WO2024021304A1 - 热管理部件、电池以及用电设备 - Google Patents

热管理部件、电池以及用电设备 Download PDF

Info

Publication number
WO2024021304A1
WO2024021304A1 PCT/CN2022/122808 CN2022122808W WO2024021304A1 WO 2024021304 A1 WO2024021304 A1 WO 2024021304A1 CN 2022122808 W CN2022122808 W CN 2022122808W WO 2024021304 A1 WO2024021304 A1 WO 2024021304A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal management
cavity
management component
wall
battery
Prior art date
Application number
PCT/CN2022/122808
Other languages
English (en)
French (fr)
Inventor
李兴星
陈智明
黄小腾
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2024021304A1 publication Critical patent/WO2024021304A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, specifically, to a thermal management component, a battery and electrical equipment.
  • Electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy conservation and environmental protection.
  • battery technology is an important factor related to their development.
  • This application provides a thermal management component, a battery and electrical equipment.
  • the technical solution provided by this application can improve the safety of the battery.
  • the present application provides a thermal management component for a battery.
  • a first cavity and a second cavity are formed inside the thermal management component.
  • the first cavity and the second cavity are formed along the thermal management component.
  • the components are arranged in the thickness direction, the first cavity is configured to accommodate a heat exchange medium to adjust the temperature of the battery cells, and the second cavity is configured to absorb the extrusion force experienced by the thermal management component through deformation.
  • the deformation of the second cavity is used to absorb the extrusion force on the thermal management component, thereby preventing the extrusion force in the first cavity from affecting the flow of the heat exchange medium inside it, and ensuring the heat exchange of the heat exchange medium to the battery cells.
  • the effect is that the battery has higher safety.
  • the thermal management component has a first wall common to the first cavity and the second cavity.
  • the structure of the thermal management component can be simplified as much as possible, making it easy to manufacture and improving the energy density of the battery cell.
  • the thermal management component has a second wall, the first wall and the second wall are arranged oppositely along the thickness direction of the thermal management component, and the first wall and the second wall are arranged oppositely along the thickness direction of the thermal management component.
  • the second cavity is formed between the two walls.
  • the second cavity is between the first wall and the second wall.
  • the thermal management component When the thermal management component is subjected to external force, the second wall deforms in the direction of the first wall, and the volume of the second cavity is reduced to absorb the external force and affect the thermal management.
  • the impact of the components ensures that the first cavity is not affected by external forces, allowing the heat exchange medium in the first cavity to effectively exchange heat with the battery cells.
  • the thermal management component further includes: a thermal conductive member disposed inside the second cavity, one end of the thermal conductive member is connected to the first wall, and the other end of the thermal conductive member is connected to the second wall.
  • the thermal management component can be located between two battery cells, and the medium in the first cavity can adjust the temperature of the two battery cells.
  • the second cavity A thermal conductive member is provided in the first cavity to enable heat exchange between the medium in the first cavity and the battery cell away from the first cavity through the thermal conductive member.
  • the thermally conductive member is inclined to the first wall and the second wall.
  • the extrusion force experienced by the thermal management component is mainly the expansion force of the battery cell, and the direction of the expansion force roughly corresponds to the thickness direction of the thermal management component.
  • the inclined heat-conducting member can easily deform, which helps the second cavity absorb the extrusion force and reduces the impact on the first cavity.
  • the angle between the heat conductive member and the first wall is a, satisfying 45° ⁇ a ⁇ 90°.
  • the embodiment of the present application limits the angle a between the heat conductive member and the first wall to 45° ⁇ a ⁇ 90°, so that the second cavity has better buffering capacity and ensures the safety of the battery.
  • the thermal conductive members extend along the first direction, the number of the thermal conductive members is multiple, and the multiple thermal conductive members are spaced apart along the second direction.
  • the first direction, the second thermal conductive member The two directions are perpendicular to the thickness direction of the thermal management component.
  • each heat conducting member extends along the first direction, and two adjacent heat conducting members are parallel to each other in the second direction, so that when the thermal management component is subjected to extrusion force, the second cavity can be evenly stressed and fully absorb the extrusion force.
  • the distance between two adjacent thermal conductive members is b, which satisfies 5mm ⁇ b ⁇ 100mm.
  • the spacing b between two adjacent heat-conducting members is ⁇ 5mm, which causes the heat-conducting members to be densely distributed, which is not conducive to the deformation of the second cavity; the spacing b>100mm between two adjacent heat-conducting members causes the heat-conducting members to be sparsely distributed, which is not conducive to the deformation of the second cavity. It is beneficial to the heat exchange efficiency between the first cavity and the battery cell. To this end, the embodiment of the present application limits the distance b between two adjacent thermal conductors to 5 mm ⁇ b ⁇ 100 mm, which can enable the second chamber to effectively absorb the extrusion force while ensuring effective regulation of the battery cell temperature. , making the battery highly safe.
  • the thermal management component has a third wall, the first wall and the third wall are arranged oppositely along the thickness direction of the thermal management component, and the first wall and the third wall are arranged oppositely along the thickness direction of the thermal management component.
  • the first cavity is formed between three walls.
  • the third wall and the first wall are arranged oppositely along the thickness direction of the thermal management component, and form a first cavity that can accommodate the medium, so as to be able to adjust the temperature of the battery cell.
  • the thermal management component further includes: a reinforcement member disposed inside the first cavity, one end of the reinforcement member is connected to the first wall, and the other end of the reinforcement member is connected to The third wall.
  • reinforcing members are provided in the first cavity to improve the structural strength of the first cavity, reduce the risk of deformation of the first wall and the second wall due to extrusion force, ensure that the volume of the first cavity is relatively constant, and ensure that the volume of the first cavity is relatively constant.
  • the medium in a cavity is not affected by the extrusion force and can effectively regulate the temperature of the battery cells.
  • the reinforcement is perpendicular to the first wall and the third wall.
  • the extrusion force experienced by the thermal management is mainly the expansion force of the battery cell, and the direction of the expansion force roughly corresponds to the thickness direction of the thermal management component.
  • the reinforcements arranged perpendicular to the first wall and the third wall can effectively resist the extrusion force, ensuring that the first wall and the third wall do not deform, that is, ensuring that the first cavity does not deform. deformation.
  • the size of the first cavity in the thickness direction of the thermal management component is w1
  • the size of the second cavity in the thickness direction of the thermal management component is w2, satisfying 0.2 ⁇ w1/w2 ⁇ 1.5.
  • w1/w2 ⁇ 0.2 it means that the thermal management component has less volume to accommodate the medium, that is, the less medium that regulates the temperature of the battery cell, the worse the thermal management effect.
  • w1/w2>1.5 it means that the smaller the thickness of the second cavity, the worse its buffering capacity.
  • w1/w2 is limited to 0.2 ⁇ w1/w2 ⁇ 1.5, so that the thermal management component also has better buffering capacity under the condition of strong thermal management effect, which can make The battery has high safety.
  • the second cavity has a first opening and a second opening opposite to each other along a first direction, and the first opening and the second opening are respectively connected to the interior of the first cavity, so The first direction is perpendicular to the thickness direction of the thermal management component.
  • the opposite ends of the second cavity are open, that is, the first opening and the second opening.
  • the opposite ends are closed, when subjected to the extrusion force, it can It is easier to deform and absorb energy, and thus has better buffering capacity, effectively reducing the impact of the extrusion force on the first cavity, making the battery safer.
  • the thermal management component further includes a first current collector and a second current collector, the first current collector and the second current collector are respectively opposite to the first cavity along a first direction. Both ends of the arrangement are connected, and the first direction is perpendicular to the thickness direction of the thermal management component.
  • the medium can be input into the first cavity and the medium can be output from the first cavity to realize the circulation of the medium and effectively adjust the temperature of the battery cells.
  • this application also provides a battery, which includes a box; a battery cell contained in the box; and the thermal management component according to any one of the first aspects, which is disposed in The inside of the box is used to adjust the temperature of the battery cells.
  • the battery cells are provided on both sides in the thickness direction of the thermal management component.
  • this application also provides an electrical device, including the battery described in any one of the second aspects, where the battery is used to provide electrical energy.
  • Figure 1 is a schematic structural diagram of a vehicle in some embodiments of the present application.
  • Figure 2 is a three-dimensional exploded view of a battery in some embodiments of the present application.
  • FIG. 3 is a schematic diagram of thermal management components in some embodiments of the present application.
  • Figure 4 is a cross-sectional view along the A-A direction in Figure 3;
  • Figure 5 is a schematic diagram of the first cavity and the second cavity in some embodiments of the present application.
  • Figure 6 is a perspective view of a thermal management component in some embodiments of the present application.
  • Figure 7 is an enlarged view of B in Figure 6 in some embodiments of the present application.
  • Figure 8 is a schematic diagram of battery cells and thermal management components in some embodiments of the present application.
  • Figure 9 is an enlarged view of point C in Figure 8.
  • Icon 10-thermal management component; 11-first cavity; 12-second cavity; 13-first wall; 14-second wall; 14a-side wall; 15-third wall; 15a-fourth wall; 16 -Thermal conductive member; 17-reinforcement member; 120-first opening; 18-first current collector; 19-second current collector; x-thickness direction; y-first direction; z-second direction; 1000-vehicle; 200-controller; 300-motor; 100-battery; 20-box; 21-first part; 22-second part; 30-battery cell.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium-sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in a rectangular parallelepiped or other shape, and the embodiments of the present application are not limited to this.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode sheet, a negative electrode sheet and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode current collector that is coated with the positive electrode active material layer. , the positive electrode current collector without coating the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode current collector that is coated with the negative electrode active material layer.
  • the negative electrode current collector that is not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the isolation film can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery also includes a box. One or more battery cells are located inside the box. The box protects the battery cells and prevents the battery cells from being affected by external objects.
  • battery thermal runaway can cause the battery to burn or explode, seriously affecting the safety of the battery.
  • Thermal runaway is caused by the fact that the heat generation rate of the battery cell is much higher than the heat dissipation rate, and a large amount of heat accumulates and is not dissipated in time.
  • batteries generally include thermal management components.
  • Thermal management components are located inside the box.
  • a first cavity is formed inside the thermal management component.
  • the first cavity is used to accommodate the heat exchange medium to adjust the temperature of the battery cells so that the battery is within a suitable temperature range to ensure higher safety.
  • the heat exchange medium here can be fluid (liquid) or gas, and adjusting the temperature refers to heating or cooling multiple battery cells.
  • the fluid can be circulated to achieve better temperature regulation.
  • the fluid may be water, a mixture of water and ethylene glycol, or air.
  • the thermal management component is used to contain cooling fluid to lower the temperature of multiple battery cells.
  • the thermal management component may also be called a cooling component, a cooling system or a cooling system.
  • the fluid contained therein may also be called cooling medium or cooling fluid, and more specifically, may be called cooling liquid or cooling gas.
  • the thermal management component can also be called a water-cooling plate. The water-cooling plate contacts the battery cells and can be used to reduce the temperature of the battery cells to prevent thermal runaway of the battery cells.
  • the inventor found that after long-term use of existing batteries, the battery has a greater risk of thermal runaway, which affects the safety of the battery.
  • the inventor's research found that after the battery is used for a long time, the electrochemical and chemical reactions inside the battery cells will increase the internal pressure of the battery cells, causing the battery cells to expand. The expansion of the battery cells will squeeze the thermal management components, causing the first cavity of the thermal management components to deform, and the volume of the first cavity to change, making its internal flow resistance increase, affecting the flow rate of the heat exchange medium, resulting in heat exchange The medium cannot effectively regulate the temperature of the battery cells, and the battery is at risk of thermal runaway and is less safe.
  • a thermal management component is provided.
  • a second cavity is also formed inside the thermal management component.
  • the first cavity and the second cavity are arranged along the thickness direction of the thermal management component.
  • the second cavity is configured to absorb the thermal management component through deformation. The squeezing force received.
  • the second cavity does not contain the heat exchange medium.
  • the thermal management component is subjected to extrusion force, the second cavity is forced to deform to absorb the extrusion force, thereby reducing the impact of the extrusion force on the first cavity. Ensure that the thermal management components can effectively regulate the temperature of the battery cells, making the battery highly safe.
  • Power-consuming devices can be vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • the vehicle can be a new energy vehicle, which can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the spacecraft includes airplanes, rockets, space shuttles, spaceships, etc.
  • the electric toys include fixed or mobile electric toys Toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • power tools include metal cutting power tools, grinding power tools, assembly power tools and railway power tools, such as electric drills, electric grinders, Electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators and planers to name a few.
  • the embodiments of this application impose no special restrictions on the above electrical equipment.
  • the following embodiments take the electrical equipment as vehicle 1000 as an example.
  • Figure 1 is a schematic structural diagram of a vehicle 1000 in some embodiments of the present application.
  • a controller 200 , a motor 300 and a battery 100 may be disposed inside the vehicle 1000 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 .
  • the battery 100 may be disposed at the bottom, front or rear of the vehicle 1000 .
  • the battery 100 can be used to power the vehicle 1000 .
  • the battery 100 can be used as an operating power source for the vehicle 1000 and for the circuit system of the vehicle 1000 , for example, for the starting, navigation and operating power requirements of the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • Figure 2 is a three-dimensional exploded view of the battery 100 in some embodiments of the present application.
  • the battery 100 includes a case 20 , a battery cell 30 and a thermal management component 10 .
  • the battery cell 30 and the thermal management component 10 are accommodated in the case 20 .
  • the box 20 is used to provide an accommodation space for the battery cells 30, and the box 20 can adopt a variety of structures.
  • the box 20 may include a first part 21 and a second part 22 , the first part 21 and the second part 22 cover each other, and the first part 21 and the second part 22 jointly define a space for accommodating the battery cell 30 of accommodation space.
  • the second part 22 may be a hollow structure with one end open, and the first part 21 may be a plate-like structure.
  • the first part 21 covers the open side of the second part 22 so that the first part 21 and the second part 22 jointly define a receiving space.
  • the first part 21 and the second part 22 may also be hollow structures with one side open, and the open side of the first part 21 covers the open side of the second part 22.
  • the box 20 formed by the first part 21 and the second part 22 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • the battery 100 there may be a plurality of battery cells 30 , and the plurality of battery cells 30 may be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the plurality of battery cells 30 are connected in series and in parallel.
  • the plurality of battery cells 30 can be directly connected in series or in parallel or mixed together, and then the whole composed of the plurality of battery cells 30 can be accommodated in the box 20 ; of course, the battery 100 can also be a plurality of battery cells 30
  • the battery modules are connected in series, parallel, or mixed to form a battery module.
  • multiple battery modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 20 .
  • the battery 100 may also include other structures.
  • the battery 100 may further include a bus component for realizing electrical connections between multiple battery cells 30.
  • thermal management components 10 there can be one or more thermal management components 10 .
  • the thermal management components 10 can be disposed between the plurality of battery cells 30 and the bottom wall of the box 20 .
  • the thermal management components 10 can also be disposed in the corresponding position. between two adjacent battery cells 30 .
  • the thermal management component 10 may be disposed between the large surfaces of two adjacent battery cells 30 .
  • the large surface of the battery cell 30 refers to the surface of the battery cell 30 with the largest area.
  • Figure 3 is a schematic diagram of the thermal management component 10 in some embodiments of the present application
  • Figure 4 is a cross-sectional view along the A-A direction in Figure 3.
  • Thermal management component 10 is used for batteries.
  • a first cavity 11 and a second cavity 12 are formed inside the thermal management component 10.
  • the first cavity 11 and the second cavity 12 are arranged along the thickness direction x of the thermal management component 10.
  • the first cavity 11 Configured to accommodate the heat exchange medium to regulate the temperature of the battery cell 30
  • the second cavity 12 is configured to deform to absorb the extrusion force to which the thermal management component 10 is subjected.
  • the first cavity 11 and the second cavity 12 are independent of each other.
  • the first cavity 11 can accommodate a heat exchange medium and can heat or cool the battery cell 30 .
  • the second cavity 12 is a cavity that does not contain heat exchange medium, and is used to deform under force to reduce the impact of the force on the first cavity 11 .
  • the first cavity 11 and the second cavity 12 are arranged along the thickness direction x of the thermal management component 10.
  • the surface of the first cavity 11 away from the second cavity 12 is the surface with the largest area of the first cavity 11, This surface is in contact with the battery cell 30 and can effectively adjust the temperature of the battery cell 30 through the heat exchange medium.
  • the surface of the first cavity 11 facing away from the second cavity 12 may be in contact with a large surface of the battery cell 30 to effectively adjust the temperature of the battery cell 30 .
  • the large surface of the battery cell 30 is also the main part where the battery cell 30 expands. When the battery cell 30 expands and squeezes the thermal management component 10 , the second cavity 12 will deform to absorb the squeeze force.
  • the number of the first cavity 11 and the second cavity 12 is not limited.
  • the thermal management component 10 has one first cavity 11 and one second cavity 12; in other embodiments, , the thermal management component 10 has two first cavities 11 and one second cavity 12, and the second cavity 12 is located between the two first cavities 11; or the two first cavities 11 are connected to each other, and the two first cavities 11 are One of the first chambers 11 is connected to the second chamber 12; in some embodiments, the thermal management component 10 has a first chamber 11 and two second chambers 12, and the first chamber 11 can be located between the two second chambers 12. between. It should be understood that the second cavity 12 can deform to absorb energy due to the extrusion force exerted on any part of the thermal management component 10, ensuring that the first cavity 11 is not affected.
  • the thermal management component 10 uses the second cavity 12 to absorb the extrusion force from the outside (the force of external objects on the battery 100 or the force of the battery cells 30 inside the battery 100 on the thermal management component 10, etc.) to avoid the first
  • the extrusion force of the cavity 11 affects the flow of the heat exchange medium inside the cavity 11, ensuring the heat exchange effect of the heat exchange medium on the battery cells 30, thereby making the battery 100 highly safe.
  • FIG. 5 is a schematic diagram of the first cavity 11 and the second cavity 12 in some embodiments of the present application.
  • the thermal management component 10 has a first wall 13 common to the first cavity 11 and the second cavity 12 .
  • the first wall 13 is a wall common to the first cavity 11 and the second cavity 12 , that is, the first wall 13 can be enclosed with other structures to form the first cavity 11 that can accommodate the heat exchange medium, and the second wall 14 can be a common structure with the first cavity 11 .
  • a second cavity 12 is formed that is easily deformed to absorb energy.
  • the thermal management component 10 may be integrally formed to simultaneously form the first cavity 11 and the second cavity 12 .
  • the structure of the thermal management component 10 can be simplified as much as possible, making it easier to manufacture and conducive to the energy density of the battery cell 30 .
  • the thermal management component 10 has a second wall 14 , the first wall 13 and the second wall 14 are arranged oppositely along the thickness direction x of the thermal management component 10 , and between the first wall 13 and the second wall 14 A second cavity 12 is formed.
  • the second wall 14 has a structure opposite to the first wall 13 along the thickness direction x of the thermal management component 10 .
  • the first wall 13 and the second wall 14 are spaced apart from each other, forming a second cavity 12 therebetween.
  • the second wall 14 can deform toward the first wall 13 to compress the second cavity 12, thereby buffering the energy absorption.
  • the second cavity 12 is located between the first wall 13 and the second wall 14.
  • the second wall 14 deforms in the direction of the first wall 13, and the volume of the second cavity 12 decreases. It can absorb the impact of external force on the thermal management component 10, ensure that the first cavity 11 is not affected by external force, and ensure that the heat exchange medium in the first cavity 11 can effectively exchange heat with the battery cells 30.
  • the thermal management component 10 further includes a thermal conductive member 16 disposed inside the second cavity 12 , one end of the thermal conductive member 16 is connected to the first wall 13 , and the thermal conductive member 16 is disposed inside the second cavity 12 . The other end of 16 is connected to the second wall 14.
  • the heat conductive member 16 is a component connecting the first wall 13 and the second wall 14 , and its function may include conducting heat from objects in contact with the second wall 14 to the heat exchange medium in the first cavity 11 .
  • the heat on the surface of the battery cell 30 can be transferred to the heat exchange medium through the heat conductor 16 , or the energy of the heat exchange medium can be transferred to the battery through the first wall 13 Single unit 30.
  • the thermal management component 10 can be located between the two battery cells 30, and the medium in the first cavity 11 can adjust the temperature of the two battery cells 30.
  • a thermal conductive member 16 is provided in the second cavity 12 to enable heat exchange between the medium in the first cavity 11 and the battery cell 30 away from the first cavity 11 through the thermal conductive member 16 .
  • the heat conductive member 16 may not be provided in the second cavity 12, and the heat of the battery cells 30 in contact with the second wall 14 may be conducted to the heat exchange medium through the second wall 14 and the first wall 13, achieving Heat exchange.
  • the thermal conductive member 16 is inclined to the first wall 13 and the second wall 14 .
  • the thermal conductive member 16 can be disposed obliquely between the second wall 14 and the first wall 13 , that is, the thermal conductive member 16 is not perpendicular to the first wall 13 and the first wall 13 .
  • the second wall 14 prevents the second wall 14 from being easily deformed toward the first wall 13 due to the support of the heat conductive member 16 .
  • the extrusion force experienced by the thermal management is mainly the expansion force of the battery cell 30 , and the direction of the expansion force roughly corresponds to the thickness direction x of the thermal management component 10 .
  • the inclined heat conductive member 16 can easily deform, which in turn helps the second cavity 12 absorb the extrusion force and reduces the impact on the first cavity 11 .
  • the heat conduction member 16 may have a hollow structure. That is, when the second cavity 12 is subjected to external force, the heat conduction member 16 can collapse internally, causing the second wall 14 to collapse. It can be easily deformed to ensure the buffering and energy-absorbing effect of the second cavity 12 .
  • the angle between the heat conductive member 16 and the first wall 13 is a, which satisfies 45° ⁇ a ⁇ 90°.
  • “a” is the angle between the heat conducting member 16 and the first wall 13 , that is, the inclination angle between the heat conducting member 16 and the first wall 13 .
  • “a” can be 45°, 50°, 55°, 60°, 65°, 70°, 80°, 85°, 86°, 87°, 88°, 89° or 89.5°, not less than 45° and less than Any value of 90°.
  • the embodiment of the present application limits the angle a between the heat conductive member 16 and the first wall 13 to 45° ⁇ a ⁇ 90°, so that the second cavity 12 has better buffering capacity and ensures the safety of the battery 100.
  • the thermal conductive members 16 extend along the first direction y, the number of the thermal conductive members 16 is multiple, and the multiple thermal conductive members 16 are spaced apart along the second direction z.
  • the first The direction y, the second direction z, and the thickness direction x of the thermal management component 10 are perpendicular to each other.
  • the first direction y and the second direction z are perpendicular to each other, and they are respectively perpendicular to the thickness direction x of the thermal management component 10 .
  • the first direction y is the length direction of the thermal management component 10
  • the second direction z is the width direction of the thermal management component 10 .
  • the heat conducting member 16 is in a sheet shape, one side of the heat conducting member 16 is connected to the first wall 13 , and the other side of the heat conducting member 16 is connected to the second wall 14 .
  • a plurality of heat conductive members 16 are arranged at intervals along the second direction z, and each heat conductive member 16 is parallel to each other, dividing the second cavity 12 into a plurality of small cavities.
  • the dimensions of the thermally conductive member 16 are the same as the dimensions of the second wall 14 .
  • the size of the thermally conductive member 16 may be smaller than the size of the second wall 14 .
  • each heat conducting member 16 extends along the first direction y, and two adjacent heat conducting members 16 are parallel to each other in the second direction z, so that when the thermal management component 10 is subjected to the extrusion force, the second cavity 12 can The force is evenly distributed and the extrusion force is fully absorbed.
  • the distance between two adjacent thermal conductive members 16 is b, which satisfies 5 mm ⁇ b ⁇ 100 mm.
  • the spacing between adjacent thermally conductive members 16 may be the same, that is, in the second cavity 12 , multiple thermally conductive members 16 are evenly arranged, and at this time, the spacing b between two adjacent thermally conductive members 16 Between 5mm and 100mm, for example, b can be 5mm, 6mm, 7mm, 8mm, 9mm, 10mm, 11mm...95mm, 96mm, 97mm, 98mm, 99mm or 100mm, any value not less than 5mm and not greater than 100mm.
  • the spacing b between two adjacent heat conductive members 16 is ⁇ 5 mm, so that the heat conductive members 16 are densely distributed, which is not conducive to the deformation of the second cavity 12; the spacing b between two adjacent heat conductive members 16 is >100 mm, so that the heat conductive members 16 16 is sparsely distributed, which is not conducive to the heat exchange efficiency between the first cavity 11 and the battery cell 30 .
  • the embodiment of the present application limits the distance b between two adjacent heat conductive members 16 to 5 mm ⁇ b ⁇ 100 mm, which can ensure that the temperature of the battery cell 30 is effectively adjusted, so that the second cavity 12 can effectively absorb The squeezing force makes the battery 100 have higher safety.
  • the edges of the first wall 13 and the second wall 14 are connected by a side wall 14a, and the second cavity 12 is composed of the first wall 13, the second wall 14 and the side walls.
  • a plurality of heat conductive members 16 divide the second cavity 12 into several independent chambers.
  • no side wall 14a is provided between the edges of the first wall 13 and the second wall 14, the first wall 13 and the second wall 14 are connected through the heat conductive member 16, and the second cavity 12 can be formed by the first wall. 13.
  • the second wall 14 and the thermal conductive member 16 are formed.
  • the thermal management component 10 has a third wall 15 , the first wall 13 and the third wall 15 are arranged oppositely along the thickness direction x of the thermal management component 10 , and the first wall The first cavity 11 is formed between 13 and the third wall 15 .
  • the third wall 15 is a wall opposite to the first wall 13 in the thickness direction x of the thermal management component 10 , and the first cavity 11 is formed between the first wall 13 and the third wall 15 .
  • the third wall 15 can be a thermally conductive connection component of the battery cell 30 , and the surface heat of the battery cell 30 can be conducted to the heat exchange medium in the first cavity 11 through the third wall 15 .
  • the third wall 15 and the first wall 13 are arranged oppositely along the thickness direction x of the thermal management component 10 and form a first cavity 11 that can accommodate the medium to enable temperature adjustment of the battery cell 30 .
  • opposite ends of the third wall 15 and opposite ends of the first wall 13 are respectively connected by the fourth wall 15 a to jointly enclose a third wall 15 .
  • One cavity 11 In some embodiments, referring to FIG. 5 , in the width direction of the thermal management component 10 , opposite ends of the third wall 15 and opposite ends of the first wall 13 are respectively connected by the fourth wall 15 a to jointly enclose a third wall 15 .
  • One cavity 11 In some embodiments, referring to FIG. 5 , in the width direction of the thermal management component 10 , opposite ends of the third wall 15 and opposite ends of the first wall 13 are respectively connected by the fourth wall 15 a to jointly enclose a third wall 15 .
  • One cavity 11 In some embodiments, referring to FIG. 5 , in the width direction of the thermal management component 10 , opposite ends of the third wall 15 and opposite ends of the first wall 13 are respectively connected by the fourth wall 15 a to jointly enclose a third wall 15 .
  • the thermal management component 10 further includes: a reinforcement 17 disposed inside the first cavity 11 , one end of the reinforcement 17 is connected to the first wall 13 , and the other end of the reinforcement 17 Connect third wall 15.
  • the reinforcing member 17 is a structure disposed inside the first cavity 11 and connecting the first wall 13 and the third wall 15.
  • the functions of the reinforcing member 17 may include: improving the strength of the first cavity 11, and reducing the stress on the first cavity 11. The risk of deformation ensures that the volume of the first cavity 11 is relatively constant.
  • the reinforcing member 17 is provided in the first cavity 11 to improve the structural strength of the first cavity 11 and reduce the risk of deformation of the first wall 13 and the second wall 14 due to the extrusion force, ensuring that the first cavity 11 The volume is relatively constant, ensuring that the medium in the first cavity 11 is not affected by the extrusion force and effectively regulates the temperature of the battery cell 30 .
  • the reinforcement 17 is perpendicular to the first wall 13 and the third wall 15 .
  • the cross section of the reinforcing member 17 may be block-shaped or sheet-shaped, with one end connected to the first wall 13 and the other end connected to the second wall 14 .
  • the angle between the reinforcing member 17 and the first wall 13 is 90°, and the angle between the reinforcing member 17 and the second wall 14 is 90°.
  • the extrusion force experienced by the thermal management is mainly the expansion force of the battery cell 30 , and the direction of the expansion force roughly corresponds to the thickness direction x of the thermal management component 10 .
  • the reinforcement 17 arranged perpendicularly to the first wall 13 and the third wall 15 can effectively resist the extrusion force and ensure that the first wall 13 and the third wall 15 do not deform, that is, It is ensured that the first cavity 11 does not deform.
  • the reinforcing member 17 may extend along the first direction y, and a plurality of reinforcing ribs may be spaced apart along the second direction z.
  • the size of the first cavity 11 in the thickness direction x of the thermal management component 10 is w1
  • the size of the second cavity 12 in the thickness direction x of the thermal management component 10 is w1.
  • the size is w2 and satisfies 0.2 ⁇ w1/w2 ⁇ 1.5.
  • the size w1 of the first cavity 11 in the thickness direction x of the thermal management component 10 can be the width of the first cavity 11.
  • the larger w1 is, the more media the surface thermal management component 10 can accommodate;
  • the dimension w2 in the thickness direction x of 10 can be the width of the second cavity 12; the larger w2 is, the better the buffering capacity of the second cavity 12 is.
  • w1/w2 can be 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4 or 1.5, any value that is not less than 0.2 and not greater than 1.5.
  • w1/w2 ⁇ 0.2 it means that the thermal management component 10 has less volume to accommodate the medium, that is, the less medium is used to adjust the temperature of the battery cell 30, so the thermal management effect is worse.
  • w1/w2 When >1.5 it means that the smaller the thickness of the second cavity 12, the worse its buffering capacity.
  • w1/w2 is limited to 0.2 ⁇ w1/w2 ⁇ 1.5, so that the thermal management component 10 also has better buffering capacity under the condition of strong thermal management effect, and can This makes the battery 100 have higher safety.
  • FIG. 6 is a perspective view of the thermal management component 10 in some embodiments of the present application
  • FIG. 7 is an enlarged view of B in FIG. 6 in some embodiments of the present application.
  • the second cavity 12 has a first opening 120 and a second opening opposite to each other along a first direction y.
  • the first opening 120 and the second opening communicate with the inside of the first cavity 11 respectively.
  • the first direction y is perpendicular to the thickness of the thermal management component 10 direction x.
  • First opening 120 and “second opening” may refer to the two opposite ends of the second cavity 12 being open in the first direction y (such as the length direction of the thermal management component 10), and the second cavity 12 is in the open shape. The opposite ends are connected to the outside world.
  • the two ends of the second cavity 12 are open, which can deform more easily and absorb energy when subjected to extrusion force, thereby having better buffering capacity and effectively
  • the impact of the extrusion force on the first cavity 11 is greatly reduced, so that the battery 100 has higher safety.
  • the thermal management component 10 further includes a first current collector 18 and a second current collector 19 .
  • the first current collector 18 and the second current collector 19 are respectively connected with the first cavity.
  • the two opposite ends of 11 are connected along the first direction y, and the first direction y is perpendicular to the thickness direction x of the thermal management component 10 .
  • the first current collector 18 and the second current collector 19 are arranged oppositely.
  • the first current collector 18 is connected to one end of the first cavity 11, and the second current collector 19 is connected to the first cavity 11.
  • the other end of the first cavity 11 is connected.
  • the first current collector 18 may be formed with an inlet through which the heat exchange medium may enter the first cavity 11 .
  • the second current collector 19 may be formed with an outlet, and the heat exchange medium may be discharged from the first cavity 11 through the outlet.
  • the first current collector 18 does not block the first opening 120
  • the second current collector 19 does not block the second opening.
  • the medium can be input into the first cavity 11 and the medium can be output from the first cavity 11 to realize the circulation of the medium and effectively regulate the battery cell.
  • Body temperature 30 in some embodiments, in the battery 100 , a plurality of battery cells 30 are arranged in a stack, and a plurality of thermal management components 10 are respectively disposed between two adjacent battery cells 30 .
  • the first set of each thermal management component 10 The inlets of the fluid 18 can be connected to each other, and the outlets of the second current collector 19 of each thermal management component 10 can be connected to each other, so that the thermal management components 10 are arranged in parallel.
  • the present application also provides a battery 100.
  • the battery 100 includes a case 20, a battery cell 30 and the thermal management component 10 described above.
  • the battery cells 30 are accommodated in the box 20 .
  • the thermal management component 10 is disposed in the box 20 , and is used to adjust the temperature of the battery cell 30 .
  • FIG. 8 is a schematic diagram of the battery cell 30 and the thermal management component 10 in some embodiments of the present application.
  • FIG. 9 is an enlarged view of position C in FIG. 8 .
  • Battery cells 30 are provided on both sides of the thermal management member 10 in the thickness direction x.
  • a plurality of rows of battery cells 30 stacked on each other are provided in the box 20 .
  • Each column of battery cells 30 includes a plurality of battery cells 30 stacked on each other along the length direction of the thermal management component 10 .
  • One thermal management component 10 is disposed between two adjacent columns of battery cells 30 .
  • Each thermal management component 10 can adjust the temperature of the two adjacent columns of battery cells 30 .
  • the temperature of all battery cells is 30°C.
  • some embodiments of the present application further provide an electrical device, and the electrical device includes the battery 100 described above.
  • the battery 100 is used to provide electrical energy.
  • the present application also provides a thermal management component 10, see Figures 3-7.
  • the thermal management component 10 can be a water-cooled plate.
  • the thermal management component 10 can be disposed between the large surfaces of two battery cells 30, that is, the two battery cells 30 can be disposed on the thermal management part respectively. Both sides in the thickness direction x.
  • a first cavity 11 and a second cavity 12 are formed inside the thermal management component 10 .
  • the first cavity 11 and the second cavity 12 are arranged along the thickness direction x of the thermal management component 10 .
  • the first cavity 11 is configured to accommodate a heat exchange medium for heat exchange with the battery cells 30 and to adjust the temperature of the battery cells 30 .
  • the second cavity 12 does not contain the heat exchange medium and is used to deform to absorb the extrusion force exerted on the thermal management component 10 .
  • the thermal management component 10 includes a third wall 15 , a first wall 13 and a second wall 14 .
  • the third wall 15 and the second wall 14 are on one side away from the first wall 13 .
  • the first cavity 11 is formed between the third wall 15 and the first wall 13
  • the second cavity 12 is formed between the first pen and the second wall 14 .
  • the third wall 15 is in contact with a large surface of the battery cell 30
  • the second wall 14 is in contact with a large surface of another battery cell 30 .
  • a thermal conductive member 16 is provided in the second cavity 12.
  • the function of the thermal conductive member 16 includes heat conduction.
  • the heat conducting member 16 is inclined relative to the first wall 13 and the second wall 14 .
  • the thermal conductive member 16 may be in the form of a sheet extending along the length direction of the thermal management component 10 , and the plurality of thermal conductive members 16 may be spaced apart along the width direction of the thermal management component 10 .
  • the opposite ends of the second cavity 12 are open in the length direction of the thermal management.
  • a reinforcing member 17 may be provided inside the first cavity 11 , and the reinforcing member 17 is vertically connected to the first wall 13 and the third wall 15 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

本申请公开一种热管理部件、电池以及用电设备。热管理部件,用于电池,热管理部件内部形成有第一腔和第二腔,第一腔和第二腔沿热管理部件的厚度方向排列,第一腔被配置为容纳换热介质以调节电池单体的温度,第二腔被配置为通过变形以吸收热管理部件受到的挤压力。本申请提供的技术方案能够提高电池的安全性。

Description

热管理部件、电池以及用电设备
相关申请的交叉引用
本申请要求享有于2022年07月25日提交的名称为“热管理部件、电池以及用电设备”的中国专利申请202221914675.3的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,具体而言,涉及一种热管理部件、电池以及用电设备。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,如何提高电池的安全性,是电池技术中一个亟需解决的技术问题。
发明内容
本申请提供了一种热管理部件、电池以及用电设备,本申请提供的技术方案能够提高电池的安全性。
本申请是通过下述技术方案实现的:
第一方面,本申请提供了一种热管理部件,用于电池,所述热管理部件内部形成有第一腔和第二腔,所述第一腔和所述第二腔沿所述热管理部件的厚度方向排列,所述第一腔被配置为容纳换热介质以调节电池单体的温度,所述第二腔被配置为通过变形以吸收所述热管理部件受到的挤压力。
上述方案中,利用第二腔的形变吸收热管理部件受到的挤压力,避免第一腔因受挤压力而影响其内部换热介质的流动,保证换热介质对电池单体的热交换效果,进而使得电池具有较高的安全性。
根据本申请的一些实施例,所述热管理部件具有为所述第一腔和所述第二腔共用的第一壁。
上述方案中,由于第一腔和第二腔共用一个壁,故能够尽可能地简化热管理部件的结构,使其制造方便,并提高电池单体的能量密度。
根据本申请的一些实施例,所述热管理部件具有第二壁,所述第一壁和所述第二壁沿所述热管理部件的厚度方向相对设置,所述第一壁和所述第二壁之间形成所述第二腔。
上述方案中,第二腔处于第一壁和第二壁之间,当热管理部件受外力时,第二壁向第一壁的方向变形,第二腔的容积减小以吸收外力对热管理部件的冲击,保证第一腔不受外力影响,使得第一腔内的换热介质有效地与电池单体发生热交换。
根据本申请的一些实施例,所述热管理部件还包括:导热件,设置于所述第二腔的内部,所述导热件的一端连接所述第一壁,所述导热件的另一端连接所述第二壁。
上述方案中,在一些实施例中,热管理部件可以位于两个电池单体之间,第一腔内的介质可以调节该两个电池单体的温度,为保证温度调节的效率,第二腔中设置有导热件,以能够实现第一腔中的介质经导热件与背离于第一腔的电池单体进行热交换。
根据本申请的一些实施例,所述导热件倾斜于所述第一壁和所述第二壁。
上述方案中,一般地,热管理部件受到的挤压力主要为电池单体的膨胀力,该膨胀力的方向大致与热管理部件的厚度方向对应。在热管理部件受挤压力时,倾斜设置的导热件能够轻易地发生形变,进而利于第二腔吸收挤压力,降低第一腔受到的影响。
根据本申请的一些实施例,所述导热件与所述第一壁的角度为a,满足45°≤a<90°。
上述方案中,当导热件与第一壁的角度a<45°时,在导热件尺寸固定的情况下,第二壁和第一壁之间的间隙越小,则第二腔的容积越小,能够吸收的挤压力则越小;当导热件与第一壁的角度a=90°时,则导热件能够与第一壁和第二壁垂直,当热管理部件受挤压力时,不利于第二腔形变,即容易将挤压力传递给第一腔,影响电池的安全性。为此,本申请实施例将导热件与第一壁的角度a限制为45°≤a<90°,使得第二腔具有较好的缓冲能力,保证电池的安全性。
根据本申请的一些实施例,所述导热件沿第一方向延伸,所述导热件的数量为多个,多个所述导热件沿第二方向间隔设置,所述第一方向、所述第二方向和所述热管理部件的厚度方向两两垂直。
上述方案中,一方面,通过设置多个导热件,能够保证第一腔中的介质对背离于第一腔的电池单体的热管理效果,使得电池具有较高的安全性;另一方面,每个导热件均沿第一方向延伸,相邻两个导热件在第二方向相互平行,以在热管理部件受挤压力时,第二腔能够受力均匀,充分地吸收挤压力。
根据本申请的一些实施例,相邻两个所述导热件的间距为b,满足5mm≤b≤100mm。
上述方案中,相邻两个导热件的间距b<5mm,使得导热件密集分布,不利于第二腔的形变;相邻两个导热件的间距b>100mm,则使得导热件稀疏分布,不利于第一腔与电池单体的热交换效率。为此,本申请实施例将相邻两个导热件的间距b限制为5mm≤b≤100mm,能够在保证有效调节电池单体温度的条件下,使得第二腔室能够有效地吸收挤压力,使得电池具有较高的安全性。
根据本申请的一些实施例,所述热管理部件具有第三壁,所述第一壁和所述第三壁沿所述热管理部件的厚度方向相对设置,所述第一壁和所述第三壁之间形成所述第一腔。
上述方案中,第三壁和第一壁沿热管理部件的厚度方向相对设置,并形成可以容纳介质的第一腔,以能够对电池单体进行温度调节。
根据本申请的一些实施例,所述热管理部件还包括:加强件,设置于所述第一腔的内部,所述加强件的一端连接所述第一壁,所述加强件的另一端连接所述第三壁。
上述方案中,通过在第一腔内设置加强件,以提高第一腔的结构强度,降低第一壁和第二壁因挤压力而变形的风险,保证第一腔容积相对恒定,保证第一腔内介质不受挤压力影响,有效地调节电池单体的温度。
根据本申请的一些实施例,所述加强件垂直于所述第一壁和所述第三壁。
上述方案中,一般地,热管理受到的挤压力主要为电池单体的膨胀力,该膨胀力的方向大致与热管理部件的厚度方向对应。在热管理部件受挤压力时,垂直于第一壁和第三壁设置的加强件能够有效地抵抗挤压力,保证第一壁和第三壁不发生形变,即保证第一腔不发生形变。
根据本申请的一些实施例,所述第一腔在所述热管理部件的厚度方向上的尺寸为w1,所述第二腔在所述热管理部件的厚度方向上的尺寸为w2,满足0.2≤w1/w2≤1.5。
上述方案中,当w1/w2<0.2时,则表明热管理部件具有较少的容积容纳介质,即对电池单体调节温度的介质越少,故热管理效果越差,当w1/w2>1.5时,则表明第二腔的厚度越小,其缓冲能力越差。为此,本申请实施例中,将w1/w2限制为0.2≤w1/w2≤1.5,使得该热管理部件在具有较强的热管理效果的条件下,也具有较好的缓冲能力,能够使得电池具有较高的安全性。
根据本申请的一些实施例,所述第二腔具有沿第一方向相对的第一开口和第二开口,所述第一开口和所述第二开口分别连通所述第一腔的内部,所述第一方向垂直于所述热管理部件的厚度方向。
上述方案中,沿第一方向,第二腔的相对两端呈开口状,即第一开口和第二开口,较其相对两端呈封闭状的方案而言,在受到挤压力时,能够更轻易地变形吸能,进而具有较好的缓冲能力, 有效地降低挤压力对第一腔造成的影响,使得电池具有较高的安全性。
根据本申请的一些实施例,所述热管理部件还包括第一集流体和第二集流体,所述第一集流体和所述第二集流体分别与所述第一腔沿第一方向相对设置的两端连通,所述第一方向垂直于所述热管理部件的厚度方向。
上述方案中,通过设置第一集流体和第二集流体,以能够向第一腔内输入介质,也能够由第一腔内输出介质,实现介质的循环,有效地调节电池单体的温度。
第二方面,本申请还提供一种电池,该电池包括箱体;电池单体,容纳于所述箱体内;第一方面中任一项所述的热管理部件,所述热管理部件设置于所述箱体内,用于调节所述电池单体的温度。
根据本申请的一些实施例,所述热管理部件厚度方向的两侧均设置有所述电池单体。
第三方面,本申请还提供一种用电设备,包括第二方面任一项所述的电池,所述电池用于提供电能。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例中车辆的结构示意图;
图2为本申请一些实施例中电池的立体爆炸图;
图3为本申请一些实施例中热管理部件的示意图;
图4为图3中A-A视向的剖视图;
图5为本申请一些实施例中第一腔和第二腔的示意图;
图6为本申请一些实施例中热管理部件的立体图;
图7为本申请一些实施例中图6中B处的放大图;
图8为本申请一些实施例中电池单体和热管理部件的示意图;
图9为图8中C处的放大图。
图标:10-热管理部件;11-第一腔;12-第二腔;13-第一壁;14-第二壁;14a-侧壁;15-第三壁;15a-第四壁;16-导热件;17-加强件;120-第一开口;18-第一集流体;19-第二集流体;x-厚度方向;y-第一方向;z-第二方向;1000-车辆;200-控制器;300-马达;100-电池;20-箱体;21-第一部分;22-第二部分;30-电池单体。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请 实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈长方体或其它形状等,本申请实施例对此也不限定。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。电池还包括箱体,一个或者多个电池单体设于箱体内部,箱体对电池单体起保护作用,避免电池单体受外部物体影响。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。例如,电池热失控会导致电池燃烧、爆炸,严重影响电池的安全性。热失控是由于电池单体的生热速率远高于散热速率,且热量大量累积未及时散出引起的。
为提高电池的安全性,电池中一般还包括热管理部件。热管理部件设于箱体内。热管理部件的内部形成有第一腔,该第一腔用于容纳换热介质以给电池单体调节温度,以使电池处于适宜的温度范围内,保证较高的安全性。这里的换热介质可以是流体(液体)或气体,调节温度是指给多个电池单体加热或者冷却。可选的,流体可以是循环流动的,以达到更好的温度调节的效果。可选的,流体可以为水、水和乙二醇的混合液或者空气等。例如,在给电池单体冷却或降温的情况下,该热管理部件用于容纳冷却流体以给多个电池单体降低温度,此时,热管理部件也可以称为冷却部 件、冷却系统或冷却板等,其容纳的流体也可以称为冷却介质或冷却流体,更具体的,可以称为冷却液或冷却气体。当热管理部件内容纳的流体为冷却水时,热管理部件也可以称为水冷板,水冷板接触电池单体,能够用于降低电池单体的温度,以免电池单体热失控。
然而,发明人发现,现有的电池在长时间使用后,电池存在较大的热失控风险,影响电池的安全性。发明人研究发现,电池在长时间使用后,电池单体内部的电化学和化学反应会使得电池单体内部压力增高,导致电池单体膨胀。而电池单体膨胀会对热管理部件进行挤压,致使热管理部件的第一腔形变,第一腔的容积发生变化,使得其内部流阻变大,影响换热介质的流速,导致换热介质无法有效地调节电池单体的温度,进而电池存在热失控风险,安全性较低。
鉴于此,为降低挤压力对热管理部件的第一腔的影响,保证第一腔具有相对恒定的容积,以降低电池热失控的风险,提高电池的安全性,发明人经深入研究,设计了一种热管理部件,该热管理部件的内部还形成有第二腔,第一腔和第二腔沿热管理部件的厚度方向排列,该第二腔被配置为通过变形以吸收热管理部件受到的挤压力。
上述方案中,第二腔不容纳换热介质,在热管理部件受到挤压力时,第二腔受力形变以吸收该挤压力,进而降低该挤压力对第一腔造成的影响,保证热管理部件能够有效地调节电池单体的温度,使得电池具有较高的安全性。
本申请实施例描述的技术方案适用于电以及使用电池的用电设备。
用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆1000为例进行说明。
图1为本申请一些实施例中车辆1000的结构示意图。
车辆1000的内部可以设置控制器200、马达300和电池100,控制器200用来控制电池100为马达300供电。例如,在车辆1000的底部或车头或车尾可以设置电池100。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源,用于车辆1000的电路系统,例如,用于车辆1000的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池100不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,替代或部分地替代燃油或天然气为车辆1000提供驱动动力。
请参见图2,图2为本申请一些实施例中电池100的立体爆炸图。
电池100包括箱体20、电池单体30以及热管理部件10,电池单体30和热管理部件10容纳于箱体20内。其中,箱体20用于为电池单体30提供容纳空间,箱体20可以采用多种结构。在一些实施例中,箱体20可以包括第一部分21和第二部分22,第一部分21与第二部分22相互盖合,第一部分21和第二部分22共同限定出用于容纳电池单体30的容纳空间。第二部分22可以为一端开口的空心结构,第一部分21可以为板状结构,第一部分21盖合于第二部分22的开口侧,以使第一部分21与第二部分22共同限定出容纳空间;第一部分21和第二部分22也可以是均为一侧开口的空心结构,第一部分21的开口侧盖合于第二部分22的开口侧。当然,第一部分21和第二部分22形成的箱体20可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体30可以是多个,多个电池单体30之间可串联或并联或混联,混联是指多个电池单体30中既有串联又有并联。多个电池单体30之间可直接串联或并联或混联在一起,再将多个电池单体30构成的整体容纳于箱体20内;当然,电池100也可以是多个电池单体30先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体20内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于 实现多个电池单体30之间的电连接。
在电池100中,热管理部件10可以为一个也可以为多个,热管理部件10可以设置于多个电池单体30和箱体20的底壁之间,热管理部件10也可以设置在相邻的两个电池单体30之间。示例性地,在图2中,热管理部件10可设置在相邻两个电池单体30的大面之间。电池单体30的大面指电池单体30的面积最大的表面。
根据本申请的一些实施例,请参见图3和图4,图3为本申请一些实施例中热管理部件10的示意图,图4为图3中A-A视向的剖视图。
热管理部件10,用于电池,热管理部件10内部形成有第一腔11和第二腔12,第一腔11和第二腔12沿热管理部件10的厚度方向x排列,第一腔11被配置为容纳换热介质以调节电池单体30的温度,第二腔12被配置为通过变形以吸收热管理部件10受到的挤压力。
第一腔11和第二腔12相互独立,第一腔11能够容纳换热介质,能够给电池单体30加热或者冷却。第二腔12为不容纳换热介质的腔室,其用于受力形变,以降低该力对第一腔11的影响。
第一腔11和第二腔12沿热管理部件10的厚度方向x排列,在一些实施例中,第一腔11的背离于第二腔12的面为第一腔11的面积最大的表面,该表面与电池单体30接触,能够有效地通过换热介质调节电池单体30的温度。同时,在一些实施例中,第一腔11背离于第二腔12的表面可以与电池单体30的大面接触,以有效地调节电池单体30的温度。电池单体30的大面也为电池单体30膨胀的主要部位,在电池单体30膨胀并挤压热管理部件10时,第二腔12会发生形变以吸收该挤压力。本申请中,不对第一腔11和第二腔12的数量进行限制,例如,在一些实施例中,热管理部件10具有一个第一腔11和一个第二腔12;在另一些实施例中,热管理部件10具有两个第一腔11和一个第二腔12,第二腔12位于两个第一腔11之间;或者两个第一腔11相互连接,两个第一腔11的其中一个第一腔11与第二腔12连接;再一些实施例中,热管理部件10具有一个第一腔11和两个第二腔12,第一腔11可以位于两个第二腔12之间。应当理解地,热管理部件10在任意部位受到的挤压力,第二腔12均能够形变以吸能,保证第一腔11不受影响。
上述方案中,热管理部件10利用第二腔12,吸收来自外部的挤压力(外部物件对电池100的力或电池100内部电池单体30对热管理部件10的力等),避免第一腔11因受挤压力而影响其内部换热介质的流动,保证换热介质对电池单体30的热交换效果,进而使得电池100具有较高的安全性。
根据本申请的一些实施例,请参见图5,图5为本申请一些实施例中第一腔11和第二腔12的示意图。
热管理部件10具有为第一腔11和第二腔12共用的第一壁13。
第一壁13为第一腔11和第二腔12共有的壁,即第一壁13可以通过与其他结构合围成能够容纳换热介质的第一腔11,第二壁14可以为与其结构共同形成易形变以吸能的第二腔12。在一些实施例中热管理部件10可以一体成型,以同时形成第一腔11和第二腔12。
上述方案中,由于第一腔11和第二腔12共用一个壁,故能够尽可能地简化热管理部件10的结构,使得其便于制造,利于电池单体30的能量密度。
根据本申请的一些实施例,热管理部件10具有第二壁14,第一壁13和第二壁14沿热管理部件10的厚度方向x相对设置,第一壁13和第二壁14之间形成第二腔12。
第二壁14为沿热管理部件10的厚度方向x与第一壁13相对设置的结构。第一壁13和第二壁14相互间隔,二者之间形成第二腔12。当热管理部件10受挤压力时,第二壁14能够向第一壁13形变以压缩第二腔12,进而缓冲吸能。
上述方案中,第二腔12处于第一壁13和第二壁14之间,当热管理部件10受外力时,第二壁14向第一壁13的方向变形,第二腔12的容积减小以吸收外力对热管理部件10的冲击,保证第一腔11不受外力影响,保证第一腔11内的换热介质有效地与电池单体30发生热交换。
根据本申请的一些实施例,参见图4和图5,热管理部件10还包括导热件16,导热件16设 置于第二腔12的内部,导热件16的一端连接第一壁13,导热件16的另一端连接第二壁14。
导热件16为连接第一壁13和第二壁14的部件,其作用可以包括将与第二壁14接触的物件的热量传导至第一腔11中的换热介质。例如,当第二壁14与电池单体30接触时,该电池单体30表面的热量能够通过导热件16传递给换热介质,或者换热介质的能量能够通过第一壁13传递给该电池单体30。
上述方案中,在一些实施例中,热管理部件10可以位于两个电池单体30之间,第一腔11内的介质可以调节该两个电池单体30的温度,为保证温度调节的效率,第二腔12中设置有导热件16,以能够实现第一腔11中的介质经导热件16与背离于第一腔11的电池单体30发生热交换。
在其他一些实施例中,第二腔12中可以不设置导热件16,与第二壁14接触的电池单体30的热量可以通过第二壁14和第一壁13传导至换热介质,实现换热。
根据本申请的一些实施例,参见图5,导热件16倾斜于第一壁13和第二壁14。
目前,电池单体30在膨胀时,施加给热管理部件10的挤压力的方向平行于热管理部件10的厚度方向x。为此,在一些实施例中,为保证第二腔12受力变形,导热件16可倾斜设置于第二壁14和第一壁13之间,即导热件16不垂直于第一壁13和第二壁14,避免第二壁14因导热件16的支撑而不易于向第一壁13形变。
上述方案中,一般地,热管理受到的挤压力主要为电池单体30的膨胀力,该膨胀力的方向大致与热管理部件10的厚度方向x对应。在热管理部件10受挤压力时,倾斜设置的导热件16能够轻易地发生形变,进而利于第二腔12吸收挤压力,降低第一腔11受到的影响。
在其他一些实施例中,在保证导热件16的导热能力的条件下,导热件16可以呈中空结构,即在第二腔12受外力时,导热件16能够发生内部坍塌,使得第二壁14能够轻易地变形,保证第二腔12的缓冲吸能效果。
根据本申请的一些实施例,参见图5,导热件16与第一壁13的角度为a,满足45°≤a<90°。
“a”为导热件16与第一壁13的角度,即导热件16与第一壁13的倾斜角。“a”可以为45°、50°、55°、60°、65°、70°、80°、85°、86°、87°、88°、89°或89.5°等不小于45°且小于90°的任意数值。
上述方案中,当导热件16与第一壁13的角度a<45°时,在导热件16尺寸固定的情况下,第二壁14和第一壁13之间的间隙越小,则第二腔12的容积越小,能够吸收的挤压力则越小;当导热件16与第一壁13的角度a=90°时,则导热件16能够与第一壁13和第二壁14垂直,当热管理部件10受挤压力时,不利于第二腔12形变,即容易将挤压力传递给第一腔11,影响电池100的安全性。为此,本申请实施例将导热件16与第一壁13的角度a限制为45°≤a<90°,使得第二腔12具有较好的缓冲能力,保证电池100的安全性。
根据本申请的一些实施例,请参见图3-图5,导热件16沿第一方向y延伸,导热件16的数量为多个,多个导热件16沿第二方向z间隔设置,第一方向y、第二方向z和热管理部件10的厚度方向x两两垂直。
第一方向y和第二方向z相互垂直,且二者分别与热管理部件10的厚度方向x垂直。在一些实施例中,如图3-图5中,第一方向y为热管理部件10的长度方向,第二方向z为热管理部件10的宽度方向。
导热件16呈片状,导热件16的一侧边与第一壁13连接,导热件16的另一侧边与第二壁14连接。多个导热件16沿第二方向z间隔布设,且每个导热件16相互平行,将第二腔12分隔为若干小腔室。在一些实施例中,沿第一方向y,导热件16的尺寸与第二壁14的尺寸相同。在另一些实施例中,导热件16的尺寸可以小于第二壁14的尺寸。
上述方案中,一方面,通过设置多个导热件16,能够保证第一腔11中的介质对背离于第一腔11的电池单体30的热管理效果,使得电池100具有较高的安全性;另一方面,每个导热件16 均沿第一方向y延伸,相邻两个导热件16在第二方向z相互平行,以在热管理部件10受挤压力时,第二腔12能够受力均匀,充分地吸收挤压力。
根据本申请的一些实施例,参见图5,相邻两个导热件16的间距为b,满足5mm≤b≤100mm。
在一些实施例中,相邻的导热件16的之间的间距可以是相同的,即在第二腔12中,多个导热件16均匀布设,此时相邻两个导热件16的间距b处于5mm至100mm之间,如b可以为5mm、6mm、7mm、8mm、9mm、10mm、11mm…95mm、96mm、97mm、98mm、99mm或100mm等不小于5mm,不大于100mm的任意数值。
上述方案中,相邻两个导热件16的间距b<5mm,使得导热件16密集分布,不利于第二腔12的形变;相邻两个导热件16的间距b>100mm,则使得导热件16稀疏分布,不利于第一腔11与电池单体30的热交换效率。为此,本申请实施例将相邻两个导热件16的间距b限制为5mm≤b≤100mm,能够在保证有效调节电池单体30温度的条件下,使得第二腔12室能够有效地吸收挤压力,使得电池100具有较高的安全性。
在一些实施例中,请参见图4和图5,第一壁13和第二壁14的边缘之间通过侧壁14a连接,第二腔12由第一壁13、第二壁14以及侧壁14a围合形成,多个导热件16将第二腔12分隔为若干独立的腔室。在另一些实施例中,第一壁13和第二壁14的边缘之间不设置侧壁14a,第一壁13和第二壁14通过导热件16连接,第二腔12可以由第一壁13、第二壁14以及导热件16形成。
根据本申请的一些实施例,请参见图4和图5,热管理部件10具有第三壁15,第一壁13和第三壁15沿热管理部件10的厚度方向x相对设置,第一壁13和第三壁15之间形成第一腔11。
第三壁15为在热管理部件10的厚度方向x上与第一壁13相对设置的壁,第一腔11形成于第一壁13和第三壁15之间。第三壁15可以为电池单体30导热连接的部件,电池单体30的表面热量能够通过第三壁15传导至第一腔11中的换热介质中。
上述方案中,第三壁15和第一壁13沿热管理部件10的厚度方向x相对设置,并形成可以容纳介质的第一腔11,以能够对电池单体30进行温度调节。
在一些实施例中,参见图5,在热管理部件10的宽度方向上,第三壁15的相对两端和第一壁13的相对两端分别通过第四壁15a连接,以共同围合成第一腔11。
根据本申请的一些实施例,请参见图5,热管理部件10还包括:加强件17,设置于第一腔11的内部,加强件17的一端连接第一壁13,加强件17的另一端连接第三壁15。
加强件17为设置于第一腔11内部并连接第一壁13和第三壁15的结构,加强件17的作用可以包括:提高第一腔11的强度,降低第一腔11因受力而发生形变的风险,保证第一腔11的容积相对恒定。
上述方案中,通过在第一腔11内设置加强件17,以提高第一腔11的结构强度,降低第一壁13和第二壁14因挤压力而变形的风险,保证第一腔11容积相对恒定,保证第一腔11内介质不受挤压力影响,有效地调节电池单体30的温度。
根据本申请的一些实施例,参见图5,加强件17垂直于第一壁13和第三壁15。
在一些实施例中,加强件17的横截面可以呈块状或片状,其一端连接第一壁13,另一端连接第二壁14。加强件17与第一壁13的角度为90°,加强件17与第二壁14的角度为90°。
上述方案中,热管理受到的挤压力主要为电池单体30的膨胀力,该膨胀力的方向大致与热管理部件10的厚度方向x对应。在热管理部件10受挤压力时,垂直于第一壁13和第三壁15设置的加强件17能够有效地抵抗挤压力,保证第一壁13和第三壁15不发生形变,即保证第一腔11不发生形变。
在一些实施例中,加强件17可以沿第一方向y延伸,多个加强筋可以沿第二方向z间隔布设。
根据本申请的一些实施例,请参见图4和图5,第一腔11在热管理部件10的厚度方向x上的尺寸为w1,第二腔12在热管理部件10的厚度方向x上的尺寸为w2,满足0.2≤w1/w2≤1.5。
第一腔11在热管理部件10的厚度方向x上的尺寸w1可以为第一腔11的宽度,w1越大则表面热管理部件10能够容纳越多的介质;第二腔12在热管理部件10的厚度方向x上的尺寸w2可以为第二腔12的宽度;w2越大,则表明第二腔12具有更好的缓冲能力。
w1/w2可以为0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4或1.5等不小于0.2不大于1.5的任意数值。
上述方案中,当w1/w2<0.2时,则表明热管理部件10具有较少的容积容纳介质,即对电池单体30调节温度的介质越少,故热管理效果越差,当w1/w2>1.5时,则表明第二腔12的厚度越小,其缓冲能力越差。为此,本申请实施例中,将w1/w2限制为0.2≤w1/w2≤1.5,使得该热管理部件10在具有较强的热管理效果的条件下,也具有较好的缓冲能力,能够使得电池100具有较高的安全性。
根据本申请的一些实施例,请结合图6和图7,图6为本申请一些实施例中热管理部件10的立体图,图7为本申请一些实施例中图6中B处的放大图。第二腔12具有沿第一方向y相对的第一开口120和第二开口,第一开口120和第二开口分别连通第一腔11的内部,第一方向y垂直于热管理部件10的厚度方向x。
“第一开口120”和“第二开口”,可以指在第一方向y(如热管理部件10的长度方向)上,第二腔12的相对两端呈开放状,第二腔12在该相对的两端与外界连通。
上述方案中,较其相对两端呈封闭状的方案而言,第二腔12的两端开放,能够在受到挤压力时,更轻易地变形吸能,进而具有较好的缓冲能力,有效地降低挤压力对第一腔11造成的影响,使得电池100具有较高的安全性。
根据本申请的一些实施例,请结合图6和图7,热管理部件10还包括第一集流体18和第二集流体19,第一集流体18和第二集流体19分别与第一腔11沿第一方向y相对设置的两端连通,第一方向y垂直于热管理部件10的厚度方向x。
沿第一方向y(如热管理部件10的长度方向),第一集流体18和第二集流体19相对设置,第一集流体18与第一腔11的一端连通,第二集流体19与第一腔11的另一端连通。第一集流体18可以形成有进口,换热介质可以由该进口进入第一腔11。第二集流体19可以形成有出口,换热介质可以由该出口排出于第一腔11。
参见图6和图7,本申请的一些实施例中,第一集流体18不会遮挡第一开口120,第二集流体19不会遮挡第二开口。
上述方案中,通过设置第一集流体18和第二集流体19,以能够向第一腔11内输入介质,也能够由第一腔11内输出介质,实现介质的循环,有效地调节电池单体30的温度。在一些实施例中,在电池100中,多个电池单体30层叠布设,多个热管理部件10分别设置于相邻两个电池单体30之间,每一个热管理部件10的第一集流体18的进口可以相互连通,每一个热管理部件10的第二集流体19的出口可以相互连通,使得热管理部件10之间并联布设。
根据本申请的一些实施例,本申请还提供一种电池100,该电池100包括箱体20、电池单体30和上文描述的热管理部件10。电池单体30容纳于箱体20内。热管理部件10设置于箱体20内,热管理部件10用于调节电池单体30的温度。
根据本申请的一些实施例,请结合图8和图9,图8为本申请一些实施例中电池单体30和热管理部件10的示意图,图9为图8中C处的放大图。
热管理部件10厚度方向x的两侧均设置有电池单体30。
在一些实施例中,沿热管理部件10的厚度方向x,箱体20内设置有多列相互堆叠的电池单体30。每列电池单体30包括多个沿热管理部件10的长度方向上相互堆叠的电池单体30。热管理部件10的数量为多个,在相邻的两列电池单体30之间设置有一个热管理部件10,每个热管理部件10可以调节该相邻的两列的电池单体30中的所有的电池单体30的温度。
根据本申请的一些实施例,本申请一些实施例还提供一种用电设备,用电设备包括上文描述的电池100。电池100用于提供电能。
根据本申请的一些实施例,本申请还提供一种热管理部件10,请参见图3-图7。热管理部件10可以为水冷板,在应用于电池100中时,热管理部件10可以设置两个电池单体30的大面之间,即两个电池单体30可以分别设置在热管理部分的厚度方向x上的两侧。
热管理部件10的内部形成有第一腔11和第二腔12,第一腔11和第二腔12沿热管理部件10的厚度方向x排列。第一腔11被配置为容纳换热介质,用于与电池单体30热交换,调节电池单体30的温度。第二腔12不容纳换热介质,其用于形变以吸收热管理部件10受到的挤压力。
热管理部件10包括第三壁15、第一壁13以及第二壁14,沿热管理部件10的厚度方向x,第三壁15和第二壁14互为背离于第一壁13的一侧,第一腔11形成于第三壁15和第一壁13之间,第二腔12形成于第一笔和第二壁14之间。在一些实施例中,第三壁15与电池单体30的大面接触,第二壁14与另一个电池单体30的大面接触。
为保证第一腔11中的换热介质能够与第二壁14接触的电池单体30进行热交换,在第二腔12中设置有导热件16,导热件16的作用包括导热。为保证第二腔12能顺利地形变,导热件16倾斜于第一壁13和第二壁14。在一些实施例中,导热件16可以呈片状,其沿热管理部件10的长度方向延伸,多个导热件16可以沿热管理部件10的宽度方向间隔分布。为保证第二腔12能顺利地形变,在热管理的长度方向,第二腔12相对的两端均呈开放状。为提高第一腔11的结构强度,降低第一腔11受力形变的风险,第一腔11的内部可以设置有加强件17,加强件17垂直连接于第一壁13和第三壁15。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (17)

  1. 一种热管理部件,用于电池,其中,所述热管理部件内部形成有第一腔和第二腔,所述第一腔和所述第二腔沿所述热管理部件的厚度方向排列,所述第一腔被配置为容纳换热介质以调节电池单体的温度,所述第二腔被配置为通过变形以吸收所述热管理部件受到的挤压力。
  2. 根据权利要求1所述的热管理部件,其中,
    所述热管理部件具有为所述第一腔和所述第二腔共用的第一壁。
  3. 根据权利要求2所述的热管理部件,其中,
    所述热管理部件具有第二壁,所述第一壁和所述第二壁沿所述热管理部件的厚度方向相对设置,所述第一壁和所述第二壁之间形成所述第二腔。
  4. 根据权利要求3所述的热管理部件,其中,
    所述热管理部件还包括:
    导热件,设置于所述第二腔的内部,所述导热件的一端连接所述第一壁,所述导热件的另一端连接所述第二壁。
  5. 根据权利要求4所述的热管理部件,其中,
    所述导热件倾斜于所述第一壁和所述第二壁。
  6. 根据权利要求5所述的热管理部件,其中,
    所述导热件与所述第一壁的角度为a,满足45°≤a<90°。
  7. 根据权利要求4-6任一项所述的热管理部件,其中,
    所述导热件沿第一方向延伸,所述导热件的数量为多个,多个所述导热件沿第二方向间隔设置,所述第一方向、所述第二方向和所述热管理部件的厚度方向两两垂直。
  8. 根据权利要求7所述的热管理部件,其中,
    相邻两个所述导热件的间距为b,满足5mm≤b≤100mm。
  9. 根据权利要求2-8任一项所述的热管理部件,其中,
    所述热管理部件具有第三壁,所述第一壁和所述第三壁沿所述热管理部件的厚度方向相对设置,所述第一壁和所述第三壁之间形成所述第一腔。
  10. 根据权利要求9所述的热管理部件,其中,
    所述热管理部件还包括:
    加强件,设置于所述第一腔的内部,所述加强件的一端连接所述第一壁,所述加强件的另一端连接所述第三壁。
  11. 根据权利要求10所述的热管理部件,其中,
    所述加强件垂直于所述第一壁和所述第三壁。
  12. 根据权利要求1-11任一项所述的热管理部件,其中,
    所述第一腔在所述热管理部件的厚度方向上的尺寸为w1,所述第二腔在所述热管理部件的厚度方向上的尺寸为w2,满足0.2≤w1/w2≤1.5。
  13. 根据权利要求1-12任一项所述的热管理部件,其中,
    所述第二腔具有沿第一方向相对的第一开口和第二开口,所述第一开口和所述第二开口分别连通所述第一腔的内部,所述第一方向垂直于所述热管理部件的厚度方向。
  14. 根据权利要求1-13任一项所述的热管理部件,其中,
    所述热管理部件还包括第一集流体和第二集流体,所述第一集流体和所述第二集流体分别与所述第一腔沿第一方向相对设置的两端连通,所述第一方向垂直于所述热管理部件的厚度方向。
  15. 一种电池,其中,包括:
    箱体;
    电池单体,容纳于所述箱体内;
    根据权利要求1-14任一项所述的热管理部件,所述热管理部件设置于所述箱体内,用于调节所述电池单体的温度。
  16. 根据权利要求15所述的电池,其中,
    所述热管理部件厚度方向的两侧均设置有所述电池单体。
  17. 一种用电设备,其中,包括权利要求15或16所述的电池,所述电池用于提供电能。
PCT/CN2022/122808 2022-07-25 2022-09-29 热管理部件、电池以及用电设备 WO2024021304A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221914675.3U CN217719768U (zh) 2022-07-25 2022-07-25 热管理部件、电池以及用电设备
CN202221914675.3 2022-07-25

Publications (1)

Publication Number Publication Date
WO2024021304A1 true WO2024021304A1 (zh) 2024-02-01

Family

ID=83781012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122808 WO2024021304A1 (zh) 2022-07-25 2022-09-29 热管理部件、电池以及用电设备

Country Status (2)

Country Link
CN (1) CN217719768U (zh)
WO (1) WO2024021304A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116848704A (zh) * 2022-11-23 2023-10-03 宁德时代新能源科技股份有限公司 换热组件、电池及用电装置
CN116093515B (zh) * 2023-04-11 2023-08-25 宁德时代新能源科技股份有限公司 电池及用电装置
CN116130835A (zh) * 2023-04-17 2023-05-16 宁德时代新能源科技股份有限公司 电池和用电设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020177035A1 (en) * 2001-05-23 2002-11-28 Alcatel Thermal management blanketing and jacketing for battery system modules
CN103098295A (zh) * 2010-02-02 2013-05-08 达纳加拿大公司 用于电池单元堆的共形热交换器
CN211789374U (zh) * 2020-04-13 2020-10-27 恒大新能源汽车投资控股集团有限公司 电池包液冷底板总成和电池包
CN114497826A (zh) * 2022-04-18 2022-05-13 宁德时代新能源科技股份有限公司 水冷板组件、水冷系统、电池及其箱体以及用电装置
CN217485569U (zh) * 2022-06-27 2022-09-23 宁德时代新能源科技股份有限公司 电池的热管理部件、电池以及用电装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020177035A1 (en) * 2001-05-23 2002-11-28 Alcatel Thermal management blanketing and jacketing for battery system modules
CN103098295A (zh) * 2010-02-02 2013-05-08 达纳加拿大公司 用于电池单元堆的共形热交换器
CN211789374U (zh) * 2020-04-13 2020-10-27 恒大新能源汽车投资控股集团有限公司 电池包液冷底板总成和电池包
CN114497826A (zh) * 2022-04-18 2022-05-13 宁德时代新能源科技股份有限公司 水冷板组件、水冷系统、电池及其箱体以及用电装置
CN217485569U (zh) * 2022-06-27 2022-09-23 宁德时代新能源科技股份有限公司 电池的热管理部件、电池以及用电装置

Also Published As

Publication number Publication date
CN217719768U (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2024021304A1 (zh) 热管理部件、电池以及用电设备
CN216872113U (zh) 电池和用电设备
WO2023050969A1 (zh) 一种电池单体、电池及用电装置
CN217182265U (zh) 电池和用电设备
WO2023198012A1 (zh) 电池和用电设备
WO2024031413A1 (zh) 电池以及用电装置
WO2024021248A1 (zh) 电池单体、电池及用电设备
WO2024021293A1 (zh) 热管理部件、电池以及用电装置
WO2023134110A1 (zh) 电池和用电设备
WO2023227076A1 (zh) 热管理部件、电池以及用电装置
WO2023134479A1 (zh) 电池和用电设备
WO2023134107A1 (zh) 电池和用电设备
WO2023185244A1 (zh) 一种散热结构、高压盒、电池和用电装置
WO2023226201A1 (zh) 箱体组件、电池和用电设备
WO2023184709A1 (zh) 电池热管理系统、电池及用电装置
US20230071423A1 (en) Battery, apparatus using battery, and preparation method and preparation device of battery
WO2023245501A1 (zh) 热管理部件、热管理系统、电池及用电装置
WO2023155207A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023060714A1 (zh) 电池、用电设备、制造电池的方法和设备
KR20230126176A (ko) 배터리, 전기 장치, 배터리 제조 방법 및 장치
WO2024011881A1 (zh) 电池和用电设备
WO2023240460A1 (zh) 一种热管理组件、电池和用电装置
CN218827514U (zh) 热管理部件、电池以及用电设备
WO2023155209A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023173721A1 (zh) 电池单体、电池模组、电池和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952745

Country of ref document: EP

Kind code of ref document: A1