,流道111可以将流体限定在其中以使 流体沿特定方向流动。流道111的截面形状、截面尺寸大小、延伸方向等在此均不作限定。使用时,可以在流道111内填充导热流体,导热流体在流道111内流动时,流经电池单体300的一侧或多侧,将电池单体300发出的热量带走,流至外部散热降温后又重新流经电池单体300的一侧或多侧,形成循坏,以起到对电池单体300进行冷却、降温的效果。
冷却主体110的结构形式不限,在一些实施例中,如图4和图5所示,冷却主体110可以是板状结构,其可以包括相对的两个支撑板,两个支撑板在端部固定连接,以形成密封结构,两个支撑板之间形成有流道111。两个支撑板的材质可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
由于在冷却结构100的使用过程中,其设置在电池单体300的一侧或多侧,当电池单体300受热膨胀时,就会挤压冷却结构100,因此,在本申请的实施例中,冷却结构100还包括支撑件120。支撑件120设置在冷却主体110的流道111内,以对冷却主体110进行支撑。其中,支撑件120包括至少两个连接段121和若干个缓冲段122,每相邻的两个连接段121固定连接于冷却主体110沿厚度方向上相对的两内侧表面,即冷却主体110在其厚度方向上具有相对的两个内侧表面,任意相邻的两个连接段121中,其中一个固定连接于冷却主体110的一个内侧表面,其中另一个固定连接于冷却主体110的另一个内侧表面,使得两个连接段121能够在冷却主体110的厚度方向上对其起到支撑作用,同时,每相邻的两个连接段121之间均设置有缓冲段122,缓冲段122连接相邻的两个连接段121,缓冲段122被构造为为能够在受力后产生弹性形变,如此,当冷却主体110受压挤压到连接段121时,缓冲段122能够吸收一部分应力产生弹性形变。
在冷却结构100中,每个连接端的长度、连接段121的数量可以根据冷却主体110内流道111的尺寸不同而进行调整,此时,缓冲段122的长度和数量根据连接段121的参数来进行适应性调整,以确保支撑件120能够对冷却主体110起到良好的支撑作用。
本申请实施例的冷却结构100通过在冷却主体110的流道111内设置支撑件120,支撑件120的每相邻的两个连接段121固定连接于冷却主体110沿厚度方向上相对的两内侧表面,能够在冷却主体110的受压方向上对其起到支撑作用,同时,缓冲段122连接相邻的两个连接段121,且被构造为能够在受力后产生弹性形变,如此,当冷却主体110受压时,缓冲段122能够吸收一部分应力产生弹性形变,并通过整个支撑件120将冷板上的应力分散开来,避免出现应力集中,降低应力对冷却结构100和电池单体300的影响,使得电池10不易损坏,确保其正常使用。
在一些实施例中,各连接段121贴设于冷却主体110的内侧表面,至少一个连接段121上设有沿冷却主体110的厚度方向向流道111中心凸伸的凸出部123。
如上文中所述的,每相邻的两个连接段121固定连接于冷却主体110沿厚度方向上相对的两内侧表面,二者之间固定连接的方式可以是焊接、螺接等,为了确保连接段121与冷却主体110之间的连接紧固性,连接段121贴设于冷却主体110的内侧表面,如此,连接段121与冷却主体110之间的接触面积更大。并且,其中一个或多个或所有连接段121上,设有沿冷却主体110的厚度方向向流道111中心凸伸的凸出部123,如此,当冷却主体110受压时,凸出部123能够与冷却主体110上与该凸出部123相对的内侧表面抵接,使得冷却主体110厚度方向上的相对的两内侧表面之间保持一定的间隙,从而确保流 道111的正常使用,避免出现流道111被压溃的情况。
在一些实施例中,凸出部123包括顶壁1231及分别连接于顶壁1231两侧的侧壁1232;顶壁1231和侧壁1232之间的夹角大于等于90度(°)且小于180度(°)。
凸出部123向流道111中心方向延伸,故其顶壁1231与冷却主体110的内侧表面相对且彼此间隔,顶壁1231与冷却主体110的内侧表面之间通过侧壁1232连接,根据顶壁1231和侧壁1232之间的夹角的不同,凸出部123的截面形状也不相同,示例性地,若顶壁1231和侧壁1232之间的夹角为90°,则凸出部123的截面形状为矩形,若顶壁1231和侧壁1232之间的夹角大于90°,则凸出部123的截面形状为梯形,这样的设计使得凸出部123的形状可变化,从而根据不同的使用需求进行调整,扩大了本实施例中冷却结构100的适用范围。示例性地,顶壁1231与侧壁1232之间的夹角可以是90°、100°、110°、120°、135°等,上述数据仅作为示例,在实际实施例中顶壁1231与侧壁1232之间的夹角并不以上述数据为限。
在一些实施例中,为了使凸出部123的结构具有对称性以便于加工、制作,两个侧壁1232与顶壁1231的夹角均相等。当然,在另一些实施例中,两个侧壁1232与顶壁1231的夹角也可以不相等,此时,顶壁1231和侧壁1232之间的夹角最小值是指两个侧壁1232与顶壁1231的夹角中相对更小者的夹角,顶壁1231和侧壁1232之间的夹角最大值是指两个侧壁1232与顶壁1231的夹角中相对更大者的夹角。
在一些实施例中,顶壁1231所在的平面平行于冷却主体110的内侧表面;顶壁1231和与顶壁1231通过侧壁1232相连接的冷却主体110的内侧表面之间的间距大于等于1毫米(mm)且小于等于3毫米(mm)。
如上文中所述的,凸出部123的顶壁1231与冷却主体110的内侧表面相对且彼此间隔,在一些实施例中,通过令顶壁1231所在的表面平行于冷却主体110的内侧表面,如此,当冷却主体110受压导致主体部与冷却主体110的内侧表面相接触时,能够增加凸出部123与冷却主体110的内侧表面之间的接触面积,使得凸出部123的受力更均匀,结构更稳定。而通过改变顶壁1231所在的表面与冷却主体110的内侧表面之间的间距,即改变了凸出部123的凸出高度,便于调节凸出部123的凸出程度。示例性地,顶壁1231和与顶壁1231通过侧壁1232相连接的冷却主体110的内侧表面之间的间距可以是1mm、1.5mm、2mm、2.4mm、3mm等,上述数据仅作为示例,在实际实施例顶壁1231和与顶壁1231通过侧壁1232相连接的冷却主体110的内侧表面之间的间距并不以上述数据为限。
在一些实施例中,凸出部123关于其所在的连接段121的中心线对称设置。
为了使凸出部123的结构具有对称性以便于加工、制作,凸出部123关于其所在的连接段121的中心线对称设置,此时,凸出部123的两个侧壁1232的长度相等,且两个侧壁1232与顶壁1231的夹角也相等,这样的设计使得凸出部123位于其所在的连接端的中心位置处,如此,凸出部123与连接段121之间的受力分布更均匀,结构稳定性更高。
请一并参阅图4至图8,图7为本申请另一个实施例提供的冷却结构100的剖视图,图8为图7中B处的局部放大示意图。
在一些实施例中,缓冲段122的截面形状为直线形、折线形或弧线形。
在图5至图6所示的实施例中,缓冲段122的截面形状为弧线形,在图7至图8所示的实施例中,缓冲段122的截面形状为折线形,在其他未示出 的实施例中,缓冲段122的截面形状还可以是直线形,通过改变缓冲段122的截面形状,即改变了缓冲段122的受力分布及其产生弹性形变的方向,可以根据不同的使用需求灵活选用。
在一些实施例中,连接段121与缓冲段122的连接处平滑过渡。
连接段121与缓冲段122的连接处均处于冷却主体110的内侧表面上,通过令连接段121与缓冲段122的连接处平滑过渡,能够分散该连接处的受力,避免出现应力集中,提升冷却结构100的可靠性。平滑过渡可以采用在连接段121与缓冲段122的连接处倒圆角的方式来实现。
在一些实施例中,冷却结构100还包括驱动件,驱动件连接于缓冲段122,以驱动缓冲段122产生弹性形变,或驱动缓冲段122恢复至产生弹性形变前的状态。
驱动件可以主动驱动缓冲段122产生弹性形变或恢复至产生弹性形变前的状态,通过在冷却结构100内设置连接于缓冲段122的驱动件,即使冷却主体110并未受到外界压力,也可以通过驱动件驱动缓冲段122发生弹性形变,借助于缓冲段122的主动形变来提前改变冷却主体110的形状,避免其受到较大的压力,对冷却主体110起到保护作用,且使用也更灵活。在一些实施例中,可以在冷却结构100内设置控制装置,控制装置与驱动件电连接,能够发出信号控制驱动件的动作。还可以在冷却结构100内设置感应装置,感应装置能够感应冷却主体110内的温度或压力变化,以帮助使用者辅助判断冷却结构100当处的状态。
本申请实施例还提供了一种电池10,该电池10包括箱体200、电池单体300及如上述任一实施例中的冷却结构100,电池单体300收容于箱体200;冷却结构100贴设于电池单体300的一侧或多侧。
冷却结构100贴设于电池单体300的一侧或多侧,以与电池单体300的一侧或多个表面接触并对其进行冷却,本申请实施例的电池10通过采用上述的冷却结构100,在冷却主体110的流道111内设置支撑件120,支撑件120的每相邻的两个连接段121固定连接于冷却主体110沿厚度方向上相对的两内侧表面,能够在冷却主体110的厚度方向上对其起到支撑作用,同时,缓冲段122连接相邻的两个连接段121,且被构造为能够在受力后产生弹性形变,如此,当冷却主体110受压时,缓冲段122能够吸收一部分应力产生弹性形变,并通过整个支撑件120将冷板上的应力分散开来,避免出现应力集中,降低应力对冷却结构100和电池单体300的影响,使得电池10不易损坏,确保其正常使用。
本申请实施例还提供了一种用电装置1,该用电装置1包括如上述任一实施例中的电池10,电池10用于提供电能。
本申请实施例的用电装置1通过采用上述的电池10来提供电能,由于电池10不易损坏,使得用电装置1的安全性和可靠性也得到提高。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种冷却结构,包括:
    冷却主体,所述冷却主体内设有流道;及
    支撑件,设于所述流道内;所述支撑件包括至少两个连接段和若干个缓冲段,每相邻的两个所述连接段固定连接于所述冷却主体沿厚度方向上相对的两内侧表面,所述缓冲段连接相邻的两个所述连接段,且被构造为能够在受力后产生弹性形变。
  2. 根据权利要求1所述的冷却结构,其中,各所述连接段贴设于所述冷却主体的内侧表面,至少一个所述连接段上设有沿所述冷却主体的厚度方向向所述流道中心凸伸的凸出部。
  3. 根据权利要求2所述的冷却结构,其中,所述凸出部包括顶壁及分别连接于所述顶壁两侧的侧壁;
    所述顶壁和所述侧壁之间的夹角大于等于90°且小于180°。
  4. 根据权利要求3所述的冷却结构,其中,所述顶壁所在的平面平行于所述冷却主体的内侧表面;
    所述顶壁和与所述顶壁通过所述侧壁相连接的所述冷却主体的内侧表面之间的间距大于等于1mm且小于等于3mm。
  5. 根据权利要求2所述的冷却结构,其中,所述凸出部关于其所在的所述连接段的中心线对称设置。
  6. 根据权利要求1至5任一项所述的冷却结构,其中,所述缓冲段的截面形状为直线形、折线形或弧线形。
  7. 根据权利要求1至6任一项所述的冷却结构,其中,所述连接段与所述缓冲段的连接处平滑过渡。
  8. 根据权利要求1至7任一项所述的冷却结构,其中,所述冷却结构还包括驱动件,所述驱动件连接于所述缓冲段,以驱动所述缓冲段产生弹性形变,或驱动所述缓冲段恢复至产生弹性形变前的状态。
  9. 一种电池,包括:
    箱体;
    电池单体,所述电池单体收容于所述箱体;及
    如权利要求1至8任一项所述的冷却结构,所述冷却结构贴设于所述电池单体的一侧或多侧。
  10. 一种用电装置,包括:
    如权利要求9所述的电池,所述电池用于提供电能。
PCT/CN2022/142788 2022-09-05 2022-12-28 冷却结构、电池及用电装置 WO2024051044A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222344157.9U CN218334077U (zh) 2022-09-05 2022-09-05 冷却结构、电池及用电装置
CN202222344157.9 2022-09-05

Publications (2)

Publication Number Publication Date
WO2024051044A1 true WO2024051044A1 (zh) 2024-03-14
WO2024051044A8 WO2024051044A8 (zh) 2024-04-11

Family

ID=84832419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142788 WO2024051044A1 (zh) 2022-09-05 2022-12-28 冷却结构、电池及用电装置

Country Status (2)

Country Link
CN (1) CN218334077U (zh)
WO (1) WO2024051044A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116093515B (zh) * 2023-04-11 2023-08-25 宁德时代新能源科技股份有限公司 电池及用电装置
CN116799415B (zh) * 2023-08-18 2024-01-02 欣旺达动力科技股份有限公司 一种电池包及用电设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111819727A (zh) * 2018-03-09 2020-10-23 株式会社东芝 组电池
CN112103421A (zh) * 2019-06-18 2020-12-18 宁德时代新能源科技股份有限公司 温控组件及电池包
US20210066769A1 (en) * 2018-05-23 2021-03-04 Lg Chem, Ltd. Cooling Member for Battery Module and Battery Pack Including the Same
CN217158339U (zh) * 2022-04-14 2022-08-09 宁德时代新能源科技股份有限公司 冷却装置、电池及用电装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111819727A (zh) * 2018-03-09 2020-10-23 株式会社东芝 组电池
US20210066769A1 (en) * 2018-05-23 2021-03-04 Lg Chem, Ltd. Cooling Member for Battery Module and Battery Pack Including the Same
CN112103421A (zh) * 2019-06-18 2020-12-18 宁德时代新能源科技股份有限公司 温控组件及电池包
CN217158339U (zh) * 2022-04-14 2022-08-09 宁德时代新能源科技股份有限公司 冷却装置、电池及用电装置

Also Published As

Publication number Publication date
CN218334077U (zh) 2023-01-17
WO2024051044A8 (zh) 2024-04-11

Similar Documents

Publication Publication Date Title
WO2024051044A1 (zh) 冷却结构、电池及用电装置
CN104604019A (zh) 电池模块
WO2023201923A1 (zh) 水冷板组件、水冷系统、电池及其箱体以及用电装置
CN217788555U (zh) 热管理部件、电池及用电装置
WO2023029504A1 (zh) 电池的箱体、电池和用电装置
WO2024031413A1 (zh) 电池以及用电装置
EP4376188A1 (en) Battery and electric device
WO2023160111A1 (zh) 一种电池及用电装置
WO2024021304A1 (zh) 热管理部件、电池以及用电设备
US20230395902A1 (en) Case of battery, battery and electrical device
US20240097280A1 (en) Battery cell, battery, power consumption device, apparatus and method of manufacturing battery cell
WO2024016908A1 (zh) 电池包及包括其的电动装置
US11990592B2 (en) Battery, apparatus using battery, and manufacturing method and manufacturing device of battery
WO2023245501A1 (zh) 热管理部件、热管理系统、电池及用电装置
CN216903119U (zh) 电池热管理系统、电池及用电装置
WO2024031418A1 (zh) 电池、用电装置以及电池的成型方法
CN116799352A (zh) 电池及用电装置
WO2024000084A1 (zh) 热管理装置、电池及用电装置
CN220306330U (zh) 电池及具有其的用电装置
WO2024077626A1 (zh) 电池及用电设备
WO2024077625A1 (zh) 电池及用电设备
WO2024077631A1 (zh) 电池和用电设备
CN219303780U (zh) 电池及用电设备
CN218498179U (zh) 冷却板、电池模组以及用电装置
CN219086085U (zh) 液冷件、液冷组件、液冷系统、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958000

Country of ref document: EP

Kind code of ref document: A1