WO2024021070A1 - 电池的箱体、电池以及用电装置 - Google Patents

电池的箱体、电池以及用电装置 Download PDF

Info

Publication number
WO2024021070A1
WO2024021070A1 PCT/CN2022/109118 CN2022109118W WO2024021070A1 WO 2024021070 A1 WO2024021070 A1 WO 2024021070A1 CN 2022109118 W CN2022109118 W CN 2022109118W WO 2024021070 A1 WO2024021070 A1 WO 2024021070A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
plate body
side beams
box
plate
Prior art date
Application number
PCT/CN2022/109118
Other languages
English (en)
French (fr)
Inventor
姚鹏程
薛丹月
王鹏
陈兴地
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/109118 priority Critical patent/WO2024021070A1/zh
Priority to CN202280006387.4A priority patent/CN116195118A/zh
Priority to CN202223553552.4U priority patent/CN219180661U/zh
Publication of WO2024021070A1 publication Critical patent/WO2024021070A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and more specifically, to a battery box, a battery and a power-consuming device.
  • batteries are widely used in various electrical devices such as vehicles. During the operation of some electrical devices, they are often accompanied by movement or vibration. In this case, how to improve the structural strength of the battery is extremely important.
  • This application provides a battery box, battery and electrical device, which can improve the structural strength of the battery.
  • a battery box which includes a base plate and a plurality of side beams.
  • the plurality of side beams are connected to the base plate and enclose with the base plate to form an accommodation space.
  • at least one side beam includes a beam main body and a reinforcing part, the reinforcing part protrudes from the surface of the beam main body facing the accommodation space, the reinforcing part is provided with an avoidance structure, and the avoidance structure is used to avoid components accommodated in the accommodation space.
  • the thickness of the side beam at the position corresponding to the reinforcement part is increased, and the increase in thickness often means an increase in the structural strength, so the compression resistance of the side beam is is improved, thereby reducing the risk of battery deformation.
  • the reinforced part is arranged on the surface of the beam main body facing the accommodation space. The existence of the reinforced part will not increase the overall volume of the battery, and can also reduce the distance between the battery cell and the side beam, improving the distance between the battery cell and the side beam. Adhesive strength, thus enhancing the structural strength of the battery.
  • the reinforcing portion includes a plurality of convex portions arranged at intervals, and the plurality of convex portions are arranged at intervals along the extension direction of the beam body.
  • a plurality of convex parts are arranged at intervals in the extension direction of the beam main body, so that the gaps formed between two adjacent convex parts can be arranged in the extension direction of the beam main body.
  • the plurality of protrusions are arranged at equal intervals along the extending direction of the beam body.
  • multiple gaps formed by multiple protrusions can be made easier to avoid internal components of the battery such as heat exchange plates.
  • the equal intervals are also conducive to standardizing the internal structure of the battery and improving the layout of the internal structure of the battery. reliability.
  • the avoidance structure includes a gap formed between two adjacent protrusions.
  • the minimum width of the gap is L1, 1 mm ⁇ L1 ⁇ 1500 mm.
  • the distance L1 between two adjacent convex parts is between 1 mm and 1500 mm, it is ensured that the width of the gap is sufficient to avoid the need, and at the same time, the side beams are ensured to have a certain structural strength to meet the battery requirements. actual usage requirements.
  • 5mm ⁇ L1 ⁇ 20mm In some embodiments, 5mm ⁇ L1 ⁇ 20mm.
  • the protrusion includes a first plate body and a second plate body connected to each other, the first plate body is located on a side of the second plate body away from the base plate, and the first plate body intersects the second plate body.
  • the avoidance structure includes an avoidance space located on a side of the first plate body away from the substrate.
  • the space between the battery cell and the main body of the beam can be rationalized to ensure a compact internal structure of the battery, and can also reduce the risk of debonding between the side beam and the battery cell, thereby improving the reliability of the battery.
  • the second plate body extends along the thickness direction of the substrate and abuts against the substrate.
  • the second plate body is arranged to extend along the thickness direction of the substrate and abut against the substrate, so that the second plate body can play a certain supporting role when the battery is inverted and improve the support of the side beams. ability to ensure the overall pressure resistance of the battery.
  • the first plate body, the second plate body and the beam main body together form a receiving cavity, and the convex portion further includes reinforcing ribs disposed in the receiving cavity.
  • reinforcing ribs are provided in the convex parts, thereby improving the strength and pressure resistance of each convex part, and further enhancing the overall structural strength of the battery.
  • the plurality of side beams include two first side beams and two second side beams, the two first side beams are spaced apart along the width direction of the box, and the two second side beams are spaced along the length direction of the box. Interval settings.
  • Each second side beam connects two first side beams, and each first side beam includes a beam main body and a reinforcing part.
  • a reinforcing portion is added to the first side beam, which not only increases the structural strength of the first side beam, but also reduces the distance between the first side beam and the battery cell, thereby reducing the risk of debonding.
  • the maximum dimension of the box in the length direction is L2, and L1 and L2 satisfy: 0.0002 ⁇ L1/L2 ⁇ 0.5.
  • L1/L2 is set between 0.0002 and 20, so that the internal layout of the battery is reasonable and can meet the needs of the battery structural strength.
  • embodiments of the present application provide a battery, including the box of any of the foregoing embodiments and a battery cell, and the battery cell is accommodated in an accommodation space.
  • the battery includes a thermal management component
  • the thermal management component is received in the accommodation space
  • the avoidance structure is used to avoid at least part of the thermal management component.
  • the reinforcement part is provided with an avoidance structure for avoiding the thermal management component.
  • the existence of the reinforcement can improve the structural strength of the side beams and reduce the risk of battery deformation without affecting the thermal management components.
  • the existence of the reinforced part will not increase the overall volume of the battery, but can also reduce the distance between the battery cell and the side beam, reduce the width of the colloid between the battery cell and the side beam, and reduce the risk of degumming problems. It is suitable for in different working conditions such as movement or vibration.
  • the thermal management component includes a plurality of heat exchange plates arranged at intervals, and battery cells are arranged between adjacent heat exchange plates.
  • the reinforcing part includes a plurality of convex parts arranged at intervals, and the avoidance structure includes a gap between two adjacent convex parts, and the gap is used to accommodate the end of the heat exchange plate.
  • a plurality of protrusions are arranged at intervals, thereby forming a gap capable of accommodating the ends of the heat exchange plates between adjacent protrusions.
  • the existence of the gap can also limit the position of the heat exchange plate and the battery cell to a certain extent. Therefore, during the battery preparation process, the end of the heat exchange plate can be inserted into the Installed in the gap to determine the position of the battery cell.
  • the thermal management component includes a manifold that communicates a plurality of heat exchange tubes, and the manifold is at least partially located within the avoidance space.
  • the manifold can connect multiple heat exchange plates.
  • the manifold is usually located between the battery cell and the beam main body.
  • the reinforcement is also located between the battery cell and the beam body.
  • the first plate body is tilted relative to the second plate body, thereby forming an avoidance space for avoiding the manifold on the side of the first plate away from the base plate, effectively utilizing the battery cells and beams. The space between subjects.
  • embodiments of the present application provide an electrical device, including the battery in any of the aforementioned embodiments, and the battery is used to provide electrical energy.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • FIG. 2 is an exploded schematic diagram of a battery provided by some embodiments of the present application.
  • Figure 3 is a schematic structural diagram of a side beam in the battery shown in Figure 2;
  • Figure 4 is an enlarged structural diagram of area Q in Figure 3;
  • Figure 5 is a schematic structural diagram of a thermal management component in a battery provided by some embodiments of the present application.
  • Figure 6 is a schematic structural diagram of a side beam in a battery provided by some embodiments of the present application.
  • Figure 7 is a schematic structural diagram of a battery provided by some embodiments of the present application.
  • Base plate 12. Side beam; 12a, first side beam; 12b, second side beam; 121. Beam main body; 122. Reinforcement part; 1221. Projection part; 1221a, first plate body; 1221b, second plate Body; 1221c, accommodation cavity; 1221d, reinforcing rib; 123, avoidance structure; 1231, gap; 1232, avoidance space; 13, accommodation space; 14, cover plate;
  • X width direction
  • Y length direction
  • Z thickness direction
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • battery cells may include lithium ion secondary battery cells, lithium ion primary battery cells, lithium sulfur battery cells, sodium lithium ion battery cells, sodium ion battery cells or magnesium ion battery cells, etc.
  • the embodiments of the present application are not limited to this.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and soft-pack battery cells. The embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode sheet, a negative electrode sheet and a separator. Battery cells mainly rely on metal ions to move between the positive and negative plates to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode current collector that is coated with the positive electrode active material layer.
  • the cathode current collector without coating the cathode active material layer is used as the cathode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode current collector that is coated with the negative electrode active material layer.
  • the negative electrode current collector that is not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the separator may be polypropylene (PP) or polyethylene (polyethylene, PE).
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • the battery will move or vibrate with the electrical device.
  • the applicant's research found that the above problem occurs because: inside the battery, the battery cells are fixed to the substrate by bonding, and part of the colloid between the battery cells and the substrate will overflow to the sides of the battery cells. , thereby achieving bonding between the side beams and the battery cells.
  • the distance between the battery cells and the side beams is too large. Under vibration or other working conditions, the colloid between the battery cell and the side beam is prone to degumming, resulting in the side beam and battery cell failing to be connected as a whole.
  • the thickness of the side beams of the battery box is usually thin, resulting in insufficient side wall stiffness. Therefore, when subjected to external impact, bumps and dents are prone to occur on the outside of the side wall. Therefore, how to improve the structural strength of batteries is an urgent problem to be solved.
  • the box includes a base plate and a plurality of side beams.
  • the plurality of side beams are connected to the base plate and enclosed with the base plate to form an accommodation space.
  • at least one side beam includes a beam main body and a reinforcing part, the reinforcing part protrudes from the surface of the beam main body facing the accommodation space, the reinforcing part is provided with an avoidance structure, and the avoidance structure is used to avoid components accommodated in the accommodation space.
  • a reinforcing part is provided on at least one side beam, so that the thickness of the side beam at the position corresponding to the reinforcing part is increased.
  • the increase in thickness often means an increase in structural strength, so the compression resistance of the side beam is improved. This reduces the risk of battery deformation.
  • the reinforced part is arranged on the surface of the beam main body facing the accommodation space. The existence of the reinforced part will not increase the overall volume of the battery, and can also reduce the distance between the battery cell and the side beam, improving the distance between the battery cell and the side beam. Adhesive strength, thereby enhancing the structural strength of the battery
  • the technical solutions described in the embodiments of this application are applicable to electrical devices using batteries.
  • the electrical devices are, for example, battery cars, electric cars, ships, spacecraft, electric toys, and electric tools, etc., where the spacecraft is, for example, airplanes, rockets, Space shuttles and spaceships, etc.
  • electric toys include fixed or mobile electric toys, specifically, electric car toys, electric ship toys, electric airplane toys, etc.
  • electric tools include, for example, metal cutting power tools, grinding power tools , Assembling power tools and railway power tools, such as electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators and electric planers.
  • the battery cells described in the embodiments of the present application are not limited to the above-described electrical devices. However, for the sake of simplicity, the following embodiments take electric vehicles as examples for description.
  • the vehicle 1000 can be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or a range-extended vehicle, etc.
  • the battery 100 may be disposed inside the vehicle 1000.
  • the battery 100 may be disposed at the bottom, front or rear of the vehicle 1000.
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 may be used to control a battery to power the motor 300 , for example.
  • the battery can be used for starting, navigation, etc. of the vehicle 1000.
  • the battery 100 can also be used to drive the vehicle 1000, replacing or partially replacing fuel or natural gas to drive the vehicle 1000.
  • the battery includes a case 400 and a battery cell 20 .
  • the battery cell 20 is accommodated in the case 400 .
  • the battery 100 there may be one battery cell 20 or a plurality of battery cells 20. If there are multiple battery cells 20 , the multiple battery cells 20 can be connected in series, in parallel, or in mixed connection. Mixed connection means that the multiple battery cells 20 are both connected in series and in parallel.
  • the plurality of battery cells 20 can be directly connected in series or in parallel or mixed together, and then the whole composed of the plurality of battery cells 20 can be accommodated in the box 400; of course, the plurality of battery cells 20 can also be connected in series first. They may be connected in parallel or mixed to form a battery module (not shown in the figure), and multiple battery modules may be connected in series, parallel or mixed to form a whole, and be accommodated in the box 400 .
  • the embodiment of the present application provides a battery box 400.
  • the box 400 includes a base plate 11 and a plurality of side beams 12.
  • the plurality of side beams 12 are connected to the base plate 11 and enclosed with the base plate 11.
  • An accommodation space 13 is formed.
  • at least one side beam 12 includes a beam main body 121 and a reinforcing part 122.
  • the reinforcing part 122 protrudes from the surface of the beam main body 121 facing the accommodation space 13.
  • the reinforcing part 122 is provided with an avoidance structure 123, and the avoidance structure 123 is used for avoidance and accommodation. components in the accommodation space 13.
  • the base plate 11 can be the bottom plate of the box 400.
  • the base plate 11 and the plurality of side beams 12 together form an accommodating space 13.
  • the battery cells 20 are arranged in the accommodating space 13.
  • the base plate 11 is used to carry and fix the battery cells 20.
  • the battery cell 20 is fixed on the substrate 11 by bonding, and part of the colloid will overflow between the battery cell 20 and the side beam 12 to fix the battery cell 20 and the side beam 12 . .
  • the plurality of side beams 12 are connected end to end in order to form a side wall of the box 400 .
  • the plurality of side beams 12 can be an integrated structure or a split structure, and jointly form a ring structure through bonding, welding, plugging, bolting, etc.
  • the ring structure includes but is not limited to square rings and circular rings.
  • the plurality of side beams 12 are also connected to the base plate 11, and the connection methods include but are not limited to welding, bonding, bolting, etc.
  • each side beam 12 includes a beam body 121 , but only one side beam 12 among the plurality of side beams 12 may include a reinforcing portion 122 . Some or all of the side beams 12 may also include reinforcing portions 122, which is not limited in the embodiment of the present application. Reinforcement portions 122 are added to at least part of the side beams 12 . The reinforcement portions 122 are connected to the beam main body 121 . The connection methods between the reinforcement portions 122 and the beam main body 121 include but are not limited to welding, bonding, bolting, etc. The provision of the reinforcing portion 122 can increase the strength of the side beam 12 , improve the overall strength and impact resistance of the side beam 12 , and reduce the risk of deformation of the side beam 12 .
  • the reinforcing portion 122 is provided on the surface of the beam main body 121 facing the accommodation space 13. This design can improve the strength of at least part of the side beams 12 without increasing the overall volume of the battery, thereby ensuring the structural strength of the battery. In addition, the presence of the reinforcing portion 122 can reduce the distance between the battery cell 20 and the side beam 12 and improve the adhesive strength between the battery cell 20 and the side beam 12, thereby enhancing the structural strength of the battery.
  • avoidance structures 123 include, but are not limited to, holes, grooves, notches, or other structures.
  • the avoidance structure 123 is used to avoid at least some components located in the accommodation space 13 to ensure a reliable internal layout of the battery.
  • the specific structures of the reinforcing part 122 and the avoidance structure 123 need to be determined according to the internal layout of the battery, and the embodiment of the present application does not limit this.
  • a reinforcing part 122 is provided on at least one side beam 12, so that the thickness of the side beam 12 is increased at the position corresponding to the reinforcing part 122.
  • the increase in thickness often means an increase in structural strength, so the side beam 12 is increased in thickness.
  • the compression resistance of beam 12 is increased, thereby reducing the risk of battery deformation.
  • the reinforcing portion 122 is provided on the surface of the beam main body 121 facing the accommodation space 13. The presence of the reinforcing portion 122 will not increase the overall volume of the battery, and can also reduce the distance between the battery cell 20 and the side beam 12, thereby improving the battery cell's efficiency.
  • the adhesive strength between the battery and the side beams can improve the overall structural strength of the battery.
  • the box body 400 may also include a cover plate 14 .
  • the base plate 11 and the cover plate 14 are spaced apart in the thickness direction Z of the base plate 11 .
  • the interior of the battery also includes a thermal management component 30.
  • the thermal management component 30 is used to adjust the temperature of the battery cells 20 inside the battery to ensure that the battery cells 20 can maintain a suitable temperature for operation.
  • the thermal management component 30 includes a heat exchange plate 31 and a manifold 32 for connecting a plurality of heat exchange plates 31 .
  • the heat exchange plate 31 is attached to or adjacent to the battery cell 20 and is the main component used to adjust the temperature of the battery cell 20.
  • the thermal fluid can be delivered to the heat exchange plate 31 , and the thermal fluid flows in the channel and provides part of the heat to the corresponding battery cell 20 , thereby realizing the warming operation.
  • the manifold 32 is connected with the channels of the heat exchange plates 31 and is used to transport or transfer hot and cold fluids to one or more heat exchange plates 31 .
  • the manifold 32 is usually located between the battery cell 20 and the side beam 12. Due to the existence of the manifold 32, the distance between the battery cell 20 and the beam main body is too large. The colloid located between the battery cell 20 and the beam main body is difficult to meet the fixation needs of the battery cell 20, so problems such as degumming are prone to occur under working conditions such as movement or vibration.
  • the avoidance structure 123 is used to avoid the thermal management component 30 in the battery.
  • the reinforcing part 122 can be a continuous long strip structure and fixed to the main body of the beam, or it can also be composed of multiple parts and be arranged side by side on the main body of the beam. There are no restrictions on this.
  • the reinforcing portion 122 includes a plurality of convex portions 1221 arranged at intervals, and the plurality of convex portions 1221 are arranged at intervals along the extension direction of the beam body 121 .
  • the plurality of protrusions 1221 are installed on the same beam body 121, and the installation method includes but is not limited to bonding, welding, bolting, etc.
  • the size and shape of the plurality of protrusions 1221 may be the same or different, as long as each protrusion 1221 is disposed on the surface of the beam body facing the accommodation space 13 and protrudes in a direction away from the beam body 121 .
  • the embodiment of the present application does not limit the arrangement of the plurality of protrusions 1221 .
  • the plurality of protrusions 1221 may be arranged side by side along the thickness direction Z of the substrate 11 .
  • the extension direction of the beam main body 121 is the length direction of the beam main body 121 .
  • the plurality of protrusions 1221 are spaced apart along the extension direction of the beam main body 121 . That is, the plurality of protrusions 1221 are arranged side by side in the extension direction of the beam main body 121 .
  • the length of each protrusion 1221 in the extending direction of the beam body 121 may be the same or different, and the spacing distance between adjacent protrusions 1221 may also be the same or different.
  • the plurality of protrusions 1221 are spaced apart to form gaps 1231 between adjacent protrusions 1221.
  • the existence of the gaps 1231 is used to avoid some structures within the battery.
  • the gap 1231 exists to avoid the heat exchange plate 31 in the thermal management component 30 in the battery. At least part of the end of the heat exchange plate 31 can penetrate deep into the gap 1231.
  • the gap 1231 is used to accommodate the end of the heat exchange tube. department.
  • the setting of the gap 1231 also plays a limiting role to a certain extent, limiting the movement of the structure located in the gap 1231, thereby ensuring the stability of the internal structure of the battery in the event of movement or vibration.
  • the multiple battery cells 20 When the battery includes multiple battery cells 20 , usually, the multiple battery cells 20 will be arranged side by side along the extension direction of the beam body 121 . Similarly, multiple components located inside the battery can also be arranged side by side along the extension direction of the beam body 121 . Therefore, on this basis, in the embodiment of the present application, the plurality of convex portions 1221 are arranged at intervals in the extension direction of the beam main body 121 so that the gap 1231 formed between two adjacent convex portions 1221 can be formed between the beam main body 121 and the beam main body 121 . Arrange in the extending direction to avoid more components or structures inside the battery and meet the needs of the internal structural layout of the battery.
  • the plurality of protrusions 1221 are arranged at equal intervals along the extension direction of the beam body 121 , and the minimum width L1 of the gap formed by two adjacent protrusions 1221 remains consistent.
  • the gap 1231 under this design is suitable for avoiding equidistantly arranged components inside the battery.
  • a heat exchange plate 31 between adjacent battery cells 20.
  • the plurality of battery cells 20 will be arranged along the extending direction of the beam body 121 , and the battery cells 20 are usually arranged equidistantly from each other.
  • the plurality of heat exchange plates 31 will also be arranged equidistantly along the extending direction of the beam body 121 .
  • the plurality of protrusions 1221 are arranged at equal intervals along the extension direction of the beam body 121 , which can make it easier for the plurality of gaps 1231 formed by the plurality of protrusions 1221 to avoid internal components of the battery, such as the heat exchange plate 31 and other components. , at the same time, setting equal intervals is also conducive to standardizing the internal structure of the battery and improving the reliability of the internal structure layout of the battery.
  • the avoidance structure 123 includes a gap 1231 formed between two adjacent protrusions 1221.
  • the minimum width of the gap is L1, 1 mm ⁇ L1 ⁇ 1500 mm.
  • L1 is one of 1 mm, 10 mm, 100 mm, 1000 mm, and 1500 mm.
  • the distance between two adjacent convex portions 1221 is the minimum width L1 of the gap 1231. If the width L1 is too small, it means that the width of the gap 1231 is too small, which may easily cause the components in the battery to be unable to enter the gap 1231, and thus the battery cannot function. to avoidance. If the width L1 is too large, it means that the total extent of each convex portion 1221 in the extending direction of the beam body 121 is too small, that is, the size of the convex portion 1221 is too small. At this time, the reinforcing effect of the reinforcing portion 122 is insufficient, and the battery still has structural strength. Insufficient problem.
  • the minimum width L1 of the gap 1231 is set between 1 mm and 1500 mm to ensure that the width of the gap 1231 is sufficient to avoid the need, and at the same time ensures that the side beam 12 has a certain structural strength to meet the actual use requirements of the battery.
  • 5mm ⁇ L1 ⁇ 20mm optionally, 5mm ⁇ L1 ⁇ 20mm.
  • L1 is one of 5mm, 10mm, 15mm and 20mm.
  • the protrusion 1221 includes a first plate body 1221a and a second plate body 1221b that are connected to each other.
  • the first plate body 1221a is located on a side of the second plate body 1221b away from the substrate 11.
  • the first plate body 1221a is connected to the second plate body 1221b.
  • the two plates 1221b intersect.
  • the escape structure 123 includes an escape space 1232 located on the side of the first plate body 1221a away from the substrate 11 .
  • the convex portion 1221 includes a first plate body 1221a and a second plate body 1221b.
  • the first plate body 1221a and the second plate body 1221b are connected to each other.
  • the two can be an integrated structure, or It can be connected and fixed by welding, bonding, etc.
  • the second plate body 1221b is closer to the base plate 11 than the first plate body 1221a.
  • the second plate body 1221b can be designed separately from the base plate 11, or can be in direct contact with the base plate 11 and fixed integrally.
  • the first plate body 1221a and the second plate body 1221b are both plate-shaped structures, and they are arranged to intersect.
  • the intersection here means that the plane corresponding to the first plate 1221a and the plane corresponding to the second plate 1221b are not parallel and form a certain angle.
  • the embodiment of the present application does not limit the specific directions of the planes corresponding to the first plate body 1221a and the second plate body 1221b.
  • Both the first plate body 1221a and the second plate body 1221b can enhance the strength of the side beam 12, and some components inside the battery will be located between the battery cell 20 and the beam main body 121.
  • the first plate body 1221a is tilted relative to the second plate body 1221b, so that the side of the first plate body 1221a away from the second plate body 1221b forms an avoidance space 1232.
  • avoidance space 1232 is framed by a dotted line in the figure, but the shape and size of the avoidance space 1232 are not limited to those shown in the figure, that is, the avoidance space 1232 in the figure does not constitute a restriction of the avoidance space in the embodiment of the present application. Space 1232 shape and size restrictions.
  • the manifold 32 in the battery is located at least partially within the escape space 1232.
  • This design can rationalize the space between the battery cell 20 and the main body of the beam to ensure a compact internal structure of the battery. It can also reduce the risk of debonding between the side beam 12 and the battery cell 20 and improve the reliability of the battery.
  • the second plate body 1221b extends along the thickness direction Z of the substrate 11 and abuts against the substrate 11 .
  • the base plate 11 is the base of the box and can be bonded and fixed with the battery cells 20 . However, when the battery is actually used, in some cases it is necessary to install the battery upside down. In this case, the base plate 11 is located above the battery cells 20 . In this case, the side beams 12 serve to support the base plate 11 and exert external force on the base plate 11 .
  • the second plate body 1221b is arranged to extend along the thickness direction Z of the substrate 11 and contact the substrate 11, so that the second plate body 1221b can play a certain role when the battery is inverted.
  • the supporting function improves the supporting capacity of the side beam 12 and ensures the overall pressure resistance of the battery.
  • the first plate body 1221a, the second plate body 1221b and the beam main body together form an accommodation cavity 1221c, and the convex portion 1221 also includes a reinforcement disposed in the accommodation cavity 1221c. Muscle 1221d.
  • the first plate body 1221a, the second plate body 1221b and the beam main body together form an accommodation cavity 1221c.
  • the first plate body 1221a and the second plate body 1221b also separate the accommodation cavity 1221c from the accommodation space 13.
  • the size and shape of the accommodation cavity 1221c needs to be determined according to the position and angle of the first plate body 1221a and the second plate body 1221b relative to the beam main body 121.
  • the accommodation cavity 1221c may have a right-angled trapezoidal structure.
  • the reinforcing ribs 1221d are arranged in the accommodation cavity 1221c.
  • the reinforcing ribs 1221d may include one or more reinforcing ribs, and the ends of each reinforcing rib may be connected to the first plate body 1221a, the second plate body 1221b and the beam main body 121. Either.
  • the reinforcing ribs 1221d in each convex portion 1221 may be the same or different.
  • reinforcing ribs 1221d are provided in the convex portions 1221, thereby improving the strength and pressure resistance of each convex portion 1221, and further enhancing the overall structural strength of the battery.
  • reinforcing ribs may also be provided in the beam main body 121 .
  • the plurality of side beams 12 include two first side beams 12a and two second side beams 12b.
  • the two first side beams 12a are along the sides of the box.
  • the two second side beams 12b are arranged at intervals in the width direction X, and the two second side beams 12b are arranged at intervals along the length direction Y of the box, and the length direction X intersects with the width direction Y.
  • Each second side beam 12b connects two first side beams 12a.
  • Each first side beam 12a includes a beam main body 121 and a reinforcing portion 122.
  • the width direction X and the length direction Y are respectively the extension direction of the narrow side and the direction of the long side of the box.
  • the width direction X is perpendicular to the length direction Y.
  • the two first side beams 12a extend along the length direction Y and are arranged side by side in the width direction X.
  • the two second side beams 12b extend in the width direction X and are arranged in the length direction Y.
  • the two first side beams 12a and the two second side beams 12b are connected to each other and enclose to form a receiving space 13.
  • the extension direction of the side beam 12 when the side beam 12 is the first side beam 12a, the extension direction of the side beam 12 is the length direction Y; when the side beam 12 is the second side beam 12b, the extending direction of the side beam 12 is the width direction X.
  • the reinforcement part 122 exists because the internal components of the battery occupy the space between the battery cell 20 and the beam body 121 , thereby causing the distance between the battery cell 20 and the beam body 121 to increase, making it easier to Problems of degumming and insufficient structural strength occur.
  • the manifold 32 located between the battery cell 20 and the beam body 121 , the manifold 32 will cause the above problems, and the manifold 32 is usually disposed in the width direction X of the battery cell 20 One or both sides, that is, the manifold 32 will cause the distance between the main body of the first side beam 12a and the battery cell 20 to be too large.
  • the embodiment of the present application adds a reinforcing portion 122 to the first side beam 12a, which increases the structural strength of the first side beam 12a while reducing the distance between the first side beam 12a and the battery cell 20. , reduce the risk of degumming problems.
  • the second side beam 12b may only include the beam main body 121, or may include both the beam main body 121 and the reinforcing portion 122. This is not limited in the embodiment of the present application.
  • L1 and L2 satisfy: 0.0002 ⁇ L1/L2 ⁇ 0.5.
  • L1/L2 is one of 0.0002, 0.0005, 0.005, 0.02, and 0.5.
  • L1/L2 that is too large or too small indicates that there is a problem with the internal structural layout of the battery. Specifically, when L1/L2 is too small, it is difficult for components in the battery to be inserted into the gaps 1231 between adjacent protrusions 1221, resulting in structural layout conflicts. When L1/L2 is too large, it means that the size of the convex portion 1221 is too small and cannot meet the requirements of structural strength.
  • L1/L2 is set between 0.0002 and 0.5, so that the internal layout of the battery is reasonable and can meet the needs of the battery structural strength.
  • L1/L2 is one of 0.001, 0.01, 0.1, and 0.3.
  • an embodiment of the present application provides a battery.
  • the battery includes the box 100 of any of the aforementioned embodiments and the battery cells 20 .
  • the battery cells 20 are accommodated in the accommodation space 13 .
  • the battery provided by the embodiment of the present application has the beneficial effects of the box 400 in any of the foregoing embodiments.
  • the battery includes a thermal management component 30 , the thermal management component 30 is received in the accommodation space 13 , and the avoidance structure 123 is used to avoid at least part of the thermal management component 30 .
  • the reinforcing part 122 is provided with an escape structure 123 for avoiding the thermal management component 30 .
  • the presence of the reinforced portion 122 can improve the structural strength of the side beam 12 and reduce the risk of battery deformation without affecting the thermal management component 30 .
  • the existence of the reinforced portion 122 will not increase the overall volume of the battery, and can also reduce the distance between the battery cell 20 and the side beam 12, reduce the width of the colloid between the battery cell 20 and the side beam 12, and reduce the problem of degumming.
  • the risk of occurrence applies to different working conditions such as movement or vibration.
  • the thermal management component 30 includes a plurality of heat exchange plates 31 arranged at intervals, and the battery cells 20 are arranged between adjacent heat exchange plates 31 .
  • the reinforcing part 122 includes a plurality of convex parts 1221 arranged at intervals.
  • the avoidance structure 123 includes a gap 1231 between two adjacent convex parts 1221 . The gap 1231 is used to accommodate the end of the heat exchange plate 31 .
  • Multiple heat exchange plates 31 can regulate the temperature of multiple battery cells 20 .
  • Both battery cells 20 and heat exchange plates 31 are located in the accommodation space 13 .
  • the heat exchange plates 31 The end of the heat exchange plate 31 will partially protrude from the accommodating space 13.
  • a plurality of convex portions 1221 are arranged at intervals, thereby forming a space between adjacent convex portions 1221 that can accommodate heat exchangers.
  • Gap 1231 at the end of plate 31 in addition, in addition to the avoidance effect, the existence of the gap 1231 can also limit the position of the heat exchange plate 31 and the battery cell 20 to a certain extent. Therefore, during the battery preparation process, the heat exchange plate can be The end of 31 is inserted into the gap 1231 to determine the position of the battery cell 20 .
  • the thermal management component 30 includes a manifold 32 that communicates a plurality of heat exchange tubes, and the manifold 32 is at least partially located within the avoidance space 1232 .
  • the manifold 32 can realize the communication between multiple heat exchange plates 31.
  • the manifold 32 is usually located between the battery cell 20 and the beam main body 121.
  • the reinforcing portion 122 is also located between the battery cell 20 and the beam body. between 121.
  • the first plate body 1221a is tilted relative to the second plate body 1221b, thereby forming an avoidance space 1232 for avoiding the manifold 32 on the side of the first plate body 1221a away from the substrate 11.
  • the space between the battery cells 20 and the beam body 121 is effectively utilized.
  • embodiments of the present application provide an electrical device, including the battery in any of the aforementioned embodiments.
  • the battery includes a box 400, a battery cell 20 and a thermal management component 30.
  • the box 400 includes a base plate 11 and a plurality of side beams 12, and the side beams 12 are connected
  • the accommodation space 13 is formed on the base plate 11 and enclosed with the base plate 11 .
  • At least one side beam 12 includes a beam main body 121 and a reinforcing portion 122 protruding from a surface of the beam main body 121 facing the accommodation space 13 .
  • the reinforcing part 122 includes a plurality of convex parts 1221 arranged at equal intervals along the extension direction of the beam body 121 , and gaps 1231 are formed between adjacent convex parts 1221 .
  • the convex portion 1221 includes a first plate body 1221a and a second plate body 1221b that are connected to each other.
  • the first plate body 1221a is located on the side of the second plate body 1221b away from the substrate 11.
  • the first plate body 1221a intersects the second plate body 1221b.
  • An escape space 1232 is formed on the side of the first plate body 1221a away from the substrate 11 .
  • the thermal management component 30 includes a plurality of spaced heat exchange plates 31 and a manifold 32 connecting the plurality of heat exchange plates 31 .
  • the gap 1231 is used to accommodate the end of the heat exchange plate 31, and the manifold 32 is at least partially located in the avoidance space 1232.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例提供一种电池的箱体、电池以及用电装置,箱体包括基板以及多个侧梁,多个侧梁连接于基板并与基板围合形成容纳空间。其中,至少一个侧梁包括梁主体和加强部,加强部凸出于梁主体的面朝容纳空间的表面,加强部设有避让结构,避让结构用于避让容纳于容纳空间中的部件。本申请实施例通过在至少一个侧梁上设置加强部,从而提高该侧梁的结构强度,降低电池发生变形的风险。加强部设置在梁主体朝向容纳空间的表面,加强部的存在不会增加电池整体体积,并且还可以减小电池单体与侧梁之间的距离,提高了电池单体与侧梁之间的胶粘强度,从而加强了电池的结构强度。

Description

电池的箱体、电池以及用电装置 技术领域
本申请涉及电池技术领域,并且更具体地,涉及一种电池的箱体、电池以及用电装置。
背景技术
目前,电池广泛应用于例如车辆等多种用电装置中,在部分用电装置工作过程中,往往伴随有移动或振动的情况。在这种情况下,如何提高电池的结构强度显得极为重要。
发明内容
本申请提供了一种电池的箱体、电池以及用电装置,其能提高电池的结构强度。
第一方面,本申请实施例提供了一种电池的箱体,包括基板以及多个侧梁,多个侧梁连接于基板并与基板围合形成容纳空间。其中,至少一个侧梁包括梁主体和加强部,加强部凸出于梁主体的面朝容纳空间的表面,加强部设有避让结构,避让结构用于避让容纳于容纳空间中的部件。
在本申请实施例中,通过在侧梁上设置加强部,使得侧梁在对应加强部的位置处的厚度增加,而厚度的增加往往意味着结构强度的增大,因此侧梁的抗压能力得到提高,从而降低了电池发生变形的风险。加强部设置在梁主体朝向容纳空间的表面,加强部的存在不会增加电池整体体积,并且还可以减小电池单体与侧梁之间的距离,提高了电池单体与侧梁之间的胶粘强度,从而加强了电池的结构强度。
在一些实施例中,加强部包括间隔设置的多个凸部,多个凸部沿梁主体的延伸方向间隔设置。
在本申请实施例中,多个凸部设置为在梁主体的延伸方向上间隔设 置,使得由相邻两个凸部之间形成的间隙能够在梁主体的延伸方向上进行排布,以此来避让位于电池内部的更多部件或结构,满足电池内部结构布局的需要。
在一些实施例中,多个凸部沿梁主体的延伸方向以等间隔设置。
在本申请实施例中,能够使得由多个凸部形成的多个间隙更容易地避让电池内部例如换热板等部件,同时等间隔设置还有利于规范化电池内部结构,提高电池内部结构布局的可靠性。
在一些实施例中,避让结构包括两个相邻凸部之间形成的间隙,在梁主体的延伸方向上,间隙的最小宽度为L1,1mm≤L1≤1500mm。
在本申请实施例中,通过将两个相邻的凸部之间的间距为L1设置在1mm至1500mm之间,保证间隙的宽度足以避让需要,同时确保侧梁具有一定的结构强度,满足电池的实际使用要求。
在一些实施例中,5mm≤L1≤20mm。
在一些实施例中,凸部包括相互连接的第一板体和第二板体,第一板体位于第二板体背离基板的一侧,第一板体与第二板体相交。其中,避让结构包括位于第一板体背离基板一侧的避让空间。
在本申请实施例中,能够合理电池单体与梁主体之间的空间,以确保电池内部结构紧凑,并且还能降低侧梁与电池单体之间发生脱胶的风险,提高电池使用可靠性。
在一些实施例中,第二板体沿基板的厚度方向延伸并与基板抵接。
在本申请实施例中,第二板体设置为沿基板的厚度方向延伸并与基板抵接,以使第二板体在电池倒置的情况下能够起到一定的支撑作用,提高侧梁的支撑能力,保证电池整体的抗压能力。
在一些实施例中,第一板体、第二板体以及梁主体共同围合形成容纳腔,凸部还包括设置于容纳腔内的加强筋。
在本申请实施例中,通过在凸部内设置加强筋,从而提高各凸部的强度以及抗压能力,进一步增强电池整体的结构强度。
在一些实施例中,多个侧梁包括两个第一侧梁和两个第二侧梁,两个第一侧梁沿箱体宽度方向间隔设置,两个第二侧梁沿箱体长度方向间隔 设置。各第二侧梁连接两个第一侧梁,各第一侧梁包括梁主体和加强部。
在本申请实施例中,第一侧梁中增设有加强部,在增加第一侧梁结构强度的同时,减小第一侧梁与电池单体之间的距离,降低脱胶问题发生的风险。
在一些实施例中,箱体在长度方向上的最大尺寸为L2,L1和L2满足:0.0002≤L1/L2≤0.5。
在本申请实施例中,L1/L2设置在0.0002至20之间,使得电池内部布局合理,且能够满足电池结构强度的需要。
在一些实施例中,0.001<L1/L2≤0.3。
第二方面,本申请实施例提供了一种电池,包括前述任一实施方式的箱体以及电池单体,电池单体容纳于容纳空间内。
在一些实施例中,电池包括热管理部件,热管理部件容纳于容纳空间,避让结构用于避让热管理部件的至少部分。
在本申请实施例中,加强部设置有用于避让热管理部件的避让结构。加强部的存在在不影响热管理部件的前提下,能够提高侧梁的结构强度,降低电池发生变形的风险。同时加强部的存在不会增加电池整体体积,还可以减小电池单体与侧梁之间的距离,减小位于电池单体与侧梁之间胶体的宽度,降低脱胶问题发生的风险,适用于移动或振动等不同工况。
在一些实施例中,热管理部件包括多个间隔设置的换热板,相邻换热板之间设置有电池单体。加强部包括间隔设置的多个凸部,避让结构包括位于两个相邻凸部之间的间隙,间隙用于容纳换热板的端部。
在本申请实施例中,多个凸部设置为间隔排布,从而在相邻凸部之间形成能够容纳换热板端部的间隙。此外间隙的存在除了起到避让效果外,还可以在一定程度上对换热板和电池单体的位置起到限位定位效果,从而在电池制备过程中,可以通过将换热板端部插装在间隙内,实现对电池单体位置的确定。
在一些实施例中,热管理部件包括汇流管,汇流管将多个换热管连通,汇流管至少部分位于避让空间内。
在本申请实施例中,汇流管可以实现多个换热板的连通,汇流管通 常位于电池单体与梁主体之间,同样加强部也位于电池单体与梁主体之间。在此基础上,本申请实施例将第一板体相对于第二板体倾斜设置,从而在第一板远离基板的一侧形成用于避让汇流管的避让空间,有效利用电池单体与梁主体之间的空间。
第三方面,本申请实施例提供了一种用电装置,包括前述任一实施方式中的电池,电池用于提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸示意图;
图3为图2所示电池中的一个侧梁的结构示意图;
图4是图3中区域Q的放大结构示意图;
图5为本申请一些实施例提供的电池中热管理部件的结构示意图;
图6为本申请一些实施例提供的电池中的一个侧梁的结构示意图;
图7为本申请一些实施例提供的电池的结构示意图。
在附图中,附图并未按照实际的比例绘制。
附图中:
1000、车辆;
100、电池;200、控制器;300、马达;400、箱体;
11、基板;12、侧梁;12a、第一侧梁;12b、第二侧梁;121、梁主体;122、加强部;1221、凸部;1221a、第一板体;1221b、第二板体;1221c、容纳腔;1221d、加强筋;123、避让结构;1231、间隙;1232、避让空间;13、容纳空间;14、盖板;
20、电池单体;
30、热管理部件;31换热板;32、汇流管;
X、宽度方向;Y、长度方向;Z、厚度方向;
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表 示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为聚丙烯(Polypropylene,PP)或聚乙烯(polyethylene, PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
对于例如车辆等用电装置来说,电池会随着用电装置一同移动或发生振动。申请人注意到,电池在长期使用过程中,电池中箱体的侧梁容易出现变形,导致电池的结构强度不足。
申请人研究发现,上述问题的发生是由于:在电池内部,电池单体会与基板通过粘接的方式实现固定,而位于电池单体与基板之间的部分胶体会溢到电池单体的侧面,从而实现侧梁与电池单体之间粘接。但是由于电池内部结构的限制,导致电池单体与侧梁之间的距离过大。在振动或其他工况下,位于电池单体与侧梁之间的胶体容易出现脱胶的问题,从而导致侧梁与电池单体无法连成一个整体。并且电池箱体的侧梁厚度通常较薄,导致侧壁刚度不足。因此在受到外力冲击的情况下,侧壁外部容易发生磕碰和凹陷问题。因此,如何提如何提高电池的结构强度称为一个亟待解决的问题。
基于申请人发现的上述问题,本申请提供了一种电池的箱体,箱体包括基板以及多个侧梁,多个侧梁连接于基板并与基板围合形成容纳空间。其中,至少一个侧梁包括梁主体和加强部,加强部凸出于梁主体的面朝容纳空间的表面,加强部设有避让结构,避让结构用于避让容纳于容纳空间中的部件。
本申请通过在至少一个侧梁上设置加强部,使得侧梁在对应加强部的位置处的厚度增加,而厚度的增加往往意味着结构强度的增大,因此侧梁的抗压能力得到提高,从而降低了电池发生变形的风险。加强部设置在梁主体朝向容纳空间的表面,加强部的存在不会增加电池整体体积,并且还可以减小电池单体与侧梁之间的距离,提高了电池单体与侧梁之间的胶粘强度,从而加强了电池的结构强度
本申请实施例描述的技术方案适用于使用电池的用电装置,用电装置例如是电瓶车、电动汽车、轮船、航天器、电动玩具和电动工具等等,其中,航天器例如是飞机、火箭、航天飞机和宇宙飞船等等,电动玩具例如包括固定式或移动式的电动玩具,具体例如,电动汽车玩具、电动轮船 玩具和电动飞机玩具等等,电动工具例如包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,具体例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨。
本申请实施例描述的电池单体不仅仅局限适用于上述所描述的用电装置,但为描述简洁,下述实施例均以电动汽车为例进行说明。
请参阅图1,车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部可以设置电池100,具体例如,在车辆1000的底部或车头或车尾可以设置电池100。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200例如用来控制电池为马达300的供电。电池可以用于车辆1000的启动、导航等,当然,电池100也可以用于驱动车辆1000行驶,替代或部分地替代燃油或天然气为车辆1000提供驱动。
请参阅图2,电池包括箱体400和电池单体20,电池单体20容纳于箱体400内。
在电池100中,电池单体20可以是一个,也可以是多个。若电池单体20为多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体400内;当然,也可以是多个电池单体20先串联或并联或混联组成电池模块(图中未示出),多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体400内。
以下结合附图对箱体400的结构进行详细阐述。
本申请实施例提供了一种电池的箱体400,请参阅图2和图3,箱体400包括基板11以及多个侧梁12,多个侧梁12连接于基板11并与基板11围合形成容纳空间13。其中,至少一个侧梁12包括梁主体121和加强部122,加强部122凸出于梁主体121的面朝容纳空间13的表面,加强部122设有避让结构123,避让结构123用于避让容纳于容纳空间13中的部件。
基板11可为箱体400的底板,基板11与多个侧梁12共同围合形成 容纳空间13,电池单体20设置于容纳空间13内,基板11用于承载和固定电池单体20。示例性地,电池单体20通过粘接的方式固定于基板11上,同时部分胶体会溢出至电池单体20与侧梁12之间,以起到固定电池单体20与侧梁12的作用。
多个侧梁12依次首尾相接,从而围合形成箱体400的侧壁。多个侧梁12可以为一体式结构,也可以为分体式结构,并通过粘接、焊接、插接以及螺栓连接等方式共同构成环形结构,环形结构包括但不限于方环和圆环等。同时多个侧梁12还连接于基板11上,连接方式包括但不限于焊接、粘接以及螺栓连接等。
在本申请实施例中,各侧梁12均包括有梁主体121,但多个侧梁12中可以仅有一个侧梁12包括有加强部122。也可以部分或全部侧梁12均包括有加强部122,本申请实施例对此不作限制。至少部分侧梁12中增设有加强部122,加强部122连接于梁主体121,加强部122与梁主体121的连接方式包括但不限于焊接、粘接以及螺栓连接等。加强部122的设置可以增加侧梁12强度,提高侧梁12的整体强度以及抗冲击能力,降低侧梁12发生变形的风险。
加强部122设置于梁主体121朝向容纳空间13的表面,这种设计能够在不增加电池整体体积大小的前提下,提高至少部分侧梁12的强度,进而确保电池的结构强度。并且加强部122的存在可以减小电池单体20与侧梁12之间的距离,提高了电池单体20与侧梁12之间的胶粘强度,从而加强了电池的结构强度。
由于电池内部结构布局的限制,使得部分部件会位于电池单体20与梁主体121之间,导致电池单体20与至少部分梁主体121之间的距离过大。为了使得加强部122与电池内的部件不会发生干涉影响,本申请实施例设有避让结构123,避让结构123用于避让电池的容纳于容纳空间13中的部件。避让结构123包括但不限于孔、槽、缺口或其它结构。
避让结构123用于避让位于容纳空间13内的至少部分部件,以确保电池内部布局可靠。对于加强部122和避让结构123的具体结构需要根据电池内部的布局决定,本申请实施例对此不作限制。
本申请实施例通过在至少一个侧梁12上设置加强部122,,使得侧梁12在对应及加强部122的位置处的厚度增加,而厚度的增加往往意味着结构强度的增大,因此侧梁12的抗压能力提高,从而降低了电池发生变形的风险。加强部122设置在梁主体121朝向容纳空间13的表面,加强部122的存在不会增加电池整体体积,并且还可以减小电池单体20与侧梁12之间的距离,提高了电池单体与侧梁之间的胶粘强度,从而能够提高电池整体的结构强度。
此外,箱体400除了包括基板11和侧梁12外,还可以包括有盖板14,基板11与盖板14在基板11的厚度方向Z上间隔设置。
示例性地,电池内部除了电池单体20外还包括有热管理部件30,热管理部件30用于调节电池内部电池单体20的温度,确保电池单体20能够保持合适温度进行工作。
如图5所示,热管理部件30包括有换热板31以及用于连接多个换热板31的汇流管32。换热板31与电池单体20贴合或邻近设置,是用于调节电池单体20温度的主要部件,换热板31内通常存在有可供流体通过的通道,当电池需要降温时,可以向换热板31输送冷流体,冷流体在通道内流动并带走电池单体20的部分热量,以此实现降温操作。当电池需要升温时,可以向换热板31输送热流体,热流体在通道内流动并向对应电池单体20提供部分热量,以此实现升温操作。
汇流管32与换热板31的通道连通,用于向一个或多个换热板31输送或转移冷热流体。汇流管32通常位于电池单体20与侧梁12之间,由于汇流管32的存在,导致电池单体20与梁主体之间的距离过大。而位于电池单体20与梁主体之间的胶体很难满足电池单体20的固定需要,因此在移动或振动等工况下容易出现脱胶等问题。可选地,避让结构123用于避让电池中的热管理部件30。
需要说明的是,在本申请实施例中,加强部122可以为一连续长条状结构并固定于梁主体,也可以由多个部分共同组成,且并排设置于梁主体上,本申请实施例对此不作限制。
在一些实施例中,请参阅图2至图4,加强部122包括间隔设置的 多个凸部1221,多个凸部1221沿梁主体121的延伸方向间隔设置。
多个凸部1221安装于同一梁主体121上,安装方式包括但不限于粘接、焊接以及螺栓连接等。多个凸部1221的尺寸形状可以相同,也可以不同,只要满足各凸部1221设置于梁主体朝向容纳空间13的表面,并向远离梁主体121的方向突出即可。对于多个凸部1221的排布方式,本申请实施例不作限制。示例性地,多个凸部1221可以沿基板11的厚度方向Z并排设置。
梁主体121的延伸方向即为梁主体121的长度方向,多个凸部1221沿梁主体121延伸方向间隔设置,即多个凸部1221在梁主体121的延伸方向上并列排布。其中各凸部1221在梁主体121延伸方向上的长度可以相同也可以不同,并且相邻凸部1221之间的间隔距离也可以相同或者不同。
多个凸部1221间隔设置以在相邻凸部1221之间形成间隙1231,间隙1231的存在用于避让电池内的部分结构。示例性地,间隙1231的存在用于避让电池中热管理部件30内的换热板31,至少部分换热板31的端部能够深入至间隙1231内,间隙1231用于容纳换热管的端部。间隙1231的设置除了可以起到避让作用外,还在一定程度上起到限位作用,限制位于间隙1231内结构的移动,从而能够在移动或振动情况下,确保电池内部结构的稳定性。
当电池包括有多个电池单体20时,通常情况下,多个电池单体20会沿着梁主体121的延伸方向并排设置。同样地,位于电池内部的多个部件也可以沿梁主体121的延伸方向并排设置。因此在此基础上,本申请实施例将多个凸部1221设置为在梁主体121的延伸方向上间隔设置,使得由相邻两个凸部1221之间形成的间隙1231能够在梁主体121的延伸方向上进行排布,以此来避让位于电池内部的更多部件或结构,满足电池内部结构布局的需要。
在一些实施例中,多个凸部1221沿梁主体121的延伸方向以等间隔设置,由相邻两个凸部1221形成的间隙的最小宽度L1保持一致。
这种设计下的间隙1231适用于避让电池内部等距排布的部件。示例性地,当电池内存在有多个电池单体20时,相邻电池单体20之间会存在 有换热板31。由上述内容可知,多个电池单体20会沿梁主体121的延伸方向排布,并且电池单体20之间通常为等距排列。综上,多个换热板31也会沿梁主体121的延伸方向等距排布。
因此本申请实施例将多个凸部1221沿梁主体121的延伸方向以等间隔设置,能够使得由多个凸部1221形成的多个间隙1231更容易地避让电池内部例如换热板31等部件,同时等间隔设置还有利于规范化电池内部结构,提高电池内部结构布局的可靠性。
在一些实施例中,避让结构123包括两个相邻凸部1221之间形成的间隙1231,在梁主体的延伸方向上,间隙的最小宽度为L1,1mm≤L1≤1500mm。示例性地,L1为1mm、10mm、100mm、1000mm、1500mm中的一者。
两个相邻凸部1221之间的间距即为间隙1231的最小宽度L1,若宽度L1过小,则表明间隙1231宽度过小,容易导致电池内的部件无法进入至间隙1231内,从而无法起到避让作用。而若宽度L1过大,则表明各凸部1221在梁主体121延伸方向上的总程度过小,即凸部1221尺寸过小,此时加强部122的加强效果不足,电池仍存在有结构强度不足的问题。
本申请实施例将间隙1231的最小宽度L1设置在1mm至1500mm之间,保证间隙1231的宽度足以避让需要,同时确保侧梁12具有一定的结构强度,满足电池的实际使用要求。进一步地,可选地,5mm≤L1≤20mm。示例性地。L1为5mm、10mm、15mm以及20mm中的一者。
在一些实施例中,凸部1221包括相互连接的第一板体1221a和第二板体1221b,第一板体1221a位于第二板体1221b背离基板11的一侧,第一板体1221a与第二板体1221b相交。其中,避让结构123包括位于第一板体1221a背离基板11一侧的避让空间1232。
请参阅图2、图3和图6,凸部1221包括第一板体1221a和第二板体1221b,第一板体1221a和第二板体1221b相互连接,两者可以为一体式结构,也可以通过焊接、粘接等方式连接固定。第二板体1221b相对于第一板体1221a更靠近基板11,第二板体1221b可以与基板11分离式设计,也可以与基板11直接接触并固定一体。
第一板体1221a与第二板体1221b均为板状结构,且两者相交设置。 这里的相交指的是,第一板体1221a对应的平面与第二板体1221b对应的平面不相平行并呈一定的夹角。对于第一板体1221a和第二板体1221b所对应平面的具体方向,本申请实施例不作限制。
第一板体1221a和第二板体1221b均能够起到加强侧梁12强度的效果,而电池内部的部分部件会位于电池单体20与梁主体121之间,为了避让该类部件,本申请实施例将第一板体1221a相对于第二板体1221b倾斜设置,以使第一板体1221a背离第二板体1221b的一侧形成避让空间1232。
需要说明的是,图中以虚线的方式框出避让空间1232,但是避让空间1232的形状及尺寸等并不限于图中所示,即图中的避让空间1232并不构成对本申请实施例中避让空间1232形状尺寸的限制。可选地,电池中的汇流管32至少部分位于避让空间1232内。
这种设计能够合理电池单体20与梁主体之间的空间,以确保电池内部结构紧凑,并且还能降低侧梁12与电池单体20之间发生脱胶的风险,提高电池使用可靠性。
在一些实施例中,第二板体1221b沿基板11的厚度方向Z延伸并与基板11抵接。
基板11为箱体的底座并能够与电池单体20粘接固定,但是在电池实际使用时,在部分情况下需要将电池倒置安装,此时基板11位于电池单体20的上方。在这种情况下,侧梁12起到支撑基板11以及施加在基板11上外力的作用。
在此基础上,本申请实施例将第二板体1221b设置为沿基板11的厚度方向Z延伸并与基板11抵接,以使第二板体1221b在电池倒置的情况下能够起到一定的支撑作用,提高侧梁12的支撑能力,保证电池整体的抗压能力。
在一些实施例中,如图2和图6所示,第一板体1221a、第二板体1221b以及梁主体共同围合形成容纳腔1221c,凸部1221还包括设置于容纳腔1221c内的加强筋1221d。
第一板体1221a、第二板体1221b以及梁主体三者共同围形成容纳腔1221c,同时第一板体1221a和第二板体1221b还将容纳腔1221c与 容纳空间13间隔开。对于容纳腔1221c的尺寸形状需要根据第一板体1221a和第二板体1221b相对于梁主体121的位置及角度决定。可选地,容纳腔1221c可以为直角梯形结构。
加强筋1221d设置在容纳腔1221c内,加强筋1221d可以包括有一个或多个加强筋,各加强筋中的端部可以连接于第一板体1221a、第二板体1221b以及梁主体121中的任一者。并且各凸部1221中的加强筋1221d可以相同,也可以不同。在本申请实施例中,通过在凸部1221内设置加强筋1221d,从而提高各凸部1221的强度以及抗压能力,进一步增强电池整体的结构强度。
在一些可选实施例中,梁主体121内同样可以设置有加强筋。
在一些实施例中,请参阅图2、图3以及图7,多个侧梁12包括两个第一侧梁12a和两个第二侧梁12b,两个第一侧梁12a沿箱体的宽度方向X间隔设置,两个第二侧梁12b沿箱体的长度方向Y间隔设置,长度方向X与宽度方向Y相交。各第二侧梁12b连接两个第一侧梁12a,各第一侧梁12a包括梁主体121和加强部122。
宽度方向X与长度方向Y分别为箱体窄边的延伸方向以及长边的方向,示例性地,宽度方向X垂直于长度方向Y。
两个第一侧梁12a沿长度方向Y延伸,并在宽度方向X上并排设置。两个第二侧梁12b沿宽度方向X延伸,并在长度方向Y上设置。两个第一侧梁12a以及两个第二侧梁12b相互连接,并围合形成容纳空间13。对于前述实施例中提到的侧梁12的延伸方向,当该侧梁12为第一侧梁12a时,侧梁12的延伸方向即为长度方向Y;当该侧梁12为第二侧梁12b时,侧梁12的延伸方向即为宽度方向X。
由前述内容可知,加强部122的存在是由于电池内部的部件占用了电池单体20与梁主体121之间的空间,从而导致电池单体20与梁主体121之间的距离增大,从而容易出现脱胶以及结构强度不足的问题。示例性地,对于位于电池单体20与梁主体121之间的汇流管32而言,汇流管32会导致上述问题的出现,同时汇流管32通常会设置在电池单体20在宽度方向X上的一侧或两侧,即汇流管32会导致第一侧梁12a中梁主体与电 池单体20之间的距离过大。
在此基础上,本申请实施例在第一侧梁12a中增设有加强部122,在增加第一侧梁12a结构强度的同时,减小第一侧梁12a与电池单体20之间的距离,降低脱胶问题发生的风险。
需要说明的是,第二侧梁12b可以仅包括有梁主体121,也可以同时包括梁主体121和加强部122,本申请实施例对此不作限制。
在一些实施例中,请参阅图4和图7,箱体在长度方向Y上的最大尺寸为L2,L1和L2满足:0.0002≤L1/L2≤0.5。示例性地,L1/L2为0.0002、0.0005、0.005、0.02以及0.5中的一者。
L1/L2过大或过小均表明电池内部结构布局存在问题。具体地说,当L1/L2过小时,电池内的部件很难插入至相邻凸部1221之间的间隙1231内,从而导致结构布局矛盾。当L1/L2过大时,则说明凸部1221尺寸过小,无法满足结构强度的需要。
因此本申请实施例将L1/L2设置在0.0002至0.5之间,使得电池内部布局合理,且能够满足电池结构强度的需要。可选地,0.001<L1/L2≤0.3。示例性地,L1/L2为0.001、0.01、0.1以及0.3中的一者。
第二方面,本申请实施例提供了一种电池,如图2所示,电池包括前述任一实施方式的箱体100以及电池单体20,电池单体20容纳于容纳空间13内。
需要说明的是,本申请实施例提供的电池,具有前述任一实施方式中箱体400的有益效果,具体请参照前述对于箱体400的描述,本申请实施例不再赘述。
在一些实施例中,如图2至图5所示,电池包括热管理部件30,热管理部件30容纳于容纳空间13,避让结构123用于避让热管理部件30的至少部分。
在本申请实施例中,加强部122设置有用于避让热管理部件30的避让结构123。加强部122的存在在不影响热管理部件30的前提下,能够提高侧梁12的结构强度,降低电池发生变形的风险。同时加强部122的存在不会增加电池整体体积,还可以减小电池单体20与侧梁12之间的距离, 减小位于电池单体20与侧梁12之间胶体的宽度,降低脱胶问题发生的风险,适用于移动或振动等不同工况。
在一些实施例中,热管理部件30包括多个间隔设置的换热板31,相邻换热板31之间设置有电池单体20。加强部122包括间隔设置的多个凸部1221,避让结构123包括位于两个相邻凸部1221之间的间隙1231,间隙1231用于容纳换热板31的端部。
多个换热板31能够对多个电池单体20起到温度调节效果,电池单体20与换热板31均位于容纳空间13内,但是与电池单体20不同的是,换热板31的端部会部分突出于容纳空间13,为了避让换热板31的端部,本申请实施例将多个凸部1221设置为间隔排布,从而在相邻凸部1221之间形成能够容纳换热板31端部的间隙1231。此外间隙1231的存在除了起到避让效果外,还可以在一定程度上对换热板31和电池单体20的位置起到限位定位效果,从而在电池制备过程中,可以通过将换热板31端部插装在间隙1231内,实现对电池单体20位置的确定。
在一些实施例中,热管理部件30包括汇流管32,汇流管32将多个换热管连通,汇流管32至少部分位于避让空间1232内。
在本申请实施例中,汇流管32可以实现多个换热板31的连通,汇流管32通常位于电池单体20与梁主体121之间,同样加强部122也位于电池单体20与梁主体121之间。在此基础上,本申请实施例将第一板体1221a相对于第二板体1221b倾斜设置,从而在第一板体1221a远离基板11的一侧形成用于避让汇流管32的避让空间1232,有效利用电池单体20与梁主体121之间的空间。
第三方面,本申请实施例提供了一种用电装置,包括前述任一实施方式中的电池。
要说明的是,本申请实施例提供的用电装置,具有前述任一实施方式中电池的有益效果,具体请参照前述对于电池的描述,本申请实施例不再赘述。
根据本申请的一些实施例,如图2至图6所示,电池包括箱体400、电池单体20及热管理部件30,箱体400包括基板11以及多个侧梁 12,侧梁12连接于基板11并与基板11围合形成容纳空间13。至少一个侧梁12包括梁主体121和加强部122,加强部122突出于梁主体121的面朝容纳空间13的表面。加强部122包括沿梁主体121的延伸方向等间隔设置的多个凸部1221,相邻凸部1221之间形成间隙1231。凸部1221包括相互连接的第一板体1221a和第二板体1221b,第一板体1221a位于第二板体1221b背离基板11的一侧,第一板体1221a与第二板体1221b相交,第一板体1221a背离基板11一侧形成有避让空间1232。
热管理部件30包括多个间隔设置的换热板31以及将多个换热板31连通的汇流管32。间隙1231用于容纳换热板31的端部,汇流管32至少部分位于避让空间1232内。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (16)

  1. 一种电池的箱体,包括:
    基板;以及
    多个侧梁,连接于所述基板并与所述基板围合形成容纳空间,
    其中,至少一个所述侧梁包括梁主体和加强部,所述加强部凸出于所述梁主体的面朝所述容纳空间的表面,所述加强部设有避让结构,所述避让结构用于避让容纳于所述容纳空间中的部件。
  2. 根据权利要求1所述的箱体,其中,所述加强部包括间隔设置的多个凸部,所述多个凸部沿所述梁主体的延伸方向间隔设置。
  3. 根据权利要求2所述的箱体,其中,所述多个凸部沿所述梁主体的延伸方向以等间隔设置。
  4. 根据权利要求2或3所述的箱体,其中,所述避让结构包括两个相邻的凸部之间形成的间隙,在所述梁主体的延伸方向上,所述间隙的最小宽度为L1,1mm≤L1≤1500mm。
  5. 根据权利要求4所述的箱体,其中,5mm≤L1≤20mm。
  6. 根据权利要求2所述的箱体,其中,所述凸部包括相互连接的第一板体和第二板体,所述第一板体位于所述第二板体背离所述基板的一侧,所述第一板体与所述第二板体相交;
    其中,所述避让结构包括位于所述第一板体背离所述基板一侧的避让 空间。
  7. 根据权利要求6所述的箱体,其中,所述第二板体沿所述基板的厚度方向延伸并与所述基板抵接。
  8. 根据权利要求6或7所述的箱体,其中,所述第一板体、所述第二板体以及所述梁主体共同围合形成容纳腔,所述凸部还包括设置于所述容纳腔内的加强筋。
  9. 根据权利要求1-8任一项所述的箱体,其中,所述多个侧梁包括两个第一侧梁和两个第二侧梁,所述两个第一侧梁沿所述箱体的宽度方向间隔设置,所述两个第二侧梁沿所述箱体的长度方向间隔设置;
    各所述第二侧梁连接所述两个第一侧梁;各所述第一侧梁包括所述梁主体和所述加强部。
  10. 根据权利要求9所述的箱体,其中,所述加强部包括沿所述长度方向间隔设置的多个凸部,
    在所述长度方向上,两个相邻的所述凸部之间的间隙的最小宽度为L1,所述箱体的最大尺寸为L2,L1和L2满足:0.0002≤L1/L2≤0.5。
  11. 根据权利要求10所述的箱体,其中,0.001<L1/L2≤0.3。
  12. 一种电池,包括:
    根据权利要求1至11任一项所述的箱体;以及
    电池单体,容纳于所述容纳空间内。
  13. 根据权利要求12所述的电池,还包括热管理部件,容纳于所述容纳空间,所述避让结构用于避让所述热管理部件的至少部分。
  14. 根据权利要求13所述的电池,其中,所述热管理部件包括多个间隔设置的换热板,相邻所述换热板之间设置有电池单体;
    所述加强部包括间隔设置的多个凸部,所述避让结构包括位于两个相邻所述凸部之间的间隙,所述间隙用于容纳所述换热板的端部。
  15. 根据权利要求14所述的电池,其中,所述热管理部件包括汇流管,所述汇流管将多个所述换热板连通;
    所述凸部包括相互连接的第一板体和第二板体,所述第一板体位于所述第二板体背离所述基板的一侧,所述第一板体与所述第二板体相交;
    其中,所述避让结构包括位于所述第一板体背离所述基板一侧的避让空间,所述汇流管至少部分位于所述避让空间内。
  16. 一种用电装置,包括根据权利要求12至15任一项所述的电池,所述电池用于提供电能。
PCT/CN2022/109118 2022-07-29 2022-07-29 电池的箱体、电池以及用电装置 WO2024021070A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2022/109118 WO2024021070A1 (zh) 2022-07-29 2022-07-29 电池的箱体、电池以及用电装置
CN202280006387.4A CN116195118A (zh) 2022-07-29 2022-07-29 电池的箱体、电池以及用电装置
CN202223553552.4U CN219180661U (zh) 2022-07-29 2022-12-28 电池的箱体、电池以及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/109118 WO2024021070A1 (zh) 2022-07-29 2022-07-29 电池的箱体、电池以及用电装置

Publications (1)

Publication Number Publication Date
WO2024021070A1 true WO2024021070A1 (zh) 2024-02-01

Family

ID=86440716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109118 WO2024021070A1 (zh) 2022-07-29 2022-07-29 电池的箱体、电池以及用电装置

Country Status (2)

Country Link
CN (2) CN116195118A (zh)
WO (1) WO2024021070A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212209699U (zh) * 2020-06-04 2020-12-22 北京罗克维尔斯科技有限公司 一种液冷框架、电池模组及车辆
CN212751062U (zh) * 2020-09-27 2021-03-19 北京车和家信息技术有限公司 一种电池包框架及电池包
JP2021195058A (ja) * 2020-06-16 2021-12-27 スズキ株式会社 車両のバッテリ保護構造
CN216354572U (zh) * 2021-11-26 2022-04-19 蜂巢能源科技有限公司 电池包的端板结构和电池包
CN217788522U (zh) * 2021-12-07 2022-11-11 北京车和家汽车科技有限公司 电池冷却系统、电池包及车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212209699U (zh) * 2020-06-04 2020-12-22 北京罗克维尔斯科技有限公司 一种液冷框架、电池模组及车辆
JP2021195058A (ja) * 2020-06-16 2021-12-27 スズキ株式会社 車両のバッテリ保護構造
CN212751062U (zh) * 2020-09-27 2021-03-19 北京车和家信息技术有限公司 一种电池包框架及电池包
CN216354572U (zh) * 2021-11-26 2022-04-19 蜂巢能源科技有限公司 电池包的端板结构和电池包
CN217788522U (zh) * 2021-12-07 2022-11-11 北京车和家汽车科技有限公司 电池冷却系统、电池包及车辆

Also Published As

Publication number Publication date
CN219180661U (zh) 2023-06-13
CN116195118A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
WO2024021304A1 (zh) 热管理部件、电池以及用电设备
WO2023004720A1 (zh) 电池、用电装置以及电池的制造方法和制造系统
US20230411756A1 (en) Battery, electric device, and method and device for manufacturing battery
US20240088477A1 (en) Battery, power consumption device, and method and device for producing battery
US20230268588A1 (en) Battery, power consumption device, and method and device for producing battery
CN219180684U (zh) 电池的箱体、电池以及用电装置
WO2023226201A1 (zh) 箱体组件、电池和用电设备
WO2023134319A1 (zh) 电池和用电设备
WO2024021070A1 (zh) 电池的箱体、电池以及用电装置
WO2023155209A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023004724A1 (zh) 换热构件及其制造方法和制造系统、电池以及用电装置
WO2023133783A1 (zh) 电池单体及其制造方法、制造设备、电池和用电装置
WO2024011881A1 (zh) 电池和用电设备
US20230261299A1 (en) Battery and related electrical device, preparation method and preparation device
WO2024036535A1 (zh) 热管理部件、箱体组件、电池和用电装置
WO2024055255A1 (zh) 电池和用电设备
EP4383410A1 (en) Battery, electric device, and method and device for preparing battery
WO2024021055A1 (zh) 电池箱体、电池以及用电装置
WO2023133737A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023173721A1 (zh) 电池单体、电池模组、电池和用电装置
WO2023159487A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2022226965A1 (zh) 电池单体、电池、用电设备及电池的制造方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952517

Country of ref document: EP

Kind code of ref document: A1