WO2022006896A1 - 电池及其相关装置、制备方法和制备设备 - Google Patents

电池及其相关装置、制备方法和制备设备 Download PDF

Info

Publication number
WO2022006896A1
WO2022006896A1 PCT/CN2020/101441 CN2020101441W WO2022006896A1 WO 2022006896 A1 WO2022006896 A1 WO 2022006896A1 CN 2020101441 W CN2020101441 W CN 2020101441W WO 2022006896 A1 WO2022006896 A1 WO 2022006896A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
thermal management
battery cells
cover body
pressure relief
Prior art date
Application number
PCT/CN2020/101441
Other languages
English (en)
French (fr)
Inventor
曾毓群
曾智敏
吴凯
陈兴地
王鹏
陈小波
李耀
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP23171327.2A priority Critical patent/EP4235927A1/en
Priority to CN202080005847.2A priority patent/CN114175376B/zh
Priority to HUE20803075A priority patent/HUE062373T2/hu
Priority to KR1020227020680A priority patent/KR20220102642A/ko
Priority to JP2022538852A priority patent/JP7419538B2/ja
Priority to PCT/CN2020/101441 priority patent/WO2022006896A1/zh
Priority to EP20803075.9A priority patent/EP3958387B1/en
Priority to US17/113,013 priority patent/US20220013839A1/en
Publication of WO2022006896A1 publication Critical patent/WO2022006896A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/588Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries outside the batteries, e.g. incorrect connections of terminals or busbars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/284Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
    • H01M50/287Fixing of circuit boards to lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/358External gas exhaust passages located on the battery cover or case
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/375Vent means sensitive to or responsive to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/591Covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of batteries, and in particular, to a battery and its related device, preparation method and preparation equipment.
  • Chemical cells, electrochemical cells, electrochemical cells or electrochemical cells refer to a type of device that converts the chemical energy of positive and negative active materials into electrical energy through redox reactions. Different from ordinary redox reactions, the oxidation and reduction reactions are carried out separately, the oxidation is at the negative electrode, the reduction is at the positive electrode, and the gain and loss of electrons are carried out through an external circuit, so a current is formed. This is an essential feature of all batteries. After long-term research and development, chemical batteries have ushered in a wide variety of applications. Huge installations as large as a building can hold, as small as millimeters of type. The development of modern electronic technology has put forward high requirements for chemical batteries. Every breakthrough in chemical battery technology has brought about a revolutionary development of electronic devices. Many electrochemical scientists in the world have concentrated their research and development interests in the field of chemical batteries used as power for electric vehicles.
  • lithium-ion battery As a kind of chemical battery, lithium-ion battery has the advantages of small size, high energy density, high power density, many cycles of use and long storage time. It has been used in some electronic equipment, electric vehicles, electric toys and electric equipment. Widely used, for example, lithium-ion batteries are currently widely used in mobile phones, notebook computers, battery cars, electric vehicles, electric planes, electric ships, electric toy cars, electric toy ships, electric toy planes and electric tools, and so on.
  • lithium-ion battery technology With the continuous development of lithium-ion battery technology, higher requirements are placed on the performance of lithium-ion batteries. It is hoped that lithium-ion batteries can consider various design factors at the same time.
  • the busbar is usually arranged between the cover body and the battery cell, and such arrangement makes the overall volume of the battery larger.
  • the bus components are usually enclosed in the box, so the battery management unit that is electrically connected to the bus components also needs to be arranged in the battery box (the cover body is, for example, a part of the box), so that the volume of the battery box is reduced. It is relatively large, and the battery management unit is sealed in the box, which is inconvenient for subsequent maintenance and replacement.
  • the present application proposes a battery and its related device, preparation method, and preparation equipment to improve the performance of the battery.
  • a battery including: a plurality of battery cells, a cover body and an insulating portion.
  • the plurality of battery cells are configured to be electrically connected to each other through a bus member;
  • the cover body includes a receiving space configured to mount the bus member;
  • the insulating portion is attached to the cover body and provided so as to cover at least the confluence part.
  • the bus components in the battery for electrically connecting a plurality of battery cells are embedded on the cover body.
  • This arrangement makes the structure of the battery more compact and can improve the volume energy density of the battery. It is sealed in the box, so part of the structure of the battery management unit can be arranged outside the box of the battery.
  • the accommodating space is a through hole formed on the cover body, and the confluence component passes through the through hole and is fixed on the cover body.
  • the structure of the accommodating space is relatively simple, easy to implement, and low in cost.
  • the insulating portion is applied or fitted to the cover.
  • the accommodating space is a blind hole formed on the cover body
  • the confluence component can enter the accommodating space through the opening of the accommodating space, and at least part of the confluence component accommodates In the accommodating space, the insulating portion is integrally formed with the cover body.
  • the bus component can be completely embedded in the integrated structure formed by the cover body and the insulating portion, and such an arrangement can further save space and reduce the overall size of the battery.
  • the battery further includes a battery management unit, the battery management unit includes a control module and an electrical connection part, and the control module and the bus part are connected through the electrical connection part.
  • the battery further includes a case, the case and the cover together form a case for accommodating the plurality of battery cells, and the control module is disposed in the case in vitro.
  • At least one of the control module and the electrical connection member is embedded in the cover.
  • the components of the battery management unit can be arranged outside the box or embedded in the cover. Compared with the structure in which the battery management unit is completely arranged in the box, the above solutions can further save space and reduce battery size, and easy maintenance and replacement of the battery management unit.
  • the electrical connection component includes a circuit board for electrically connecting with the plurality of battery cells to collect temperature or voltage signals of the plurality of battery cells.
  • such an arrangement enables the temperature or voltage signal of the battery cell to be acquired more accurately, so that the overall operating state of the battery can be monitored more accurately.
  • At least one battery cell of the plurality of battery cells includes a pressure relief mechanism for actuating when the internal pressure of the at least one battery cell reaches a threshold value to Relieving the internal pressure, wherein the pressure relief mechanism and the bus member are respectively arranged on different sides of the at least one battery cell, so that when the pressure relief mechanism is actuated, the pressure relief mechanism comes from the at least one battery cell.
  • the discharge of the battery cells is discharged in a direction away from the bussing member.
  • the safety performance of the battery is significantly improved by the arrangement of the pressure relief mechanism and the confluence component.
  • the emissions from the battery cells are not discharged toward the occupants in the cockpit, thereby improving the safety of the electric vehicle using the battery.
  • the pressure relief mechanism and the bus components are arranged on different sides of the battery cells, the discharge of the battery cells will not cause the short circuit of the bus components, thereby significantly reducing the risk caused by the short circuit of the bus components. , which improves the safety performance of the battery.
  • the temperature of the battery cells can be controlled more flexibly and proactively by providing the thermal management components.
  • the emissions of the battery cells can also be effectively discharged, thereby reducing the risk of poor discharge of the emissions.
  • the thermal management component is configured to be broken upon actuation of the pressure relief mechanism to allow the fluid to flow out.
  • this arrangement enables the high temperature and high pressure emissions from the battery cells to be effectively cooled, thereby improving the safety performance of the battery.
  • setting the avoidance structure can ensure that the pressure relief mechanism can be effectively actuated.
  • the escape cavity can provide a buffer space for the discharge of the battery cells, thereby reducing the impact pressure of the discharge of the battery cells to the outside, and further improving the safety performance of the battery.
  • the thermal management component further includes an escape structure configured to provide a space to allow actuation of the pressure relief mechanism, and the escape structure is a passage through the thermal management component hole.
  • this arrangement achieves the objective of passing the emissions through the thermal management component in a simple manner and at a low cost.
  • the battery further includes a collection chamber for collecting emissions from the battery cells and the thermal management component upon actuation of the pressure relief mechanism, wherein the escape chamber and the collection chamber are isolated by the thermal management component.
  • the collection chamber can provide further buffering of the discharge of the discharge, so as to further reduce the impact pressure of the discharge.
  • the collection chamber can also reduce the risk of secondary damage to the outside world caused by the discharge.
  • the battery further includes a collection chamber for collecting emissions from the battery cells and the thermal management component when the pressure relief mechanism is actuated, wherein the avoidance structure communicated with the collection chamber.
  • the discharge can smoothly enter the collection cavity, so as to reduce the risk brought by the discharge to the outside world and reduce the pollution to the external environment.
  • the collection chamber can provide further buffering for the discharge of the discharge to further reduce the impact pressure of the discharge.
  • the battery further includes a protective member, the protective member is arranged on a side of the thermal management part away from the battery cells, and the collection cavity is arranged on the thermal management part and the battery cell. between guards.
  • the protective member can provide additional protection to the battery, so as to prevent the battery from being damaged by foreign objects and prevent external dust or debris from entering the interior of the battery.
  • the guard member and thermal management components also form a collection cavity to provide further cushioning for the discharge of the exhaust when the pressure relief mechanism is actuated to reduce the impact pressure of the exhaust.
  • the battery further includes a sealing member disposed between the thermal management component and the shielding member to seal the collection cavity.
  • the arrangement of the sealing member can effectively prevent the accidental discharge of the discharge in the collection chamber, thereby improving the safety performance of the battery.
  • an apparatus comprising the battery according to any one of the above solutions, the battery being used for providing electrical energy.
  • a method for preparing a battery comprising:
  • the cover including a receiving space configured to mount the bussing member
  • An insulating portion is provided, the insulating portion is attached to the cover body and is provided to cover at least the bussing member.
  • a device for preparing a battery comprising:
  • a battery cell preparation module for preparing a plurality of battery cells, the plurality of battery cells being configured to be electrically connected to each other through a bus member;
  • cover body preparation module for preparing a cover body, the cover body comprising an accommodating space configured to install the confluence component
  • An insulating part preparation module for preparing an insulating part attached to the cover body and provided to cover at least the busbar part.
  • the battery and the related device, preparation method, and preparation equipment of the embodiment of the present application make the bus component used for electrically connecting a plurality of battery cells in the battery embedded on the cover body, and this arrangement makes the structure of the battery more compact , which can improve the volume energy density of the battery, and since the confluence components are not sealed in the box, part of the structure of the battery management unit can be arranged outside the battery box, which can further save space, reduce the size of the battery, and facilitate the Repair and replacement of battery management units.
  • FIG. 1 shows a schematic structural diagram of some embodiments of a vehicle using the battery of the present application
  • Figure 2 shows an exploded view of a battery according to some embodiments of the present application
  • FIG. 3 shows an exploded view of a battery according to some embodiments of the present application
  • FIG. 4 illustrates a side cross-sectional view of a battery according to some embodiments of the present application
  • Figure 5 shows an enlarged view of part A of the battery shown in Figure 4.
  • FIG. 7 shows a schematic perspective view of a battery cell according to some embodiments of the present application.
  • FIG. 8 shows a schematic perspective view of a battery cell according to some embodiments of the present application.
  • FIG. 9 illustrates a top view of a thermal management component according to some embodiments of the present application.
  • Figure 10 shows a bottom view of the thermal management component of the present application shown in Figure 9;
  • Figure 11 shows an A-A cross-sectional view of the thermal management component of the present application shown in Figure 9;
  • FIG. 12 shows a schematic flowchart of some embodiments of the method for preparing a battery of the present application
  • FIG. 13 shows a schematic structural diagram of some embodiments of the apparatus for preparing a battery of the present application.
  • the terms “installed”, “connected”, “connected” and “attached” should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two components.
  • the batteries mentioned in the art can be divided into disposable batteries and rechargeable batteries according to whether they are rechargeable.
  • Primary batteries are also known as “disposable” batteries and primary batteries because they cannot be recharged after they are exhausted and can only be discarded.
  • Rechargeable batteries are also known as secondary batteries (Secondary Battery) or secondary batteries, accumulators.
  • Secondary Battery Secondary Battery
  • the material and process of rechargeable batteries are different from those of primary batteries. The advantage is that they can be recycled many times after charging, and the output current load capacity of rechargeable batteries is higher than that of most disposable batteries.
  • Common types of rechargeable batteries are: lead-acid batteries, nickel-metal hydride batteries and lithium-ion batteries.
  • Lithium-ion batteries have the advantages of light weight, large capacity (1.5 times to 2 times the capacity of nickel-hydrogen batteries of the same weight), no memory effect, etc., and have a very low self-discharge rate, so even if the price is relatively high, it is still available. universal application. Lithium-ion batteries are also widely used in pure electric vehicles and hybrid vehicles. The capacity of lithium-ion batteries used for this purpose is relatively low, but they have large output, charging current, and long service life, but the cost higher.
  • the batteries described in the embodiments of the present application refer to rechargeable batteries.
  • the embodiments disclosed in the present application will be mainly described by taking a lithium-ion battery as an example. It should be understood that the embodiments disclosed herein are applicable to any other suitable type of rechargeable battery.
  • the batteries mentioned in the embodiments disclosed in this application can be directly or indirectly applied to a suitable device to power the device.
  • the battery mentioned in the embodiments disclosed in the present application refers to a single physical module including one or more battery cells to provide a predetermined voltage and capacity.
  • the battery cell is the basic unit in the battery. Generally, it can be divided into: cylindrical battery cell, square battery cell and soft pack battery cell according to the packaging method. The following will mainly focus on the prismatic battery cells. It should be understood that the embodiments described hereinafter are also applicable in some aspects to cylindrical or pouch cells.
  • the battery cell includes a positive pole piece, a negative pole piece, an electrolyte and a separator.
  • Lithium-ion battery cells mainly rely on the movement of lithium ions between the positive pole piece and the negative pole piece to work.
  • lithium-ion cells use an intercalated lithium compound as an electrode material.
  • the common cathode materials used for lithium ion batteries are: lithium cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium nickelate (LiNiO 2 ) and lithium iron phosphate (LiFePO 4 ).
  • the separator is arranged between the positive electrode and the negative electrode to form a thin film structure with three layers of materials.
  • the battery cell includes a case, an electrode assembly, and an electrolyte.
  • the electrode assembly is accommodated in the case of the battery cell, and the electrode assembly includes a positive electrode sheet, a negative electrode sheet and a separator.
  • the material of the separator can be PP or PE, etc.
  • the electrode assembly can be a wound structure or a laminated structure.
  • the box includes a housing and a cover.
  • the housing includes a receiving cavity formed by a plurality of walls and an opening.
  • a cover plate is arranged at the opening to close the accommodating cavity.
  • the accommodating cavity also accommodates the electrolyte.
  • the positive pole piece and the negative pole piece in the electrode assembly include tabs.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the positive electrode current collector without the positive electrode active material layer protrudes from the coated positive electrode active material layer.
  • the positive electrode current collector is not coated with the positive electrode active material layer as the positive electrode tab, the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate etc.; the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the negative electrode current collector without the negative electrode active material layer is protruded from the negative electrode that has been coated with the negative electrode active material layer.
  • the current collector, the negative electrode current collector without the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive tabs is multiple and stacked together, and the number of negative tabs is multiple and stacked together.
  • the tabs are electrically connected to the positive electrode terminal and the negative electrode terminal located outside the battery cell through the connecting member.
  • electrode terminals are generally provided on the cover plate portion. A plurality of battery cells are connected together in series and/or in parallel via electrode terminals for various applications.
  • the application of batteries includes three levels: battery cells, battery modules and battery packs.
  • the battery module is formed by electrically connecting a certain number of battery cells together and putting them into a frame in order to protect the battery cells from external shock, heat, vibration, etc.
  • the battery pack is the final state of the battery system loaded into an electric vehicle.
  • a battery pack typically includes a case for enclosing one or more battery cells.
  • the box can prevent liquids or other foreign objects from affecting the charging or discharging of the battery cells.
  • the box body is generally composed of a cover body and a box shell. Most current battery packs are made by assembling various control and protection systems such as a battery management system (BMS), thermal management components, etc. on one or more battery modules.
  • BMS battery management system
  • thermal management components etc.
  • the layer of the battery module can be omitted, that is, the battery pack can be directly formed from the battery cells. This improvement enables the battery system to significantly reduce the number of components while increasing the weight energy density and volumetric energy density.
  • the batteries referred to in this application include battery modules or battery packs.
  • a battery includes a cover, an insulating portion, and a battery management unit in addition to a battery cell.
  • the busbar for electrically connecting the battery cells is usually arranged between the cover body and the battery cells, and such arrangement makes the overall volume of the battery larger.
  • the bus components are usually enclosed in the box, so the battery management unit that is electrically connected to the bus components also needs to be arranged in the battery box (the cover body is, for example, a part of the box), so that the volume of the battery box is reduced. It is relatively large, and the battery management unit is sealed in the box, which is inconvenient for subsequent maintenance and replacement.
  • the inventors of the present application did the opposite, and after conducting a lot of research and experiments, they proposed a new Battery.
  • Devices to which the batteries described in the embodiments of the present application are applicable include, but are not limited to, cell phones, portable devices, notebook computers, battery cars, electric vehicles, ships, spacecraft, electric toys, and electric tools, etc.
  • spacecraft include airplanes, rockets, etc. , space shuttle and spaceship, etc.
  • Electric toys include stationary or mobile electric toys, such as game consoles, electric vehicle toys, electric ship toys and electric aircraft toys, etc.
  • Power tools include metal cutting power tools, grinding electric Tools, assembly power tools and railway power tools such as drills, grinders, wrenches, screwdrivers, hammers, impact drills, concrete vibrators and planers.
  • the vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle Powered vehicles or extended-range vehicles, etc.
  • the battery 10 may be provided inside the vehicle 1 , for example, the battery 10 may be provided at the bottom or the front or rear of the vehicle 1 .
  • the battery 10 can be used for power supply of the vehicle 1 , for example, the battery 10 can be used as an operation power source of the vehicle 1 .
  • the vehicle 1 may further include the controller 30 and the motor 40 .
  • the controller 30 is used to control the power supply of the battery 10 to the motor 40, e.g., for starting, navigating, and driving the vehicle 1 for operating power requirements.
  • the battery 10 can not only be used as the operating power source of the vehicle 1 , but also can be used as the driving power source of the vehicle 1 to provide driving power for the vehicle 1 in place of or partially in place of fuel or natural gas.
  • the battery 10 includes a plurality of battery cells 20 and a bus member 12 for electrically connecting the plurality of battery cells 20 .
  • the battery 10 includes a case 11 for encapsulating a plurality of battery cells and other necessary components, as shown in FIGS. 2 and 3 .
  • the case 11 may include a cover 111 and a case 112 .
  • the cover body 111 and the case 112 are hermetically assembled together to enclose together an electrical cavity for accommodating the plurality of battery cells 20 .
  • the confluence component 12 may also be embedded in the cover body 111
  • FIGS. 2 to 5 show schematic diagrams of the confluence component 12 being embedded in the cover body 111
  • the cover body 111 may include an accommodating space 111a, and the accommodating space 111a can accommodate the bus component 12 .
  • the accommodating space 111 a may be a through hole formed on the cover body 111 .
  • the bus parts 12 can be fixed in the through holes in a suitable manner.
  • the bussing member 12 may be loaded into a mold before the cover body 111 is molded, so that the bussing member 12 can be embedded in the cover body 111 after the cover body 111 is formed.
  • the bus parts 12 are arranged in the cover body 111 at positions corresponding to the electrode terminals 214 (including the positive electrode terminals 214 a and the negative electrode terminals 214 b ) of the battery cells 20 .
  • the cover body 111 can be directly assembled to the box shell 112, and then the confluence components 12 and the battery cells 20 are fixed by welding, such as laser welding or ultrasonic welding.
  • the electrode terminals 214 are electrically connected.
  • the encapsulated case 11 is formed by attaching the insulating portion 113 to the cover body 111 to cover at least the bus part 12 .
  • the insulating portion 113 may be a sheet-like or thin-plate-like structure, and the material of the insulating portion 113 may be PP, PE or PET, etc.; in some other embodiments, the insulating portion 113 may also be insulating glue or Insulating paint, etc.
  • the insulating portion 113 may be applied or assembled to the cover body 111 .
  • the insulating portion 113 may be formed by coating an insulating layer on a portion of the lid body 111 having the bus members 12 .
  • the insulating portion 113 may also be a component assembled to the cover body 111 to cover at least the insulating portion 113 .
  • the insulating portion 113 and the cover body 111 can be assembled in a sealing manner to ensure the sealing performance of the box body 11 .
  • the coated insulating layer or the assembled insulating portion 113 may also cover the entire outer surface of the cover body 111 .
  • the insulating portion 113 may also be integrally formed with the cover body 111 .
  • the insulating portion 113 may be formed as a portion on the cover body 111 protruding from the outer surface, and an accommodation space 111 a is formed inside the portion to accommodate the bus member 12 .
  • the bus components 12 may also be embedded into the cover body 111 by means such as molding or later assembled into the cover body 111 after the cover body 111 is formed. In this case mentioned later, the bus member 12 may be electrically connected to the electrode terminals 214 of the battery cells 20 by resistance welding or the like.
  • the volume of the battery 10 can be greatly reduced without affecting the safety of the battery 10 or even improving the safety of the battery, thereby improving the battery A volumetric energy density of 10.
  • this method can also reduce the difficulty of assembling the battery 10, thereby reducing the assembling cost.
  • embedding the bus part 12 into the cover body 111 also enables the above-mentioned battery management unit to be arranged at least partially outside the electrical cavity 11a.
  • the components in the electrical cavity 11a need to be properly connected.
  • the connections include the connection between the bus part 12 and the electrode terminal 214 and the connection between the battery management unit and the bus part 12 . That is to say, in the conventional battery, the battery management unit is packaged in the sealed case 11 .
  • the battery management unit is a vulnerable component compared to other components. After the battery management unit is damaged or faulty, the sealed box 11 needs to be opened for replacement. The operation is time-consuming and labor-intensive, and the sealing performance of the box 11 is also affected.
  • the battery management unit may be arranged at least partially outside the electrical cavity 11a.
  • at least one of the electrical connection parts 151 between the control part (not shown) of the battery management unit and the bus part 12 may also be embedded in the cover body 111 , as shown in FIG. 3 .
  • the control part may be accommodated in a accommodating part integrated with the cover body 111 .
  • maintenance can be carried out without opening the case 11, which can reduce the maintenance cost and ensure that the airtightness of the case 11 is not damaged. Affected, thereby improving the safety performance of the battery and the user experience.
  • the electrical connection portion 151 may include, but is not limited to, at least one of the following: a circuit board (eg, a printed circuit board or a flexible circuit board), a cable, a wire, a conductive sheet or a conductive row, and the like. Wherein, the electrical connection part 151 is used to electrically connect with the plurality of battery cells 20 to collect temperature or voltage signals of the plurality of battery cells 20 .
  • a circuit board eg, a printed circuit board or a flexible circuit board
  • the electrical connection part 151 is used to electrically connect with the plurality of battery cells 20 to collect temperature or voltage signals of the plurality of battery cells 20 .
  • FIG. 6 shows a partial enlarged view of part B in FIG. 4. From FIG. 6, it can be seen that the thermal management component 13 is provided under the battery cell 20, and there are also two cavities under the battery cell 20—collecting cavity 11b and avoidance cavity 134a.
  • the escape cavity 134a provides space for actuation of the pressure relief mechanism 213 of the battery cell.
  • the collection chamber 11b is used to collect the effluent, which may be sealed or unsealed.
  • the collection chamber 11b may contain air, or other gases.
  • the collection chamber 11b may also contain liquid, such as a cooling medium, or a component for accommodating the liquid may be provided to further reduce the temperature of the discharge entering the collection chamber 11b.
  • the gas or liquid in the collection chamber 11b is circulated.
  • the thermal management component 13 and the dual-cavity structure it is first necessary to describe the structure of the battery cell 20 with reference to FIGS. 7 and 8 .
  • the box includes a housing 211 and a cover plate 212 .
  • the housing 211 includes a receiving cavity formed by a plurality of walls and an opening.
  • the cover plate 212 is arranged at the opening to close the receiving cavity.
  • the accommodating cavity also accommodates the electrolyte.
  • the positive pole piece and the negative pole piece in the electrode assembly are generally provided with tabs.
  • the tabs generally include positive tabs and negative tabs. The tabs are electrically connected to electrode terminals 214 located outside the battery cells 20 through connection members.
  • the electrode terminal 214 generally includes a positive electrode terminal 214a and a negative electrode terminal 214b. At least one of the battery cells 20 in the battery 10 of the present application includes a pressure relief mechanism 213 . In some embodiments, a pressure relief mechanism 213 may be provided on a battery cell 20 of the plurality of battery cells 20 that may be more susceptible to thermal runaway due to its location in the battery 10 . Of course, each battery cell 20 in the battery 10 may also be provided with a pressure relief mechanism 213 .
  • the pressure relief mechanism 213 refers to an element or component that is actuated to release the internal pressure and/or internal substances when the internal pressure or temperature of the battery cell 20 reaches a predetermined threshold.
  • the threshold referred to in this application can be a pressure threshold or a temperature threshold, and the design of the threshold varies according to different design requirements, for example, it can be designed according to the internal pressure or internal temperature of the battery cell 20 that is considered to be dangerous or at risk of runaway or determine the threshold.
  • the threshold value may depend on one or more materials of the positive electrode sheet, the negative electrode sheet, the electrolyte and the separator in the battery cell 20 .
  • the pressure relief mechanism 213 is used to actuate when the internal pressure or temperature of the at least one battery cell 20 in which it is located reaches a threshold value to relieve the internal pressure of the battery, so as to avoid more dangerous accidents.
  • the pressure relief mechanism 213 may also be called an explosion-proof valve, a gas valve, a pressure relief valve or a safety valve, etc., and may specifically adopt pressure-sensitive or temperature-sensitive elements or structures, that is, when the battery cells are When the internal pressure or temperature of 20 reaches a predetermined threshold, the pressure relief mechanism 213 performs an action or the weak structure provided in the pressure relief mechanism is destroyed, thereby forming an opening or a channel for releasing the internal pressure.
  • the “actuation” mentioned in this application means that the pressure relief mechanism 213 is actuated or activated to a certain state, so that the internal pressure of the battery cell 20 can be released.
  • the action produced by the pressure relief mechanism 213 may include, but is not limited to, at least a portion of the pressure relief mechanism 213 is ruptured, broken, torn or opened, and the like.
  • the emissions from the battery cells 20 mentioned in this application include but are not limited to: electrolyte, dissolved or split positive and negative electrode pieces, fragments of separators, high-temperature and high-pressure gas generated by the reaction, flames, etc. .
  • the high-temperature and high-pressure discharge is discharged toward the direction of the battery cell 20 where the pressure relief mechanism 213 is provided, and may be discharged more specifically in the direction of the area where the pressure relief mechanism 213 is actuated, and the power and destructive power of such discharge may be very high. large, and may even be enough to break through one or more structures such as cover 111 in that direction.
  • the pressure relief mechanism 213 and the bus part 12 in the battery 10 according to the embodiment of the present application are respectively arranged on different sides of the battery cell 20 . That is to say, generally the bus part 12 is arranged on the top side where the cover plate 212 is located, and the pressure relief mechanism 213 of the battery cell 20 according to the embodiment of the present application may be arranged on any suitable side other than the top side .
  • FIGS. 7 and 8 show that the pressure relief mechanism 213 is disposed on the opposite side of the bus member 12 .
  • the pressure relief mechanism 213 may be arranged on any one or more walls of the housing 211 of the battery cell 20, as will be explained further below.
  • the high-voltage side where the confluence component 12 is arranged is generally arranged on the side adjacent to the cockpit due to the wiring and the like, and the pressure relief mechanism 213 is arranged on a different side.
  • the pressure relief mechanism 213 is actuated, the discharge from the battery cells 20 can be discharged in a direction away from the bus member 12. As shown by the arrow in the escape cavity 134a shown in FIG. 6, the discharge will be generally fan-shaped. The direction of the confluence member 12 is discharged. In this way, the hidden danger that the emissions are discharged toward the cockpit and endanger the safety of the occupants is eliminated, thereby significantly improving the safety factor of the battery 10 in use.
  • the discharge since the discharge contains various conductive liquids or solids, there is a great risk in arranging the confluence component 12 and the pressure relief mechanism 213 on the same side: the discharge may directly conduct the high-voltage positive and negative electrodes cause a short circuit. A series of interlocking reactions brought about by the short circuit may lead to thermal runaway or explosion of all the battery cells 20 in the battery 10 .
  • the above-mentioned problems can be avoided by arranging the confluence component 12 and the pressure relief mechanism 213 on different sides so that the exhaust is discharged in a direction away from the confluence component 12 , thereby further improving the safety performance of the battery 10 .
  • FIGS. 9 to 11 illustrate views from different angles and cross-sectional views of the thermal management component 13 of some embodiments, and the thermal management component 13 will be described below with reference to FIGS. 9 to 11 .
  • the thermal management member 13 in this application refers to a member capable of managing and adjusting the temperature of the battery cells 20 .
  • the thermal management part 13 can accommodate the fluid to manage and adjust the temperature of the battery cells 20 .
  • the fluid here can be liquid or gas.
  • the management and regulation of temperature may include heating or cooling the plurality of battery cells 20 .
  • the thermal management component 13 is used for containing the cooling fluid to reduce the temperature of the plurality of battery cells 20.
  • the thermal management component 13 may also be referred to as a cooling component, Cooling system or cooling plate, etc., the fluid contained in it can also be called cooling medium or cooling fluid, more specifically, it can be called cooling liquid or cooling gas, wherein the cooling medium can be designed to be circulated to achieve better effect of temperature regulation.
  • the cooling medium water, a mixed liquid of water and ethylene glycol, or air, and the like can be used.
  • the thermal management components 13 are generally attached to the battery cells 20 by means such as thermally conductive silicone.
  • the thermal management member 13 may also be used for heating to raise the temperature of the plurality of battery cells 20 . For example, heating the battery 10 can improve battery performance before starting the electric vehicle in some regions with colder winter temperatures.
  • the thermal management component 13 may include a pair of thermally conductive plates and a flow channel 133 formed between the pair of thermally conductive plates.
  • the pair of thermally conductive plates will be referred to as a first thermally conductive plate 131 attached to the plurality of battery cells 20 and a second thermally conductive plate 131 disposed on a side of the first thermally conductive plate 131 away from the battery cells 20 Thermally conductive plate 132 .
  • the flow channel 133 serves to contain and allow fluid to flow therein.
  • the thermal management component 13 including the first thermal conductive plate 131 , the second thermal conductive plate 132 and the flow channel 133 may be integrally formed by a suitable process such as blow molding, or the first thermal conductive plate 131 and the second thermal conductive plate 131 may be integrally formed. 132 are assembled together by welding (eg, brazing). In some alternative embodiments, the first thermally conductive plate 131 , the second thermally conductive plate 132 and the flow channel 133 may also be formed separately and assembled together to form the thermal management component 13 .
  • the thermal management component 13 may form part of the case 11 for housing a plurality of battery cells.
  • the thermal management member 13 may be a bottom portion (not shown in the figure) of the casing 112 of the casing 11 .
  • the tank shell 112 also includes side portions 112b.
  • the side portion 112b is formed as a frame structure and can be assembled with the thermal management component 13 to form the enclosure 112 . In this way, the structure of the battery 10 can be made more compact, the effective utilization rate of space can be improved, and the energy density can be improved.
  • the thermal management component 13 and the side portion 112b may be hermetically assembled together by a sealing member such as a sealing ring, a fastener or the like.
  • a sealing member such as a sealing ring, a fastener or the like.
  • the fasteners can use FDS flow drill screws.
  • this sealing assembling manner is only illustrative, and is not intended to limit the protection scope of the content of the present application. Any other suitable assembly is also possible.
  • the thermal management components 13 may be assembled together by suitable means such as bonding.
  • thermal management component 13 may also be integrally formed with side portion 112b. That is, the box shell 112 of the box body 11 may be integrally formed. This molding method can make the strength of the tank shell 112 part higher, and it is not easy to cause leakage.
  • the side portion 112b of the case 112 may also be integrally formed with the cover body 111 . That is, in this case, the cover body 111 constitutes a structure having a lower opening which can be closed by the thermal management member 13.
  • the relationship between the thermal management member 13 and the case 11 may be various.
  • the thermal management component 13 may not be a part of the casing 112 of the casing 11 , but a component assembled on the side of the casing 112 facing the cover 111 . This way is more conducive to keeping the box body 11 airtight.
  • the thermal management component 13 can also be integrated into the inner side of the casing 112 in a suitable manner.
  • an avoidance structure 134 needs to be provided outside the battery cell 20 corresponding to the position of the pressure relief mechanism 213 , so that the pressure relief mechanism 213 can be smoothly actuated so as to play its due role. effect.
  • the avoidance structure 134 may be disposed on the thermal management component 13 , thereby enabling the avoidance structure 134 and the pressure relief mechanism 213 to be formed in the event that the thermal management component 13 is attached to the plurality of battery cells 20 .
  • cavity 134a that is to say, the avoidance cavity 134a mentioned in this application refers to a closed cavity formed by the avoidance structure 134 and the pressure relief mechanism 213 together.
  • the inlet side surface of the escape cavity 134a may be opened by the actuation of the pressure relief mechanism 213, and the outlet side surface opposite to the inlet side surface may be partially opened by the high temperature and high pressure discharge It is broken and opened, thereby forming a discharge channel for the discharge.
  • the avoidance cavity 134a may be a non-sealed cavity formed by, for example, the avoidance structure 134 and the pressure relief mechanism 213 together, and the outlet side surface of the non-sealed cavity may originally have a discharge flow out channel.
  • the first thermally conductive plate 131 and the second thermally conductive plate 132 may be respectively formed with semi-groove structures corresponding to the flow channels 133 , and the first thermally conductive plate 131 and the second thermally conductive plate 132 The half-groove structures are aligned with each other.
  • the semi-groove structures of the first heat conducting plate 131 and the second heat conducting plate 132 are combined into the flow channel 133 , and finally the thermal management part 13 is formed.
  • the specific structure of the thermal management component 13 described above is only illustrative, and is not intended to limit the protection scope of the present application. Any other suitable structure or arrangement is also possible.
  • at least one of the first thermally conductive plate 131, the second thermally conductive plate 132, and the flow channel 133 may be omitted.
  • the second thermally conductive plate 132 may be omitted. That is, in some embodiments, the thermal management component 13 may only include the first heat conducting plate 131 and the flow channel 133 arranged on one side or embedded therein.
  • a dual-chamber structure can be formed through structural adjustment.
  • the double cavity refers to the avoidance cavity 134a and the collection cavity 11b between the pressure relief mechanism 213 and the avoidance structure 134 of the battery cell 20 mentioned above.
  • the dual-chamber structure can effectively ensure that when the pressure relief mechanism 213 is actuated, the discharge from the battery cells 20 can be discharged in a controlled and orderly manner in time.
  • the escape cavity 134a can also be broken to allow fluid in the thermal management component 13 to flow out, cooling and extinguishing emissions from the battery cells 20, so that the emissions from the battery cells 20 can be quickly reduced The temperature of the exhaust, thereby improving the safety performance of the battery 10 .
  • the escape structure 134 formed on the thermal management component 13 may include an escape bottom wall 134b and an escape side wall 134c surrounding the escape cavity 134a.
  • the avoidance bottom wall 134b and the avoidance side wall 134c in this application are relative to the avoidance cavity 134a.
  • the avoidance bottom wall 134b refers to the wall of the avoidance cavity 134a opposite to the pressure relief mechanism 213, and the avoidance side wall 134c is a wall adjacent to the avoidance bottom wall 134b and surrounds the avoidance cavity 134a at a predetermined angle.
  • the avoidance bottom wall 134b may be a part of the second thermally conductive plate 132
  • the avoidance side wall 134c may be a part of the first thermally conductive plate 131 .
  • the avoidance structure 134 may be formed by recessing a portion of the first thermally conductive plate 131 toward the second thermally conductive plate 132 to form an opening, and fixing the edge of the opening to the second thermally conductive plate 132 by a suitable fixing method formed together.
  • the pressure relief mechanism 213 When the pressure relief mechanism 213 is actuated, the exhaust from the battery cells 20 will first enter the escape cavity 134a. As indicated by the arrows in the escape cavity 134a of FIG. 6, the discharge will be discharged outward in a generally fan-shaped direction.
  • the thermal management components 13 in the embodiments according to the present application can be destroyed when the pressure relief mechanism 213 is actuated to allow the exhaust from the battery cells 20 to pass through the thermal management components 13 .
  • the advantage of this arrangement is that high-temperature and high-pressure emissions from the battery cells 20 can smoothly pass through the thermal management component 13 , thereby avoiding secondary accidents caused by failure to discharge the emissions in time, thereby improving the safety performance of the battery 10 .
  • a through hole or a relief mechanism may be provided at a position where the thermal management component 13 is opposite to the pressure relief mechanism 213 .
  • a relief mechanism may be provided on the avoidance bottom wall 134b, that is, the second heat conducting plate 132.
  • the relief mechanism in this application refers to a mechanism that can be actuated when the pressure relief mechanism 213 is actuated to allow at least the exhaust from the battery cells 20 to drain through the thermal management component 13 .
  • the relief mechanism may also adopt the same structure as the pressure relief mechanism 213 on the battery cell 200 .
  • the relief mechanism may be a mechanism disposed on the second heat conducting plate 132 having the same configuration as the relief mechanism 213 .
  • the relief mechanism may also adopt a different structure from the pressure relief mechanism 213, but only a weak structure disposed at the avoidance bottom wall 134b.
  • the weak structure may include, but is not limited to: An integral reduced thickness, a score (eg, a cross-shaped score 134d as shown in FIG. 9), or a consumable made of a fragile material such as plastic installed at the escape bottom wall 134b, or the like.
  • the relief mechanism may be a thermal or pressure-sensitive relief mechanism that is actuated when the temperature or pressure it senses exceeds a threshold value.
  • the avoidance structure 134 may also be a through hole penetrating the thermal management component 13 . That is to say, the avoidance structure 134 may only have the avoidance sidewall 134c, and the avoidance sidewall 134c is the hole wall of the through hole. In this case, the exhaust from the battery cells 20 can be discharged directly through the avoidance structure 134 when the pressure relief mechanism 213 is actuated. In this way, the formation of secondary high voltage can be more effectively avoided, thereby improving the safety performance of the battery 10 .
  • thermal management component 13 may also be configured to be broken upon actuation of pressure relief mechanism 213 to allow fluid outflow.
  • the fluid outflow can quickly cool down the high temperature and high pressure discharge from the battery cells 20 and extinguish the fire, thereby avoiding further damage to other battery cells 20 and the battery 10 and causing more serious accidents.
  • the escape sidewalls 134c may also be formed to be easily damaged by emissions from the battery cells 20 . Since the internal pressure of the battery cells 20 is relatively large, the discharge from the battery cells 20 may be discharged outward in a substantially conical shape. In this case, if the contact area between the escape side wall 134c and the exhaust can be increased, the possibility of the escape side wall 134c being damaged can be increased.
  • the avoidance sidewall 134c is configured to form a predetermined angle with respect to the direction of the pressure relief mechanism 213 toward the thermal management component 13 , and the included angle is greater than or equal to 15° and less than or equal to 85°.
  • the predetermined included angle shown in FIG. 6 is around 45°.
  • the avoidance side wall 134c can be more easily damaged when the pressure relief mechanism 213 is actuated, so as to further allow the fluid to flow out to contact with the exhaust, and achieve the effect of cooling the exhaust in time.
  • the predetermined included angle can also enable the avoidance side wall 134c to be formed more easily.
  • the predetermined included angle can provide a certain draft angle, so as to facilitate the avoidance of the sidewall 134c and even the entire first heat conducting plate 131 . manufacture.
  • this arrangement of the avoidance sidewalls 134c can be applied to the above-mentioned case of having the avoidance cavity 134a and the case of the avoidance structure 134 being a through hole.
  • the diameter of the through hole may gradually decrease in the direction of the pressure relief mechanism 213 toward the thermal management component 13 , and the hole wall of the through hole faces the thermal management component relative to the pressure relief mechanism 213 .
  • the included angle formed by the direction of the component 13 is greater than or equal to 15° and less than or equal to 85°.
  • a relief mechanism or a weak structure may be provided on the thermal management member 13 at a position opposite to the pressure relief mechanism 213 to enable the exhaust from the battery cells 20 to pass through the thermal management member 13 and/or break through the thermal management member 13 to escape. Make the fluid flow out.
  • the escape cavity 134a may not be used.
  • the pressure relief mechanisms 213 can be closely arranged with the thermal management component 13 .
  • Such a pressure relief mechanism 213 may include, but is not limited to, a temperature-sensitive pressure relief mechanism 213 , for example.
  • the temperature-sensitive pressure relief mechanism 213 is a mechanism that is actuated to release the internal pressure of the battery cell 20 when the temperature of the battery cell 20 reaches a threshold value.
  • the pressure-sensitive pressure relief mechanism 213 is the pressure relief mechanism 213 mentioned above.
  • the pressure-sensitive pressure relief mechanism is a mechanism that is actuated to release the internal pressure of the battery cell 20 when the internal pressure of the battery cell 20 reaches a threshold value.
  • the collection cavity 11b will be described below with reference to FIG. 6 again.
  • the collection chamber 11b in the present application refers to a cavity that collects emissions from the battery cells 20 and the thermal management component 13 when the pressure relief mechanism 213 is actuated.
  • the escape cavity 134a may be isolated from the collection cavity 11b by the thermal management member 13 .
  • the so-called “isolation” here refers to separation, which may not be hermetically sealed. This situation is more favorable for the exhaust to break through the avoidance sidewall 134c so that the fluid flows out, so as to further cool down the exhaust and extinguish the fire, thereby improving the safety performance of the battery 10 .
  • the avoidance cavity 134a and the collection cavity 11b may communicate with each other. This method is more conducive to the discharge of emissions, thereby avoiding the potential safety hazards caused by the secondary high pressure.
  • the collection cavity 11b may also be an open cavity outside the thermal management component 13 .
  • the thermal management component 13 is used as the bottom portion of the case 112 of the case 11, the emissions from the battery cells 20 may be discharged directly to the outer space of the thermal management component 13 after passing through the thermal management component 13, That is, the outside of the box 11, thereby avoiding the generation of secondary high pressure.
  • the battery 10 may also include a guard member 115 .
  • the protective member 115 in the present application refers to a component that is arranged on a side of the thermal management component 13 away from the battery cells 20 to provide protection to the thermal management component 13 and the battery cells 20 .
  • the collection chamber 11b may be arranged between the shield member 115 and the thermal management component 13 .
  • the protective member 115 may be a part installed on the bottom of the box body 11 to play a protective role. This approach helps facilitate more diverse designs of application sites or spaces for the battery 10, such as for electric vehicles. For example, for some electric vehicles, in order to reduce the manufacturing cost and thus the price of the final product, the protective member 115 may not be provided without affecting the use. Users can choose whether to install protective components according to their needs.
  • the collection cavity 11b constitutes the above-mentioned open cavity, and the exhaust from the battery cells 20 can be directly discharged to the outside of the battery 10 .
  • the guard member 115 may be the bottom portion of the case 112 of the case 11 .
  • the thermal management part 13 may be fitted to the shield member 115 as the bottom part of the case 112, and the thermal management member 13 may be fitted to the shield member 115 with a gap therebetween to form the collection chamber 11b.
  • the collection chamber 11b may serve as a buffer chamber for the discharge from the battery cells 20 .
  • the shielding member 115 may be partially destroyed to release the pressure in the collection chamber 11b in time.
  • a sealing member eg, sealing ring, sealant, etc.
  • the sealing member may also be When at least one of the temperature, volume or pressure of the discharge in the collection chamber 11b reaches a predetermined level or a threshold, it is at least partially destroyed, and the pressure in the collection chamber 11b is released in time to avoid secondary damage.
  • guard member 115 may also be integrally formed with thermal management component 13 .
  • a guard member 115 is also integrally formed with a space therebetween to form the collection chamber 11b.
  • the protective member 15 may be provided with a weak structure, so that when the temperature, volume or pressure of the discharge in the collection chamber 11b reaches a predetermined level or threshold, the protective member 115 can be partially destroyed to release the pressure of the collection chamber 11b in time. In this way, the number of parts can be further reduced, and thus assembly time and assembly costs can be reduced.
  • an apparatus 60 for preparing a battery including: a battery cell preparation module 61 for preparing a plurality of battery cells, and the plurality of battery cells are constructed to be electrically connected to each other through the bus components; the cover preparation module 62 for preparing the cover, including a receiving space configured to mount the bus components; the insulating portion preparation module 63 for preparing the insulating portion attached to the The cover body is also arranged to cover at least the bus part.
  • the battery and the related device, preparation method, and preparation equipment of the embodiment of the present application make the bus component used for electrically connecting a plurality of battery cells in the battery embedded on the cover body, and this arrangement makes the structure of the battery more compact , which can improve the volume energy density of the battery, and since the confluence components are not sealed in the box, part of the structure of the battery management unit can be arranged outside the battery box, which can further save space, reduce the size of the battery, and facilitate the Repair and replacement of battery management units.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

本申请公开了一种电池及其相关装置、制备方法、制备设备。电池包括多个电池单体、盖体和绝缘部。所述多个电池单体被构造成通过汇流部件相互电连接;盖体包括容纳空间,所述容纳空间被构造成安装所述汇流部件;所述绝缘部附接至所述盖体并且被设置成至少覆盖所述汇流部件。根据本申请,电池中的用于将多个电池单体电连接的汇流部件嵌置在盖体上,这样的设置使得电池的结构更加紧凑,并且由于汇流部件不是密封在箱体内的,因而可以将电池管理单元的部分结构设置在电池的箱体外。

Description

电池及其相关装置、制备方法和制备设备 技术领域
本申请涉及电池领域,具体涉及一种电池及其相关装置、制备方法和制备设备。
背景技术
化学电池、电化电池、电化学电池或电化学池是指通过氧化还原反应,把正极、负极活性物质的化学能,转化为电能的一类装置。与普通氧化还原反应不同的是氧化和还原反应是分开进行的,氧化在负极,还原在正极,而电子得失是通过外部线路进行的,所以形成了电流。这是所有电池的本质特点。经过长期的研究、发展,化学电池迎来了品种繁多,应用广泛的局面。大到一座建筑方能容纳得下的巨大装置,小到以毫米计的类型。现代电子技术的发展,对化学电池提出了很高的要求。每一次化学电池技术的突破,都带来了电子设备革命性的发展。世界上很多电化学科学家,都把研发兴趣集中在做为电动汽车动力的化学电池领域。
锂离子电池作为化学电池的一种,具有体积小、能量密度高、功率密度高、循环使用次数多和存储时间长等优点,在一些电子设备、电动交通工具、电动玩具和电动设备上得到了广泛应用,例如,锂离子电池目前广泛地应用于手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具,等等。
随着锂离子电池技术的不断发展,对锂离子电池的性能提出了更高的要求,希望锂离子电池能够同时考虑多方面的设计因素。
发明内容
现有的电池中,汇流部件通常是设置在盖体和电池单体之间的,这样的设置使得电池整体的体积较大。并且,汇流部件通常都是封闭在箱体内的,因而和汇流部件电连接的电池管理单元也需要设置在电池的箱体(盖体例如为箱体的一部分)内,这样使得电池的箱体体积较大,并且电池管理单元被密封在箱体内也不方便后续维修和更换。
本申请提出一种电池及其相关装置、制备方法、制备设备,以提高电池的性能。
根据本申请的第一方面,提供了一种电池,包括:多个电池单体、盖体和绝缘部。 所述多个电池单体被构造成通过汇流部件相互电连接;盖体包括容纳空间,所述容纳空间被构造成安装所述汇流部件;所述绝缘部附接至所述盖体并且被设置成至少覆盖所述汇流部件。
根据本方案,电池中的用于将多个电池单体电连接的汇流部件嵌置在盖体上,这样的设置使得电池的结构更加紧凑,能够提高电池的体积能量密度,并且由于汇流部件不是密封在箱体内的,因而可以将电池管理单元的部分结构设置在电池的箱体外。
在一种实施方式中,所述容纳空间为形成在所述盖体上的通孔,所述汇流部件穿过所述通孔并固定在所述盖体上。
根据本方案,容纳空间的结构较为简单,易于实现、成本较低。
在一种实施方式中,所述绝缘部被施加到或者装配到所述盖体。
根据本方案,允许生产时在汇流部件安装在容纳空间处之后再将绝缘部装配或施加到盖体,该操作较为简单,易于实现。
在一种实施方式中,所述容纳空间为形成在所述盖体上的盲孔,所述汇流部件能够经由所述容纳空间的开口进入所述容纳空间,并且所述汇流部件的至少部分容纳在所述容纳空间中,所述绝缘部与所述盖体一体成型。
根据本方案,汇流部件能够完全嵌置在由盖体和绝缘部形成的一体结构内,这样的设置能够进一步节省空间,减小电池的整体尺寸。
在一种实施方式中,所述电池还包括电池管理单元,所述电池管理单元包括控制模块和电连接部件,所述控制模块和所述汇流部件通过所述电连接部件连接。
在一种实施方式中,所述电池还包括箱壳,所述箱壳和所述盖体共同包围形成用于容纳所述多个电池单体的箱体,所述控制模块设置在所述箱体外。
在一种实施方式中,所述控制模块和所述电连接部件中的至少一个嵌置在所述盖体内。
根据上述几种方案,电池管理单元的部件能够设置在箱体外或嵌置在盖体内,相比于电池管理单元完全设置在箱体内的结构,上述几种方案能够进一步节省空间、减小电池的尺寸,并且便于电池管理单元的维修和更换。
在一种实施方式中,所述电连接部件包括电路板,用于与所述多个电池单体电连接以采集所述多个电池单体的温度或电压信号。
根据本方案,这样的设置使得能够更准确地获取电池单体的温度或电压信号,从而能够更准确地对电池的整体运行状态进行监控。
在一种实施方式中,所述多个电池单体中的至少一个电池单体包括泄压机构,所述泄压机构用于在所述至少一个电池单体的内部压力达到阈值时致动以泄放所述内部压力,其中,所述泄压机构与所述汇流部件分别被布置在所述至少一个电池单体的不同侧,以使得在所述泄压机构致动时来自所述至少一个电池单体的排放物沿远离所述汇流部件的方向排放。
根据本方案,通过泄压机构和汇流部件的这种布置方式,使得电池的安全性能得到显著提高。首先,在例如电池应用于电动汽车且内部发生热失控的情况下,电池单体的排放物不会朝向驾驶舱内的乘员排放,从而提高了使用该电池的电动汽车的安全性。其次,由于泄压机构与汇流部件分别布置在电池单体的不同侧,使得电池单体的排放物也因此不会引起汇流部件的短路,由此显著降低了因汇流部件短路而带来的风险,提高了电池的安全性能。
在一种实施方式中,电池还包括:热管理部件,所述热管理部件用于容纳流体以给所述多个电池单体调节温度,且所述热管理部件被构造成能够在所述泄压机构致动时被破坏,以使来自所述电池单体的排放物能够穿过所述热管理部件。
根据本方案,通过设置热管理部件,能够更加灵活主动地对电池单体的温度进行控制。此外,在电池内部发生热失控的情况下,电池单体的排放物也能够得到有效排放,由此降低因排放物排放不畅而带来的风险。
在一种实施方式中,所述热管理部件被构造成在所述泄压机构致动时被破坏,以使得所述流体流出。
根据本方案,这种布置方式使得来自电池单体的高温高压排放物能够得到有效降温,从而提高电池的安全性能。
在一种实施方式中,所述热管理部件还包括避让结构,所述避让结构被构造为提供允许所述泄压机构致动的空间。并且所述热管理部件附接至所述多个电池单体以在所述避让结构和所述泄压机构之间形成避让腔。
根据本方案,设置避让结构能够保证泄压机构能够有效致动。此外,避让腔能够提供用于电池单体的排放物排放的缓冲空间,从而降低电池单体的排放物对外部的冲击压力,进一步提高电池的安全性能。
在一种实施方式中,所述热管理部件还包括避让结构,所述避让结构被构造为提供允许所述泄压机构致动的空间,并且所述避让结构是贯穿所述热管理部件的通孔。
根据本方案,这种布置以简单的方式和较低的成本实现了使排放物穿过热管理部 件的目标。
在一种实施方式中,电池还包括收集腔,所述收集腔用于在所述泄压机构致动时收集来自所述电池单体和所述热管理部件的排放物,其中所述避让腔和所述收集腔通过所述热管理部件隔离。
根据本方案,收集腔能够提供排放物排放的进一步缓冲,以进一步降低排放物的冲击压力。此外,收集腔还能够降低排放物对外界带来二次伤害的风险。
在一种实施方式中,电池还包括收集腔,所述收集腔用于在所述泄压机构致动时收集来自所述电池单体和所述热管理部件的排放物,其中所述避让结构和所述收集腔相连通。
根据本方案,使得排放物能够顺利地进入收集腔,以降低排放物对外界带来的风险以及减少对外界环境的污染。此外,收集腔能够为排放物的排放提供进一步缓冲,以进一步降低排放物的冲击压力。
在一种实施方式中,电池还包括防护构件,所述防护构件布置在所述热管理部件的远离所述电池单体的一侧,并且所述收集腔布置在所述热管理部件和所述防护构件之间。
根据本方案,防护构件能够对电池提供附加的防护,以避免电池被异物破坏和防止外界灰尘或杂物进入电池内部。此外,防护构件和热管理部件还形成收集腔以在泄压机构致动时为排放物排放提供进一步缓冲,以降低排放物的冲击压力。
在一种实施方式中,电池还包括密封构件,所述密封构件布置在所述热管理部件和所述防护构件之间以密封所述收集腔。
根据本方案,密封构件的设置能够有效地防止收集腔中的排放物的意外排出,从而提高电池的安全性能。
根据本申请的第二方面,提供了一种装置,包括如上述方案中任意一项所述的电池,所述电池用于提供电能。
根据本申请的第三方面,提供了一种制备电池的方法,包括:
提供多个电池单体,所述多个电池单体被构造成通过汇流部件相互电连接;
提供盖体,所述盖体包括容纳空间,所述容纳空间被构造成安装所述汇流部件;
提供绝缘部,所述绝缘部附接至所述盖体并且被设置成至少覆盖所述汇流部件。
根据本申请的第四方面,提供了一种制备电池的设备,包括:
电池单体制备模块,用于制备多个电池单体,所述多个电池单体被构造成通过汇 流部件相互电连接;
盖体制备模块,用于制备盖体,所述盖体包括容纳空间,所述容纳空间被构造成安装所述汇流部件;
绝缘部制备模块,用于制备绝缘部,所述绝缘部附接至所述盖体并且被设置成至少覆盖所述汇流部件。
本申请实施例的电池及其相关装置、制备方法、制备设备,使得电池中的用于将多个电池单体电连接的汇流部件嵌置在盖体上,这样的设置使得电池的结构更加紧凑,能够提高电池的体积能量密度,并且由于汇流部件不是密封在箱体内的,因而可以将电池管理单元的部分结构设置在电池的箱体外,能够进一步节省空间、减小电池的尺寸,并且便于电池管理单元的维修和更换。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了采用本申请的电池的车辆的一些实施例的结构示意图;
图2示出了根据本申请的一些实施例的电池的分解视图;
图3示出了根据本申请的一些实施例的电池的分解视图;
图4示出了根据本申请的一些实施例的电池的侧视剖视图;
图5示出了图4中所示的电池的A部分的放大视图;
图6示出了图4中所示的电池的B部分的放大示图;
图7示出了根据本申请的一些实施例的电池单体的立体示意图;
图8示出了根据本申请的一些实施例的电池单体的立体示意图;
图9示出了根据本申请的一些实施例的热管理部件的俯视图;
图10示出了图9中所示本申请的热管理部件的仰视图;
图11示出了图9中所示本申请的热管理部件的A-A剖视图;
图12示出了本申请制备电池的方法的一些实施例的流程示意图;
图13示出了本申请制备电池的设备的一些实施例的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合显示出根据本申请的多个实施例的附图,对本申请实施例中的技术方案进行清楚、完整地描述,应当可以理解的是,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中记载的实施例,本领域普通技术人员在不用花费创造性劳动的前提下所获得的所有其他实施例,都将属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”、“包含”、“有”、“具有”、“含有”、“含”等为开放式的用词。因此,“包括”、“包含”、“有”例如一个或多个步骤或元件的一种方法或装置,其具有一个或多个步骤或元件,但不限于仅具有这一个或多个元件。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要理解的是,术语“中心”、“横向”、“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
如上所述,应当强调,当在本说明书中使用术语“包括/包含”时,用于明确表明表示所述特征、整数、步骤或组件的存在,但不排除存在或添加一个或更多个其他特征、整数、步骤、部件或成组的特征、整数、步骤、部件。如本申请所用,单数形式“一个”、“一”和“该”也包括复数形式,除非上下文另有明确指示
本说明书中的用词“一”、“一个”可以表示一个,但也可与“至少一个”或“一个或多个”的含义一致。术语“约”一般表示提及的数值加上或减去10%,或更具体地是加上或减去5%。在权利要求书中使用的术语“或”,除非明确表示其仅指可替代的方案,否则其表示“和/或”的意思。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域中所提到的电池按是否可充电可以分为一次性电池和可充电电池。一次性电池(Primary Battery)也称为“用完即弃”电池及原电池,因为它们的电量耗尽后,无法再充电使用,只能丢弃。可充电电池又称为二次电池(Secondary Battery)或二级电池、蓄电池。可充电电池的制作材料和工艺与一次电池不同,其优点是在充电后可多次循环使用,可充电电池的输出电流负荷力要比大部分一次性电池高。目前常见的可充电电池的类型有:铅酸电池、镍氢电池和锂离子电池。锂离子电池具有重量轻、容量大(容量是同重量的镍氢电池的1.5倍~2倍)、无记忆效应等优点,且具有很低的自放电率,因而即使价格相对较高,仍然得到了普遍应用。锂离子电池目前也广泛应用于纯电动车及混合动力车,用于这种用途的锂离子电池的容量相对略低,但有较大的输出、充电电流,也有较长的使用寿命,但成本较高。
本申请实施例中所描述的电池是指可充电电池。下文中将主要以锂离子电池为例来描述本申请公开的实施例。应当理解的是,本申请公开的实施例对于其他任意适当类型的可充电电池都是适用的。本申请中公开的实施例所提到的电池可以直接或者间接应用于适当的装置中来为该装置供电。
本申请公开的实施例中所提到的电池是指包括一个或多个电池单体以提供预定的电压和容量的单一的物理模块。电池单体是电池中的基本单元,一般按封装的方式可以分为:柱形电池单体、方形电池单体和软包电池单体。下文中将主要围绕方形电池单体来展开。应当理解的是,下文中所描述的实施例在某些方面对于柱形电池单体或软包电池单体而言也是适用的。
电池单体包括正极极片、负极极片、电解液和隔离膜。锂离子电池单体主要依靠锂离子在正极极片和负极极片之间的移动来工作。例如,锂离子电池单体使用一个嵌入的锂化合物作为一个电极材料。目前用作锂离子电池的正极材料主要常见的有:锂钴氧化物(LiCoO 2)、锰酸锂(LiMn 2O 4)、镍酸锂(LiNiO 2)及磷酸锂铁(LiFePO 4)。隔离膜设置在正极极片和负极极片之间以形成具有三层材料的薄膜结构。该薄膜结构一般通过卷绕或者叠置的方式制成具有所需形状的电极组件。例如,柱形电池单体中三层材料的薄膜结构被卷绕成柱形形状的电极组件,而在方形电池单体中薄膜结构被卷绕或者叠置成具有大致长方形形状的电极组件。
在通常的电池单体结构中,电池单体包括盒、电极组件和电解液。电极组件被容纳在电池单体的盒中,电极组件包括正极极片、负极极片和隔离膜。隔离膜的材质可以为PP或PE等。电极组件可以是卷绕式的结构,也可以是叠片式的结构。盒包括壳体和盖板。壳体包括由多个壁形成的容纳腔以及开口。盖板布置在开口处以封闭容纳腔。除了电极组件之外,容纳腔中还容纳有电解液。电极组件中的正极极片和负极极片包括极耳。具体地,正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂覆正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂覆正极活性物质层的正极集流体作为正极极耳,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等;负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。极耳通过连接构件与位于电池单体外部的正电极端子和负电极端子电连接。对方形电池单体而言,电极端子一般设置在盖板部分。多个电池单体经由电极端子而被串联和/或并联在一起以应用于各种应用场合。
在一些诸如电动车辆等的大功率应用场合,电池的应用包括三个层次:电池单体、电池模块和电池包。电池模块是为了从外部冲击、热、振动等中保护电池单体,将一定数目的电池单体电连接在一起并放入一个框架中而形成的。电池包则是装入电动车辆的电池系统的最终状态。电池包一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。箱体一般由盖体和箱壳组成。 目前的大部分电池包是在一个或多个电池模块上装配电池管理系统(BMS)、热管理部件等各种控制和保护系统而制成的。随着电池领域技术的发展,电池模块这个层次可以被省略,也即,可以直接由电池单体形成电池包。这一改进使得电池系统在重量能量密度、体积能量密度得到提升的同时零部件数量显著下降。本申请中所提到的电池包括电池模块或电池包。
通常,电池除了电池单体以外,还包括盖体、绝缘部以及电池管理单元。用于将电池单体电连接的汇流部件通常是设置在盖体和电池单体之间的,这样的设置使得电池整体的体积较大。并且,汇流部件通常都是封闭在箱体内的,因而和汇流部件电连接的电池管理单元也需要设置在电池的箱体(盖体例如为箱体的一部分)内,这样使得电池的箱体体积较大,并且电池管理单元被密封在箱体内也不方便后续维修和更换。
要改变汇流部件安装在盖体和电池单体之间这种设计理念对研究人员以及本领域技术人员而言是需要解决各种技术问题并克服技术偏见,并不是一蹴而就的。
为了解决该问题,很多研究人员容易想到的是提高箱体的可拆卸程度,以方便后续打开箱体来维修电池管理单元,来解决该技术问题。也就是说,由于上述各种问题或者其他各种问题的存在而造成的技术偏见,本领域技术人员并不会容易想到将汇流部件嵌置在盖体里来解决这个问题。这也是因为这样的更改设计风险太大并且困难太多,这种风险和困难阻碍研究人员更改汇流部件的安装方式。
为了解决或至少部分地解决现有技术中电池存在的上述问题以及其他潜在问题,本申请的发明人反其道而行之并对此进行了大量的研究和实验后,提出了一种新型的电池。本申请实施例描述的电池所适用的装置包括但不限于:手机、便携式设备、笔记本电脑、电瓶车、电动车辆、轮船、航天器、电动玩具和电动工具等等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等等,电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动车辆玩具、电动轮船玩具和电动飞机玩具等等,电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨。
例如,如图1所示,该图为根据本申请一实施例的一种车辆1的简易示意图,车辆1可以为燃油车辆、燃气车辆或新能源车辆,新能源车辆可以是纯电动车辆、混合动力车辆或增程式车辆等。车辆1的内部可以设置电池10,例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源。并且车辆1还可以包括控制器30和马达40。控制器30用来控 制电池10为马达40的供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
图2和图3分别示出了根据本申请实施例的电池的分解视图。如图2和图3所示,电池10包括多个电池单体20以及用于电连接多个电池单体20的汇流部件12。为了使电池单体20免受外界液体或者异物的侵袭或者腐蚀,电池10包括箱体11,其用来封装多个电池单体以及其他必要的部件,如图2和图3所示。在一些实施例中,箱体11可以包括盖体111和箱壳112。盖体111和箱壳112密封地组合在一起以共同包围形成用于容纳多个电池单体20的电气腔。
其中,汇流部件12还可以被嵌置在盖体111中,图2至图5示出了汇流部件12嵌入到盖体111中的示意图。如图所示,盖体111可以包括容纳空间111a,容纳空间111a能够容纳汇流部件12。在一些实施例中,容纳空间111a可以是形成在盖体111上的通孔。汇流部件12可以通过适当的方式被固定在通孔中。例如,汇流部件12可以在盖体111模塑成型前装入到模具中,从而在盖体111形成之后,汇流部件12就能被嵌入到盖体111中。
应当理解的是,汇流部件12是布置在盖体111中与电池单体20的电极端子214(包括正电极端子214a和负电极端子214b)对应的位置。在箱体111内的电池单体20摆放到位后,可以直接将盖体111装配至箱壳112,然后通过焊接,诸如激光焊接或超声波焊接等固定方式将汇流部件12与电池单体20的电极端子214电连接。之后再通过附接至盖体111的绝缘部113以至少覆盖汇流部件12,由此来形成封装好的箱体11。
在一些实施例中,绝缘部113可以是片状或薄板状结构,绝缘部的113的材质可以是PP、PE或PET等;在一些其他的实施例中,绝缘部113也可以是绝缘胶或绝缘漆等。
在一些实施例中,绝缘部113可以被施加到或者被装配到盖体111上。例如,在汇流部件12与电池单体20的电极端子214电连接之后,可以通过在盖体111的具有汇流部件12的部位涂覆绝缘层来形成绝缘部113。在一些替代的实施例中,绝缘部113也可以是被装配到盖体111上的以至少覆盖绝缘部113的部件。绝缘部113和盖体111可以密封地装配,以保证箱体11的密封性。在一些实施例中,涂覆的绝缘层或者装配的绝缘部113也可以覆盖整个盖体111的外表面。
在一些实施例中,绝缘部113也可以是与盖体111一体成型的。例如,绝缘部113可以形成为盖体111上的突出于外表面的部分,该部分内部形成容纳空间111a来容纳汇流部件12。在这些实施例中,汇流部件12也可以通过诸如模塑等方式被嵌入到盖体111中或者在盖体111形成之后被后期装配到盖体111中。在后面提及的这种情况下,汇流部件12可以通过电阻焊等方式而与电池单体20的电极端子214电连接。
根据上文实施例中所描述的将汇流部件12嵌入到盖体111中的布置,能够在不影响电池10安全性、甚至是提高电池安全性的同时,大幅降低电池10的体积,从而提高电池10的体积能量密度。此外,这种方式还能够降低电池10的装配难度,从而降低装配成本。此外,将汇流部件12嵌入到盖体111中也能够实现将上文中提到的电池管理单元至少部分地布置在电气腔11a的外部。
具体而言,对于传统的电池而言,由于在盖体111和箱壳112密封之前,需要将电气腔11a内的部件都要连接妥当。其中的连接包括汇流部件12和电极端子214的连接以及电池管理单元与汇流部件12的连接。也就是说,传统的电池中,电池管理单元是被封装在密封的箱体11之内的。然而,电池管理单元相对于其他部件而言,属于易损部件。电池管理单元在发生损坏或故障后就需要打开密封的箱体11进行更换,操作费时费力的同时还会影响到箱体11的密封性。
与传统的电池不同,在汇流部件12嵌入到盖体111中的情况下,电池管理单元可以至少部分地布置在电气腔11a的外部。例如,电池管理单元的控制部分(未示出)与汇流部件12之间的电连接部分151中的至少一个也可以被嵌入到盖体111中,如图3所示。控制部分可以被容纳在与盖体111一体的容纳部分中。在这种情况下,在电池管理单元的控制部分或者电连接部分151出现故障后,不需要打开箱体11就能够进行维修,这样在降低维护成本的同时还能保证箱体11的密封性不受影响,从而提高了电池的安全性能以及用户体验。在一些实施例中,电连接部分151例如可以包括但不限于以下中的至少一种:电路板(如印刷电路板或柔性电路板)、电缆、电线、导电片或者导电排等。其中,电连接部分151用于与多个电池单体20电连接以采集多个电池单体20的温度或电压信号。
图6示出了图4中的B部分的局部放大图,从图6中可以看到在电池单体20下方设置有热管理部件13,并且电池单体20下方还具有两个腔——收集腔11b和避让腔134a。避让腔134a为电池单体的泄压机构213的致动提供空间。收集腔11b用于收集排放物,其可以是密封或非密封的。在一些实施例中,收集腔11b内可以包含空气, 或者其他气体。可选地,收集腔11b内也可以包含液体,比如冷却介质,或者,设置容纳该液体的部件,以对进入收集腔11b的排放物进一步降温。进一步可选地,收集腔11b内的气体或者液体是循环流动的。为了理解热管理部件13以及双腔结构的作用和结构,首先需要参考图7和图8对电池单体20的结构进行说明。
图7和图8分别示出了电池单体20从不同角度观察时的立体视图。如图所示,在根据本申请的电池单体20中,电极组件被容纳在电池单体20的盒中。盒包括壳体211和盖板212。壳体211包括由多个壁形成的容纳腔以及开口。盖板212布置在开口处以封闭容纳腔。除了电极组件之外,容纳腔中还容纳有电解液。电极组件中的正极极片和负极极片一般会设有极耳。极耳一般包括正极极耳和负极极耳。极耳通过连接构件与位于电池单体20外部的电极端子214电连接。电极端子214一般包括正电极端子214a和负电极端子214b。本申请的电池10中的电池单体20中的至少一个电池单体20包括泄压机构213。在一些实施例中,可以是多个电池单体20中的由于其在电池10中所处的位置而可能更容易遭受热失控的电池单体20上设置有泄压机构213。当然,也可以是电池10中的每个电池单体20都设置有泄压机构213。
泄压机构213是指电池单体20的内部压力或温度达到预定阈值时致动以泄放内部压力和/或内部物质的元件或部件。本申请中所称的阈值可以是压力阈值或温度阈值,该阈值设计根据设计需求不同而不同,例如可根据被认为是存在危险或失控风险的电池单体20的内部压力或内部温度值而设计或确定该阈值。此外,该阈值可能取决于电池单体20中的正极极片、负极极片、电解液和隔离膜中一种或几种材料。也就是说,泄压机构213用于在其所在的至少一个电池单体20的内部压力或温度达到阈值时致动以泄放电池内部的压力,从而避免更加危险的事故发生。如上面所提到的,泄压机构213又可以被称为防爆阀、气阀、泄压阀或安全阀等,并可以具体采用压敏或温敏的元件或构造,即,当电池单体20的内部压力或温度达到预定阈值时,泄压机构213执行动作或者泄压机构中设有的薄弱结构被破坏,从而形成可供内部压力泄放的开口或通道。汇流部件12又被称为汇流排或母线等,其是将多个电池单体20以串联和/或并联的方式电连接的部件。多个电池单体20通过汇流部件12串并联后,具有较高的电压,因此具有汇流部件12的这一侧有时被称为高压侧。
本申请中所提到的“致动”是指泄压机构213产生动作或被激活至一定的状态,从而使得电池单体20的内部压力得以被泄放。泄压机构213产生的动作可以包括但不限于:泄压机构213中的至少一部分破裂、破碎、被撕裂或者打开,等等。泄压机构 213在致动时,电池单体20的内部的高温高压物质作为排放物会从致动的部位向外排出。以此方式能够在可控压力或温度的情况下使电池单体20发生泄压,从而避免潜在的更严重的事故发生。本申请中所提到的来自电池单体20的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离膜的碎片、反应产生的高温高压气体、火焰,等等。高温高压的排放物朝向电池单体20的设置泄压机构213的方向排放,并且可更具体地沿朝向泄压机构213致动的区域的方向排放,这种排放物的威力和破坏力可能很大,甚至可能足以冲破在该方向上的诸如盖体111等的一个或多个结构。
不同于传统的电池,根据本申请实施例的电池10中的泄压机构213和汇流部件12分别布置在电池单体20的不同侧。也就是说,一般汇流部件12是布置在盖板212所在的顶侧,而根据本申请的实施例的电池单体20的泄压机构213可以布置在不同于该顶侧的任意适当的一侧。例如,图7和图8示出了泄压机构213是布置在与汇流部件12的相对侧。实际上,泄压机构213可以布置在电池单体20的壳体211的任意一个或多个壁上,这将在下文中进一步阐述。
一方面,例如在电池10应用于电动车辆等场合下,设置汇流部件12的高压侧由于布线等关系一般是布置在邻近驾驶舱的一侧,将泄压机构213布置在与之不同的一侧能够使泄压机构213致动时来自电池单体20的排放物沿远离汇流部件12的方向排放,如图6所示的避让腔134a中的箭头所示,排放物会大致以扇形方向向远离汇流部件12的方向排出。以此方式,消除了排放物朝向驾驶舱排放而危害乘员安全的隐患,从而显著提高了电池10的使用安全系数。
另一方面,由于排放物中包括各种导电的液体或者固体,将汇流部件12和泄压机构213布置在同一侧存在很大的风险在于:排放物可能会将高压的正极和负极直接导通而引起短路。短路所带来的一系列的联锁反应可能会导致电池10中的所有电池单体20都会发生热失控或者爆炸。通过将汇流部件12和泄压机构213设置在不同侧以使排放物朝向远离汇流部件12的方向排放就能避免上述问题的产生,从而进一步提高电池10的安全性能。
图9到图11示出了一些实施例的热管理部件13的不同角度的视图以及剖视图,下面将结合图9到图11对热管理部件13进行描述。
本申请中的热管理部件13是指能够对电池单体20的温度进行管理和调节的部件。热管理部件13能够容纳流体对电池单体20的温度进行管理和调节。这里的流体可以是液体或气体。温度的管理和调节可以包括给多个电池单体20加热或者冷却。例 如,在给电池单体20冷却或降温的情况下,该热管理部件13用于容纳冷却流体以给多个电池单体20降低温度,此时,热管理部件13也可以称为冷却部件、冷却系统或冷却板等,其容纳的流体也可以称为冷却介质或冷却流体,更具体的,可以称为冷却液或冷却气体,其中冷却介质可以被设计成是循环流动的,以达到更好的温度调节的效果。冷却介质可具体采用诸如水、水和乙二醇的混合液、或者空气,等等。为了实现降温的有效性,热管理部件13一般都通过诸如导热硅胶等方式而附接至电池单体20。另外,热管理部件13也可以用于加热以给多个电池单体20升温。例如,在一些冬天气温较寒冷的地区启动电动车辆之前,对电池10进行加热能够提高电池性能。
在一些实施例中,热管理部件13可以包括一对导热板以及形成在该一对导热板之间的流道133。为了便于下文中的描述,该一对导热板将被称为附接至多个电池单体20的第一导热板131以及布置在第一导热板131的远离电池单体20的一侧的第二导热板132。流道133用来容纳流体并允许流体在其中流动。在一些实施例中,包括第一导热板131、第二导热板132以及流道133的热管理部件13可以通过吹塑等适当的工艺一体地形成,或者第一导热板131和第二导热板132通过焊接(如钎焊)装配在一起。在一些替代的实施例中,第一导热板131、第二导热板132以及流道133也可以分别形成并组装在一起以形成热管理部件13。
在一些实施例中,热管理部件13可以构成用于容纳多个电池单体的箱体11的一部分。例如,热管理部件13可以是箱体11的箱壳112的底部部分(图中未示出)。除了底部部分之外,箱壳112还包括侧部部分112b。在一些实施例中,侧部部分112b形成为框架结构,并能够与热管理部件13装配在一起形成箱壳112。以此方式,能够使电池10的结构更加紧凑、空间有效利用率提高,有利于提高能量密度。
热管理部件13与侧部部分112b可以通过例如密封圈的密封构件以及紧固件等密封地装配在一起。为了提高密封效果,紧固件可以采用FDS流钻螺钉。当然,应当理解的是,这种密封的装配方式只是示意性的,并不旨在限制本申请内容的保护范围。其他任意适当的装配方式也是可能的。例如,在一些替代的实施例中,热管理部件13可以通过粘接等适当的方式装配在一起。
在一些替代的实施例中,热管理部件13还可以和侧部部分112b是一体成型的。也就是说,箱体11的箱壳112可以是一体成型的。这种成型方式能够使箱壳112部分的强度更高,并且不容易产生泄漏。在一些替代的实施例中,箱壳112的侧部部分112b也可以是与盖体111一体形成的。也就是说,在这种情况下,盖体111构成了一个具 有下部开口的结构,该下部开口可由热管理部件13封闭。
换言之,热管理部件13与箱体11之间的关系可以是多种多样的。例如,在一些替代的实施例中,热管理部件13也可以不是箱体11的箱壳112的一部分,而是装配在箱壳112的面向盖体111侧的一个部件。这种方式更利于箱体11保持密闭。还有一些替代的实施例中,热管理部件13也可以通过适当的方式被集成在箱壳112的内侧。
上文中提到过有的泄压机构213在致动时需要在电池单体20的外部对应于泄压机构213的位置设置避让结构134,这样使泄压机构213能够顺利致动从而发挥应有的作用。在一些实施例中,避让结构134可以布置在热管理部件13上,从而使得热管理部件13附接到多个电池单体20的情况下能够在避让结构134和泄压机构213之间形成避让腔134a。也就是说,本申请中所提到的避让腔134a是指由避让结构134和泄压机构213共同围绕形成的密闭空腔,在这种方案中,针对来自电池单体20的排放物的排放而言,该避让腔134a的入口一侧表面可因泄压机构213的致动而被打开,而与该入口一侧表面相对的出口一侧表面则可因高温高压的排放物而被部分地破坏而被打开,从而形成排放物的泄放通道。而根据另一些实施例,该避让腔134a可以是例如由避让结构134和泄压机构213共同围绕形成的非密闭空腔,该非密闭空腔中的出口一侧表面可原本就具有供排放物流出的通道。
继续参考图9至图11。如图所示,在一些实施例中,第一导热板131和第二导热板132上可以分别形成有对应于流道133的半凹槽结构,并且第一导热板131和第二导热板132的半凹槽结构相互对齐。通过将第一导热板131和第二导热板132组装在一起,来将第一导热板131和第二导热板132的半凹槽结构组合成流道133,并最终形成热管理部件13。
当然,应当理解的是,上文中所描述的热管理部件13的具体结构只是示意性的,并不旨在限制本申请的保护范围。其他任意适当的结构或者布置也是可能的。例如,在一些替代的实施例中,第一导热板131、第二导热板132以及流道133中的至少一个可以被省略。例如,第二导热板132可以被省略。也就是说,在一些实施例中,热管理部件13可以仅包括第一导热板131以及布置在一侧或者嵌置在其中的流道133。
从上文中的描述可以看出,在一些实施例中,在将泄压机构213布置在相对于电池单体20的汇流部件12的不同侧的情况下,经过结构调整,可以形成双腔结构。双腔是指上文中提到的电池单体20的泄压机构213与避让结构134之间的避让腔134a以及收集腔11b。该双腔结构能够有效地保证在泄压机构213致动时来自电池单体20 的排放物能够被可控且有序地及时排放。此外,在一些实施例中,避让腔134a也可以被破坏以使热管理部件13中的流体流出,对来自电池单体20的排放物进行冷却和灭火,从而可以快速降低来自电池单体20的排放物的温度,由此提高了电池10的安全性能。
下面参照图6,可以看到,在一些实施例中,形成在热管理部件13上的避让结构134可以包括避让底壁134b和围绕避让腔134a的避让侧壁134c。本申请中的避让底壁134b和避让侧壁134c是相对于避让腔134a而言的。具体而言,避让底壁134b是指避让腔134a的与泄压机构213相对的壁,而避让侧壁134c是与避让底壁134b邻接并成预定角度而围绕避让腔134a的壁。在一些实施例中,避让底壁134b可以是第二导热板132的一部分,而避让侧壁134c可以是第一导热板131的一部分。
例如,在一些实施例中,避让结构134可以通过将第一导热板131的一部分朝向第二导热板132凹入并形成开口,并将开口的边缘与第二导热板132通过适当的固定方式固定在一起而形成。在泄压机构213致动时,来自电池单体20的排放物会首先进入到该避让腔134a中。如图6的避让腔134a中的箭头所示,排放物会大致以扇形方向向外排出。
不同于传统的热管理部件的是,根据本申请实施例中的热管理部件13能够在泄压机构213致动时被破坏,以使来自电池单体20的排放物穿过热管理部件13。这样设置的优势在于能够使得来自电池单体20的高温高压排放物顺利地穿过热管理部件13,从而避免排放物不能及时排出所造成的二次事故,由此提高电池10的安全性能。
为了使排放物能够顺利穿过热管理部件13,可以在热管理部件13与泄压机构213相对的位置设置通孔或者泄放机构。例如,在有的实施例中,在避让底壁134b上,也即,第二导热板132上可以设置有泄放机构。本申请中的泄放机构是指在泄压机构213致动时能够致动从而允许至少来自电池单体20的排放物穿过热管理部件13排出的机构。在一些实施例中,泄放机构也可以采用与电池单体200上的泄压机构213同样的构造。也就是说,在一些实施例中,泄放机构可以是布置在第二导热板132的具有与泄压机构213相同构造的机构。在一些替代的实施例中,泄放机构也可以采用与泄压机构213不同的构造,而只是设置在避让底壁134b处的薄弱结构,薄弱结构例如可以包括但不限于:与避让底壁134b一体的厚度减薄部、刻痕(例如如图9中所示的十字形刻痕134d)或者安装在避让底壁134b处的由诸如塑料等易损材料制成的易损部等。或者,泄放机构可以为温感或压感泄放机构,在其感测到的温度或压力超过阈值时而 致动。
在一些实施例中,为了使排放物能够顺利穿过热管理部件13,避让结构134也可以是贯穿热管理部件13的通孔。也就是说,避让结构134可以仅具有避让侧壁134c,并且该避让侧壁134c即为通孔的孔壁。在这种情况下,在泄压机构213致动时来自电池单体20的排放物能够直接穿过避让结构134而排出。以此方式,能够更加有效地避免二次高压的形成,从而提高电池10的安全性能。
在一些实施例中,热管理部件13还可以被构造成能够在泄压机构213致动时被破坏以使得流体流出。流体流出能够快速地对来自电池单体20的高温高压排放物进行降温以及灭火,从而避免对其他电池单体20以及电池10造成进一步伤害而引发更严重的事故。例如,在一些实施例中,避让侧壁134c也可以被形成为容易被来自电池单体20的排放物破坏。由于电池单体20的内部压力比较大,来自电池单体20的排放物会以大致锥形的形状向外排放。在这种情况下,如果能够增大避让侧壁134c与排放物的接触面积就能够提高避让侧壁134c被破坏的可能性。
例如,在一些实施例中,避让侧壁134c被构造成相对于泄压机构213朝向热管理部件13的方向呈预定夹角,并且该夹角大于等于15°且小于等于85°。例如,图6中所示出的预定夹角在45°左右。通过合理地设置该夹角,能够使得避让侧壁134c在泄压机构213致动时更容易被破坏,以进一步使得流体能够流出以与排放物接触,达到及时冷却排放物的效果。此外,该预定夹角还能够使得该避让侧壁134c能够被更容易地形成,例如,该预定夹角可以提供一定的拔模斜度,从而利于避让侧壁134c乃至整个第一导热板131的制造。
此外,避让侧壁134c的这种布置方式可以适用于上述具有避让腔134a的情况以及避让结构134是通孔的情况。例如,避让结构134是通孔的情况下,该通孔的孔径可以沿泄压机构213朝向热管理部件13的方向逐渐减小,并且该通孔的孔壁相对于泄压机构213朝向热管理部件13的方向所成的夹角大于等于15°且小于等于85°。
当然,应当理解的是,上述关于将避让侧壁134c相对于泄压机构213朝向热管理部件13的方向成预定夹角的形状只是示意性的,并不旨在限制本申请内容的保护范围。其他任意适当的能够利于避让侧壁134c在泄压机构213致动时被破坏的结构都是可行的。例如,在一些实施例中,在避让侧壁134c上也可以具有任何类型的薄弱结构。
上面的实施例描述了热管理部件13具有避让结构134的情况。也就是说,上文中的实施例所提到的避让腔134a是通过热管理部件13上的避让结构134和泄压机构 213所形成的。应当理解的是,上文中的关于避让腔134a的这些实施例只是示意性的,并不旨在限制本申请内容的保护范围,其他任意适当的结构或者布置也是可能的。例如,在一些替代的实施例中,热管理部件13也可以不包括避让结构134。在这种情况下,避让腔134a例如可以通过形成在泄压机构213周边突出的部分和热管理部件13来形成。并且,热管理部件13上与泄压机构213的相对的位置可以设置有泄放机构或者薄弱结构来使得来自电池单体20的排放物能够穿过热管理部件13和/或冲破热管理部件13而使流体流出。
当然,在一些实施例中,也可以不使用避让腔134a。例如,对于一些不需要避让空间就能够致动的泄压机构213而言,泄压机构213可以与热管理部件13紧贴设置。这种泄压机构213例如可以包括但不限于温敏泄压机构213。温敏泄压机构213是在电池单体20的温度达到阈值的情况下致动而泄放电池单体20的内部压力的机构。与之相对应的是压敏泄压机构213。压敏泄压机构213即是上文中所提到的泄压机构213。压敏泄压机构即在电池单体20的内部压力达到阈值时致动而泄放电池单体20的内部压力的机构。
下面再次结合图6,对收集腔11b进行说明。本申请中的收集腔11b是指在泄压机构213致动时收集来自电池单体20和热管理部件13的排放物的空腔。在上文中所描述的存在避让腔134a的情况中,避让腔134a可以通过热管理部件13与收集腔11b隔离。这里所谓的“隔离”指分离,可以不是密封的。这种情况能够更加有利于排放物冲破避让侧壁134c从而使流体流出,以对排放物进一步降温和灭火,从而提高电池10的安全性能。此外,在上文中所描述的避让结构134是通孔的情况下,避让腔134a可以和收集腔11b相互连通。这种方式更加利于排放物的排放,从而避免二次高压所带来的安全隐患。
在一些实施例中,收集腔11b也可以是热管理部件13外部的一个开放的腔体。例如,在热管理部件13作为箱体11的箱壳112的底部部分的实施例中,来自电池单体20的排放物在穿过热管理部件13之后可以直接排放到热管理部件13的外部空间,也即,箱体11的外部,从而避免二次高压的产生。在一些替代的实施例中,电池10还可以包括防护构件115。本申请中的防护构件115是指布置在热管理部件13的远离电池单体20的一侧来对热管理部件13和电池单体20提供防护的部件。在这些实施例中,收集腔11b可以布置在防护构件115和热管理部件13之间。
在一些实施例中,防护构件115可以是安装在箱体11的底部起到防护作用的部 分。这种方式有助于促进对诸如电动车辆等电池10的应用部位或空间进行更多样化的设计。例如,对于有些电动车辆而言,为了降低制造成本并从而降低最终产品的价格,在不影响使用的情况下,可以不设置防护构件115。用户可以根据需要来选择是否加装防护构件。在这种情况下,收集腔11b就构成了上文中提到的开放的腔体,来自电池单体20的排放物将可以直接排放到电池10外部。
在一些实施例中,防护构件115可以是箱体11的箱壳112的底部部分。例如,热管理部件13可以装配到作为箱壳112的底部部分的防护构件115上,并且热管理部件13装配到防护构件115上并且两者之间留有间隙,以形成收集腔11b。在这种情况下,收集腔11b可以作为来自电池单体20的排放物的一个缓冲腔。在该收集腔11b中排放物的温度、体积或者压力中的至少一项达到预定程度或者阈值时,防护构件115可以被部分地破坏以及时泄放收集腔11b中的压力。在一些替代的实施例中,替代地或者附加地,可以在防护构件115以及热管理部件13之间设置密封构件(例如密封圈、密封胶等)以密封收集腔11b,其中,密封构件也可以在收集腔11b中排放物的温度、体积或者压力中的至少一项达到预定程度或者阈值时被至少部分地破坏,以及时泄放收集腔11b中的压力,避免造成二次破坏。
在一些替代的实施例中,防护构件115还可以是和热管理部件13一体地形成的。例如,在热管理部件13的外部,还一体地形成有防护构件115,防护构件115和热管理部件13之间具有间隔以形成收集腔11b。防护构件15上可以设置有薄弱结构,这样在收集腔11b中的排放物的温度、体积或者压力达到预定程度或者阈值时,防护构件115可以被部分地破坏从而及时泄放收集腔11b的压力。这种方式能够进一步减少部件的数量,并因此减少装配时间并降低装配成本。
上文中结合图1至图11描述了本申请实施例的电池,下面将结合图12和图13描述本申请实施例的制备电池的方法和设备,其中未详细描述的部分可参见前述各实施例。
参考图12,本申请所给出的实施方式中,还提供了一种制备电池的方法50,包括如下步骤:提供多个电池单体的步骤51,多个电池单体被构造成通过汇流部件相互电连接;提供盖体的步骤52,盖体包括容纳空间,容纳空间被构造成安装汇流部件;提供绝缘部的步骤53,绝缘部附接至盖体并且被设置成至少覆盖汇流部件。
参考图13,本申请所给出的实施方式中,还提供了一种制备电池的设备60,包括:电池单体制备模块61,用于制备多个电池单体,多个电池单体被构造成通过汇流 部件相互电连接;盖体制备模块62,用于制备盖体,包括容纳空间,容纳空间被构造成安装汇流部件;绝缘部制备模块63,用于制备绝缘部,绝缘部附接至盖体并且被设置成至少覆盖汇流部件。
本申请实施例的电池及其相关装置、制备方法、制备设备,使得电池中的用于将多个电池单体电连接的汇流部件嵌置在盖体上,这样的设置使得电池的结构更加紧凑,能够提高电池的体积能量密度,并且由于汇流部件不是密封在箱体内的,因而可以将电池管理单元的部分结构设置在电池的箱体外,能够进一步节省空间、减小电池的尺寸,并且便于电池管理单元的维修和更换。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种电池(10),包括:
    多个电池单体(20),所述多个电池单体(20)被构造成通过汇流部件(12)相互电连接;
    盖体(111),包括容纳空间(111a),所述容纳空间(111a)被构造成安装所述汇流部件(12);以及
    绝缘部(113),所述绝缘部(113)附接至所述盖体(111)并且被设置成至少覆盖所述汇流部件(12)。
  2. 根据权利要求1所述的电池,其中,所述容纳空间(111a)为形成在所述盖体(111)上的通孔,所述汇流部件(12)穿过所述通孔并固定在所述盖体(111)上。
  3. 根据权利要求1或2所述的电池,其中,所述绝缘部(113)被施加到或者装配到所述盖体(111)。
  4. 根据权利要求1所述的电池,其中,所述容纳空间(111a)为形成在所述盖体(111)上的盲孔,所述汇流部件(12)能够经由所述容纳空间(111a)的开口进入所述容纳空间(111a),并且所述汇流部件(12)的至少部分容纳在所述容纳空间(111a)中,所述绝缘部(113)与所述盖体(111)一体成型。
  5. 根据权利要求1-4中任一项所述的电池,其中,所述电池还包括电池管理单元,所述电池管理单元包括控制模块和电连接部件,所述控制模块和所述汇流部件通过所述电连接部件连接。
  6. 根据权利要求5所述的电池,其中,所述电池还包括箱壳(112),所述箱壳(112)和所述盖体(111)共同包围形成用于容纳所述多个电池单(20)的箱体(11),所述控制模块设置在所述箱体(11)外。
  7. 根据权利要求5所述的电池,其中,所述控制模块和所述电连接部件中的至少一个嵌置在所述盖体(111)内。
  8. 根据权利要求5-7中任一项所述的电池,其中,所述电连接部件包括电路板,用于与所述多个电池单体(20)电连接以采集所述多个电池单体(20)的温度或电压信号。
  9. 根据权利要求1-8任一项所述的电池,其中,所述多个电池单体(20)中的至少一个电池单体(20)包括泄压机构(213),所述泄压机构(213)用于在所述至少 一个电池单体(20)的内部压力或温度达到阈值时致动以泄放所述内部压力,
    其中,所述泄压机构(213)与所述汇流部件(12)分别被布置在所述至少一个电池单体(20)的不同侧,以使得在所述泄压机构(213)致动时来自所述至少一个电池单体(20)的排放物沿远离所述汇流部件(12)的方向排放。
  10. 根据权利要求9所述的电池,还包括:热管理部件(13),所述热管理部件(13)用于容纳流体以给所述电池单体(20)调节温度,且所述热管理部件(13)被构造成在所述泄压机构(213)致动时被破坏,以使来自所述电池单体(20)的排放物穿过所述热管理部件(13)。
  11. 根据权利要求10所述的电池,其中,所述热管理部件(13)被构造成在所述泄压机构(213)致动时被破坏,以使得所述流体流出。
  12. 根据权利要求10或11所述的电池,其中,所述热管理部件(13)还包括:
    避让结构(134),所述避让结构(134)被构造为提供允许所述泄压机构(213)致动的空间,并且
    其中所述热管理部件(13)附接至所述多个电池单体(20)以在所述避让结构(134)和所述泄压机构(213)之间形成避让腔(134a)。
  13. 根据权利要求10或11所述的电池,其中,所述热管理部件(13)还包括:
    避让结构(134),所述避让结构(134)被构造为提供允许所述泄压机构(213)致动的空间,并且
    其中所述避让结构(134)是贯穿所述热管理部件(13)的通孔。
  14. 根据权利要求12所述的电池,还包括:
    收集腔(11b),所述收集腔(11b)用于在所述泄压机构(213)致动时收集来自所述电池单体(20)和所述热管理部件(13)的排放物,
    其中所述避让腔(134a)和所述收集腔(11b)通过所述热管理部件(13)隔离。
  15. 根据权利要求13所述的电池,还包括:
    收集腔(11b),所述收集腔(11b)用于在所述泄压机构(213)致动时收集来自所述电池单体(20)和所述热管理部件(13)的排放物,
    其中所述避让结构(134)和所述收集腔(11b)相连通。
  16. 根据权利要求14或15所述的电池,还包括:
    防护构件(115),所述防护构件(115)布置在所述热管理部件(13)的远离所述电池单体(20)的一侧,并且所述收集腔(11b)布置在所述热管理部件(13)和所 述防护构件(115)之间。
  17. 根据权利要求16所述的电池,还包括:
    密封构件,所述密封构件布置在所述热管理部件(13)和所述防护构件(115)之间以密封所述收集腔(11b)。
  18. 一种装置,包括如权利要求1-17所述的电池,所述电池用于提供电能。
  19. 一种制备电池的方法,包括:
    提供多个电池单体,所述多个电池单体(20)被构造成通过汇流部件(12)相互电连接;
    提供盖体(111),所述盖体(111)包括容纳空间(111a),所述容纳空间(111a)被构造成安装所述汇流部件(12);
    提供绝缘部(113),所述绝缘部(113)附接至所述盖体(111)并且被设置成至少覆盖所述汇流部件(12)。
  20. 一种制备电池的设备,包括:
    电池单体制备模块,用于制备多个电池单体(20),所述多个电池单体(20)被构造成通过汇流部件(12)相互电连接;
    盖体制备模块,用于制备盖体(111),所述包括容纳空间(111a),所述容纳空间(111a)被构造成安装所述汇流部件(12);
    绝缘部制备模块,用于制备绝缘部(113),所述绝缘部(113)附接至所述盖体(111)并且被设置成至少覆盖所述汇流部件(12)。
PCT/CN2020/101441 2020-07-10 2020-07-10 电池及其相关装置、制备方法和制备设备 WO2022006896A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP23171327.2A EP4235927A1 (en) 2020-07-10 2020-07-10 Battery and related apparatus thereof, preparation method therefor, and preparation device therefor
CN202080005847.2A CN114175376B (zh) 2020-07-10 2020-07-10 电池及其相关装置、制备方法和制备设备
HUE20803075A HUE062373T2 (hu) 2020-07-10 2020-07-10 Akkumulátor és ahhoz tartozó eszköz, valamint eljárás és berendezés annak elõállítására
KR1020227020680A KR20220102642A (ko) 2020-07-10 2020-07-10 배터리 및 그 관련 장치, 제조 방법 및 제조 장치
JP2022538852A JP7419538B2 (ja) 2020-07-10 2020-07-10 電池、その関連装置、製造方法及び製造機器
PCT/CN2020/101441 WO2022006896A1 (zh) 2020-07-10 2020-07-10 电池及其相关装置、制备方法和制备设备
EP20803075.9A EP3958387B1 (en) 2020-07-10 2020-07-10 Battery and related apparatus thereof, preparation method therefor, and preparation device therefor
US17/113,013 US20220013839A1 (en) 2020-07-10 2020-12-05 Battery and related apparatus, porduction method and porduction device therefof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/101441 WO2022006896A1 (zh) 2020-07-10 2020-07-10 电池及其相关装置、制备方法和制备设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/113,013 Continuation US20220013839A1 (en) 2020-07-10 2020-12-05 Battery and related apparatus, porduction method and porduction device therefof

Publications (1)

Publication Number Publication Date
WO2022006896A1 true WO2022006896A1 (zh) 2022-01-13

Family

ID=79173109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101441 WO2022006896A1 (zh) 2020-07-10 2020-07-10 电池及其相关装置、制备方法和制备设备

Country Status (7)

Country Link
US (1) US20220013839A1 (zh)
EP (2) EP3958387B1 (zh)
JP (1) JP7419538B2 (zh)
KR (1) KR20220102642A (zh)
CN (1) CN114175376B (zh)
HU (1) HUE062373T2 (zh)
WO (1) WO2022006896A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023245844A1 (zh) * 2022-06-22 2023-12-28 宁德时代新能源科技股份有限公司 电池及用电装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115863901B (zh) * 2023-03-01 2023-11-28 宁德时代新能源科技股份有限公司 隔离部件、电池及用电设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180351219A1 (en) * 2017-05-31 2018-12-06 NextEv USA, Inc. Battery cell cooling plate with cell vents
CN208256764U (zh) * 2018-05-24 2018-12-18 宁德时代新能源科技股份有限公司 上盖组件及电池模组
CN209071461U (zh) * 2018-12-28 2019-07-05 宁德时代新能源科技股份有限公司 热管理装置及电池包
CN110061329A (zh) * 2018-01-19 2019-07-26 翰昂汽车零部件有限公司 具有集成排气口的电池冷却板
CN209401662U (zh) * 2019-03-28 2019-09-17 宁德时代新能源科技股份有限公司 电池包
CN210129540U (zh) * 2019-08-15 2020-03-06 宁德时代新能源科技股份有限公司 电池模组
CN111106277A (zh) * 2018-12-29 2020-05-05 宁德时代新能源科技股份有限公司 电池包

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005017648B4 (de) * 2005-04-15 2008-01-10 Daimlerchrysler Ag Flüssigkeitsgekühlte Batterie und Verfahren zum Betreiben einer solchen
JP2007027011A (ja) * 2005-07-20 2007-02-01 Sanyo Electric Co Ltd 電源装置
US7892669B2 (en) * 2006-03-06 2011-02-22 Lg Chem, Ltd. Middle or large-sized battery module
CN101627490B (zh) * 2006-12-14 2012-10-03 江森自控帅福得先进能源动力系统有限责任公司 电池模块
JP5231026B2 (ja) * 2008-01-10 2013-07-10 日立ビークルエナジー株式会社 電池モジュール
JP5537111B2 (ja) 2009-09-30 2014-07-02 株式会社東芝 二次電池装置
DE102009046385A1 (de) * 2009-11-04 2011-05-05 SB LiMotive Company Ltd., Suwon Batterie mit Entgasungssystem und Verfahren zum Abführen von Austretungen
DE102011112688A1 (de) * 2011-09-05 2013-03-07 Audi Ag Batterie für ein Fahrzeug und Fahrzeug
EP3357108A1 (en) * 2015-10-02 2018-08-08 Arconic Inc. Energy storage device and related methods
CN110165104B (zh) * 2016-07-29 2022-11-25 苹果公司 高密度电池组
JP6560179B2 (ja) 2016-10-17 2019-08-14 矢崎総業株式会社 バスバーモジュール
CN209822772U (zh) * 2019-06-28 2019-12-20 宁德时代新能源科技股份有限公司 电池模组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180351219A1 (en) * 2017-05-31 2018-12-06 NextEv USA, Inc. Battery cell cooling plate with cell vents
CN110061329A (zh) * 2018-01-19 2019-07-26 翰昂汽车零部件有限公司 具有集成排气口的电池冷却板
CN208256764U (zh) * 2018-05-24 2018-12-18 宁德时代新能源科技股份有限公司 上盖组件及电池模组
CN209071461U (zh) * 2018-12-28 2019-07-05 宁德时代新能源科技股份有限公司 热管理装置及电池包
CN111106277A (zh) * 2018-12-29 2020-05-05 宁德时代新能源科技股份有限公司 电池包
CN209401662U (zh) * 2019-03-28 2019-09-17 宁德时代新能源科技股份有限公司 电池包
CN210129540U (zh) * 2019-08-15 2020-03-06 宁德时代新能源科技股份有限公司 电池模组

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023245844A1 (zh) * 2022-06-22 2023-12-28 宁德时代新能源科技股份有限公司 电池及用电装置

Also Published As

Publication number Publication date
CN114175376B (zh) 2023-12-15
EP4235927A1 (en) 2023-08-30
JP2023508369A (ja) 2023-03-02
CN114175376A (zh) 2022-03-11
KR20220102642A (ko) 2022-07-20
US20220013839A1 (en) 2022-01-13
JP7419538B2 (ja) 2024-01-22
HUE062373T2 (hu) 2023-10-28
EP3958387B1 (en) 2023-06-21
EP3958387A1 (en) 2022-02-23
EP3958387A4 (en) 2022-02-23

Similar Documents

Publication Publication Date Title
WO2022006894A1 (zh) 电池及其相关装置、制备方法和制备设备
WO2022006895A1 (zh) 电池及其相关装置、制备方法和制备设备
CN213026307U (zh) 电池、包括电池的装置和制备电池的设备
JP7326502B2 (ja) 電池、電力消費装置、電池製造方法及び装置
WO2022006897A1 (zh) 电池及其相关装置、制备方法和制备设备
CN213636145U (zh) 电池、包括电池的装置和制备电池的设备
WO2022006898A1 (zh) 电池及其相关装置、制备方法和制备设备
WO2022205076A1 (zh) 电池、用电装置、制备电池的方法和装置
US20240204343A1 (en) Battery and electrical device
WO2022006896A1 (zh) 电池及其相关装置、制备方法和制备设备
RU2805991C1 (ru) Батарея и связанное с ней устройство, способ ее изготовления и устройство для ее изготовления
RU2807661C1 (ru) Батарея и относящийся к ней аппарат, способ ее изготовления и устройство для ее изготовления
RU2808234C1 (ru) Батарея и относящееся к ней устройство, способ ее изготовления и аппарат для ее изготовления

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020803075

Country of ref document: EP

Effective date: 20201116

ENP Entry into the national phase

Ref document number: 20227020680

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022538852

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202317007326

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE