WO2024011881A1 - 电池和用电设备 - Google Patents

电池和用电设备 Download PDF

Info

Publication number
WO2024011881A1
WO2024011881A1 PCT/CN2023/071684 CN2023071684W WO2024011881A1 WO 2024011881 A1 WO2024011881 A1 WO 2024011881A1 CN 2023071684 W CN2023071684 W CN 2023071684W WO 2024011881 A1 WO2024011881 A1 WO 2024011881A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
buffer member
hole
thermal management
management component
Prior art date
Application number
PCT/CN2023/071684
Other languages
English (en)
French (fr)
Inventor
苗慧敏
可庆朋
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2024011881A1 publication Critical patent/WO2024011881A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, specifically, to a battery and electrical equipment.
  • Electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy conservation and environmental protection.
  • battery technology is an important factor related to their development.
  • This application provides a battery and electrical equipment, and the battery has high safety.
  • the application provides a battery, including: a box including a first wall; a battery cell contained in the box; and a thermal management component contained in the box for containing a medium to regulate The battery cell temperature; a buffer member disposed between the thermal management component and the first wall; wherein the buffer member is provided with a collapse portion configured to absorb the thermal energy through deformation. The impact energy of the first wall on the thermal management component.
  • the structural strength of the buffer member can be effectively reduced and the energy-absorbing effect of the buffer member can be improved.
  • the impact energy transmitted from the first wall to the inside of the box acts on the buffer, causing the collapse portion to deform to absorb the impact energy, reducing the impact of the impact energy on the thermal management components, and ensuring Thermal management components have a thermal management effect on battery cells, thereby ensuring the safety of the battery.
  • the buffer member has an opposite first surface and a second surface in the thickness direction, and the first surface is connected to the thermal management component; The first hole on one side.
  • the collapsed portion includes a first hole formed on the first surface.
  • the first hole can effectively reduce the structural strength of the buffer member and improve the buffering effect of the buffer member.
  • the impact energy of the first wall on the thermal management component can cause the first hole to collapse and collapse and deform, thereby reducing the impact of the impact energy on the thermal management component and ensuring the thermal management efficiency of the battery cell by the thermal management component.
  • the number of the first holes is multiple, and the plurality of first holes are evenly and spacedly arranged along the length direction and width direction of the buffer member.
  • a plurality of first holes are provided to further reduce the structural strength of the buffer member and improve the buffering effect of the buffer member.
  • the buffer member can quickly and fully deform to effectively absorb the impact energy. , ensuring that thermal management components are not affected.
  • the collapsed portion further includes a second hole formed in the second side.
  • the buffering effect of the buffer can be further improved.
  • the second hole can collapse and deform, absorb the impact energy, and reduce the thermal management component. affected.
  • the first hole and/or the second hole are blind holes.
  • the buffer member can be made of plastic material, and the first hole or the second hole can be quickly formed on the first side and/or the second side through a blister process.
  • the number of the second holes is multiple, and the plurality of second holes are evenly and spacedly arranged along the length direction and width direction of the buffer member.
  • a plurality of second holes are provided to further reduce the structural strength of the buffer member and improve the buffering effect of the buffer member.
  • the buffer When subjected to impact energy, the buffer can deform quickly and fully to effectively absorb the impact energy and ensure that the thermal management components are not affected.
  • the projection of the second hole on the first surface does not overlap with the first hole.
  • the second hole and the first hole are arranged in a staggered manner, which can reduce the structural strength of the buffer member as much as possible and improve the buffering effect.
  • the second hole is located between two adjacent first holes.
  • the first holes and the second holes are arranged in a staggered manner to make full use of the first and second surfaces of the buffer and increase the volume ratio of the crumbling portion to the buffer as much as possible to increase the strength of the buffer as much as possible. buffering effect.
  • the wall thickness between the second hole and the adjacent first hole is D, satisfying 0.5mm ⁇ D ⁇ 2mm.
  • the wall thickness D when the wall thickness D is less than 0.5mm, the structural strength of the buffer is weak, and the first hole and the second hole are not easy to form.
  • the wall thickness is D > 2mm, the buffering ability of the buffer is weak.
  • the wall thickness D is limited to 0.5mm ⁇ D ⁇ 2mm, which can ensure the structural strength of the buffer and at the same time have better buffering capacity, so as to effectively absorb large impact capacity and ensure thermal management. Component safety.
  • the thickness of the buffer member is H, satisfying 5mm ⁇ H ⁇ 20mm.
  • the buffering effect of the buffer is poor.
  • the thickness of the buffer is >20mm, the internal space of the battery will be sacrificed and the energy density of the battery will be reduced.
  • the buffer The thickness H of the parts is limited to 5mm ⁇ H ⁇ 20mm, which can ensure the buffering effect while making the battery have a higher energy density.
  • the thermal management component includes a first part and a second part that cover each other, and a flow channel is formed between the first part and the second part for accommodating the medium; the first part Further away from the buffer member than the second part, the first part is connected to the battery cell, the second part is connected to the buffer member, and the thermal conductivity of the second part is smaller than that of the first part thermal conductivity.
  • the thermal conductivity of the second part is smaller than the thermal conductivity of the first part, which can reduce the energy of heat exchange between the thermal management component and the outside and reduce the energy loss of the thermal management component, that is, more energy can act on the battery cells. body, effectively regulating the temperature of the battery cells.
  • the first part is a metal part
  • the second part is a plastic part, a plastic-based composite material part, or an inorganic non-metallic material part.
  • the first part is a metal part, which can effectively exchange heat between the medium in the thermal management component and the battery cell;
  • the second part is a plastic part, a plastic-based composite material part or an inorganic non-metallic material part, which can effectively Reduce heat exchange between thermal management components and the outside to save energy.
  • the second part is plastic parts, plastic-based composite parts or inorganic non-metallic material parts, which are lower in cost and lower in density than metal. This can reduce the manufacturing cost and weight of thermal management components.
  • the buffer member is a plastic piece, and the second part is welded to the buffer member.
  • the buffer part when the buffer part is a plastic part, the buffer part can be easily welded to the second part.
  • a surface of the second part facing the first part is formed with a groove, and the first part covers the groove to form the flow channel.
  • the second part is a plastic part, a plastic-based composite material part or an inorganic non-metallic material part, grooves can be easily formed on its surface to reduce the manufacturing cost of thermal management components and improve the manufacturing efficiency of thermal management components. .
  • this application also provides an electrical device, including the battery described in any one of the first aspects, where the battery is used to provide electrical energy.
  • Figure 1 is a schematic structural diagram of a vehicle in some embodiments of the present application.
  • Figure 2 is a schematic structural diagram of a battery in some embodiments of the present application.
  • Figure 3 is a schematic structural diagram of a thermal management component and a buffer component in some embodiments of the present application
  • Figure 4 is a three-dimensional exploded view of a thermal management component and a buffer in some embodiments of the present application
  • Figure 5 is a top view of a buffer member in some embodiments of the present application.
  • Figure 6 is a bottom view of the buffer member in some embodiments of the present application.
  • Figure 7 is a schematic diagram of the internal structure of the buffer in some embodiments of the present application.
  • Figure 8 is a schematic diagram of thermal management components in some embodiments of the present application.
  • Figure 9 is a schematic diagram of the second part in some embodiments of the present application.
  • Icon 10-box; 10a-first body; 10b-second body; 101-first wall; 11-battery cell; 13-thermal management component; 130-first part; 1301-through hole; 131-th Two parts; 132-flow channel; 1310-groove; 14-buffer; 140-first surface;
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium-sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in a rectangular parallelepiped or other shape, and the embodiments of the present application are not limited to this.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode sheet, a negative electrode sheet and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode current collector that is coated with the positive electrode active material layer. , the positive electrode current collector without coating the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode current collector that is coated with the negative electrode active material layer.
  • the negative electrode current collector that is not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the isolation film can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery also includes a box.
  • One or more battery cells are located inside the box.
  • the box protects the battery cells and prevents the battery cells from being affected by external objects.
  • battery thermal runaway can cause the battery to burn or explode, seriously affecting the safety of the battery.
  • Thermal runaway is caused by the fact that the heat generation rate of the battery cell is much higher than the heat dissipation rate, and a large amount of heat accumulates and is not dissipated in time.
  • batteries generally include thermal management components.
  • Thermal management components are located inside the box. Thermal management components are used to accommodate media to regulate the temperature of battery cells so that the battery is within a suitable temperature range to ensure high safety.
  • the medium here can be a fluid (liquid) or a gas. Regulating temperature refers to heating or cooling multiple battery cells.
  • the fluid can be called a heat exchange medium.
  • the fluid can be circulated to achieve better temperature regulation.
  • the fluid may be water, a mixture of water and ethylene glycol, or air.
  • the thermal management component is used to contain cooling fluid to lower the temperature of multiple battery cells. At this time, the thermal management component may also be called a cooling component, a cooling system or a cooling system.
  • the fluid contained therein may also be called cooling medium or cooling fluid, and more specifically, may be called cooling liquid or cooling gas.
  • the thermal management component can also be called a water-cooling plate.
  • the water-cooling plate contacts the battery cells and can be used to reduce the temperature of the battery cells to prevent thermal runaway of the battery cells.
  • buffers are installed between the thermal management components and the box.
  • the inventor in order to avoid thermal management damage due to impact energy and ensure the safety of the battery, the inventor has conducted in-depth research and provided a battery in which the buffer member in the battery is provided with a collapse portion, and the collapse portion is configured to pass through Deform to absorb the impact energy of the battery and reduce the impact of the impact energy on the thermal management part.
  • a crushing portion is provided on the buffer to absorb external impact energy through deformation and reduce the impact of the impact energy on the thermal management components, so that the battery has higher safety.
  • Power-consuming devices can be vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • the vehicle can be a new energy vehicle, which can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the spacecraft includes airplanes, rockets, space shuttles, spaceships, etc.
  • the electric toys include fixed or mobile electric toys Toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • power tools include metal cutting power tools, grinding power tools, assembly power tools and railway power tools, such as electric drills, electric grinders, Electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators and planers to name a few.
  • the embodiments of this application impose no special restrictions on the above electrical equipment.
  • the following embodiments take the electrical equipment as a vehicle as an example.
  • Figure 1 is a schematic structural diagram of a vehicle 1000 in some embodiments of the present application.
  • a controller 200 , a motor 300 and a battery 100 may be disposed inside the vehicle 1000 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 .
  • the battery 100 may be disposed at the bottom, front or rear of the vehicle 1000 .
  • the battery 100 can be used to power the vehicle 1000 .
  • the battery 100 can be used as an operating power source for the vehicle 1000 and for the circuit system of the vehicle 1000 , for example, for the starting, navigation and operating power requirements of the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • Figure 2 is a schematic structural diagram of the battery 100 in some embodiments of the present application.
  • Figure 3 is a structure of the thermal management component 13 and the buffer member 14 in some embodiments of the present application.
  • Schematic diagram, Figure 4 is a three-dimensional exploded view of the thermal management component 13 and the buffer component 14 in some embodiments of the present application.
  • the battery 100 includes a case 10 , a battery cell 11 , a thermal management component 13 and a buffer 14 .
  • the box 10 includes a first wall 101 .
  • the battery cells 11 are accommodated in the box 10 .
  • the thermal management component 13 is accommodated in the box 10 and is used to accommodate media to adjust the temperature of the battery cells 11 .
  • the buffer member 14 is provided between the thermal management component 13 and the first wall 101 .
  • the buffer member 14 is provided with a collapse portion 15, and the collapse portion 15 is configured to absorb the impact energy of the first wall 101 on the thermal management component 13 through deformation.
  • the box 10 is a component that can accommodate the battery cells 11 to provide protection for the battery cells 11 .
  • the box 10 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • the box 10 may include a first body 10a and a second body 10b.
  • the first body 10a and the second body 10b cover each other and jointly define an accommodation cavity.
  • the accommodation cavity may accommodate one, two or more Battery cells 11.
  • the first body 10a may be the lower shell of the box 10, and the second body 10b may be the top cover of the box 10.
  • the first wall 101 is a wall portion of the box 10 , and the first wall 101 can be the bottom wall, top wall or side wall of the box 10 . In some embodiments, when the battery 100 is applied to the vehicle 1000, the first wall 101 may be the bottom wall of the box 10. When the vehicle 1000 is driving, the battery 100 is mainly impacted by the bottom of the vehicle 1000, that is, the main impact energy is generated by the box. The bottom wall of the body 10 acts on the inside of the box 10 .
  • the thermal management component 13 is a component disposed in the box 10 , which can conduct heat exchange with the battery cells 11 through a medium to control the temperature; for example, the thermal management component 13 can be a component that contains fluid, and the thermal management component 13 can pass through The fluid can exchange heat with the battery cells 11 to adjust the temperature of the battery cells 11 and ensure the safety of the battery cells 11 .
  • the thermal management component 13 can be a water-cooled plate, and the fluid it contains is a cooling liquid. On the one hand, the heat generated by the battery cell 11 due to charging and discharging can be taken away by the cooling liquid with a lower temperature than the battery cell 11.
  • the thermal management component 13 can also be used to heat the battery cell 11 by passing fluid with a higher temperature than the battery cell 11 , and the embodiment of the present application is not limited to this.
  • each battery cell 11 corresponds to one thermal management component 13.
  • multiple battery cells 11 correspond to one thermal management component 13, which is not limited by this application.
  • the buffer 14 is a component provided between the thermal management component 13 and the first wall 101 .
  • the strength of the buffer 14 can be reduced, the ability of the buffer 14 to deform under force is improved, and the buffer 14's inability to deform due to impact due to its high strength is reduced, resulting in the transmission of impact energy. risk to thermal management components 13.
  • the buffering member 14 corresponds to the thermal management component 13 one-to-one, and the projection of the buffering member 14 on the first wall 101 can cover the projection of the thermal management component 13 on the first wall 101 , thereby ensuring thermal insulation. Manage the protection effect of component 13.
  • the structural strength of the buffer member 14 can be effectively reduced and the energy absorption effect of the buffer member 14 can be improved.
  • the impact energy transmitted from the first wall 101 to the inside of the box 10 acts on the buffer 14, causing the collapse portion 15 to deform to absorb the impact energy and reduce the impact of the impact energy on the thermal management components. 13, ensuring that the thermal management component 13 can effectively regulate the temperature of the battery cell 11, reducing the risk of thermal runaway of the battery cell 11, thereby ensuring the safety of the battery 100.
  • FIG. 5 is a top view of the buffer member 14 in some embodiments of the present application.
  • the buffer member 14 has an opposite first surface 140 and a second surface 141 in the thickness direction, and the first surface 140 is connected to the thermal management component 13 .
  • the collapsed portion 15 includes a first hole 150 formed in the first surface 140 .
  • the buffer member 14 may be in a plate shape, and the first surface 140 may be completely in contact with the surface of the thermal management component 13 facing the first wall 101 .
  • the first hole 150 is a hole structure formed on the first surface 140 , which can effectively reduce the structural strength of the buffer member 14 and improve the buffering capacity of the buffer member 14 .
  • the collapsed portion 15 includes the first hole 150 formed on the first surface 140, which effectively reduces the structural strength of the buffer member 14 and improves the buffering effect of the buffer member 14.
  • the impact energy of the first wall 101 on the thermal management component 13 can cause the first hole 150 to collapse and collapse and deform, thereby reducing the impact of the impact energy on the thermal management component 13 and ensuring the heat transfer of the thermal management component 13 to the battery cell 11 Management efficiency.
  • the collapse part 15 may include a cavity formed inside the buffer member 14 , that is, the buffer member 14 is a hollow structure, and the middle part of the buffer member 14 is vacuum-like. When it is subjected to impact energy, the buffer member 14 The surface can quickly deform inwards to absorb impacts.
  • the collapse part 15 may include a cavity formed inside the buffer member 14 and a support member disposed in the cavity, that is, the buffer member 14 is a hollow structure, and the middle part of the buffer member 14 is vacuum-shaped. Moreover, a plurality of supporting members are formed inside the buffering member 14.
  • the surface of the buffering member 14 can quickly deform inwardly, causing the supporting members to deform, thereby absorbing the impact.
  • the support member since the support member is provided, the support requirement of the buffer member can be met.
  • the number of first holes 150 is multiple, and the plurality of first holes 150 are arranged evenly and at intervals along the length direction and width direction of the buffer member 14 .
  • the cross-section of the buffer member 14 may be rectangular (that is, the buffer member 10 may be in the shape of a cuboid), and the buffer member 14 may be adapted to the rectangular parallelepiped-shaped thermal management component 13 .
  • the plurality of first holes 150 can be evenly spaced along the length and width directions of the buffer member 14 so that the buffer member 14 can receive uniform force and uniform deformation when receiving impact energy.
  • multiple first holes 150 are provided to further reduce the structural strength of the buffer member 14 and improve the buffering effect of the buffer member 14.
  • the buffer member 14 can quickly and fully deform to effectively The impact energy is absorbed to ensure that the thermal management component 13 is not affected.
  • the buffer member 14 may be circular in shape, capable of adapting to the circular shape of the thermal management component 13 (circular in cross-section).
  • the plurality of first holes 150 are evenly spaced around the central axis of the buffer 14 .
  • FIG. 6 is a bottom view of the buffer member 14 in some embodiments of the present application.
  • the collapsed portion 15 further includes a second hole 151 formed in the second surface 141 .
  • the second hole 151 is a hole structure formed on the second surface 141, which can reduce the structural strength of the buffer member 14 and facilitate the buffer member 14 to deform to absorb impact energy when it is impacted.
  • the buffering effect of the buffer member 14 can be further improved.
  • the second hole 151 can collapse and deform to absorb the impact energy. , reducing the impact on the thermal management component 13.
  • FIG. 7 is a schematic diagram of the internal structure of the buffer member 14 in some embodiments of the present application.
  • the first hole 150 and/or the second hole 151 are blind holes.
  • the first hole 150 and/or the second hole 151 is a blind hole means that in some embodiments, the first hole 150 is a blind hole; in some embodiments, the second hole 151 is a blind hole; in some embodiments , the first hole 150 and the second hole 151 are both blind holes.
  • first hole 150 When the first hole 150 is a blind hole, one end of the first hole 150 penetrates the first surface, and the other end of the first hole 150 does not penetrate the second surface.
  • second hole 151 When the second hole 151 is a blind hole, one end of the second hole 151 penetrates the second surface, and the other end of the second hole 151 does not penetrate the first surface.
  • the buffer member 14 may be made of plastic material, such as polypropylene (PP) or polycarbonate (PC), which has good buffering capacity, lower cost, and lower density.
  • the blind hole can be formed using a blister process (the principle is that a flat hard plastic sheet is heated and softened, then vacuum-adsorbed to the surface of the mold, and then cooled to form). The blind hole can be easily formed on the buffer member 14 The first hole 150 and/or the second hole 151 are formed.
  • the buffer member 14 can be made of plastic material, and the first hole 150 or the second hole 151 can be quickly formed on the first surface 140 and/or the second surface 141 through a blister process.
  • the number of second holes 151 is multiple, and the plurality of second holes 151 are arranged evenly and at intervals along the length direction and width direction of the buffer member 14 .
  • the buffer 14 may be square-shaped, and the square-shaped buffer 14 may accommodate the square-shaped thermal management component 13 .
  • the plurality of second holes 151 can be evenly spaced along the length and width directions of the buffer member 14 so that the buffer member 14 can receive uniform force and uniform deformation when receiving impact energy.
  • a plurality of second holes 151 are provided to further reduce the structural strength of the buffer member 14 and improve the buffering effect of the buffer member 14.
  • the buffer member 14 can quickly and fully deform to effectively The impact energy is absorbed to ensure that the thermal management component 13 is not affected.
  • the buffer member 14 may be circular in shape, capable of adapting to the circular shape of the thermal management component 13 (circular in cross-section).
  • the plurality of second holes 151 are evenly spaced around the central axis of the buffer 14 .
  • the projection of the second hole 151 on the first surface 140 does not overlap with the first hole 150 .
  • the projection of the second hole 151 on the first surface 140 does not overlap with the first hole 150 may mean that the second hole 151 and the first hole 150 are offset from each other, independent of each other, and do not interfere with each other.
  • the second hole 151 and the first hole 150 are arranged in a staggered position, which can reduce the structural strength of the buffer member 14 as much as possible and improve the buffering effect.
  • the second hole 151 is located between two adjacent first holes 150 .
  • the second hole 151 is located between two adjacent first holes 150 may mean that there is a second hole 151 between two adjacent first holes 150, and there is a first first hole 151 in front of the two adjacent second holes 151. Hole 150. That is to say, the first holes 150 and the second holes 151 are arranged in a staggered manner.
  • the first holes 150 and the second holes 151 are arranged in a staggered manner to fully utilize the first surface 140 and the second surface 141 of the buffer member 14 and increase the volume ratio of the collapse portion 15 to the buffer member 14 as much as possible. In order to improve the buffering effect of the buffering member 14 as much as possible.
  • the wall thickness between the second hole 151 and the adjacent first hole 150 is D, satisfying 0.5mm ⁇ D ⁇ 2mm.
  • the wall thickness D between the second hole 151 and the adjacent first hole 150 may be 0.5mm, 0.6mm, 0.7mm, 0.8mm, 1mm, 1.1mm, 1.2mm...1.8mm, 1.9mm or 2mm.
  • the wall thickness D is less than 0.5 mm, the structural strength of the buffer member 14 is weak, and the first hole 150 and the second hole 151 are not easy to form (the smaller the wall thickness, the greater the impact on the first hole 150 and the second hole 151 The higher the processing accuracy requirement); when the wall thickness D>2mm, the buffering capacity of the buffering member 14 is weak. Therefore, in the embodiment of the present application, the wall thickness D is limited to 0.5mm ⁇ D ⁇ 2mm, which can ensure that the buffering member 14 14 not only has the structural strength, but also has good buffering capacity, so as to be able to effectively absorb large impact capacity and ensure the safety of the thermal management component 13 .
  • the thickness of the buffer member 14 is H, satisfying 5mm ⁇ H ⁇ 20mm.
  • the thickness of the buffer 14 may refer to the size of the buffer 14 along the direction from the first wall 101 to the thermal management component 13 .
  • the thickness H of the buffer member 14 may be 5mm, 6mm, 7mm, 8mm, 9mm, 10mm...15mm, 16mm, 17mm, 18mm, 19mm or 20mm.
  • the thickness H of the buffer member 14 is limited to 5 mm ⁇ H ⁇ 20 mm, which can ensure the buffering effect while allowing the battery 100 to have a higher energy density.
  • FIG. 8 is a schematic diagram of the thermal management component 13 in some embodiments of the present application.
  • the thermal management component 13 includes a first part 130 and a second part 131 that cover each other.
  • a flow channel 132 is formed between the first part 130 and the second part 131, and the flow channel is used to accommodate the medium.
  • the first part 130 is further away from the buffer member 14 than the second part 131 .
  • the first part 130 is connected to the battery cell 11 and the second part 131 is connected to the buffer member 14 .
  • the thermal conductivity of the second part 131 is smaller than that of the first part 130 .
  • the first part 130 and the second part 131 cover each other to form a closed structure capable of containing media.
  • the first part 130 is in contact with the battery cell 11 to achieve heat exchange between the surface temperature of the battery cell 11 and the medium in the thermal management component 13 .
  • the first part 130 has a larger thermal conductivity to effectively conduct heat from the surface of the battery cell 11 to the medium, or to effectively conduct heat from the medium to the battery cell 11 .
  • the second part 131 is the part of the thermal management component 13 away from the battery cell 11 .
  • the second part 131 has a small thermal conductivity and has the function of heat preservation, reducing heat exchange between the medium and the heat outside the battery 100 .
  • the thermal conductivity of the second part 131 is smaller than the thermal conductivity of the first part 130, which can reduce the energy of heat exchange between the thermal management component 13 and the outside, and reduce the energy loss of the thermal management component 13, that is, more energy can act on
  • the battery cell 11 effectively regulates the temperature of the battery cell 11 .
  • the first part 130 is a metal part
  • the second part 131 is a plastic part, a plastic matrix composite material part, or an inorganic non-metallic material part.
  • the first part 130 can be made of metal materials such as aluminum, aluminum alloy, copper or copper alloy.
  • the second part 131 can be made of materials with low thermal conductivity such as plastic parts, plastic matrix composite parts, or inorganic non-metallic materials.
  • the first part 130 is a metal part, which can effectively exchange heat between the medium in the thermal management component 13 and the battery cell 11;
  • the second part 131 is a plastic part, a plastic-based composite material part or an inorganic non-metallic material part. , has good thermal insulation ability.
  • the second part 131 is a plastic part, a plastic-based composite material part, or an inorganic non-metallic material part, which has lower cost and lower density than metal. Therefore, the manufacturing cost and weight of the thermal management component 13 can be reduced.
  • the buffer member 14 is a plastic part, and the second part 131 is welded to the buffer member 14 .
  • the buffer member 14 is a plastic part
  • the second part 131 is a plastic part, a plastic-based composite material part, or an inorganic non-metallic material part.
  • the buffer part 14 and the second part 131 can be welded by hot plate welding to achieve thermal
  • the connection between the management component 13 and the buffer 14 is managed.
  • first part 130 and the second part 131 may be connected by adhesive.
  • the buffer member 14 when the buffer member 14 is a plastic piece, the buffer member 14 can be easily welded to the second part 131 .
  • FIG. 9 is a schematic diagram of the second part 131 in some embodiments of the present application.
  • a groove 1310 is formed on the surface of the second part 131 facing the first part 130 , and the first part 130 covers the groove 1310 to form a flow channel 132 .
  • the groove 1310 is a groove structure formed in the second part 131 facing the first part 130.
  • the first part 130 can cover the groove 1310 to jointly form a flow through which the medium can pass.
  • Road 132 is a groove structure formed in the second part 131 facing the first part 130.
  • the grooves 1310 may be arranged in a circuitous manner.
  • two through holes 1301 can be formed on the surface of the first part 130 , and the two through holes 1301 can communicate with the flow channel 132 to serve as the medium inlet and the medium outlet of the thermal management component 13 respectively.
  • the medium can enter the flow channel 132 through the medium inlet and flow out of the flow channel 132 through the medium outlet.
  • the groove 1310 can be conveniently formed on its surface to reduce the manufacturing cost of the thermal management component 13 and improve the thermal management component. 13 manufacturing efficiency.
  • the present application also provides an electrical device.
  • the electrical device includes the battery 100 described above, and the battery 100 is used to provide electrical energy.
  • the present application provides a battery 100. Please refer to Figures 2 to 9.
  • the battery 100 includes a case 10, a battery cell 11, a thermal management component 13 and a buffer 14.
  • the box 10 includes a first wall 101 , and the first wall 101 is the bottom wall of the box 10 .
  • the battery cell 11, the thermal management component 13 and the buffer 14 are disposed in the box 10.
  • the buffer 14 is disposed between the thermal management component 13 and the first wall 101.
  • the battery cell 11 is disposed away from the thermal management component 13 and away from the buffer. surface of piece 14.
  • the thermal management component 13 includes a first part 130 and a second part 131 that cover each other.
  • a flow channel 132 is formed between the first part 130 and the second part 131 for containing the medium.
  • the first part 130 is connected to the battery cell 11.
  • the first part 130 is a metal piece with a large thermal conductivity and good thermal conductivity.
  • the second part 131 is connected to the buffer 14.
  • the second part 131 is made of non-metallic materials or composite materials.
  • the second part 131 is an injection molded PP board or a thermosetting material molded board.
  • the thermal conductivity of the second part 131 is small. Has good thermal insulation properties.
  • a groove 1310 may be formed on the surface of the second part 131 facing the first part 130.
  • the buffer member 14 is a buffer plate made of thermoplastic plastic, such as PP, PC, etc., which has the characteristics of low strength and good toughness.
  • the buffer member 14 is welded to the second part 131 of the thermal management component 13 through hot plate welding.
  • the thickness H of the buffer member 14 is 5-20 mm.
  • a collapse portion 15 is provided on the buffer 14 .
  • the collapse portion 15 includes a plurality of first holes 150 and a plurality of second holes 151 formed on the buffer 14 through a blister process.
  • the first holes 150 and the second holes are 151 are all blind holes.
  • a plurality of first holes 150 are evenly provided on the first surface of the buffer member 14
  • a plurality of second holes 151 are evenly provided on the second surface of the buffer member 14 .
  • the first holes 150 and the second holes 151 are alternately arranged in a staggered manner, and the wall thickness D between the second hole 151 and the adjacent first hole 150 is 0.5 mm-2 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请公开一种电池和用电设备。电池包括:箱体,包括第一壁;电池单体,容纳于箱体内;热管理部件,容纳于箱体内,用于容纳介质以调节电池单体温度;缓冲件,设于热管理部件和第一壁之间;其中,缓冲件设置有溃缩部,溃缩部被配置为通过变形吸收第一壁对热管理部件的冲击能量。本申请提供的电池具有较高的安全性。

Description

电池和用电设备
相关申请的交叉引用
本申请要求享有于2022年07月15日提交的名称为“电池和用电设备”的中国专利申请202221836216.8的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,具体而言,涉及一种电池和用电设备。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,如何提高电池的安全性,是电池技术中一个亟需解决的技术问题。
发明内容
本申请提供了一种电池和用电设备,该电池具有较高的安全性。
本申请是通过下述技术方案实现的:
第一方面,本申请提供了一种电池,包括:箱体,包括第一壁;电池单体,容纳于所述箱体内;热管理部件,容纳于所述箱体内,用于容纳介质以调节所述电池单体温度;缓冲件,设于所述热管理部件和所述第一壁之间;其中,所述缓冲件设置有溃缩部,所述溃缩部被配置为通过变形吸收所述第一壁对所述热管理部件的冲击能量。
上述方案中,通过设置溃缩部,能够有效地降低缓冲件的结构强度,提高缓冲件的吸能效果。当外力作用于第一壁时,由第一壁向箱体内部传递的冲击能量作用于缓冲件,使得溃缩部发生形变以吸收该冲击能量,降低该冲击能量对热管理部件的影响,保证热管理部件对电池单体的热管理效果,进而保证电池的安全性。
根据本申请的一些实施例,所述缓冲件在厚度方向具有相对的第一面和第二面,所述第一面与所述热管理部件连接;所述溃缩部包括形成于所述第一面的第一孔。
上述方案中,溃缩部包括形成于第一面的第一孔,第一孔能够有效地降低缓冲件的结构强度,提高缓冲件的缓冲效果。第一壁对热管理部件的冲击能量,能够使得第一孔塌陷,溃缩形变,进而降低该冲击能量对热管理部件的影响,保证热管理部件对电池单体的热管理效率。
根据本申请的一些实施例,所述第一孔的数量为多个,多个所述第一孔沿所述缓冲件的长度方向和宽度方向均匀且间隔地排列。
上述方案中,通过设置多个第一孔,以进一步地降低缓冲件的结构强度,提高缓冲件的缓冲效果,当受冲击能量时,缓冲件能够快速、充分地形变,以有效地吸收冲击能量,保证热管理部件不受影响。
根据本申请的一些实施例,所述溃缩部还包括形成于所述第二面的第二孔。
上述方案中,通过在第二面上形成第二孔,能够进一步地提高缓冲件的缓冲效果,在冲击能量作用于缓冲件时,第二孔能溃缩形变,吸收冲击能量,降低热管理部件受到的影响。
根据本申请的一些实施例,所述第一孔和/或所述第二孔为盲孔。
上述方案中,缓冲件可以为塑料材质,通过吸塑工艺,能够快速地在第一面和/或第二面形成第一孔或第二孔。
根据本申请的一些实施例,所述第二孔的数量为多个,多个所述第二孔沿所述缓冲件的长度 方向和宽度方向均匀且间隔地排列。
上述方案中,通过设置多个第二孔,以进一步地降低缓冲件的结构强度,提高缓冲件的缓冲效果。当受冲击能量时,缓冲件能够快速、充分地形变,以有效地吸收冲击能量,保证热管理部件不受影响。
根据本申请的一些实施例,所述第二孔在所述第一面上的投影与所述第一孔不重叠。
上述方案中,第二孔和第一孔错位设置,能够尽量地降低缓冲件的结构强度,提高缓冲效果。
根据本申请的一些实施例,所述第二孔位于相邻两个所述第一孔之间。
上述方案中,第一孔和第二孔交错布设,以充分利用缓冲件的第一面和第二面,尽可能地增大溃缩部占缓冲件的体积比,以尽可能地提高缓冲件的缓冲效果。
根据本申请的一些实施例,所述第二孔与相邻的所述第一孔之间的壁厚为D,满足0.5mm≤D≤2mm。
上述方案中,当壁厚D<0.5mm时,缓冲件结构强度较弱,且第一孔和第二孔不易成型;当壁厚D>2mm时,缓冲件的缓冲能力较弱,为此,本申请实施例中,壁厚D限制为0.5mm≤D≤2mm,能够在保证缓冲件的结构强度的同时,具有较好的缓冲能力,以能够有效地吸收较大的冲击能力,保证热管理部件的安全性。
根据本申请的一些实施例,所述缓冲件的厚度为H,满足5mm≤H≤20mm。
上述方案中,当缓冲件的厚度<5mm,缓冲件的缓冲效果较差,当缓冲件的厚度>20mm,会牺牲电池的内部空间,降低电池的能量密度,为此本申请实施例中,缓冲件的厚度H限制为5mm≤H≤20mm,能够在保证缓冲效果的同时,使得电池具有较高的能量密度。
根据本申请的一些实施例,所述热管理部件包括相互盖合的第一部分和第二部分,所述第一部分和所述第二部分之间形成流道,用于容纳介质;所述第一部分较所述第二部分更远离所述缓冲件,所述第一部分与所述电池单体连接,所述第二部分与所述缓冲件连接,所述第二部分的导热系数小于所述第一部分的导热系数。
上述方案中,第二部分的导热系数小于所述第一部分的导热系数,可以减少热管理部件与外部进行热交换的能量,降低热管理部件的能量损耗,即更多的能量能够作用于电池单体,有效地对电池单体进行温度调节。
根据本申请的一些实施例,所述第一部分为金属件,所述第二部分为塑料件、塑料基复合材料件或无机非金属材料件。
上述方案中,第一部分为金属件,能够有效地将热管理部件中的介质与电池单体进行热交换;第二部分为塑料件、塑料基复合材料件或无机非金属材料件,能够有效地降低热管理部件与外部发生热交换,以节约能量。同时,第二部分为塑料件、塑料基复合材料件或无机非金属材料件,其成本较金属低,密度也较金属低,为此能够降低热管理部件的制造成本以及重量。
根据本申请的一些实施例,所述缓冲件为塑料件,所述第二部分与所述缓冲件焊接。
上述方案中,当缓冲件为塑料件时,缓冲件能够方便地与第二部分焊接。
根据本申请的一些实施例,所述第二部分的面向所述第一部分的表面形成有凹槽,所述第一部分覆盖所述凹槽以形成所述流道。
上述方案中,由于第二部分为塑料件、塑料基复合材料件或无机非金属材料件,故能够方便地在其表面形成凹槽,以降低热管理部件的制造成本,提高热管理部件的制造效率。
第二方面,本申请还提供一种用电设备,包括第一方面中任一项所述的电池,所述电池用于提供电能。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或 通过本申请的实践了解到。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例中车辆的结构示意图;
图2为本申请一些实施例中电池的结构示意图;
图3为本申请一些实施例中热管理部件和缓冲件的结构示意图;
图4为本申请一些实施例中热管理部件和缓冲件的立体爆炸图;
图5为本申请一些实施例中缓冲件的俯视图;
图6为本申请一些实施例中缓冲件的仰视图;
图7为本申请一些实施例中缓冲件的内部结构示意图;
图8为本申请一些实施例中热管理部件的示意图;
图9为本申请一些实施例中第二部分的示意图。
图标:10-箱体;10a-第一本体;10b-第二本体;101-第一壁;11-电池单体;13-热管理部件;130-第一部分;1301-通孔;131-第二部分;132-流道;1310-凹槽;14-缓冲件;140-第一面;
141-第二面;15-溃缩部;150-第一孔;151-第二孔;1000-车辆;100-电池;200-控制器;300-马达。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特 定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈长方体或其它形状等,本申请实施例对此也不限定。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。
电池还包括箱体,一个或者多个电池单体设于箱体内部,箱体对电池单体起保护作用,避免电池单体受外部物体影响。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。例如,电池热失控会导致电池燃烧、爆炸,严重影响电池的安全性。热失控是由于电池单体的生热速率远高于散热速率,且热量大量累积未及时散出引起的。
为提高电池的安全性,电池中一般还包括热管理部件。热管理部件设于箱体内。热管理部件用于容纳介质以给电池单体调节温度,以使电池处于适宜的温度范围内,保证较高的安全性。这里的介质可以是流体(液体)或气体,调节温度是指给多个电池单体加热或者冷却,流体可被称为换热介质。可选的,流体可以是循环流动的,以达到更好的温度调节的效果。可选的,流体可以为水、水和乙二醇的混合液或者空气等。例如,在给电池单体冷却或降温的情况下,该热管理部件用于容纳冷却流体以给多个电池单体降低温度,此时,热管理部件也可以称为冷却部件、冷却系统或冷却板等,其容纳的流体也可以称为冷却介质或冷却流体,更具体的,可以称为冷却液或冷却气体。当热管理部件内容纳的流体为冷却水时,热管理部件也可以称为水冷板,水冷板接触电池单体,能够用于降低电池单体的温度,以免电池单体热失控。目前,为避免外部冲击对热管理部件造成伤害,致使热管理部件变形破碎而影响其热管理效果,会在热管理部件和箱体之间设置缓冲件。
节能减排是汽车产业可持续发展的关键,对于车辆而言,电池的安全性至关重要。车辆在长时间使用后,车辆的电池存在较大的热失控风险。发明人研究发现,其原因在于,车辆行驶过程中,产生的冲击能量会作用于电池,而现有电池中的缓冲件的强度较高,无法有效地吸收该冲击,致使热管理部件受损,无法有效地调节电池单体的温度,提高热失控的风险,影响电池的安全性。
鉴于此,为避免热管理因冲击能量受损,保证电池的安全性,发明人经深入研究,提供了一种电池,该电池内的缓冲件设置有溃缩部,溃缩部被配置为通过变形以吸收电池受到的冲击能量,降低该冲击能量对热管理部造成的影响。
在缓冲件上设置溃缩部,通过形变的方式吸收外部的冲击能量,降低该冲击能量对热管理部件的影响,以使得电池具有较高的安全性。
本申请实施例描述的技术方案适用于电以及使用电池的用电设备。
用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
图1为本申请一些实施例中车辆1000的结构示意图。
车辆1000的内部可以设置控制器200、马达300和电池100,控制器200用来控制电池100为马达300供电。例如,在车辆1000的底部或车头或车尾可以设置电池100。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源,用于车辆1000的电路系统,例如,用于车辆1000的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池100不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,替代或部分地替代燃油或天然气为车辆1000提供驱动动力。
根据本申请的一些实施例,请参见图2-图4,图2为本申请一些实施例中电池100的结构示意图,图3为本申请一些实施例中热管理部件13和缓冲件14的结构示意图,图4为本申请一些实施例中热管理部件13和缓冲件14的立体爆炸图。
电池100包括箱体10、电池单体11、热管理部件13和缓冲件14。箱体10包括第一壁101。电池单体11容纳于箱体10内。热管理部件13容纳于箱体10内,用于容纳介质以调节电池单体11温度。缓冲件14设于热管理部件13和第一壁101之间。其中,缓冲件14设置有溃缩部15,溃缩部15被配置为通过变形吸收第一壁101对热管理部件13的冲击能量。
箱体10为能够容纳电池单体11以对电池单体11提供保护的部件。箱体10可以是多种形状,比如,圆柱体、长方体等。请参见图2,箱体10可以包括第一本体10a和第二本体10b,第一本体10a和第二本体10b相互盖合共同限定出容纳腔,该容纳腔可以容纳一个、二个或者多个电池单体11。第一本体10a可以为箱体10的下壳体,第二本体10b可以为箱体10的顶盖。
第一壁101为箱体10的一个壁部,第一壁101可以为箱体10的底壁、顶壁或者侧壁。在一些实施例中,当电池100应用于车辆1000时,第一壁101可以为箱体10的底壁,车辆1000在行驶时,电池100主要受到车辆1000底部冲击,即主要的冲击能量由箱体10的底壁作用于箱体10内部。
热管理部件13为设置于箱体10内的部件,其可以通过介质与电池单体11进行热交换以控制温度;示例性地,热管理部件13可以为容纳流体的部件,热管理部件13通过流体能够与电池单体11发生热交换,以调节电池单体11的温度,保证电池单体11的安全性。例如,热管理部件13可以为水冷板,其容纳的流体为冷却液,一方面,可以通过温度较电池单体11低的冷却液带走电池单体11因充放电产生的热量,另一方面,热管理部件13也可以用于通过温度较电池单体11高的流体以给电池单体11升温,本申请实施例对此并不限定。在一些实施例中,每一个电池单体11对应有一个热管理部件13,在另一些实施例中,多个电池单体11对应有一个热管理部件13,本申请不对其进行限制。
缓冲件14为设置于热管理部件13和第一壁101之间的部件。通过在缓冲件14上设置溃缩部15,能够降低缓冲件14的强度,提高缓冲件14受力而形变的能力,降低缓冲件14因强度较高而受冲击时无法形变,致使冲击能量传递给热管理部件13的风险。在一些实施例中,缓冲件14与热管理部件13一一对应,且缓冲件14在第一壁101上的投影能够覆盖热管理部件13在第一壁101上的投影,进而能够保证对热管理部件13的保护效果。
上述方案中,通过设置溃缩部15,能够有效地降低缓冲件14的结构强度,提高缓冲件14的 吸能效果。当外力作用于第一壁101时,由第一壁101向箱体10内部传递的冲击能量作用缓冲件14,使得溃缩部15发生形变以吸收该冲击能量,降低该冲击能量对热管理部件13的影响,保证热管理部件13能够有效地调节电池单体11的温度,降低电池单体11热失控的风险,进而保证电池100的安全性。
根据本申请的一些实施例,请参见图5,图5为本申请一些实施例中缓冲件14的俯视图。缓冲件14在厚度方向具有相对的第一面140和第二面141,第一面140与热管理部件13连接。溃缩部15包括形成于第一面140的第一孔150。
缓冲件14可以呈板状,第一面140可以与热管理部件13的面向第一壁101的表面完全贴合。第一孔150为形成于第一面140的孔结构,其能够有效地降低缓冲件14的结构强度并提高缓冲件14的缓冲能力。
上述方案中,溃缩部15包括形成于第一面140的第一孔150,有效地降低缓冲件14的结构强度,提高缓冲件14的缓冲效果。第一壁101对热管理部件13的冲击能量,能够使得第一孔150塌陷,溃缩形变,进而降低该冲击能量对热管理部件13的影响,保证热管理部件13对电池单体11的热管理效率。
在其他一些实施例中,溃缩部15可以包括形成于缓冲件14内部的腔室,即缓冲件14为中空结构,缓冲件14的中部为真空状,当其受冲击能量时,缓冲件14的表面能够迅速地向内部形变,进而吸收冲击。在其他一些实施例中,溃缩部15可以包括形成于缓冲件14内部的腔室以及设置于该腔室中的支撑件,即缓冲件14为中空结构,缓冲件14的中部为真空状,且缓冲件14的内部形成有多个支撑件,当其受冲击能量时,缓冲件14的表面能够迅速地向内部形变,且使得支撑件变形,进而吸收冲击。同时由于设置有支撑件,故能满足缓冲件的支撑需求。
根据本申请的一些实施例,如图5,第一孔150的数量为多个,多个第一孔150沿缓冲件14的长度方向和宽度方向均匀且间隔地排列。
在一些实施例中,缓冲件14的横截面可以为矩形(即缓冲件10可以为长方体状),该缓冲件14可以适应呈长方体状的热管理部件13。在该一些实施例中,多个第一孔150能够沿着缓冲件14的长度方向和宽度方向均匀间隔排列,以使得该缓冲件14在在受到冲击能量时,能够受力均匀,形变均匀。
上述方案中,通过设置多个第一孔150,以进一步地降低缓冲件14的结构强度,提高缓冲件14的缓冲效果,当受冲击能量时,缓冲件14能够快速、充分地形变,以有效地吸收冲击能量,保证热管理部件13不受影响。
在其他一些实施例中,缓冲件14可以呈圆形,能够适应呈圆形的热管理部件13(横截面呈圆形)。在该一些实施例中,多个第一孔150绕缓冲件14的中心轴线均匀间隔分布。
根据本申请的一些实施例,请参见图6,图6为本申请一些实施例中缓冲件14的仰视图。溃缩部15还包括形成于第二面141的第二孔151。
第二孔151为形成于第二面141的孔结构,其能够降低缓冲件14的结构强度,利于缓冲件14在受冲击时,发生形变以吸收冲击能量。
上述方案中,通过在第二面141上形成第二孔151,能够进一步地提高缓冲件14的缓冲效果,在冲击能量作用于缓冲件14时,第二孔151能溃缩形变,吸收冲击能量,降低热管理部件13受到的影响。
根据本申请的一些实施例,请参见图7,图7为本申请一些实施例中缓冲件14的内部结构示意图。第一孔150和/或第二孔151为盲孔。
“第一孔150和/或第二孔151为盲孔”,指在一些实施例中,第一孔150为盲孔;在一些实施例中,第二孔151为盲孔;在一些实施例中,第一孔150和第二孔151均为盲孔。
当第一孔150为盲孔时,第一孔150的一端贯穿第一表面,而第一孔150的另一端不贯穿第二表面。当第二孔151为盲孔时,第二孔151的一端贯穿第二表面,而第二孔151的另一端不贯穿 第一表面。
在一些实施例,缓冲件14可以为塑料材质,例如聚丙烯(PP)或聚碳酸酯(PC)等,具有良好的缓冲能力,较低的成本以及较低的密度。在该一些实施例中,可以采用吸塑工艺(原理是将平展的塑料硬片材加热变软后,采用真空吸附于模具表面,冷却后成型)成型盲孔,可以轻易地在缓冲件14上成型第一孔150和/或第二孔151。
上述方案中,缓冲件14可以为塑料材质,通过吸塑工艺,能够快速地在第一面140和/或第二面141形成第一孔150或第二孔151。
根据本申请的一些实施例,如图6,第二孔151的数量为多个,多个第二孔151沿缓冲件14的长度方向和宽度方向均匀且间隔地排列。
在一些实施例中,缓冲件14可以为方形,呈方形的缓冲件14可以适应呈方形的热管理部件13。在该一些实施例中,多个第二孔151能够沿着缓冲件14的长度方向和宽度方向均匀间隔排列,以使得该缓冲件14在在受到冲击能量时,能够受力均匀,形变均匀。
上述方案中,通过设置多个第二孔151,以进一步地降低缓冲件14的结构强度,提高缓冲件14的缓冲效果,当受冲击能量时,缓冲件14能够快速、充分地形变,以有效地吸收冲击能量,保证热管理部件13不受影响。
在其他一些实施例中,缓冲件14可以呈圆形,能够适应呈圆形的热管理部件13(横截面呈圆形)。在该一些实施例中,多个第二孔151绕缓冲件14的中心轴线均匀间隔分布。
根据本申请的一些实施例,请结合图7,第二孔151在第一面140上的投影与第一孔150不重叠。
“第二孔151在第一面140上的投影与第一孔150不重叠”,可以指第二孔151和第一孔150相互错位设置,相互独立,互不干扰。
上述方案中,第二孔151和第一孔150错位设置,能够尽量地降低缓冲件14的结构强度,提高缓冲效果。
根据本申请的一些实施例,第二孔151位于相邻两个第一孔150之间。
“第二孔151位于相邻两个第一孔150之间”,可以指相邻两个第一孔150之间有一个第二孔151,相邻两个第二孔151之前有一个第一孔150。即可以指第一孔150和第二孔151相互交错布设。
上述方案中,第一孔150和第二孔151交错布设,以充分利用缓冲件14的第一面140和第二面141,尽可能地增大溃缩部15占缓冲件14的体积比,以尽可能地提高缓冲件14的缓冲效果。
根据本申请的一些实施例,请结合图7,第二孔151与相邻的第一孔150之间的壁厚为D,满足0.5mm≤D≤2mm。
第二孔151与相邻的第一孔150之间的壁厚D可以为0.5mm、0.6mm、0.7mm、0.8mm、1mm、1.1mm、1.2mm…1.8mm、1.9mm或2mm。
上述方案中,当壁厚D<0.5mm时,缓冲件14结构强度较弱,且第一孔150和第二孔151不易成型(壁厚越小,对第一孔150和第二孔151的加工精度要求越高);当壁厚D>2mm时,缓冲件14的缓冲能力较弱,为此,本申请实施例中,壁厚D限制为0.5mm≤D≤2mm,能够在保证缓冲件14的结构强度的同时,具有较好的缓冲能力,以能够有效地吸收较大的冲击能力,保证热管理部件13的安全性。
根据本申请的一些实施例,结合图7,缓冲件14的厚度为H,满足5mm≤H≤20mm。
缓冲件14的厚度可以指,沿第一壁101至热管理部件13的方向上,缓冲件14的尺寸。缓冲件14的厚度H可以为5mm、6mm、7mm、8mm、9mm、10mm…15mm、16mm、17mm、18mm、19mm或20mm。
上述方案中,当缓冲件14的厚度<5mm,缓冲件14的缓冲效果较差,当缓冲件14的厚度>20mm,会牺牲电池100的内部空间,降低电池100的能量密度,为此本申请实施例中,缓冲件14的厚度H限制为5mm≤H≤20mm,能够在保证缓冲效果的同时,使得电池100具有较高的能量密度。
根据本申请的一些实施例,请参见图8,图8为本申请一些实施例中热管理部件13的示意图。热管理部件13包括相互盖合的第一部分130和第二部分131,第一部分130和第二部分131之间形成流道132,流道用于容纳介质。
第一部分130较第二部分131更远离缓冲件14,第一部分130与电池单体11连接,第二部分131与缓冲件14连接,第二部分131的导热系数小于第一部分130的导热系数。
第一部分130和第二部分131相互盖合,以形成能够容纳介质的封闭结构。
第一部分130为与电池单体11接触,以实现电池单体11表面温度与热管理部件13内的介质的热交换。第一部分130的导热系数较大,以有效地将电池单体11表面的热量传导至介质,或者有效地将介质的热量传导至电池单体11。
第二部分131为热管理部件13远离电池单体11的部分,第二部分131的导热系数较小,具有保温的作用,降低介质与电池100之外的热量发生热交换。
上述方案中,第二部分131的导热系数小于第一部分130的导热系数,可以减少热管理部件13与外部进行热交换的能量,降低热管理部件13的能量损耗,即更多的能量能够作用于电池单体11,有效地对电池单体11进行温度调节。
根据本申请的一些实施例,第一部分130为金属件,第二部分131为塑料件、塑料基复合材料件或无机非金属材料件。
第一部分130可以为铝、铝合金、铜或者铜合金等金属材料制得。第二部分131可以为塑料件、塑料基复合材料件或无机非金属材料等导热系数较小的材料制得。
上述方案中,第一部分130为金属件,能够有效地将热管理部件13中的介质与电池单体11进行热交换;第二部分131为塑料件、塑料基复合材料件或无机非金属材料件,具有良好的保温能力。同时,第二部分131为塑料件、塑料基复合材料件或无机非金属材料件,其成本较金属低,密度也较金属低,为此能够降低热管理部件13的制造成本以及重量。
根据本申请的一些实施例,缓冲件14为塑料件,第二部分131与缓冲件14焊接。
在一些实施例中,缓冲件14为塑料件,第二部分131为塑料件、塑料基复合材料件或无机非金属材料件,缓冲件14和第二部分131可以通过热板焊焊接,实现热管理部件13和缓冲件14的连接。
在一些实施例中,第一部分130和第二部分131可以采用粘接的方式连接。
上述方案中,当缓冲件14为塑料件时,缓冲件14能够方便地与第二部分131焊接。
根据本申请的一些实施例,请结合图8和图9,图9为本申请一些实施例中第二部分131的示意图。第二部分131的面向第一部分130的表面形成有凹槽1310,第一部分130覆盖凹槽1310以形成流道132。
凹槽1310为形成于第二部分131的面向第一部分130的槽结构,当第一部分130盖合于第二部分131时,第一部分130能够覆盖该凹槽1310,以共同形成能够通介质的流道132。
参见图9,在第二部分131的表面,凹槽1310可以迂回设置。结合图8,在第一部分130的表面可以形成两个通孔1301,该两个通孔1301能够连通流道132,以分别作为热管理部件13的介质进口和介质出口。介质可以由介质进口进入流道132,由介质出口流出流道132。
上述方案中,由于第二部分131为塑料件、塑料基复合材料件或无机非金属材料件,故能够方便地在其表面形成凹槽1310,以降低热管理部件13的制造成本,提高热管理部件13的制造效率。
根据本申请的一些实施例,本申请还提供一种用电设备,用电设备包括上文描述的电池100,电池100用于提供电能。
根据本申请的一些实施例,本申请提供一种电池100,请参见图2-图9,电池100包括箱体10、电池单体11、热管理部件13以及缓冲件14。
箱体10包括第一壁101,第一壁101为箱体10的底壁。电池单体11、热管理部件13以及缓冲件14设于箱体10内,缓冲件14设于热管理部件13和第一壁101之间,电池单体11设于热管理部件13背离于缓冲件14的表面。
热管理部件13包括相互盖合的第一部分130和第二部分131,第一部分130和第二部分131之间形成流道132,用于容纳介质。第一部分130与电池单体11连接,第一部分130为金属件,其导热系数较大,具有较好的导热性。第二部分131与缓冲件14连接,第二部分131由非金属材料或复合材料制得,例如第二部分131为注塑PP板或热固性材料模压板等,第二部分131的导热系数较小,具有较好的保温性能。在第二部分131的面向第一部分130的表面可成型出凹槽1310,当第一部分130盖合并粘接于第二部分131时,形成供介质流动的流道132。介质由第一部分130的介质进口流入热管理部件13内,由第一部分130的介质出口流出。
缓冲件14为缓冲板,其材质为热塑性塑料,如PP,PC等,具有强度低,韧性较好的特性,缓冲件14通过热板焊焊接于热管理部件13的第二部分131。缓冲件14的厚度H为5-20mm。在缓冲件14上设置有溃缩部15,溃缩部15包括通过吸塑工艺成型于缓冲件14上的多个第一孔150和多个第二孔151,第一孔150和第二孔151均为盲孔。多个第一孔150均匀地设置于缓冲件14的第一表面,多个第二孔151均匀地设置于缓冲件14的第二表面。第一孔150和第二孔151交替错位布设,第二孔151与相邻的第一孔150之间的壁厚D为0.5mm-2mm。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种电池,其中,包括:
    箱体,包括第一壁;
    电池单体,容纳于所述箱体内;
    热管理部件,容纳于所述箱体内,用于容纳介质以调节所述电池单体温度;
    缓冲件,设于所述热管理部件和所述第一壁之间;
    其中,所述缓冲件设置有溃缩部,所述溃缩部被配置为通过变形吸收所述第一壁对所述热管理部件的冲击能量。
  2. 根据权利要求1所述的电池,其中,
    所述缓冲件在厚度方向具有相对的第一面和第二面,所述第一面与所述热管理部件连接;
    所述溃缩部包括形成于所述第一面的第一孔。
  3. 根据权利要求2所述的电池,其中,
    所述第一孔的数量为多个,多个所述第一孔沿所述缓冲件的长度方向和宽度方向均匀且间隔地排列。
  4. 根据权利要求3所述的电池,其中,
    所述溃缩部还包括形成于所述第二面的第二孔。
  5. 根据权利要求4所述的电池,其中,
    所述第一孔和/或所述第二孔为盲孔。
  6. 根据权利要求4或5所述的电池,其中,
    所述第二孔的数量为多个,多个所述第二孔沿所述缓冲件的长度方向和宽度方向均匀且间隔地排列。
  7. 根据权利要求6所述的电池,其中,
    所述第二孔在所述第一面上的投影与所述第一孔不重叠。
  8. 根据权利要求7所述的电池,其中,
    所述第二孔位于相邻两个所述第一孔之间。
  9. 根据权利要求8所述的电池,其中,
    所述第二孔与相邻的所述第一孔之间的壁厚为D,满足0.5mm≤D≤2mm。
  10. 根据权利要求1-9任一项所述的电池,其中,
    所述缓冲件的厚度为H,满足5mm≤H≤20mm。
  11. 根据权利要求1-10任一项所述的电池,其中,
    所述热管理部件包括相互盖合的第一部分和第二部分,所述第一部分和所述第二部分之间形成流道,用于容纳介质;
    所述第一部分较所述第二部分更远离所述缓冲件,所述第一部分与所述电池单体连接,所述第二部分与所述缓冲件连接,所述第二部分的导热系数小于所述第一部分的导热系数。
  12. 根据权利要求11所述的电池,其中,
    所述第一部分为金属件,所述第二部分为塑料件、塑料基复合材料件或无机非金属材料件。
  13. 根据权利要求12所述的电池,其中,
    所述缓冲件为塑料件,所述第二部分与所述缓冲件焊接。
  14. 根据权利要求11-13任一项所述的电池,其中,
    所述第二部分的面向所述第一部分的表面形成有凹槽,所述第一部分覆盖所述凹槽以形成所述流道。
  15. 一种用电设备,其中,包括权利要求1-14任一项所述的电池,所述电池用于提供电能。
PCT/CN2023/071684 2022-07-15 2023-01-10 电池和用电设备 WO2024011881A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221836216.8 2022-07-15
CN202221836216.8U CN218448207U (zh) 2022-07-15 2022-07-15 电池和用电设备

Publications (1)

Publication Number Publication Date
WO2024011881A1 true WO2024011881A1 (zh) 2024-01-18

Family

ID=85090198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071684 WO2024011881A1 (zh) 2022-07-15 2023-01-10 电池和用电设备

Country Status (2)

Country Link
CN (1) CN218448207U (zh)
WO (1) WO2024011881A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090142628A1 (en) * 2007-11-29 2009-06-04 Wataru Okada Battery system cooled via coolant
CN203496792U (zh) * 2013-08-26 2014-03-26 朱发有 具备防撞溃缩安全功能的车用视讯装置
CN211789374U (zh) * 2020-04-13 2020-10-27 恒大新能源汽车投资控股集团有限公司 电池包液冷底板总成和电池包
CN213042980U (zh) * 2020-08-10 2021-04-23 恒大新能源技术(深圳)有限公司 电池包及车辆
CN215220882U (zh) * 2021-03-10 2021-12-17 上海理想汽车科技有限公司 底护板结构、电池包箱体结构、电池包及车辆
CN215342756U (zh) * 2021-06-17 2021-12-28 瑞浦能源有限公司 一种集成液冷流道的电池包托盘
CN215644659U (zh) * 2021-09-18 2022-01-25 中航锂电科技有限公司 电池箱体和电池包

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090142628A1 (en) * 2007-11-29 2009-06-04 Wataru Okada Battery system cooled via coolant
CN203496792U (zh) * 2013-08-26 2014-03-26 朱发有 具备防撞溃缩安全功能的车用视讯装置
CN211789374U (zh) * 2020-04-13 2020-10-27 恒大新能源汽车投资控股集团有限公司 电池包液冷底板总成和电池包
CN213042980U (zh) * 2020-08-10 2021-04-23 恒大新能源技术(深圳)有限公司 电池包及车辆
CN215220882U (zh) * 2021-03-10 2021-12-17 上海理想汽车科技有限公司 底护板结构、电池包箱体结构、电池包及车辆
CN215342756U (zh) * 2021-06-17 2021-12-28 瑞浦能源有限公司 一种集成液冷流道的电池包托盘
CN215644659U (zh) * 2021-09-18 2022-01-25 中航锂电科技有限公司 电池箱体和电池包

Also Published As

Publication number Publication date
CN218448207U (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2023050969A1 (zh) 一种电池单体、电池及用电装置
WO2024021304A1 (zh) 热管理部件、电池以及用电设备
WO2023174266A1 (zh) 壳体、电池单体、电池及用电设备
WO2023134110A1 (zh) 电池和用电设备
WO2023134107A1 (zh) 电池和用电设备
WO2023134479A1 (zh) 电池和用电设备
WO2023198012A1 (zh) 电池和用电设备
WO2023087643A1 (zh) 一种高压盒、电池及用电装置
WO2023226201A1 (zh) 箱体组件、电池和用电设备
WO2023185244A1 (zh) 一种散热结构、高压盒、电池和用电装置
WO2024008054A1 (zh) 电池单体、电池及用电装置
WO2024011881A1 (zh) 电池和用电设备
WO2024021293A1 (zh) 热管理部件、电池以及用电装置
WO2023050972A1 (zh) 电池单体、电池和用电装置
WO2024021071A1 (zh) 电池的箱体、电池以及用电装置
WO2023060714A1 (zh) 电池、用电设备、制造电池的方法和设备
WO2023092849A1 (zh) 电池单体、电池及用电设备
WO2024021070A1 (zh) 电池的箱体、电池以及用电装置
US20230223612A1 (en) Battery and electrical apparatus
WO2023240460A1 (zh) 一种热管理组件、电池和用电装置
US20230223617A1 (en) Battery and powered equipment
WO2024055255A1 (zh) 电池和用电设备
CN218827514U (zh) 热管理部件、电池以及用电设备
CN219677382U (zh) 一种绝缘膜、电芯、电池及用电设备
WO2024000508A1 (zh) 电池及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838383

Country of ref document: EP

Kind code of ref document: A1