WO2023134319A1 - 电池和用电设备 - Google Patents

电池和用电设备 Download PDF

Info

Publication number
WO2023134319A1
WO2023134319A1 PCT/CN2022/135647 CN2022135647W WO2023134319A1 WO 2023134319 A1 WO2023134319 A1 WO 2023134319A1 CN 2022135647 W CN2022135647 W CN 2022135647W WO 2023134319 A1 WO2023134319 A1 WO 2023134319A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
battery
connecting pipe
management component
battery cell
Prior art date
Application number
PCT/CN2022/135647
Other languages
English (en)
French (fr)
Inventor
钱欧
杨飘飘
李耀
陈小波
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP22919952.6A priority Critical patent/EP4358262A1/en
Priority to KR1020247002119A priority patent/KR20240023439A/ko
Priority to CA3236561A priority patent/CA3236561A1/en
Priority to CN202280019141.0A priority patent/CN117083759A/zh
Priority to CN202320658585.0U priority patent/CN220306441U/zh
Publication of WO2023134319A1 publication Critical patent/WO2023134319A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • H01M50/325Re-sealable arrangements comprising deformable valve members, e.g. elastic or flexible valve members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/367Internal gas exhaust passages forming part of the battery cover or case; Double cover vent systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, in particular to a battery and an electrical device.
  • the embodiment of the present application provides a battery and an electric device, which can improve the safety of the battery.
  • a battery in a first aspect, includes a battery cell, a bus component and a thermal management component.
  • the first wall of the battery cell is provided with a pressure relief mechanism; the thermal management component is used to adjust the temperature of the battery cell, and the thermal management component is attached to the second wall of the battery cell, and the second wall is different from the first wall ;
  • the confluence part is used to electrically connect the electrode terminals of the battery cells, the electrode terminals are arranged on the third wall of the battery cells, and the third wall is different from the first wall.
  • the thermal management component can cool down the temperature of the battery cells where thermal runaway occurs, avoid thermal diffusion, and enhance the safety of the battery.
  • the current-combining part of the battery is electrically connected to the electrode terminal of the battery cell, and the electrode terminal is arranged on the third wall of the battery cell, and the third wall is also different from the first wall.
  • the discharge of the battery cells is kept away from the confluence components, preventing the discharge from causing a short circuit between the confluence components, thereby preventing the battery from short circuiting and improving the safety of the battery.
  • the second and third walls are different.
  • the thermal management component can be attached to a wall different from the third wall, so that there is no need to avoid the confluence component, which is more convenient for installation, and the contact area between the thermal management component and the battery cell Also larger, more conducive to temperature regulation.
  • the area of the second wall is greater than or equal to the area of the first wall; and/or, the area of the second wall is greater than or equal to the area of the third wall.
  • the area of the second wall is not smaller than the first wall and/or the third wall, which can ensure that the second wall will not be too small, thereby ensuring the contact between the second wall and the heat management component
  • the area will not be too small due to the limitation of the area of the second wall, so that the temperature regulation effect of the battery cells can be ensured.
  • the second wall is the wall with the largest area of the battery cell.
  • the second wall as the wall with the largest area of the battery cell, the highest temperature regulation efficiency for the battery cell can be achieved in the most convenient manner.
  • the battery further includes: a case including an electrical cavity for housing the battery cells and thermal management components and a collection cavity for collecting discharge from the battery cells when the pressure relief mechanism is actuated thing.
  • the discharge of the battery cell can be collected through the collection cavity, so as to avoid the discharge of the battery cell from being directly released to the outside of the box, thereby preventing The resulting explosive force destroys other components, improving the safety of the battery.
  • the box further includes a first box wall opposite to and spaced apart from the first wall, and there is a gap between the first wall and the first box wall, and the gap is used to form at least part of the collection cavity.
  • the discharge of the battery cells can be collected by using the collection chamber without adding additional components,
  • the structure of the battery is simplified, the volume utilization rate of the battery is improved, the collection efficiency of discharges from the battery cells is improved, and the safety of the battery is improved.
  • the minimum distance between the first wall and the first box wall is greater than or equal to 7 mm.
  • the minimum distance between the first wall and the first box wall is limited to be greater than or equal to 7mm, which can reserve sufficient deformation space for the pressure relief mechanism, so that the discharge of the battery cells can be released in time, In this way, the pressure or temperature inside the battery cell can be reduced, and a sufficient release space can be reserved for the discharge released by the battery cell when the pressure relief mechanism is actuated, so as to prevent the battery cell from collapsing with adjacent cells due to excessive accumulation of discharge from the battery cell.
  • the battery cells are in contact, thereby affecting adjacent battery cells, thereby improving the safety of the battery.
  • the minimum distance between the first wall and the first box wall is between 7 mm and 25 mm.
  • the influence of external force on the battery cells can be reduced, and the actuation of the pressure relief mechanism can be reduced. While reserving sufficient space for the emissions released by the battery cells, it can also improve the volume utilization of the battery and increase the energy density of the battery.
  • the battery further includes: an isolation member attached to the first wall, the isolation member for isolating the electrical cavity and the collection cavity.
  • an isolation member attached to the first wall, the isolation member for isolating the electrical cavity and the collection cavity.
  • the box body further includes a second box body wall, and the second box body wall is used for fixing with the third wall, so as to realize the fixing of the battery cells and the box body.
  • the fixing of the second box wall and the third wall can realize the fixing of the battery cells, which can not only avoid the shaking of the battery cells in the box due to the influence of the external environment, but also improve the stability of the battery. Stability and safety, it is also possible to form a gap between the first wall of the battery cell and the wall of the box without adding other components, and this gap can be used to form at least part of the collection chamber to collect the battery.
  • the discharge of the monomer improves the volume utilization rate of the battery and increases the energy density of the battery.
  • the third wall is secured to the second tank wall by an adhesive.
  • the adhesive since the adhesive has the advantages of low cost and easy availability, fixing the third wall and the second box wall with the adhesive reduces the difficulty of fixing and reduces the production cost of the battery. Moreover, in the actual production process of the battery, the adhesive can be coated on a part of the third wall, and can be coated on a part of the second box wall, which increases the third wall and the second wall. The flexibility of the fixing method of the second box wall.
  • the battery includes a plurality of rows of battery cells arranged along a first direction, each row of battery cells in the plurality of rows of battery cells includes at least one battery cell arranged along a second direction, and the second wall is arranged along a first direction. perpendicular to the second direction and the second wall.
  • the plurality of battery cells in the battery are arranged in an array, which facilitates the assembly of the battery, and can also improve the space utilization rate of the plurality of battery cells in the battery.
  • the thermal management component is attached to the second wall of at least one battery cell of at least one of the plurality of columns of battery cells.
  • the production cost of producing the battery can be reduced.
  • the battery cells include two second walls oppositely arranged along the first direction, and the two sides of at least one row of battery cells in the multiple rows of battery cells along the first direction are respectively provided with walls attached to at least one battery cell.
  • the thermal management components of the two second walls of the monocoque In this way, the temperature of a row of battery cells can be adjusted at the same time through the two thermal management components, which can improve the temperature adjustment efficiency and improve the safety of the battery.
  • the same thermal management component is arranged between at least two adjacent rows of battery cells in multiple rows of battery cells. In this way, the temperature regulation effect can be improved.
  • the battery includes a plurality of thermal management components arranged along a first direction. Multiple thermal management components can further improve temperature regulation efficiency.
  • a plurality of thermal management components are arranged at intervals along the first direction.
  • the thermal management component is provided with a heat exchange channel containing a heat exchange medium, and the heat exchange channels of multiple thermal management components communicate with each other.
  • multiple thermal management components communicate with each other. On the one hand, it facilitates management and control, and improves the integration and safety of the battery; on the other hand, when the temperature of some thermal management components in the battery changes greatly , heat exchange can be realized through the heat exchange channel, so that the temperature difference between the multiple heat management components is small, and the temperature adjustment efficiency is improved.
  • the plurality of thermal management components include adjacent first thermal management components and second thermal management components, the first thermal management component includes a first connecting pipe communicating with the heat exchange channel, and the second thermal management component includes The second connecting pipe communicated with the heat exchange channel, the first connecting pipe and the second connecting pipe are connected to each other, so that the heat exchange channel of the first heat management component communicates with the heat exchange channel of the second heat management component.
  • the heat exchange channel between the adjacent first heat management component and the second heat management component is connected through the first connecting pipe and the second connecting pipe, which can reduce the difficulty of connecting the heat exchange channel, and, Arranging the components connecting the heat exchange channel together with the first thermal management component and the second thermal management component can improve the volume utilization rate of the battery, thereby increasing the energy density of the battery.
  • the first connecting pipe is disposed on the first thermal management component in a region beyond a row of battery cells along the second direction
  • the second connecting pipe is disposed on a region of the second thermal management component that exceeds a row of battery cells along the second direction.
  • a row of battery cells is a row of battery cells located between the first thermal management component and the second thermal management component, and the first connecting pipe and the second connecting pipe extend along a first direction to connect with each other.
  • the heat exchange in the heat exchange channel of the first heat management component and the heat exchange channel of the second heat pipe component can be shortened.
  • the transportation path of the heat medium not only speeds up the transportation efficiency of the heat exchange medium in the corresponding heat exchange channel, but also improves the volume utilization rate of the battery.
  • the box body further includes a support member for supporting the first connecting pipe and/or the second connecting pipe.
  • the first connecting pipe and/or the second connecting pipe are supported by the supporting member, so that the heat management member located between the first heat management member and the second heat management member can
  • a row of battery cells can form a gap with a wall of the box, for example, a gap between a first wall of a row of battery cells and any wall of the box can be used to form at least part of the collection chamber, so that The collection chamber collects discharge from the battery cells. In this way, the volume utilization rate of the battery is improved, and the energy density of the battery is increased.
  • one side of the supporting member along a third direction is used for attaching the first connecting pipe and/or the second connecting pipe, and the third direction is perpendicular to the first direction and the second direction.
  • the space of the battery in the third direction can be utilized to improve the volume utilization of the battery, and , when assembling the battery, when the first connecting pipe and the second connecting pipe are in communication, set the supporting member to attach the first connecting pipe and/or the second connecting pipe, or first set the supporting member to attach the first connecting pipe
  • the pipe or the second connecting pipe communicates with the first connecting pipe and the second connecting pipe, which increases the flexibility of assembly.
  • one side of the support member along the third direction is provided with a receiving groove for receiving at least part of the first connecting pipe and/or at least part of the second connecting pipe.
  • a receiving groove is provided on one side of the supporting member along the third direction to accommodate at least part of the first connecting pipe and/or at least part of the second connecting pipe, so that the supporting member can more stably support and Fixing the first connecting pipe and/or the second connecting pipe prevents the first connecting pipe, the second connecting pipe and a row of battery cells between them from shaking in the box, thereby increasing the stability and safety of the battery.
  • the first wall is arranged opposite to the third wall, and the second wall is connected to the first wall and the third wall; or, the first wall is arranged opposite to the second wall, and the third wall is connected to the first wall and the second wall. wall.
  • the first wall of the battery cell is arranged opposite to the third wall, so that the pressure relief mechanism is away from the confluence part, so that when the pressure relief mechanism is activated, the discharge of the battery cell can be discharged away from the confluence part, Minimize the impact of emissions on the bus components and avoid short-circuiting of the battery.
  • setting the second wall to connect the first wall and the third wall can make the three walls different, and then the heat management component is on a different side from the pressure relief mechanism and the confluence component, which can prevent the pressure relief mechanism and/or the confluence component in an abnormal state. Adversely affect thermal management components.
  • the first wall of the battery cell is arranged opposite to the second wall, so that the pressure relief mechanism faces away from the thermal management component, so that when the pressure relief mechanism is activated, the discharge of the battery cell can be away from the thermal management component, avoiding damage to the thermal management components to further enhance the safety of the battery.
  • the third wall is set to connect the first wall and the second wall, so that the three walls are different, and the confluence part is on a different side from the pressure relief mechanism and the heat management part, which can prevent the pressure relief mechanism and/or heat management under abnormal conditions. Components adversely affect bus components.
  • an electric device including: the battery described in the first aspect, where the battery is used to provide electric energy for the electric device.
  • the electric device is a vehicle, ship or spacecraft.
  • Fig. 1 is a schematic structural view of a vehicle disclosed in an embodiment of the present application
  • Fig. 2 is a schematic diagram of an exploded structure of a battery disclosed in an embodiment of the present application
  • Fig. 3 is a schematic side view of a battery cell disclosed in an embodiment of the present application.
  • Fig. 4 is a schematic diagram of an exploded structure of a battery cell disclosed in an embodiment of the present application.
  • Fig. 5 is a schematic side view of a battery disclosed in an embodiment of the present application.
  • Fig. 6 is a schematic diagram of an exploded structure of another battery disclosed in an embodiment of the present application.
  • Fig. 7 is a schematic cross-sectional view of another battery disclosed in an embodiment of the present application.
  • Fig. 8 is a schematic diagram of an exploded structure of another battery disclosed in an embodiment of the present application.
  • Fig. 9 is a schematic cross-sectional view of another battery disclosed in an embodiment of the present application.
  • Fig. 10 is a schematic partial cross-sectional view of another battery disclosed in an embodiment of the present application.
  • Fig. 11 is another schematic cross-sectional view of another battery disclosed in the embodiment of the present application.
  • Fig. 12 is another partial cross-sectional schematic diagram of another battery disclosed in an embodiment of the present application.
  • Fig. 13 is a partial schematic diagram of a thermal management component disclosed in an embodiment of the present application.
  • Fig. 14 is a partial schematic diagram of another battery disclosed in an embodiment of the present application.
  • Fig. 15 is a schematic top view of the connection between the first thermal management component and the second thermal management component in another battery disclosed in an embodiment of the present application;
  • Fig. 16 is a schematic partial side view of another battery disclosed in an embodiment of the present application.
  • Fig. 17 is another partial schematic diagram of another battery disclosed in an embodiment of the present application.
  • Fig. 18 is another schematic cross-sectional view of another battery disclosed in an embodiment of the present application.
  • Fig. 19 is another partial schematic diagram of another battery disclosed in an embodiment of the present application.
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in the embodiments of the present application.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet, and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative plates.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector not coated with the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector without the negative electrode active material layer protrudes from the current collector coated with the negative electrode active material layer.
  • the current collector coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the diaphragm can be polypropylene (polypropylene, PP) or polyethylene (polyethylene, PE).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • a pressure relief mechanism is generally installed on the battery cell.
  • the pressure relief mechanism refers to an element or part that is activated to release the internal pressure or temperature when the internal pressure or temperature of the battery cell reaches a predetermined threshold.
  • the predetermined threshold can be adjusted according to different design requirements. For example, the predetermined threshold may depend on the materials of one or more of the positive electrode sheet, the negative electrode sheet, the electrolyte and the separator in the battery cell.
  • the pressure relief mechanism can use elements or components that are sensitive to pressure or temperature, that is, when the internal pressure or temperature of the battery cell reaches a predetermined threshold, the pressure relief mechanism is actuated to form a pressure- or temperature-relieved aisle. Also, in order to manage and adjust the temperature of the battery cell, a heat management member is usually attached to the surface of the battery cell.
  • the heat management component is usually attached to the wall of the battery cell provided with the pressure relief mechanism. So that when the battery cells work normally, the heat management component can adjust the temperature of the battery cells.
  • the thermal runaway of the battery cell occurs, such as when the pressure relief mechanism of the battery cell is actuated, the power and destructive force of the discharge released by the pressure relief mechanism of the battery cell is very powerful and destructive, and may even be enough to break through the thermal management components, making the The function of the thermal management component in regulating the temperature of the battery cell (such as cooling the battery cell in which the thermal runaway occurs) is reduced when the thermal runaway of the battery cell occurs, which may cause thermal diffusion of the battery.
  • the present application provides a battery, which includes a battery cell, a bus component and a heat management component.
  • the first wall of the battery cell is provided with a pressure relief mechanism; the thermal management component is attached to the second wall of the battery cell, and the second wall is different from the first wall, so that when the battery cell thermal runaway occurs, after The discharge of the battery cells discharged by the pressure relief mechanism will be discharged in a direction away from the thermal management component. Therefore, the discharge is not easy to break through the thermal management component. Diffusion enhances the safety of the battery.
  • the current-combining part of the battery is electrically connected to the electrode terminal of the battery cell, and the electrode terminal is arranged on the third wall of the battery cell, and the third wall is also different from the first wall.
  • Electrical devices can be vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles;
  • spacecraft include airplanes, rockets, space shuttles and spacecraft, etc.;
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric boat toys and electric airplane toys, etc.;
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, electric planers, and more.
  • the embodiment of the present application does not impose special limitations on the above electric equipment.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or Extended range cars, etc.
  • a motor 40 , a controller 30 and a battery 10 can be arranged inside the vehicle 1 , and the controller 30 is used to control the battery 10 to supply power to the motor 40 .
  • the battery 10 may be provided at the bottom or front or rear of the vehicle 1 .
  • the battery 10 can be used for power supply of the vehicle 1, for example, the battery 10 can be used as the operating power supply of the vehicle 1, for the circuit system of the vehicle 1, for example, for the starting, navigation and working power requirements of the vehicle 1 during operation.
  • the battery 10 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • FIG. 2 shows a partially exploded schematic diagram of a battery 10 described in the embodiment of the present application.
  • FIG. 3 shows a schematic side view of a battery cell 20 according to an embodiment of the present application.
  • the battery 10 shown in FIG. 2 and FIG. 3 includes a battery cell 20 , a thermal management component 13 and a bus component 12 .
  • the first wall 21a of the battery cell 20 is provided with a pressure relief mechanism 213;
  • the thermal management component 13 is used to adjust the temperature of the battery cell 20, and the thermal management component 13 is attached to the second wall 21b of the battery cell 20,
  • the second wall 21b is different from the first wall 21a;
  • the bus part 12 is used to electrically connect the electrode terminal 214 of the battery cell 20, the electrode terminal 214 is arranged on the third wall 21c of the battery cell 20, the third wall 21c and the second wall 21c
  • One wall 21a is different.
  • the shape of the battery cell 20 in the embodiment of the present application can be set according to practical applications.
  • the battery cell 20 may be a polyhedron structure, and the polyhedron structure is surrounded by multiple walls. Therefore, the battery cell 20 may include multiple walls.
  • the first wall 21 a of the battery cell 20 is provided with a pressure relief mechanism 213
  • the second wall 21 b of the battery cell 20 faces the heat management component 13 .
  • the first wall 21 a and the second wall 21 b can be any two different walls of the battery cell 20
  • the first wall and the third wall 21 c can also be any two different walls of the battery 20 .
  • the first wall 21a and the second wall 21b may intersect or may not intersect, and the first wall 21a and the third wall 21c may also intersect or not intersect, the embodiment of the present application is not limited thereto.
  • the pressure release mechanism 213 in the embodiment of the present application refers to an element or component that is activated when the internal pressure or temperature of the battery cell 20 reaches a predetermined threshold to release the internal pressure or temperature.
  • the predetermined threshold design is different according to different design requirements.
  • the predetermined threshold may depend on the materials of one or more of the positive electrode sheet, the negative electrode sheet, the electrolyte and the separator in the battery cell 20 .
  • the pressure relief mechanism 213 can be directly arranged on the first wall 21a, or can be arranged separately from the first wall 21a, and fixed on the first wall 21a by means of welding/pasting or the like.
  • adjusting the temperature of the battery cell 20 by the thermal management component 13 may include heating or cooling the battery cell 20 .
  • cooling the battery cell 20 can improve the safety of the battery; before using the battery in some regions with cold winter temperatures, heating the battery cell 20 can improve battery performance. .
  • the manner in which the thermal management component 13 is attached to the second wall 21b of the battery cell 20 is not fixed.
  • the thermal management component can be attached to the second wall 21b of the battery cell 20 through an adhesive (for example, thermally conductive glue), or the thermal management component 13 can be clamped and fixed between two adjacent battery cells 20 between.
  • the battery cell 20 includes at least two electrode terminals 214, and the at least two electrode terminals 214 may be disposed at least on the same third wall 21c, or may be disposed on different third walls 21c.
  • FIG. 2 and FIG. 3 illustrate by taking the two electrode terminals 214 of the battery cell 20 on the same third wall 21c as an example.
  • the bus member 12 can connect a plurality of battery cells 20 in series/parallel through the two electrode terminals 214 .
  • the third wall 21c of the battery cell 20 is provided with a positive electrode terminal 214a and a negative electrode terminal 214b.
  • Two adjacent battery cells 20 are connected in series.
  • the bus member 12 connects the respective positive electrode terminals 214 a of two adjacent battery cells 20 to connect the two adjacent battery cells 20 in parallel.
  • the thermal management component 13 can cool down the temperature of the battery cell 20 where thermal runaway occurs, avoid thermal diffusion, and enhance the safety of the battery 10 .
  • the bus member 12 of the battery 10 is electrically connected to the electrode terminal 214 of the battery cell 20, and the electrode terminal 214 is disposed on the third wall 21c of the battery cell 20, and the third wall 21c is also different from the first wall 21a.
  • the pressure relief mechanism 213 when the pressure relief mechanism 213 is actuated, the discharge of the battery cells 20 is kept away from the confluence parts 12, so as to prevent the discharge from causing a short circuit between the confluence parts 12, thereby preventing the short circuit of the battery 10 and improving the safety of the battery 10. .
  • the third wall 21c is different from the second wall 21b.
  • the third wall 21c is different from the second wall 21b.
  • the thermal management component 13 can be attached on a wall different from the third wall 21c, so that there is no need to avoid the confluence component 12, which is more convenient for installation, and the thermal management component 13 and the battery
  • the contact area of the monomer 20 is also larger, which is more conducive to temperature regulation.
  • the contact area between the thermal management component 13 and the second wall 21b of the battery cell 20 in the embodiment of the present application can be set according to the actual application, and the contact area refers to the contact area between the thermal management component 13 and the battery cell 20
  • the area of the heat exchange area of the second wall 21b, the contact here can refer to the direct contact between the thermal management component 13 and the second wall 21b, or can refer to the heat management component 13 and the second wall 21b through thermal conductive glue, thermal pad, etc. indirect contact.
  • the first wall 21a and the third wall 21c of the battery cell 20 are arranged opposite to each other, and the second wall 21b connects the first wall 21a and the third wall 21c; or, the first wall 21a and the third wall 21c are connected.
  • the second wall 21b is oppositely disposed, and the third wall 21c connects the first wall 21a and the second wall 21b.
  • the first wall 21a of the battery cell 20 is arranged opposite to the third wall 21c, so that the pressure relief mechanism 213 faces away from the confluence member 12, so that the discharge of the battery cell 20 when the pressure relief mechanism 213 is actuated
  • the waste can be discharged away from the confluence part 12, reducing the impact of the discharge on the confluence part 12 and avoiding short circuit of the battery 10.
  • the second wall 21b is set to connect the first wall 21a and the third wall 21c, so that the three walls are different, and the heat management component 13 is on a different side from the pressure relief mechanism 213 and the confluence component 12, which can prevent pressure relief under abnormal conditions
  • the mechanism 213 and/or the busbar component 12 adversely affects the thermal management component 13 .
  • the first wall 21a and the second wall 21b of the battery cell 20 are arranged opposite to each other so that the pressure relief mechanism 213 faces away from the heat management component 13, so that when the pressure relief mechanism 213 is actuated, the discharge of the battery cell 20 can be away from the heat.
  • the management component 13 avoids damage to the thermal management component 13 , further enhancing the safety of the battery 10 .
  • the third wall 21c is provided to connect the first wall 21a and the second wall 21b, so that the three walls are different, and the confluence part 12 is on a different side from the pressure relief mechanism 213 and the heat management part 13, which can prevent pressure relief under abnormal conditions Mechanism 213 and/or thermal management component 13 adversely affects busbar component 12 .
  • the area of the second wall 21b is greater than or equal to the area of the first wall 21a; and/or, the area of the second wall 21b is greater than or equal to the area of the third wall 21c.
  • Setting the area of the second wall 21b not smaller than the first wall 21a and/or the third wall 21c can ensure that the second wall 21b will not be too small, thereby ensuring the contact area between the second wall 21b and the heat management component 13
  • the area of the second wall 21 b will not be too small due to the limitation of the area of the second wall 21 b, so that the temperature regulation effect of the battery cell 20 can be ensured.
  • the first wall 21a may be the wall with the smallest area of the battery cell 20, and the second wall 21b may be the wall with the largest or larger area, and the contact area between the thermal management component 13 and the battery cell 20 is also larger, which may Improve the temperature regulation effect on the battery cell 20 .
  • the third wall 21c can be the wall with the smallest area, and the second wall 21b can be the wall with the larger or the largest area, and the contact area between the thermal management component 13 and the battery cell 20 is also larger, which can also improve the stability of the battery cell. Body 20 temperature regulation effect.
  • the first wall 21a can be a wall with the smallest area
  • the third wall 21c can be a wall with a medium area
  • the second wall 21b can be a wall with a medium area or a wall with a larger area.
  • the second wall 21b is the wall with the largest area of the battery cell 20 .
  • the second wall 21b may be any one of the at least one wall with the largest area. Since the larger the contact area between the thermal management component 13 and the battery cell 20 is, the better the temperature regulation effect on the battery cell 20 is. In this way, attaching the thermal management component 13 on the wall of the battery cell 20 with the largest area can achieve the highest temperature regulation efficiency for the battery cell 20 in the most convenient manner.
  • FIG. 4 shows a schematic diagram of an exploded structure of a battery cell according to an embodiment of the present application.
  • the battery cell 20 includes a housing 21 that may include a plurality of walls.
  • the second wall 21b may be any wall on the casing 21 except the first wall 21a.
  • the battery cell 20 shown in FIG. 4 is an exploded schematic view of any battery cell 20 in the battery 10 shown in FIG. 2 and FIG. 3 .
  • the second wall 21 b may be a wall with a smaller area on the casing 21 . Or, different from the position of the second wall 21 b shown in FIG.
  • the second wall 21 b in the embodiment of the present application may be the wall with the largest area on the housing 21 .
  • the casing 21 may include at least two walls with equal areas.
  • the casing 21 of the battery cell 20 is a cuboid, and the casing 21 includes two oppositely arranged walls with equal and largest areas, and the second wall 21b It can be any of these walls.
  • the housing 21 may include a housing 211 and a cover 212 .
  • the walls of the casing 211 and the cover plate 212 are both referred to as walls of the battery cell 20 .
  • the shape of the casing 211 can be determined according to the combined shape of one or more electrode assemblies 22 inside, for example, the casing 211 can be a hollow cuboid or cube or cylinder, and at least one surface of the casing 211 has an opening, So that one or more electrode assemblies 22 can be placed in the casing 211 .
  • the housing 211 is a hollow cuboid or cube
  • at least one plane of the housing 211 is an open surface, that is, the plane does not have a wall so that the inside and outside of the housing 211 communicate.
  • each of the two end surfaces of the housing 211 can be an open surface, that is, the end surface does not have a wall so that the inside and outside of the housing 211 communicate. At least one opening of the housing 211 can be covered by providing at least one cover plate 212 , and each cover plate 212 is connected with the housing 211 to form a closed cavity for placing the electrode assembly 22 .
  • the casing 211 is filled with electrolyte, such as electrolytic solution.
  • a pressure relief mechanism 213 is provided on the first wall 21 a of the battery cell 20 , and the pressure relief mechanism 213 is used to actuate to release the internal pressure or temperature when the internal pressure or temperature of the battery cell 20 reaches a threshold.
  • the first wall 21 a may be any wall of the battery cell 20 .
  • the first wall 21a may be the wall with the largest area of the battery cell 20. In this way, since the area of the second wall 21b is greater than or equal to the area of the first wall 21a, the first wall 21a and the second wall 21b The walls may have the same area and be the largest area of the battery cell 20 .
  • the first wall 21 a may be the wall with the smallest area of the battery cell 20 , for example, the first wall 21 a may be the bottom wall of the housing 211 to facilitate installation.
  • the first wall 21a is separated from the housing 211 in FIG. 4 , but this does not limit whether the bottom side of the housing 211 has or does not have an opening, that is, the bottom wall and the side wall of the housing 211 can be integrally structured. Or it can also be that two parts which are independent of each other are connected together.
  • the pressure relief mechanism 213 may be a part of the first wall 21a, or may be a separate structure from the first wall 21a, so as to be fixed on the first wall 21a by, for example, welding.
  • the pressure relief mechanism 213 is a part of the first wall 21a, that is, the pressure relief mechanism 213 can be integrally formed with the first wall 21a
  • the pressure relief mechanism 213 can be formed by setting a score or a groove on the first wall 21a Formed, the notch makes the thickness of the first wall 21a where the pressure relief mechanism 213 is located is smaller than the thickness of other regions of the first wall 21a except the pressure relief mechanism 213 .
  • the wall thickness at the notch is smaller than the wall thickness of the walls other than the notch on the first wall 21a, when a large amount of gas is generated inside the battery cell 20, the internal pressure rises to a predetermined threshold or the inside of the battery cell 20 When the heat of the battery climbs to a predetermined threshold, the wall at the notch and the adjacent wall ruptures, releasing the pressure and heat inside the battery cell 20 .
  • the pressure relief mechanism 213 in the embodiment of the present application may be various possible pressure relief structures, which are not limited in the embodiment of the present application.
  • the pressure relief mechanism 213 may be a temperature-sensitive pressure relief mechanism configured to melt when the internal temperature of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold; and/or, the pressure relief mechanism 213 may be a pressure-sensitive pressure relief mechanism configured to rupture when the internal air pressure of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold value.
  • the battery cell 20 includes two electrode terminals 214 as an example, and the two electrode terminals 214 are arranged on a plate-shaped cover plate 212 , that is, the cover plate 212 is the third wall 21 c of the battery cell 20 .
  • the at least two electrode terminals 214 may include at least one positive electrode terminal 214a and at least one negative electrode terminal 214b.
  • each electrode terminal 214 in the embodiment of the present application is used to electrically connect with the electrode assembly 22 to output electric energy.
  • each electrode terminal 214 can be provided with a corresponding current collecting member 23 , which is located between the cover plate 212 and the electrode assembly 22 for electrically connecting the electrode assembly 22 and the electrode terminal 214 .
  • each electrode assembly 22 has a first tab 221a and a second tab 222a.
  • the polarities of the first tab 221a and the second tab 222a are opposite.
  • the first tab 221a is a positive tab
  • the second tab 222a is a negative tab.
  • the first tab 221a of one or more electrode assemblies 22 is connected to an electrode terminal through a current collecting member 23, and the second tab 222a of one or more electrode assemblies 22 is connected to another electrode terminal through another current collecting member 23. connect.
  • the positive electrode terminal 214 a is connected to the positive electrode tab through one current collecting member 23
  • the negative electrode terminal 214 b is connected to the negative electrode tab through the other current collecting member 23 .
  • the electrode assembly 22 can be set as a single, or multiple, as shown in FIG. Not limited to this.
  • the battery cell 20 may further include a backing plate 24, which is located between the electrode assembly 22 and the bottom wall of the casing 211, and can support the electrode assembly 22. , it can also effectively prevent the electrode assembly 22 from interfering with the rounded corners around the bottom wall of the casing 211 .
  • the backing plate 24 may be provided with one or more through holes, for example, a plurality of evenly arranged through holes may be provided, or, when the pressure relief mechanism 213 is provided on the bottom wall of the housing 211, corresponding to the The position of the pressure relief mechanism 213 is provided with a through hole to facilitate liquid and gas conduction. Specifically, this can make the space between the upper and lower surfaces of the backing plate 24 communicate, and the gas generated inside the battery cell 20 and the electrolyte can pass through freely. Backing plate 24.
  • FIG. 5 is a schematic partial cross-sectional view of a battery 10 according to an embodiment of the present application.
  • the partial cross-sectional view shown in FIG. 5 may be a partial cross-sectional view of the battery 10 shown in FIG. alignment direction.
  • the battery 10 shown in FIG. 5 also includes a box body 11, wherein the box body 11 includes an electrical cavity 111 and a collection cavity 112, the electrical cavity 111 is used to accommodate the battery cell 20 and the heat management component 13, and the collection cavity 112 is used for The discharge of the battery cells 20 is collected when the pressure relief mechanism 213 is actuated.
  • the electrical cavity 111 in the embodiment of the present application can be used to accommodate the battery cells 20 and the thermal management components 13 , and there is no limit to the number of battery cells 20 and thermal management components 13 accommodated.
  • structures for fixing the battery cells 20 and/or the heat management component 13 may also be provided in the electrical cavity 111 .
  • the shape of the electrical cavity 111 may be determined according to the battery cells 20 and/or thermal management components 13 accommodated therein.
  • the electrical chamber 111 may be a hollow cuboid surrounded by at least six walls, so as to facilitate processing.
  • the collection cavity 112 in the embodiment of the present application is used to collect the discharge of the battery cells 20 .
  • the collection cavity 112 may contain air or other gases.
  • the collecting cavity 112 may also contain liquid, such as a cooling medium, or a component containing the liquid may be provided to further reduce the temperature of the effluent entering the collecting cavity 112 .
  • the gas or liquid in the collection chamber 112 may circulate.
  • the electrical chamber 111 in the embodiment of the present application may be sealed or unsealed; similarly, the collection chamber 112 in the embodiment of the present application may also be sealed or unsealed, which is not limited in the implementation of the present application.
  • the battery 10 of the embodiment of the present application can collect the discharge of the battery cell 20 through the collection cavity 112 when the battery cell 20 is thermally runaway, so as to prevent the discharge of the battery cell 20 from being directly released to the outside of the box body 11. In this way, other components are prevented from being damaged by the explosive force generated when the pressure relief mechanism 213 is actuated, thereby improving the safety of the battery 10 .
  • the first wall 21 a may be at least partially out of contact with the first box wall 114 to form the gap 113 .
  • the collection chamber 112 is formed by the gap 113 between the first wall 21a and the first box wall 114, and the collection chamber 112 can be used to collect battery cells without adding additional components.
  • the emission of the battery cell 20 simplifies the structure of the battery 10 , improves the volume utilization rate of the battery 10 , improves the collection efficiency of the emission of the battery cell 20 , and improves the safety of the battery 10 .
  • the minimum distance L between the first wall 21 a and the first box wall 114 is greater than or equal to 7 mm.
  • the minimum distance L between the first wall 21a and the first box wall 114 may be the minimum distance L among the distances from different points on the first wall 21a to the first box wall 114 .
  • the minimum distance L between the first wall 21a and the first box wall 114 is The distance from any point in the non-scoring area to the first box wall 114 is greater than or equal to 7mm.
  • the minimum distance L of a box wall 114 is the minimum distance L among the distances from any point on the first wall 21 a not in contact with the first box wall 114 to the first box wall 114 .
  • limiting the minimum distance L between the first wall 21a and the first box wall 114 to be greater than or equal to 7mm can reserve sufficient deformation space for the pressure relief mechanism 213, so that the discharge of the battery cell 20
  • the material can be released in time, thereby reducing the pressure or temperature inside the battery cell 20, and can also reserve sufficient release space for the discharge released by the battery cell 20 when the pressure relief mechanism 213 is actuated, preventing the battery cell 20 from Excessive discharge accumulates and contacts adjacent battery cells 20 , thereby affecting adjacent battery cells 20 and improving the safety of the battery 10 .
  • the minimum distance L between the first wall 21a and the first box wall 114 is between 7mm-25mm.
  • the minimum distance L between the first wall 21a and the first box wall 114 is 7mm, 8mm, 9mm, 10m, 11mm, 12mm, 13mm, 14mm, 15mm, 16mm, 17mm, 18mm, 19mm, 20mm, 21mm, 22mm, 23mm, 24mm and 25mm.
  • the larger the minimum distance L between the first wall 21 a and the first box wall 114 the larger the volume of the collection cavity 112 , the lower the volume utilization rate of the battery 10 , and the lower the energy density of the battery 10 .
  • the influence of external force on the battery cell 20 can be reduced, and the pressure can be relieved While leaving sufficient space for the actuation of the mechanism 213 and the discharge released by the battery cells 20 , the volume utilization rate of the battery 10 can be improved, and the energy density of the battery 10 can be increased.
  • FIG. 6 shows a battery 10 according to another embodiment of the present application.
  • FIG. 7 is a schematic partial cross-sectional view of a battery 10 according to another embodiment of the present application.
  • FIG. 7 may be a schematic partial cross-sectional view of the battery 10 perpendicular to the first direction X shown in FIG. 6 .
  • the first direction X is the same as the first direction X in the above-mentioned embodiment.
  • the battery 10 further includes an isolation member 15 attached to the first wall 21 a for isolating the electrical cavity 111 and the collection cavity 112 .
  • the so-called “isolation” here refers to separation, and may not be airtight.
  • the electrical cavity 111 and the collection cavity 112 are separated by the isolation member 15, that is, the electrical cavity 111 for accommodating the battery cells 20 and the thermal management component 13 is spatially separated from the collection cavity 112 for collecting the discharge. Yes, this prevents at least part of the exhaust from entering the electrical chamber 111 from the collection chamber 112, avoiding thermal diffusion.
  • the isolation member 15 includes a common wall of the electrical cavity 111 and the collection cavity 112 .
  • isolation part 15 (or a part thereof) can directly be used as the common wall of electric chamber 111 and collecting chamber 112, like this, can reduce the distance between electric chamber 111 and collecting chamber 112 as far as possible, saves space, and improve the volume utilization rate of the box body 11.
  • the electrical chamber 111 and the collection chamber 112 may be realized in various ways through the isolation component 15 in the box body 11 , which is not limited in the embodiment of the present application.
  • the box body 11 may include a first cover with an opening, and the isolation member 15 covers the opening of the first cover to form the electrical cavity 111 .
  • the wall for forming the electrical chamber 111 includes the first cover and the isolation member 15 .
  • the first cover can also be realized in various ways.
  • the first cover can be a hollow integral structure with one end open; or, the first cover can also include a first part 111a and a second part 112b with openings on opposite sides, the first part 111a covers the second One side of the second part 112 b is open to form a first cover with one end open, and the insulating part 15 covers the other side of the second part 112 b to form an electrical cavity 111 .
  • the box body 11 further includes: a protective member 113 c used to form a collection chamber 112 with the isolation component 15 .
  • the protection member 113c can also be used to protect the isolation part 15 , that is, the wall of the collection chamber 112 includes the protection member 113c and the isolation part 15 .
  • the box body 11 may also include a closed second cover body, which may be used to form the electrical chamber 111, or, by setting the isolation member 15 Inside the second cover, an electrical cavity 111 is isolated inside the second cover, and further, a collection cavity 112 may also be isolated.
  • the second cover body can also be realized in various ways, for example, the second cover body can include a third part and a fourth part, one side of the fourth part has an opening to form a semi-closed structure, and the isolation part 15 is provided Inside the fourth part, the third part covers the opening of the fourth part to form a closed second cover.
  • the isolation member 15 is provided with a pressure relief area 151, and the pressure relief area 151 is used to discharge the discharge to the collection chamber 112 through the pressure relief area 151 when the pressure relief mechanism 213 is actuated, thereby preventing the discharge from Damage to other battery cells 20 in the electrical cavity 111 can avoid thermal diffusion and improve the safety of the battery 10 .
  • the isolation component 15 further includes a non-pressure relief area 152 , and the non-pressure relief area 152 is an area on the isolation component 15 other than the pressure relief area 151 .
  • an adhesive (not shown) can be coated on the non-pressure relief area 152 to fix the battery cell 20 and the isolation member 15, that is, to adhere the first wall 21a of the battery cell 20 to the isolation member 15. then fixed.
  • the pressure relief area 151 of the isolation component 15 in the embodiment of the present application can be realized in various ways.
  • the pressure relief area 151 in the isolation component 15 may not be treated in any special way.
  • the embodiment of the present application only refers to a part of the isolation component 15 opposite to the pressure relief mechanism 213 , which is called the pressure relief area 151 .
  • the pressure relief area 151 in the isolation member 15 may also be specially treated so that it can be more easily destroyed when the pressure relief mechanism 213 is actuated.
  • the pressure relief area 151 is a weakened area that can be broken when the pressure relief mechanism 213 is actuated, so that the discharge can pass through the weakened area and enter the collection cavity 112 .
  • Setting the pressure relief area 151 as a weak area can make the isolation member 15 in a relatively sealed state when the pressure relief mechanism 213 is not actuated, for example, during normal use of the battery 10, effectively protecting the pressure relief mechanism 213 from being damaged by external forces and fail.
  • the strength of the weakened area is less than the intensity at other regions except the pressure relief area 151 in the isolation member 15, so the weakened area is easy to be destroyed, so that the pressure from the pressure relief mechanism 213 is provided.
  • the discharge of the battery cells 20 exits the electrical cavity 111 through the weakened area, for example, may pass through the weakened area into the collection cavity 112 .
  • the pressure relief area 151 may also be a through hole, and the through hole is used for the discharge to enter the collection chamber 112 through the through hole when the pressure relief mechanism 213 is actuated.
  • the pressure relief area 151 is a through hole, on the one hand, it is convenient to process, and on the other hand, the discharge discharged through the pressure relief mechanism 213 can be released more quickly.
  • FIG. 8 shows a partially exploded schematic diagram of a battery 10 according to yet another embodiment of the present application.
  • FIG. 9 is a schematic partial cross-sectional view of a battery 10 according to yet another embodiment of the present application.
  • FIG. 9 may be a schematic partial cross-sectional view of the battery 10 perpendicular to the first direction X shown in FIG. 8 .
  • the first direction X is the same as the first direction X in the above-mentioned embodiment.
  • the box body 11 further includes a second box body wall 115 for fixing with the third wall 21 c to realize the fixing of the battery cells 20 and the box body 11 .
  • the fixing of the second box wall 115 and the third wall 21c can realize the fixing of the battery cell 20, which can not only avoid the shaking of the battery cell 20 in the box due to the influence of the external environment,
  • the stability and safety of the battery 10 are improved, and a gap can be formed between the first wall 21a of the battery cell 20 and the wall of the box body 11 without adding other parts, and the gap can be used to form At least part of the collection cavity is used to collect the discharge of the battery cells 20 , which improves the volume utilization of the battery 10 and increases the energy density of the battery 10 .
  • the second box wall 115 and the third wall 21c may be directly fixed, or may be indirectly fixed through a fixing member.
  • the fixing components include but are not limited to bolts, slots and the like.
  • the second box wall 115 and the third wall 21c are directly fixed as an example for description.
  • there is a magnetic substance on the side of the second box wall 115 close to the third wall 21c and there is also a magnetic substance on the side of the third wall 21c close to the second box wall 115.
  • the magnetic force makes the second box wall 115 and the third wall 21c fixed, so as to realize the fixing of the battery cell 20 and the box 11 .
  • FIG. 10 is a partially enlarged view of area B in FIG. 9 .
  • the third wall 21c is fixed to the second box wall 115 by an adhesive 17, so as to facilitate processing.
  • the adhesive 17 may be coated on the third wall 21c on the area where the electrode terminal 214 is not provided, so as to fix the third wall 21c and the second box wall 115 .
  • the adhesive 17 may use thermally conductive silica gel, epoxy resin glue, polyurethane glue, and the like.
  • the fixing between the battery cells 20 and the box 11 can also be realized through other walls.
  • the fixing between the battery cell 20 and the box body 11 can be realized through the first wall 21a of the battery cell 20 and the first box body wall 114 of the box body 11, for example, the first wall 21a and the first box body wall 114 may be connected by a connecting member (for example, adhesive).
  • the adhesive 17 since the adhesive 17 has the advantages of low cost and easy acquisition, fixing the third wall 21c and the second box wall 115 through the adhesive 17 reduces the difficulty of fixing and reduces the production of the battery 10 cost. And, in the actual production process of the battery 10, the adhesive 17 can be coated on the partial area of the third wall 21c, and the adhesive 17 can be coated on the partial area of the second box wall 115, increasing The flexibility of the fixing method of the third wall 21c and the second box wall 115 is improved.
  • FIG. 11 shows a schematic diagram of yet another partial cross-sectional view of a battery 10 according to yet another embodiment of the present application.
  • FIG. 11 may be a schematic partial cross-sectional view of the battery 10 perpendicular to the first direction X shown in FIG. 8 .
  • FIG. 12 is a partially enlarged view of area C in FIG. 11 .
  • a corresponding thickness of adhesive 17 can be coated on the first wall 21a other than the pressure relief mechanism 213, and the first wall 21a of the battery cell 20 can be bonded to the first wall 21a by the adhesive 17. It is fixed with the first box wall 114 to realize the fixing between the battery cell 20 and the box 11 .
  • the thickness of the adhesive 17 is related to the size of the void 113 , the thicker the adhesive 17 is, the larger the void 113 is, and the more discharges the collecting chamber 112 can accommodate. In this way, the capacity of the collection chamber 112 can be adjusted according to the thickness of the adhesive 17, making the setting of the collection chamber 112 more flexible.
  • the battery 10 includes multiple rows of battery cells 20 arranged along the first direction X, and each row of battery cells 20 in the multiple rows of battery cells 20 It includes at least one battery cell 20 arranged along a second direction Y, the first direction X is perpendicular to the second direction Y and the second wall 21b.
  • the battery 10 has 18 rows of battery cells 20 arranged along the first direction X, and each row of battery cells 20 includes 6 battery cells 20 .
  • the number of battery cells 20 is set according to actual needs. The greater the number of battery cells 20 , the greater the output power of the battery 10 ; the smaller the number of battery cells 20 , the smaller the output power of the battery.
  • multiple rows of battery cells 20 can be arranged in the first direction X, and at least one battery cell 20 is arranged in each row of battery cells 20 along the second direction Y.
  • the multiple battery cells 20 of these batteries 10 are arranged in an array, which facilitates the assembly of the battery 10 and can also improve the volume utilization rate of the multiple battery cells 20 inside the battery.
  • the first direction X since the first direction X is perpendicular to the second wall 21 b, when the heat management component 13 is attached to the second wall 21 b, the first direction X is also perpendicular to the heat management component 13 .
  • first direction X and the second direction Y in the embodiment of the present application are perpendicular to each other.
  • the embodiment of the present application takes the first direction X as the direction of the width of the battery cell 20 as an example, and the second direction Y as the direction of the length of the battery cell 20 , wherein the battery Both the width direction and the length direction of the cell 20 are perpendicular to the height direction of the battery cell 20 , and the length of the side of the battery cell 20 in the width direction is smaller than the length of the side in the length direction.
  • the thermal management component 13 is attached to the second wall 21b of at least one battery cell 20 of at least one row of battery cells 20 among the plurality of rows of battery cells 20 .
  • at least one battery cell 20 in at least one row of battery cells 20 is correspondingly provided with a thermal management component 13 that can regulate the temperature of at least one battery cell 20 attached.
  • the presence of at least one thermal management component 13 within the battery 10 can be used to regulate the temperature of at least one battery cell 20 .
  • the thermal management component 13 by attaching the thermal management component 13 to the second wall 21b of at least one battery cell 20 of at least one row of battery cells 20 among the multiple rows of battery cells 20, the production cost of the battery 10 can be reduced.
  • the battery cells 20 include two second walls 21b oppositely arranged along the first direction X, and at least one row of battery cells 20 among multiple rows of battery cells 20 are respectively arranged on both sides of the first direction X
  • the second wall 21b, and the two second walls 21b are correspondingly provided with the thermal management components 13 , that is, the row of battery cells 20 is clamped between the two thermal management components 13 .
  • the two thermal management components 13 can simultaneously adjust the temperature of the battery cells 20 in this row, which can improve the temperature adjustment efficiency and improve the safety of the battery 10 .
  • the temperature regulation efficiency can be greatly improved.
  • the temperature can be lowered more effectively, thermal diffusion can be avoided, and the safety of the battery 10 can be improved.
  • the same thermal management component 13 is provided between at least two adjacent rows of battery cells 20 among the multiple rows of battery cells 20 .
  • the presence of two adjacent rows of battery cells 20 among the plurality of battery cells 20 satisfies the requirement that the same thermal management component 13 is disposed between the two rows of battery cells 20 , so as to facilitate the processing and assembly of the battery 10 .
  • the same thermal management component 13 is arranged between two adjacent rows of battery cells 20; and there are also some battery cells 20 that satisfy: two adjacent rows
  • No heat management component 13 is arranged between the battery cells 20 in a row, which improves the space utilization rate in the battery 10 .
  • thermal management components 13 may also be provided between every two adjacent rows of battery cells 20 in multiple rows of battery cells 20, so that each battery cell 20 corresponds to at least two thermal management components 13, thereby improving temperature regulation effect.
  • the number of thermal management components 13 in the battery 10 of the embodiment of the present application may be set according to actual applications.
  • the number of thermal management components 13 within the battery 10 may be selected according to the size and number of battery cells 20 .
  • the battery includes a plurality of thermal management components 13 arranged along the first direction X to improve temperature regulation efficiency.
  • a plurality of thermal management components 12 are arranged at intervals along the first direction X, so that at least one battery cell 20 is arranged between two adjacent thermal management components 12, which not only improves the volume utilization rate of the battery 10, but also improves thermoregulation efficiency.
  • FIG. 13 is a partial enlarged view of any one of the thermal management components 13 shown in FIG. 8 .
  • the heat management component 13 is provided with a heat exchange channel 131 containing a heat exchange medium, and the heat exchange channels 131 of a plurality of heat management components 13 communicate with each other.
  • the heat exchange medium may be liquid, gas or solid.
  • the thermal management component 13 is used to contain cooling fluid to lower the temperature of the plurality of battery cells 20.
  • the thermal management component 13 can also be called a cooling component, Cooling system or cooling plate, etc.
  • the fluid contained in it can also be called cooling medium or cooling fluid, more specifically, it can be called cooling liquid or cooling gas, in which the cooling medium can be designed to circulate to achieve better effect on temperature regulation.
  • the cooling medium can specifically adopt water, a mixed liquid of water and ethylene glycol, or air, and the like.
  • the heat exchange channels 131 of the plurality of heat management components 13 may communicate with each other.
  • multiple thermal management components 13 communicate with each other, on the one hand, it is convenient for management and control, and improves the integration and safety of the battery 10; on the other hand, when the temperature of some thermal management components 13 in the battery 10 changes greatly, Heat exchange can be realized through the heat exchange channel, so that the temperature difference among the multiple heat management components 13 is small, and the temperature adjustment efficiency is improved.
  • each thermal management component 13 can also be provided with multiple heat exchange channels, and the multiple heat exchange channels are arranged at intervals along the height direction Z to increase the heat exchange area between the thermal management component 13 and the battery cell 20 and improve the temperature regulation efficiency.
  • the heat exchange channels 131 of the multiple thermal management components 13 may communicate with each other in various ways.
  • the heat exchange passages 131 of multiple heat management components 13 may communicate with each other through pipes.
  • FIG. 14 shows a partial perspective view of multiple battery cells 20 and multiple thermal management components 13 according to the embodiment of the present application.
  • the plurality of battery cells 20 and the plurality of thermal management components 13 shown in FIG. 14 may be a partially enlarged schematic diagram of area A in FIG. 8 .
  • a plurality of thermal management components 13 include adjacent first thermal management components 13a and second thermal management components 13b, and the first thermal management component 13a includes a The first connecting pipe 131a, the second heat management component 13b includes a second connecting pipe 132b communicating with the heat exchange channel 131, the first connecting pipe 131a and the second connecting pipe 132b are connected to each other, so that the first heat management component 13a
  • the heat exchange channel 131 communicates with the heat exchange channel 131 of the second heat management component 13b.
  • the heat exchange channel 131 between the adjacent first heat management component 13a and the second heat management component 13b is connected through the first connecting pipe 131a and the second connecting pipe 132b, so that the heat exchange channel 131 can be reduced.
  • the connection difficulty of the battery 10 can be improved by setting the components connecting the heat exchange channel 131 together with the first thermal management component 13 a and the second thermal management component 13 b, thereby improving the volume utilization rate of the battery 10 and thereby increasing the energy density of the battery 10 .
  • first connecting pipe 131a and the first heat management component 13a may be integrally formed or separated.
  • first connecting pipe 131a and the first heat management component 13a are in a split structure, and the first connecting pipe 131a can be connected to the first heat management component 13a by adhesive bonding, bolt connection or welding.
  • the connection manner between the second connecting pipe 132b and the second thermal management component 13b is similar to that between the first connecting pipe 131a and the first thermal management component 13a, and will not be repeated here.
  • connection mode between the first connecting pipe 131a and the first heat management component 13a and the connection mode between the second connecting pipe 132b and the second heat management component 13b can be the same or different, for example, the same connection mode can be set , in order to facilitate processing.
  • the material of the first connecting pipe 131a and the second connecting pipe 132b can be set according to actual applications, and the materials of the first connecting pipe 131a and the second connecting pipe 132b can be the same or different.
  • it can be natural rubber, styrene-butadiene rubber or butadiene rubber, etc.
  • the materials using ethylene-propylene rubber, fluorine rubber or silicone rubber also have the characteristics of acid and alkali resistance and high temperature resistance, such as corrosion resistance and thermal expansion resistance.
  • Cold-shrinkable metal materials such as iron, stainless steel, copper-zinc alloy, etc., or composite materials combined with plastics, hot-melt adhesives, and alloys.
  • first connecting pipe 131 a and the second connecting pipe 132 b can be respectively arranged in any area where the first thermal management component 13 a and the second thermal management component 13 b exceed a row of battery cells 20 .
  • the first connecting pipe 131a is arranged in the area of the first thermal management component 13a that exceeds a row of battery cells 20 along the second direction Y
  • the second connecting pipe 132b is arranged In the area of the second thermal management component 13b that exceeds a row of battery cells 20 along the second direction Y, a row of battery cells 20 is a row of battery cells 20 located between the first thermal management component 13a and the second thermal management component 13b
  • the first connecting pipe 131a and the second connecting pipe 132b extend along the first direction X to be connected to each other.
  • the distance between the heat exchange channel 131 of the first heat management part 13a and the second heat pipe part 13b can be shortened.
  • the transport path of the heat exchange medium in the heat exchange channel 131 not only speeds up the transport efficiency of the heat exchange medium in the corresponding heat exchange channel 131 , but also improves the volume utilization rate of the battery 10 .
  • first connecting pipe 131a and the second connecting pipe 132b extend along the first direction X to be directly or indirectly connected to each other.
  • the first connecting pipe 131a and the second connecting pipe 132b can be connected in various ways.
  • the first connecting pipe 131a is provided with a first groove that is recessed from the inside of the first connecting pipe 131a to the outside of the first connecting pipe 131a
  • the second connecting pipe 132b is provided with a groove that protrudes toward the outside of the second connecting pipe 132b.
  • the first protrusion and the first groove are used to accommodate the first protrusion so as to connect the first connecting pipe 131a and the second connecting pipe 132b to each other.
  • FIG. 15 shows a schematic top view of the connected first thermal management component 13a and the second thermal management component 13b according to the embodiment of the present application. As shown in FIGS. 14 and 15 , the first connecting pipe 131 a and the second connecting pipe 132 b communicate indirectly through the intermediate connecting pipe 16 .
  • the intermediate connecting pipe 16 includes a fixed pipe 161 and a moving pipe 162, the fixed pipe 161 and the moving pipe 162 are movably sealed, and the moving pipe 162 is connected to the first connecting pipe 131a or the second connecting pipe 132b to realize the first heat management
  • the heat exchange channel 131 of the component 13a communicates with the heat exchange channel 131 of the second heat management component 13b, and the heat exchange medium circulates continuously.
  • the moving tube 162 is in sealing connection with the fixed tube 161 to prevent the medium from overflowing from the gap of the moving tube 162 .
  • the outer diameter of the fixed pipe 161 is smaller than the inner diameter of the moving pipe 162, and the outer diameters of the first connecting pipe 131a and the second connecting pipe 132b are smaller than the inner diameter of the moving pipe 162, so as to realize the connection between the intermediate connecting pipe 16 and the first connecting pipe 131a. Sealed connection with the second connecting pipe 132b.
  • the materials of the fixed tube 161 and the moving tube 162 may be the same or different.
  • the fixed pipe 161 and the moving pipe 162 can be composed of a glue layer and a skeleton layer.
  • the material of the skeleton layer can be cotton fiber, various synthetic fibers, carbon fiber or asbestos, steel wire, etc.
  • the material of the glue layer can be natural rubber or styrene-butadiene rubber. Or butadiene rubber, etc.
  • the fixed tube 161 and the moving tube 162 can also be made of metal materials, composite materials, etc., which are not limited in this application.
  • the fixed pipe 161 can have high temperature resistance, small thermal deformation, smooth inner wall, low fluid resistance, and high pressure bearing capacity.
  • the moving pipe 162 and the fixed pipe 161 can be installed through ferrule or screw connection.
  • the intermediate connecting pipe 16 may include a fixed pipe 161 and at least one moving pipe 162 .
  • the number of moving tubes 162 can be determined according to actual conditions. For example, it is determined according to the distance between the first connecting pipe 131a and the second connecting pipe 132b. The greater the distance between the first connecting pipe 131 a and the second connecting pipe 132 b, the greater the number of moving pipes 162 .
  • FIG. 15 takes an example in which the intermediate connecting pipe 16 includes a first moving pipe 162a and a second moving pipe 162b.
  • the first moving tube 162a can move away from the fixed tube 161 in the first direction X, so that the first moving tube 162a is connected with the first connecting tube 131a; similarly, the second moving tube 162b can Move in the first direction X away from the first moving tube 162a, so that the second moving tube 162b is connected with the second connecting tube 132b.
  • the first connecting pipe 162a may move toward the fixed pipe 161 in the first direction X, so that the first moving pipe 162a is disconnected from the first connecting pipe 131a; similarly, the second connecting pipe 162b may Move toward the fixed tube 161 in the first direction X, so that the second moving tube 162b is disconnected from the second connecting tube 132b, so that the first connecting tube 131a and the second connecting tube 132b are no longer connected.
  • the difficulty of assembling the battery 10 can be reduced by connecting and disconnecting the first connecting pipe 131 a and the second connecting pipe 132 b through the intermediate connecting pipe 16 with variable length.
  • connection mode between the first moving tube 162a and the first connecting tube 131a may be the same as that between the second moving tube 162b and the second connecting tube 132b, or may be different.
  • the first moving tube 162a is connected to the first connecting tube 131a
  • the second moving tube 162b is connected to the second connecting tube 132b in a threaded manner.
  • FIG. 16 shows a partial side view of the battery 10 of this embodiment.
  • Fig. 17 is a partial schematic diagram of the D region of another battery disclosed in an embodiment of the present application.
  • FIG. 18 shows another partial cross-sectional view of a battery 10 according to yet another embodiment of the present application.
  • FIG. 18 may be a schematic partial cross-sectional view of the battery 10 shown in FIG. 8 perpendicular to the first direction X.
  • the box body 11 further includes a support member 117 for supporting the first connecting pipe 131 a and/or the second connecting pipe 132 b.
  • the first connecting pipe 131a and/or the second connecting pipe 132b are supported by the supporting member 117, so that the first heat management member 13a and the second heat management A row of battery cells 20 between parts 13b can form a gap with the wall of the box body 11, for example, a gap 113 is formed between the first wall 21a of a row of battery cells 20 and any wall of the box body 11, the gap It may be used to form at least a portion of the collection chamber 112 such that the collection chamber 112 collects discharge from the battery cells 20 . In this way, the volume utilization rate of the battery 10 is improved, and the energy density of the battery 10 is increased.
  • the supporting member 117 may at least partially contact the first connecting pipe 131a to support the first connecting pipe 131a, or the supporting member 117 may at least partially contact the second connecting pipe 132b to support the second connecting pipe 132b, or In other words, the supporting member 117 may be in contact with at least part of the first connecting pipe 131a and at least part of the second connecting pipe 132b to support the first connecting pipe 131a and the second connecting pipe 132b.
  • the support component 117 may be a component disposed inside the box body 11 , or the support component 117 may also be a protruding structure disposed on the wall of the box body 11 .
  • the support member 117 may be a raised structure on the first box wall 114 opposite to the first wall 21a, and the raised structure protrudes from the inner surface of the first box wall 114 toward the inside of the battery 10; or , the protruding structure can also be that the inner surface of the first box wall 114 and the inner surface of the third box wall 116 protrude toward the inside of the battery 10; or, as shown in FIGS.
  • the support member 117 is It may be a protrusion 117a on the third box wall 116, and the protrusion 117a protrudes from the third box wall 116 toward the inside of the battery 10, wherein the third box wall 116 is perpendicular to the second direction Y The wall of the box 11.
  • the first connecting pipe 131a and the second connecting pipe 132b communicate with each other along the first direction X, the side of the protrusion 117a facing the first heat management component 13a is attached to the first connecting pipe 131a, and the side of the protrusion 117a facing the second heat management component 13a is attached to the first connecting pipe 131a.
  • One side of the management member 13b is attached to the second connection pipe 132b.
  • FIG. 19 is a partially enlarged view of area E in FIG. 18 . 16 to 19, one side of the support member 117 along the third direction Z is used to attach the first connecting pipe 131a and/or the second connecting pipe 132b, and the third direction Z is perpendicular to the first direction X and the second direction X. Two direction Y.
  • the side of the support member 117 (eg, the protrusion 117 a ) along the third direction Z may be the side of the support member 117 perpendicular to the third direction Z.
  • the space of the battery 10 in the third direction Z can be utilized to improve The volume utilization of the battery 10, and, when the battery 10 is assembled, the support member 117 can be set to attach the first connecting pipe 131a and/or the second connecting pipe 131a and/or the second connecting pipe 132b under the condition that the first connecting pipe 131a and the second connecting pipe 132b communicate.
  • the support member 117 can also be provided first to attach the first connecting pipe 131a or the second connecting pipe 132b, and then connect the first connecting pipe 131a and the second connecting pipe 132b, which increases the flexibility of assembly.
  • a fixing part may be provided on one side of the supporting part 117 along the third direction Z, so that the supporting part 117 is attached to the first connecting pipe 131a and/or the second connecting pipe 132b through the fixing part to support The first thermal management component 13 a, the second thermal management component 13 b and the battery cell 20 .
  • the fixing component may be implemented in various ways, for example, the fixing component may be an adhesive, or may also be a position-limiting structure, which is not limited in the embodiment of the present application.
  • one side of the support member 117 along the third direction Z is provided with an accommodation groove 117b, and the accommodation groove 117b is used to accommodate at least part of the first connecting pipe 131a and/or Or at least part of the second connecting pipe 132b.
  • the radial dimension of the receiving groove 117b is greater than or equal to the first connecting pipe 131a and/or the second connecting pipe 132b, so as to accommodate at least part of the first connecting pipe 131a and/or at least part of the second connecting pipe 132b.
  • the surface of the receiving groove 117b may also be coated with adhesive 17 to further fix at least part of the first connecting pipe 131a and/or at least part of the second connecting pipe 132b.
  • the supporting member 117 supports and fixes the first connecting pipe 131a and/or the second connecting pipe 132b more stably, preventing the first connecting pipe 131a, the second connecting pipe 132b and a row of battery cells 20 between them from shaking in the box body 11 , increasing the stability and safety of the battery 10 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

本申请实施例提供一种电池和用电设备,其中,该电池包括:电池单体,电池单体的第一壁设置有泄压机构;热管理部件,用于调节电池单体的温度,热管理部件附接于电池单体的第二壁,第二壁和第一壁不同;汇流部件,用于电连接电池单体的电极端子,电极端子设置于电池单体的第三壁上,第三壁和第一壁不同。由此,通过将汇流部件和热管理部件设置在与泄压机构不同侧,既可以在泄压机构致动时使得电池单体的排放物远离汇流部件,防止电池发生短路,也可以避免电池单体的排放物破坏热管理部件,使得热管理部件持续正常地调节电池单体的温度,提高了电池的安全性。

Description

电池和用电设备
相关申请的交叉引用
本申请要求享有于2022年1月12日提交的名称为“电池的箱体、电池、用电装置、制备电池的方法和装置”的PCT专利申请PCT/CN2022/071536的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种电池和用电设备。
背景技术
随着电池技术的不断进步,各种以电池作为储能设备的新能源产业得到了迅速的发展。在电池技术的发展中,除了提高电池的性能外,安全问题也是一个不可忽视的问题。如果电池的安全问题不能保证,那该电池就无法使用。因此,如何增强电池的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请实施例提供了一种电池和用电设备,能够提高电池的安全性。
第一方面,提供了一种电池,该电池包括电池单体、汇流部件和热管理部件。其中,电池单体的第一壁设置有泄压机构;热管理部件,用于调节电池单体的温度,热管理部件附接于电池单体的第二壁,第二壁和第一壁不同;汇流部件,用于电连接电池单体的电极端子,电极端子设置于电池单体的第三壁上,第三壁和第一壁不同。
在本申请实施例中,当电池单体发生热失控时,经泄压机构排出的电池单体的排放物会向远离该热管理部件的方向排放,因此,排放物不易冲破该热管理部件,该热管理部件可以为发生热失控的电池单体降温,避免热扩散,增强了电池的安全性。另外,电池的汇流部件电连接电池单体的电极端子,电极端子设置于电池单体的第三壁上,第三壁和第一壁也不同。由此,在泄压机构致动时使得电池单体的排放物远离汇流部件,避免排放物引起汇流部件之间短路,也就防止电池发生短路,提高了电池的安全性。
在一些实施例中,第二壁和第三壁不同。
在本申请实施例中,由于第三壁的一侧设置有电极端子与汇流部件,当热管理部件设置在同一侧时,需要避开汇流部件的区域进行配置。所以,为了更方便地设置热管理部件,可以将热管理部件附接在与第三壁不同的壁上,这样无需避让汇流部件, 更加便于安装,并且,热管理部件与电池单体的接触面积也较大,更加有利于温度调节。
在一些实施例中,第二壁的面积大于或者等于第一壁的面积;和/或,第二壁的面积大于或者等于第三壁的面积。
在本申请实施例中,设置第二壁的面积不小于第一壁和/或第三壁,可以保证该第二壁不会过小,进而保证该第二壁与热管理部件之间的接触面积不会受到第二壁的面积的限制而过小,从而可以保证电池单体的温度调节效果。
在一些实施例中,第二壁为电池单体的面积最大的壁。
在本申请实施例中,通过将第二壁限定为电池单体的面积最大的壁上,可以用最便捷的方式对电池单体实现最高的温度调节效率。
在一些实施例中,电池还包括:箱体,包括电气腔和收集腔,电气腔用于容纳电池单体和热管理部件,收集腔用于在泄压机构致动时收集电池单体的排放物。
在本申请实施例中,可以在电池单体发生热失控时,通过收集腔收集电池单体的排放物,避免电池单体的排放物直接释放到箱体外部,从而防止泄压机构致动时产生的爆破力破坏其他部件,提高了电池的安全性。
在一些实施例中,箱体还包括与第一壁相对且间隔设置的第一箱体壁,第一壁与第一箱体壁之间具有空隙,空隙用于形成至少部分收集腔。
在本申请实施例中,通过在第一壁和第一箱体壁之间的空隙形成至少部分收集腔,可以在不增加额外的部件的情况下,利用收集腔收集电池单体的排放物,简化了电池的结构,提高了电池的体积利用率,提高了电池单体的排放物的收集效率,提高了电池的安全性。
在一些实施例中,第一壁和第一箱体壁的最小距离大于或者等于7mm。
在本申请实施例中,将第一壁和第一箱体壁的最小距离限定为大于或者等于7mm,能够为泄压机构预留充足的变形空间,使得电池单体的排放物能够及时释放,从而降低电池单体内部的压力或温度,还能够在泄压机构致动时给电池单体释放的排放物预留充分的释放空间,防止因电池单体的排放物堆积过多而与相邻电池单体接触,从而对相邻的电池单体产生影响,提高了电池的安全性。
在一些实施例中,第一壁和第一箱体壁的最小距离在7mm-25mm之间。
在本申请实施例中,通过将第一壁和第一箱体壁的最小距离限定在7mm-25mm之间,既可以减少外力对电池单体的影响,又可以在给泄压机构的致动和电池单体释放的排放物预留充分的空间的同时,还可以提高电池的体积利用率,提高电池的能量密度。
在一些实施例中,电池还包括:隔离部件,隔离部件附接于第一壁,隔离部件用于隔离电气腔和收集腔。通过隔离部件隔离该电气腔和该收集腔,可以防止至少部分排放物从收集腔进入电气腔,避免热扩散。
在一些实施例中,箱体还包括第二箱体壁,第二箱体壁用于与第三壁固定,以实现电池单体与箱体的固定。
在本申请实施例中,第二箱体壁和第三壁的固定,可以实现电池单体的固定, 不仅可以避免电池单体在箱体内因受外界环境的影响而产生晃动,提高了电池的稳定性和安全性,还可以在不增加其他零部件的情况下,实现电池单体的第一壁与箱体的壁之间形成空隙,该空隙可以用于形成至少部分收集腔,以收集电池单体的排放物,提高了电池的体积利用率,增大了电池的能量密度。
在一些实施例中,第三壁通过粘结剂与第二箱体壁固定。
在本申请实施例中,由于粘结剂具有成本低廉、易获取的优势,则通过粘结剂固定第三壁和第二箱体壁降低了固定难度,缩减了电池的生产成本。并且,在电池的实际生产过程中,既可以在第三壁的部分区域上涂覆粘结剂,又可以在第二箱体壁的部分区域上涂覆粘结剂,增加了第三壁和第二箱体壁的固定方式的灵活性。
在一些实施例中,电池包括沿第一方向排列的多列电池单体,多列电池单体中每列电池单体包括沿第二方向排列的至少一个电池单体,第二壁第一方向垂直于第二方向和第二壁。这样,将电池内的多个电池单体按照阵列的方式进行排列,便于电池的组装,也可以提高电池内部的多个电池单体的空间利用率。
在一些实施例中,热管理部件附接于多列电池单体中至少一列电池单体的至少一个电池单体的第二壁。
在本申请实施例中,通过将热管理部件附接于多列电池单体中至少一列电池单体的至少一个电池单体的第二壁,可以降低生产电池的生产成本。
在一些实施例中,电池单体包括沿第一方向相对设置的两个第二壁,多列电池单体中至少一列电池单体沿第一方向的两侧分别设置有附接于至少一个电池单体的两个第二壁的热管理部件。这样,通过两个热管理部件同时为一列电池单体调节温度,可以提高温度调节效率,提高电池的安全性。
在一些实施例中,多列电池单体中至少相邻两列电池单体之间设置同一个热管理部件。这样,可以提高温度调节效果。
在一些实施例中,电池包括沿第一方向排列的多个热管理部件。多个热管理部件可以再进一步地提高温度调节效率。
在一些实施例中,多个热管理部件沿第一方向间隔设置。由此,既提高电池的体积利用率,也可以提高温度调节效率。
在一些实施例中,热管理部件设置有容纳换热介质的换热通道,多个热管理部件的换热通道相互连通。
在本申请实施例中,多个热管理部件之间相互连通,一方面,便于管理和控制,提高电池的集成性和安全性;另一方面,当电池中部分热管理部件温度变化较大时,可以通过该换热通道实现热交换,以使得多个热管理部件之间的温差较小,提高温度调节效率。
在一些实施例中,多个热管理部件包括相邻的第一热管理部件和第二热管理部件,第一热管理部件包括与换热通道连通的第一连接管,第二热管理部件包括与换热通道连通的第二连接管,第一连接管和第二连接管相互连接,以使第一热管理部件的换热通道与第二热管理部件的换热通道相互连通。
在本申请实施例中,通过第一连接管和第二连接管连通相邻的第一热管理部件 和第二热管理部件之间的换热通道,可以降低换热通道的连接难度,并且,将连接换热通道的部件和第一热管理部件、第二热管理部件设置在一起,能够提高电池的体积利用率,从而提高电池的能量密度。
在一些实施例中,第一连接管设置于第一热管理部件的沿第二方向超出一列电池单体的区域,第二连接管设置于第二热管理部件的沿第二方向超出一列电池单体的区域,一列电池单体为位于第一热管理部件和第二热管理部件之间的一列电池单体,第一连接管和第二连接管沿第一方向延伸以相互连接。
在本申请实施例中,通过将第一连接管和第二连接管沿第一方向延伸以相互连接,可以缩短第一热管理部件的换热通道和第二热管部件的换热通道内的换热介质的运输路径,不仅加快了相应换热通道内的换热介质的运输效率,还提高电池的体积利用率。
在一些实施例中,箱体还包括支撑部件,支撑部件用于支撑第一连接管和/或第二连接管。
在本申请实施例中,通过支撑部件支撑第一连接管和/或第二连接管,可以在不增加其他零部件的情况下,使得位于第一热管理部件和第二热管理部件之间的一列电池单体能够与箱体的壁之间形成空隙,例如,一列电池单体的第一壁与箱体的任一壁之间形成空隙,该空隙可以用于形成至少部分收集腔,以使收集腔收集电池单体的排放物。这样,提高了电池的体积利用率,增大了电池的能量密度。
在一些实施例中,支撑部件沿第三方向的一侧用于附接第一连接管和/或第二连接管,第三方向垂直于第一方向和第二方向。
在本申请实施例中,通过在支撑部件沿第三方向的一侧附接第一连接管和/或第二连接管,能够利用电池在第三方向上的空间,提高电池的体积利用率,并且,在装配电池时,可以在第一连接管和第二连接管连通的情况下,设置支撑部件附接第一连接管和/或第二连接管,也可以先设置支撑部件附接第一连接管或第二连接管,再连通第一连接管和第二连接管,增加了装配的灵活性。
在一些实施例中,支撑部件沿第三方向的一侧设置有容纳槽,容纳槽用于容纳第一连接管的至少部分和/或第二连接管的至少部分。
在本申请实施例中,通过在支撑部件沿第三方向的一侧设置容纳槽,以容纳第一连接管的至少部分和/或第二连接管的至少部分,使得支撑部件更稳定地支撑和固定该第一连接管和/或第二连接管,避免第一连接管、第二连接管及其之间的一列电池单体在箱体内晃动,增加了电池的稳定性和安全性。
在一些实施例中,第一壁与第三壁相对设置,第二壁连接第一壁和第三壁;或者,第一壁与第二壁相对设置,第三壁连接第一壁和第二壁。
在本申请实施例中,通过电池单体的第一壁与第三壁相对设置,使得泄压机构背离汇流部件,从而在泄压机构致动时电池单体的排放物可以背离汇流部件排出,减小排放物对汇流部件的影响,避免电池发生短路。并且,设置第二壁连接第一壁和第三壁,可以使得三个壁不同,则热管理部件与泄压机构、汇流部件不同侧,可以防止异常状态下的泄压机构和/或汇流部件对热管理部件产生不利影响。
或者,通过电池单体的第一壁与第二壁相对设置,使得泄压机构背离热管理部件,从而在泄压机构致动时电池单体的排放物可以背离热管理部件,避免损坏热管理部件,进一步增强电池的安全性。另外,设置第三壁连接第一壁和第二壁,可以使得三个壁不同,则汇流部件与泄压机构、热管理部件不同侧,可以防止异常状态下的泄压机构和/或热管理部件对汇流部件产生不利影响。
第二方面,提供了一种用电设备,包括:第一方面所述的电池,该电池用于为该用电设备提供电能。
在一些实施例中,所述用电设备为车辆、船舶或航天器。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池的分解结构示意图;
图3是本申请一实施例公开的一种电池单体的侧视示意图;
图4是本申请一实施例公开的一种电池单体的分解结构示意图;
图5是本申请一实施例公开的一种电池的侧视示意图;
图6是本申请一实施例公开的另一种电池的分解结构示意图;
图7是本申请一实施例公开的另一种电池的剖面示意图;
图8是本申请一实施例公开的又一种电池的分解结构示意图;
图9是本申请一实施例公开的又一种电池的剖面示意图;
图10是本申请一实施例公开的又一种电池的局部剖面示意图;
图11是本申请实施例公开的又一种电池的再一剖面示意图;
图12是本申请一实施例公开的又一种电池的再一局部剖面示意图;
图13是本申请一实施例公开的一种热管理部件的局部示意图;
图14是本申请一实施例公开的又一种电池的局部示意图;
图15是本申请一实施例公开的又一种电池的中的第一热管理部件和第二热管理部件相连的俯视结构示意图;
图16是本申请一实施例公开的又一种电池的局部侧视示意图;
图17是本申请一实施例公开的又一种电池的再一局部示意图;
图18是本申请一实施例公开的又一种电池的又一剖面示意图;
图19是本申请一实施例公开的又一种电池的又一局部示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、 放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。对于电池来说,主要的安全危险来自于充电和放电过程,为了提高电池的安全性能,对电池单体一般会设置泄压机构。泄压机构是指电池单体的内部压力或温度达到预定阈值时致动以泄放内部压力或温度的元件或部件。该预定阈值可以根据设计需求不同而进行调整。例如,该预定阈值可取决于电池单体中的正极极片、负极极片、电解液和隔离膜中一种或几种的材料。泄压机构可以采用诸如对压力敏感或温度敏感的元件或部件,即,当电池单体内部压力的或温度达到预定阈值时,泄压机构致动,从而形成可供内部压力或温度泄放的通道。并且,为了给电池单体的温度进行管理和调节,通常在电池单体的表面附接热管理部件。
相关技术中,通常将热管理部件附接于电池单体设置有泄压机构的壁。以便在电池单体正常工作时,热管理部件可以对电池单体调节温度。但是,当电池单体发生热失控时,例如电池单体的泄压机构致动时,电池单体的泄压机构释放排放物的威力和破坏力很大,甚至可能足以冲破热管理部件,使得热管理部件在电池单体发生热失控时调节电池单体的温度(如对发生热失控的电池单体进行降温)的作用降低,从而可能引发电池发生热扩散。
鉴于此,本申请提供了一种电池,该电池包括电池单体、汇流部件和热管理部件。其中,电池单体的第一壁设置有泄压机构;热管理部件附接于电池单体的第二壁,第二壁和第一壁不同,这样,当电池单体发生热失控时,经泄压机构排出的电池单体的排放物会向远离该热管理部件的方向排放,因此,排放物不易冲破该热管理部件,该热管理部件可以为发生热失控的电池单体降温,避免热扩散,增强了电池的安全性。另外,电池的汇流部件电连接电池单体的电极端子,电极端子设置于电池单体的第三壁上,第三壁和第一壁也不同。由此,在泄压机构致动时使得电池单体的排放物远离汇流部件,避免排放物引起汇流部件之间短路,也就防止电池发生短路,提高了电池的安全性。
本申请实施例描述的技术方案均适用于各种使用电池的用电设备。用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电 源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
图2示出了本申请实施例描述的一种电池10的局部分解示意图。图3示出了本申请实施例的电池单体20的侧视示意图。
如图2和图3所示的电池10,包括电池单体20、热管理部件13和汇流部件12。其中,电池单体20的第一壁21a设置有泄压机构213;热管理部件13,用于调节电池单体20的温度,热管理部件13附接于电池单体20的第二壁21b,第二壁21b和第一壁21a不同;汇流部件12,用于电连接电池单体20的电极端子214,电极端子214设置于电池单体20的第三壁21c上,第三壁21c和第一壁21a不同。
本申请实施例的电池单体20的形状可以根据实际应用进行设置。例如,该电池单体20可以为多面体结构,该多面体结构由多个壁围合形成,因此,该电池单体20可以包括多个壁。其中,该电池单体20的第一壁21a设置有泄压机构213,该电池单体20的第二壁21b朝向热管理部件13。该第一壁21a和第二壁21b可以为该电池单体20的任意两个不同的壁,第一壁和第三壁21c也可以为该电池20的任意两个不同的壁。例如,第一壁21a和第二壁21b可以相交或者不相交,第一壁21a和第三壁21c也可以相交或者不相交,本申请实施例并不限于此。
应理解,本申请实施例的泄压机构213是指电池单体20的内部压力或温度达到预定阈值时致动,以泄放内部压力或温度的元件或部件。该预定阈值设计根据设计需求不同而不同。该预定阈值可能取决于电池单体20中的正极极片、负极极片、电解液和隔离膜中一种或几种的材料。该泄压机构213可以在第一壁21a上直接设置,也可以与第一壁21a分体式设置,通过焊接/粘贴等方式固定在第一壁21a上。
应理解,热管理部件13调节电池单体20的温度可以包括给电池单体20加热或者冷却。例如,在电池单体20的温度超出预定阈值时,对电池单体20进行降温能够提高电池安全性;在一些冬天气温较寒冷的地区使用电池之前,对电池单体20进行加热能够提高电池性能。
在本申请实施例中,热管理部件13附接在电池单体20的第二壁21b的方式不固定。例如,可以通过粘结剂(例如,导热胶)将热管理部件附接在电池单体20的第二壁21b,也可以将热管理部件13夹持固定在相邻两个电池单体20之间。
应理解,电池单体20包括至少两个电极端子214,该至少两个电极端子214可以至少设置在同一个第三壁21c上,也可以设置在不同的第三壁21c上。图2和图3以电池单体20的两个电极端子214在同一个第三壁21c上为例进行说明。汇流部件12通过两个电极端子214可以对多个电池单体20进行串/并联连接。例如,电池单体20的第三壁21c上设置有正电极端子214a和负电极端子214b,汇流部件12分别连接相邻两个电池单体20的正电极端子214a和负电极端子214b,以对相邻两个电池单体20进行串联。例如,汇流部件12分别连接相邻两个电池单体20各自的正电极端子214a,以对相邻两个电池单体20进行并联。
在本申请实施例中,当电池单体20发生热失控时,经泄压机构213排出的电 池单体20的排放物会向远离该热管理部件13的方向排放,因此,排放物不易冲破该热管理部件13,该热管理部件13可以为发生热失控的电池单体20降温,避免热扩散,增强了电池10的安全性。另外,电池10的汇流部件12电连接电池单体20的电极端子214,电极端子214设置于电池单体20的第三壁21c上,第三壁21c和第一壁21a也不同。由此,在泄压机构213致动时使得电池单体20的排放物远离汇流部件12,避免排放物引起汇流部件12之间短路,也就防止电池10发生短路,提高了电池10的安全性。
可选地,在本申请实施例中,第三壁21c和第二壁21b不同,例如,如图2和图3所示,第一壁21a、第二壁21b和第三壁21c可以为电池单体20的任意三个不同的壁。
由于第三壁21c的一侧设置有电极端子214与汇流部件12,当热管理部件13设置在同一侧时,需要避开汇流部件12的区域进行配置。所以,为了更方便地设置热管理部件13,可以将热管理部件13附接在与第三壁21c不同的壁上,这样无需避让汇流部件12,更加便于安装,并且,热管理部件13与电池单体20的接触面积也较大,更加有利于温度调节。
需要说明的是,本申请实施例中的热管理部件13与电池单体20的第二壁21b的接触面积可以根据实际应用进行设置,该接触面积是指热管理部件13与电池单体20的第二壁21b进行热交换的区域的面积,这里的接触可以指热管理部件13和第二壁21b直接接触,也可以指热管理部件13和第二壁21b之间通过导热胶、导热垫等间接接触。
可选地,在本申请实施例中,电池单体20的第一壁21a与第三壁21c相对设置,第二壁21b连接第一壁21a和第三壁21c;或者,第一壁21a与第二壁21b相对设置,第三壁21c连接第一壁21a和第二壁21b。
在本申请实施例中,通过电池单体20的第一壁21a与第三壁21c相对设置,使得泄压机构213背离汇流部件12,从而在泄压机构213致动时电池单体20的排放物可以背离汇流部件12排出,减小排放物对汇流部件12的影响,避免电池10发生短路。并且,设置第二壁21b连接第一壁21a和第三壁21c,可以使得三个壁不同,则热管理部件13与泄压机构213、汇流部件12不同侧,可以防止异常状态下的泄压机构213和/或汇流部件12对热管理部件13产生不利影响。
或者,通过电池单体20的第一壁21a与第二壁21b相对设置,使得泄压机构213背离热管理部件13,从而在泄压机构213致动时电池单体20的排放物可以背离热管理部件13,避免损坏热管理部件13,进一步增强电池10的安全性。另外,设置第三壁21c连接第一壁21a和第二壁21b,可以使得三个壁不同,则汇流部件12与泄压机构213、热管理部件13不同侧,可以防止异常状态下的泄压机构213和/或热管理部件13对汇流部件12产生不利影响。
可选地,在本申请实施例中,第二壁21b的面积大于或者等于第一壁21a的面积;和/或,第二壁21b的面积大于或者等于第三壁21c的面积。设置第二壁21b的面积不小于第一壁21a和/或第三壁21c,可以保证该第二壁21b不会过小,进而保证该 第二壁21b与热管理部件13之间的接触面积不会受到第二壁21b的面积的限制而过小,从而可以保证电池单体20的温度调节效果。
例如,第一壁21a可以为电池单体20的面积最小的壁,则第二壁21b可以为面积较大或者最大的壁,热管理部件13与电池单体20接触的面积也较大,可以提升对电池单体20的温度调节效果。或者,第三壁21c可以为面积最小的壁,则第二壁21b可以为面积较大或者最大的壁,热管理部件13与电池单体20接触的面积也较大,也可以提升对电池单体20的温度调节效果。再例如,第一壁21a可以为面积最小的壁,第三壁21c可以为面积中等的壁,则第二壁21b可以为面积中等的壁或者面积更大的壁,热管理部件13与电池单体20接触的面积进一步增大,可以显著增加电池单体20的温度调节效果,本申请实施例并不限于此。
可选地,在本申请实施例中,第二壁21b为电池单体20的面积最大的壁。
例如,电池单体20存在至少一个面积最大的壁,则第二壁21b可以为至少一个面积最大的壁中的任意一个壁。由于热管理部件13与电池单体20的接触面积越大,对电池单体20的温度调节效果越好。这样,将热管理部件13附接在电池单体20的面积最大的壁上,可以用最便捷的方式对电池单体20实现最高的温度调节效率。
举例说明,图4示出了本申请实施例的电池单体的分解结构示意图。如图4所示,电池单体20包括外壳21,该外壳21可以包括多个壁。第二壁21b可以是外壳21上除第一壁21a之外的任一壁。例如,图4示出的电池单体20是图2和图3示出的电池10中的任意一个电池单体20的分解示意图。此时,结合图2至图4所示,第二壁21b可以为外壳21上面积较小的壁。或者,不同于图4所示的第二壁21b的位置,本申请实施例的第二壁21b可以为外壳21上面积最大的壁。并且,该外壳21可以包括至少两个面积相等的壁,例如,该电池单体20的外壳21为长方体,则该外壳21包括相对设置的两个面积相等且最大的壁,则第二壁21b可以为其中任意一个壁。
外壳21可以包括壳体211和盖板212。壳体211的壁以及盖板212均称为电池单体20的壁。壳体211的形状可以根据内部的一个或多个电极组件22组合后的形状而定,例如,壳体211可以为中空的长方体或正方体或圆柱体,且壳体211的至少一个面具有开口,以便一个或多个电极组件22可以放置于壳体211内。例如,当壳体211为中空的长方体或正方体时,壳体211的至少一个平面为开口面,即该平面不具有壁体而使得壳体211内外相通。当壳体211可以为中空的圆柱体时,壳体211的两个端面中每个端面都可以为开口面,即该端面不具有壁体而使得壳体211内外相通。通过设置至少一个盖板212,可以覆盖该壳体211的至少一个开口,并且每个盖板212与壳体211连接,以形成放置电极组件22的封闭的腔体。壳体211内填充有电解质,例如电解液。
本申请实施例的电池单体20的第一壁21a上设置泄压机构213,泄压机构213用于在电池单体20的内部压力或温度达到阈值时致动以泄放内部压力或温度。可选地,该第一壁21a可以为电池单体20的任意一个壁。例如,该第一壁21a可以为电池单体20的面积最大的壁,这样,由于第二壁21b的面积大于或者等于第一壁21a的面积,因此,该第一壁21a和第二壁21b可以面积相等且均为电池单体20的面积最大的壁。 再例如,该第一壁21a可以为电池单体20的面积最小的壁,例如,该第一壁21a可以为壳体211的底壁,以便于安装。为了便于展示,图4中将第一壁21a与壳体211分离,但这并不限定壳体211的底侧具有或者不具有开口,即该底壁与壳体211的侧壁可以为一体结构或者也可以是相互独立的两个部分连接在一起。
具体地,如图4所示,泄压机构213可以为第一壁21a的一部分,也可以与第一壁21a为分体式结构,以通过例如焊接的方式固定在第一壁21a上。当泄压机构213为第一壁21a的一部分时,即该泄压机构213可以与第一壁21a一体成型,该泄压机构213可以通过在第一壁21a上设置刻痕或者凹槽的方式形成,该刻痕使得该第一壁21a的泄压机构213所在区域的厚度小于该第一壁21a的除泄压机构213以外的其他区域的厚度。可以理解的是,由于刻痕处的壁厚小于第一壁21a上除刻痕以外的壁的壁厚,当电池单体20内部产生大量气体导致内部压力攀升至预定阈值或者电池单体20内部的热量攀升至预定阈值时,刻痕处以及相邻处的壁破裂,释放电池单体20内部的压力和热量。
可选地,本申请实施例的泄压机构213可以为各种可能的泄压结构,本申请实施例对此并不限定。例如,泄压机构213可以为温敏泄压机构,温敏泄压机构被配置为在设有泄压机构213的电池单体20的内部温度达到阈值时能够熔化;和/或,泄压机构213可以为压敏泄压机构,压敏泄压机构被配置为在设有泄压机构213的电池单体20的内部气压达到阈值时能够破裂。
图4以电池单体20包括两个电极端子214为例,并且该两个电极端子214设置在平板形状的盖板212上,即盖板212为电池单体20的第三壁21c。该至少两个电极端子214可以包括至少一个正电极端子214a和至少一个负电极端子214b。
本申请实施例的电极端子214用于与电极组件22电连接,以输出电能。例如,每个电极端子214可以各对应设置一个集流构件23,其位于盖板212与电极组件22之间,用于将电极组件22和电极端子214实现电连接。
如图4所示,每个电极组件22具有第一极耳221a和第二极耳222a。第一极耳221a和第二极耳222a的极性相反。例如,当第一极耳221a为正极极耳时,第二极耳222a为负极极耳。一个或多个电极组件22的第一极耳221a通过一个集流构件23与一个电极端子连接,一个或多个电极组件22的第二极耳222a通过另一个集流构件23与另一个电极端子连接。例如,正电极端子214a通过一个集流构件23与正极极耳连接,负电极端子214b通过另一个集流构件23与负极极耳连接。
在该电池单体20中,根据实际使用需求,电极组件22可设置为单个,或多个,如图4所示,电池单体20内设置有4个电极组件22,但本申请实施例并不限于此。
可选地,如图4所示,该电池单体20还可以包括垫板24,该垫板24位于电极组件22与壳体211的底壁之间,可以对电极组件22起到承托作用,还可以有效防止电极组件22与壳体211的底壁四周的圆角发生干涉。另外,该垫板24上可以设置有一个或者多个通孔,例如,可以设置多个均匀排列的通孔,或者,也可以在泄压机构213设置在壳体211的底壁时,对应该泄压机构213的位置设置通孔,以便于导液和导气,具体的,这样可以使得垫板24上下表面的空间连通,电池单体20内部产生的气 体以及电解液都能够自由地穿过垫板24。
图5是本申请实施例的电池10的局部剖面示意图。例如,图5所示的局部剖面图可以是图2所示的电池10沿垂直于第一方向X的局部剖面图,其中,第一方向X可以为电池10中的多个电池单体20的排列方向。如图5所示的电池10还包括箱体11,其中,箱体11包括电气腔111和收集腔112,电气腔111用于容纳电池单体20和热管理部件13,收集腔112用于在泄压机构213致动时收集电池单体20的排放物。
应理解,本申请实施例的电气腔111可以用于容纳电池单体20和热管理部件13,并且对容纳的电池单体20的数量与热管理部件13的数量均没有限制。另外,电气腔111中还可以设置用于固定电池单体20和/或热管理部件13的结构。
可选地,电气腔111的形状可以根据所容纳的电池单体20和/或热管理部件13而定。例如,如图2至图5所示,电气腔111可以为中空的长方体,通过至少六个壁围合形成,以便于加工。
应理解,本申请实施例的收集腔112用于收集电池单体20的排放物。具体地,该收集腔112内可以包含空气,或者其他气体。或者,收集腔112内也可以包含液体,比如冷却介质,或者,设置容纳该液体的部件,以对进入收集腔112的排放物进一步降温。进一步可选地,收集腔112内的气体或者液体可以是循环流动的。
应理解,本申请实施例的该电气腔111可以是密封或非密封的;类似地,本申请实施例的收集腔112也可以是密封或非密封的,本申请实施对此不作限定。
因此,本申请实施例的电池10,可以在电池单体20发生热失控时,通过收集腔112收集电池单体20的排放物,避免电池单体20的排放物直接释放到箱体11外部,从而防止泄压机构213致动时产生的爆破力破坏其他部件,提高了电池10的安全性。
应理解,本申请实施例的收集腔112可以通过多种方式实现。
可选地,在本申请实施例中,如图2至图5所示,箱体11还包括与第一壁21a相对且间隔设置的第一箱体壁114,第一壁21a与第一箱体壁114之间具有空隙113,空隙113用于形成至少部分收集腔112。举例说明,第一壁21a可以与第一箱体壁114至少部分不接触,以形成空隙113。
在本申请实施例中,通过在第一壁21a和第一箱体壁114之间的空隙113形成至少部分收集腔112,可以在不增加额外的部件的情况下,利用收集腔112收集电池单体20的排放物,简化了电池10的结构,提高了电池10的体积利用率,提高了电池单体20的排放物的收集效率,提高了电池10的安全性。
在本申请的一些实施中,如图2至图5所示,第一壁21a和第一箱体壁114的最小距离L大于或者等于7mm。
其中,第一壁21a和第一箱体壁114的最小距离L可以为第一壁21a上不同点到第一箱体壁114的距离中的最小距离L。例如,泄压机构213是以刻痕的形式直接设置在电池单体20的第一壁21a上时,则第一壁21a和第一箱体壁114的最小距离L为第一壁21a上的非刻痕区域的任一点到第一箱体壁114的距离大于或者等于7mm。
需要说明的是,若第一壁21a和第一箱体壁114存在相互接触的区域时,例如,通过连接构件使得第一壁21a和第一箱体壁114接触,则第一壁21a和第一箱体壁114 的最小距离L为第一壁21a上未与第一箱体壁114接触的区域的任一点到第一箱体壁114的距离中的最小距离L。
在本申请实施例中,将第一壁21a和第一箱体壁114的最小距离L限定为大于或者等于7mm,能够为泄压机构213预留充足的变形空间,使得电池单体20的排放物能够及时释放,从而降低电池单体20内部的压力或温度,还能够在泄压机构213致动时给电池单体20释放的排放物预留充分的释放空间,防止因电池单体20的排放物堆积过多而与相邻电池单体20接触,从而对相邻的电池单体20产生影响,提高了电池10的安全性。
在本申请的一些实施中,第一壁21a和第一箱体壁114的最小距离L在7mm-25mm之间。例如,第一壁21a和第一箱体壁114的最小距离L为7mm、8mm、9mm、10m、11mm、12mm、13mm、14mm、15mm、16mm、17mm、18mm、19mm、20mm、21mm、22mm、23mm、24mm和25mm。
可以理解的是,第一壁21a和第一箱体壁114的最小距离L越大,越有利于在泄压机构213致动时电池单体20的排放物的释放。但是,第一壁21a和第一箱体壁114的最小距离L越大,收集腔112的体积也越大,电池10的体积利用率越低,电池10的能量密度越低。
在本申请实施例中,通过将第一壁21a和第一箱体壁114的最小距离L限定在7mm-25mm之间,既可以减少外力对电池单体20的影响,又可以在给泄压机构213的致动和电池单体20释放的排放物预留充分的空间的同时,还可以提高电池10的体积利用率,提高电池10的能量密度。
图6示出了本申请另一实施例的电池10。图7是本申请另一实施例的电池10的局部剖面示意图。例如,图7可以是图6所示的电池10垂直于第一方向X的局部剖面示意图。其中,该第一方向X与上述实施例中的第一方向X相同。
如图6和图7所示,电池10还包括隔离部件15,隔离部件15附接于第一壁21a,隔离部件15用于隔离电气腔111和收集腔112。
应理解,这里所谓的“隔离”指分离,可以不是密封的。具体地,采用隔离部件15隔离电气腔111和收集腔112,也就是说,用于容纳电池单体20和热管理部件13的电气腔111与收集排放物的收集腔112在空间上是相互分离的,这样可以防止至少部分排放物从收集腔112进入电气腔111,避免热扩散。
在本申请实施例中,隔离部件15包括电气腔111和收集腔112共用的壁。如图6和图7所示,隔离部件15(或其一部分)可以直接作为电气腔111和收集腔112共用的壁,这样,可以尽可能减少电气腔111和收集腔112之间的距离,节省空间,提高箱体11的体积利用率。
应理解,本申请实施例的箱体11中通过隔离部件15实现电气腔111和收集腔112可以包括多种方式,本申请实施例对此不做限定。例如,以图6和图7为例,对于电气腔111,箱体11可以包括具有开口的第一罩体,隔离部件15盖合该第一罩体的开口,以形成电气腔111。这样,用于形成电气腔111的壁包括该第一罩体和该隔离部件15。其中,该第一罩体也可以通过多种方式实现。例如,该第一罩体可以为一端开口 的中空一体式结构;或者,该第一罩体也可以包括第一部分111a和相对的两侧分别具有开口的第二部分112b,第一部分111a盖合第二部分112b的一侧开口,以形成一端开口的第一罩体,而隔离部件15盖合第二部分112b的另一侧开口,以形成电气腔111。如图6和图7所示,箱体11还包括:防护构件113c,防护构件113c用于与隔离部件15形成收集腔112。另外,该防护构件113c还可以用于防护隔离部件15,即该收集腔112的壁包括防护构件113c与隔离部件15。
再例如,不同于上述如图6和图7所示方式,箱体11也可以包括封闭的第二罩体,该第二罩体可以用于形成电气腔111,或者,通过将隔离部件15设置于该第二罩体内部,将第二罩体内部隔离出电气腔111,进一步地,也可以隔离出收集腔112。其中,该第二罩体也可以通过多种方式实现,例如,该第二罩体可以包括第三部分和第四部分,第四部分的一侧具有开口以形成半封闭结构,隔离部件15设置于第四部分的内部,第三部分盖合第四部分的开口,进而形成封闭的第二罩体。
在本申请实施例中,隔离部件15设置有泄压区域151,泄压区域151用于在泄压机构213致动时,将排放物经由泄压区域151排至收集腔112,进而避免排放物对电气腔111内的其他电池单体20的破坏,避免热扩散,提高电池10的安全性。可选地,隔离部件15上还包括非泄压区域152,该非泄压区域152为该隔离部件15上除该泄压区域151以外的区域。例如,可以在该非泄压区域152上涂覆粘结剂(图中未示出),以固定电池单体20和隔离部件15,即将电池单体20的第一壁21a与隔离部件15粘接固定。
应理解,本申请实施例中的隔离部件15的泄压区域151可以通过多种方式实现。例如,隔离部件15中的泄压区域151可不做任何特殊处理,本申请实施例仅为了表示隔离部件15中与泄压机构213相对的部分区域,将该部分区分称之为泄压区域151。
再例如,隔离部件15中的泄压区域151也可以经过特殊处理,使其能够在泄压机构213致动时更容易被破坏。
作为一种示例,泄压区域151为薄弱区,薄弱区用于在泄压机构213致动时能够被破坏,以使排放物穿过薄弱区而进入收集腔112。将泄压区域151设置为薄弱区,可以在泄压机构213未致动时,例如,电池10正常使用过程中,使得该隔离部件15处于相对密封状态,有效保护泄压机构213不被外力破坏而失效。并且,在泄压机构213致动时,薄弱区强度小于隔离部件15中除该泄压区域151以外其他区域处的强度,所以该薄弱区易于被破坏,以使来自设有泄压机构213的电池单体20的排放物穿过薄弱区排出电气腔111,例如,可以穿过薄弱区而进入收集腔112。
作为另一种实施例,泄压区域151还可以为通孔,该通孔用于在泄压机构213致动时,排放物能够经过通孔进入收集腔112。泄压区域151为通孔时,一方面便于加工,另一方面可以更加快速释放经过泄压机构213排出的排放物。
上文结合附图描述了本申请实施例的电气腔111和收集腔112的几种可能实现方式。为了便于说明,下文中主要以未设置有隔离部件15的情况下为例进行描述,但本申请实施例并不限于此。
图8示出了本申请又一实施例的电池10的局部分解示意图。图9是本申请又一实施例的电池10的局部剖面示意图。例如,图9可以是图8所示的电池10垂直于第一方向X的局部剖面示意图。其中,该第一方向X与上述实施例中的第一方向X相同。
如图8和图9所示,箱体11还包括第二箱体壁115,第二箱体壁115用于与第三壁21c固定,以实现电池单体20与箱体11的固定。
在本申请实施例中,第二箱体壁115和第三壁21c的固定,可以实现电池单体20的固定,不仅可以避免电池单体20在箱体内因受外界环境的影响而产生晃动,提高了电池10的稳定性和安全性,还可以在不增加其他零部件的情况下,实现电池单体20的第一壁21a与箱体11的壁之间形成空隙,该空隙可以用于形成至少部分收集腔,以收集电池单体20的排放物,提高了电池10的体积利用率,增大了电池10的能量密度。
第二箱体壁115与第三壁21c可以直接固定,也可以通过固定部件间接固定。其中,固定部件包括但不限于螺栓、卡槽等等。
对第二箱体壁115与第三壁21c以直接固定方式为例进行说明。例如,在第二箱体壁115靠近第三壁21c的一侧带有磁性物质,在第三壁21c靠近第二箱体壁115的一侧也带有磁性物质,通过上述磁性物质之间的磁力,使得第二箱体壁115与第三壁21c固定,从而实现电池单体20与箱体11的固定。
可选地,第二箱体壁115与第三壁21c之间也可以通过其他方式固定。图10是图9的B区域的局部放大图。可选地,在本申请实施例中,第三壁21c通过粘结剂17与第二箱体壁115固定,以便于加工。
例如,可以在第三壁21c上未设置电极端子214的区域涂覆粘结剂17,以使第三壁21c与第二箱体壁115固定。示例性地,粘结剂17可以采用导热硅胶、环氧树脂胶和聚氨酯胶等。
可选地,在本申请实施例中,与第三壁21c和第二箱体壁115类似,还可以通过其他壁实现电池单体20和箱体11之间的固定。例如,可以通过电池单体20的第一壁21a和箱体11的第一箱体壁114实现电池单体20和箱体11之间的固定,例如,第一壁21a和第一箱体壁114之间可以通过连接构件(例如,粘结剂)相连。
在本申请实施例中,由于粘结剂17具有成本低廉、易获取的优势,则通过粘结剂17固定第三壁21c和第二箱体壁115降低了固定难度,缩减了电池10的生产成本。并且,在电池10的实际生产过程中,既可以在第三壁21c的部分区域上涂覆粘结剂17,又可以在第二箱体壁115的部分区域上涂覆粘结剂17,增加了第三壁21c和第二箱体壁115的固定方式的灵活性。
图11示出了本申请又一实施例的电池10的再一局部剖面图示意图。例如,图11可以是图8所示的电池10垂直于第一方向X的局部剖面示意图。图12是图11的C区域的局部放大图。如图11至图12所示,可以在第一壁21a中泄压机构213以外的部分区域涂覆相应厚度的粘结剂17,并通过粘结剂17将电池单体20的第一壁21a与第一箱体壁114进行固定,以实现电池单体20与箱体11之间的固定。
并且,第一壁21a中未涂粘结剂17的区域与第一箱体壁114之间可以留有空 隙113,该空隙113形成至少部分收集腔112,则在泄压机构213致动时,粘结剂17不会影响泄压机构213致动,使得电池单体20的排放物经过泄压机构213能够直接排放至收集腔112。其中,粘结剂17的厚度与空隙113的大小相关,粘结剂17的厚度越大,空隙113越大,收集腔112可以容纳越多的排放物。这样,可以根据粘结剂17的厚度调节收集腔112的容量,使得收集腔112的设置更加灵活。
可选地,在本申请实施例中,如图8到图12所示,电池10包括沿第一方向X排列的多列电池单体20,多列电池单体20中每列电池单体20包括沿第二方向Y排列的至少一个电池单体20,第一方向X垂直于第二方向Y和第二壁21b。
例如,以图8至图12为例,该电池10沿第一方向X排列了18列电池单体20,每列电池单体20包括6个电池单体20。
可以理解的是,电池单体20的数量是根据实际需求设定的。电池单体20的数量越多,电池10的输出功率越大;电池单体20的数量越少,电池输出的功率越小。由此,可以在第一方向X上排列多列电池单体20,每列电池单体20沿第二方向Y上设置至少一个电池单体20。并且,这些电池10的多个电池单体20按照阵列的方式进行排列,便于电池10的组装,也可以提高电池内部的多个电池单体20的体积利用率。其中,由于第一方向X垂直于第二壁21b,则该热管理部件13附接于第二壁21b时,该第一方向X也垂直于热管理部件13。
应理解,本申请实施例的第一方向X和第二方向Y相互垂直。例如,如图8至图12所示,本申请实施例以该第一方向X为电池单体20的宽度的方向为例,第二方向Y为电池单体20的长度的方向,其中,电池单体20的宽度方向和长度方向均垂直于电池单体20的高度方向,以及电池单体20的在宽度方向上的边的长度小于在长度方向上的边的长度。
可选地,热管理部件13附接于多列电池单体20中至少一列电池单体20的至少一个电池单体20的第二壁21b。对于多列电池单体20,存在至少一列电池单体20中的至少一个电池单体20对应设置有热管理部件13,该热管理部件13可以为附接的至少一个电池单体20调节温度。这样,该电池10内存在至少一个热管理部件13可以用于为至少一个电池单体20调节温度。
在本申请实施例中,通过将热管理部件13附接于多列电池单体20中至少一列电池单体20的至少一个电池单体20的第二壁21b,可以降低生产电池10的生产成本。
在本申请实施例中,电池单体20包括沿第一方向X相对设置的两个第二壁21b,多列电池单体20中至少一列电池单体20沿第一方向X的两侧分别设置有附接于至少一个电池单体20的两个第二壁21b的热管理部件13。在多列电池单体20中存在至少一列电池单体20满足:对于该至少一列电池单体20中的任意一个电池单体20,该电池单体20包括沿第一方向X相对设置的两个第二壁21b,并且两个第二壁21b均对应设置有热管理部件13,即该列电池单体20夹持在两个热管理部件13之间。因此,两个热管理部件13可以同时为该列电池单体20调节温度,可以提高温度调节效率,提高电池10的安全性。例如,若电池10内多列电池单体20中每一列电池单体20均对应设置有两个热管理部件13,可以极大提高温度调节效率,例如,在电池单体20发 生热失控时,可以更加有效地降温,避免热扩散,提高电池10的安全性。
在本申请实施例中,多列电池单体20中至少相邻两列电池单体20之间设置同一个热管理部件13。这样,多个电池单体20中存在相邻两列电池单体20满足:该两列电池单体20之间设置有同一个热管理部件13,以便于电池10的加工和组装。例如,沿第一方向X,可以存在部分电池单体20满足:相邻的两列电池单体20之间设置有同一热管理部件13;并且,也存在部分电池单体20满足:相邻两列电池单体20之间不设置热管理部件13,提高电池10内的空间利用率。再例如,也可以在多列电池单体20中每相邻两列电池单体20之间都设置热管理部件13,以使得每个电池单体20对应至少两个热管理部件13,从而提高温度调节效果。
应理解,本申请实施例的电池10内的热管理部件13的数量,可以根据实际应用进行设置。例如,可以根据电池单体20的尺寸和数量,选择电池10内热管理部件13的数量。
例如,电池包括沿第一方向X排列的多个热管理部件13,以提高温度调节效率。
再例如,多个热管理部件12沿第一方向X间隔设置,以使得相邻两个热管理部件12之间设置有至少一个电池单体20,既提高电池10的体积利用率,也可以提高温度调节效率。
图13是图8示出的任意一个热管理部件13的局部放大图。如图8至13所示,热管理部件13设置有容纳换热介质的换热通道131,多个热管理部件13的换热通道131相互连通。
其中,换热介质可以是液体、气体或者固态。例如,在给电池单体20冷却或降温的情况下,该热管理部件13用于容纳冷却流体以给多个电池单体20降低温度,此时,热管理部件13也可以称为冷却部件、冷却系统或冷却板等,其容纳的流体也可以称为冷却介质或冷却流体,更具体的,可以称为冷却液或冷却气体,其中冷却介质可以被设计成是循环流动的,以达到更好的温度调节的效果。冷却介质可具体采用诸如水、水和乙二醇的混合液、或者空气,等等。
多个热管理部件13的换热通道131可以相互连通。这样,多个热管理部件13之间相互连通,一方面,便于管理和控制,提高电池10的集成性和安全性;另一方面,当电池10中部分热管理部件13温度变化较大时,可以通过该换热通道实现热交换,以使得多个热管理部件13之间的温差较小,提高温度调节效率。另外,每个热管理部件13也可以设置多个换热通道,多个换热通道沿高度方向Z间隔设置,以增加热管理部件13与电池单体20的换热面积,提高温度调节效率。
可选地,多个热管理部件13的换热通道131可以通过多种方式相互连通。例如,多个热管理部件13的换热通道131之间可以通过管道相互连通。
图14示出本申请实施例的多个电池单体20和多个热管理部件13的局部立体示意图。例如,图14示出的多个电池单体20和多个热管理部件13可以为图8中A区域的局部放大示意图。
在本申请实施例中,如图14所示,多个热管理部件13包括相邻的第一热管理 部件13a和第二热管理部件13b,第一热管理部件13a包括与换热通道131连通的第一连接管131a,第二热管理部件13b包括与换热通道131连通的第二连接管132b,第一连接管131a和第二连接管132b相互连接,以使第一热管理部件13a的换热通道131与第二热管理部件13b的换热通道131相互连通。
在本申请实施例中,通过第一连接管131a和第二连接管132b连通相邻的第一热管理部件13a和第二热管理部件13b之间的换热通道131,可以降低换热通道131的连接难度,并且,将连接换热通道131的部件和第一热管理部件13a、第二热管理部件13b设置在一起,能够提高电池10的体积利用率,从而提高电池10的能量密度。
应理解,第一连接管131a与第一热管理部件13a可以是一体式成型结构,也可以是分体式结构。示例性地,第一连接管131a与第一热管理部件13a为分体式结构,第一连接管131a可通过粘结剂粘接、螺栓连接或焊接的方式连接于第一热管理部件13a。第二连接管132b与第二热管理部件13b的连接方式和第一连接管131a与第一热管理部件13a的方式类似,在此不再赘述。并且,第一连接管131a与第一热管理部件13a之间的连接方式和第二连接管132b与第二热管理部件13b之间的连接方式可以相同或者不同,例如,可以设置相同的连接方式,以便于加工。
第一连接管131a和第二连接管132b的材质可以根据实际应用设置,并且,第一连接管131a和第二连接管132b的材质可以相同,也可以不同。例如可以是是天然橡胶、丁苯橡胶或顺丁橡胶等,其中采用乙丙橡胶、氟橡胶或硅橡胶的材料还具有耐酸碱、耐高温的特性,例如还可以是耐腐蚀、防热胀冷缩的金属材料,例如铁、不锈钢和铜锌合金等,或者还可以是结合塑料、热熔粘合剂、合金的复合材料。
可选地,第一连接管131a和第二连接管132b可以分别设置在第一热管理部件13a和第二热管理部件13b超出一列电池单体20的任意区域。
例如,在本申请的实施例中,如图14所示,第一连接管131a设置于第一热管理部件13a的沿第二方向Y超出一列电池单体20的区域,第二连接管132b设置于第二热管理部件13b的沿第二方向Y超出一列电池单体20的区域,一列电池单体20为位于第一热管理部件13a和第二热管理部件13b之间的一列电池单体20,第一连接管131a和第二连接管132b沿第一方向X延伸以相互连接。
在本申请实施例中,通过将第一连接管131a和第二连接管132b沿第一方向X延伸以相互连接,可以缩短第一热管理部件13a的换热通道131和第二热管部件13b的换热通道131内的换热介质的运输路径,不仅加快了相应换热通道131内的换热介质的运输效率,还提高电池10的体积利用率。
可选地,第一连接管131a和第二连接管132b沿第一方向X延伸以相互直接连接或间接连接。
以第一连接管131a和第二连接管132b直接连接为例进行说明,该第一连接管131a和第二连接管132b之间可以通过多种方式相连。例如,第一连接管131a设置有自第一连接管131a的内部向第一连接管131a的外部凹陷的第一凹槽,第二连接管132b设置有向第二连接管132b的外部凸出的第一凸起,第一凹槽用于容纳第一凸起,以使第一连接管131a与第二连接管132b相互连接。
以第一连接管131a和第二连接管132b间接连接为例进行说明。图15示出本申请实施例相连的第一热管理部件13a和第二热管理部件13b的俯视示意图。如图14和图15所示,第一连接管131a和第二连接管132b通过中间连接管16间接连通。其中,中间连接管16包括固定管161和移动管162,固定管161和移动管162可移动地密封连接,移动管162和第一连接管131a或第二连接管132b,以实现第一热管理部件13a的换热通道131与第二热管理部件13b的换热通道131相互连通,换热介质不断循环。
其中,移动管162与固定管161密封连接,防止介质从移动管162的间隙中溢出。可选地,固定管161的外径小于移动管162的内径,第一连接管131a和第二连接管132b的外径小于移动管162的内径,以实现中间连接管16与第一连接管131a和第二连接管132b的密封连接。固定管161和移动管162的材料可以相同,也可以不同。例如固定管161和移动管162可以由胶层和骨架层组成,骨架层的材料可采用棉纤维、各种合成纤维、碳纤维或石棉、钢丝等,胶层的材料可采用天然橡胶、丁苯橡胶或顺丁橡胶等。固定管161和移动管162还可以采用金属材料、复合材料等制成,本申请对此不作限定。固定管161可以具有耐高温性能及受热变形小,内壁光滑及对流体阻力小,承压能力高等性能。可选地,移动管162与固定管161可通过卡套式或螺纹连接等方式进行安装。可选地,中间连接管16可以包括固定管161和至少一个移动管162。其中,移动管162的数量可以根据实际情况确定。例如,根据第一连接管131a与第二连接管132b之间的距离确定。第一连接管131a与第二连接管132b之间的距离越大,移动管162的数量越多。
图15以中间连接管16包括第一移动管162a和第二移动管162b为例。具体地,第一移动管162a可以在第一方向X上朝着远离固定管161的方向移动,以使该第一移动管162a与第一连接管131a相连;类似地,第二移动管162b可以在第一方向X上朝着远离第一移动管162a的方向移动,以使该第二移动管162b与第二连接管132b相连。或者,第一连接管162a可以在第一方向X上朝着靠近固定管161的方向移动,以使该第一移动管162a与第一连接管131a断开;类似地,第二连接管162b可以在第一方向X上朝着靠近固定管161的方向移动,以使该第二移动管162b与第二连接管132b断开,进而使得第一连接管131a和第二连接管132b不再相连。这样,通过长度可变的中间连接管16连通以及断开第一连接管131a和第二连接管132b,能够降低电池10的装配难度。
需要说明的是,第一移动管162a与第一连接管131a之间的连接方式可以和第二移动管162b与第二连接管132b之间的连接方式相同,也可以不同。例如。第一移动管162a与第一连接管131a、第二移动管162b与第二连接管132b均采用螺纹连接的方式。
图16示出了本实施例的电池10的局部侧视图。图17是本申请一实施例公开的又一种电池的D区域的局部示意图。图18示出了本申请又一实施例的电池10的另一局部剖面图。例如,图18可以是图8所示的电池10垂直于第一方向X的局部剖面示意图。如图16至图18所示,箱体11还包括支撑部件117,该支撑部件117用于支撑第一连接管131a和/或第二连接管132b。
在本申请实施例中,通过支撑部件117支撑第一连接管131a和/或第二连接管132b,可以在不增加其他零部件的情况下,使得位于第一热管理部件13a和第二热管理部件13b之间的一列电池单体20能够与箱体11的壁之间形成空隙,例如,一列电池单体20的第一壁21a与箱体11的任一壁之间形成空隙113,该空隙可以用于形成至少部分收集腔112,以使收集腔112收集电池单体20的排放物。这样,提高了电池10的体积利用率,增大了电池10的能量密度。
应理解,支撑部件117可以与第一连接管131a至少部分接触,以支撑第一连接管131a,或者,支撑部件117可以与第二连接管132b至少部分接触,以支撑第二连接管132b,或者,支撑部件117可以既与第一连接管131a的至少部分、又与第二连接管132b的至少部分接触,以支撑第一连接管131a和第二连接管132b。
示例性地,支撑部件117可以为设置于箱体11内的部件,或者,该支撑部件117也可以为设置于箱体11的壁上的凸起结构。例如,该支撑部件117可以为与第一壁21a相对的第一箱体壁114上的凸起结构,该凸起结构自该第一箱体壁114的内表面朝向电池10内部凸出;或者,该凸起结构也可以为第一箱体壁114的内表面和第三箱体壁116的内表面朝向电池10内部凸起;或者,如图17和图18所示,该支撑部件117又可以为第三箱体壁116上的凸起117a,该凸起117a自该第三箱体壁116朝向电池10内部凸出,其中,该第三箱体壁116为垂直于第二方向Y的箱体11的壁。并且,第一连接管131a和第二连接管132b沿第一方向X相互连通,凸起117a面向第一热管理部件13a的一侧附接于第一连接管131a,凸起117a面向第二热管理部件13b的一侧附接于第二连接管132b。
应理解,本申请实施例下文主要以该支撑部件117为第三箱体壁116上的凸起117a为例进行说明。
可选地,在本申请实施例中,图19是图18的E区域的局部放大图。如图16至图19所示,支撑部件117沿第三方向Z的一侧用于附接第一连接管131a和/或第二连接管132b,第三方向Z垂直于第一方向X和第二方向Y。
应理解,支撑部件117(例如,凸起117a)沿第三方向Z一侧可以为该支撑件117的垂直于第三方向Z的一侧。
在本申请实施例中,通过在支撑部件117沿第三方向Z的一侧附接第一连接管131a和/或第二连接管132b,能够利用电池10在第三方向Z上的空间,提高电池10的体积利用率,并且,在装配电池10时,可以在第一连接管131a和第二连接管132b连通的情况下,设置支撑部件117附接第一连接管131a和/或第二连接管132b,也可以先设置支撑部件117附接第一连接管131a或第二连接管132b,再连通第一连接管131a和第二连接管132b,增加了装配的灵活性。
可选地,可以在支撑部件117的沿第三方向Z的一侧设置固定部件,以使支撑部件117通过该固定部件与第一连接管131a和/或第二连接管132b附接,以支撑第一热管理部件13a、第二热管理部件13b和电池单体20。其中,该固定部件可以通过多种方式实现,例如,该固定部件可以为粘结剂,或者也可以为限位结构,本申请实施例并不限于此。
可选地,在本申请实施例中,如图19所示,支撑部件117沿第三方向Z的一侧设置有容纳槽117b,容纳槽117b用于容纳第一连接管131a的至少部分和/或第二连接管132b的至少部分。
应理解,容纳槽117b的径向尺寸大于或者等于第一连接管131a和/或第二连接管132b,以容纳第一连接管131a的至少部分和/或第二连接管132b的至少部分。可选地,该容纳槽117b的表面还可以涂覆粘结剂17,以进一步固定第一连接管131a的至少部分和/或第二连接管132b的至少部分。
在本申请实施例中,通过在支撑部件117沿第三方向Z的一侧设置容纳槽117b,以容纳第一连接管131a的至少部分和/或第二连接管132b的至少部分,使得支撑部件117更稳定地支撑和固定该第一连接管131a和/或第二连接管132b,避免第一连接管131a、第二连接管132b及其之间的一列电池单体20在箱体11内晃动,增加了电池10的稳定性和安全性。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (25)

  1. 一种电池(10),其特征在于,包括:
    电池单体(20),所述电池单体(20)的第一壁(21a)设置有泄压机构(213);
    热管理部件(13),用于调节所述电池单体(20)的温度,所述热管理部件(13)附接于所述电池单体(20)的第二壁(21b),所述第二壁(21b)和所述第一壁(21a)不同;
    汇流部件(12),用于电连接所述电池单体(20)的电极端子(214),所述电极端子(214)设置于所述电池单体(20)的第三壁(21c)上,所述第三壁(21c)和所述第一壁(21a)不同。
  2. 根据权利要求1所述的电池(10),其特征在于,所述第三壁(21c)和所述第二壁(21b)不同。
  3. 根据权利要求1或2所述的电池(10),其特征在于,所述第二壁(21b)的面积大于或者等于所述第一壁(21a)的面积;和/或,
    所述第二壁(21b)的面积大于或者等于所述第三壁(21c)的面积。
  4. 根据权利要求3所述的电池(10),其特征在于,所述第二壁(21b)为所述电池单体(20)的面积最大的壁。
  5. 根据权利要求1至4中任一项所述的电池(10),其特征在于,所述电池(10)还包括:
    箱体(11),包括电气腔(111)和收集腔(112),所述电气腔(111)用于容纳所述电池单体(20)和所述热管理部件(13),所述收集腔(112)用于在所述泄压机构(213)致动时收集所述电池单体(20)的排放物。
  6. 根据权利要求5所述的电池(10),其特征在于,所述箱体(11)还包括与所述第一壁(21a)相对且间隔设置的第一箱体壁(114),所述第一壁(21a)与所述第一箱体壁(114)之间具有空隙(113),所述空隙(113)用于形成至少部分所述收集腔(112)。
  7. 根据权利要求6所述的电池(10),其特征在于,所述第一壁(21a)和所述第一箱体壁(114)的最小距离(L)大于或者等于7mm。
  8. 根据权利要求7所述的电池(10),其特征在于,所述第一壁(21a)和所述第一箱体壁(114)的最小距离(L)在7mm-25mm之间。
  9. 根据权利要求5所述的电池(10),其特征在于,所述电池(10)还包括:
    隔离部件(15),所述隔离部件(15)附接于所述第一壁(21a),所述隔离部件(15)用于隔离所述电气腔(111)和收集腔(112)。
  10. 根据权利要求1至9中任一项所述的电池(10),其特征在于,所述箱体(11)还包括第二箱体壁(115),所述第二箱体壁(115)用于与所述第三壁(21c)固定,以实现所述电池单体(20)与所述箱体(11)的固定。
  11. 根据权利要求10所述的电池(10),其特征在于,所述第三壁(21c)通过粘结剂(17)与所述第二箱体壁(115)固定。
  12. 根据权利要求1至11中任一项所述的电池(10),其特征在于,所述电池(10)包括沿第一方向(X)排列的多列电池单体(20),所述多列电池单体(20)中每列电池单体(20)包括沿第二方向(Y)排列的至少一个所述电池单体(20),所述第一方向(X)垂直于所述第二方向(Y)和所述第二壁(21b)。
  13. 根据权利要求12所述的电池(10),其特征在于,所述热管理部件(13)附接于所述多列电池单体(20)中至少一列电池单体(20)的至少一个所述电池单体(20)的所述第二壁(21b)。
  14. 根据权利要求13所述的电池(10),其特征在于,所述电池单体(20)包括沿所述第一方向(X)相对设置的两个所述第二壁(21b),所述多列电池单体(20)中至少一列电池单体(20)沿所述第一方向(X)的两侧分别设置有附接于至少一个所述电池单体(20)的两个所述第二壁(21b)的所述热管理部件(13)。
  15. 根据权利要求13或14所述的电池(10),其特征在于,所述多列电池单体(20)中至少相邻两列电池单体(20)之间设置同一个所述热管理部件(13)。
  16. 根据权利要求12至15中任一项所述的电池(10),其特征在于,所述电池包括沿所述第一方向(X)排列的多个所述热管理部件(13)。
  17. 根据权利要求16所述的电池(10),其特征在于,多个所述热管理部件(13)沿所述第一方向(X)间隔设置。
  18. 根据权利要求16或17所述的电池(10),其特征在于,所述热管理部件(13)设置有容纳换热介质的换热通道(121),多个所述热管理部件(13)的所述换热通道(121)相互连通。
  19. 根据权利要求18所述的电池(10),其特征在于,多个所述热管理部件(13)包括相邻的第一热管理部(12a)和第二热管理部件(12b),所述第一热管理部件(12a)包括与所述换热通道(121)连通的第一连接管(121a),所述第二热管理部件(12b)包括与所述换热通道(121)连通的第二连接管(122b),所述第一连接管(121a)和所述第二连接管(122b)相互连接,以使所述第一热管理部件(12a)的换热通道(121)与所述第二热管理部件(12b)的换热通道(121)相互连通。
  20. 根据权利要求19所述的电池(10),其特征在于,所述第一连接管(121a)设置于所述第一热管理部件(12a)的沿所述第二方向(Y)超出一列电池单体(20)的区域,所述第二连接管(122b)设置于所述第二热管理部件(12b)的沿所述第二方向(Y)超出所述一列电池单体(20)的区域,所述一列电池单体(20)为位于所述第一热管理部件(12a)和所述第二热管理部件(12b)之间的一列电池单体(20),所述第一连接管(121a)和所述第二连接管(122b)沿所述第一方向(X)延伸以相互连接。
  21. 根据权利要求20所述的电池(10),其特征在于,所述箱体(11)还包括支撑部件(117),所述支撑部件(117)用于支撑所述第一连接管(121a)和/或第二连接管(122b)。
  22. 根据权利要求21所述的电池(10),其特征在于,所述支撑部件(117)沿第三方向(Z)的一侧用于附接所述第一连接管(121a)和/或所述第二连接管(122b),所述第三方向(Z)垂直于所述第一方向(X)和所述第二方向(Y)。
  23. 根据权利要求22所述的电池(10),其特征在于,所述支撑部件(117)沿所述第三方向(Z)的一侧设置有容纳槽(117b),所述容纳槽(117b)用于容纳所述第一连接管(121a)的至少部分和/或所述第二连接管(122b)的至少部分。
  24. 根据权利要求1至23中任一项所述的电池(10),其特征在于,所述第一壁(21a)与所述第三壁(21c)相对设置,所述第二壁(21b)连接所述第一壁(21a)和所述第三壁(21c);或者,
    所述第一壁(21a)与所述第二壁(21b)相对设置,所述第三壁(21c)连接所述第一壁(21a)和所述第二壁(21b)。
  25. 一种用电设备,其特征在于,包括:
    根据权利要求1至24中任一项所述的电池(10),所述电池(10)用于为所述用电设备提供电能。
PCT/CN2022/135647 2022-01-12 2022-11-30 电池和用电设备 WO2023134319A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP22919952.6A EP4358262A1 (en) 2022-01-12 2022-11-30 Battery and electrical device
KR1020247002119A KR20240023439A (ko) 2022-01-12 2022-11-30 배터리 및 전기 기기
CA3236561A CA3236561A1 (en) 2022-01-12 2022-11-30 Battery and electrical device
CN202280019141.0A CN117083759A (zh) 2022-01-12 2022-11-30 电池和用电设备
CN202320658585.0U CN220306441U (zh) 2022-01-12 2023-03-29 一种电池和用电设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2022/071536 2022-01-12
PCT/CN2022/071536 WO2023133722A1 (zh) 2022-01-12 2022-01-12 电池的箱体、电池、用电装置、制备电池的方法和装置

Publications (1)

Publication Number Publication Date
WO2023134319A1 true WO2023134319A1 (zh) 2023-07-20

Family

ID=85008553

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2022/071536 WO2023133722A1 (zh) 2022-01-12 2022-01-12 电池的箱体、电池、用电装置、制备电池的方法和装置
PCT/CN2022/128748 WO2023134273A1 (zh) 2022-01-12 2022-10-31 电池和用电设备
PCT/CN2022/135647 WO2023134319A1 (zh) 2022-01-12 2022-11-30 电池和用电设备

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/071536 WO2023133722A1 (zh) 2022-01-12 2022-01-12 电池的箱体、电池、用电装置、制备电池的方法和装置
PCT/CN2022/128748 WO2023134273A1 (zh) 2022-01-12 2022-10-31 电池和用电设备

Country Status (7)

Country Link
US (2) US20230223641A1 (zh)
EP (3) EP4235922A4 (zh)
JP (1) JP2024507420A (zh)
KR (3) KR20230110440A (zh)
CN (5) CN218414891U (zh)
CA (3) CA3227076A1 (zh)
WO (3) WO2023133722A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117352947B (zh) * 2023-12-04 2024-04-16 宁德时代新能源科技股份有限公司 一种电池及用电装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048184A (zh) * 2019-03-25 2019-07-23 力神动力电池系统有限公司 一种电动汽车用方形电池水冷模组
CN209249567U (zh) * 2018-12-30 2019-08-13 宁德时代新能源科技股份有限公司 一种电池模组
JP2020043037A (ja) * 2018-09-13 2020-03-19 株式会社デンソー 電池ユニット
CN210607415U (zh) * 2019-12-10 2020-05-22 北京车和家信息技术有限公司 电池模组壳体、电池模组、电池包及车辆
CN112103447A (zh) * 2019-06-17 2020-12-18 株式会社Lg化学 电池模块、包括电池模块的电池组以及包括电池组的蓄能系统
CN212209699U (zh) * 2020-06-04 2020-12-22 北京罗克维尔斯科技有限公司 一种液冷框架、电池模组及车辆
CN212659613U (zh) * 2020-06-02 2021-03-05 北京新能源汽车股份有限公司蓝谷动力系统分公司 用于车辆的电池模组、电池包和车辆
CN212991189U (zh) * 2020-07-10 2021-04-16 宁德时代新能源科技股份有限公司 电池盒、电池单体、电池和用电设备
CN213584016U (zh) * 2020-07-10 2021-06-29 宁德时代新能源科技股份有限公司 电池、用电装置和制备电池的装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101370238B1 (ko) * 2009-07-17 2014-03-14 파나소닉 주식회사 전지 모듈과 이를 이용한 전지 팩
WO2015061443A1 (en) * 2013-10-25 2015-04-30 Quantumscape Corporation Thermal and electrical management of battery packs
TWI489674B (zh) * 2014-01-13 2015-06-21 新普科技股份有限公司 散熱件及其組成之電池模組
US20150263397A1 (en) * 2014-03-13 2015-09-17 Ford Global Technologies, Llc Side mounted traction battery thermal plate
CN104300162B (zh) * 2014-09-12 2017-01-18 南京信息工程大学 一种电池组自动装配设备
US11302973B2 (en) * 2015-05-19 2022-04-12 Ford Global Technologies, Llc Battery assembly with multi-function structural assembly
WO2018023050A1 (en) * 2016-07-29 2018-02-01 Crynamt Management Llc High-density battery pack
DE102017219176A1 (de) * 2017-10-26 2019-05-02 Bayerische Motoren Werke Aktiengesellschaft Batteriemodul für eine Hochvoltbatterie eines Kraftfahrzeugs, Hochvoltbatterie sowie Kraftfahrzeug
CN209071461U (zh) * 2018-12-28 2019-07-05 宁德时代新能源科技股份有限公司 热管理装置及电池包
CN110190212B (zh) * 2018-12-29 2020-02-04 比亚迪股份有限公司 动力电池包及车辆
CN113113707A (zh) * 2018-12-29 2021-07-13 宁德时代新能源科技股份有限公司 电池包
CN112331992B (zh) * 2019-11-08 2021-12-03 宁德时代新能源科技股份有限公司 电池包及装置
CN213026307U (zh) * 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备
CN213782158U (zh) * 2020-07-10 2021-07-23 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备
CN213601965U (zh) * 2020-07-10 2021-07-02 宁德时代新能源科技股份有限公司 电池、用电装置和制备电池的装置
CN112086605B (zh) * 2020-10-19 2022-11-25 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和设备
CN214313319U (zh) * 2020-12-24 2021-09-28 江苏塔菲尔动力系统有限公司 一种无模组式的电池系统结构、电池包及电动车
CN214898695U (zh) * 2021-04-02 2021-11-26 宁德时代新能源科技股份有限公司 电池和用电装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020043037A (ja) * 2018-09-13 2020-03-19 株式会社デンソー 電池ユニット
CN209249567U (zh) * 2018-12-30 2019-08-13 宁德时代新能源科技股份有限公司 一种电池模组
CN110048184A (zh) * 2019-03-25 2019-07-23 力神动力电池系统有限公司 一种电动汽车用方形电池水冷模组
CN112103447A (zh) * 2019-06-17 2020-12-18 株式会社Lg化学 电池模块、包括电池模块的电池组以及包括电池组的蓄能系统
CN210607415U (zh) * 2019-12-10 2020-05-22 北京车和家信息技术有限公司 电池模组壳体、电池模组、电池包及车辆
CN212659613U (zh) * 2020-06-02 2021-03-05 北京新能源汽车股份有限公司蓝谷动力系统分公司 用于车辆的电池模组、电池包和车辆
CN212209699U (zh) * 2020-06-04 2020-12-22 北京罗克维尔斯科技有限公司 一种液冷框架、电池模组及车辆
CN212991189U (zh) * 2020-07-10 2021-04-16 宁德时代新能源科技股份有限公司 电池盒、电池单体、电池和用电设备
CN213584016U (zh) * 2020-07-10 2021-06-29 宁德时代新能源科技股份有限公司 电池、用电装置和制备电池的装置

Also Published As

Publication number Publication date
EP4358262A1 (en) 2024-04-24
US20240162526A1 (en) 2024-05-16
CN220306441U (zh) 2024-01-05
JP2024507420A (ja) 2024-02-20
WO2023134273A1 (zh) 2023-07-20
US20230223641A1 (en) 2023-07-13
KR20230110440A (ko) 2023-07-24
EP4235922A4 (en) 2024-04-17
CA3236561A1 (en) 2023-07-20
KR20240020278A (ko) 2024-02-14
EP4235922A1 (en) 2023-08-30
WO2023133722A1 (zh) 2023-07-20
CN117083759A (zh) 2023-11-17
KR20240023439A (ko) 2024-02-21
CN219873923U (zh) 2023-10-20
EP4369500A1 (en) 2024-05-15
CN218414891U (zh) 2023-01-31
CA3236562A1 (en) 2023-07-20
CN116998054A (zh) 2023-11-03
CA3227076A1 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
JP7422789B2 (ja) 電池、その関連装置、製造方法及び製造機器
WO2022006895A1 (zh) 电池及其相关装置、制备方法和制备设备
WO2023050969A1 (zh) 一种电池单体、电池及用电装置
WO2022006897A1 (zh) 电池及其相关装置、制备方法和制备设备
CN115803925B (zh) 电极组件、电池单体、电池及电极组件的制造设备和方法
US11881601B2 (en) Box of battery, battery, power consumption device, and method and apparatus for producing box
US20230089208A1 (en) Battery, power consumption apparatus, and method and apparatus for producing battery
WO2023134319A1 (zh) 电池和用电设备
WO2023004720A1 (zh) 电池、用电装置以及电池的制造方法和制造系统
WO2022006896A1 (zh) 电池及其相关装置、制备方法和制备设备
US20230411761A1 (en) Battery, electric apparatus, and method and apparatus for manufacturing battery
US20230268586A1 (en) Battery, power consumption device, and method and device for producing battery
WO2023155207A1 (zh) 电池、用电设备、制备电池的方法和设备
US20230116169A1 (en) Battery, manufacturing method and manufacturing system thereof, and electric apparatus
EP4235919A2 (en) Battery cell, battery, power consumption device, and battery manufacturing method and device
RU2805991C1 (ru) Батарея и связанное с ней устройство, способ ее изготовления и устройство для ее изготовления
WO2023173721A1 (zh) 电池单体、电池模组、电池和用电装置
WO2023155209A1 (zh) 电池、用电设备、制备电池的方法和设备
US20230216136A1 (en) Box body of battery, battery, power consumption device, and method and device for producing battery
WO2023173428A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
CN115548531A (zh) 隔离组件、电池及其制造方法和制造系统、用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919952

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280019141.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2024100718

Country of ref document: RU

Ref document number: 2401000246

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2024502659

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20247002119

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022919952

Country of ref document: EP

Ref document number: 1020247002119

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2022919952

Country of ref document: EP

Effective date: 20240118

WWE Wipo information: entry into national phase

Ref document number: 3236561

Country of ref document: CA