WO2023060714A1 - 电池、用电设备、制造电池的方法和设备 - Google Patents

电池、用电设备、制造电池的方法和设备 Download PDF

Info

Publication number
WO2023060714A1
WO2023060714A1 PCT/CN2021/132862 CN2021132862W WO2023060714A1 WO 2023060714 A1 WO2023060714 A1 WO 2023060714A1 CN 2021132862 W CN2021132862 W CN 2021132862W WO 2023060714 A1 WO2023060714 A1 WO 2023060714A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
wall
battery
cells
attachment
Prior art date
Application number
PCT/CN2021/132862
Other languages
English (en)
French (fr)
Inventor
许虎
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP21960441.0A priority Critical patent/EP4354618A1/en
Priority to CN202180090720.XA priority patent/CN116830368A/zh
Publication of WO2023060714A1 publication Critical patent/WO2023060714A1/zh
Priority to US18/462,418 priority patent/US20230411756A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/202Casings or frames around the primary casing of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/267Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders having means for adapting to batteries or cells of different types or different sizes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of batteries, in particular to a battery, an electrical device, a method and a device for preparing a battery.
  • Energy saving and emission reduction is the key to the sustainable development of the automobile industry.
  • electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy saving and environmental protection.
  • battery technology is an important factor related to its development.
  • the present application provides a battery, an electrical device, a method and a device for manufacturing the battery, which can enhance the strength of the battery and further improve the safety of the battery.
  • a battery including: a box body; at least one first battery cell and at least one second battery cell housed in the box body, the first battery cell and the second battery cell
  • the two battery cells are polyhedral structures with different shapes, wherein the first battery cell includes a first wall and a second wall connected to each other, the first wall is perpendicular to the first direction, and the first direction is perpendicular to the The upper cover or the bottom wall of the box body, the second wall is inclined relative to the first direction, and the second wall is used for attaching to the first attachment wall adjacent to the first battery cell connected to form an interaction force in the first direction between the second wall and the first attachment wall; the second battery cell includes a third wall and a fourth wall connected to each other , the third wall is perpendicular to the first direction, the fourth wall is inclined relative to the first direction, and the fourth wall is used to connect with the second accessory adjacent to the second battery cell
  • the wall is attached to form an interaction force in the first direction between the fourth wall and the second attached wall
  • a force in the direction of gravity may be generated due to vibration and shock, which also produces a force in the first direction, or the battery cell may occur during charging and discharging. expanding and deforming, thereby generating an acting force in the first direction.
  • the first battery cell can receive part of the force in the first direction through the second wall and the first attachment wall, so as to reduce the influence of the force on the first battery cell, for example, reduce the force of the first battery cell
  • the amount of deformation, especially the amount of deformation in the first direction is reduced.
  • the second battery cell can receive the force in the first direction of the part through the fourth wall and the second attachment wall, so as to reduce the influence of the force on the second battery cell, for example, reduce the force of the second battery cell
  • the amount of deformation of the body, especially the amount of deformation in the first direction is reduced.
  • reducing the deformation of the internal battery cells can improve the rigidity and strength of the entire battery, and avoid safety risks caused by vibration and shock during battery use.
  • a plurality of battery cells with different shapes are arranged inside the battery at the same time, and the plurality of battery cells cooperate with each other, which can improve the space utilization rate inside the battery box and further increase the energy density of the battery.
  • the first battery cell and the second battery cell have a hexahedral structure.
  • the hexahedral structure is relatively stable, and it is also easy to process, assemble and arrange, which can improve the energy density and assembly efficiency of the battery.
  • the cross-section of the first battery unit along a first plane is parallelogram or trapezoidal, and the first plane is perpendicular to the first wall and the second wall; the second battery unit The cross section of the body along the first plane is parallelogram or trapezoid.
  • the box body is usually a cuboid
  • setting the hexahedral battery cells into a relatively regular hexahedron is beneficial to arrangement and combination, thereby improving the assembly efficiency of the battery.
  • the battery includes at least two battery cell groups arranged along the first direction, and the at least two battery cell groups include the first battery cell and the second battery cell Each battery cell group of the at least two battery cell groups includes a plurality of battery cells arranged along a second direction, the first direction being perpendicular to the second direction.
  • the multiple battery cells are usually arranged in a certain order and placed in the battery box.
  • the battery cells can be arranged in an array to improve Assembly efficiency.
  • the first direction and the second direction are parallel to the first plane, so that the hexahedral battery cells are more regular and arranged more conveniently.
  • the battery cell group includes a plurality of the first battery cells and/or the second battery cells arranged along the second direction.
  • the battery cell group may include battery cells of the same shape or different shapes, so as to flexibly arrange the battery cell groups of different shapes and increase the energy density of the battery as much as possible.
  • an isolation member perpendicular to the first direction is disposed between the at least two battery cell groups to isolate different battery cell groups.
  • the isolation component is at least one of the following structures: beams, thermal management components and structural glue.
  • the isolation part may include a beam, which can support a plurality of battery cells, so as to increase the strength of the box and improve the strength and stability of the battery.
  • the isolation component in the embodiment of the present application may also include a thermal management component, that is, the isolation component may contain fluid to adjust the temperature of a plurality of battery cells.
  • the isolation component in the embodiment of the present application may also include structural glue, so that multiple battery cells that are in direct contact with the isolation component can be relatively fixed to the isolation component, especially the battery cells with the largest area When the wall is arranged on the surface of the structural adhesive, it can greatly increase the stability of the battery cell, thereby improving the strength and stability of the battery.
  • the wall with the largest area of the first battery cell is perpendicular to the first direction
  • the wall with the largest area of the second battery cell is perpendicular to the first direction. Setting the walls with the largest area of the first battery cell and the second battery cell perpendicular to the first direction is more conducive to heat dissipation, thereby reducing the distance between the first battery cell and the second battery cell along the first direction. Expansion force, improving the stability and safety of the battery.
  • each of the battery cell groups includes a plurality of battery cells that are in direct contact with the sidewall of the box.
  • the two ends of multiple battery cells are provided with end plates perpendicular to the side walls of the box, so that the battery cells at the edge of each battery cell group can directly contact the side walls of the box, saving the internal space of the box .
  • the wall with the smallest area of the first battery cell is parallel to the first plane, and the wall with the smallest area of the second battery cell is parallel to the first plane.
  • the first electrode terminal is disposed on the wall with the smallest area of the first battery cell
  • the second electrode terminal is disposed on the wall with the smallest area of the second battery cell.
  • the expansion of the wall with the smallest area of the battery cell is small, and the electrode terminals are arranged on the wall with the smallest area, so that the performance of the electrode terminals will not be affected by the expansion and deformation of the battery cell.
  • the first battery cell is provided with two first electrode terminals located on different walls; the second battery cell is provided with two second electrode terminals located on different walls.
  • two first electrode terminals are arranged on two opposite walls of the first battery cell
  • two second electrode terminals are arranged on two opposite walls of the second battery cell
  • the value range of the angle of inclination of the second wall relative to the first direction is (0°, 45°]
  • the angle of inclination of the fourth wall relative to the first direction is The value range is (0°, 45°]. If the above-mentioned inclination angle is set too large, it may increase the difficulty of designing the size of the internal electrode assembly of the battery cell, and it will also affect the internal space utilization of the battery cell. When the battery cells are assembled into a battery, it will also affect the arrangement of the battery cells, increase the space between the battery cells and the box, reduce the space utilization of the battery, and reduce the energy density of the battery.
  • an electric device including: the battery in the first aspect, configured to provide electric energy for the electric device.
  • the electric device is a vehicle, ship or spacecraft.
  • a method for manufacturing a battery including: providing a box body; providing at least one first battery cell and at least one second battery cell, the first battery cell and the second battery cell
  • the first battery cell and the second battery cell are polyhedral structures with different shapes, wherein the first battery cell includes a first wall and a second wall connected to each other.
  • the first wall is perpendicular to the first direction
  • the first direction is perpendicular to the upper cover or the bottom wall of the box
  • the second wall is inclined relative to the first direction
  • the second wall for attaching to a first attachment wall adjacent to said first battery cell to form an interaction in said first direction between said second wall and said first attachment wall force
  • the second battery cell includes a third wall and a fourth wall connected to each other, the third wall is perpendicular to the first direction, the fourth wall is inclined relative to the first direction, the The fourth wall is for attaching to a second attachment wall adjacent to the second battery cell to form an attachment in the first direction between the fourth wall and the second attachment wall. interaction force.
  • a device for manufacturing a battery including a module for performing the method in the third aspect above.
  • Fig. 1 is a schematic structural view of a vehicle disclosed in an embodiment of the present application
  • Fig. 2 is a schematic diagram of an exploded structure of a battery disclosed in an embodiment of the present application
  • Fig. 3 is a schematic diagram of a partial section of a battery disclosed in an embodiment of the present application.
  • Fig. 4 is a schematic diagram of two adjacent battery cells disclosed in an embodiment of the present application.
  • Fig. 5 is a schematic diagram of another partial section of a battery disclosed in an embodiment of the present application.
  • Fig. 6 is a schematic diagram of another partial section of a battery disclosed in an embodiment of the present application.
  • Fig. 7 is another schematic diagram of two adjacent battery cells disclosed in an embodiment of the present application.
  • Fig. 8 is a schematic diagram of several possible cross-sections of a battery cell disclosed in an embodiment of the present application.
  • Fig. 9 is a schematic diagram of other possible cross-sections of a battery cell disclosed in an embodiment of the present application.
  • Fig. 10 is a schematic diagram of another section of a battery cell disclosed in an embodiment of the present application.
  • Fig. 11 is a schematic diagram of another section of a battery disclosed in an embodiment of the present application.
  • Fig. 12 is a schematic flowchart of a method for preparing a battery disclosed in an embodiment of the present application.
  • Fig. 13 is a schematic block diagram of a device for preparing a battery disclosed in an embodiment of the present application.
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in the embodiments of the present application.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive pole piece, a negative pole piece and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative pole pieces.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the positive electrode collector without the positive electrode active material layer protrudes from the positive electrode collector coated with the positive electrode active material layer. Fluid, the positive electrode current collector not coated with the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the negative electrode collector without the negative electrode active material layer protrudes from the negative electrode collector coated with the negative electrode active material layer. Fluid, the negative electrode current collector not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the isolation film may be polypropylene (polypropylene, PP) or polyethylene (polyethylene, PE).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • the main safety hazard comes from the charging and discharging process.
  • the electrode assembly inside the battery cell will generate heat and expand during charging and discharging, which will cause the battery cell to heat up and expand and deform.
  • the shell of the battery cell is also set as a cylinder, and when the battery cell is assembled as a cylinder, since the battery box is usually a cuboid, this will As a result, there are more gaps between the battery cells and between the battery cells and the box, that is, the space utilization rate of the battery is low, and the energy density is low.
  • the poles of a cylindrical battery cell are usually arranged on the two bottom surfaces of the cylinder.
  • the electrode assembly inside the battery cell can also be approximately a cuboid, and correspondingly, the outer case of the battery cell is also set to be a cuboid.
  • the surfaces of the plurality of battery cells with the largest areas are usually arranged in contact with each other.
  • the walls with the largest area of the battery cells are arranged in contact with each other, which will lead to the weakening of the heat dissipation capacity of the battery cells, especially when one of the battery cells suffers from thermal runaway, the heat will be conducted to the adjacent battery cells through the largest wall , resulting in thermal runaway of more battery cells and reduced safety performance.
  • the walls with the largest area of a plurality of battery cells are not abutted against each other, for example, the walls with the smallest area of a plurality of battery cells can be abutted against each other, which is beneficial to the battery
  • the heat dissipation of the single cell, but the wall with the largest area of the battery cell is not bound by the end plate.
  • its electrode assembly will expand and deform, which may lead to the deterioration of the interface and the occurrence of lithium precipitation, which affects battery performance.
  • the embodiment of the present application provides a battery, at least one first battery cell and at least one second battery cell are arranged in the battery box, the first battery cell and the second battery cell are polyhedrons with different shapes structure; and, for the interconnected first and second walls included in the first battery cell, and the interconnected third and fourth walls included in the second battery cell, both the first and third walls perpendicular to the first direction, the first direction is perpendicular to the upper cover or the bottom wall of the box, and the second wall and the fourth wall are inclined relative to the first direction, and the second wall is attached to the first battery
  • the first attachment wall of the battery cell adjacent to the cell so that a force in the first direction is formed between the second wall and the first attachment wall
  • the fourth wall is attached to the second battery cell
  • the second attachment wall of the battery cell adjacent to the cell so that a force in the first direction is formed between the fourth wall and the second attachment wall.
  • the first battery cell can receive the force in the first direction of the part through the second wall and the first attachment wall, so as to reduce the influence of the force on the first battery cell, for example, the force of the first battery cell can be reduced.
  • the amount of deformation, especially the amount of deformation in the first direction is reduced.
  • the second battery cell can receive the force in the first direction of the part through the fourth wall and the second attachment wall, so as to reduce the influence of the force on the second battery cell, for example, reduce the force of the second battery cell
  • the amount of deformation of the body, especially the amount of deformation in the first direction is reduced.
  • reducing the deformation of the internal battery cells can improve the rigidity and strength of the entire battery, and avoid safety risks caused by vibration and shock during battery use.
  • a plurality of battery cells with different shapes are arranged inside the battery at the same time, and the plurality of battery cells cooperate with each other, which can improve the space utilization rate inside the battery box, and further increase the energy density of the battery.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles; spacecraft include airplanes, rockets, space shuttles and spacecraft, etc.; electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric boat toys and electric airplane toys, etc.; electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, electric planers, and more.
  • the embodiment of the present application does not impose special limitations on the above electric equipment.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or Extended range cars, etc.
  • a motor 40 , a controller 30 and a battery 10 can be arranged inside the vehicle 1 , and the controller 30 is used to control the battery 10 to supply power to the motor 40 .
  • the battery 10 may be provided at the bottom or front or rear of the vehicle 1 .
  • the battery 10 can be used for power supply of the vehicle 1 , for example, the battery 10 can be used as an operating power source of the vehicle 1 , for a circuit system of the vehicle 1 , for example, for starting, navigating and running power requirements of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1 .
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel or in parallel, and the hybrid connection refers to a mixture of series and parallel connections. Batteries can also be called battery packs.
  • a plurality of battery cells can be connected in series, parallel or mixed to form a battery module, and then a plurality of battery modules can be connected in series, parallel or mixed to form a battery. That is to say, multiple battery cells can directly form a battery, or form a battery module first, and then form a battery from the battery module.
  • FIG. 2 shows a schematic structural diagram of a battery 10 according to an embodiment of the present application.
  • the battery 10 may include a plurality of battery cells 20 arranged in an array.
  • the battery 10 may further include a box body 11 , the inside of which is a hollow structure, and a plurality of battery cells 20 are accommodated in the box body 11 .
  • Fig. 2 shows a possible implementation of the box body 11 of the embodiment of the present application.
  • the box body 11 may include two parts, referred to here as the first part 111 and the second part 112 respectively, the first part 111 and the second part 112 are fastened together.
  • the shapes of the first part 111 and the second part 112 can be determined according to the combined shape of the battery cells 20 , and at least one of the first part 111 and the second part 112 has an opening.
  • the first part 111 and the second part 112 can be hollow cuboids and only one face is an open face, the opening of the first part 111 and the opening of the second part 112 are arranged oppositely, and the first part 111 Interlock with the second part 112 to form the box body 11 with a closed chamber.
  • first part 111 and the second part 112 may be a hollow cuboid with an opening, while the other may be a plate to cover the opening.
  • the second part 112 is a hollow cuboid with only one face as an open face
  • the first part 111 is a plate-shaped example, so the first part 111 is covered at the opening of the second part 112 to form a box with a closed chamber 11.
  • the cavity can be used to accommodate a plurality of battery cells 20 .
  • a plurality of battery cells 20 are combined in parallel, in series or in parallel and placed in the box 11 formed by fastening the first part 111 and the second part 112 .
  • the battery 10 may also include other structures, which will not be repeated here.
  • the battery 10 may also include a confluence part, which is used to realize the electrical connection between a plurality of battery cells 20 , such as parallel connection, series connection or mixed connection.
  • the current-combining component can realize the electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus member may be fixed to the electrode terminal of the battery cell 20 by welding. The electric energy of the plurality of battery cells 20 can be further drawn out through the box body 11 through the conductive mechanism.
  • the number of battery cells 20 in the battery 10 can be set to any value.
  • a plurality of battery cells 20 can be connected in series, in parallel or in parallel to achieve greater capacity or power. Since the number of battery cells 20 included in each battery 10 may be large, the battery cells 20 may also be arranged in groups for ease of installation, and each group of battery cells 20 constitutes a battery module. The number of battery cells 20 included in the battery module is not limited and can be set according to requirements.
  • a battery may include a plurality of battery modules, which may be connected in series, in parallel or in parallel.
  • FIG. 3 shows a partial schematic diagram of a battery 10 according to an embodiment of the present application.
  • the battery 10 of the embodiment of the present application may include a case body 11 , at least one first battery cell 21 and at least one second battery cell 22 .
  • the first battery cell 21 and the second battery cell 22 are accommodated in the case 11, and the first battery cell 21 and the second battery cell 22 are polyhedral structures with different shapes;
  • the first battery cell The unit 21 includes a first wall 211 and a second wall 212 connected to each other, the first wall 211 is perpendicular to the first direction, the first direction is perpendicular to the upper cover or the bottom wall of the box body 11, and the second wall 212 is opposite to the first The direction is inclined, and the second wall 212 is used to be attached to the first attachment wall 231 adjacent to the first battery cell 21 so as to be formed between the second wall 212 and the first attachment wall 231 in the first direction. interaction force.
  • the second battery cell 22 includes a third wall 221 and a fourth wall 222 connected to each other, the third wall 221 is perpendicular to the first direction, the fourth wall 222 is inclined relative to the first direction, and the fourth wall 222 is used to communicate with the first direction.
  • the adjacent second attachment walls 241 of the two battery cells 22 are attached to form an interaction force in the first direction between the fourth wall 222 and the second attachment walls 241 .
  • the box body 11 of the battery 10 in the embodiment of the present application may have a polyhedral structure, and when the battery 10 is installed in an electrical device, in the direction of gravity, the uppermost surface of the multiple surfaces of the box body 11 That is, the upper cover of the box body 11 , on the contrary, the lowermost surface among the multiple surfaces is the bottom wall of the box body 11 .
  • the upper cover of the box body 11 may be perpendicular to the direction of gravity, or may also be inclined relative to the direction of gravity
  • the bottom wall of the box body 11 may also be perpendicular to the direction of gravity, or may also be inclined relative to the direction of gravity.
  • the upper cover or the bottom wall of the battery when the battery 10 is placed in the electrical equipment, the upper cover or the bottom wall of the battery is in a position substantially parallel to the horizontal plane, so as to facilitate and stably fix the battery.
  • the upper cover and the bottom wall of the box body 11 may be parallel to each other, or may not be parallel.
  • the bottom wall of the second part 112 opposite to the opening can be directed downward as the bottom wall of the battery 10 in the installation and use state.
  • the bottom wall of the first part 111 The bottom wall is the upper cover of the battery 10 .
  • the bottom wall of the first part 111 can also face downwards as the bottom wall of the installed state 10, and correspondingly, the bottom wall of the second part 112 is the upper cover of the battery 10, the embodiment of the present application is not limited thereto.
  • the present application takes the bottom wall of the second part 112 facing downward as the bottom wall of the battery 10 and the bottom wall of the first part 111 as the upper cover of the battery 10 as an example for illustration. Moreover, as shown in FIG. 1 , it is taken as an example that the bottom wall of the first part 111 and the bottom wall of the second part 112 are parallel to each other and perpendicular to the direction of gravity.
  • the first direction in the embodiment of the present application is perpendicular to the upper cover or the bottom wall of the box body 11 , therefore, the first direction may be parallel to the direction of gravity, or may also be inclined relative to the direction of gravity.
  • the first direction parallel to the gravitational direction may include a positive direction and a negative direction, wherein the positive direction of the first direction and the gravitational direction
  • the positive direction of the first direction is the direction X indicated by the arrow in Figure 3
  • the negative direction of the first direction is consistent with the direction of gravity, that is, the negative direction of the first direction is the direction indicated by the arrow in Figure 3 X is the opposite.
  • the battery 10 in the embodiment of the present application includes a plurality of battery cells 20 with different shapes, and each battery cell 20 is a polyhedral structure, while the first battery cell 21 and the second battery cell 22 are multiple battery cells. Any two battery cells 20 with different shapes among the cells 20 .
  • the first battery cell 21 and the second battery cell 22 may be adjacent or non-adjacent battery cells.
  • the different shapes of the first battery cell 21 and the second battery cell 22 in the embodiment of the present application may include: the first battery cell 21 has at least one section corresponding to the second battery cell 22
  • the shapes of the cross-sections are different, or the two cross-sections cannot be completely coincident.
  • the cross-section of the first battery cell 21 along a certain plane is trapezoidal
  • the corresponding cross-section of the second battery cell 22 along the same plane is a parallelogram, or it can also be trapezoidal, but the trapezoid is different from that of the first battery cell.
  • the size of the trapezoid of the cross-section of the body 21 or the angle of the inner angle are different, and the embodiment of the present application is not limited thereto.
  • the first battery cell 21 has a polyhedral structure
  • the first wall 211 and the second wall 212 are two intersecting walls of the first battery cell 21
  • the first wall 211 is perpendicular to the first direction
  • the second wall 212 is inclined relative to the first direction, that is, the angle between the first wall 211 and the second wall 212 is not a right angle, and the two are not perpendicular to each other.
  • the second wall 212 of the first battery cell 21 is attached to the first attachment wall 231 of the adjacent battery cell 23, because the second The wall 212 is inclined relative to the first direction, so the first attachment wall 231 is also inclined relative to the first direction, and an interaction force in the first direction can be formed between the second wall 212 and the first attachment wall 231, namely The second wall 212 can bear at least part of the force along the first direction from the first battery cell 21 or from the battery cell where the first attachment wall 231 is located.
  • the first attachment wall 231 can also Bear at least part of the force along the first direction from the battery cell or the first battery cell 21 .
  • the second battery cell 22 is also a polyhedral structure
  • the third wall 221 and the fourth wall 222 are two intersecting walls of the second battery cell 22, and the third wall 221 is perpendicular to the first direction, while the fourth wall The wall 222 is inclined relative to the first direction, that is, the angle between the third wall 221 and the fourth wall 222 is not a right angle, and the two are not perpendicular to each other.
  • the fourth wall 222 of the second battery cell 22 is attached to the second attachment wall 241 of the adjacent battery cell 24, due to the fourth The wall 222 is inclined relative to the first direction, so the second attachment wall 241 is also inclined relative to the first direction, and a force in the first direction can be formed between the fourth wall 222 and the second attachment wall 241, that is, the second attachment wall 241
  • the four walls 222 can bear at least part of the force along the first direction from the second battery cell 22 or from the battery cell where the second attachment wall 241 is located.
  • the second attachment wall 241 can also bear at least Part of the force along the first direction comes from the battery cell or the second battery cell 22 .
  • the battery cell 23 adjacent to the first battery cell 21 is attached to the first battery cell 21 through the second wall 212 and the first attachment wall 231 , that is, the second wall 212 is connected to the first attachment wall 231 .
  • the connecting wall 231 is disposed closely, and the second wall 212 is parallel to the first attaching wall 231 .
  • the battery cell 24 adjacent to the second battery cell 22 is attached to the second battery cell 22 through the fourth wall 222 and the second attachment wall 241, that is, the fourth wall 222 is connected to the second attachment wall 241.
  • the connecting wall 241 is disposed closely, and the fourth wall 222 is parallel to the second attaching wall 241 .
  • the force in the direction of gravity may be generated due to the vibration and impact of the battery 10, which also produces the force in the first direction.
  • force, or the battery cell 20 may expand and deform during charging and discharging, thereby generating a force in the first direction.
  • the first battery cell 21 can receive part of the force in the first direction through the second wall 212 and the first attachment wall 231, so as to reduce the influence of the force on the first battery cell 21, for example, the first battery cell 21 can be reduced.
  • the amount of deformation of a battery cell 21, especially the amount of deformation in the first direction is reduced; similarly, the second battery cell 22 can receive part of the deformation in the first direction through the fourth wall 222 and the second attachment wall 241 To reduce the influence of the force on the second battery cell 22, for example, the deformation of the second battery cell 22 can be reduced, especially the deformation in the first direction can be reduced. In addition, reducing the deformation of the internal battery cells 20 can improve the rigidity and strength of the entire battery 10 , and avoid safety risks caused by vibration and shock during the use of the battery 10 .
  • a plurality of battery cells 20 with different shapes are arranged inside the battery 10 at the same time, and the plurality of battery cells 20 cooperate with each other to improve the space utilization rate inside the box 11 of the battery 10, thereby increasing the energy density of the battery 10. .
  • its inclination angle can generally be set according to the actual application, for example, the value range of the inclination angle can be set to (0°, 45° ], further, the value range of the inclination angle can be [5°, 10°].
  • the value range of the angle at which the second wall 212 is inclined relative to the first direction is (0°, 45°], for example , may be [5°, 10°]; and/or, the value range of the angle of inclination of the fourth wall 222 relative to the first direction is (0°, 45°], for example, may be [5°, 10° ]; and, the angle of inclination of the second wall 212 relative to the first direction and the angle of inclination of the fourth wall 222 relative to the first direction may be the same or different.
  • the battery cell 20 may be enlarged Difficulty in designing the size of the internal electrode assembly will also affect the utilization rate of the internal space of the battery cells 20, and when the battery cells 20 are assembled into a battery, it will also affect the arrangement of the battery cells 20, increasing the battery cells.
  • the space between the body 20 and the box body 11 reduces the space utilization rate of the battery 10 , and also reduces the energy density of the battery 10 .
  • the plurality of battery cells 20 included in the battery 10 in the embodiment of the present application are all polyhedral structures, and the number of faces of the plurality of battery cells 20 may be the same or different.
  • the number of faces of the plurality of battery cells 20 can be set to be the same, for example, all the battery cells 20 in the battery 10 can be set to be hexahedral, but the present application Embodiments are not limited thereto.
  • the first battery cell 21 and the second battery cell 22 have a hexahedral structure. Considering that the hexahedral structure is relatively stable and easy to process, assemble and arrange, therefore, a plurality of battery cells 20 with a hexahedral structure can be arranged in the battery 10.
  • the first battery cell 21 and the second battery cell are also referred to as 22 are all configured as a hexahedral structure as an example to improve the energy density and assembly efficiency of the battery 10 .
  • the hexahedral battery cell 20 is arranged as a relatively regular hexahedron, which facilitates arrangement and combination, thereby improving the assembly efficiency of the battery 10 .
  • the section of the first battery cell 21 along the first plane is parallelogram or trapezoidal, and the first plane is perpendicular to the first wall 211 and the second wall 212 ; the second battery cell 22 is along the first plane.
  • the cross section of the plane is parallelogram or trapezoid.
  • the cross section of the first battery cell 21 along the first plane is a quadrangle, which may be a parallelogram or a trapezoid, and the quadrangle includes two intersecting sides composed of the first wall 211 and the second wall 212 , and It includes one side intersecting the first wall 211 and not intersecting the second wall 212 , and one side intersecting the second wall 212 and not intersecting the first wall 211 .
  • the cross-section of the second battery cell 22 along the first plane is a quadrangle, which may be a parallelogram or a trapezoid. One side that intersects the three walls 221 and does not intersect the fourth wall 222 , and one side that intersects the fourth wall 222 and does not intersect the third wall 221 .
  • the cross section of the first battery cell 21 along the first plane is a parallelogram
  • the cross section of the second battery cell 22 along the first plane may also be a parallelogram, but the two parallelograms
  • the inner angles may be different, so that the first battery cell 21 and the second battery cell 22 are battery cells 20 with different shapes, or, the cross section of the second battery cell 22 along the first plane may also be trapezoidal, for example, Right angle trapezoid or isosceles trapezoid etc.
  • the cross-section of the first battery cell 21 along the first plane is trapezoidal, for example, a right-angled trapezoid or an isosceles trapezoid, etc.
  • the cross-section of the second battery cell 22 along the first plane may be a parallelogram, or may also be a trapezoid. , but the internal angles of the trapezoids of the two are different, so that the first battery cell 21 and the second battery cell 22 are battery cells 20 with different shapes.
  • the battery 10 includes at least two battery cell groups arranged along the first direction, the at least two battery cell groups include the first battery cell 21 and the second battery cell 22, and the at least two battery cell groups
  • Each battery cell group in the cell group includes a plurality of battery cells arranged along a second direction, the first direction being perpendicular to the second direction.
  • the battery 10 is provided with a plurality of battery cells 20.
  • the plurality of battery cells 20 are usually arranged in a certain order and placed in the box 11 of the battery 10. For example, they can be arranged in an array battery cell 20 .
  • the battery 10 includes at least two battery cell groups arranged along a first direction, and each battery cell group includes a plurality of battery cells 20 arranged along a second direction, wherein, The first direction and the second direction are perpendicular to each other.
  • the first battery cell 21 and the second battery cell 22 are included in at least two battery cell groups included in the battery 10, and the first battery cell 21 and the second battery cell 22 can be located in the same or different battery cells.
  • the embodiments of the present application are not limited thereto.
  • the number of battery cell groups included in the battery 10 can be set according to actual applications, for example, two to six groups can be set, and two sets are used as an example in FIG. 3 , but the embodiment of the present application is not limited thereto .
  • the second direction in this embodiment of the present application is perpendicular to the first direction, and the second direction may include a positive direction and a negative direction.
  • the positive direction of the second direction can be the direction Y indicated by the arrow in Figure 3
  • the negative direction of the second direction is opposite to the positive direction of the second direction, that is, the negative direction of the second direction is the same as that indicated by the arrow in Figure 3
  • the pointing direction Y is opposite.
  • the thicknesses of the plurality of battery cells 20 in the same battery cell group along the first direction are generally set to be equal, so that the same battery cell group
  • the walls perpendicular to the first direction of a plurality of battery cells 20 are flush with each other; and the thicknesses along the first direction between different battery cell groups can be set to be equal or unequal, so that at least two battery cells After the groups are arranged along the first direction, they can adapt to boxes 11 of different thicknesses.
  • the thicknesses along the first direction of different battery cell groups are set to be the same, for example, the thickness is equal to t
  • the maximum lengths of different battery cell groups along the second direction are usually set to be equal, so as to adapt to the length of the box body 11 along the second direction, and reduce the distance between the battery cells 20 and the box body 11 as much as possible.
  • the gap improves the space utilization rate of the box body 11.
  • an isolation member 25 perpendicular to the first direction is disposed between at least two battery cell groups. Specifically, among the at least two battery cell groups included in the battery 10 , an isolation member 25 may be disposed between any two adjacent battery cell groups, so as to isolate the two adjacent battery cell groups.
  • the isolation component 25 is at least one of the following structures: beams, thermal management components and structural glue.
  • the isolation member 25 may include a beam, which can support a plurality of battery cells 20 to increase the strength of the case 11 and improve the strength and stability of the battery 10 .
  • the isolation component 25 in the embodiment of the present application may also include a thermal management component, that is, the isolation component 25 may contain fluid to regulate the temperature of the plurality of battery cells 20 .
  • the fluid here may be liquid or gas, and adjusting the temperature refers to heating or cooling the plurality of battery cells 20 .
  • the isolation member 25 is used to contain cooling fluid to lower the temperature of the plurality of battery cells 20.
  • the isolation member 25 can also be used for heating to cool the plurality of battery cells 20.
  • the temperature rise is not limited in the embodiment of the present application.
  • the above-mentioned fluid may flow in circulation, so as to achieve a better effect of temperature regulation.
  • the fluid may be water, a mixture of water and glycol, or air.
  • the isolation component 25 in the embodiment of the present application may also include structural glue, so that the plurality of battery cells 20 that are in direct contact with the isolation component 25 can be relatively fixed with the isolation component 25, especially the plurality of battery cells When the wall with the largest area of 20 is disposed on the surface of the structural adhesive, it can greatly increase the stability of the battery cell 10 , thereby improving the strength and stability of the battery 10 .
  • the first direction and the second direction are parallel to the first plane.
  • the cross sections of the first battery cell 21 and the second battery cell 22 along the first plane are generally parallelogram or trapezoidal, and the first direction and the second direction are set parallel to the first plane, so that multiple The arrangement of the battery cells 20 is more regular, which is convenient for assembly and can also improve the utilization rate of the space in the box 11 of the battery 10 .
  • the battery 10 in the embodiment of the present application includes multiple battery cells 20 with different shapes, and the shapes of the multiple battery cells 20 in the same battery cell group may be the same or different.
  • the battery cell group includes a plurality of first battery cells arranged along the second direction. The battery cell 21 and/or the second battery cell 22 .
  • Different embodiments will be described in detail below with reference to the accompanying drawings.
  • the plurality of battery cells 20 included in the battery cell group have the same shape, but the battery cells of different battery cell groups 20 different shapes.
  • the multiple battery cell groups of the battery 10 include at least two battery cell groups satisfying that: the plurality of battery cells 20 included in each battery cell group in the at least two battery cell groups have the same shape, and The at least two battery cell groups include battery cells 20 of different shapes. Specifically, taking FIG.
  • the multiple battery cell groups of the battery 10 may include a first battery cell group and a second battery cell group, and the shape of the battery cells 20 in the first battery cell group is Similarly, here it is taken as an example that the first battery cell group includes a plurality of first battery cells 21 arranged along the second direction; and the shape of the battery cells 20 in the second battery cell group is also the same, here the first battery cell group
  • the second battery cell group includes a plurality of second battery cells 22 arranged along the second direction as an example, and the first battery cell group and the second battery cell group include battery cells 20 with different shapes.
  • the cross section of the first battery cell 21 along the first plane is an isosceles trapezoid
  • the cross section of the second battery cell 22 along the first plane is a parallelogram as an example.
  • the first battery cell group includes a plurality of battery cells 20 in a first row in FIG. 3
  • the second battery cell group includes a plurality of battery cells 20 in a second row in FIG. 3 .
  • the plurality of battery cells 20 included in the first battery cell group are all first battery cells 21, that is, in the first battery cell group, for any first battery cell 21, the The battery cell 23 adjacent to the first battery cell 21 is called the third battery cell 23, then the third battery cell 23 has the same shape as the first battery cell 21, or in other words, the two adjacent batteries The cells 21 and 23 are both the first battery cells 21 .
  • the plurality of battery cells 20 included in the second battery cell group are all second battery cells 22, that is, in the second battery cell group, for any second battery cell 22, the The battery cell 24 adjacent to the second battery cell 22 is called the fourth battery cell 24, then the shape of the fourth battery cell 24 is the same as that of the second battery cell 22, or in other words, the two adjacent cells Both battery cells 22 and 24 are second battery cells 22 .
  • the placement directions may be the same or different.
  • the cross-sections of the plurality of first battery cells 21 along the first plane are identical isosceles trapezoids, when assembled, they can be According to different directions, take Fig.
  • the placement directions of two adjacent first battery cells 21 are different, that is, when the isosceles trapezoid of the section of a first battery cell 21 is narrow at the top and wide at the bottom, Another adjacent battery cell 21 (such as the third battery cell 23) is narrower at the bottom and wider at the top, so that the plurality of first battery cells 21 can be closely arranged, and the first battery cell group
  • the thickness along the first direction is also the same, thereby improving the space utilization ratio of the battery 10 .
  • the cross section of the plurality of second battery cells 22 along the first plane is a parallelogram, only the plurality of second battery cells need The cells 22 are arranged in the same direction, so that a closely arranged battery cell group can be obtained.
  • FIG. 4 shows a schematic diagram of two adjacent battery cells 20 with the same shape in the embodiment of the present application. Specifically, this FIG. 4 shows any second battery cell 22 in the second battery cell group in FIG. A schematic diagram of adjacent fourth battery cells 24 .
  • the battery cell group includes two adjacent battery cells 20 with the same shape, and in FIG. 4, the second battery cell The cell 22 and the fourth battery cell 24 are taken as examples.
  • the cross-sections of the second battery cell 22 and the fourth battery cell 24 along the first plane are identical parallelograms, and the fourth wall 222 of the second battery cell 22 is connected to the second attachment wall of the fourth battery cell 24 .
  • the fourth wall 222 and the second attachment wall 241 are both inclined relative to the first direction, the inclination angle is ⁇ , and the fourth wall 222 is parallel to the second attachment wall 241 .
  • the value range of the inclination angle ⁇ is (0°, 45°]
  • the value range of the inclination angle ⁇ may be [5°, 10°].
  • the force in the direction of gravity may be generated due to the vibration and impact of the battery 10, and the force in the first direction may be generated, or deformation may occur in the charging and discharging process, thereby generating the force in the first direction.
  • upward force, and the second battery cell 22 can receive part of the force in the first direction through the fourth wall 222 and the second attachment wall 241, so as to reduce the influence of the force on the second battery cell 22, For example, the amount of deformation of the second battery cell 22 can be reduced, especially the amount of deformation in the first direction can be reduced.
  • the internal second electrode assembly 224 may expand along the first direction, and the expansion may be along the positive or negative direction of the first direction, then the fourth The wall 222 and the second attachment wall 241 can restrain the expansion force, for example, the fourth wall 222 and the second attachment wall 241 can restrain the expansion force in the negative direction along the first direction, so as to The amount of deformation of the second battery cell 22 along the first direction is reduced.
  • the fourth battery cell 24 may also expand along the first direction during charging and discharging, and the fourth wall 222 and the second attachment wall 241 may also expand the fourth battery cell 24.
  • the force in the first direction creates a certain constraint
  • the fourth wall 222 and the second attachment wall 241 can create a certain constraint on the expansion force generated by the fourth battery cell 24 in the positive direction along the first direction, so as to The amount of deformation of the fourth battery cell 24 is reduced.
  • the first battery cell 21 can also receive part of the force in the first direction through the second wall 212 and the first attachment wall 231, and the third battery cell 23 can also pass through the second wall 212 and the first attachment wall 231.
  • the attachment wall 231 accepts part of the force in the first direction to reduce the impact of the force on the first battery cell 21 and the third battery cell 23, for example, it can reduce the force between the first battery cell 21 and the third battery cell.
  • the amount of deformation of the body 23, especially the reduced amount of deformation in the first direction will not be described here for brevity.
  • the battery cell group may include a plurality of battery cells 20 with different shapes.
  • the plurality of battery cell groups included in the battery 10 includes at least one third battery cell group, and the third battery cell group satisfies: the third battery cell group includes battery cells 20 with different shapes, The flexibility of assembling multiple battery cells 20 is improved, and the energy density of the battery 10 can be increased as much as possible by arranging battery cells 20 of different shapes to fit the inner space of the box body 11 .
  • Fig. 5 shows a schematic diagram of a third battery cell group according to the embodiment of the present application
  • Fig. 6 shows a schematic diagram of another third battery cell group according to the embodiment of the present application, as shown in Fig. 5 and Fig. 6
  • the third battery cell group includes at least one first battery cell 21 and at least one second battery cell 22 .
  • any two adjacent battery cells 20 in the third battery cell group may be the same or different.
  • any two adjacent battery cells 20 included in the third battery cell group may include two first battery cells 21 , or include two second battery cells 22 , or include a first battery cell 21 and a second battery cell 22, the embodiment of the present application is not limited thereto.
  • their order of placement may also be the same or different.
  • the cross-sections of the two first battery cells 21 along the first plane are identical isosceles trapezoids, when assembled When the isosceles trapezoid of the section of a first battery cell 21 is narrow at the top and wide at the bottom, another battery cell 21 adjacent to it (such as the third battery cell 23) is narrow at the bottom and wide at the top, so that The two adjacent first battery cells 21 can be closely arranged, and the thicknesses of the two first battery cells 21 along the first direction are also the same, thereby improving the space utilization ratio of the battery 10 .
  • the cross section of the two second battery cells 22 along the first plane is a parallelogram, and only the two second battery cells need to be The cells 22 are arranged in the same direction, so that two second battery cells 22 that are closely arranged can be obtained.
  • FIG. 7 shows a schematic diagram of two adjacent battery cells 20 in the third battery cell group of the embodiment of the present application, and FIG. 7 is similar in that the shapes of the two adjacent battery cells 20 are different.
  • the left battery cell 20 is the first battery cell 21, the first battery cell 21 has an isosceles trapezoidal cross-section along the first plane, and the third battery cell 23 adjacent to the first battery cell 21 Different from the shape of the first battery cell 21, the third battery cell 23 has the same shape as the second battery cell 22, or the third battery cell 23 is the second battery cell 22, and the third battery cell
  • the cross section of 23 along the first plane is a parallelogram.
  • the second wall 212 of the first battery cell 21 is attached to the first attachment wall 231 of the third battery cell 23 , and both the second wall 212 and the first attachment wall 231 are opposite to the first attachment wall 231 .
  • One direction is inclined, the inclination angle is ⁇ , and the second wall 212 is parallel to the first attachment wall 231 .
  • the value range of the inclination angle ⁇ is (0°, 45°]
  • the value range of the inclination angle ⁇ may be [5°, 10°].
  • the force in the direction of gravity may be generated due to the vibration and impact of the battery 10, and the force in the first direction may be generated, or deformation may occur in the charging and discharging process, thereby generating the force in the first direction.
  • upward force, and the first battery cell 21 can receive part of the force in the first direction through the first wall 212 and the first attachment wall 231, so as to reduce the influence of the force on the first battery cell 21, For example, the amount of deformation of the first battery cell 21 can be reduced, especially the amount of deformation in the first direction can be reduced.
  • the first electrode assembly 214 inside it may expand along the first direction, and the expansion may be along the positive or negative direction of the first direction, then the second The wall 212 and the first attachment wall 231 can restrain the expansion force to a certain extent, for example, the second wall 212 and the first attachment wall 231 can restrain the expansion force along the positive direction of the first direction to a certain extent, so as to reduce The amount of deformation of the first battery cell 21 along the first direction.
  • the third battery cell 23 may also expand along the first direction during charging and discharging, and the second wall 212 and the first attachment wall 231 may also expand the third battery cell 23
  • the force in the first direction creates certain constraints, for example, the second wall 212 and the first attachment wall 231 can create certain constraints on the expansion force generated by the third battery cell 23 in the negative direction along the first direction, In order to reduce the amount of deformation of the fourth battery cell 24 .
  • the second battery cell 22 can also receive part of the force in the first direction through the fourth wall 222 and the second attachment wall 241, and the fourth battery cell 24 can also pass through the fourth wall 222 and the second attachment wall 241.
  • the attachment wall 241 accepts part of the force in the first direction, so as to reduce the impact of the force on the second battery cell 22 and the fourth battery cell 24, for example, it can reduce the force of the second battery cell 22 and the fourth battery cell.
  • the amount of deformation of the body 24, especially the reduced amount of deformation in the first direction will not be described here for brevity.
  • At least two battery cell groups included in the battery 10 at least one first battery cell group and at least one second battery cell group may be included; or, at least two battery cell groups may only include a plurality of A third battery cell group; or, at least two battery cell groups including at least one first battery cell group, at least one second battery cell group, and at least one third battery cell group; or, at least two battery cells
  • the cell group includes at least one first battery cell group and at least one third battery cell group; or, the at least two battery cell groups include at least one second battery cell group and at least one third battery cell group,
  • the embodiment of the present application is not limited thereto.
  • each battery cell group includes a plurality of battery cells that are in direct contact with the side wall of the box body 11 . Since the second wall 212 of the first battery cell 21 and the fourth wall 222 of the second battery cell 22 are inclined relative to the first direction, they can bear at least part of the force between the battery cells 20 along the first direction. Therefore, end plates perpendicular to the side walls of the box body 11 may not be provided at both ends of a plurality of battery cells 20, so that the battery cells 20 at the outermost edge of each battery cell group can be directly connected to the side walls of the box body 11. sidewall contact. For example, as shown in FIGS.
  • the side walls of the box 11 perpendicular to the second direction can be in direct contact with the battery cells 20 without the need for end plates, thereby saving the internal space of the box 11 , to increase the energy density of the battery 10 .
  • the battery cell 20 in the embodiment of the present application includes electrode assemblies inside, and electrode assemblies of different types, sizes and shapes can be flexibly arranged according to the shape of the battery cell 20 .
  • FIG. 8 shows various possible schematic diagrams of the cross section of the first battery cell 21 according to the embodiment of the present application.
  • the first battery cell 21 The cross section along the first plane is an isosceles trapezoid with a first electrode assembly 214 inside.
  • the number of first electrode assemblies 214 inside the first battery cell 21 can also be set according to actual applications, for example, one or more first electrode assemblies 214 can be provided, and for another example, one to four first electrode assemblies can be provided 214.
  • the plurality of first electrode assemblies 214 may be arranged according to practical applications.
  • the first battery cell 21 includes two first electrode assemblies 214
  • the two first electrode assemblies 214 can be arranged along the first direction or along the second direction;
  • the body 21 includes more than two first electrode assemblies 214 , they can also be arranged in other ways to increase the energy density of the first battery cell 21 , which is not limited in the embodiment of the present application.
  • the first electrode assembly 214 can be stacked, such as the first figure on the left of Figure 8, the stacked first electrode assembly is stacked along the first direction or, the first electrode assembly 214 can also be a winding type, for example, the three figures on the right in FIG. 8, and the winding axis of the first electrode assembly 214 is perpendicular to the first plane, or the first electrode assembly 214 The winding axis of assembly 214 is perpendicular to the first direction and the second direction.
  • the cross section of the first electrode assembly 214 along the first plane can be in any shape, for example, it can be trapezoidal, circular or elliptical.
  • the cross section of the first battery cell 21 along the first plane is an isosceles trapezoid, that is, the first battery cell 21 is at different positions in the first direction, and the first battery cell 21 is in the second direction. Therefore, a plurality of first electrode assemblies 214 with different sizes can be arranged in the first battery cell 21 to adapt to the shape of the first battery cell 21 .
  • the number, shape, size and type of the second electrode assembly 224 inside the second battery cell 22 can also be flexibly set according to actual applications, which is applicable to the above-mentioned first battery
  • the description of the first electrode assembly 214 of the cell 21 is omitted here for the sake of brevity.
  • the arrangement of the first electrode assembly 214 of the first battery cell 21 and the second electrode assembly 224 of the second battery cell 22 may be the same or different, and the embodiment of the present application is not limited thereto.
  • the wall with the largest area of the first battery cell 21 is perpendicular to the first direction
  • the wall with the largest area of the second battery cell 22 is perpendicular to the first direction.
  • the deformation of the two partition walls perpendicular to the first direction of the battery cell 20 is relatively large. 8 setting the walls with the largest area of the first battery cell 21 and the second battery cell 22 to be perpendicular to the first direction is more conducive to heat dissipation, thereby reducing the number of first battery cells 21 and the second battery cell
  • the expansion force of 22 along the first direction improves the stability and safety of the battery 10 .
  • the It can ensure that the electrolytic solution in each battery cell 20 can infiltrate the electrode assembly to the same height, and ensure the consistency of the environment of multiple electrode assemblies in the same battery cell 20 , thereby improving the performance of the battery cell 20 .
  • this arrangement of the electrode assembly can also make the contact surface between the electrode assembly and the outer casing of the battery cell 20 smaller, and the heat transfer area of the electrode assembly to the outside is also smaller, so that the battery cell 20 can be solved well. heat dissipation problem.
  • FIG. 9 shows a variety of possible schematic diagrams of the cross section of the second battery cell 22 in the embodiment of the present application.
  • the second battery cell 2 is taken as an example here.
  • the walls with the largest area of the first battery cell 21 and the second battery cell 22 can also be inclined relative to the first direction, so as to be attached to the adjacent battery cells 20.
  • the second battery cell 22 may include two wound second electrode assemblies 224 arranged along the first direction, and each second electrode assembly 224 is arranged along the The cross section of the first plane is circular, and the winding axis of each second electrode assembly 224 is perpendicular to the first plane, or in other words, the winding axis of each second electrode assembly 224 is perpendicular to the first direction and the second direction.
  • the second electrode assembly 224 of the second battery cell 22 can also be stacked, and the stacking direction is perpendicular to the wall with the largest area.
  • the second battery cell 22 may also include two wound second electrode assemblies 224 arranged along the second direction, and each second electrode assembly 224
  • the section along the first plane is approximately elliptical, and the winding axis of each second electrode assembly 224 is perpendicular to the first plane, or in other words, the winding axis of each second electrode assembly 224 is perpendicular to the first direction and the second direction.
  • Two directions For another example, as shown in the fourth figure on the left in FIG.
  • the cross section of the second battery cell 22 along the first plane is an equilateral parallelogram, then the four wall areas represented by the four sides of the equilateral parallelogram equal, and both are the walls with the largest area of the second battery cell 22, then a cylindrical second electrode assembly 224 can also be provided inside the second battery cell 22, and the second electrode assembly 224 is a wound type,
  • the winding axis is perpendicular to the first plane, or in other words, the winding axis of the second electrode assembly 224 is perpendicular to the first direction and the second direction, but the embodiment of the present application is not limited thereto.
  • the number, shape, size and type of the first electrode assemblies 214 inside the first battery cell 21 can also be flexibly set according to actual applications, applicable to the above-mentioned
  • the description of the second electrode assembly 224 of the second battery cell 22 in FIG. 9 is omitted for brevity.
  • the arrangement of the first electrode assembly 214 of the first battery cell 21 and the second electrode assembly 224 of the second battery cell 22 may be the same or different, and the embodiment of the present application is not limited thereto.
  • the interlayer gap between the pole pieces can be utilized, so that the electrode assembly forms a cylindrical self-constraint expansion after expansion, so that the expansion of the outer diameter of the cylindrical electrode assembly is relatively small.
  • the expansion deformation of the electrode assembly to the outer shell of the battery cell 20 is also small, especially the expansion deformation of the surface with the largest area of the battery cell 20 becomes small, and there is no need to reserve for the battery cell 20
  • the expansion space improves the space utilization rate of the battery cells 20 in the battery 10 , and thus increases the energy density of the battery 10 .
  • the interlayer gap between the pole pieces of the cylindrical wound electrode assembly can be set in various ways.
  • at least part of the surface of the pole piece can be provided with bumps, so that after the pole piece and the pole piece are wound, the interlayer gap can be formed by using the bumps on the surface of the pole piece; or, a coating can also be added between the pole piece and the pole piece.
  • the coating may be Polysilacarbosilane (PCS), but the embodiment of the present application is not limited thereto.
  • the wall with the smallest area of the first battery cell 21 is parallel to the first plane
  • the wall with the smallest area of the second battery cell 22 is parallel to the first plane.
  • the wall with the smallest area of the battery cell 20 inside it is arranged to be parallel to the first plane, which is conducive to saving space and avoiding the wall perpendicular to the first plane.
  • the gap between the battery cell 20 and the box body 11 is too large.
  • the first electrode terminal 213 is disposed on the wall with the smallest area of the first battery cell 21
  • the second electrode terminal 223 is disposed on the wall of the second battery cell 22 with the smallest area. Since the electrode terminals are generally small in size, the electrode terminals are arranged on the wall with the smallest area of the battery cell 20, for example, the first electrode terminal 213 is arranged on the wall with the smallest area of the first battery cell 21, and the second electrode terminal 213 is arranged on the wall with the smallest area of the first battery cell 21.
  • the electrode terminal 223 is arranged on the wall with the smallest area of the second battery cell 22, which can save space; and, as shown in FIGS. On the wall with the smallest area, the attachment between two adjacent battery cells 20 is not affected.
  • the first battery cell 21 is provided with two first electrode terminals 213 located on different walls; the second battery cell 22 is provided with two second electrode terminals 223 located on different walls.
  • the battery cell 20 has two electrode terminals, respectively a positive electrode terminal and a negative electrode terminal, the two electrode terminals can be located on the same wall or on different walls, and when the two electrode terminals are located on different walls, the two electrode terminals
  • the two walls where the terminals are located may be intersecting walls or non-intersecting walls, for example, may be located on two walls that are parallel to each other, to which the embodiment of the present application is not limited.
  • FIG. 10 shows a schematic diagram of a battery cell 20 according to an embodiment of the present application.
  • the battery cell 20 can be a first battery cell 21, and the first battery cell 21 has two first electrode terminals 213 arranged on different walls.
  • the terminals 213 are located on the wall with the smallest and equal area, and the two walls where the two first electrode terminals 213 are located are opposite to each other.
  • the battery cell 20 in FIG. 10 can also be a second battery cell 22, and the second battery cell 22 has second electrode terminals 223 arranged on different walls, here two second electrode terminals 223 For example, on the wall with the smallest and equal area, the two walls where the two second electrode terminals 223 are located are opposite to each other.
  • the wall where the first electrode terminal 213 or the second electrode terminal 223 is located is perpendicular to the third direction
  • the third direction is perpendicular to the first direction and the second direction
  • the third direction can also be perpendicular to the first direction.
  • the third direction may include a positive direction and a negative direction, wherein the positive direction of the third direction is the direction Z indicated by the arrow in Figure 10, and the negative direction of the third direction is opposite to the negative direction of the third direction, i.e.
  • the negative direction of the three directions is opposite to the direction Z indicated by the arrow in FIG. 10 .
  • FIG. 11 shows a schematic cross-sectional view of a battery 10 according to an embodiment of the present application, and the cross-section is a cross-section along a plane perpendicular to the second direction.
  • the electrode terminals of the battery cell 20 are arranged on both ends of the battery cell 20 in the manner shown in FIG. 10, and then assembled into a battery 10, so that the battery cell in the third direction There is no longer any need for converging parts between the 20 to realize the electrical connection, only need to abut the electrode terminals of the two adjacent battery cells 20 along the third direction, and then the electrical connection of the two adjacent battery cells 20 can be realized.
  • the rapid assembly of the battery 10 saves the confluence components and does not need to reserve installation space for the confluence components, which improves the assembly efficiency of the battery 10 and also increases the energy density of the battery 10 .
  • FIG. 12 shows a schematic flowchart of a method 300 for manufacturing a battery 10 according to an embodiment of the present application.
  • the method 300 may include: S310, providing the casing 11; S320, providing at least one first battery cell 21 and at least one second battery cell 22, the first battery cell 21 and the second battery cell
  • the cells 22 are accommodated in the box body 11, the first battery cell 21 and the second battery cell 22 are polyhedral structures with different shapes, wherein the first battery cell 21 includes a first wall 211 and a second wall connected to each other 212, the first wall 211 is perpendicular to the first direction, the first direction is perpendicular to the upper cover or the bottom wall of the box body 11, the second wall 212 is inclined relative to the first direction, and the second wall 212 is used to connect with the first battery cell
  • the first attachment wall 231 adjacent to the body 21 is attached to form an interaction force in the first direction between the second wall 212 and the first attachment wall 231; the second battery cell 22 includes interconnected The third wall 221 and the
  • FIG. 13 shows a schematic block diagram of an apparatus 400 for preparing a battery 10 according to an embodiment of the present application.
  • the device 400 may include: a providing module 410 .
  • the providing module 410 is used to: provide the box body 11; provide at least one first battery cell 21 and at least one second battery cell 22, the first battery cell 21 and the second battery cell 22 are accommodated in the box body 11 , the first battery cell 21 and the second battery cell 22 are polyhedral structures with different shapes, wherein the first battery cell 21 includes a first wall 211 and a second wall 212 connected to each other, and the first wall 211 is perpendicular to the first wall 211 One direction, the first direction is perpendicular to the upper cover or the bottom wall of the box body 11, the second wall 212 is inclined relative to the first direction, and the second wall 212 is used for attaching the first battery cell 21 adjacent to the first The wall is attached 231 to form an interaction force in the first direction between the second wall 212 and the first attached wall 231; the second

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例提供一种电池、用电设备、制造电池的方法和设备。该电池包括:箱体;至少一个第一电池单体和至少一个第二电池单体,容纳于该箱体中,该第一电池单体和该第二电池单体为形状不同的多面体结构,其中,该第一电池单体和第二电池单体均包括相互连接的两个壁,其中一个壁垂直于第一方向,另一个壁相对于该第一方向倾斜,该第一方向垂直于该箱体的上盖或底壁;相对倾斜的壁用于与相邻的电池单体的壁附接,以在该倾斜壁与相邻的壁之间形成在第一方向上的相互作用力。本申请提供的电池、用电设备、制造电池的方法和设备,能够增强电池的强度,进而提高电池的安全性。

Description

电池、用电设备、制造电池的方法和设备
相关申请的交叉引用
本申请要求享有于2021年10月12日提交的名称为“电池单体、电池和用电装置”的中国专利申请202111188271.0的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种电池、用电设备、制备电池的方法和设备。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的性能外,安全问题也是一个不可忽视的问题。如果电池的安全问题不能保证,那该电池就无法使用。因此,如何增强电池的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请提供了一种电池、用电设备、制造电池的方法和设备,能够增强电池的强度,进而提高电池的安全性。
第一方面,提供了一种电池,包括:箱体;至少一个第一电池单体和至少一个第二电池单体,容纳于所述箱体中,所述第一电池单体和所述第二电池单体为形状不同的多面体结构,其中,所述第一电池单体包括相互连接的第一壁和第二壁,所述第一壁垂直于第一方向,所述第一方向垂直于所述箱体的上盖或底壁,所述第二壁相对于所述第一方向倾斜,所述第二壁用于与和所述第一电池单体相邻的第一附接壁附接,以在所述第二壁与所述第一附接壁之间形成在所述第一方向上的相互作用力;所述第二电池单体包括相互连接的第三壁和第四壁,所述第三壁垂直于所述第一方向,所述第四壁相对于所述第一方向倾斜,所述第四壁用于与和所述第二电池单体相邻的第二附接壁附接,以在所述第四壁与所述第二附接壁之间形成在所述第一方向上的相互作用力。
因此,本申请实施例的电池,在使用过程中,可能由于振动冲击产生重力方向上的作用力,也就产生了第一方向上的作用力,或者电池单体在充电和放电过程中可能发生膨胀变形,进而产生第一方向上的作用力。那么,第一电池单体可以通过第二壁和第一附接壁承接部分第一方向上的作用力,以减少该作用力对第一电池单体的影响,例如可以减少第一电池单体的变形量,尤其是减少了第一方向上的变形量。类似的,第二电池单体可以通过第四壁和第二附接壁承接部分第一方向上的作用力,以减少该作用力对第二电池单体的影响,例如可以减少第二电池单体的变形量,尤其是减少了第一方向上的变形量。并且,减少内部电池单体的变形量可以提高整个电池的刚度和强度,避免电池在使用过程中由于振动冲击等原因造成的安全风险。另外,电池内部同时设置形状不同的多个电池单体,该多个电池单体之间相互配合,可以提高电池的箱体内部的空间利用率,进而提高电池的能量密度。
在一些实施例中,所述第一电池单体和所述第二电池单体为六面体结构。六面体结构比较稳定,也便于加工、组装和排列,能够提高电池的能量密度和组装效率。
在一些实施例中,所述第一电池单体沿第一平面的截面为平行四边形或梯形,所述第一平面垂直于所述第一壁和所述第二壁;所述第二电池单体沿所述第一平面的截面为平行四边形或梯形。
考虑到箱体通常为长方体,将六面体结构的电池单体设置为较为规则的六面体,有利于排列组合,从而能够提高电池的组装效率。
在一些实施例中,所述电池包括沿所述第一方向排列的至少两个电池单体组,所述至少两个电池单体组包括所述第一电池单体和所述第二电池单体,所述至少两个电池单体组中的每个电池单体组包括沿第二方向排列的多个电池单体,所述第一方向垂直于所述第二方向。
电池中设置有多个形状不同的电池单体,为了便于组装,通常将多个电池单体按照一定规律排列后设置于电池的箱体内,例如,可以按照阵列的方式排列电池单体,以提高组装效率。
在一些实施例中,所述第一方向和所述第二方向平行于所述第一平面,以使得六面体的电池单体更为规则,排列更加方便。
在一些实施例中,所述电池单体组包括沿所述第二方向排列的多个所述第一电池单体和/或所述第二电池单体。
对于任意一个电池单体组,该电池单体组中可以包括形状相同或者不同的电池单体,以灵活排列不同形状的电池单体组,尽可能提高电池的能量密度。
在一些实施例中,所述至少两个电池单体组之间设置有垂直于所述第一方向的隔离部件,以隔离不同电池单体组。
在一些实施例中,所述隔离部件为下列结构中的至少一种:横梁、热管理部件和结构胶。
该隔离部件可以包括横梁,该横梁可以支撑多个电池单体,以增加箱体的强度,提高电池的强度和稳定性。
可选地,本申请实施例中的隔离部件还可以包括热管理部件,即该隔离部件可 以容纳流体以给多个电池单体调节温度。
可选地,本申请实施例中的隔离部件还可以包括结构胶,以使得与该隔离部件直接接触的多个电池单体能够与隔离部件相对固定,尤其是多个电池单体的面积最大的壁设置于结构胶的表面时,能够极大的增加电池单体的稳定性,进而提高了电池的强度和稳定性。
在一些实施例中,所述第一电池单体的面积最大的壁垂直于所述第一方向,所述第二电池单体的面积最大的壁垂直于所述第一方向。将第一电池单体和第二电池单体的面积最大的壁设置为垂直于第一方向,更加有利于散热,进而减少第一电池单体和第二电池单体的沿第一方向上的膨胀力,提高电池的稳定性和安全性。
在一些实施例中,所述每个电池单体组中包括与所述箱体的侧壁直接接触的多个电池单体。
由于第一电池单体的第二壁和第二电池单体的第四壁相对于第一方向倾斜,进而能够承接电池单体之间的至少部分沿第一方向的作用力,因此,可以不在多个电池单体的两端设置与箱体的侧壁垂直的端板,使得每个电池单体组中位于最边缘的电池单体可以直接与箱体的侧壁接触,节省箱体内部空间。
在一些实施例中,所述第一电池单体的面积最小的壁平行于所述第一平面,所述第二电池单体的面积最小的壁平行于所述第一平面。
将其内部的电池单体的面积最小的壁设置为平行于第一平面,有利于节省空间,避免在垂直于第一平面的方向上,电池单体与箱体之间的空隙过大。
在一些实施例中,所述第一电池单体的面积最小的壁上设置有第一电极端子,所述第二电池单体的面积最小的壁上设置有第二电极端子。电池单体面积最小的壁的膨胀量较小,电极端子设置于面积最小的壁上,不会因为电池单体的膨胀变形影响电极端子的性能。
在一些实施例中,所述第一电池单体设置有位于不同壁上的两个第一电极端子;所述第二电池单体设置有位于不同壁上的两个第二电极端子。
在一些实施例中,将两个第一电极端子设置于第一电池单体的相对的两个壁上,将两个第二电极端子设备于第二电池单体的相对的两个壁上,以使得相邻两个电池单体可以通过电极端子的附接实现电连接,而无需汇流部件,节省汇流部件的安装空间,进一步提高电池的能量密度。
在一些实施例中,所述第二壁相对于所述第一方向倾斜的角度的取值范围为(0°,45°],所述第四壁相对于所述第一方向倾斜的角度的取值范围为(0°,45°]。若上述倾斜角度设置过大,则可能加大电池单体内部电极组件的尺寸的设计难度,还会影响电池单体的内部空间利用率,在将电池单体组装为电池时,还会影响电池单体之间的排列方式,增加了电池单体与箱体之间的空间,降低了电池的空间利用率,也就降低了电池的能量密度。
第二方面,提供了一种用电设备,包括:第一方面中的电池,用于为用电设备提供电能。
在一些实施例中,所述用电设备为车辆、船舶或航天器。
第三方面,提供了一种制造电池的方法,包括:提供箱体;提供至少一个第一电池单体和至少一个第二电池单体,所述第一电池单体和所述第二电池单体容纳于所述箱体中,所述第一电池单体和所述第二电池单体为形状不同的多面体结构,其中,所述第一电池单体包括相互连接的第一壁和第二壁,所述第一壁垂直于第一方向,所述第一方向垂直于所述箱体的上盖或者底壁,所述第二壁相对于所述第一方向倾斜,所述第二壁用于与和所述第一电池单体相邻的第一附接壁附接,以在所述第二壁与所述第一附接壁之间形成在所述第一方向上的相互作用力;所述第二电池单体包括相互连接的第三壁和第四壁,所述第三壁垂直于所述第一方向,所述第四壁相对于所述第一方向倾斜,所述第四壁用于与和所述第二电池单体相邻的第二附接壁附接,以在所述第四壁与所述第二附接壁之间形成在所述第一方向上的相互作用力。
第四方面,提供了一种制造电池的设备,包括执行上述第三方面的方法的模块。
附图说明
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池的分解结构示意图;
图3是本申请一实施例公开的一种电池的局部截面的示意图;
图4是本申请一实施例公开的一种相邻两个电池单体的示意图;
图5是本申请一实施例公开的一种电池的另一局部截面的示意图;
图6是本申请一实施例公开的一种电池的再一局部截面的示意图;
图7是本申请一实施例公开的一种相邻两个电池单体的另一示意图;
图8是本申请一实施例公开的一种电池单体的截面的几种可能的示意图;
图9是本申请一实施例公开的一种电池单体的截面的其他几种可能的示意图;
图10是本申请一实施例公开的一种电池单体的另一截面的示意图;
图11是本申请一实施例公开的一种电池的另一截面的示意图;
图12是本申请一实施例公开的制备电池的方法的示意性流程图;
图13是本申请一实施例公开的制备电池的设备的示意性框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外, 术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
对于电池来说,主要的安全危险来自于充电和放电过程,例如,充电和放电过程中电池单体内部的电极组件会产生热量以及发生膨胀,进而导致电池单体发热以及 膨胀变形。以电池单体内部的电极组件为圆柱体为例,对应地,电池单体的外壳也设置为圆柱体,而圆柱体的电池单体在组装时,由于电池的箱体通常为长方体,这会导致电池单体之间以及电池单体与箱体之间空隙较多,即该电池的空间利用率较低,能量密度较低。并且,圆柱体的电池单体的极柱通常设置在圆柱体的两个底面,在底面空间有限、考虑底面端盖强度的情况下,会考虑将该电池单体的泄压机构设置在圆柱体的侧面壳体上,而该侧面是弧形,不易进行泄压机构设计。
或者,电池单体内的电极组件还可以近似为长方体,对应的,电池单体的外部壳体也设置为长方体。在将多个电池单体组装在电池内部时,通常将多个电池单体的面积最大的面相互抵接排列。并且,考虑到多个电池单体在充电和放电过程中,每个电池单体的面积最大的壁的膨胀变形量较大,因此,还可以在一列电池单体的两侧设置与电池单体的面积最大的壁抵压的端板,以束缚多个电池单体,防止多个电池单体发生变形。但电池单体的面积最大的壁相互抵接排列,会导致电池单体散热能力减弱,尤其在其中一个电池单体发生热失控时,热量会通过面积最大的壁传导至相邻的电池单体,造成更多的电池单体发生热失控,安全性能降低。
再或者,对于长方体的电池单体,如果不将多个电池单体的面积最大的壁相互抵接,例如,可以将多个电池单体的面积最小的壁相互抵接,这样虽然有利于电池单体的散热,但是电池单体面积最大的壁没有端板的束缚,在电池单体的充放电过程时,其电极组件会膨胀形变,进而可能导致界面变差而发生析锂现象,从而影响电池的性能。
因此,本申请实施例提供了一种电池,在电池箱体内设置有至少一个第一电池单体和至少一个第二电池单体,第一电池单体和第二电池单体为形状不同的多面体结构;并且,对于第一电池单体包括的相互连接的第一壁和第二壁,以及第二电池单体包括的相互连接的第三壁和第四壁,第一壁和第三壁均垂直于第一方向,该第一方向垂直于箱体的上盖或者底壁,而第二壁和第四壁均相对于第一方向倾斜,并且,该第二壁附接于和第一电池单体相邻的电池单体的第一附接壁,以使第二壁和第一附接壁之间形成第一方向上的作用力,类似的,第四壁附接于和第二电池单体相邻的电池单体的第二附接壁,以使第四壁和第二附接壁之间形成第一方向上的作用力。
这样,第一电池单体可以通过第二壁和第一附接壁承接部分第一方向上的作用力,以减少该作用力对第一电池单体的影响,例如可以减少第一电池单体的变形量,尤其是减少了第一方向上的变形量。类似的,第二电池单体可以通过第四壁和第二附接壁承接部分第一方向上的作用力,以减少该作用力对第二电池单体的影响,例如可以减少第二电池单体的变形量,尤其是减少了第一方向上的变形量。并且,减少内部电池单体的变形量可以提高整个电池的刚度和强度,避免电池在使用过程中由于振动冲击等原因造成的安全风险。并且,电池内部同时设置形状不同的多个电池单体,该多个电池单体之间相互配合,可以提高电池的箱体内部的空间利用率,进而提高电池的能量密度。
本申请实施例描述的技术方案均适用于各种使用电池的用电设备。
用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动 玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池也可以称为电池包。可选地,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。
例如,图2示出了本申请一个实施例的一种电池10的结构示意图,电池10可以包括多个电池单体20,多个电池单体20呈阵列排列。电池10还可以包括箱体11,箱体11内部为中空结构,多个电池单体20容纳于箱体11内。图2示出了本申请实施例的箱体11的一种可能的实现方式,如图2所示,箱体11可以包括两部分,这里分别称为第一部分111和第二部分112,第一部分111和第二部分112扣合在一起。第一部分111和第二部分112的形状可以根据电池单体20组合的形状而定,第一部分111和第二部分112中至少一个具有一个开口。例如,如图2所示,该第一部分111和第二部分112均可以为中空长方体且各自只有一个面为开口面,第一部分111的开口和第二部分112的开口相对设置,并且第一部分111和第二部分112相互扣合形成具有封闭腔室的箱体11。
再例如,不同于图2所示,第一部分111和第二部分112中可以仅有一个为具有开口的中空长方体,而另一个为板状,以盖合开口。例如,这里以第二部分112为中空长方体且只有一个面为开口面,第一部分111为板状为例,那么第一部分111盖合在第二部分112的开口处以形成具有封闭腔室的箱体11,该腔室可以用于容纳多个电池单体20。多个电池单体20相互并联或串联或混联组合后置于第一部分111和第二部分112扣合后形成的箱体11内。
可选地,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10 还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体11而引出。
根据不同的电力需求,电池10中的电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体20的数量可能较多,为了便于安装,还可以将电池单体20分组设置,每组电池单体20组成电池模块。电池模块中包括的电池单体20的数量不限,可以根据需求设置。电池可以包括多个电池模块,这些电池模块可通过串联、并联或混联的方式进行连接。
图3示出了本申请实施例的一种电池10的局部示意图。如图3所示,本申请实施例的电池10可以包括箱体11、至少一个第一电池单体21和至少一个第二电池单体22。具体地,至少一个第一电池单体21和至少一个第二电池单体22容纳于箱体11中,第一电池单体21和第二电池单体22为形状不同的多面体结构;第一电池单体21包括相互连接的第一壁211和第二壁212,第一壁211垂直于第一方向,第一方向垂直于箱体11的上盖或底壁,第二壁212相对于第一方向倾斜,第二壁212用于与和第一电池单体21相邻的第一附接壁231附接,以在第二壁212与第一附接壁231之间形成在第一方向上的相互作用力。第二电池单体22包括相互连接的第三壁221和第四壁222,第三壁221垂直于第一方向,第四壁222相对于第一方向倾斜,第四壁222用于与和第二电池单体22相邻的第二附接壁241附接,以在第四壁222与第二附接壁241之间形成在第一方向上的相互作用力。
应理解,本申请实施例的电池10的箱体11可以为多面体结构,当电池10安装于用电设备中时,在沿重力方向上,箱体11的多个面中位于最上方的一个面即为箱体11的上盖,与之相反的,多个面中位于最下方的一个面即为箱体11的底壁。并且,箱体11的上盖可以垂直于重力方向,或者也可以相对于重力方向倾斜,箱体11的底壁也可以垂直于重力方向,或者也可以相对于重力方向倾斜。一般来说,当电池10放置在用电设备中,电池的上盖或者底壁处于与水平面基本平行的位置,以方便稳定地固定电池。箱体11的上盖和底壁可以相互平行,或者也可以不平行。例如,以图2为例,对于长方体的箱体11,可以将第二部分112的与开口相对的底壁朝下,以作为安装使用状态的电池10的底壁,相应的,第一部分111的底壁则为电池10的上盖。或者,也可以将第一部分111的底壁朝下,作为安装使用状态10的底壁,相应的,第二部分112的底壁则为电池10的上盖,本申请实施例并不限于此。
为了便于说明,本申请以第二部分112的底壁朝下,作为电池10的底壁,而第一部分111的底壁为电池10的上盖为例进行说明。并且,如图1所示,这里以第一部分111的底壁与第二部分112的底壁相互平行且均垂直于重力方向为例。
另外,本申请实施例的第一方向垂直于箱体11的上盖或底壁,因此,该第一方向可以平行于重力方向,或者也可以相对于重力方向倾斜。为了便于理解,下文中以该第一方向平行于重力方向为例进行说明,并且,本申请实施例的该第一方向可以 包括正方向和负方向,其中,第一方向的正方向与重力方向相反,即第一方向的正方向为如图3中箭头所指的方向X,而第一方向的负方向与重力方向保持一致,即第一方向的负方向与如图3中箭头所指方向X相反。
本申请实施例中的电池10中包括形状不同的多个电池单体20,并且每个电池单体20均为多面体结构,而第一电池单体21和第二电池单体22为多个电池单体20中任意两个形状不同的电池单体20。例如,该第一电池单体21和该第二电池单体22可以为相邻的或者不相邻的电池单体。
应理解,本申请实施例中该第一电池单体21和该第二电池单体22的形状不同可以包括:该第一电池单体21至少具有一个截面与该第二电池单体22对应的截面的形状不同,或者说,这两个截面无法完全重合。例如,该第一电池单体21沿某一平面的截面为梯形,而该第二电池单体22沿同一平面的对应截面为平行四边形,或者也可以为梯形,但是该梯形与第一电池单体21的截面的梯形的尺寸或者内角的角度不同等,本申请实施例并不限于此。
在本申请实施例中,第一电池单体21为多面体结构,第一壁211和第二壁212为第一电池单体21的两个相交的壁,并且第一壁211垂直于第一方向,而第二壁212相对于第一方向倾斜,即该第一壁211与第二壁212之间的夹角不是直角,二者不相互垂直。对于与第一电池单体21相邻的电池单体23而言,第一电池单体21的第二壁212与相邻的电池单体23的第一附接壁231附接,由于第二壁212相对于第一方向倾斜,因此第一附接壁231也相对于第一方向倾斜,并且第二壁212与第一附接壁231之间可以形成第一方向上的相互作用力,即第二壁212可以承受至少部分来自第一电池单体21的或者来自第一附接壁231所在的电池单体的沿第一方向上的作用力,同样地,第一附接壁231也可以承受至少部分来自所在的电池单体的或者来自第一电池单体21的沿第一方向上的作用力。
类似的,第二电池单体22也是多面体结构,第三壁221和第四壁222为第二电池单体22的两个相交的壁,并且第三壁221垂直于第一方向,而第四壁222相对于第一方向倾斜,即该第三壁221和第四壁222之间的夹角不是直角,二者不相互垂直。对于与第二电池单体22相邻的电池单体24而言,第二电池单体22的第四壁222与相邻的电池单体24的第二附接壁241附接,由于第四壁222相对于第一方向倾斜,因此第二附接壁241也相对于第一方向倾斜,并且第四壁222与第二附接壁241之间可以形成第一方向上的作用力,即第四壁222可以承受至少部分来自第二电池单体22的或者来自第二附接壁241所在电池单体的沿第一方向上的作用力,同样地,第二附接壁241也可以承受至少部分来自所在电池单体的或者来自第二电池单体22的沿第一方向上的作用力。
应理解,与第一电池单体21相邻的电池单体23和第一电池单体21之间通过第二壁212和第一附接壁231附接,即第二壁212与第一附接壁231贴合设置,且该第二壁212平行于第一附接壁231。同样的,与第二电池单体22相邻的电池单体24和第二电池单体22之间通过第四壁222和第二附接壁241附接,即第四壁222与第二附接壁241贴合设置,且该第四壁222平行于第二附接壁241。
因此,本申请实施例的第一电池单体21和第二电池单体22在使用过程中,可能由于电池10的振动冲击产生重力方向上的作用力,也就产生了第一方向上的作用力,或者电池单体20在充电和放电过程中可能发生膨胀变形,进而产生第一方向上的作用力。那么,第一电池单体21可以通过第二壁212和第一附接壁231承接部分第一方向上的作用力,以减少该作用力对第一电池单体21的影响,例如可以减少第一电池单体21的变形量,尤其是减少了第一方向上的变形量;类似的,第二电池单体22可以通过第四壁222和第二附接壁241承接部分第一方向上的作用力,以减少该作用力对第二电池单体22的影响,例如可以减少第二电池单体22的变形量,尤其是减少了第一方向上的变形量。并且,减少内部电池单体20的变形量可以提高整个电池10的刚度和强度,避免电池10在使用过程中由于振动冲击等原因造成的安全风险。另外,电池10内部同时设置形状不同的多个电池单体20,该多个电池单体20之间相互配合,可以提高电池10的箱体11内部的空间利用率,进而提高电池10的能量密度。
在本申请实施例中,对于电池单体20中相对于第一方向倾斜的壁,其倾斜角度通常可以根据实际应用进行设置,例如,可以设置倾斜角度的取值范围为(0°,45°],进一步的,倾斜角度的取值范围可以为[5°,10°]。具体地,第二壁212相对于第一方向倾斜的角度的取值范围为(0°,45°],例如,可以为[5°,10°];和/或,第四壁222相对于第一方向倾斜的角度的取值范围为(0°,45°],例如,可以为[5°,10°];并且,第二壁212相对于第一方向倾斜的角度与第四壁222相对于第一方向倾斜的角度可以相同或者不同。若上述倾斜角度设置过大,则可能加大电池单体20内部电极组件的尺寸的设计难度,还会影响电池单体20的内部空间利用率,在将电池单体20组装为电池时,还会影响电池单体20之间的排列方式,增加了电池单体20与箱体11之间的空间,降低了电池10的空间利用率,也就降低了电池10的能量密度。
应理解,本申请实施例的电池10包括的多个电池单体20均为多面体结构,并且,多个电池单体20的面的数量可以相同,也可以不同。为了提高电池10的空间利用率,以及更加便于加工,可以将多个电池单体20的面的数量设置为相同,例如,可以设置电池10中的全部电池单体20均为六面体,但本申请实施例并不限于此。
在本申请实施例中,第一电池单体21和第二电池单体22为六面体结构。考虑到六面体结构比较稳定,也便于加工、组装和排列,因此,可以在电池10内设置多个六面体结构的电池单体20,下文中也以将第一电池单体21和第二电池单体22均设置为六面体结构为例进行说明,以提高电池10的能量密度和组装效率。
考虑到箱体11通常为长方体,将六面体结构的电池单体20设置为较为规则的六面体,有利于排列组合,从而能够提高电池10的组装效率。例如,如图3所示,第一电池单体21沿第一平面的截面为平行四边形或梯形,第一平面垂直于第一壁211和第二壁212;第二电池单体22沿第一平面的截面为平行四边形或梯形。具体地,第一电池单体21的沿第一平面的截面为四边形,该四边形可以为平行四边形或者梯形,该四边形包括由第一壁211和第二壁212组成的相交的两个边,还包括与第一壁211相交且与第二壁212不相交的一个边,以及与第二壁212相交且与第一壁211不相交的一个 边。第二电池单体22的沿第一平面的截面为四边形,该四边形可以为平行四边形或者梯形,该四边形包括由第三壁221和第四壁222组成的相交的两个边,还包括与第三壁221相交且与第四壁222不相交的一个边,以及与第四壁222相交且与第三壁221不相交的一个边。
在一些实施例中,若第一电池单体21沿第一平面的截面为平行四边形,那么,第二电池单体22沿第一平面的截面也可以为平行四边形,但这两个平行四边形的内角可以不同,以使得第一电池单体21与第二电池单体22为形状不同的电池单体20,或者,该第二电池单体22沿第一平面的截面也可以为梯形,例如,直角梯形或者等腰梯形等。若第一电池单体21沿第一平面的截面为梯形,例如,直角梯形或者等腰梯形等,那么第二电池单体22沿第一平面的截面可以为平行四边形,或者,也可以为梯形,但是二者的梯形的内角不同,以使得第一电池单体21与第二电池单体22为形状不同的电池单体20。
在本申请实施例中,电池10包括沿第一方向排列的至少两个电池单体组,至少两个电池单体组包括第一电池单体21和第二电池单体22,至少两个电池单体组中的每个电池单体组包括沿第二方向排列的多个电池单体,第一方向垂直于第二方向。具体地,电池10中设置有多个电池单体20,为了便于组装,通常将多个电池单体20按照一定规律排列后设置于电池10的箱体11内,例如,可以按照阵列的方式排列电池单体20。具体地,在组装后的电池10内,电池10包括沿第一方向排列的至少两个电池单体组,每个电池单体组包括沿第二方向排列的多个电池单体20,其中,第一方向和第二方向相互垂直。在该电池10包括的至少两个电池单体组内包括第一电池单体21和第二电池单体22,并且第一电池单体21和第二电池单体22可以位于相同或者不同的电池单体组内,本申请实施例并不限于此。
应理解,电池10中包括的电池单体组的数量可以根据实际应用进行设置,例如,可以设置两组至六组,图3中以设置两组为例,但本申请实施例并不限于此。
可选地,本申请实施例的第二方向垂直于第一方向,且该第二方向可以包括正方向和负方向。例如,第二方向的正方向可以为如图3中箭头所指的方向Y,而第二方向的负方向与第二方向的正方向相反,即第二方向的负方向与图3中箭头所指的方向Y相反。
应理解,为了提高电池10的箱体11的空间利用率,同一个电池单体组内的多个电池单体20沿第一方向上的厚度通常设置为相等,以使得同一个电池单体组的多个电池单体20的垂直于第一方向的壁相互齐平;而不同电池单体组之间沿第一方向上的厚度可以设置为相等或者不相等,以使至少两个电池单体组沿第一方向排列后,能够适配不同厚度的箱体11。例如,若设置不同电池单体组之间沿第一方向上的厚度均相同,例如厚度等于t,那么箱体11的沿第一方向上的高度H满足:(H-c)=n*t,其中,c∈[10mm,40mm],进一步的,c∈[15mm,25mm],而参数n表示至少两个电池单体组的组数,n为整数,例如,n∈(1,6],进一步地,n∈[2,3],例如n=2。
另外,不同电池单体组的沿第二方向上的最大长度通常也设置为相等,以适配箱体11沿第二方向上的长度,尽可能减少电池单体20与箱体11之间的空隙,提高箱 体11的空间利用率。
在本申请实施例中,至少两个电池单体组之间设置有垂直于第一方向的隔离部件25。具体地,电池10包括的至少两个电池单体组中,可以在其中任意两个相邻的电池单体组之间设置隔离部件25,以隔离该两个相邻的电池单体组。
具体地,该隔离部件25为下列结构中的至少一种:横梁、热管理部件和结构胶。例如,该隔离部件25可以包括横梁,该横梁可以支撑多个电池单体20,以增加箱体11的强度,提高电池10的强度和稳定性。
可选地,本申请实施例中的隔离部件25还可以包括热管理部件,即该隔离部件25可以容纳流体以给多个电池单体20调节温度。这里的流体可以是液体或气体,调节温度是指给多个电池单体20加热或者冷却。在给电池单体20冷却或降温的情况下,该隔离部件25用于容纳冷却流体以给多个电池单体20降低温度另外,隔离部件25也可以用于加热以给多个电池单体20升温,本申请实施例对此并不限定。可选的,上述流体可以是循环流动的,以达到更好的温度调节的效果。可选的,流体可以为水、水和乙二醇的混合液或者空气等。
可选地,本申请实施例中的隔离部件25还可以包括结构胶,以使得与该隔离部件25直接接触的多个电池单体20能够与隔离部件25相对固定,尤其是多个电池单体20的面积最大的壁设置于结构胶的表面时,能够极大的增加电池单体10的稳定性,进而提高了电池10的强度和稳定性。
可选地,第一方向和第二方向平行于第一平面。如图3所示,第一个电池单体21和第二电池单体22沿第一平面的截面通常为平行四边形或者梯形,设置第一方向和第二方向平行于第一平面,使得多个电池单体20排列更为规则,便于组装,也可以提高电池10的箱体11内的空间利用率。
应理解,本申请实施例的电池10包括多个形状不同的电池单体20,并且同一电池单体组内的多个电池单体20的形状可以相同或者不同。例如,以第一电池单体21和第二电池单体22为例,对于本申请实施例的任意一个电池单体组而言,该电池单体组包括沿第二方向排列的多个第一电池单体21和/或第二电池单体22。下面将结合附图,对不同实施例进行详细介绍。
可选地,作为一个实施例,对于电池10包括的任意一个电池单体组而言,该电池单体组包括的多个电池单体20的形状相同,但不同电池单体组的电池单体20的形状不同。具体地,电池10的多个电池单体组包括至少两个电池单体组满足:该至少两个电池单体组中每个电池单体组包括的多个电池单体20的形状相同,而该至少两个电池单体组包括形状不同的电池单体20。具体地,以图3为例,该电池10的多个电池单体组可以包括第一电池单体组和第二电池单体组,该第一电池单体组内的电池单体20的形状相同,这里以该第一电池单体组包括沿第二方向排列的多个第一电池单体21为例;而第二电池单体组内的电池单体20的形状也相同,这里以第二电池单体组包括沿第二方向排列的多个第二电池单体22为例,并且第一电池单体组与第二电池电池单体组包括形状不同的电池单体20。
如图3所示,这里以第一电池单体21沿第一平面的截面为等腰梯形,第二电池 单体22沿第一平面的截面为平行四边形为例。第一电池单体组包括图3中第一行的多个电池单体20,而第二电池单体组包括图3中第二行的多个电池单体20。并且,该第一电池单体组包括的多个电池单体20均为第一电池单体21,即在该第一电池单体组内,对于任意一个第一电池单体21,将与该第一电池单体21相邻的电池单体23称为第三电池单体23,那么该第三电池单体23与第一电池单体21形状相同,或者说,该相邻的两个电池单体21和23均为第一电池单体21。类似的,第二电池单体组包括的多个电池单体20均为第二电池单体22,即在该第二电池单体组内,对于任意一个第二电池单体22,将与该第二电池单体22相邻的电池单体24称为第四电池单体24,那么该第四电池单体24与第二电池单体22的形状相同,或者说,该相邻的两个电池单体22和24均为第二电池单体22。
应理解,虽然同一电池单体组内电池单体20的形状相同,但是摆放方向可能相同或者不同。例如,对于第一电池单体组包括的多个第一电池单体21,虽然多个第一电池单体21的沿第一平面的截面为完全相同的等腰梯形,但是在组装时,可以按照不同的方向设置,以图3为例,相邻两个第一电池单体21的摆放方向不同,即当一个第一电池单体21的截面的等腰梯形为上窄下宽时,与之相邻的另一电池单体21(例如第三电池单体23)则为下窄上宽,以使得该多个第一电池单体21能够紧密排列,并且该第一电池单体组的沿第一方向的厚度也相同,进而提高电池10的空间利用率。相反的,对于第二电池单体组包括的多个第二电池单体22,该多个第二电池单体22沿第一平面的截面为平行四边形,只需要将该多个第二电池单体22按照相同方向排列,即可获得紧密排列的一个电池单体组。
图4示出了本申请实施例的形状相同的相邻两个电池单体20的示意图,具体地,该图4为图3中第二电池单体组内任意一个第二电池单体22与相邻的第四电池单体24的示意图。如图4所示,若电池单体组内的多个电池单体20形状相同,那么该电池单体组包括形状相同的相邻的两个电池单体20,而图4中以第二电池单体22和第四电池单体24为例。第二电池单体22和第四电池单体24沿第一平面的截面为完全相同的平行四边形,第二电池单体22的第四壁222与第四电池单体24的第二附接壁241附接,第四壁222与第二附接壁241均相对于第一方向倾斜,倾斜角度为θ,该第四壁222平行于第二附接壁241。其中,该倾斜角度θ的取值范围为(0°,45°],进一步的,倾斜角度θ的取值范围可以为[5°,10°]。
在电池10的使用过程中,可能由于电池10的振动冲击产生重力方向上的作用力,也就产生了第一方向的作用力,或者在充电和放电过程中可能发生变形,进而产生第一方向上的作用力,而第二电池单体22可以通过第四壁222和第二附接壁241承接部分第一方向上的作用力,以减少该作用力对第二电池单体22的影响,例如可以减少第二电池单体22的变形量,尤其是减少了第一方向上的变形量。例如,第二电池单体22在充电和放电过程中,其内部第二电极组件224可能发生沿第一方向上的膨胀,该膨胀可能沿第一方向的正方向或者负方向,那么该第四壁222和第二附接壁241可以对该膨胀力产生一定束缚,例如,该第四壁222与第二附接壁241可以对沿第一方向的负方向上的膨胀力产生一定束缚,以减少第二电池单体22沿第一方向的变形量。另外, 第四电池单体24在充电和放电过程中,也可能产生沿第一方向上的膨胀,而该第四壁222和第二附接壁241同样可以对第四电池单体24产生的第一方向上的作用力产生一定束缚,例如,该第四壁222和第二附接壁241可以对第四电池单体24产生的沿第一方向的正方向上的膨胀力产生一定束缚,以减小第四电池单体24的变形量。
类似的,第一电池单体21也可以通过第二壁212和第一附接壁231承接部分第一方向上的作用力,而第三电池单体23也可以通过第二壁212和第一附接壁231承接部分第一方向上的作用力,以减少该作用力对第一电池单体21和第三电池单体23的影响,例如可以减少第一电池单体21与第三电池单体23的变形量,尤其是减少了第一方向上的变形量,为了简洁,在此不再赘述。
应理解,如图3和图4所示,由于第一电池单体21和第二电池单体22存在相对于第一方向倾斜的壁,因此,每个电池单体组与箱体11之间存在空隙26,浪费箱体11的空间,为提高空间利用率,可以在空隙26处设置其他部件或者加强筋等结构,以增加箱体11的强度,或者,还可以在空隙26处设置相应形状的电池单体20,以填充箱体11内部空间,例如,在图3所示的空隙26处设置沿第一平面的截面为直角梯形的电池单体20,以填充空隙26,提高电池10的能量密度,这样,同一电池单体组内则可能存在形状不同的电池单体20。
可选地,作为另一个实施例,对于电池10包括的任意一个电池单体组而言,该电池单体组可以包括多个形状不同的电池单体20。具体地,该电池10包括的多个电池单体组中包括至少一个第三电池单体组,该第三电池单体组满足:该第三电池单体组包括形状不同的电池单体20,提高多个电池单体20组装的灵活性,还可以通过设置不同形状的电池单体20适配箱体11的内部空间,尽可能提高电池10的能量密度。图5示出了本申请实施例的一种第三电池单体组的示意图,图6示出了本申请实施例的另一种第三电池单体组的示意图,如图5和图6所示,该第三电池单体组包括至少一个第一电池单体21和至少一个第二电池单体22。
可选地,第三电池单体组中任意两个相邻的电池单体20的形状可以相同,也可以不同。例如,如图5和图6所示,第三电池单体组包括的任意两个相邻的电池单体20可以包括两个第一电池单体21,或者包括两个第二电池单体22,或者包括一个第一电池单体21和一个第二电池单体22,本申请实施例并不限于此。并且,当相邻两个电池单体20的形状相同时,其摆放顺序也可以相同或者不同。例如,对于第三电池单体组中相邻的两个第一电池单体21,虽然两个第一电池单体21的沿第一平面的截面为完全相同的等腰梯形,但是在组装时,一个第一电池单体21的截面的等腰梯形为上窄下宽时,与之相邻的另一电池单体21(例如第三电池单体23)则为下窄上宽,以使得该相邻的两个第一电池单体21能够紧密排列,并且两个第一电池单体21的沿第一方向的厚度也相同,进而提高电池10的空间利用率。相反的,对于第三电池单体组中相邻的两个第二电池单体22,两个第二电池单体22沿第一平面的截面为平行四边形,只需要将两个第二电池单体22按照相同方向排列,即可获得紧密排列的两个第二电池单体22。
图7示出了本申请实施例的第三电池单体组内相邻的两个电池单体20的示意图,且图7以该相邻两个电池单体20的形状不同类似,该图7中左边的电池单体20为 第一电池单体21,该第一电池单体21沿第一平面的截面为等腰梯形,与该第一电池单体21相邻的第三电池单体23与第一电池单体21形状不同,该第三电池单体23与第二电池单体22形状相同,或者说该第三电池单体23为第二电池单体22,该第三电池单体23的沿第一平面的截面为平行四边形。
如图7所示,第一电池单体21的第二壁212与第三电池单体23的第一附接壁231附接,该第二壁212与第一附接壁231均相对于第一方向倾斜,倾斜角度为θ,该第二壁212平行于第一附接壁231。其中,该倾斜角度θ的取值范围为(0°,45°],进一步的,倾斜角度θ的取值范围可以为[5°,10°]。
在电池10的使用过程中,可能由于电池10的振动冲击产生重力方向上的作用力,也就产生了第一方向的作用力,或者在充电和放电过程中可能发生变形,进而产生第一方向上的作用力,而第一电池单体21可以通过第一壁212和第一附接壁231承接部分第一方向上的作用力,以减少该作用力对第一电池单体21的影响,例如可以减少第一电池单体21的变形量,尤其是减少了第一方向上的变形量。例如,第一电池单体21在充电和放电过程中,其内部的第一电极组件214可能发生沿第一方向上的膨胀,该膨胀可能沿第一方向的正方向或者负方向,那么第二壁212与第一附接壁231可以对该膨胀力产生一定束缚,例如,该第二壁212与第一附接壁231可以对沿第一方向的正方向上的膨胀力产生一定束缚,以减少第一电池单体21沿第一方向的变形量。另外,第三电池单体23在充电和放电过程中,也可能产生沿第一方向上的膨胀,而该第二壁212与第一附接壁231同样可以对第三电池单体23产生的第一方向上的作用力产生一定束缚,例如,该第二壁212与第一附接壁231可以对第三电池单体23产生的沿第一方向的负方向上的膨胀力产生一定束缚,以减小第四电池单体24的变形量。
类似的,第二电池单体22也可以通过第四壁222和第二附接壁241承接部分第一方向上的作用力,而第四电池单体24也可以通过第四壁222和第二附接壁241承接部分第一方向上的作用力,以减少该作用力对第二电池单体22和第四电池单体24的影响,例如可以减少第二电池单体22和第四电池单体24的变形量,尤其是减少了第一方向上的变形量,为了简洁,在此不再赘述。
应理解,对于上述两个实施例,可以分开使用,也可以相互结合使用。例如,在电池10包括的至少两个电池单体组中,可以包括至少一个第一电池单体组和至少一个第二电池单体组;或者,至少两个电池单体组可以只包括多个第三电池单体组;或者,至少两个电池单体组包括至少一个第一电池单体组、至少一个第二电池单体组和至少一个第三电池单体组;或者,至少两个电池单体组包括至少一个第一电池单体组和至少一个第三电池单体组;或者,至少两个电池单体组包括至少一个第二电池单体组和至少一个第三电池单体组,本申请实施例并不限于此。
在本申请实施例中,每个电池单体组中包括与箱体11的侧壁直接接触的多个电池单体。由于第一电池单体21的第二壁212和第二电池单体22的第四壁222相对于第一方向倾斜,进而能够承接电池单体20之间的至少部分沿第一方向的作用力,因此,可以不在多个电池单体20的两端设置与箱体11的侧壁垂直的端板,使得每个电池单体组中位于最边缘的电池单体20可以直接与箱体11的侧壁接触。例如,如图3至图7所 示,对于箱体11的垂直于第二方向的侧壁,该侧壁可以与电池单体20直接接触,而无需设置端板,从而节省箱体11内部空间,提高电池10的能量密度。
应理解,本申请实施例的电池单体20内部包括电极组件,并且可以根据电池单体20的形状灵活设置不同类型、不同尺寸和不同形状的电极组件。例如,以第一电池单体21为例,图8示出了本申请实施例的第一电池单体21的截面的多种可能的示意图,如图8所示,该第一电池单体21沿第一平面的截面为等腰梯形,其内部具有第一电极组件214。第一电池单体21内部第一电极组件214的个数也可以根据实际应用进行设置,例如,可以设置一个或者多个第一电极组件214,再例如,可以设置一个至四个第一电极组件214。并且,当第一电池单体21内部包括多个第一电极组件214时,该多个第一电极组件214可以根据实际应用排列。例如,该第一电池单体21包括两个第一电极组件214时,该两个第一电极组件214可以沿第一方向排列,也可以沿第二方向排列;再例如,该第一电池单体21包括多于两个第一电极组件214时,还可以采用其他方式排列,以提高第一电池单体21的能量密度,本申请实施例并不限于此。
如图8所示,对于每个第一电极组件214,该第一电极组件214可以为叠片式,例如图8左边第一个图,该叠片式的第一电极组件沿第一方向堆叠设置;或者,该第一电极组件214还可以为卷绕式,例如,图8中右边三个图,并且该第一电极组件214的卷绕轴垂直于第一平面,或者说该第一电极组件214的卷绕轴垂直于第一方向和第二方向。并且,该第一电极组件214沿第一平面的截面可以为任意形状,例如,可以为梯形、圆形或者椭圆形等。并且,由于第一电池单体21的沿第一平面的截面为等腰梯形,即第一电池单体21在第一方向上的不同位置处,该第一电池单体21沿第二方向上的长度是不同的,因此,可以在第一电池单体21内设置多个尺寸不同的第一电极组件214,以适配该第一电池单体21的形状。
应理解,与第一电池单体21类似,第二电池单体22内部的第二电极组件224的个数、形状、尺寸和类型等也可以根据实际应用灵活设置,适用于上述关于第一电池单体21的第一电极组件214的描述,为了简洁,在此不再赘述。并且,第一电池单体21的第一电极组件214与第二电池单体22的第二电极组件224的设置方式可以相同也可以不同,本申请实施例并不限于此。
在本申请实施例中,第一电池单体21的面积最大的壁垂直于第一方向,第二电池单体22的面积最大的壁垂直于第一方向。具体地,在按照图8所示的几种方式设置电池单体20内部的电极组件时,电池单体20的垂直于第一方向的两隔壁的变形量较大,因此,如图3至图8所示,将第一电池单体21和第二电池单体22的面积最大的壁设置为垂直于第一方向,更加有利于散热,进而减少第一电池单体21和第二电池单体22的沿第一方向上的膨胀力,提高电池10的稳定性和安全性。
另外,如图3至图7所示,在采用如图所示的方式设置第一电池单体21中的第一电极组件214和第二电池单体22中的第二电极组件224时,还能够保证每个电池单体20内部电解液对电极组件的浸润高度相同,保证同一个电池单体20内的多个电极组件的环境的一致性,进而提高电池单体20的性能。同时,电极组件的这种设置方式还可以使得电极组件与电池单体20的外部壳体接触面较小,则电极组件对外的传热面积 也较小,从而可以很好的解决电池单体20的热扩散问题。
可选地,第一电池单体21的面积最大的壁相对于第一方向倾斜,第二电池单体22的面积最大的壁相对于第一方向倾斜。具体地,图9示出了本申请实施例的第二电池单体22的截面的多种可能的示意图,如图9所示,这里以第二电池单体2为例,与图3至图8不同的是,第一电池单体21和第二电池单体22的面积最大的壁也可以相对于第一方向倾斜,以与相邻的电池单体20附接。
例如,如图9中左边第一个图所示,该第二电池单体22可以包括沿第一方向排列的两个卷绕式的第二电极组件224,并且每个第二电极组件224沿第一平面的截面为圆形,每个第二电极组件224的卷绕轴垂直于第一平面,或者说,每个第二电极组件224的卷绕轴垂直于第一方向和第二方向。再例如,如图9中左边第二个图所示,该第二电池单体22的第二电极组件224还可以为叠片式,其堆叠方向垂直于面积最大的壁。再例如,如图9中左边第三个图所示,该第二电池单体22还可以包括两个沿第二方向排列的卷绕式第二电极组件224,并且每个第二电极组件224沿第一平面的截面为近似的椭圆形,每个第二电极组件224的卷绕轴垂直于第一平面,或者说,每个第二电极组件224的卷绕轴垂直于第一方向和第二方向。再例如,图9中左边第四个图所示,第二电池单体22的沿第一平面的截面为等边平行四边形,那么该等边平行四边形的四个边所表示的四个壁面积相等,且均为第二电池单体22的面积最大的壁,那么该第二电池单体22的内部还可以设置一个圆柱形第二电极组件224,该第二电极组件224为卷绕式,卷绕轴垂直于第一平面,或者说,第二电极组件224的卷绕轴垂直于第一方向和第二方向,但本申请实施例并不限于此。
类似的,与图9中第二电池单体22类似,第一电池单体21内部的第一电极组件214的个数、形状、尺寸和类型等也可以根据实际应用灵活设置,适用于上述关于图9中第二电池单体22的第二电极组件224的描述,为了简洁,在此不再赘述。并且,第一电池单体21的第一电极组件214与第二电池单体22的第二电极组件224的设置方式可以相同也可以不同,本申请实施例并不限于此。
应理解,如图3至图9所示,对于上述采用圆柱形卷绕式电极组件的电池单体20,可以无需在电池单体20的外表面预留膨胀空间,而直接将两个相邻的电池单体20的外表面通过涂层等方式粘接在一起,以提高电池10的整体刚度和强度。具体地,对于圆柱形卷绕式电极组件,可以利用极片与极片之间的层间间隙,使得电极组件在膨胀后形成圆柱自束缚膨胀,从而使得圆柱形电极组件的外部直径膨胀变化较小,这样,电极组件对电池单体20的外部的壳体的膨胀变形也就较小,尤其是电池单体20的面积最大的表面的膨胀形变小,也就无需为电池单体20预留膨胀空间,提高电池10内电池单体20的空间利用率,也就提高了电池10的能量密度。
可选地,可以通过多种方式设置圆柱形卷绕式电极组件的极片与极片之间的层间间隙。例如,可以通过在至少部分极片表面设置凸点,以使极片与极片卷绕后,利用极片表面凸点形成层间间隙;或者,也可以在极片与极片之间增加涂层,以构造层间间隙,例如,该涂层可以为聚碳硅烷(Polysilacarbosilane,PCS),但本申请实施例并不限于此。
在本申请实施例中,第一电池单体21的面积最小的壁平行于第一平面,第二电池单体22的面积最小的壁平行于第一平面。如图3至图9所示,对于长方体的箱体11,将其内部的电池单体20的面积最小的壁设置为平行于第一平面,有利于节省空间,避免在垂直于第一平面的方向上,电池单体20与箱体11之间的空隙过大。
可选地,第一电池单体21的面积最小的壁上设置有第一电极端子213,第二电池单体22的面积最小的壁上设置有第二电极端子223。由于电极端子通常体积不大,将电极端子设置于电池单体20的面积最小的壁上,例如,将第一电极端子213设置于第一电池单体21的面积最小的壁上,将第二电极端子223设置于第二电池单体22的面积最小的壁上,可以节省空间;并且,如图3至图9所示,无论采用何种方式设置和组装电池单体20,将电极端子设置于面积最小的壁上,不影响相邻两个电池单体20之间的附接。
可选地,第一电池单体21设置有位于不同壁上的两个第一电极端子213;第二电池单体22设置有位于不同壁上的两个第二电极端子223。电池单体20具有两个电极端子,分别为正电极端子和负电极端子,该两个电极端子可以位于同一壁或者不同壁上,并且,当两个电极端子位于不同壁上时,两个电极端子所在的两个壁可以为相交的壁或者不相交的壁,例如,可以位于相互平行的两个壁,本申请实施例并不限于此。
图10示出了本申请实施例的电池单体20的示意图。如图10所示,该电池单体20可以为第一电池单体21,则该第一电池单体21具有两个设置于不同壁上的第一电极端子213,这里以两个第一电极端子213位于面积最小且相等的壁上为例,两个第一电极端子213所在的两个壁相对设置。或者,图10中的该电池单体20也可以为第二电池单体22,该第二电池单体22具有设置于不同壁上的第二电极端子223,这里以两个第二电极端子223位于面积最小且相等的壁上为例,两个第二电极端子223所在的两个壁相对设置。
如图10所示,第一电极端子213或者说第二电极端子223所在的壁垂直于第三方向,该第三方向垂直于第一方向和第二方向,该第三方向还可以垂直于第一平面。该第三方向可以包括正方向和负方向,其中,第三方向的正方向为如图10中箭头所指的方向Z,而第三方向的负方向与第三方向的负方向相反,即第三方向的负方向与如图10中箭头所指方向Z相反。
图11示出了本申请实施例的电池10的截面示意图,该截面为沿垂直于第二方向的平面的截面。如图11所示,将电池单体20的电极端子按照如图10所示的方式,设置于电池单体20的两端,进而再组装为电池10,这样,在第三方向上的电池单体20之间不再需要汇流部件实现电连接,只需要将沿第三方向相邻的两个电池单体20的电极端子抵接,即可实现两个相邻电池单体20的电连接,实现电池10的快速组装,节省汇流部件,不需要预留汇流部件的安装空间,提高了电池10的组装效率,也提高了电池10的能量密度。
上文描述了本申请实施例的电池单体、电池和用电设备,下面将描述本申请实施例的制备电池单体的方法和设备,其中未详细描述的部分可参见前述各实施例。
图12示出了本申请一个实施例的制备电池10的方法300的示意性流程图。如 图12所示,该方法300可以包括:S310,提供箱体11;S320,提供至少一个第一电池单体21和至少一个第二电池单体22,第一电池单体21和第二电池单体22容纳于箱体11中,第一电池单体21和第二电池单体22为形状不同的多面体结构,其中,第一电池单体21包括相互连接的第一壁211和第二壁212,第一壁211垂直于第一方向,第一方向垂直于箱体11的上盖或者底壁,第二壁212相对于第一方向倾斜,第二壁212用于与和第一电池单体21相邻的第一附接壁231附接,以在第二壁212与第一附接壁231之间形成在第一方向上的相互作用力;第二电池单体22包括相互连接的第三壁221和第四壁222,第三壁221垂直于第一方向,第四壁222相对于第一方向倾斜,第四壁222用于与和第二电池单体22相邻的第二附接壁241附接,以在第四壁222与第二附接壁241之间形成在第一方向上的相互作用力。
图13示出了本申请一个实施例的制备电池10的设备400的示意性框图。如图13所示,该设备400可以包括:提供模块410。该提供模块410用于:提供箱体11;提供至少一个第一电池单体21和至少一个第二电池单体22,第一电池单体21和第二电池单体22容纳于箱体11中,第一电池单体21和第二电池单体22为形状不同的多面体结构,其中,第一电池单体21包括相互连接的第一壁211和第二壁212,第一壁211垂直于第一方向,第一方向垂直于箱体11的上盖或者底壁,第二壁212相对于第一方向倾斜,第二壁212用于与和第一电池单体21相邻的第一附接壁附231接,以在第二壁212与第一附接壁231之间形成在第一方向上的相互作用力;第二电池单体22包括相互连接的第三壁221和第四壁222,第三壁221垂直于第一方向,第四壁222相对于第一方向倾斜,第四壁222用于与和第二电池单体22相邻的第二附接壁241附接,以在第四壁222与第二附接壁241之间形成在第一方向上的相互作用力。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (17)

  1. 一种电池,其特征在于,包括:
    箱体(11);
    至少一个第一电池单体(21)和至少一个第二电池单体(22),容纳于所述箱体(11)中,所述第一电池单体(21)和所述第二电池单体(22)为形状不同的多面体结构,
    其中,所述第一电池单体(21)包括相互连接的第一壁(211)和第二壁(212),所述第一壁(211)垂直于第一方向,所述第一方向垂直于所述箱体(11)的上盖或底壁,所述第二壁(212)相对于所述第一方向倾斜,所述第二壁(212)用于与和所述第一电池单体(21)相邻的第一附接壁(231)附接,以在所述第二壁(212)与所述第一附接壁(231)之间形成在所述第一方向上的相互作用力;所述第二电池单体(22)包括相互连接的第三壁(221)和第四壁(222),所述第三壁(221)垂直于所述第一方向,所述第四壁(222)相对于所述第一方向倾斜,所述第四壁(222)用于与和所述第二电池单体(22)相邻的第二附接壁(241)附接,以在所述第四壁(222)与所述第二附接壁(241)之间形成在所述第一方向上的相互作用力。
  2. 根据权利要求1所述的电池,其特征在于,所述第一电池单体(21)和所述第二电池单体(22)为六面体结构。
  3. 根据权利要求2所述的电池,其特征在于,所述第一电池单体(21)沿第一平面的截面为平行四边形或梯形,所述第一平面垂直于所述第一壁(211)和所述第二壁(212);
    所述第二电池单体(22)沿所述第一平面的截面为平行四边形或梯形。
  4. 根据权利要求3所述的电池,其特征在于,所述电池包括沿所述第一方向排列的至少两个电池单体组,所述至少两个电池单体组包括所述第一电池单体(21)和所述第二电池单体(22),所述至少两个电池单体组中的每个电池单体组包括沿第二方向排列的多个电池单体,所述第一方向垂直于所述第二方向。
  5. 根据权利要求4所述的电池,其特征在于,所述第一方向和所述第二方向平行于所述第一平面。
  6. 根据权利要求4或5所述的电池,其特征在于,所述电池单体组包括沿所述第二方向排列的多个所述第一电池单体(21)和/或所述第二电池单体(22)。
  7. 根据权利要求4至6中任一项所述的电池,其特征在于,所述至少两个电池单体组之间设置有垂直于所述第一方向的隔离部件(25)。
  8. 根据权利要求7所述的电池,其特征在于,所述隔离部件(25)为下列结构中的至少一种:横梁、热管理部件和结构胶。
  9. 根据权利要求4至8中任一项所述的电池,其特征在于,所述第一电池单体(21)的面积最大的壁垂直于所述第一方向,所述第二电池单体(22)的面积最大的壁垂直于所述第一方向。
  10. 根据权利要求4至9中任一项所述的电池,其特征在于,所述每个电池单体组中包括与所述箱体(11)的侧壁直接接触的多个电池单体。
  11. 根据权利要求3至10中任一项所述的电池,其特征在于,所述第一电池单体(21)的面积最小的壁平行于所述第一平面,所述第二电池单体(22)的面积最小的壁平行于所述第一平面。
  12. 根据权利要求1至11中任一项所述的电池,其特征在于,所述第一电池单体(21)的面积最小的壁上设置有第一电极端子(213),所述第二电池单体(22)的面积最小的壁上设置有第二电极端子(223)。
  13. 根据权利要求1至12中任一项所述的电池,其特征在于,所述第一电池单体(21)设置有位于不同壁上的两个第一电极端子(213);所述第二电池单体(22)设置有位于不同壁上的两个第二电极端子(223)。
  14. 根据权利要求1至13中任一项所述的电池,其特征在于,所述第二壁(212)相对于所述第一方向倾斜的角度的取值范围为(0°,45°],所述第四壁(222)相对于所述第一方向倾斜的角度的取值范围为(0°,45°]。
  15. 一种用电设备,包括:根据权利要求1至14中任一项所述的电池,所述电池用于为所述用电设备提供电能。
  16. 一种制造电池单体的方法,包括:
    提供箱体(11);
    提供至少一个第一电池单体(21)和至少一个第二电池单体(22),所述第一电池单体(21)和所述第二电池单体(22)容纳于所述箱体(11)中,所述第一电池单体(21)和所述第二电池单体(22)为形状不同的多面体结构,
    其中,所述第一电池单体(21)包括相互连接的第一壁(211)和第二壁(212),所述第一壁(211)垂直于第一方向,所述第一方向垂直于所述箱体(11)的上盖或者底壁,所述第二壁(212)相对于所述第一方向倾斜,所述第二壁(212)用于与和所述第一电池单体(21)相邻的第一附接壁(231)附接,以在所述第二壁(212)与所述第一附接壁(231)之间形成在所述第一方向上的相互作用力;所述第二电池单体(22)包括相互连接的第三壁(221)和第四壁(222),所述第三壁(221)垂直于所述第一方向,所述第四壁(222)相对于所述第一方向倾斜,所述第四壁(222)用于与和所述第二电池单体(22)相邻的第二附接壁(241)附接,以在所述第四壁(222)与所述第二附接壁(241)之间形成在所述第一方向上的相互作用力。
  17. 一种制造电池单体的设备,包括:提供模块(410),用于:
    提供箱体(11);
    提供至少一个第一电池单体(21)和至少一个第二电池单体(22),所述第一电池单体(21)和所述第二电池单体(22)容纳于所述箱体(11)中,所述第一电池单体(21)和所述第二电池单体(22)为形状不同的多面体结构,
    其中,所述第一电池单体(21)包括相互连接的第一壁(211)和第二壁(212),所述第一壁(211)垂直于第一方向,所述第一方向垂直于所述箱体(11)的上盖或者底壁,所述第二壁(212)相对于所述第一方向倾斜,所述第二壁(212)用于与和所 述第一电池单体(21)相邻的第一附接壁附(231)接,以在所述第二壁(212)与所述第一附接壁(231)之间形成在所述第一方向上的相互作用力;所述第二电池单体(22)包括相互连接的第三壁(221)和第四壁(222),所述第三壁(221)垂直于所述第一方向,所述第四壁(222)相对于所述第一方向倾斜,所述第四壁(222)用于与和所述第二电池单体(22)相邻的第二附接壁(241)附接,以在所述第四壁(222)与所述第二附接壁(241)之间形成在所述第一方向上的相互作用力。
PCT/CN2021/132862 2021-10-12 2021-11-24 电池、用电设备、制造电池的方法和设备 WO2023060714A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21960441.0A EP4354618A1 (en) 2021-10-12 2021-11-24 Battery, electrical device, and method and device for fabricating battery
CN202180090720.XA CN116830368A (zh) 2021-10-12 2021-11-24 电池、用电设备、制造电池的方法和设备
US18/462,418 US20230411756A1 (en) 2021-10-12 2023-09-07 Battery, electric device, and method and device for manufacturing battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111188271.0A CN115966816A (zh) 2021-10-12 2021-10-12 电池单体、电池和用电装置
CN202111188271.0 2021-10-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/462,418 Continuation US20230411756A1 (en) 2021-10-12 2023-09-07 Battery, electric device, and method and device for manufacturing battery

Publications (1)

Publication Number Publication Date
WO2023060714A1 true WO2023060714A1 (zh) 2023-04-20

Family

ID=85903575

Family Applications (7)

Application Number Title Priority Date Filing Date
PCT/CN2021/127491 WO2023060658A1 (zh) 2021-10-12 2021-10-29 电池、用电装置、制备电池的方法和装置
PCT/CN2021/127413 WO2023060656A1 (zh) 2021-10-12 2021-10-29 电池、用电装置、制备电池的方法和装置
PCT/CN2021/127530 WO2023060659A1 (zh) 2021-10-12 2021-10-29 电池、用电装置、制备电池的方法和装置
PCT/CN2021/127453 WO2023060657A1 (zh) 2021-10-12 2021-10-29 电池、用电装置、制备电池的方法和装置
PCT/CN2021/132862 WO2023060714A1 (zh) 2021-10-12 2021-11-24 电池、用电设备、制造电池的方法和设备
PCT/CN2021/132873 WO2023060715A1 (zh) 2021-10-12 2021-11-24 电池、用电装置、制备电池的方法和装置
PCT/CN2021/132849 WO2023060713A1 (zh) 2021-10-12 2021-11-24 电池单体、电池、用电设备、制备电池的方法和设备

Family Applications Before (4)

Application Number Title Priority Date Filing Date
PCT/CN2021/127491 WO2023060658A1 (zh) 2021-10-12 2021-10-29 电池、用电装置、制备电池的方法和装置
PCT/CN2021/127413 WO2023060656A1 (zh) 2021-10-12 2021-10-29 电池、用电装置、制备电池的方法和装置
PCT/CN2021/127530 WO2023060659A1 (zh) 2021-10-12 2021-10-29 电池、用电装置、制备电池的方法和装置
PCT/CN2021/127453 WO2023060657A1 (zh) 2021-10-12 2021-10-29 电池、用电装置、制备电池的方法和装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/132873 WO2023060715A1 (zh) 2021-10-12 2021-11-24 电池、用电装置、制备电池的方法和装置
PCT/CN2021/132849 WO2023060713A1 (zh) 2021-10-12 2021-11-24 电池单体、电池、用电设备、制备电池的方法和设备

Country Status (5)

Country Link
US (2) US20230411761A1 (zh)
EP (5) EP4376147A1 (zh)
KR (1) KR20240046898A (zh)
CN (8) CN115966816A (zh)
WO (7) WO2023060658A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024087099A1 (zh) * 2022-10-27 2024-05-02 宁德时代新能源科技股份有限公司 电池及用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198453A (ja) * 2007-02-13 2008-08-28 Toyota Motor Corp 電池構造
CN207624833U (zh) * 2017-10-12 2018-07-17 广东北田智能科技有限公司 一种动力电池模组安全装置
CN110911779A (zh) * 2019-12-03 2020-03-24 西安电子科技大学芜湖研究院 一种锂电池包混合散热装置
CN111952507A (zh) * 2020-08-25 2020-11-17 重庆千多昌科技有限公司 一种新能源汽车电池组散热装置
CN113036303A (zh) * 2021-03-08 2021-06-25 清华大学 电动车的动力电池单体排布方法及电池包
CN213752931U (zh) * 2020-11-11 2021-07-20 比亚迪股份有限公司 电池组件、电池包及车辆

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3611765B2 (ja) * 1999-12-09 2005-01-19 シャープ株式会社 二次電池及びそれを用いた電子機器
JP2010135148A (ja) * 2008-12-03 2010-06-17 Nissan Motor Co Ltd セルユニット、電池モジュール、および組電池
MY160553A (en) * 2009-02-24 2017-03-15 Nissan Motor Vehicle battery mounting structure
DE102010033806A1 (de) * 2010-08-09 2012-02-09 Rheinisch-Westfälische Technische Hochschule Aachen Batteriepack
JP2012064353A (ja) * 2010-09-14 2012-03-29 Sony Corp 電力供給ユニット
CN103579682B (zh) * 2012-08-09 2015-09-30 华硕电脑股份有限公司 电池及其制作方法
KR101387424B1 (ko) * 2012-11-22 2014-04-25 주식회사 엘지화학 전폭의 길이가 동일하고 전장의 길이가 상이한 전극 유닛들로 이루어진 전극 조립체, 이를 포함하는 전지셀 및 디바이스
KR101482837B1 (ko) * 2013-02-08 2015-01-20 주식회사 엘지화학 스텝 유닛셀을 포함하는 단차를 갖는 전극 조립체
KR101572836B1 (ko) * 2013-03-04 2015-12-01 주식회사 엘지화학 단차 구조를 포함하는 전지셀
KR101462043B1 (ko) * 2013-03-04 2014-11-18 주식회사 엘지화학 계단 구조의 전극조립체를 포함하는 전지셀
JP6257951B2 (ja) * 2013-08-09 2018-01-10 株式会社東芝 電池モジュール
CN107154480A (zh) * 2013-08-29 2017-09-12 宏达国际电子股份有限公司 电池结构
JP6419839B2 (ja) * 2014-11-10 2018-11-07 株式会社東芝 電池モジュール
JP6390549B2 (ja) * 2015-08-07 2018-09-19 株式会社デンソー 電池パック
JP2018116813A (ja) * 2017-01-17 2018-07-26 株式会社東芝 電池モジュールおよび電池装置
CN206849882U (zh) * 2017-04-27 2018-01-05 北京新能源汽车股份有限公司 电池模组及具有电池模组的车辆
FR3071956A1 (fr) * 2017-09-29 2019-04-05 Naval Group Ensemble batterie pour sous-marin
CN209447876U (zh) * 2018-12-30 2019-09-27 宁德时代新能源科技股份有限公司 一种电池模组
WO2021003680A1 (zh) * 2019-07-09 2021-01-14 宁德新能源科技有限公司 极片、电池单元及电池组
KR20210090938A (ko) * 2020-01-13 2021-07-21 삼성에스디아이 주식회사 배터리 팩
CN111584979A (zh) * 2020-06-22 2020-08-25 昆山宝创新能源科技有限公司 电池模组
CN213150935U (zh) * 2020-09-27 2021-05-07 江苏塔菲尔新能源科技股份有限公司 一种电池包排布结构及电动汽车
CN213150897U (zh) * 2020-09-27 2021-05-07 江苏塔菲尔新能源科技股份有限公司 一种动力电池包结构
CN112018302B (zh) * 2020-10-19 2021-05-04 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和设备
CN213782184U (zh) * 2020-10-27 2021-07-23 恒大新能源技术(深圳)有限公司 壳体组件及电池模组
CN213601929U (zh) * 2020-11-05 2021-07-02 江苏塔菲尔新能源科技股份有限公司 一种异形电池包结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198453A (ja) * 2007-02-13 2008-08-28 Toyota Motor Corp 電池構造
CN207624833U (zh) * 2017-10-12 2018-07-17 广东北田智能科技有限公司 一种动力电池模组安全装置
CN110911779A (zh) * 2019-12-03 2020-03-24 西安电子科技大学芜湖研究院 一种锂电池包混合散热装置
CN111952507A (zh) * 2020-08-25 2020-11-17 重庆千多昌科技有限公司 一种新能源汽车电池组散热装置
CN213752931U (zh) * 2020-11-11 2021-07-20 比亚迪股份有限公司 电池组件、电池包及车辆
CN113036303A (zh) * 2021-03-08 2021-06-25 清华大学 电动车的动力电池单体排布方法及电池包

Also Published As

Publication number Publication date
WO2023060658A1 (zh) 2023-04-20
CN116830363A (zh) 2023-09-29
EP4376147A1 (en) 2024-05-29
WO2023060656A1 (zh) 2023-04-20
EP4354574A1 (en) 2024-04-17
US20230411761A1 (en) 2023-12-21
WO2023060659A1 (zh) 2023-04-20
EP4379914A1 (en) 2024-06-05
CN116724446A (zh) 2023-09-08
CN115966816A (zh) 2023-04-14
CN116724450A (zh) 2023-09-08
WO2023060715A1 (zh) 2023-04-20
CN116888791A (zh) 2023-10-13
CN116830368A (zh) 2023-09-29
EP4379913A1 (en) 2024-06-05
EP4354618A1 (en) 2024-04-17
CN116802866A (zh) 2023-09-22
US20230411756A1 (en) 2023-12-21
WO2023060657A1 (zh) 2023-04-20
CN116802878A (zh) 2023-09-22
WO2023060713A1 (zh) 2023-04-20
KR20240046898A (ko) 2024-04-11

Similar Documents

Publication Publication Date Title
WO2022134055A1 (zh) 电池的箱体、电池、用电装置、制备箱体的方法和装置
WO2023050969A1 (zh) 一种电池单体、电池及用电装置
US20230089208A1 (en) Battery, power consumption apparatus, and method and apparatus for producing battery
US20230411756A1 (en) Battery, electric device, and method and device for manufacturing battery
WO2023226201A1 (zh) 箱体组件、电池和用电设备
WO2024021293A1 (zh) 热管理部件、电池以及用电装置
WO2023155133A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2023159486A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023133737A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023082192A1 (zh) 电池单体、电池、用电装置、制备电池的方法和装置
WO2023159487A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023123048A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2024021070A1 (zh) 电池的箱体、电池以及用电装置
WO2023092338A1 (zh) 电池单体、电池、用电装置、制备电池单体的方法和装置
WO2023133783A1 (zh) 电池单体及其制造方法、制造设备、电池和用电装置
CN218414815U (zh) 电池以及用电装置
WO2023173428A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2022226965A1 (zh) 电池单体、电池、用电设备及电池的制造方法和设备
WO2023173721A1 (zh) 电池单体、电池模组、电池和用电装置
WO2023155209A1 (zh) 电池、用电设备、制备电池的方法和设备
EP4383410A1 (en) Battery, electric device, and method and device for preparing battery
WO2023155212A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2024065769A1 (zh) 电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960441

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180090720.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021960441

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021960441

Country of ref document: EP

Effective date: 20240109