WO2023060657A1 - 电池、用电装置、制备电池的方法和装置 - Google Patents

电池、用电装置、制备电池的方法和装置 Download PDF

Info

Publication number
WO2023060657A1
WO2023060657A1 PCT/CN2021/127453 CN2021127453W WO2023060657A1 WO 2023060657 A1 WO2023060657 A1 WO 2023060657A1 CN 2021127453 W CN2021127453 W CN 2021127453W WO 2023060657 A1 WO2023060657 A1 WO 2023060657A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
battery
wall
cell group
group
Prior art date
Application number
PCT/CN2021/127453
Other languages
English (en)
French (fr)
Inventor
许虎
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202180090829.3A priority Critical patent/CN116724450A/zh
Priority to EP21960384.2A priority patent/EP4379913A1/en
Publication of WO2023060657A1 publication Critical patent/WO2023060657A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/202Casings or frames around the primary casing of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/267Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders having means for adapting to batteries or cells of different types or different sizes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the embodiments of the present application relate to the field of batteries, and more specifically, to a battery, an electrical device, and a method and device for preparing a battery.
  • Energy saving and emission reduction is the key to the sustainable development of the automobile industry.
  • electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy saving and environmental protection.
  • battery technology is an important factor related to its development.
  • the battery is installed in an electric device, such as an electric vehicle, and the movement of the electric vehicle will cause a certain impact on the battery. If the stiffness and strength of the battery are weak, the impact will adversely affect the performance of the battery and may cause safety issues. . Therefore, how to improve the stiffness and strength of the battery is an urgent technical problem in battery technology.
  • the application provides a battery, an electrical device, a method for preparing the battery and a device for preparing the battery, which can improve the rigidity and strength of the battery.
  • a battery including: a box body; a first battery cell group and a second battery cell group housed in the box body, and the first battery cell group includes at least one first battery cell , the second battery cell group includes at least one second battery cell, the first battery cell and the second battery cell have a polyhedral structure, and the wall with the largest area in the first battery cell is its first wall , the wall with the largest area in the second battery cell is its second wall; wherein, a plurality of the first battery cells in the first battery cell group are arranged along the first direction, and the adjacent first battery cells The cells are attached to each other through their first walls, at least one of the second battery cells in the second battery cell group is arranged along the second direction, and the adjacent second battery cells are attached to each other through their second walls. Then, the first direction and the second direction are perpendicular to each other.
  • At least one first battery cell in the first battery cell group is attached to each other through the first wall with the largest area and arranged along the first direction.
  • the first battery cell The first battery cell in the cell group mainly expands toward the first direction, and the stress generated by the expansion on the first wall accumulates along the first direction, and the heat generated by the first battery cell in the first battery cell group also The transfer is mainly through its first wall.
  • At least one second battery cell in the second battery cell group is attached to each other through its second wall with the largest area and arranged along the second direction, and the second battery cells in the second battery cell group mainly face The second direction expands, and the stress generated by the expansion on the second wall accumulates along the second direction, and the heat generated by the second battery cell in the second battery cell group is also mainly transferred through the second wall. Therefore, through the technical solution of the embodiment of the present application, the stress and heat of all the battery cells in the battery can be prevented from accumulating and transferring in the same direction, improving the overall rigidity and strength of the battery, and improving the safety of the battery in the electrical device performance.
  • the first battery cell group and the second battery cell group are arranged along the second direction, and the second walls of the first battery cells in the first battery cell group attached to the second wall of the second battery cell adjacent to the first battery cell group in the second battery cell group to realize the connection between the first battery cell group and the second battery cell group mutual attachment between.
  • the first battery cell group and the second battery cell group are attached to each other to form a whole and installed in the box, compared with the distance between the first battery cell group and the second battery cell group
  • the provided technical solution can avoid setting fillers in the space between the first battery cell and the second battery cell, improve the overall energy density of the battery and reduce the weight of the battery.
  • at least one first battery cell has a first wall with a larger area facing the first direction instead of the second direction, the at least one first battery cell faces the second direction in the second direction.
  • the expansion degree of the second wall is small, and the first battery unit group has higher strength and rigidity in the second direction.
  • the first battery cell group can be regarded as a support located on one side of the second battery cell group, which can form a support for the second battery cell group in the second direction and withstand the second battery cell group.
  • the stress accumulated in the second direction on the second wall of the second battery cell in the battery cell group increases the stiffness and strength of the entire battery in the second direction.
  • the difference between the size of the first battery cell group in the first direction and the size of the second battery cell group in the first direction is within a preset range; and/or , the difference between the size of the first battery cell group in the third direction and the size of the second battery cell group in the third direction is within a preset range, the third direction is perpendicular to the first direction and the second direction Two directions.
  • the overall shape of the first battery cell group and the second battery cell can be made more regular, which facilitates the overall installation of the first battery cell group and the second battery cell group in a regular shape.
  • the installation space required by the first battery cell group and the second battery cell group is saved, and the energy density of the battery is improved.
  • the battery includes: two first battery cell groups and one second battery cell group arranged along a second direction; in the second direction, two first battery cell groups The cell groups are respectively located at two ends of the second battery cell group.
  • the first battery cell group is provided on both sides of the second battery cell group. Since in the first battery cell group, at least one first battery cell has a first wall with a larger area facing the first direction instead of the second direction, the at least one first battery cell has a second wall facing the second direction The degree of expansion is small, and the first battery cell group has higher strength and rigidity in the second direction.
  • the first battery cell group can be regarded as an end plate located at both ends of the second battery cell group, which can form a support for the second battery cell group in the second direction and bear the second battery cell. The stress accumulated in the second direction on the second wall of the second battery cell in the cell group increases the rigidity and strength of the battery as a whole in the second direction.
  • the battery includes: one first battery cell group and two second battery cell groups arranged along the second direction; in the second direction, two second battery cell groups The cell groups are respectively located at two ends of the first battery cell group.
  • the second wall of at least one first battery cell facing the second direction is not the wall with the largest area in the first battery cell, and the heat conductivity of the second wall of the first battery cell is relatively high. limited. Therefore, the first battery cell group can serve as a thermal barrier to reduce heat transfer between the second battery cell group on both sides of the first battery cell group. If a second battery cell in the second battery cell group suffers from thermal runaway, it can only affect other second battery cells in the second battery cell group where it is located, while affecting the first battery cell group and other second battery cells. The influence of the second battery cell group is small, thereby improving the safety performance of the battery as a whole.
  • the battery includes: a plurality of the first battery cell groups and a plurality of the second battery cell groups arranged along the second direction; in the second direction, a plurality of the first battery cell groups The battery cell groups and the plurality of second battery cell groups are arranged alternately.
  • the multiple first battery cell groups and the multiple second battery cell groups are staggered in the second direction, and the multiple first battery cell groups can be regarded as multiple second battery cell groups.
  • the beams between the battery cell groups can play a good supporting role for the multiple second battery cell groups, and greatly improve the rigidity and strength of the battery in the second direction.
  • the number of the first battery cells in each of the first battery cell groups is equal; and/or, the number of the second battery cells in each of the second battery cell groups equal.
  • the size of each first battery cell group in the battery can be the same, and/or, the size of each second battery cell group can be the same.
  • the multiple first battery cell groups with the same size can be evenly distributed between the second battery cell groups, and similarly, the multiple second battery cell groups with the same size can be evenly distributed among the first battery cell groups between, the internal structure of the battery is more uniform and symmetrical, which is conducive to improving the stability of the battery.
  • the first direction is parallel to the direction of gravity
  • the first battery cell includes a first wall and a second wall connected to each other
  • the second battery cell includes a first wall and a second wall connected to each other.
  • Second wall; the first wall of the first battery cell and the first wall of the second battery cell are perpendicular to the first direction, the second wall of the first battery cell and the second wall of the second battery cell The second walls are all inclined relative to the first direction.
  • the second walls attached to each other between adjacent second battery cells are arranged obliquely relative to the first direction, that is, obliquely arranged relative to the direction of gravity, therefore , an interaction force parallel to the direction of gravity is formed between adjacent second walls, so that at least one inclined second wall of each second battery cell is pressed by the inclined second wall of the adjacent second battery cell Therefore, the interaction force formed between the adjacent second battery cells makes them restrain and restrict each other, which can improve the overall rigidity and strength of the battery, and reduce the safety risk caused by the vibration and shock of the battery during use.
  • the first battery cell group and the second battery cell group can also form mutual restraint and restriction through the inclined second wall, It can further improve the overall rigidity and strength of the battery, and reduce the safety risk caused by the vibration and shock of the battery during use.
  • the first battery cell includes two opposite first walls and two opposite second walls, and the first battery cell is perpendicular to the first wall and the second wall.
  • the section on the plane of the second wall is parallelogram or trapezoidal; and/or, the second battery unit includes two opposite first walls and two opposite second walls, the second battery unit
  • the cross-section of the body on a plane perpendicular to its first and second walls is a parallelogram or trapezoid.
  • a plurality of the first battery cells in the first battery cell group are arranged along the thickness direction thereof, and the interconnected first wall and the second wall of the first battery cell are along the The length direction of the first battery cell extends, and/or, at least one second battery cell in the second battery cell group is arranged along its thickness direction, and the interconnected first walls of the second battery cell and the second wall extend along the length direction of the second battery cell.
  • the first battery cell further includes: a third wall located at one end of the first battery cell in the length direction, and the electrode terminal of the first battery cell is disposed on the third wall and/or
  • the second battery cell further includes: a third wall located at one end of the second battery cell in the length direction, and the electrode terminal of the second battery cell is disposed on the third wall.
  • the electrode terminals of the first battery cell and the second battery cell can be arranged on the third wall located at the end of the length direction, without affecting the first battery cell and the second battery cell.
  • the first wall and the second wall extending along the length direction of the body and having a larger area are attached to other components to ensure better stability of the first battery cell and the second battery cell.
  • the electrode terminals of at least one of the first battery cells in the first battery cell group are arranged along the first direction; and/or, at least one of the second battery cell in the second battery cell group The electrode terminals of the two battery cells are arranged along the second direction.
  • the electrode terminals of the at least one first battery cell can be electrically connected to each other through a short busbar component, and the electrode terminals of a plurality of second battery cells can be electrically connected to each other through a short busbar.
  • the components are electrically connected to each other, thereby facilitating the arrangement and installation of the bus components in the case of the battery.
  • the box along the first direction, includes an upper cover and a bottom plate, along the second direction, the box includes a first side wall and a second side wall, and the first battery cell group and the second battery cell group are arranged at intervals in the second direction; wherein, the electrode terminal of the first battery cell in the first battery cell group is arranged close to the first side wall or the second side wall, The electrode terminals of the second battery cells in the second battery cell group are disposed close to the upper cover or the bottom plate.
  • the electrode terminals of the first battery cells in the first battery cell group are arranged close to the first side wall or the second side wall, so that the first battery cell group
  • the electrode terminal of the first battery cell is close to the second battery cell group adjacent to it, and at the same time, in the first direction, the electrode terminal of the second battery cell in the second battery cell group is close to the upper
  • the cover or bottom plate is arranged so that the electrode terminal of the second battery cell in the second battery cell group is adjacent to the electrode terminal of the first battery cell in the first battery cell group that is close to the upper cover or the bottom plate.
  • the confluence part used to connect the adjacent first battery cell group and the second battery cell group is relatively short, which further facilitates the arrangement and installation of the confluence part in the battery box, and optimizes the overall performance of the battery.
  • the electrode terminals of the first battery cells of the adjacent first battery cell groups are arranged close to or far from each other.
  • the electrode terminals of a plurality of the first battery cells in the first battery cell group are arranged close to the second battery cell group.
  • the electrical connection between the first battery cell and the second battery cell group can be facilitated through a short busbar, thereby facilitating the arrangement and installation of the busbar in the battery box.
  • the number of the first battery cells in the first battery cell group is less than or equal to the number of the second battery cells in the second battery cell group.
  • the first battery cell and the second battery cell are battery cells of two different chemical systems.
  • the expansion coefficient of the first battery cell is smaller than the expansion coefficient of the second battery cell.
  • the impact of the expansion of the first battery cell group on the battery during operation can be reduced, and the overall rigidity and strength of the battery can be further improved.
  • the energy density of the first battery cell is lower than the energy density of the second battery cell.
  • an electrical device comprising: the battery in the above-mentioned first aspect or any possible implementation manner of the first aspect, where the battery is used to provide electrical energy.
  • a method for preparing a battery including: providing a case; providing a first battery cell group and a second battery cell group, the first battery cell group includes at least one first battery cell, the The second battery cell group includes at least one second battery cell, the first battery cell and the second battery cell are in a polyhedral structure, the wall with the largest area in the first battery cell is its first wall, the The wall with the largest area in the second battery cell is its second wall; wherein, at least one of the first battery cells in the first battery cell group is arranged along the first direction, and the adjacent first battery cells At least one second battery cell in the second battery cell group is arranged along a second direction by its first walls attached to each other, and adjacent second battery cells are attached to each other by their second walls, The first direction and the second direction are perpendicular to each other; the first battery cell group and the second battery cell group are accommodated in the box.
  • a device for preparing a battery including: providing a module for: providing a box; providing a first battery cell group and a second battery cell group, the first battery cell group includes at least one first battery cell group A battery cell, the second battery cell group includes at least one second battery cell, the first battery cell and the second battery cell have a polyhedral structure, and the wall with the largest area in the first battery cell is Its first wall, the wall with the largest area in the second battery cell is its second wall; wherein, at least one of the first battery cells in the first battery cell group is arranged along the first direction, and the adjacent The first battery cells are attached to each other by their first walls, at least one of the second battery cells in the second battery cell group is arranged along the second direction, and the adjacent second battery cells are connected by their first walls.
  • the two walls are attached to each other, and the first direction and the second direction are perpendicular to each other; the installation module is used for: accommodating the first battery cell group and the second battery cell group in the box body
  • At least one first battery cell in the first battery cell group is attached to each other through the first wall with the largest area and arranged along the first direction.
  • the first battery cell The first battery cell in the cell group mainly expands toward the first direction, and the stress generated by the expansion on the first wall accumulates along the first direction, and the heat generated by the first battery cell in the first battery cell group also The transfer is mainly through its first wall.
  • At least one second battery cell in the second battery cell group is attached to each other through its second wall with the largest area and arranged along the second direction, and the second battery cells in the second battery cell group mainly face The second direction expands, and the stress generated by the expansion on the second wall accumulates along the second direction, and the heat generated by the second battery cell in the second battery cell group is also mainly transferred through the second wall. Therefore, through the technical solution of the embodiment of the present application, the stress and heat of all the battery cells in the battery can be prevented from accumulating and transferring in the same direction, improving the overall rigidity and strength of the battery, and improving the safety of the battery in the electrical device performance.
  • Fig. 1 is a schematic structural view of a vehicle disclosed in an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of a battery disclosed in an embodiment of the present application.
  • Fig. 3 is a schematic structural view of a battery cell disclosed in an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a battery disclosed in an embodiment of the present application.
  • Fig. 5 is a schematic top view and cross-sectional view of a battery disclosed in an embodiment of the present application.
  • Fig. 6 is a schematic top view and cross-sectional view of a battery disclosed in an embodiment of the present application.
  • Fig. 7 is a schematic structural view of three first battery cells disclosed in an embodiment of the present application.
  • Fig. 8 is a schematic front view and side view of a first battery cell disclosed in an embodiment of the present application.
  • Fig. 9 is a schematic structural view of three kinds of second battery cells disclosed in an embodiment of the present application.
  • Fig. 10 is a schematic front view and side view of a second battery cell disclosed in an embodiment of the present application.
  • Fig. 12 is a schematic top view and cross-sectional view of a battery disclosed in an embodiment of the present application.
  • Fig. 13 is a schematic top view and cross-sectional view of a battery disclosed in an embodiment of the present application.
  • Fig. 14 is a schematic side view of two batteries disclosed in an embodiment of the present application.
  • Fig. 15 is a schematic flowchart of a method for preparing a battery disclosed in an embodiment of the present application.
  • Fig. 16 is a schematic block diagram of a device for preparing a battery disclosed in an embodiment of the present application.
  • a battery refers to a physical module including one or more battery cells to provide electrical energy.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon. In order to ensure that a large current is passed without fusing, the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the diaphragm can be polypropylene (Polypropylene, PP) or polyethylene (Polyethylene, PE).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • the large surfaces of the battery cells can be fixedly connected to each other through structural glue, and then installed in the battery box middle.
  • high-pressure gas will be generated inside the battery cell, and the high-pressure gas will cause the battery cell to expand, thereby generating greater stress on the large surface of the battery cell.
  • stress will continue to accumulate in the connection direction of multiple battery cells, affecting the strength and stiffness of the battery as a whole in this direction, thus bringing certain safety hazards.
  • the battery box contains a first battery cell group and a second battery cell group, wherein the first battery cell group includes at least one first battery cell, The at least one first battery cell is arranged along the first direction, and the adjacent first battery cells are attached to each other through the first wall with the largest area; the at least one second battery cell in the second battery cell group Arranged along a second direction, and adjacent second battery cells are attached to each other through their second walls with the largest area, the first direction and the second direction are perpendicular to each other.
  • At least one first battery cell in the first battery cell group is attached to each other by its first wall with the largest area and arranged along the first direction, and the first battery cells in the first battery cell group The expansion is mainly in the first direction, and the stress generated by the expansion on the first wall is accumulated in the first direction.
  • at least one second battery cell in the second battery cell group is attached to each other through its second wall with the largest area and arranged along the second direction, and the second battery cells in the second battery cell group mainly face The second direction expands, and the stress generated by the expansion on the second wall accumulates in the second direction.
  • batteries such as mobile phones, portable devices, notebook computers, battery cars, electric toys, electric tools, electric vehicles, ships and spacecraft, etc.
  • spacecraft include Airplanes, rockets, space shuttles and spaceships, etc.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or Extended range cars, etc.
  • a motor 11 , a controller 12 and a battery 10 can be arranged inside the vehicle 1 , and the controller 12 is used to control the battery 10 to supply power to the motor 11 .
  • the battery 10 may be provided at the bottom or front or rear of the vehicle 1 .
  • the battery 10 can be used for power supply of the vehicle 1 , for example, the battery 10 can be used as an operating power source of the vehicle 1 , for a circuit system of the vehicle 1 , for example, for starting, navigating and running power requirements of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1 .
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel or in parallel, and the hybrid connection refers to a mixture of series and parallel connections. Batteries can also be called battery packs.
  • a plurality of battery cells can be connected in series, parallel or mixed to form a battery module, and then a plurality of battery modules can be connected in series, parallel or mixed to form a battery. That is to say, multiple battery cells can directly form a battery, or form a battery module first, and then form a battery from the battery module.
  • the battery 10 may include a plurality of battery cells 20 .
  • the battery 10 may further include a box body 100 (or called a cover body).
  • the inside of the box body 100 is a hollow structure, and a plurality of battery cells 20 are accommodated in the box body 100 .
  • the box body 100 may include two parts, referred to here as a first part 111 and a second part 112 respectively, and the first part 111 and the second part 112 are fastened together.
  • the shapes of the first part 111 and the second part 112 can be determined according to the combined shape of a plurality of battery cells 20 , and each of the first part 111 and the second part 112 can have an opening.
  • both the first part 111 and the second part 112 can be hollow cuboids and each has only one face as an open face, the opening of the first part 111 and the opening of the second part 112 are arranged oppositely, and the first part 111 and the second part 112 are interlocked combined to form a box 100 with a closed chamber.
  • a plurality of battery cells 20 are combined in parallel, in series or in parallel and placed in the box 100 formed by fastening the first part 111 and the second part 112 .
  • a plurality of battery cells (cell) 20 may first be integrated into at least one battery module (module), and then the battery module is installed in the box 100 of the battery 10, Forming a battery pack (pack) form, in this embodiment, auxiliary structural members such as beams may be arranged between the battery modules, which can improve the installation stability of the battery modules in the box 100 .
  • a plurality of battery cells 20 can also be directly connected to each other, and installed in the box 100 to form a battery pack form, removing the intermediate state of the battery module, the box 100 There is no need to set auxiliary structural members such as beams in the middle, so that the quality of the battery 10 can be reduced and the energy density of the battery 10 can be increased.
  • This implementation manner may also be referred to as a battery cell to battery pack (cell to pack, CTP) installation technology in the related art.
  • the box body 100 can be integrated with the electrical device where the battery 10 is located.
  • the box body 100 can be integrally formed with the structural components in the electrical device.
  • the box body 100 installed in the electrical device can be directly installed.
  • the box body 100 may be integrally arranged in a local area of the chassis of the vehicle 1 , and the plurality of battery cells 20 may be directly installed on the chassis of the vehicle 1 after being connected to each other.
  • This implementation manner may also be referred to as a battery cell to chassis (cell to chassis, CTC) installation technology in the related art.
  • the battery 10 may also include other structures, which will not be repeated here.
  • the battery 10 may also include a confluence part, which is used to realize electrical connection between a plurality of battery cells 20 , such as parallel connection, series connection or mixed connection.
  • the bus member can realize the electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus member may be fixed to the electrode terminal of the battery cell 20 by welding.
  • the electric energy of the plurality of battery cells 20 can be further drawn out through the case body 100 through the conductive mechanism.
  • the conduction means can also belong to the current-collecting part.
  • the number of battery cells 20 can be set to any value.
  • a plurality of battery cells 20 can be connected in series, in parallel or in parallel to achieve greater capacity or power.
  • the battery cell 20 includes one or more electrode assemblies 22 , a casing 211 , a first cover plate 212 a and a second cover plate 212 b.
  • the walls of the casing 211 and the first cover plate 212 a and the second cover plate 212 b are referred to as walls of the battery cell 20 .
  • the casing 211 is determined according to the combined shape of one or more electrode assemblies 22 .
  • the casing 211 shown in FIG. 3 may be a hollow cuboid. At least one surface of the casing 211 has an opening so that one or more electrode assemblies 22 can be placed in the casing 211 .
  • the two opposite faces of the housing 211 have openings, and the first cover plate 212 a and the second cover plate 212 b respectively cover the openings on the two faces and are connected to the housing 211 , to form a closed cavity for placing the electrode assembly 22 .
  • the casing 211 is filled with electrolyte, such as electrolytic solution.
  • the battery cell 20 may also include two electrode terminals 214 .
  • the two electrode terminals 214 may be respectively disposed on the first cover plate 212 a and the second cover plate 212 b.
  • the two electrode terminals 214 may also be disposed on the same cover plate, for example, both are disposed on the first cover plate 212a or the second cover plate 212b.
  • the first cover plate 212a and the second cover plate 212b are usually in the shape of a flat plate, and the two electrode terminals 214 can be respectively fixed on the flat surfaces of the first cover plate 212a and the second cover plate 212b, and the two electrode terminals 214 are positive electrodes respectively. terminal and negative electrode terminal.
  • Each electrode terminal 214 is respectively provided with a connecting member, or also called a current collecting member, which is located between the first cover plate 212a and the electrode assembly 22 and between the second cover plate 212b and the electrode assembly 22, the connecting member It is used to electrically connect the electrode assembly 22 and the electrode terminal 214 .
  • the battery cell 20 may further include a first bracket 216a and a second bracket (not shown in the figure), the first bracket 216a is disposed between the electrode assembly 22 and the first cover plate 212a space for fixing and connecting the first cover plate 212a.
  • the second bracket is disposed between the electrode assembly 22 and the second cover plate 212b for fixing and connecting the second cover plate 212b.
  • the above-mentioned connection members connecting the electrode assembly 22 and the electrode terminal 214 may be respectively located in the first support 216a and the second support.
  • a pressure relief mechanism 213 may also be provided on one wall of the battery cell 20 .
  • the pressure relief mechanism 213 is activated to release the internal pressure or temperature when the internal pressure or temperature of the battery cell 20 reaches a threshold.
  • Arranging the pressure relief mechanism 213 and the electrode terminal 214 on the same wall of the battery cell 20 can facilitate the processing and installation of the pressure relief mechanism 213 and the electrode terminal 214 , and is conducive to improving the production efficiency of the battery 10 .
  • the pressure relief mechanism 213 and the electrode terminal 214 can also be arranged on different walls of the battery cell 20 , for example, the two electrode terminals 214 in the battery 10 are respectively arranged on the second wall of the battery cell 20 .
  • a cover plate 212a and a second cover plate 212b, and the pressure relief mechanism 213 is disposed on other walls of the battery 10 except the first cover plate 212a and the second cover plate 212b.
  • the above-mentioned pressure relief mechanism 213 may be a part of the wall where it is located, or may be a separate structure from the wall where it is located, and be fixed on the wall where it is located by, for example, welding.
  • the pressure relief mechanism 213 when the pressure relief mechanism 213 is a part of the second cover plate 212b, the pressure relief mechanism 213 can be formed by setting a score on the second cover plate 212b, and the score The thickness of the corresponding second cover plate 212b is smaller than the thickness of other areas of the pressure relief mechanism 213 except the notch. The notch is the weakest position of the pressure relief mechanism 213 .
  • the pressure relief mechanism 213 can A crack occurs at the notch, which leads to communication between the inside and outside of the shell 211 , and the gas pressure and temperature are released outward through the crack of the pressure relief mechanism 213 , thereby preventing the battery cell 20 from exploding.
  • the pressure relief mechanism 213 may be various possible pressure relief mechanisms, which is not limited in this embodiment of the present application.
  • the pressure relief mechanism 213 may be a temperature-sensitive pressure relief mechanism configured to melt when the internal temperature of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold; and/or, the pressure relief mechanism 213 may be a pressure-sensitive pressure relief mechanism configured to rupture when the internal air pressure of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold value.
  • the battery cell 20 may further include: a first protective layer 215a and a second protective layer 215b, the first protective layer 215a and the second protective layer 215b respectively cover the first cover plate 212a and the second cover plate 212b to protect the components on the two cover plates.
  • the first protection layer 215a and the second protection layer 215b may be insulating layers for realizing insulation between the metal cover plate and the outside.
  • openings adapted to the electrode terminals 214 and the pressure relief mechanism 213 may be formed on the first protective layer 215a and the second protective layer 215b, so that the electrode terminals 214 pass through the openings and The confluence part is connected, and the pressure release mechanism 213 releases the internal air pressure of the battery cell 20 through the opening.
  • FIG. 4 shows a schematic structural diagram of a battery 10 provided by an embodiment of the present application.
  • the battery 10 includes: a box body 100; a first battery cell group 200a and a second battery cell group 200b, accommodated in the box body 100, and the first battery cell group 200a includes at least one
  • the first battery cell 20a and the second battery cell group 200b include at least one second battery cell 20b, and the first battery cell 20a and the second battery cell 20b have a polyhedral structure.
  • At least one first battery cell 20a in the first battery cell group 200a is arranged along the first direction z, adjacent first battery cells 20a are attached to each other through their first walls 201a, and the second battery cells At least one second battery cell 20b in the group 200b is arranged along a second direction y, adjacent second battery cells 20b are attached to each other by their second walls 202b, and the first direction z and the second direction y are perpendicular to each other.
  • the box body 100 may be the box body 100 in the above embodiment shown in FIG. 2 .
  • the box body 100 may be a hollow hexahedron structure.
  • the first battery cell 20a and the second battery cell 20b can be is a polyhedral structure.
  • the first battery cell 20a and the second battery cell 20b may have a hexahedral structure.
  • the first wall and the second wall can be the casing 211, the first wall of the battery cell 20 in the embodiment shown in FIG. 3 above.
  • the first battery cell group 200a includes at least one first battery cell 20a, and the at least one first battery cell 20a is attached to each other through the first wall 201a with the largest area and along the first direction. Z-arrangement.
  • structural glue may be coated on the first wall 201a of the first battery cell 20a, so that adjacent first battery cells 20a are connected to each other through structural glue.
  • the first wall 201a with the largest area in the one first battery cell 20a may face the first direction z.
  • At least one second battery cell 20b in the second battery cell group 200b is attached to each other through the second wall 202b with the largest area and arranged along the second direction y, which is the same as the above-mentioned first direction x perpendicular to each other.
  • structural adhesive may be coated on the second wall 202b of the second battery cell 20b, so that adjacent second battery cells 20b are connected to each other through structural adhesive.
  • the second wall 202b with the largest area in the one second battery cell group 20b may face the second direction y.
  • first battery cell 20a and the second battery cell 20b During the continuous operation of the first battery cell 20a and the second battery cell 20b, high-pressure gas and heat will be generated inside them, and the high-pressure gas will make the first battery cell 20a and the second battery cell 20b expand, which will affect the first battery cell 20a and the second battery cell 20b.
  • the first wall 201a with a larger area in the first battery cell 20a and the second wall 202b with a larger area in the second battery cell 20b generate greater stress, and the first battery cell 20a and the second battery cell 20b Most of the heat in the interior is also transferred through this larger wall.
  • the stress and heat generated by the first battery cell group 200a and the second battery cell group 200b are transmitted in different directions, preventing the accumulation of stress in the same direction and affecting the stability of the battery 10 in this direction.
  • the strength and rigidity can also prevent the continuous transfer of heat in the same direction from affecting the normal operation of multiple battery cells, thereby improving the overall rigidity and strength of the battery 10 and improving the safety performance of the battery 10 in electrical devices.
  • FIG. 5 shows a schematic top view and cross-sectional view of the battery 10 in the embodiment shown in FIG. 4 .
  • Figure (a) in Figure 5 shows a schematic top view of the battery 10
  • Figure (b) in Figure 5 is a schematic cross-sectional view along the direction A-A' in Figure 5 (a).
  • the first battery cell group 200a in order to facilitate the mutual attachment of at least one first battery cell 20a in the first battery cell group 200a, the first battery cell group 200a At least one first battery cell 20a may be arranged along its thickness direction, in other words, the thickness direction of the at least one first battery cell 20a may be parallel to the first direction z.
  • the first wall 201a of the first battery cell 20a in order to realize the largest area of the first wall 201a in the first battery cell 20a, the first wall 201a of the first battery cell 20a may extend along the length direction of the first battery cell 20a, and correspondingly, be connected to each other
  • the second wall 202a can also extend along the length direction of the first battery cell 20a.
  • the plurality of second battery cells 20b in the second battery cell group 200b may be arranged along its thickness direction, in other words, The thickness direction of the plurality of second battery cells 20b may be parallel to the second direction y.
  • the second wall 202b of the second battery cell 20b may extend along the length direction of the second battery cell 20b, and correspondingly, be connected to each other
  • the first wall 201b can also extend along the length direction of the second battery cell 20b.
  • the size of the polyhedral structure in its length direction is larger than the size of the polyhedron structure in other directions.
  • the direction with the largest size in the battery cell of the polyhedron structure is its length direction.
  • the direction with the smallest dimension in the polyhedral battery cell is its thickness direction.
  • the first battery cell 20a and the second battery cell 20b shown in FIG. 4 and FIG. 5 can be called blade battery cells or blade cells.
  • a plurality of blade-type battery cells can be more conveniently connected to each other along the thickness direction, and directly installed in the box 100 of the battery 10 as a battery cell group.
  • the first battery cell 20a and the second battery cell 20b may be battery cells with the same structure and the same size, and the difference between the two is only their The arrangement directions in the case 100 are different.
  • first battery cell group 200a and the second battery cell group 200b it is more convenient to form the first battery cell group 200a and the second battery cell group 200b, and also facilitate the cooperation of the first battery cell group 200a and the second battery cell group 200b in the box body 100 Install.
  • the first battery cell 20a and the second battery cell 20b may also be battery cells of different structures and/or different sizes.
  • the size of the first battery cell 20a in its length direction is different from the size of the second battery cell 20b in its length direction.
  • the chemical systems of the first battery cell 20a and the second battery cell 20b are different.
  • the materials of the electrical components in the first battery cell 20a and the second battery cell 20b are different.
  • the battery 10 may include battery cells of different structures and/or sizes, and the installation of the battery cells of different structures and/or sizes in the case 100 may be flexibly designed according to different application scenarios. , on the basis of taking both stiffness and strength into account, the advantages of battery cells with different structures are combined to improve the overall performance of the battery 10, making it have a broader application prospect.
  • the first battery cell group 200a and the second battery cell group 200b can be attached to each other. Then, they are accommodated and arranged in the box body 100 as a common whole.
  • the first battery cell group 200a and the second battery cell group 200b can be arranged along the second direction y, and at least one first battery in the first battery cell group 200a
  • the second wall 202a of the cell is attached to the second wall 202b of the second battery cell 20b adjacent to the first battery cell group 200a in the second battery cell group 200b to realize the first battery cell group 200a and the second battery cell group 200b.
  • the first battery cell group 200a and the second battery cell group 200b are attached to each other to form a whole and installed in the box body 100.
  • the technical solution of arranging the battery cell groups 200b at intervals can avoid setting fillers at intervals between the first battery cell 200a and the second battery cell 200b, improve the overall energy density of the battery 10 and reduce the weight of the battery 10 .
  • At least one first battery cell 20a has a first wall 201a with a larger area facing the first direction z instead of the second direction y, the at least one first battery cell 20a
  • the expansion degree of the second wall 202a facing the second direction y is small, and the first battery cell group 200a has higher strength and rigidity in the second direction y.
  • the first battery cell group 200a can be regarded as a support located on one side of the second battery cell group 200b, which can form a support for the second battery cell group 200b in the second direction y, And bear the stress accumulated in the second direction y by the second wall 202b of the second battery cell 20b in the second battery cell group 200b, and improve the rigidity and strength of the battery 10 as a whole in the second direction y.
  • both the second wall 202b of the second battery cell 20b and the second wall 202a of the first battery cell 20a can extend along the length direction of their respective battery cells, so that the second The second wall 202b of the second battery cell 20b and the second wall 202a of the first battery cell 20a have larger areas.
  • the length direction of the first battery cell 20a and the length direction of the second battery cell 20b may be parallel to each other, so that the second wall 202b of the second battery cell 20b and the second wall 202a of the first battery cell are mutually attach.
  • the length direction of the second battery cell 20b and the length direction of the first battery cell 20a are both parallel to the x direction shown in the figure, and the x direction may be perpendicular to the first battery cell.
  • the size of the first battery cell group 200a in the first direction z is the same as that of the second battery cell group 200a.
  • the size difference of the first battery cell group 200b in the first direction z may be within a preset range, and/or, the size of the first battery cell group 200a in the third direction x is different from that of the second battery cell group 200b in the third direction x.
  • the size difference in direction x may be within a preset range.
  • the size of each first battery cell 20a in the first battery cell group 200a in the first direction z is h, then the first battery cell group 200a in the first The size in the direction z is n*h, the size of the second battery cell 20b in the first direction z is the size of the second battery cell group 200b in the first direction z, and the size is H, H and n *The absolute value of the difference between h is c, optionally, 0mm ⁇ c ⁇ 15mm. Further, 0mm ⁇ c ⁇ 5mm.
  • the size of the first battery cell group 200a in the third direction x may be equal to the size of the second battery cell group 200b in the third direction x.
  • the overall shape of the first battery cell group 200a and the second battery cell group 200b can be made more regular, which facilitates the overall installation of the first battery cell group 200a and the second battery cell group 200b in a regular shape.
  • the installation space required by the first battery cell group 200a and the second battery cell group 200b is saved, and the energy density of the battery 10 is improved.
  • the first battery cell group 200a and the second battery cell group 200b can also be Arranged along other directions, for example, the first battery cell group 200a and the second battery cell group 200b can also be arranged along the first direction z, at this time, the first battery cell group 200a and the second battery cell group 200b are in the first Stacked in the direction z, the first wall 201b of at least one second battery cell 20b in the second battery cell group 200b can be connected to the first wall 201b of the second battery cell group 200b adjacent to the second battery cell group 200b in the first battery cell group 200a.
  • the first walls 201a of the battery cells 20a are attached to each other.
  • the first direction z may be parallel to the direction of gravity
  • the second direction y may be parallel to the horizontal direction.
  • the first battery cell group 200a and the second battery cell group 200b are arranged along the horizontal plane, which can further improve the stability of the first battery cell group 200a and the second battery cell group 200b in the battery 10 .
  • first battery cell 20a when the second wall 202a of the first battery cell 20a is arranged parallel to the first direction z and attached to the second wall 202b of the second battery cell 20b, the first battery cell 20a and the second battery cell
  • the connections between 20b may also be affected by external shocks, thereby affecting the overall rigidity and strength of the battery 10 .
  • the present application provides a technical solution to design the first battery cell 20a and/or the second battery cell 20b as a battery cell with a polyhedral structure different from a conventional square battery cell.
  • the first wall 201a of the first battery cell 20a is perpendicular to the first direction z
  • the second wall 202a of the first battery cell 20a is inclined relative to the first direction z.
  • the first wall 201b of the second battery cell 20b is perpendicular to the first direction z
  • the second wall 202b of the second battery cell 20b is inclined relative to the first direction z.
  • first battery cell 20a its first wall 201a and second wall 202a are connected to each other to form a wedge-shaped structure.
  • the included angle between the first wall 201a and the second wall 202a may be an acute angle, so as to form a wedge-shaped structure with an acute angle.
  • the included angle between the first wall 201a and the second wall 202a of the first battery cell 20a can also be an obtuse angle, in this case, it can also be understood as the angle formed between the first wall 201a and the second wall 202a.
  • first wall 201b and the second wall 202b in the second battery cell 20b can refer to the relevant description of the first battery cell 20a above.
  • FIG. 6 shows a schematic top view and cross-sectional view of the battery 10 provided by the embodiment of the present application.
  • figure (a) in FIG. 6 shows a schematic top view of the battery 10
  • figure (b) in FIG. 6 is a schematic cross-sectional view along the direction A-A' in figure (a).
  • the first direction z is parallel to the direction of gravity.
  • the first wall 201b is perpendicular to the first direction z
  • the second wall 202b is inclined relative to the first direction z
  • the second wall 202b is the second battery cell The wall with the largest area in 20b.
  • the second direction y is perpendicular to the first direction z, that is, the second direction y is parallel to the horizontal direction.
  • the second direction y is perpendicular to the first direction z, that is, the second direction y is parallel to the horizontal direction.
  • adjacent second battery cells 20b pass through adjacent second battery cells 20b.
  • the walls 202b are attached to each other to form an interaction force in the first direction z between adjacent second walls 202b.
  • the second walls 202b attached to each other between adjacent second battery cells 20b are arranged obliquely with respect to the first direction z, that is, with respect to gravity
  • the direction is inclined, therefore, an interaction force parallel to the direction of gravity is formed between adjacent second walls 202b, so that each second battery cell 20b has at least one inclined second wall 202b that is adjacent to the second battery cell 20b.
  • the inclined second wall 202b of the body 20b is pressed, and an interaction force is formed between the adjacent second battery cells 20b so that the two are mutually bound and restricted, which can improve the overall rigidity and strength of the battery 10 and reduce the battery 10 during use. Safety risks brought about by vibration and shock.
  • the second wall 202b is the wall with the largest area among the second battery cells 20b, and the second wall 202b with the largest area can be used to achieve the greatest degree of communication between adjacent second battery cells 20b.
  • the attachment improves the interaction force between adjacent second battery cells 20b to enhance the stability and overall rigidity and strength of the battery 10 .
  • structural glue can be coated on the second wall 202b, and the adjacent second battery cells 20b can be connected to each other through structural glue, and compared with the vertical wall, the inclined second wall 202b
  • the area of the second wall 202b will be larger than the area of the vertical wall, therefore, the area of the structural glue coated on the second wall 202b is also larger, which can further improve the stability and overall rigidity and strength of the battery 10.
  • the first battery cell group 200a and the second battery cell group 200b can be arranged along the second direction y, and the first battery cell group 200a and the second battery cell group 200b pass through the second
  • the inclined second wall 202a of one battery cell 20a and the inclined second wall 202b of the second battery cell 20b are attached to each other so as to form a gap in the first direction z between the adjacent second walls 202a and 202b. on the interaction force.
  • the second wall 202a and the second wall 202b attached to each other between the first battery cell 20a and the second battery cell 20b are arranged obliquely with respect to the first direction z, that is, relative to gravity
  • the direction is inclined, therefore, an interaction force parallel to the direction of gravity is formed between adjacent second walls 202a and 202b, and the interaction force can make the first battery cell group 200a and the second battery cell group
  • the 200b restrains and restrains each other, which can improve the overall rigidity and strength of the battery 10 and reduce the safety risk caused by the vibration and impact of the battery 10 during use.
  • the first battery cell 20a may include: two first walls 201a arranged in parallel and two second walls 202a arranged in parallel, the first battery cell
  • the cross-section of the cell 20a on a plane perpendicular to its first wall 201a and second wall 202a is rectangular.
  • the structure of the first battery cell 20a is regular and symmetrical, which facilitates the manufacture and installation of the first battery cell 20a.
  • the cross-section of the second battery cell 20b on a plane perpendicular to its first wall 201b and second wall 202b is rectangular.
  • the first battery cell 20a may include: two first walls 201a arranged in parallel and two second walls 202a arranged in parallel, the first battery cell 20a A cross section on a plane perpendicular to the first wall 201a and the second wall 202a is a parallelogram.
  • the overall structure of the first battery cell 20a is also relatively regular, which facilitates the connection between multiple first battery cells 20a. Attached to each other to form a relatively regular first battery cell group 200a.
  • the cross-section of the second battery cell 20b on a plane perpendicular to its first wall 201b and second wall 202b is also a parallelogram.
  • FIG. 7 shows a schematic perspective view of three kinds of first battery cells 20a in the embodiment of the present application.
  • (a) in FIG. 7 is an enlarged schematic diagram of the first battery cell 20a in FIG. 5
  • (b) in FIG. 7 is an enlarged schematic diagram of the first battery cell 20a in FIG. 6 .
  • both the first wall 201a and the second wall 202a extend along the length direction L1 of the first battery cell 20a, and the length direction L1 of the first battery cell 20a is perpendicular to The first direction z and the second direction y, that is, the length direction L1 of the first battery cell 20 a are parallel to the third direction x shown in FIG. 7 .
  • the range of the first size S1 may be: 100mm ⁇ S1 ⁇ 1400mm. Further, the range of the first dimension S1 may be: 300mm ⁇ S1 ⁇ 1200mm.
  • the range of the included angle ⁇ 1 between the second wall 202 a and the first direction z may be 0° ⁇ 1 ⁇ 60°. Further, the range of the included angle ⁇ 1 between the second wall 202 a and the first direction z may be 0° ⁇ 1 ⁇ 10°.
  • the occupied space of the first battery cell 20a and the first Stability of the battery cell 20a by controlling the angle ⁇ 1 between the second wall 202a in the first battery cell 20a and the first direction z, the occupied space of the first battery cell 20a and the first Stability of the battery cell 20a.
  • the included angle ⁇ 1 is small, on the basis of ensuring the stable installation of the first battery cell 20a, the lateral space occupied by the first battery cell 20a can be relatively reduced, and the energy density of the battery 10 can be increased.
  • two electrode terminals 214a can be respectively arranged on the two side ends of the first battery cell 20a in its longitudinal direction L1, that is, two electrode terminals 214a can be arranged respectively on the two third walls 203a of the first battery cell 20a.
  • the two electrode terminals 214a can also be arranged on the same side end of the first battery cell 20a in the length direction L1, that is, the two electrode terminals 214a can be arranged on the same side of the first battery cell 20a.
  • the third wall 203a is shown in FIG. 7 and FIG. 8
  • the first battery cell 20a may further include: a pressure relief mechanism 213a, which may be arranged on the first battery cell 20a except the second wall 202a The other walls, namely the first wall 201a or the third wall 203a.
  • the position of the pressure relief mechanism 213a in each figure in FIG. 7 is only an example and not a limitation.
  • the pressure relief mechanism 213a may also be disposed on the third wall 203a located on the end surface of the first battery cell 20a.
  • FIG. 9 shows a schematic perspective view of three kinds of second battery cells 20b in the embodiment of the present application.
  • the diagram (a) in FIG. 9 may be an enlarged schematic diagram of the second battery cell 20b in FIG. 5
  • the diagram (b) in FIG. 9 may be an enlarged schematic diagram of the second battery cell 20b in FIG. 6 .
  • the third wall 203b can be perpendicular to the first wall 201b and the second wall 202b, then the shape of the third wall 203b is the same as that of the second battery cell 20b when it is perpendicular to
  • the cross-sectional shapes on the plane of the first wall 201b and the second wall 202b are the same.
  • the shape of the third wall 203b can be rectangular, or, as shown in (b) figure in Figure 9, the shape of the third wall 203b can be a parallelogram, and Alternatively, as shown in (c) of FIG. 9, the shape of the third wall 203b may be trapezoidal.
  • both the first wall 201b and the second wall 202b extend along the length direction L2 of the second battery cell 20b.
  • the thickness direction T2 of the second battery cells 20b may be parallel to the second direction y.
  • the range of the fourth dimension S4 may be: 5mm ⁇ S4 ⁇ 80mm. Further, the range of the fourth dimension S4 may be: 5mm ⁇ S4 ⁇ 30mm.
  • the included angle between the second wall 202b and the first direction z can be represented by ⁇ 2 .
  • the range of the included angle ⁇ 2 between the second wall 202b and the first direction z may be 0° ⁇ 2 ⁇ 60°. Further, the range of the included angle ⁇ 2 between the second wall 202b and the first direction z may be 0° ⁇ 2 ⁇ 10°.
  • the second battery cell 20b may further include an electrode terminal 214b and a pressure relief mechanism 213b.
  • the relevant technical solutions of the electrode terminal 214b and the pressure relief mechanism 213b please refer to the relevant technical solutions of the electrode terminal 214a and the pressure relief mechanism 214b in the first battery cell 20a above, and will not be repeated here.
  • the first battery cell 20a and the second battery cell 20b in the embodiment of the present application have been introduced above with reference to FIG. 7 to FIG. 10 , and at least one The arrangement manner of the first battery cell group 200a formed by the first battery cell 20a and the second battery cell group 200b formed by at least one second battery cell 20b in the box body 100 .
  • FIG. 11 shows a schematic top view and cross-sectional view of a battery 10 provided by an embodiment of the present application.
  • Figure (a) in Figure 11 shows a schematic top view of the battery 10
  • Figure (b) in Figure 11 is a schematic cross-sectional view along the AA' direction in Figure 11
  • Figure (c) in Figure 11 is another schematic cross-sectional view along the AA' direction in Figure (a).
  • the battery 10 may include: two first battery cell groups 200a and one second battery cell group 200b arranged along the second direction y, and in the second direction y, the two first battery cell groups
  • the body groups 200a are respectively located at two ends of a second battery cell group 200b.
  • the second battery cell group 200b may include a plurality of second battery cells 20b, and the second walls 202b of the plurality of second battery cells 20b are attached to each other to form a whole.
  • both sides of the second battery cell group 200b are provided with the first battery cell group 200a. Because in the first battery cell group 200a, at least one first battery cell 20a has a first wall 201a with a larger area facing the first direction z instead of the second direction y, the at least one first battery cell 20a faces the second direction y.
  • the expansion degree of the second wall 202a in the second direction y is small, and the first battery cell group 200a has higher strength and rigidity in the second direction y.
  • the first battery cell group 200a can be regarded as an end plate located at both ends of the second battery cell group 200b, which can form a support for the second battery cell group 200b in the second direction y, and Bearing the stress accumulated in the second direction y by the second wall 202b of the second battery cell 20b in the second battery cell group 200b, the rigidity and strength of the battery 10 as a whole in the second direction y are improved.
  • the second walls 202b of the plurality of second battery cells 20b may be inclined relative to the first direction z, so that the relative The interaction force in the first direction z is formed between the second walls 202b of adjacent second battery cells 20b, which increases the stiffness and strength of the second battery cell group 200b in the first direction z.
  • the second wall 202a of at least one first battery cell 20a in the first battery cell group 200a is attached to the inclined second wall 202b of the second battery cell 20b, at least one first battery cell 20a in the first battery cell group 200a
  • the second wall 202 of a battery cell 20a is also inclined relative to the first direction z, the second wall 202 on the same side of the at least one first battery cell 20a may be on the same plane, and the at least one first battery cell 20a
  • the second wall 202a is used to jointly form the second wall of the first battery cell group 200a.
  • the first battery cell group 200a and the second battery cell group 200b An interaction force can be formed between the two battery cell groups 200b in the first direction z, so that the first battery cell group 200a and the second battery cell group 200b can bind and restrict each other, further improving the overall stability of the battery 10. Rigidity and strength reduce the safety risk caused by the vibration and shock of the battery 10 during use.
  • Fig. 12 shows a schematic top view and cross-sectional view of a battery 10 provided by an embodiment of the present application.
  • Figure (a) in Figure 12 shows a schematic top view of the battery 10
  • Figure (b) in Figure 12 is a schematic cross-sectional view along the AA' direction in Figure 12
  • Figure (c) in Figure 12 is another schematic cross-sectional view along the AA' direction in Figure (a).
  • the battery 10 may include: a first battery cell group 200a and two second battery cell groups 200b arranged along the second direction y, and in the second direction y , two second battery cell groups 200b are respectively located at two ends of a first battery cell group 200a.
  • each second battery cell group 200b may include a plurality of second battery cells 20b, and the second walls 202b of the plurality of second battery cells 20b are attached to each other to form a overall.
  • the wall 202b passes throughout the second battery cell group 200b.
  • the second wall 202a of at least one first battery cell 20a facing the second direction y is not the wall with the largest area in the first battery cell 20a, and the second wall 202a of the first battery cell 20a
  • the thermal conductivity of the second wall 202a is relatively limited. Therefore, the first battery cell group 200a can serve as a thermal barrier to reduce heat transfer between the second battery cell group 200b on both sides of the first battery cell group 200a.
  • the second walls 202b of the plurality of second battery cells 20b may be inclined relative to the first direction z, so that the relative The interaction force in the first direction z is formed between the second walls 202b of adjacent second battery cells 20b, which increases the stiffness and strength of the second battery cell group 200b in the first direction z.
  • the second wall 202 of at least one first battery cell 20a in the first battery cell group 200a is also inclined relative to the first direction z, and the at least one first battery cell 20a is located on the same side of the second wall 202a may be located on the same plane, and the second wall 202a of the at least one first battery cell 20a is used to jointly form the second wall of the first battery cell group 200a to attach the second wall of the second battery cell 20b adjacent to it.
  • the second wall 202b is also inclined relative to the first direction z, and the at least one first battery cell 20a is located on the same side of the second wall 202a may be located on the same plane, and the second wall 202a of the at least one first battery cell 20a is used to jointly form the second wall of the first battery cell group 200a to attach the second wall of the second battery cell 20b adjacent to it.
  • the second wall 202b is also inclined relative to the first direction z, and the at least one first battery cell 20a is located on the same side of the second wall 202a
  • the first battery cell group 200a and the second battery cell group 200b An interaction force can be formed between the battery cell groups 200b in the first direction z, so that the first battery cell group 200a and the second battery cell group 200b can be bound and constrained to each other, further improving the overall rigidity of the battery 10 and strength, reducing the safety risk caused by the vibration and shock of the battery 10 during use.
  • FIG. 13 shows a schematic top view and cross-sectional view of a battery 10 provided by an embodiment of the present application.
  • Figure (a) in Figure 13 shows a schematic top view of the battery 10
  • Figure (b) in Figure 13 is a schematic cross-sectional view along the AA' direction in Figure 13
  • Figure (c) in Figure 13 is another schematic cross-sectional view along the AA' direction in Figure (a).
  • the battery 10 may include: a plurality of first battery cell groups 200a and a plurality of second battery cell groups 200b arranged along the second direction y; Above, a plurality of first battery cell groups 200a and a plurality of second battery cell groups 200b are alternately arranged.
  • a second battery cell group 200b is arranged between every two first battery cell groups 200a, and every two second battery cell groups 200b A first battery cell group 200a is disposed therebetween, so as to realize the staggered arrangement of multiple first battery cell groups 200a and multiple second battery cell groups 200b in the second direction y.
  • the multiple first battery cell groups 200a and the multiple second battery cell groups 200b are staggered in the second direction y, and the multiple first battery cell groups 200a can be regarded as It is a beam between multiple second battery cell groups 200b, which can play a good supporting role for multiple second battery cell groups 200b, and greatly improve the rigidity and strength of the battery 10 in the second direction y .
  • the number of first battery cells 20a in each first battery cell group 200a may be equal, and/or, the second battery cells in each second battery cell group 200b
  • the number of monomers 20b may be equal.
  • the size of each first battery cell group 200a in the battery 10 can be made the same, and/or the size of each second battery cell group 200b can be made the same.
  • the plurality of first battery cell groups 200a of the same size can be evenly distributed among the second battery cell groups 200b, and similarly, the plurality of second battery cell groups 200b of the same size can be evenly distributed among the first battery cells.
  • the internal structure of the battery 10 is more uniform and symmetrical, which is beneficial to improve the stability of the battery 10 .
  • the battery 10 may further include: an end plate 40 , disposed on at least one end of the whole of the first battery cell group 200a and the second battery cell group 200b in the second direction y.
  • the end plate 40 may be a side wall of the box body 100 in the second direction y.
  • the end plate 40 can be along the length direction of the first battery cell 20a and the second battery cell 20b (that is, the third direction in the figure). x) Extend to sufficiently attach to and support the first battery cell group 200a or the second battery cell group 200b.
  • the cross-section of the end plate 40 can be a right-angled trapezoid, and one end surface of the end plate 40 is used to fit the second wall 202a or the second wall 202a of the first battery cell 20a.
  • the other end faces of the second wall 202b of the battery cell 20b are all parallel or perpendicular to the horizontal plane, and can be better adapted to be installed in a box body 100 with a regular shape, such as a hollow cuboid structure.
  • the local area of the end plate 40 of this structure has a relatively large thickness in the second direction y, so the local area has relatively high rigidity and strength in the second direction y, which improves the overall rigidity and strength of the battery 10. and stability.
  • the end plate 40 can also be a conventional rectangular plate structure to be attached to the second wall 202a of the first battery cell 20a or the second wall 202b of the second battery cell 20b.
  • Fig. 11 to Fig. 13 only schematically show the schematic structural diagrams of several end plates 40 in the embodiment of the present application, and the end plates 40 can also have other shapes besides the shapes shown in the above-mentioned embodiments , and the end plate 40 may not be attached to the second wall 202a of the first battery cell 20a or the second wall 202b of the second battery cell 20b, the end plate 40 is connected to the first battery cell 20a or the second battery cell
  • the gaps between the monomers 20b can be filled with structural glue or other related components.
  • first battery cell group 200a and the second battery cell group 200b in the case 100 in the embodiment of the present application is only illustrated in Figs. 11 to 13 above as examples.
  • first battery cell group 200a and the second battery cell 200b can also be arranged together in the box 100 in other ways, for example, in the second direction y, a plurality of first battery cells
  • the body groups 200a are arranged adjacent to each other, and they can be arranged at intervals between two second battery cell groups 200b, or on one side of the second battery cell group 200b, etc.
  • the quantity and arrangement of the first battery cell group 200a and the second battery cell group 200b are not limited.
  • the range of the number n2 of the second battery cells 20b in the second battery cell group 200b may be: n2 ⁇ 1. Further, 1 ⁇ n2 ⁇ 6.
  • the number of the first battery cells 20a in the first battery cell group 200a may be less than or equal to the number of the second battery cells 20b in the second battery cell group 200b.
  • the first battery cells 20a in the first battery cell group 200a may be low-expansion battery cells.
  • the expansion coefficient of the first battery cell 20a is small, and the volume change of the expanded first battery cell 20a compared with the initial state is small during the working process.
  • the expansion coefficient of the first battery cell 20a may be smaller than that of the second battery cell 20b.
  • the volume expansion degree of the first battery cell 20a is smaller than the volume expansion degree of the second battery cell 20b.
  • the first battery cell group 200a in the first battery cell group 200a can be a high-safety battery cell.
  • the first battery cell 20a generates less heat during operation, and when the pressure relief mechanism 213a is activated, the temperature of the exhaust discharged through the pressure relief mechanism 213a is relatively low.
  • the energy density of the first battery cell 20a may be lower than the energy density of the second battery cell 20b.
  • the temperature of the exhaust discharged from the first battery cell 20a through its pressure relief structure 213a may be lower than the temperature of the discharge discharged from the second battery cell 20b through its pressure relief structure 213b.
  • the electrode terminal 214a of at least one first battery cell 20a in the first battery cell group 200a may be located at least The third wall 203a of a first battery cell 20a.
  • the electrode terminal 214b of at least one second battery cell 20b in the second battery cells 200b can also be located on the third wall 203b of at least one battery cell 20b.
  • FIG. 14 shows two schematic side views of the battery 10 provided by the embodiment of the present application.
  • the box 100 of the battery 10 may include an upper cover (not shown in the figure) and a bottom plate 101, and along the second direction y, the box 100 may include a first The side wall 102 and the second side wall 103, the first battery cell group 200a and the second battery cell group 200b are arranged at intervals in the second direction y.
  • the electrode terminal 214a of the first battery cell 20a in the first battery cell group 200a is disposed close to the first side wall 102 or the second side wall 103
  • the second battery cell 20b in the second battery cell group 200b The electrode terminal 214b is disposed close to the upper cover or the bottom plate 101.
  • the electrode terminals 214a of the first battery cells 20a close to the upper cover or the bottom plate 101 are adjacent to each other.
  • the bus member for connecting the adjacent first battery cell group 200a and the second battery cell group 200b is relatively short. This further facilitates the disposition and installation of the current flow components in the case 100 of the battery 10 and optimizes the overall performance of the battery 10 .
  • the electrode terminals 214a of the plurality of first battery cells 20a in the battery 10 all face the same side wall of the box body 100 in the second direction y.
  • the electrode terminals 214 a of the plurality of first battery cells 20 a all face the second side wall 103 of the box body 100 .
  • the electrode terminals 214b of the plurality of second battery cells 20b in the battery 10 may all face the same wall of the box 100 in the first direction z.
  • the electrode terminals 214b of the plurality of second battery cells 20b all face the bottom plate 101 of the case 100 .
  • the electrode terminals 214a of the first battery cells 20a of the adjacent first battery cell groups 200a are arranged close to or far from each other.
  • the electrode terminal 214a of the first battery cell 20a of one of the first battery cell groups 200a can be close to On the first side wall 102
  • the electrode terminal 214a of the first battery cell 20a of another first battery cell group 200a can be close to the second side wall 103, so that the first battery of the adjacent first battery cell group 200a
  • the electrode terminals 214a of the cells 20a are arranged close to or apart from each other.
  • FIG. 14 shows that the electrode terminal 214a of the cells 20a are arranged close to or apart from each other.
  • the electrode terminal 214b of the second battery cell 20b of one of the second battery cell groups 200b can be close to On the upper cover of the box body 100 , the electrode terminal 214 b of the second battery cell 20 b of another second battery cell group 200 b can be close to the bottom plate 101 of the box body 100 .
  • the wiring of the confluence components of any adjacent first battery cell group 200a and second battery cell group 200b in the battery 10 can be made shorter, so that the overall performance of the battery 10 can be further optimized .
  • only one electrode terminal 214a is provided on one third wall 203a of the first battery cell 20a in FIG. Only one electrode terminal 214b is provided.
  • a third wall 203a of the first battery cell 20a may also be provided with two electrode terminals 214a at the same time, and/or a third wall 203b of the second battery cell 20b may also be provided with two electrode terminals 214a at the same time. electrode terminal 214b.
  • FIG. 14 only schematically shows the schematic diagram of the electrode terminals of the first battery cell group 200a and the second battery cell group 200b shown in (b) in FIG.
  • the specific arrangement of the electrode terminals of the battery cell group 200a and the second battery cell group 200b can also refer to the relevant descriptions of the above embodiments, which will not be repeated here.
  • the providing module 401 is used to: provide the box body 100, and provide the first battery cell group 200a and the second battery cell group 200b, the first battery cell group 200a includes at least one first battery cell 20a, the second battery cell group 200b
  • the battery cell group 200b includes at least one second battery cell 20b, the first battery cell 20a and the second battery cell 20b have a polyhedral structure, and the wall with the largest area in the first battery cell 20a is its first wall 201a , the wall with the largest area in the second battery cell 20b is its second wall 202b; wherein, at least one first battery cell 20a in the first battery cell group 200a is arranged along the first direction z, and the adjacent first
  • the battery cells 20a are attached to each other by their first walls 201a, at least one second battery cell 20b in the second battery cell group 200b is arranged along the second direction y, and adjacent second battery cells 20b are connected by their first walls.
  • the two walls 202b are attached to each other, and the first direction z
  • the installation module 402 is used for: accommodating the first battery cell group 200 a and the second battery cell group 200 b in the case 100 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例提供一种电池(10)、用电装置、制备电池的方法和制备电池的装置,可提高电池的刚度和强度。该电池(10)包括:箱体(100);第一电池单体组(200a)和第二电池单体组(200b),容纳于箱体(100)中,第一电池单体(20a)和第二电池单体为多面体结构,第一电池单体(20a)中面积最大的壁为其第一壁,第二电池单体中面积最大的壁为其第二壁;其中,第一电池单体组(200a)内的至少一个第一电池单体(20a)沿第一方向(z)排列,相邻的第一电池单体(20a)通过其第一壁相互附接,第二电池单体组(200b)内的至少一个第二电池单体沿第二方向(y)排列,相邻的第二电池单体通过其第二壁相互附接,第一方向(z)与第二方向(y)相互垂直。

Description

电池、用电装置、制备电池的方法和装置
本申请要求2021年10月12日提交中国专利局、申请号为202111188271.0、发明名称为“电池单体、电池和用电装置”的中国发明申请的优先权,其全部内容通过应用结合在本申请中。
技术领域
本申请实施例涉及电池领域,并且更具体地,涉及一种电池、用电装置、制备电池的方法和装置。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
电池安装于用电装置,例如,安装于电动车辆,电动车辆的运动会对电池造成一定的冲击,若电池刚度和强度较弱,则该冲击会对电池的性能产生不利影响且可能会引发安全问题。因此,如何提高电池的刚度和强度,是电池技术中的一个亟待解决的技术问题。
发明内容
本申请提供了一种电池、用电装置、制备电池的方法和制备电池的装置,可提高电池的刚度和强度。
第一方面,提供一种电池,包括:箱体;第一电池单体组和第二电池单体组,容纳于该箱体中,该第一电池单体组包括至少一个第一电池单体,该第二电池单体组包括至少一个第二电池单体,该第一电池单体和该第二电池单体为多面体结构,该第一电池单体中面积最大的壁为其第一壁,该第二电池单体中面积最大的壁为其第二壁;其中,该第一电池单体组内的多个该第一电池单体沿第一方向排列,相邻的该第一电池单体通过其第一壁相互附接,该第二电池单体组内的至少一个该第二电池单体沿第二方向排列,相邻的该第二电池单体通过其第二壁相互附接,该第一方向与该第二方向相互垂直。
通过本申请实施例的技术方案,第一电池单体组中至少一个第一电池单体通过其面积最大的第一壁相互附接且沿第一方向排列,在电池工作过程中,第一电池单体组中的第一电池单体主要朝第一方向膨胀,该膨胀对第一壁产生的应力沿第一方向累 积,且第一电池单体组中的第一电池单体产生的热量也主要通过其第一壁进行传递。对应的,第二电池单体组中至少一个第二电池单体通过其面积最大的第二壁相互附接且沿第二方向排列,第二电池单体组中的第二电池单体主要朝第二方向膨胀,该膨胀对第二壁产生的应力沿第二方向累积,且第二电池单体组中的第二电池单体产生的热量也主要通过其第二壁进行传递。因此,通过本申请实施例的技术方案,可以避免电池中全部的电池单体的应力和热量朝向同一个方向累积和传递,提高电池整体的刚度和强度,并提高电池在用电装置中的安全性能。
在一些可能的实施方式中,该第一电池单体组与该第二电池单体组沿该第二方向排列,该第一电池单体组中多个该第一电池单体的第二壁与该第二电池单体组中与该第一电池单体组相邻的该第二电池单体的第二壁附接,以实现该第一电池单体组与该第二电池单体组之间的相互附接。
通过该实施方式的技术方案,第一电池单体组与第二电池单体组相互附接形成一个整体安装于箱体中,相比于第一电池单体组和第二电池单体组间隔设置的技术方案,可以避免在第一电池单体和第二电池单体之间的间隔设置填充物,提高电池整体的能量密度并降低电池的重量。另外,由于第一电池单体组中,至少一个第一电池单体具有较大面积的第一壁朝向第一方向而非第二方向,该至少一个第一电池单体朝向第二方向的第二壁的膨胀程度较小,该第一电池单体组在第二方向上具有较高的强度和刚度。在本申请实施例中,第一电池单体组可看成是位于第二电池单体组一侧的支撑件,可对第二电池单体组形成第二方向上的支撑,并承受第二电池单体组中第二电池单体的第二壁在第二方向上积累的应力,提高电池整体在第二方向上的刚度和强度。
在一些可能的实施方式中,该第一电池单体组在该第一方向上的尺寸与该第二电池单体组在该第一方向上的尺寸之差在预设范围内;和/或,该第一电池单体组在第三方向上的尺寸与该第二电池单体组在该第三方向上的尺寸之差在预设范围内,该第三方向垂直于该第一方向和该第二方向。
通过该实施方式的技术方案,可以使得第一电池单体组和第二电池单体的整体形状更为规则,便于第一电池单体组和第二电池单体组的整体安装于规则形态的箱体中,节省第一电池单体组和第二电池单体组所需的安装空间,并提高电池的能量密度。
在一些可能的实施方式中,该电池包括:沿第二方向排列的两个该第一电池单体组和一个该第二电池单体组;在该第二方向上,两个该第一电池单体组分别位于一个该第二电池单体组的两端。
通过该实施方式的技术方案,在第二方向上,第二电池单体组的两侧均设置有第一电池单体组。由于第一电池单体组中,至少一个第一电池单体具有较大面积的第一壁朝向第一方向而非第二方向,该至少一个第一电池单体朝向第二方向的第二壁的膨胀程度较小,该第一电池单体组在第二方向上具有较高的强度和刚度。在本申请实施例中,第一电池单体组可看成是位于第二电池单体组两端的端板,可对第二电池单体组形成第二方向上的支撑,并承受第二电池单体组中第二电池单体的第二壁在第二方向上积累的应力,提高电池整体在第二方向上的刚度和强度。
在一些可能的实施方式中,该电池包括:沿第二方向排列的一个该第一电池单 体组和两个该第二电池单体组;在该第二方向上,两个该第二电池单体组分别位于一个该第一电池单体组的两端。
通过该实施方式的技术方案,一方面,第一电池单体组可看成是位于两个第二电池单体组之间的横梁,可对其两侧的第二电池单体组形成第二方向上的支撑,并承受第二电池单体组中第二电池单体的第二壁在第二方向上积累的应力,提高电池整体在第二方向上的刚度和强度。另一方面,由于第二电池单体组的多个第二电池单体之间通过最大面积的第二壁相互附接,多个第二电池单体产生的热量可通过第二壁在整个第二电池单体组内传递。而第一电池单体组中,至少一个第一电池单体朝向第二方向的第二壁不是第一电池单体中面积最大的壁,该第一电池单体的第二壁的导热能力较为有限。因此,第一电池单体组可作为热阻挡件,降低该第一电池单体组两侧第二电池单体组之间的热量传递。若第二电池单体组中某个第二电池单体发生热失控,其仅能影响其所在第二电池单体组中的其它第二电池单体,而对第一电池单体组以及其它第二电池单体组的影响较小,从而提高电池整体的安全性能。
在一些可能的实施方式中,该电池包括:沿第二方向排列的多个该第一电池单体组和多个该第二电池单体组;在该第二方向上,多个该第一电池单体组和多个该第二电池单体组交错排列。
通过该实施方式的技术方案,多个第一电池单体组和多个第二电池单体组在第二方向上的交错排列,多个第一电池单体组可看成是多个第二电池单体组之间的横梁,能够对多个第二电池单体组起到良好的支撑作用,较大程度的提高电池在第二方向上的刚度和强度。
在一些可能的实施方式中,每个该第一电池单体组中该第一电池单体的数量相等;和/或,每个该第二电池单体组中该第二电池单体的数量相等。
通过该实施例的技术方案,可以使得电池中每个第一电池单体组的尺寸相同,和/或,每个第二电池单体组的尺寸相同。该尺寸相同的多个第一电池单体组可均匀分布于第二电池单体组之间,同样的,该尺寸相同的多个第二电池单体组可均匀分布于第一电池单体组之间,使得电池的内部结构更为均匀和对称,有利于提高电池的稳定性。
在一些可能的实施方式中,该第一方向平行于重力方向,该第一电池单体包括相互连接的第一壁和第二壁,且该第二电池单体包括相互连接的第一壁和第二壁;该第一电池单体的第一壁和该第二电池单体的第一壁垂直于该第一方向,该第一电池单体的第二壁和该第二电池单体的第二壁均相对于该第一方向倾斜设置。
通过该实施例的技术方案,在第二电池单体组中,相邻第二电池单体之间相互附接的第二壁相对于第一方向倾斜设置,即相对于重力方向倾斜设置,因此,相邻的第二壁之间形成平行于重力方向的相互作用力,使得每个第二电池单体至少有一个倾斜的第二壁被相邻第二电池单体的倾斜的第二壁压住,相邻第二电池单体之间构成相互作用力使得二者相互束缚和制约,可提高电池整体的刚度和强度,降低电池在使用过程中的振动冲击带来的安全风险。另外,若第一电池单体组和第二电池单体组相互附接,则第一电池单体组和第二电池单体组之间也可通过倾斜的第二壁形成相互束缚 和制约,进一步可提高电池整体的刚度和强度,降低电池在使用过程中的振动冲击带来的安全风险。
在一些可能的实施方式中,该第一电池单体包括两个相对设置的该第一壁和两个相对设置的两个第二壁,该第一电池单体在垂直于其第一壁和第二壁的平面上的截面为平行四边形或梯形;和/或,该第二电池单体包括两个相对设置的第一壁和两个相对设置的两个第二壁,该第二电池单体在垂直于其第一壁和第二壁的平面上的截面为平行四边形或梯形。
在一些可能的实施方式中,该第一电池单体组内的多个该第一电池单体沿其厚度方向排列,该第一电池单体中相互连接的第一壁和第二壁沿该第一电池单体的长度方向延伸,和/或,该第二电池单体组内的至少一个该第二电池单体沿其厚度方向排列,该第二电池单体中相互连接的第一壁和第二壁沿该第二电池单体的长度方向延伸。
在一些可能的实施方式中,该第一电池单体还包括:第三壁,位于该第一电池单体的长度方向上的一端,该第一电池单体的电极端子设置于该第三壁;和/或,该第二电池单体还包括:第三壁,位于该第二电池单体的长度方向上的一端,该第二电池单体的电极端子设置于该第三壁。
通过该实施方式的技术方案,第一电池单体和第二电池单体的电极端子可设置于位于其长度方向的端部的第三壁,不会影响第一电池单体和第二电池单体中沿其长度方向延伸且具有较大面积的第一壁和第二壁与其它部件附接,保证第一电池单体和第二电池单体具有较好的稳定性。
在一些可能的实施方式中,该第一电池单体组中至少一个该第一电池单体的电极端子沿该第一方向排列;和/或,该第二电池单体组中至少一个该第二电池单体的电极端子沿该第二方向排列。
通过该实施方式的技术方案,可以便于该至少一个第一电池单体的电极端子之间通过较短的汇流部件相互电连接以及多个第二电池单体的电极端子之间通过较短的汇流部件相互电连接,从而便于汇流部件在电池的箱体中的设置和安装。
在一些可能的实施方式中,沿该第一方向,该箱体包括上盖和底板,沿该第二方向,该箱体包括第一侧壁和第二侧壁,该第一电池单体组与该第二电池单体组在该第二方向间隔设置;其中,该第一电池单体组中的该第一电池单体的电极端子靠近该第一侧壁或该第二侧壁设置,该第二电池单体组中的该第二电池单体的电极端子靠近该上盖或该底板设置。
通过该实施方式的技术方案,在第二方向上,第一电池单体组中的第一电池单体的电极端子靠近第一侧壁或第二侧壁设置,可以使得第一电池单体组中第一电池单体的电极端子靠近于与其相邻的第二电池单体组,与此同时,在第一方向上,第二电池单体组中的第二电池单体的电极端子靠近上盖或底板设置,可以使得第二电池单体组中的第二电池单体的电极端子与第一电池单体组中靠近上盖或底板的第一电池单体的电极端子相邻,此时,用于连接相邻的第一电池单体组和第二电池单体组的汇流部件较短,进一步便于汇流部件在电池的箱体中的设置和安装,且优化电池的整体性能。
在一些可能的实施方式中,相邻的该第一电池单体组的该第一电池单体的电极 端子相互靠近或相互远离设置。
在一些可能的实施方式中,该第一电池单体组中多个该第一电池单体的电极端子靠近于该第二电池单体组设置。
通过该实施方式的技术方案,可以便于第一电池单体和第二电池单体组之间通过较短的汇流部件相互电连接,从而便于汇流部件在电池的箱体中的设置和安装。
在一些可能的实施方式中,该第一电池单体组中该第一电池单体的数量小于等于该第二电池单体组中该第二电池单体的数量。
在一些可能的实施方式中,该第一电池单体和该第二电池单体为两种不同化学体系的电池单体。
通过该实施方式的技术方案,在兼顾电池的刚度和强度的基础上,可以综合不同化学体系的电池单体的优点,提升电池的综合性能,使得其具有更加广阔的应用前景。
在一些可能的实施方式中,该第一电池单体的膨胀系数小于该第二电池单体的膨胀系数。
通过该实施方式的技术方案,可以降低第一电池单体组在运行过程中的膨胀对电池带来的影响,进一步提升电池整体的刚度和强度。
在一些可能的实施方式中,该第一电池单体的能量密度小于该第二电池单体的能量密度。
通过该实施方式的技术方案,可以提升第一电池单体组的安全性能,以进一步提升电池整体的安全性能。
第二方面,提供一种用电装置,包括:上述第一方面或第一方面中任一可能的实施方式中的电池,该电池用于提供电能。
第三方面,提供一种制备电池的方法,包括:提供箱体;提供第一电池单体组和第二电池单体组,该第一电池单体组包括至少一个第一电池单体,该第二电池单体组包括至少一个第二电池单体,该第一电池单体和该第二电池单体为多面体结构,该第一电池单体中面积最大的壁为其第一壁,该第二电池单体中面积最大的壁为其第二壁;其中,该第一电池单体组内的至少一个该第一电池单体沿第一方向排列,相邻的该第一电池单体通过其第一壁相互附接,该第二电池单体组内的至少一个该第二电池单体沿第二方向排列,相邻的该第二电池单体通过其第二壁相互附接,该第一方向与该第二方向相互垂直;将该第一电池单体组和该第二电池单体组容纳于该箱体中。
第四方面,提供一种制备电池的装置,包括:提供模块,用于:提供箱体;提供第一电池单体组和第二电池单体组,该第一电池单体组包括至少一个第一电池单体,该第二电池单体组包括至少一个第二电池单体,该第一电池单体和该第二电池单体为多面体结构,该第一电池单体中面积最大的壁为其第一壁,该第二电池单体中面积最大的壁为其第二壁;其中,该第一电池单体组内的至少一个该第一电池单体沿第一方向排列,相邻的该第一电池单体通过其第一壁相互附接,该第二电池单体组内的至少一个该第二电池单体沿第二方向排列,相邻的该第二电池单体通过其第二壁相互附接,该第一方向与该第二方向相互垂直;安装模块,用于:将该第一电池单体组和该第二 电池单体组容纳于该箱体中。
通过本申请实施例的技术方案,第一电池单体组中至少一个第一电池单体通过其面积最大的第一壁相互附接且沿第一方向排列,在电池工作过程中,第一电池单体组中的第一电池单体主要朝第一方向膨胀,该膨胀对第一壁产生的应力沿第一方向累积,且第一电池单体组中的第一电池单体产生的热量也主要通过其第一壁进行传递。对应的,第二电池单体组中至少一个第二电池单体通过其面积最大的第二壁相互附接且沿第二方向排列,第二电池单体组中的第二电池单体主要朝第二方向膨胀,该膨胀对第二壁产生的应力沿第二方向累积,且第二电池单体组中的第二电池单体产生的热量也主要通过其第二壁进行传递。因此,通过本申请实施例的技术方案,可以避免电池中全部的电池单体的应力和热量朝向同一个方向累积和传递,提高电池整体的刚度和强度,并提高电池在用电装置中的安全性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池的结构示意图;
图3是本申请一实施例公开的一种电池单体的结构示意图;
图4是本申请一实施例公开的一种电池的结构示意图;
图5是本申请一实施例公开的一种电池的示意性俯视图和截面图;
图6是本申请一实施例公开的一种电池的示意性俯视图和截面图;
图7是本申请一实施例公开的三种第一电池单体的结构示意图;
图8是本申请一实施例公开的一种第一电池单体的示意性正视图和侧视图;
图9是本申请一实施例公开的三种第二电池单体的结构示意图;
图10是本申请一实施例公开的一种第二电池单体的示意性正视图和侧视图;
图11是本申请一实施例公开的一种电池的示意性俯视图和截面图;
图12是本申请一实施例公开的一种电池的示意性俯视图和截面图;
图13是本申请一实施例公开的一种电池的示意性俯视图和截面图;
图14是本申请一实施例公开的两种电池的示意性侧视图;
图15是本申请一实施例公开的制备电池的方法的示意性流程图;
图16是本申请一实施例公开的制备电池的装置的示意性框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的 详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
本申请中,电池是指包括一个或多个电池单体以提供电能的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
可选地,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。在一些实施方式中,电池单体也可称之为电芯。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可 以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为聚丙烯(Polypropylene,PP)或聚乙烯(Polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池在用电装置中安装的稳定性,以提高电池在用电装置中的安全性。
在一些电池封装技术中,对于常规的方形电池单体,例如,刀片式电池单体,电池单体的大面与大面之间可通过结构胶相互固定连接,然后安装设置于电池的箱体中。在电池单体的持续工作过程中,电池单体内部会产生高压气体,该高压气体会使得电池单体膨胀,从而对电池单体中的大面产生较大的应力。通过大面相互连接的多个电池单体中,应力会在多个电池单体的连接方向上持续累积,影响该方向上电池整体的强度和刚度,从而带来一定的安全隐患。
鉴于此,本申请提供一种技术方案,电池的箱体中容纳有第一电池单体组和第二电池单体组,其中,第一电池单体组中包括至少一个第一电池单体,该至少一个第一电池单体沿第一方向排列,且相邻的第一电池单体通过其面积最大的第一壁相互附接;第二电池单体组内的至少一个第二电池单体沿第二方向排列,且相邻的第二电池单体通过其其面积最大的第二壁相互附接,该第一方向与第二方向相互垂直。通过该实施方式,第一电池单体组中至少一个第一电池单体通过其面积最大的第一壁相互附接且沿第一方向排列,第一电池单体组中的第一电池单体主要朝第一方向膨胀,该膨胀对第一壁产生的应力沿第一方向累积。对应的,第二电池单体组中至少一个第二电池单体通过其面积最大的第二壁相互附接且沿第二方向排列,第二电池单体组中的第二电池单体主要朝第二方向膨胀,该膨胀对第二壁产生的应力沿第二方向累积。因此,通过本申请实施例的技术方案,可以避免电池中全部的电池单体因膨胀产生的应力朝向同一个方向累积,提高电池整体的刚度和强度,以提高电池在用电装置中的安全性能。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的装置,还可以适用于所有使用电池的装置,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力 汽车或增程式汽车等。车辆1的内部可以设置马达11,控制器12以及电池10,控制器12用来控制电池10为马达11的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池也可以称为电池包。可选地,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。
例如,如图2所示,为本申请一个实施例的一种电池10的结构示意图,电池10可以包括多个电池单体20。电池10还可以包括箱体100(或称罩体),箱体100的内部为中空结构,多个电池单体20容纳于箱体100内。如图2所示,箱体100可以包括两部分,这里分别称为第一部分111和第二部分112,第一部分111和第二部分112扣合在一起。第一部分111和第二部分112的形状可以根据多个电池单体20组合的形状而定,第一部分111和第二部分112可以均具有一个开口。例如,第一部分111和第二部分112均可以为中空长方体且各自只有一个面为开口面,第一部分111的开口和第二部分112的开口相对设置,并且第一部分111和第二部分112相互扣合形成具有封闭腔室的箱体100。多个电池单体20相互并联或串联或混联组合后置于第一部分111和第二部分112扣合后形成的箱体100内。
可选地,在一种实施方式中,可首先将多个电池单体(cell)20先整合为至少一个电池模组(module),然后将电池模组安装于电池10的箱体100中,形成电池包(pack)形态,在该实施方式中,电池模组之间可以设置有横梁等辅助结构件,能够提高电池模组在箱体100中安装稳定性。
可选地,在第二种实施方式中,也可直接将多个电池单体20相互连接,并安装设置于箱体100中形成电池包形态,去除了电池模组这个中间状态,箱体100中可不必设置横梁等辅助结构件,从而可降低电池10的质量并提高电池10的能量密度。该实施方式在相关技术中也可称之为电池单体至电池包(cell to pack,CTP)的安装技术。
可选地,在第三种实施方式中,箱体100可集成于电池10所在的用电装置,换言之,箱体100可与用电装置中的结构件一体成型。多个电池单体20相互连接后,可直接安装设置于用电装置中的箱体100。作为一种示例,箱体100可集成设置于上述车辆1的底盘的局部区域,多个电池单体20相互连接后,可直接安装于车辆1的底盘。该实施方式在相关技术中也可称之为电池单体至底盘(cell to chassis,CTC)的安装技术。
可选地,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之 间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体100而引出。可选地,导电机构也可属于汇流部件。
根据不同的电力需求,电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。
如图3所示,为本申请一个实施例的电池单体20的结构示意图,电池单体20包括一个或多个电极组件22、壳体211、第一盖板212a和第二盖板212b。壳体211的壁以及第一盖板212a和第二盖板212b均称为电池单体20的壁。壳体211根据一个或多个电极组件22组合后的形状而定,作为示例,图3中所示的壳体211可以为中空的长方体。壳体211中的至少一个面具有开口以便一个或多个电极组件22可以放置于壳体211内。例如,在图3所示实施例中,壳体211中相对的两个面均具有开口,第一盖板212a和第二盖板212b分别覆盖该两个面上的开口并且与壳体211连接,以形成放置电极组件22的封闭的腔体。壳体211内填充有电解质,例如电解液。
该电池单体20还可以包括两个电极端子214。可选地,如图3所示,该两个电极端子214可以分别设置在第一盖板212a和第二盖板212b上。或者,在另一些实施例中,该两个电极端子214也可设置于同一盖板上,例如,均设置于第一盖板212a或者第二盖板212b。
第一盖板212a和第二盖板212b通常是平板形状,两个电极端子214可分别固定在第一盖板212a和第二盖板212b的平板面上,两个电极端子214分别为正电极端子和负电极端子。每个电极端子214各对应设置一个连接构件,或者也可以称为集流构件,其位于第一盖板212a与电极组件22之间以及第二盖板212b与电极组件22之间,该连接构件用于将电极组件22和电极端子214实现电连接。
可选地,如图3所示,电池单体20还可包括第一支架216a和第二支架(图中未示出),该第一支架216a设置于电极组件22和第一盖板212a之间,用于固定并连接该第一盖板212a。对应的,第二支架设置于电极组件22和第二盖板212b之间,用于固定并连接该第二盖板212b。可选地,上述连接电极组件22和电极端子214的连接构件可分别位于该第一支架216a和第二支架中。
另外,在电池单体20中,每个电极组件22具有第一极耳221和第二极耳。第一极耳221和第二极耳的极性相反。例如,当第一极耳221为正极极耳时,第二极耳为负极极耳。一个或多个电极组件22的第一极耳221通过一个连接构件与一个电极端子连接,一个或多个电极组件22的第二极耳通过另一个连接构件与另一个电极端子连接。例如,如图3所示,位于第一盖板212a上的电极端子214可通过位于第一支架216a中的一个连接构件与第一极耳221连接。另外,位于第二盖板212b上的另一个电极端子214可通过位于第二支架的另一个连接构件与第二极耳连接。
作为示例,电池单体20的一个壁上还可设置泄压机构213。泄压机构213用于电池单体20的内部压力或温度达到阈值时致动以泄放内部压力或温度。
可选地,在本申请另一个实施例中,泄压机构213和电极端子214设置于电池单体20的同一壁。作为示例,如图3所示,电极端子214和泄压机构213均可设置于 电池单体20的第二盖板212b。
将泄压机构213和电极端子214设置于电池单体20的同一壁上,可以方便泄压机构213和电极端子214的加工和安装,有利于提高电池10的生产效率。
当然,在本申请其它实施例中,泄压机构213也可和电极端子214设置于电池单体20的不同壁,例如,电池10中的两个电极端子214分别设置于电池单体20的第一盖板212a和第二盖板212b,而泄压机构213设置于电池10中除第一盖板212a和第二盖板212b以外的其它壁。
上述泄压机构213可以为其所在壁的一部分,也可以与其所在壁为分体式结构,通过例如焊接的方式固定在其所在壁上。例如,在图3所示实施例中,当泄压机构213为第二盖板212b的一部分时,泄压机构213可以通过在第二盖板212b上设置刻痕的方式形成,与该刻痕的对应的第二盖板212b厚度小于泄压机构213除刻痕处其他区域的厚度。刻痕处是泄压机构213最薄弱的位置。当电池单体20产生的气体太多使得壳体211内部压力升高并达到阈值或电池单体20内部反应产生热量造成电池单体20内部温度升高并达到阈值时,泄压机构213可以在刻痕处发生破裂而导致壳体211内外相通,气体压力及温度通过泄压机构213的裂开向外释放,进而避免电池单体20发生爆炸。
另外,泄压机构213可以为各种可能的泄压机构,本申请实施例对此并不限定。例如,泄压机构213可以为温敏泄压机构,温敏泄压机构被配置为在设有泄压机构213的电池单体20的内部温度达到阈值时能够熔化;和/或,泄压机构213可以为压敏泄压机构,压敏泄压机构被配置为在设有泄压机构213的电池单体20的内部气压达到阈值时能够破裂。
可选地,如图3所示,电池单体20还可包括:第一保护层215a和第二保护层215b,该第一保护层215a和第二保护层215b分别覆盖于第一盖板212a和第二盖板212b,以对该两个盖板上的部件进行保护。可选地,当第一盖板212a和第二盖板212b为金属盖板时,该第一保护层215a和第二保护层215b可为绝缘层,用于实现金属盖板与外部的绝缘。另外,从图3可以看出,第一保护层215a和第二保护层215b上可形成有适配于电极端子214和泄压机构213的开孔,以使得该电极端子214通过该开孔与汇流部件连接,且泄压机构213通过该开孔释放电池单体20的内部气压。
图4示出了本申请实施例提供的一种电池10的示意性结构图。
如图4所示,该电池10包括:箱体100;第一电池单体组200a和第二电池单体组200b,容纳于该箱体100中,该第一电池单体组200a包括至少一个第一电池单体20a,第二电池单体组200b包括至少一个第二电池单体20b,该第一电池单体20a和第二电池单体20b为多面体结构。
其中,第一电池单体组200a内的至少一个第一电池单体20a沿第一方向z排列,相邻的第一电池单体20a通过其第一壁201a相互附接,第二电池单体组200b内的至少一个第二电池单体20b沿第二方向y排列,相邻的第二电池单体20b通过其第二壁202b相互附接,第一方向z与第二方向y相互垂直。
可选地,在本申请实施例中,箱体100可为上文图2所示实施例中的箱体100。为了便于箱体100在用电装置中的安装,作为示例而非限定,该箱体100可为中空六面 体结构。
可选地,在本申请实施例中,第一电池单体组200a中的第一电池单体20a和第二电池单体组200b中的第二电池单体20b的内部结构可参见上文图3所示实施例中电池单体20的相关描述。
可选地,为了便于第一电池单体20a和第二电池单体20b在箱体100中安装并提高电池单体20的安装稳定性,第一电池单体20a和第二电池单体20b可为多面体结构。作为示例而非限定,在本申请实施例中,第一电池单体20a和第二电池单体20b可为六面体结构。
可选地,对于第一电池单体20a和第二电池单体20b,其第一壁和第二壁可为上文图3所示实施例的电池单体20中的壳体211、第一盖板212a或者第二盖板212b。
如图4所示,第一电池单体组200a中包括至少一个第一电池单体20a,该至少一个第一电池单体20a通过其面积最大的第一壁201a相互附接且沿第一方向z排列。可选地,该第一电池单体20a的第一壁201a上可涂覆有结构胶,以实现相邻的第一电池单体20a之间通过结构胶相互连接。可选地,当第一电池单体组200a仅包括一个第一电池单体20a时,该一个第一电池单体20a中面积最大的第一壁201a可朝向第一方向z。
对应的,第二电池单体组200b中至少一个第二电池单体20b通过其面积最大的第二壁202b相互附接且沿第二方向y排列,该第二方向y与上述第一方向x相互垂直。可选地,该第二电池单体20b的第二壁202b上可涂覆有结构胶,以实现相邻的第二电池单体20b之间通过结构胶相互连接。可选地,当第二电池单体组200b仅包括一个第二电池单体组20b时,该一个第二电池单体组20b中面积最大的第二壁202b可朝向第二方向y。
第一电池单体20a和第二电池单体20b在持续工作的过程中,其内部会产生高压气体和热量,高压气体使得第一电池单体20a和第二电池单体20b膨胀,其对第一电池单体20a中面积较大的第一壁201a和第二电池单体20b中面积较大的第二壁202b产生较大的应力,且第一电池单体20a和第二电池单体20b内部大部分的热量也会经由该面积较大的壁进行传递。通过本申请实施例的技术方案,第一电池单体组200a和第二电池单体组200b产生的应力和热量朝向不同的方向传递,防止应力在同一方向上积累影响电池10在该方向上的强度和刚度,也可防止热量在同一方向上持续传递影响多个电池单体的正常工作,从而提高电池10整体的刚度和强度,并提高电池10在用电装置中的安全性能。
图5示出了图4所示实施例中电池10的一种示意性俯视图和截面图。其中,图5中的(a)图示出了电池10的示意性俯视图,图5中的(b)图为(a)图中沿A-A’方向的示意性截面图。
可选地,结合图4和图5所示,在本申请实施例中,为了便于第一电池单体组200a中至少一个第一电池单体20a相互附接,该第一电池单体组200a中至少一个第一电池单体20a可沿其厚度方向排列,换言之,该至少一个第一电池单体20a的厚度方向可平行于第一方向z。另外,为了实现第一电池单体20a中第一壁201a的面积最大,该 第一电池单体20a的第一壁201a可沿第一电池单体20a的长度方向延伸,相应的,与其相互连接的第二壁202a同样可沿第一电池单体20a的长度方向延伸。
类似地,为了便于第二电池单体组200b中多个第二电池单体20b相互排列,该第二电池单体组200b中多个第二电池单体20b可沿其厚度方向排列,换言之,该多个第二电池单体20b的厚度方向可平行于第二方向y。另外,为了实现第二电池单体20b中第二壁202b的面积最大,该第二电池单体20b的第二壁202b可沿第二电池单体20b的长度方向延伸,相应的,与其相互连接的第一壁201b同样可沿第二电池单体20b的长度方向延伸。
可以理解的是,在三维空间中,多面体结构在其长度方向的尺寸大于该多面体结构在其它方向上的尺寸,换言之,多面体结构的电池单体中具有最大尺寸的方向即为其长度方向。对应的,多面体结构的电池单体中具有最小尺寸的方向即为其厚度方向。
该图4和图5中所示的第一电池单体20a和第二电池单体20b可称之为刀片式电池单体或者刀片式电芯。多个刀片式电池单体能够较为方便的实现沿其厚度方向上的相互连接,并作为一个电池单体组直接安装于电池10的箱体100中。
在一些实施方式中,例如,如图4和图5所示,该第一电池单体20a和第二电池单体20b可以为相同结构以及相同尺寸的电池单体,二者的差异仅在于其在箱体100中的排列方向不同。
在该情况下,可较为方便的形成第一电池单体组200a和第二电池单体组200b,也便于第一电池单体组200a和第二电池单体组200b在箱体100中的配合安装。
或者,在另一些实施方式中,该第一电池单体20a和第二电池单体20b也可为不同结构和/或不同尺寸的电池单体。例如,第一电池单体20a在其长度方向上的尺寸不同于第二电池单体20b在其长度方向上的尺寸。又例如,第一电池单体20a和第二电池单体20b的化学体系不同。可选地,第一电池单体20a和第二电池单体20b中的电学组件的材料不同。
在该情况下,电池10中可包括不同结构和/或不同尺寸的电池单体,可灵活的根据不同的应用场景,设计不同结构和/或不同尺寸的电池单体在箱体100中的安装,在兼顾刚度和强度的基础上,综合不同结构的电池单体的优点,提升电池10的综合性能,使得其具有更加广阔的应用前景。
可选地,在箱体100中容纳有上述第一电池单体组200a和第二电池单体组200b的基础上,该第一电池单体组200a和第二电池单体组200b可相互附接,作为一个共同的整体容纳设置于箱体100中。
可选地,如图4和图5所示,第一电池单体组200a可与第二电池单体组200b沿第二方向y排列,该第一电池单体组200a中至少一个第一电池单体的第二壁202a与第二电池单体组200b中与该第一电池单体组200a相邻的第二电池单体20b的第二壁202b附接,以实现第一电池单体组200a和第二电池单体组200b之间的相互附接。
通过本申请实施例的技术方案,第一电池单体组200a与第二电池单体组200b相互附接形成一个整体安装于箱体100中,相比于第一电池单体组200a和第二电池单 体组200b间隔设置的技术方案,可以避免在第一电池单体200a和第二电池单体200b之间的间隔设置填充物,提高电池10整体的能量密度并降低电池10的重量。
另外,由于第一电池单体组200a中,至少一个第一电池单体20a具有较大面积的第一壁201a朝向第一方向z而非第二方向y,该至少一个第一电池单体20a朝向第二方向y的第二壁202a的膨胀程度较小,该第一电池单体组200a在第二方向y上具有较高的强度和刚度。在本申请实施例中,第一电池单体组200a可看成是位于第二电池单体组200b一侧的支撑件,可对第二电池单体组200b形成第二方向y上的支撑,并承受第二电池单体组200b中第二电池单体20b的第二壁202b在第二方向y上积累的应力,提高电池10整体在第二方向y上的刚度和强度。
可选地,在本申请实施例中,第二电池单体20b的第二壁202b和第一电池单体20a的第二壁202a均可沿其各自电池单体的长度方向延伸,以使得第二电池单体20b的第二壁202b和第一电池单体20a的第二壁202a具有较大的面积。此外,第一电池单体20a的长度方向可以与第二电池单体20b的长度方向相互平行,以使得第二电池单体20b的第二壁202b和第一电池单体的第二壁202a相互附接。在图4和图5所示实施例中,第二电池单体20b的长度方向和第一电池单体20a的长度方向均平行于图中所示的x方向,该x方向可为垂直于第一方向z和第二方向y的第三方向。
可选地,在第一电池单体组200a和第二电池单体组200b沿第二方向y排列的情况下,第一电池单体组200a在第一方向z上的尺寸与第二电池单体组200b在第一方向z上的尺寸之差可在预设范围内,和/或,第一电池单体组200a在第三方向x上的尺寸与第二电池单体组200b在第三方向x上的尺寸之差可在预设范围内。
作为示例而非限定,如图5所示,第一电池单体组200a中每个第一电池单体20a在第一方向z上的尺寸为h,则第一电池单体组200a在第一方向z上的尺寸为n*h,第二电池单体20b在第一方向z上的尺寸即为第二电池单体组200b在第一方向z上的尺寸,该尺寸为H,H与n*h之差的绝对值为c,可选地,0mm≤c≤15mm。进一步地,0mm≤c≤5mm。
另外,作为示例而非限定,第一电池单体组200a在第三方向x上的尺寸与第二电池单体组200b在第三方向x上的尺寸可相等。
通过该实施方式,可以使得第一电池单体组200a和第二电池单体200b的整体形状更为规则,便于第一电池单体组200a和第二电池单体组200b的整体安装于规则形态的箱体100中,节省第一电池单体组200a和第二电池单体组200b所需的安装空间,并提高电池10的能量密度。
可以理解的是,当第一电池单体组200a和第二电池单体组200b相互附接时,第一电池单体组200a中至少一个第一电池单体20a的第二壁202a上可涂覆有结构胶,以便于与第二电池单体组200b中第二电池单体20b的第二壁202b相互连接,使得第一电池单体组200a和第二电池单体组200b形成可靠连接的一个整体。
另外,第一电池单体组200a和第二电池单体组200b除了可沿第二方向y排列以外,在其它实施方式中,第一电池单体组200a和第二电池单体组200b还可沿其它方向排列,例如,第一电池单体组200a和第二电池单体组200b也可沿第一方向z排列, 此时,第一电池单体组200a和第二电池组200b在第一方向z上堆叠设置,第二电池单体组200b中至少一个第二电池单体20b的第一壁201b可与第一电池单体组200a中相邻于第二电池单体组200b的第一电池单体20a的第一壁201a相互附接。对于第一电池单体组200a和第二电池单体组200b其它的排列方式下的具体方案可以参见上下文的相关描述,此处不做过多赘述。
再者,图4和图5所示实施例中,仅示意性的示出了电池10包括一个第一电池单体组200a和一个第二电池单体组200b的情况,可选地,电池10还可以包括多个第一电池单体组200a和/或多个第二电池单体组200b。该多个第一电池单体组200a和/或多个第二电池单体组200b同样可沿第二方向y排列。
可选地,在上文图4和图5所示实施例中,第一方向z可平行于重力方向,第二方向y可平行于水平方向。在该情况下,第一电池单体组200a和第二电池单体组200b沿水平面设置,可以进一步提高第一电池单体组200a和第二电池单体组200b在电池10中的稳定性。
在第一方向z平行于重力方向的情况下,在图4和图5所示实施例中,第一电池单体20a和第二电池单体20b为常规的方形电池单体。第二电池单体组200a中多个第二电池单体20b之间的第二壁202b平行于第一方向z设置且相互附接,虽可以实现第二电池单体组200b形成一个整体,但在第一方向z上,第二电池单体20b之间无相互作用力,若电池10受到第一方向z上的外力冲击时,第二电池单体20b之间的连接可能会受到冲击的影响,进而也会影响到电池10整体的刚度和强度。类似地,第一电池单体20a的第二壁202a平行于第一方向z设置且附接至第二电池单体20b的第二壁202b时,第一电池单体20a与第二电池单体20b之间的连接也可能会受到外界冲击的影响,进而影响到电池10整体的刚度和强度。
鉴于此,本申请提供一种技术方案,将第一电池单体20a和/或第二电池单体20b设计为不同于常规方形电池单体的其它多面体结构的电池单体。具体地,第一电池单体20a的第一壁201a垂直于第一方向z,第一电池单体20a的第二壁202a相对于第一方向z倾斜设置。和/或,第二电池单体20b的第一壁201b垂直于第一方向z,第二电池单体20b的第二壁202b相对于第一方向z倾斜设置。
以第一电池单体20a为例,其第一壁201a和第二壁202a相互连接可形成楔形结构。具体地,该第一壁201a和第二壁202a之间的夹角可为锐角,以形成顶角为锐角的楔形结构。
或者,该第一电池单体20a的第一壁201a和第二壁202a之间的夹角也可为钝角,在该情况下,也可理解为第一壁201a和第二壁202a之间形成顶角为钝角的楔形结构。
类似地,第二电池单体20b中第一壁201b和第二壁202b的形状可参见上文第一电池单体20a的相关描述。
图6示出了本申请实施例提供的电池10的一种示意性俯视图和截面图。其中,图6中的(a)图示出了电池10的示意性俯视图,图6中的(b)图为(a)图中沿A-A’方向的示意性截面图。
可选地,在本申请实施例中,第一方向z平行于重力方向。如图6所示,在第二电池单体20b中,第一壁201b垂直于第一方向z,第二壁202b相对于第一方向z倾斜设置,且第二壁202b为第二电池单体20b中面积最大的一个壁。
另外,如图6所示,第二方向y垂直于第一方向z,即第二方向y平行于水平方向。在电池10的箱体100中,多个第二电池单体20b沿第二方向y排列形成第二电池单体组200b时,相邻的第二电池单体20b之间通过相邻的第二壁202b相互附接,以在相邻的第二壁202b之间形成在第一方向z上的相互作用力。
基于本申请实施例的技术方案,在第二电池单体组200b中,相邻第二电池单体20b之间相互附接的第二壁202b相对于第一方向z倾斜设置,即相对于重力方向倾斜设置,因此,相邻的第二壁202b之间形成平行于重力方向的相互作用力,使得每个第二电池单体20b至少有一个倾斜的第二壁202b被相邻第二电池单体20b的倾斜的第二壁202b压住,相邻第二电池单体20b之间构成相互作用力使得二者相互束缚和制约,可提高电池10整体的刚度和强度,降低电池10在使用过程中的振动冲击带来的安全风险。
另外,在本申请实施例中,第二壁202b为第二电池单体20b中面积最大的壁,可以利用该面积最大的第二壁202b实现相邻第二电池单体20b之间最大程度的附接,提高相邻第二电池单体20b之间的相互作用力,以增强电池10的稳定性和整体刚度和强度。进一步地,第二壁202b上可涂覆有结构胶,相邻第二电池单体20b之间可通过结构胶相互连接,且相比于竖直方向的壁,该倾斜设置的第二壁202b的面积会大于该竖直设置的壁的面积,因而,该第二壁202b上涂覆的结构胶的面积也较大,能够更进一步提高电池10的稳定性和整体刚度和强度。
可选地,如图6所示,在第一电池单体组200a中,至少一个第一电池单体20a沿第一方向z,即重力方向堆叠设置,相邻的第一电池单体20a通过相邻的第一壁201a相互附接。且第一电池单体组200a中至少一个第一电池单体20a的第二壁202a相对于第一方向z倾斜设置。
另外,如图6所示,第一电池单体组200a与第二电池单体组200b可沿第二方向y排列,第一电池单体组200a和第二电池单体组200b之间通过第一电池单体20a倾斜的第二壁202a和第二电池单体20b倾斜的第二壁202b相互附接,以在相邻的第二壁202a和第二壁202b之间形成在第一方向z上的相互作用力。
基于本申请实施例的技术方案,第一电池单体20a和第二电池单体20b之间相互附接的第二壁202a和第二壁202b相对于第一方向z倾斜设置,即相对于重力方向倾斜设置,因此,相邻的第二壁202a和第二壁202b之间形成平行于重力方向的相互作用力,该相互作用力可使得第一电池单体组200a和第二电池单体组200b相互束缚和制约,可提高电池10整体的刚度和强度,降低电池10在使用过程中的振动冲击带来的安全风险。进一步地,第一电池单体20a中倾斜设置的第二壁202a的面积会大于该竖直设置的壁的面积,因而,该第二壁202a上涂覆的结构胶的面积也较大,能够更进一步提高电池10的稳定性和整体刚度和强度。
作为一种示例,图6所示实施例中,电池10仅包括一个第一电池单体组200a, 可以理解的是,电池10还可以包括多个第一电池单体组200a,该多个第一电池单体组200a同样可沿第二方向y排列,相邻两个第一电池单体组200a通过第二壁202a相互附接,相邻的第二壁202a之间形成在第一方向z上的相互作用力。
可选地,在上述图4和图5所示实施例中,第一电池单体20a可包括:平行设置的两个第一壁201a和平行设置的两个第二壁202a,该第一电池单体20a在垂直于其第一壁201a和第二壁202a的平面上的截面为矩形。在该实施方式中,第一电池单体20a的结构规则且对称,便于第一电池单体20a的制造和安装。类似地,在图4和图5所示实施例中,第二电池单体20b在垂直于其第一壁201b和第二壁202b的平面上的截面为矩形。
可选地,在上述图6所示实施例中,第一电池单体20a可包括:平行设置的两个第一壁201a和平行设置的两个第二壁202a,该第一电池单体20a在垂直于第一壁201a和第二壁202a的平面上的截面为平行四边形。在该实施方式中,第一电池单体20a在具有倾斜的两个第二壁202a的同时,第一电池单体20a的整体结构也较为规则,有利于多个第一电池单体20a之间相互附接形成较为规则的第一电池单体组200a。类似地,在图6所示实施例中,第二电池单体20b在垂直于其第一壁201b和第二壁202b的平面上的截面也为平行四边形。
可选地,在另一些实施方式中,第一电池单体20a可包括平行设置的两个第一壁201a和非平行设置的两个第二壁202a,该第一电池单体20a在垂直于第一壁201a和第二壁202a的平面上的截面为梯形,且该非平行的两个第二壁202a形成该梯形截面的腰。通过该实施方式,第一电池单体20a同样可具有倾斜的两个第二壁202a。类似地,第二电池单体20b在垂直于其第一壁201b和第二壁202b的平面上的截面也可为梯形。
图7示出了本申请实施例中三种第一电池单体20a的立体示意图。其中,图7中的(a)图可为图5中第一电池单体20a的放大示意图,图7中的(b)图可为图6中第一电池单体20a的放大示意图。
可选地,如图7所示,第一电池单体20a可为六面体结构,该第一电池单体20a可包括:相对设置的两个第一壁201a、相对设置的两个第二壁202a,以及相对设置且连接于第一壁201a和第二壁202a的两个第三壁203a。
可选地,在图7所示实施例中,第三壁203a可垂直于第一壁201a和第二壁202a,则该第三壁203a的形状与上述第一电池单体20a在其垂直于第一壁201a和第二壁202a的平面上的截面的形状相同。例如,如图7中的(a)图所示,第三壁203a的形状可为矩形,或者,如图7中的(b)图所示,第三壁203a的形状可为平行四边形,又或者,如图7中的(c)图所示,第三壁203a的形状可为梯形。
当然,第三壁203a也可不垂直于第一壁201a和第二壁202a,该情况下,第三壁203a的形状同样可呈现为矩形、平行四边形或者梯形,本申请实施例对第三壁203a的具体设置不做限定。
可选地,在图7所示实施例中,第一壁201a和第二壁202a均沿该第一电池单体20a的长度方向L1延伸,该第一电池单体20a的长度方向L1垂直于第一方向z和第二方向y,即第一电池单体20a的长度方向L1平行于图7中所示的第三方向x。
可选地,在图7所示实施例中,为了实现多个第一电池单体20a在第一方向z上堆叠,第一电池单体20a的厚度方向T1可平行于第一方向z。
图8中的(a)图示出了图7中的(b)图所示第一电池单体20a的一种正视图,图8中的(b)图示出了图7中的(b)图所示第一电池单体20a的一种侧视图。
可选地,如图8所示,该第一电池单体20a在其长度方向L1上的第一尺寸可用S1表示,在其厚度方向T1上的第二尺寸可用S2表示。
作为示例而非限定,第一尺寸S1的范围可为:100mm≤S1≤1400mm。进一步地,第一尺寸S1的范围可为:300mm≤S1≤1200mm。
作为示例而非限定,第二尺寸S2的范围可为:5mm≤S2≤80mm。进一步地,第二尺寸S2的范围可为:5mm≤S2≤30mm。
可选地,如图8所示,第一电池单体20a中,第二壁202a与第一方向z之间的夹角可用θ 1表示。
作为示例而非限定,该第二壁202a与第一方向z之间的夹角θ 1的范围可为0°<θ 1≤60°。进一步地,该第二壁202a与第一方向z之间的夹角θ 1的范围可为0°<θ 1≤10°。
在本申请实施例的技术方案中,通过控制第一电池单体20a中第二壁202a与第一方向z之间的夹角θ 1,可平衡第一电池单体20a的占用空间以及第一电池单体20a的稳定性。在夹角θ 1较小的情况下,在保证第一电池单体20a安装稳定的基础上,可相对降低第一电池单体20a需占用的横向空间,提高电池10的能量密度。
继续参见图7和图8,在第一电池单体20a中,其第三壁303a可对应位于第一电池单体20a的长度方向L1的端部,且连接于第一壁201和第二壁202。
可选地,第一电池单体20a还可包括电极端子214a,设置于该第三壁303。该电极端子214a的具体方案可参见上文图3所示实施例中电极端子214的相关技术方案,此处不做过多赘述。
作为一种示例,如图7和图8所示,两个电极端子214a可分别设置于第一电池单体20a在其长度方向L1上的两侧端部,即两个电极端子214a可分别设置于上述第一电池单体20a的两个第三壁203a。作为另一示例,两个电极端子214a也可设置于第一电池单体20a在其长度方向L1上的同一侧端部,即两个电极端子214a可设置于第一电池单体20a的同一个第三壁203a。
通过本申请实施例的技术方案,第一电池单体20a的电极端子214a设置于第一电池单体20a中位于其长度方向L1的端部的第三壁203a,不会影响第一电池单体20a中沿其长度方向L1延伸且具有较大面积的第一壁201a和第二壁202a与其它部件附接,保证第一电池单体20a具有较好的稳定性。另外,可根据实际设计需求,将电极端子214a设置于第一电池单体20a的同一端面或者不同端面,使得第一电池单体20a可灵活应用于多种用电环境。
可选地,继续参见图7和图8,第一电池单体20a还可进一步包括:泄压机构213a,该泄压机构213a可设置于第一电池单体20a中除第二壁202a以外的其它壁,即第一壁201a或者第三壁203a。
例如,在图7中(a)图和(b)图所示实施方式中,泄压机构213a设置于位于第一电池单体20a长度方向L1上的端部的第三壁203a。可选地,该泄压结构213a可以与电极端子214a设置于同一个第三壁203,例如,泄压机构213a可设置于一个电极端子214a的一侧。
或者,在图7中(c)图所示实施方式中,泄压机构213a设置于位于第一电池单体20a的顶部或底部的第一壁201a。在该实施方式中,第一电池单体20a通过第二壁202a实现与其它电池单体的连接,且泄压机构213a和电极端子214a分别位于第一电池单体20a的不同壁,可以防止泄压机构213a在释放电池单体内部的排放物时对电极端子214a造成影响,从而提升第一电池单体20a的安全性能。
需要说明的是,图7各图中的泄压机构213a的位置仅作为示例而非限定,图7中的(a)图和(b)图中,泄压机构213a也可设置于位于第一电池单体20a的顶面或底面的第一壁201a。图7中的(c)图中,泄压机构213a也可设置于位于第一电池单体20a的端面的第三壁203a。
图9示出了本申请实施例中三种第二电池单体20b的立体示意图。其中,图9中的(a)图可为图5中第二电池单体20b的放大示意图,图9中的(b)图可为图6中第二电池单体20b的放大示意图。
可选地,如图9所示,第二电池单体20b可为六面体结构,该第二电池单体20b可包括:相对设置的两个第一壁201b、相对设置的两个第二壁202b,以及相对设置且连接于第一壁201b和第二壁202b的两个第三壁203b。
可选地,在图9所示实施例中,第三壁203b可垂直于第一壁201b和第二壁202b,则该第三壁203b的形状与上述第二电池单体20b在其垂直于第一壁201b和第二壁202b的平面上的截面的形状相同。例如,如图9中的(a)图所示,第三壁203b的形状可为矩形,或者,如图9中的(b)图所示,第三壁203b的形状可为平行四边形,又或者,如图9中的(c)图所示,第三壁203b的形状可为梯形。
可选地,在图9所示实施例中,第一壁201b和第二壁202b均沿该第二电池单体20b的长度方向L2延伸。
可选地,在图9所示实施例中,为了实现多个第二电池单体20b在第二方向y上排列,第二电池单体20b的厚度方向T2可平行于第二方向y。
图10中的(a)图示出了图9中的(b)图所示第二电池单体20b的正视图,图10中的(b)图示出了图9中的(b)图所示第二电池单体20b的侧视图。
可选地,如图10所示,该第二电池单体20b在其长度方向L2上的第三尺寸可用S3表示,在其厚度方向T2上的第四尺寸可用S4表示。
作为示例而非限定,第三尺寸S3的范围可为:100mm≤S3≤1400mm。进一步地,第三尺寸S3的范围可为:300mm≤S3≤1200mm。
作为示例而非限定,第四尺寸S4的范围可为:5mm≤S4≤80mm。进一步地,第四尺寸S4的范围可为:5mm≤S4≤30mm。
可选地,如图10所示,第二电池单体20b中,第二壁202b与第一方向z之间的夹角可用θ 2表示。
作为示例而非限定,该第二壁202b与第一方向z之间的夹角θ 2的范围可为0°<θ 2≤60°。进一步地,该第二壁202b与第一方向z之间的夹角θ 2的范围可为0°<θ 2≤10°。
通过上述说明可知,该第二电池单体20b可以与上文第一电池单体20a的外形和尺寸可以相同或相近,差别在于第二电池单体20b的厚度方向T2不同于上文第一电池单体20a的厚度方向T1。
可选地,第二电池单体20b还可包括电极端子214b和泄压机构213b。具体的,该电极端子214b和泄压机构213b的相关技术方案可参见上文第一电池单体20a中电极端子214a和泄压机构214b的相关技术方案,此处不做过多赘述。
上文结合图7至图10对本申请实施例中的第一电池单体20a和第二电池单体20b进行了介绍,下面结合图11至图14介绍本申请实施例的电池10中,至少一个第一电池单体20a形成的第一电池单体组200a和至少一个第二电池单体20b形成的第二电池单体组200b在箱体100中的排列方式。
图11示出了本申请实施例提供的电池10的示意性俯视图和截面图。其中,图11中的(a)图示出了电池10的一种示意性俯视图,图11中的(b)图为(a)图中沿A-A’方向的一种示意性截面图,图11中的(c)图为(a)图中沿A-A’方向的另一示意性截面图。
如图11所示,电池10可包括:沿第二方向y排列的两个第一电池单体组200a和一个第二电池单体组200b,在第二方向y上,两个第一电池单体组200a分别位于一个第二电池单体组200b的两端。
可选地,在本申请实施例中,第二电池单体组200b可包括多个第二电池单体20b,该多个第二电池单体20b的第二壁202b相互附接形成一个整体。
另外,两个第一电池单体组200a可沿第二方向y分别设置于第二电池单体组200b的两端,每个第一电池单体组200a中至少一个第一电池单体20a的第二壁202a附接于与其相邻的第二电池单体20b的第二壁202b。
通过该实施方式的技术方案,在第二方向y上,第二电池单体组200b的两侧均设置有第一电池单体组200a。由于第一电池单体组200a中,至少一个第一电池单体20a具有较大面积的第一壁201a朝向第一方向z而非第二方向y,该至少一个第一电池单体20a朝向第二方向y的第二壁202a的膨胀程度较小,该第一电池单体组200a在第二方向y上具有较高的强度和刚度。在本申请实施例中,第一电池单体组200a可看成是位于第二电池单体组200b两端的端板,可对第二电池单体组200b形成第二方向y上的支撑,并承受第二电池单体组200b中第二电池单体20b的第二壁202b在第二方向y上积累的应力,提高电池10整体在第二方向y上的刚度和强度。
可选地,如图11中的(c)图所示,在第二电池单体组200b中,多个第二电池单体20b的第二壁202b可相对于第一方向z倾斜,使得相邻的第二电池单体20b的第二壁202b之间形成第一方向z上的相互作用力,提高第二电池单体组200b在第一方向z上的刚度和强度。
为了使得第一电池单体组200a中至少一个第一电池单体20a的第二壁202a附 接于第二电池单体20b倾斜的第二壁202b,第一电池单体组200a中至少一个第一电池单体20a的第二壁202同样相对于第一方向z倾斜,该至少一个第一电池单体20a位于同一侧的第二壁202可位于同一平面,该至少一个第一电池单体20a的第二壁202a用于共同形成第一电池单体组200a的第二壁。
通过该实施方式的技术方案,第一电池单体组200a在起到端板作用,以对第二电池单体组200b形成第二方向y上的支撑以外,第一电池单体组200a和第二电池单体组200b之间在第一方向z上可形成有相互作用力,以使得第一电池单体组200a和第二电池单体组200b可相互束缚和制约,进一步提高电池10整体的刚度和强度,降低电池10在使用过程中的振动冲击带来的安全风险。
图12示出了本申请实施例提供的电池10的示意性俯视图和截面图。其中,图12中的(a)图示出了电池10的一种示意性俯视图,图12中的(b)图为(a)图中沿A-A’方向的一种示意性截面图,图12中的(c)图为(a)图中沿A-A’方向的另一示意性截面图。
如图12所示,在本申请实施例中,电池10可包括:沿第二方向y排列的一个第一电池单体组200a和两个第二电池单体组200b,在第二方向y上,两个第二电池单体组200b分别位于一个第一电池单体组200a的两端。
可选地,在本申请实施例中,每个第二电池单体组200b可包括多个第二电池单体20b,该多个第二电池单体20b的第二壁202b相互附接形成一个整体。
另外,该两个第二电池单体组200b可沿第二方向y分别设置于第一电池单体组200a的两端,每个第二电池单体组200b中与第一电池单体组200a相邻的一个第二电池单体20b的第二壁202b附接于第一电池单体组200a中至少一个第一电池单体20a的第二壁202a。
通过该实施方式的技术方案,一方面,第一电池单体组200a可看成是位于两个第二电池单体组200b之间的横梁,可对其两侧的第二电池单体组200b形成第二方向y上的支撑,并承受第二电池单体组200b中第二电池单体20b的第二壁202b在第二方向y上积累的应力,提高电池10整体在第二方向y上的刚度和强度。另一方面,由于第二电池单体组200b的多个第二电池单体20b之间通过最大面积的第二壁202b相互附接,多个第二电池单体20b产生的热量可通过第二壁202b在整个第二电池单体组200b内传递。而第一电池单体组200a中,至少一个第一电池单体20a朝向第二方向y的第二壁202a不是第一电池单体20a中面积最大的壁,该第一电池单体20a的第二壁202a的导热能力较为有限。因此,第一电池单体组200a可作为热阻挡件,降低该第一电池单体组200a两侧第二电池单体组200b之间的热量传递。若第二电池单体组200b中某个第二电池单体20b发生热失控,其仅能影响其所在第二电池单体组200b中的其它第二电池单体20b,而对第一电池单体组200a以及其它第二电池单体组200b的影响较小,从而提高电池10整体的安全性能。
可选地,如图12中的(c)图所示,在第二电池单体组200b中,多个第二电池单体20b的第二壁202b可相对于第一方向z倾斜,使得相邻的第二电池单体20b的第二壁202b之间形成第一方向z上的相互作用力,提高第二电池单体组200b在第一方向 z上的刚度和强度。
可选地,第一电池单体组200a中至少一个第一电池单体20a的第二壁202同样相对于第一方向z倾斜,该至少一个第一电池单体20a位于同一侧的第二壁202a可位于同一平面,该至少一个第一电池单体20a的第二壁202a用于共同形成第一电池单体组200a的第二壁,以附接与其相邻的第二电池单体20b的第二壁202b。
通过该实施方式的技术方案,第一电池单体组200a在起到横梁作用,以对第二电池单体组200b形成第二方向y上的支撑以外,第一电池单体组200a和第二电池单体组200b之间在第一方向z上可形成有相互作用力,以使得第一电池单体组200a和第二电池单体组200b可相互束缚和制约,进一步提高电池10整体的刚度和强度,降低电池10在使用过程中的振动冲击带来的安全风险。
图13示出了本申请实施例提供的电池10的示意性俯视图和截面图。其中,图13中的(a)图示出了电池10的一种示意性俯视图,图13中的(b)图为(a)图中沿A-A’方向的一种示意性截面图,图13中的(c)图为(a)图中沿A-A’方向的另一示意性截面图。
如图13所示,在本申请实施例中,电池10可包括:沿第二方向y排列的多个第一电池单体组200a和多个第二电池单体组200b,在第二方向y上,多个第一电池单体组200a和多个第二电池单体组200b交错排列。
具体地,在本申请实施例中,在第二方向y上,每两个第一电池单体组200a之间设置有一个第二电池单体组200b,每两个第二电池单体组200b之间设置有一个第一电池单体组200a,以实现多个第一电池单体组200a和多个第二电池单体组200b在第二方向y上的交错排列。
通过本申请实施例的技术方案,多个第一电池单体组200a和多个第二电池单体组200b在第二方向y上的交错排列,多个第一电池单体组200a可看成是多个第二电池单体组200b之间的横梁,能够对多个第二电池单体组200b起到良好的支撑作用,较大程度的提高电池10在第二方向y上的刚度和强度。
可选地,图13所示实施例中,每个第一电池单体组200a中第一电池单体20a的数量可相等,和/或,每个第二电池单体组200b中第二电池单体20b的数量可相等。
通过该实施例的技术方案,可以使得电池10中每个第一电池单体组200a的尺寸相同,和/或,每个第二电池单体组200b的尺寸相同。该尺寸相同的多个第一电池单体组200a可均匀分布于第二电池单体组200b之间,同样的,该尺寸相同的多个第二电池单体组200b可均匀分布于第一电池单体组200a之间,使得电池10的内部结构更为均匀和对称,有利于提高电池10的稳定性。
可选地,如图13中的(c)图所示,在第二电池单体组200b中,多个第二电池单体20b的第二壁202b可相对于第一方向z倾斜,且第一电池单体组200a中多个第一电池单体20a的第二壁202a同样相对于第一方向z倾斜。
通过该实施方式的技术方案,多个第一电池单体组200a在起到横梁作用,以在多个第二电池单体组200b之间形成第二方向y上的支撑以外,相邻的第一电池单体组200a和第二电池单体组200b之间在第一方向z上可形成有相互作用力,以使得第一电 池单体组200a和第二电池单体组200b可相互束缚和制约,进一步提高电池10整体的刚度和强度,降低电池10在使用过程中的振动冲击带来的安全风险。
可选地,如上述图11至图13所示,为了保证第一电池单体组200a和第二电池单体组200b在箱体100中的安装稳定性,电池10还可以包括:端板40,设置于第一电池单体组200a和第二电池单体组200b的整体在第二方向y上的至少一端。可选地,在一些实施方式中,该端板40可为箱体100在第二方向y上的侧壁。
具体的,如图11至图13中的(c)图所示,若第一电池单体20a的第二壁202a或者第二电池单体20b的第二壁202b为相对于第一方向z倾斜的壁,则为了适配于该第一电池单体20a的第二壁202a或者第二电池单体20b的第二壁202b,端板40可具有相对于第一方向z倾斜的壁,该倾斜的壁用于附接于第一电池单体20a的第二壁202a或者第二电池单体20b的第二壁202b。
作为示例,如图11至图13中的(c)图所示,在第二方向y上,第一电池单体组200a和第二电池单体组200b的整体的两端均设置有端板40,以在第二方向y上对该第一电池单体组200a和第二电池单体组200b的整体进行固定和约束。可选地,如图11至图13中的(a)图所示,该端板40可沿第一电池单体20a和第二电池单体20b的长度方向(也即图中的第三方向x)延伸,以充分与第一电池单体组200a或第二电池单体组200b进行附接,并对第一电池单体组200a或第二电池单体组200b进行支撑。
如图11至图13中的(c)图所示,端板40的截面可为直角梯形,端板40的其中一个端面用于适配第一电池单体20a的第二壁202a或者第二电池单体20b的第二壁202b,其它端面均平行或垂直于水平面,可以较好的适配安装于规则形状,例如空心长方体结构的箱体100中,提高端板40及其附接的第一电池单体组200a或第二电池单体组200b在箱体100中的安装稳定性。另外,该结构的端板40中的局部区域在第二方向y上具有较大的厚度,因而该局部区域在第二方向y上具有较高的刚度和强度,提升电池10整体的刚度、强度以及稳定性。
具体的,如图11至图13中的(b)图所示,若第一电池单体20a的第二壁202a或者第二电池单体20b的第二壁202b平行于第一方向z,则端板40也可为常规的矩形板状结构,以附接于第一电池单体20a的第二壁202a或者第二电池单体20b的第二壁202b。
当然,如图11至图13仅示意性的示出了本申请实施例中几种端板40的示意性结构图,除了上述实施例中所示的形状以外,端板40还可以为其它形状,且该端板40也可不与第一电池单体20a的第二壁202a或者第二电池单体20b的第二壁202b附接,该端板40与第一电池单体20a或者第二电池单体20b之间的间隙可通过结构胶或其它相关部件进行填充。
可以理解的是,图11至图13所示实施例中,作为示意而非限定,第一电池单体20a的第三壁203a和第二电池单体20b的第三壁203b为矩形或平行四边形。在其它实施例中,第一电池单体20a的第三壁203a和/或第二电池单体20b的第三壁203b也可为梯形。
还可以理解的是,上文图11至图13中仅作为示例说明了本申请实施例中第一 电池单体组200a和第二电池单体200b在箱体100中的排列方式。除了上述几种排列方式以外,第一电池单体组200a和第二电池单体200b还可以其它方式共同设置于箱体100中,例如,在第二方向上y上,多个第一电池单体组200a相邻排列,其可间隔设置于两个第二电池单体组200b之间,或者设置于第二电池单体组200b的一侧等等,本申请实施例对箱体100中第一电池单体组200a和第二电池单体组200b的数量以及排列方式不做限定。
在上文实施例中,作为示例而非限定,第一电池单体组中200a中第一电池单体20a的数量n1的范围可为:1≤n1≤6。进一步地,2≤n1≤4。
作为示例而非限定,第二电池单体组中200b中第二电池单体20b的数量n2的范围可为:n2≥1。进一步地,1≤n2≤6。
可选地,第一电池单体组200a中第一电池单体20a的数量可小于等于第二电池单体组200b中第二电池单体20b的数量。
通过该实施方式,第二电池单体组200b中沿第二方向y上排列的第二电池单体20b的数量可较多,相对的,第一电池单体组200a中沿第一方向z上排列的第一电池单体20a的数量可较少。在第一电池单体组200a起到支撑第二电池单体组200b,提高电池10整体在第二方向y上的刚度和强度的同时,第一电池单体组200a自身在第一方向z上的膨胀度可较小,从而提高电池10在第一方向上z上的刚度和强度,并提高电池10的安全性能。
可选地,为了进一步降低第一电池单体组200a的膨胀对电池10带来的影响,该第一电池单体组200a中的第一电池单体20a可为低膨胀电池单体。具体地,该第一电池单体20a的膨胀系数较小,在工作过程中,第一电池单体20a膨胀后的体积相比于初始状态的体积变化较小。可选地,第一电池单体20a的膨胀系数可小于第二电池单体20b的膨胀系数。在相同的工作条件下,第一电池单体20a的体积膨胀程度小于第二电池单体20b的体积膨胀程度。
可选地,为了提高第一电池单体组200a的安全性,使得其可以在第二电池单体组200b之间起到良好且稳定的支撑作用,该第一电池单体组200a中的第一电池单体20a可为高安全电池单体。具体地,该第一电池单体20a在工作过程中,产生的热量较少,在其泄压机构213a致动时,经过泄压机构213a排放的排放物的温度较低。可选地,该第一电池单体20a的能量密度可低于第二电池单体20b的能量密度。可选地,该第一电池单体20a经由其泄压结构213a排放的排放物的温度可低于第二电池单体20b经由其泄压结构213b排放的排放物的温度。
可选地,为了便于第一电池单体组200a和第二电池单体组200b之间进行电连接,第一电池单体组200a中至少一个第一电池单体20a的电极端子214a可位于至少一个第一电池单体20a的第三壁203a。同样的,第二电池单体200b中至少一个第二电池单体20b的电极端子214b也可位于至少一个电池单体20b的第三壁203b。
图14示出了本申请实施例提供的电池10的两种示意性侧视图。
可选地,如图14所示,第一电池单体组200a中至少一个第一电池单体20a的电极端子214a可沿第一方向z排列,以便于该至少一个第一电池单体20a的电极端子 214a之间通过较短的汇流部件相互电连接。类似地,第二电池单体组200b中至少一个第二电池单体20b的电极端子214b可沿第二方向y排列,以便于该多个第二电池单体20b的电极端子214b之间通过较短的汇流部件相互电连接,从而便于汇流部件在电池10的箱体100中的设置和安装。
可选地,相邻的第一电池单体组200a和第二电池单体组200b中,第一电池单体组200a中至少一个第一电池单体20a的电极端子213a靠近于第二电池单体组200b设置,可便于第一电池单体200a和第二电池单体组200b之间通过较短的汇流部件相互电连接,可以进一步便于汇流部件在电池10的箱体100中的设置和安装。
可选地,如图14所示,沿第一方向z,电池10的箱体100可包括上盖(图中未示出)和底板101,沿第二方向y,箱体100可包括第一侧壁102和第二侧壁103,第一电池单体组200a与第二电池单体组200b在第二方向y上间隔设置。其中,第一电池单体组200a中的第一电池单体20a的电极端子214a靠近第一侧壁102或第二侧壁103设置,第二电池单体组200b中的第二电池单体20b的电极端子214b靠近上盖或底板101设置。
通过该实施方式的技术方案,在第二方向y上,第一电池单体组200a中的第一电池单体20a的电极端子214a靠近第一侧壁102或第二侧壁103设置,可以使得第一电池单体组200a中第一电池单体20a的电极端子214a靠近于与其相邻的第二电池单体组200b,与此同时,在第一方向z上,第二电池单体组200b中的第二电池单体20b的电极端子214b靠近上盖或底板101设置,可以使得第二电池单体组200b中的第二电池单体20b的电极端子214b与第一电池单体组200a中靠近上盖或底板101的第一电池单体20a的电极端子214a相邻,此时,用于连接相邻的第一电池单体组200a和第二电池单体组200b的汇流部件较短,进一步便于汇流部件在电池10的箱体100中的设置和安装,且优化电池10的整体性能。
作为一种示例,电池10中多个第一电池单体20a的电极端子214a均朝向箱体100在第二方向y上的同一侧壁。例如,如图14中的(a)图所示,多个第一电池单体20a的电极端子214a均朝向箱体100的第二侧壁103。另外,电池10中多个第二电池单体20b的电极端子214b也可均朝向箱体100在第一方向z上的同一壁。例如,如图14中的(a)图所示,多个第二电池单体20b的电极端子214b均朝向箱体100的底板101。
作为另一种示例,相邻的第一电池单体组200a的第一电池单体20a的电极端子214a相互靠近或相互远离设置。例如,如图14中的(b)图所示,相邻的两个第一电池单体组200a中,其中一个第一电池单体组200a的第一电池单体20a的电极端子214a可靠近第一侧壁102,另一个第一电池单体组200a的第一电池单体20a的电极端子214a可靠近第二侧壁103,从而使得相邻的第一电池单体组200a的第一电池单体20a的电极端子214a相互靠近或相互远离设置。另外,如图14中的(b)图所示,相邻的两个第二电池单体组200b中,其中一个第二电池单体组200b的第二电池单体20b的电极端子214b可靠近于箱体100的上盖,另一个第二电池单体组200b的第二电池单体20b的电极端子214b可靠近于箱体100的底板101。通过该实施方式的方案,可以使得电池10 中任意相邻的第一电池单体组200a和第二电池单体组200b的汇流部件的走线均较短,从而可以进一步优化电池10的整体性能。
可选地,作为示例而非限定,图14中第一电池单体20a的一个第三壁203a仅设置有一个电极端子214a,和/或,第二电池单体20b的一个第三壁203b也仅设置有一个电极端子214b。可选地,第一电池单体20a的一个第三壁203a也可同时设置有两个电极端子214a,和/或,第二电池单体20b的一个第三壁203b也可同时设置有两个电极端子214b。
另外,图14仅示意性的示出了图13中的(b)图所示的第一电池单体组200a和第二电池单体组200b的电极端子的示意图,对于其它排列方式下第一电池单体组200a和第二电池单体组200b的电极端子,其具体设置方式也可参见上文实施例相关描述,此处不做过多赘述。
本申请一个实施例还提供了一种用电装置,该用电装置可以包括前述各实施例中的电池10,电池10用于向该用电装置提供电能。
可选地,用电设备可以为车辆1、船舶或航天器。
上文描述了本申请实施例的电池10和用电装置,下面将描述本申请实施例的制备电池的方法和设备,其中未详细描述的部分可参见前述各实施例。
图15示出了本申请一个实施例的制备电池的方法300的示意性流程图。如图15所示,该方法300可以包括如下步骤。
S301:提供箱体100。
S302:提供第一电池单体组200a和第二电池单体组200b,该第一电池单体组200a包括至少一个第一电池单体20a,该第二电池单体组200b包括至少一个第二电池单体20b,该第一电池单体20a和第二电池单体20b为多面体结构,第一电池单体20a中面积最大的壁为其第一壁201a,第二电池单体20b中面积最大的壁为其第二壁202b;其中,第一电池单体组200a内的至少一个第一电池单体20a沿第一方向z排列,相邻的第一电池单体20a通过其第一壁201a相互附接,第二电池单体组200b内的至少一个第二电池单体20b沿第二方向y排列,相邻的第二电池单体20b通过其第二壁202b相互附接,第一方向z与第二方向y相互垂直。
S303:将第一电池单体组200a和第二电池单体组200b容纳于箱体100中。
图16示出了本申请一个实施例的制备电池的装置400的示意性框图。如图16所示,制备电池的装置400可以包括:提供模块401和安装模块402。
提供模块401用于:提供箱体100,且提供第一电池单体组200a和第二电池单体组200b,该第一电池单体组200a包括至少一个第一电池单体20a,该第二电池单体组200b包括至少一个第二电池单体20b,该第一电池单体20a和第二电池单体20b为多面体结构,第一电池单体20a中面积最大的壁为其第一壁201a,第二电池单体20b中面积最大的壁为其第二壁202b;其中,第一电池单体组200a内的至少一个第一电池单体20a沿第一方向z排列,相邻的第一电池单体20a通过其第一壁201a相互附接,第二电池单体组200b内的至少一个第二电池单体20b沿第二方向y排列,相邻的第二电池单体20b通过其第二壁202b相互附接,第一方向z与第二方向y相互垂直。
安装模块402用于:将第一电池单体组200a和第二电池单体组200b容纳于箱体100中。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (20)

  1. 一种电池(10),其特征在于,包括:
    箱体(100);
    第一电池单体组(200a)和第二电池单体组(200b),容纳于所述箱体(100)中,所述第一电池单体组(200a)包括至少一个第一电池单体(20a),所述第二电池单体组(200b)包括至少一个第二电池单体(20b),所述第一电池单体(20a)和所述第二电池单体(20b)为多面体结构,所述第一电池单体(20a)中面积最大的壁为其第一壁,所述第二电池单体(20b)中面积最大的壁为其第二壁;
    其中,所述第一电池单体组(200a)内的至少一个所述第一电池单体(20a)沿第一方向(z)排列,相邻的所述第一电池单体(20a)通过其第一壁相互附接,所述第二电池单体组(200b)内的至少一个所述第二电池单体(20b)沿第二方向(y)排列,相邻的所述第二电池单体(20b)通过其第二壁相互附接,所述第一方向(z)与所述第二方向(y)相互垂直。
  2. 根据权利要求1所述的电池(10),其特征在于,所述第一电池单体组(200a)与所述第二电池单体组(200b)沿所述第二方向(y)排列,所述第一电池单体组(200a)中至少一个所述第一电池单体(20a)的第二壁与所述第二电池单体组(200b)中与所述第一电池单体组(200a)相邻的所述第二电池单体(20b)的第二壁附接,以实现所述第一电池单体组(200a)与所述第二电池单体组(200b)之间的相互附接。
  3. 根据权利要求2所述的电池(10),其特征在于,所述第一电池单体组(200a)在所述第一方向(z)上的尺寸与所述第二电池单体组(200b)在所述第一方向(z)上的尺寸之差在预设范围内;和/或,
    所述第一电池单体组(200a)在第三方向上的尺寸与所述第二电池单体组(200b)在第三方向(x)上的尺寸之差在预设范围内,所述第三方向(x)垂直于所述第一方向(z)和所述第二方向(y)。
  4. 根据权利要求2或3所述的电池(10),其特征在于,所述电池(10)包括:沿所述第二方向(y)排列的两个所述第一电池单体组(200a)和一个所述第二电池单体组(200b);
    在所述第二方向(y)上,两个所述第一电池单体组(200a)分别位于一个所述第二电池单体组(200b)的两端。
  5. 根据权利要求2或3所述的电池(10),其特征在于,所述电池(10)包括:沿所述第二方向(y)排列的一个所述第一电池单体组(200a)和两个所述第二电池单体组(200b);
    在所述第二方向(y)上,两个所述第二电池单体组(200b)分别位于一个所述第一电池单体组(200a)的两端。
  6. 根据权利要求2或3所述的电池(10),其特征在于,所述电池(10)包括:沿所述第二方向(y)排列的多个所述第一电池单体组(200a)和多个所述第二电池单体 组(200b);
    在所述第二方向(y)上,多个所述第一电池单体组(200a)和多个所述第二电池单体组(200b)交错排列。
  7. 根据权利要求6所述的电池(10),其特征在于,每个所述第一电池单体组(200a)中所述第一电池单体(20a)的数量相等;和/或,
    每个所述第二电池单体组(200b)中所述第二电池单体(20b)的数量相等。
  8. 根据权利要求1至7中任一项所述的电池(10),其特征在于,所述第一方向(z)平行于重力方向,所述第一电池单体(20a)包括相互连接的第一壁和第二壁,且所述第二电池单体(20b)包括相互连接的第一壁和第二壁;
    所述第一电池单体(20a)的第一壁和所述第二电池单体(20b)的第一壁垂直于所述第一方向(z),所述第一电池单体(20a)的第二壁和所述第二电池单体(20b)的第二壁均相对于所述第一方向(z)倾斜设置。
  9. 根据权利要求8所述的电池(10),其特征在于,所述第一电池单体(20a)包括两个相对设置的所述第一壁和两个相对设置的第二壁,所述第一电池单体(20a)在垂直于其第一壁和第二壁的平面上的截面为平行四边形或梯形;和/或,
    所述第二电池单体(20b)包括两个相对设置的第一壁和两个相对设置的第二壁,所述第二电池单体(20b)在垂直于其第一壁和第二壁的平面上的截面为平行四边形或梯形。
  10. 根据权利要求1至9中任一项所述的电池(10),其特征在于,所述第一电池单体组(200a)内的至少一个所述第一电池单体(20a)沿其厚度方向排列,所述第一电池单体(20a)中相互连接的第一壁和第二壁沿所述第一电池单体(20a)的长度方向延伸;和/或,
    所述第二电池单体组(200b)内的至少一个所述第二电池单体(20b)沿其厚度方向排列,所述第二电池单体(20b)中相互连接的第一壁和第二壁沿所述第二电池单体(20b)的长度方向延伸。
  11. 根据权利要求1至10中任一项所述的电池(10),其特征在于,所述第一电池单体(20a)还包括:第三壁,位于所述第一电池单体(20a)的长度方向上的一端,所述第一电池单体(20a)的电极端子设置于所述第一电池单体(20a)的第三壁;和/或,
    所述第二电池单体(20b)还包括:第三壁,位于所述第二电池单体(20b)的长度方向上的一端,所述第二电池单体(20b)的电极端子设置于所述第二电池单体(20b)的第三壁。
  12. 根据权利要求11所述的电池(10),其特征在于,所述第一电池单体组(200a)中至少一个所述第一电池单体(20a)的电极端子沿所述第一方向(z)排列;和/或,
    所述第二电池单体组(200b)中至少一个所述第二电池单体(20b)的电极端子沿所述第二方向(y)排列。
  13. 根据权利要求11或12所述的电池(10),其特征在于,所述第一电池单体组(200a)中至少一个所述第一电池单体(20a)的电极端子靠近于所述第二电池单体组 (200b)设置。
  14. 根据权利要求11至13中任一项所述的电池(10),其特征在于,沿所述第一方向(z),所述箱体(100)包括上盖和底板,沿所述第二方向(y),所述箱体(100)包括第一侧壁和第二侧壁,所述第一电池单体组(200a)与所述第二电池单体组(200b)在所述第二方向(y)间隔设置;其中,所述第一电池单体组(200a)中的所述第一电池单体(20a)的电极端子靠近所述第一侧壁或所述第二侧壁设置,所述第二电池单体组(200b)中的所述第二电池单体(20b)的电极端子靠近所述上盖或所述底板设置。
  15. 根据权利要求14所述的电池(10),其特征在于,相邻的所述第一电池单体组(200a)的所述第一电池单体(20a)的电极端子相互靠近或相互远离设置。
  16. 根据权利要求1至15中任一项所述的电池(10),其特征在于,所述第一电池单体组(200a)中所述第一电池单体(20a)的数量小于等于所述第二电池单体组(200b)中所述第二电池单体(20b)的数量。
  17. 根据权利要求1至16中任一项所述的电池(10),其特征在于,所述第一电池单体(20a)和所述第二电池单体(20b)为两种不同化学体系的电池单体;和/或
    所述第一电池单体(20a)的膨胀系数小于所述第二电池单体(20b)的膨胀系数;和/或
    所述第一电池单体(20a)的能量密度小于所述第二电池单体(20b)的能量密度。
  18. 一种用电装置,其特征在于,包括:如权利要求1至17中任一项所述的电池(10),所述电池(10)用于向所述用电装置提供电能。
  19. 一种制备电池的方法,其特征在于,包括:
    提供(S301)箱体(100);
    提供(S302)第一电池单体组(200a)和第二电池单体组(200b),所述第一电池单体组(200a)包括至少一个第一电池单体(20a),所述第二电池单体组(200b)包括至少一个第二电池单体,所述第一电池单体(20a)和所述第二电池单体为多面体结构,所述第一电池单体(20a)中面积最大的壁为其第一壁,所述第二电池单体中面积最大的壁为其第二壁;
    其中,所述第一电池单体组(200a)内的至少一个所述第一电池单体(20a)沿第一方向(z)排列,相邻的所述第一电池单体(20a)通过其第一壁相互附接,所述第二电池单体组(200b)内的至少一个所述第二电池单体沿第二方向(y)排列,相邻的所述第二电池单体通过其第二壁相互附接,所述第一方向(z)与所述第二方向(y)相互垂直;
    将所述第一电池单体组(200a)和所述第二电池单体组(200b)容纳(S303)于所述箱体(100)中。
  20. 一种制备电池的装置,其特征在于,包括:
    提供模块(401),用于:
    提供箱体(100);
    提供第一电池单体组(200a)和第二电池单体组(200b),所述第一电池单体组 (200a)包括至少一个第一电池单体(20a),所述第二电池单体组(200b)包括至少一个第二电池单体,所述第一电池单体(20a)和所述第二电池单体为多面体结构,所述第一电池单体(20a)中面积最大的壁为其第一壁,所述第二电池单体中面积最大的壁为其第二壁;
    其中,所述第一电池单体组(200a)内的至少一个所述第一电池单体(20a)沿第一方向(z)排列,相邻的所述第一电池单体(20a)通过其第一壁相互附接,所述第二电池单体组(200b)内的至少一个所述第二电池单体沿第二方向(y)排列,相邻的所述第二电池单体通过其第二壁相互附接,所述第一方向(z)与所述第二方向(y)相互垂直;
    安装模块(402),用于:
    将所述第一电池单体组(200a)和所述第二电池单体组(200b)容纳于所述箱体(100)中。
PCT/CN2021/127453 2021-10-12 2021-10-29 电池、用电装置、制备电池的方法和装置 WO2023060657A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180090829.3A CN116724450A (zh) 2021-10-12 2021-10-29 电池、用电装置、制备电池的方法和装置
EP21960384.2A EP4379913A1 (en) 2021-10-12 2021-10-29 Battery, electrical device, and method and device for preparing battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111188271.0A CN115966816A (zh) 2021-10-12 2021-10-12 电池单体、电池和用电装置
CN202111188271.0 2021-10-12

Publications (1)

Publication Number Publication Date
WO2023060657A1 true WO2023060657A1 (zh) 2023-04-20

Family

ID=85903575

Family Applications (7)

Application Number Title Priority Date Filing Date
PCT/CN2021/127453 WO2023060657A1 (zh) 2021-10-12 2021-10-29 电池、用电装置、制备电池的方法和装置
PCT/CN2021/127530 WO2023060659A1 (zh) 2021-10-12 2021-10-29 电池、用电装置、制备电池的方法和装置
PCT/CN2021/127413 WO2023060656A1 (zh) 2021-10-12 2021-10-29 电池、用电装置、制备电池的方法和装置
PCT/CN2021/127491 WO2023060658A1 (zh) 2021-10-12 2021-10-29 电池、用电装置、制备电池的方法和装置
PCT/CN2021/132873 WO2023060715A1 (zh) 2021-10-12 2021-11-24 电池、用电装置、制备电池的方法和装置
PCT/CN2021/132862 WO2023060714A1 (zh) 2021-10-12 2021-11-24 电池、用电设备、制造电池的方法和设备
PCT/CN2021/132849 WO2023060713A1 (zh) 2021-10-12 2021-11-24 电池单体、电池、用电设备、制备电池的方法和设备

Family Applications After (6)

Application Number Title Priority Date Filing Date
PCT/CN2021/127530 WO2023060659A1 (zh) 2021-10-12 2021-10-29 电池、用电装置、制备电池的方法和装置
PCT/CN2021/127413 WO2023060656A1 (zh) 2021-10-12 2021-10-29 电池、用电装置、制备电池的方法和装置
PCT/CN2021/127491 WO2023060658A1 (zh) 2021-10-12 2021-10-29 电池、用电装置、制备电池的方法和装置
PCT/CN2021/132873 WO2023060715A1 (zh) 2021-10-12 2021-11-24 电池、用电装置、制备电池的方法和装置
PCT/CN2021/132862 WO2023060714A1 (zh) 2021-10-12 2021-11-24 电池、用电设备、制造电池的方法和设备
PCT/CN2021/132849 WO2023060713A1 (zh) 2021-10-12 2021-11-24 电池单体、电池、用电设备、制备电池的方法和设备

Country Status (5)

Country Link
US (2) US20230411761A1 (zh)
EP (5) EP4376147A1 (zh)
KR (1) KR20240046898A (zh)
CN (8) CN115966816A (zh)
WO (7) WO2023060657A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024087099A1 (zh) * 2022-10-27 2024-05-02 宁德时代新能源科技股份有限公司 电池及用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104247125A (zh) * 2013-02-08 2014-12-24 株式会社Lg化学 包括阶梯型单位电池胞的阶梯型电极组件
US20160164054A1 (en) * 2013-08-09 2016-06-09 Kabushiki Kaisha Toshiba Connection structure of secondary battery and secondary battery apparatus comprising same
US20170187016A1 (en) * 2014-11-10 2017-06-29 Kabushiki Kaisha Toshiba Battery module
CN209447876U (zh) * 2018-12-30 2019-09-27 宁德时代新能源科技股份有限公司 一种电池模组
CN112018302A (zh) * 2020-10-19 2020-12-01 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和设备

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3611765B2 (ja) * 1999-12-09 2005-01-19 シャープ株式会社 二次電池及びそれを用いた電子機器
JP2008198453A (ja) * 2007-02-13 2008-08-28 Toyota Motor Corp 電池構造
JP2010135148A (ja) * 2008-12-03 2010-06-17 Nissan Motor Co Ltd セルユニット、電池モジュール、および組電池
BRPI1008049A2 (pt) * 2009-02-24 2016-03-15 Nissan Motor estrutura de montagem de bateria de veículo
DE102010033806A1 (de) * 2010-08-09 2012-02-09 Rheinisch-Westfälische Technische Hochschule Aachen Batteriepack
JP2012064353A (ja) * 2010-09-14 2012-03-29 Sony Corp 電力供給ユニット
CN103579682B (zh) * 2012-08-09 2015-09-30 华硕电脑股份有限公司 电池及其制作方法
KR101387424B1 (ko) * 2012-11-22 2014-04-25 주식회사 엘지화학 전폭의 길이가 동일하고 전장의 길이가 상이한 전극 유닛들로 이루어진 전극 조립체, 이를 포함하는 전지셀 및 디바이스
KR101572836B1 (ko) * 2013-03-04 2015-12-01 주식회사 엘지화학 단차 구조를 포함하는 전지셀
KR101462043B1 (ko) * 2013-03-04 2014-11-18 주식회사 엘지화학 계단 구조의 전극조립체를 포함하는 전지셀
CN104425837B (zh) * 2013-08-29 2017-09-08 宏达国际电子股份有限公司 电池结构、电子装置及电池结构的制造方法
JP6390549B2 (ja) * 2015-08-07 2018-09-19 株式会社デンソー 電池パック
JP2018116813A (ja) * 2017-01-17 2018-07-26 株式会社東芝 電池モジュールおよび電池装置
CN206849882U (zh) * 2017-04-27 2018-01-05 北京新能源汽车股份有限公司 电池模组及具有电池模组的车辆
FR3071956A1 (fr) * 2017-09-29 2019-04-05 Naval Group Ensemble batterie pour sous-marin
CN207624833U (zh) * 2017-10-12 2018-07-17 广东北田智能科技有限公司 一种动力电池模组安全装置
WO2021003680A1 (zh) * 2019-07-09 2021-01-14 宁德新能源科技有限公司 极片、电池单元及电池组
CN110911779B (zh) * 2019-12-03 2022-08-02 西安电子科技大学芜湖研究院 一种锂电池包混合散热装置
KR20210090938A (ko) * 2020-01-13 2021-07-21 삼성에스디아이 주식회사 배터리 팩
CN111584979A (zh) * 2020-06-22 2020-08-25 昆山宝创新能源科技有限公司 电池模组
CN111952507B (zh) * 2020-08-25 2022-08-12 张玉清 一种新能源汽车电池组散热装置
CN213150935U (zh) * 2020-09-27 2021-05-07 江苏塔菲尔新能源科技股份有限公司 一种电池包排布结构及电动汽车
CN213150897U (zh) * 2020-09-27 2021-05-07 江苏塔菲尔新能源科技股份有限公司 一种动力电池包结构
CN213782184U (zh) * 2020-10-27 2021-07-23 恒大新能源技术(深圳)有限公司 壳体组件及电池模组
CN213601929U (zh) * 2020-11-05 2021-07-02 江苏塔菲尔新能源科技股份有限公司 一种异形电池包结构
CN213752931U (zh) * 2020-11-11 2021-07-20 比亚迪股份有限公司 电池组件、电池包及车辆
CN113036303A (zh) * 2021-03-08 2021-06-25 清华大学 电动车的动力电池单体排布方法及电池包

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104247125A (zh) * 2013-02-08 2014-12-24 株式会社Lg化学 包括阶梯型单位电池胞的阶梯型电极组件
US20160164054A1 (en) * 2013-08-09 2016-06-09 Kabushiki Kaisha Toshiba Connection structure of secondary battery and secondary battery apparatus comprising same
US20170187016A1 (en) * 2014-11-10 2017-06-29 Kabushiki Kaisha Toshiba Battery module
CN209447876U (zh) * 2018-12-30 2019-09-27 宁德时代新能源科技股份有限公司 一种电池模组
CN112018302A (zh) * 2020-10-19 2020-12-01 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和设备

Also Published As

Publication number Publication date
US20230411756A1 (en) 2023-12-21
CN116802866A (zh) 2023-09-22
EP4379914A1 (en) 2024-06-05
EP4354574A1 (en) 2024-04-17
CN116724446A (zh) 2023-09-08
KR20240046898A (ko) 2024-04-11
EP4376147A1 (en) 2024-05-29
WO2023060658A1 (zh) 2023-04-20
CN116802878A (zh) 2023-09-22
US20230411761A1 (en) 2023-12-21
CN116888791A (zh) 2023-10-13
CN115966816A (zh) 2023-04-14
CN116830363A (zh) 2023-09-29
WO2023060713A1 (zh) 2023-04-20
WO2023060714A1 (zh) 2023-04-20
WO2023060656A1 (zh) 2023-04-20
EP4379913A1 (en) 2024-06-05
WO2023060715A1 (zh) 2023-04-20
CN116830368A (zh) 2023-09-29
WO2023060659A1 (zh) 2023-04-20
CN116724450A (zh) 2023-09-08
EP4354618A1 (en) 2024-04-17

Similar Documents

Publication Publication Date Title
US20230089208A1 (en) Battery, power consumption apparatus, and method and apparatus for producing battery
WO2023004720A1 (zh) 电池、用电装置以及电池的制造方法和制造系统
US20230411761A1 (en) Battery, electric apparatus, and method and apparatus for manufacturing battery
US20230327264A1 (en) Battery module, battery, power consumption device, and method and device for producing battery
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
CN219067027U (zh) 电池和用电设备
WO2023159486A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023155208A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023097440A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023133737A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023082192A1 (zh) 电池单体、电池、用电装置、制备电池的方法和装置
WO2023123048A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023159487A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023092344A1 (zh) 电池单体、电池、用电装置、制备电池单体的方法和装置
US20230268579A1 (en) Battery, power consumption device, and method and device for producing battery
WO2023173721A1 (zh) 电池单体、电池模组、电池和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960384

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180090829.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021960384

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021960384

Country of ref document: EP

Effective date: 20240226