WO2024065769A1 - 电池及用电装置 - Google Patents

电池及用电装置 Download PDF

Info

Publication number
WO2024065769A1
WO2024065769A1 PCT/CN2022/123501 CN2022123501W WO2024065769A1 WO 2024065769 A1 WO2024065769 A1 WO 2024065769A1 CN 2022123501 W CN2022123501 W CN 2022123501W WO 2024065769 A1 WO2024065769 A1 WO 2024065769A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery cell
top cover
box body
gap
Prior art date
Application number
PCT/CN2022/123501
Other languages
English (en)
French (fr)
Inventor
唐彧
杨海奇
徐晨怡
汪文礼
黄小腾
王鹏
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/123501 priority Critical patent/WO2024065769A1/zh
Publication of WO2024065769A1 publication Critical patent/WO2024065769A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery and an electrical device.
  • the present application provides a battery and an electrical device, which have high internal space utilization and a relatively compact structure.
  • An embodiment of the first aspect of the present application provides a battery, the battery comprising a box body and a battery cell, the box body comprising a box body and a top cover and a bottom cover arranged opposite to each other on both sides of the box body along a first direction; the battery cell is arranged in the box body, the battery cell comprises a pole, wherein there is a gap between the battery cell and at least one of the bottom cover and the box body, and the pole is arranged toward the gap.
  • the battery includes a box body and a battery cell.
  • the box body includes a box body and a top cover and a bottom cover arranged opposite to each other on both sides of the box body along a first direction.
  • the box body can be used to accommodate the battery cell.
  • the battery cell is arranged in the box body. There is a gap between the battery cell and at least one of the bottom cover and the box body. When the battery is hit by an external force, the gap between the battery cell and the bottom cover and the box body can play a role in buffering the collision, so that the battery cell and the box body are not prone to mutual collision, thereby improving the safety performance of the battery.
  • the battery cell has a pole, which is used to input or output current. The pole is arranged toward the gap, so that the gap in the battery used for buffering the collision can also be used as a reserved space between the pole and the box body required to meet electrical safety, thereby improving the space utilization rate in the battery and making the battery structure more compact.
  • the gap includes a first gap between the battery cell and the bottom cover, the pole faces the first gap, and the battery cell also includes a bottom arranged opposite to the pole in the first direction, and the bottom is connected to the top cover.
  • the first gap in the battery for buffering the collision between the battery cell and the bottom cover can also be used as a reserved space between the pole and the box body for electrical safety, thereby improving the space utilization rate in the battery and making the battery structure more compact.
  • the top cover thickness T1 of the top cover and the bottom cover thickness T2 of the bottom cover satisfy the following relationship: 0.3mm ⁇ T1 + T2 ⁇ 16.5mm .
  • the battery cell further includes a side wall connected between the pole and the bottom, wherein the plurality of battery cells are arranged side by side along the second direction and/or the third direction, the side walls of two adjacent battery cells are connected, and the first direction, the second direction and the third direction intersect each other.
  • the poles of the plurality of battery cells are all oriented toward the first gap, thereby further improving the space utilization rate in the battery, making the battery structure more compact, and the side-by-side arrangement of the plurality of battery cells also improves the structural strength of the battery.
  • the number n of battery cells, the weight G of a single battery cell, the top cover thickness T1 of the top cover, and the bottom cover thickness T2 of the bottom cover satisfy the following relationship: 0.1 ⁇ ( T1 + T2 )/n*G ⁇ 16.5.
  • the gap includes a second gap between the battery cell and the box body, and the pole is arranged toward the second gap.
  • the second gap By arranging the second gap between the battery cell and the box body, when the battery is hit by an external force, the second gap can buffer the collision between the battery cell and the box body, thereby improving the safety performance of the battery.
  • the pole of the battery cell By placing the pole of the battery cell toward the second gap, the second gap in the battery used to buffer the collision between the battery cell and the body can also be used as a reserved space between the pole and the box body required to meet electrical safety, thereby improving the space utilization rate in the battery and making the battery structure more compact.
  • the box body further includes a bottom plate disposed between the top cover and the bottom cover
  • the battery cell further includes a bottom disposed opposite to the pole in the second direction and a side wall connected between the pole and the bottom, the side wall is connected to the bottom plate, the bottom plate and the bottom cover are spaced apart, and the first direction intersects with the second direction.
  • the top cover thickness T1 of the top cover and the bottom plate thickness T3 of the bottom plate satisfy the following relationship: 0.3mm ⁇ T1 + T3 ⁇ 16.5mm .
  • a plurality of battery cells are arranged side by side along the first direction and/or the third direction, the side walls of two adjacent battery cells are connected, and the first direction, the second direction and the third direction intersect each other.
  • the poles of the plurality of battery cells are all oriented toward the second gap, thereby further improving the space utilization rate in the battery, making the battery structure more compact, and the side-by-side arrangement of the plurality of battery cells also improves the structural strength of the battery.
  • the number n of battery cells, the weight G of a single battery cell, the top cover thickness T1 of the top cover, and the bottom plate thickness T3 of the bottom plate satisfy the following relationship: 0.1 ⁇ ( T1 + T3 )/n*G ⁇ 16.5.
  • a buffer is filled between the top cover and the bottom cover, and the buffer is used to provide buffering when the battery is hit.
  • the number n of battery cells is less than or equal to 10.
  • An embodiment of the second aspect of the present application provides an electrical device, which includes a battery in any of the above embodiments, and the battery is used to provide electrical energy.
  • FIG1 is a schematic structural diagram of a vehicle according to some embodiments of the present application.
  • FIG2 is a schematic diagram of the structure of a battery in some embodiments of the present application.
  • FIG3 is a cross-sectional schematic diagram of a pole facing a gap between a battery cell and a bottom cover in some embodiments of the present application;
  • FIG4 is a cross-sectional schematic diagram of battery cells arranged side by side along a second direction in some embodiments of the present application.
  • FIG5 is a cross-sectional schematic diagram of battery cells arranged side by side along a third direction in some embodiments of the present application.
  • FIG6 is a cross-sectional schematic diagram of a gap between a pole facing a battery cell and a box body in some embodiments of the present application;
  • FIG7 is a cross-sectional schematic diagram of the gap between the pole facing the battery cell and the box body in some other embodiments of the present application.
  • FIG8 is a cross-sectional schematic diagram of battery cells arranged side by side along a first direction in some embodiments of the present application.
  • FIG. 9 is a cross-sectional schematic diagram of battery cells in some other embodiments of the present application arranged side by side along a third direction.
  • Battery cell 1 pole 11; bottom 12; side wall 13; large side wall 13a; small side wall 13b;
  • Box body 2 box body 21; top cover 22; bottom cover 23; bottom plate 24;
  • Gap 3 first gap 31; second gap 32;
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but also widely used in electric vehicles such as electric bicycles, electric motorcycles, electric cars, as well as military equipment and aerospace and other fields. With the continuous expansion of the application field of power batteries, the market demand is also constantly expanding.
  • the gap in the battery for buffering collisions can be set as the reserved space between the pole and the box body required to meet electrical safety.
  • the box body includes a box body and a bottom cover, and the gap between the battery cell and the box body or between the battery cell and the bottom cover is set as a reserved space between the pole and the box body required to meet electrical safety, and the pole is set toward the gap.
  • the gap between the battery cell and the box body or between the battery cell and the bottom cover can buffer the collision.
  • the pole is directed toward the gap between the battery cell and the box body or between the battery cell and the bottom cover, so that the gap in the battery used for buffering the collision can also be used as a reserved space between the pole and the box body to meet electrical safety, thereby improving the space utilization rate in the battery and making the battery structure more compact.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in the present application may include a battery module or a battery pack, etc.
  • the box body generally included in the battery for encapsulating one or more battery cells can prevent liquids or other foreign matter from affecting the charging or discharging of the battery cells to a certain extent.
  • This battery is suitable for various electrical devices using batteries, such as mobile phones, portable devices, laptops, electric vehicles, electric toys, electric tools, electric vehicles, ships and spacecraft, etc.
  • spacecraft include airplanes, rockets, space shuttles and spacecraft, etc.; the battery is used to provide electrical energy for the above-mentioned electrical devices.
  • the electrical devices provided in some embodiments of the present application may be vehicles, mobile phones, portable devices, laptop computers, ships, spacecraft, electric toys, electric tools, etc.
  • the vehicle may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the spacecraft includes airplanes, rockets, space shuttles and spacecrafts, etc.
  • the electric toys include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • the electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, such as electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators and electric planers, etc.
  • FIG. 1 is a schematic diagram of the structure of a vehicle 1000 provided in some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • a battery 100 is provided inside the vehicle 1000, and the battery 100 may be provided at the bottom, head or tail of the vehicle 1000.
  • the battery 100 may be used to power the vehicle 1000, for example, the battery 100 may be used as an operating power source for the vehicle 1000.
  • the vehicle 1000 may also include a controller 200 and a motor 300, and the controller 200 is used to control the battery 100 to power the motor 300, for example, for the starting, navigation and driving power requirements of the vehicle 1000.
  • the battery 100 can not only serve as an operating power source for the vehicle 1000, but also serve as a driving power source for the vehicle 1000, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000.
  • FIG. 2 is a schematic diagram of the structure of a battery 100 according to some embodiments of the present application
  • FIG. 3 is a schematic diagram of a cross-section of a pole 11 toward a gap 3 between a battery cell 1 and a bottom cover 23 according to some embodiments of the present application, wherein the X direction in the figure is a first direction X, the Y direction in the figure is a second direction Y, and the Z direction in the figure is a third direction Z, and the first direction X, the second direction Y and the third direction Z intersect each other.
  • the present application provides a battery 100, which includes a box body 2 and a battery cell 1, the box body 2 includes a box body 21 and a top cover 22 and a bottom cover 23 arranged opposite to each other on both sides of the box body 21 along a first direction X; the battery cell 1 is arranged in the box body 2, and the battery cell 1 includes a pole 11, wherein a gap 3 exists between the battery cell 1 and at least one of the bottom cover 23 and the box body 21, and the pole 11 is arranged toward the gap 3.
  • the box body 21, the top cover 22 and the bottom cover 23 can jointly define a storage space for accommodating the battery cell 1, and the box body 2 can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cell 1 to a certain extent.
  • the box body 21 can be integrally formed with the bottom cover 23 to form a hollow structure with one end open
  • the top cover 22 can be a plate-like structure
  • the top cover 22 covers the open side of the hollow structure formed by the box body 21 and the bottom cover 23, so that the box body 21, the top cover 22 and the bottom cover 23 can jointly define a storage space.
  • the top cover 22 can be integrally formed with a part of the box body 21 to form a hollow structure with one end open
  • the bottom cover 23 can be integrally formed with another part of the box body 21 to form a hollow structure with one end open
  • the open side of the hollow structure formed by the top cover 22 and a part of the box body 21 covers the open side of the hollow structure formed by the bottom cover 23 and another part of the box body 21, so that the box body 21, the top cover 22 and the bottom cover 23 can jointly define a storage space.
  • the box body 2 can have various shapes, for example, the box body 2 can be cylindrical or rectangular.
  • the battery 100 there may be multiple battery cells 1 in the battery 100, and the multiple battery cells 1 may be connected in series, in parallel, or in a mixed connection.
  • the mixed connection means that the multiple battery cells 1 are both connected in series and in parallel.
  • the multiple battery cells 1 may be directly connected in series, in parallel, or in a mixed connection, and then the whole formed by the multiple battery cells 1 is accommodated in the box 2; of course, the battery 100 may also be a battery 100 module formed by connecting multiple battery cells 1 in series, in parallel, or in a mixed connection, and then the multiple battery 100 modules are connected in series, in parallel, or in a mixed connection to form a whole, and accommodated in the box 2.
  • the battery 100 may also include other structures, for example, the battery 100 may also include a busbar (not shown in the figure), and the busbar is used to realize the electrical connection between the multiple battery cells 1.
  • the battery cell 1 may be of various types, for example, the battery cell 1 may be a lithium-ion secondary battery cell 1, a lithium-ion primary battery cell 1, a lithium-sulfur battery cell 1, a sodium-lithium-ion battery cell 1, a sodium-ion battery cell 1, or a magnesium-ion battery cell 1, etc.
  • the battery cell 1 may be of various shapes, for example, the battery cell 1 may be cylindrical, flat, rectangular, or other shapes, etc.
  • the pole 11 is used to output or input the electric energy of the battery cell 1.
  • the pole 11 can be used to electrically connect with the electrode assembly (not shown) of the battery cell 1 to output or input the electric energy of the battery cell 1.
  • the pole 11 may face the gap 3 between the battery cell 1 and the bottom cover 23, and/or the pole 11 may face the gap 3 between the battery cell 1 and the box body 21.
  • the battery 100 includes a box body 2 and a battery cell 1.
  • the box body 2 includes a box body 21 and a top cover 22 and a bottom cover 23 arranged opposite to each other on both sides of the box body 21 along a first direction X.
  • the box body 2 can be used to accommodate the battery cell 1.
  • the battery cell 1 is arranged in the box body 2. There is a gap 3 between the battery cell 1 and at least one of the bottom cover 23 and the box body 21.
  • the battery cell 1 has a pole 11, which is used to input or output current.
  • the pole 11 is arranged toward the gap 3, so that the gap 3 in the battery 100 for buffering the collision can also be used as a reserved space between the pole 11 and the box body 2 for meeting electrical safety, thereby improving the space utilization rate in the battery 100 and making the structure of the battery 100 more compact.
  • the gap 3 includes a first gap 31 between the battery cell 1 and the bottom cover 23.
  • the pole 11 faces the first gap 31.
  • the battery cell 1 also includes a bottom 12 arranged opposite to the pole 11 in the first direction X, and the bottom 12 is connected to the top cover 22.
  • the size of the first gap 31 can be set according to the specific structure of the battery cell 1 and the specific structure of the box body 2, so that the first gap 31 can buffer the collision between the battery cell 1 and the bottom cover 23, and make the structure of the battery 100 more compact.
  • the first gap 31 between the battery cell 1 and the bottom cover 23 can refer to the gap 3 between the pole 11 of the battery cell 1 and the bottom cover 23.
  • the first gap 31 can be greater than or equal to 7 mm.
  • the bottom 12 of the battery cell 1 and the top cover 22 may be connected in various ways. In some embodiments, the bottom 12 of the battery cell 1 may be connected to the top cover 22 by adhesive or welding. In other embodiments, the bottom 12 of the battery cell 1 may be connected to the top cover 22 by bolts.
  • the first gap 31 By providing the first gap 31 between the battery cell 1 and the bottom cover 23, when the battery 100 is hit by an external force, the first gap 31 can buffer the collision between the battery cell 1 and the bottom cover 23, thereby improving the safety performance of the battery 100.
  • the first gap 31 in the battery 100 for buffering the collision between the battery cell 1 and the bottom cover 23 can also be used as a reserved space between the pole 11 and the box body 2 for meeting electrical safety, thereby improving the space utilization rate in the battery 100 and making the structure of the battery 100 more compact.
  • the top cover thickness T1 of the top cover 22 and the bottom cover thickness T2 of the bottom cover 23 satisfy the following relationship: 0.3mm ⁇ T1+ T2 ⁇ 16.5mm .
  • the structural strength of the box body 2 is relatively small, and the box body 2 is prone to deformation or even rupture.
  • the sum of the top cover thickness T1 and the bottom cover thickness T2 is greater than 16.5mm, the excessively thick top cover 22 and bottom cover 23 are likely to make the battery 100 have a larger volume and weight, and the battery 100 is likely to be over-designed.
  • the top cover thickness T1 may refer to the thickness of any position on the top cover 22, or the top cover thickness T1 may refer to the average thickness of multiple positions on the top cover 22. In some embodiments, the top cover thickness T1 may refer to the minimum thickness of the top cover 22. In other embodiments, the top cover thickness T1 may refer to the average thickness of the entire top cover 22.
  • the bottom cover thickness T2 may refer to the thickness of any position on the bottom cover 23, or the bottom cover thickness T2 may refer to the average thickness of multiple positions on the bottom cover 23. In some embodiments, the bottom cover thickness T2 may refer to the minimum thickness of the bottom cover 23. In other embodiments, the bottom cover thickness T2 may refer to the average thickness of the entire bottom cover 23.
  • the thickness T1 of the top cover may be greater than the thickness T2 of the bottom cover, so that the top cover 22 connected to the bottom 12 of the battery cell 1 has better structural strength.
  • the top cover 22 and the bottom cover 23 can meet the structural strength requirements while not having excessive thickness.
  • FIG. 4 is a schematic cross-sectional view of battery cells 1 arranged side by side along a second direction Y in some embodiments of the present application
  • FIG. 5 is a schematic cross-sectional view of battery cells 1 arranged side by side along a third direction Z in some embodiments of the present application.
  • the battery cell 1 also includes a side wall 13 connected between the pole 11 and the bottom 12, wherein a plurality of battery cells 1 are arranged side by side along the second direction Y and/or the third direction Z, the side walls 13 of two adjacent battery cells 1 are connected, and the first direction X, the second direction Y and the third direction Z intersect each other.
  • the poles 11 of the multiple battery cells 1 are all facing the first gap 31, thereby further improving the space utilization in the battery 100, making the structure of the battery 100 more compact, and the side-by-side arrangement of the multiple battery cells 1 also improves the structural strength of the battery 100.
  • the number n of battery cells 1, the weight G of a single battery cell 1, the top cover thickness T1 of the top cover 22, and the bottom cover thickness T2 of the bottom cover 23 satisfy the following relationship: 0.1 ⁇ ( T1 + T2 )/n*G ⁇ 16.5.
  • the ratio of the sum of the top cover thickness T1 and the bottom cover thickness T2 to the total weight of all battery cells 1 is less than 0.1, the structural strength of the box body 2 is relatively small, and the box body 2 is easily affected by the weight of the battery cell 1 and deformed or even broken.
  • the overly thick top cover 22 and bottom cover 23 are likely to make the battery 100 have a larger volume and weight, and the battery 100 is likely to be over-designed.
  • the unit of the weight G of the battery cell 1 is kg
  • the unit of the top cover thickness T1 and the bottom cover thickness T2 is mm .
  • the definitions of the top cover thickness T1 and the bottom cover thickness T2 may be the same as those in the above embodiment.
  • the top cover 22 and the bottom cover 23 can meet the structural strength requirements for supporting the battery cells 1 while not having excess thickness.
  • FIG. 6 is a schematic cross-sectional view of the pole 11 facing the gap 3 between the battery cell 1 and the box body 21 in some embodiments of the present application
  • FIG. 7 is a schematic cross-sectional view of the pole 11 facing the gap 3 between the battery cell 1 and the box body 21 in other embodiments of the present application.
  • the gap 3 includes a second gap 32 between the battery cell 1 and the box body 21 , and the pole 11 is disposed toward the second gap 32 .
  • the size of the second gap 32 can be set according to the specific structure of the battery cell 1 and the specific structure of the box body 2, so that the second gap 32 can buffer the collision between the battery cell 1 and the box body 21, and make the structure of the battery 100 more compact.
  • the second gap 32 between the battery cell 1 and the box body 21 can refer to the gap 3 between the pole 11 of the battery cell 1 and the box body 21.
  • the second gap 32 can be greater than or equal to 4 mm.
  • the pole 11 of the battery cell 1 can be arranged toward at least one of the second gaps 32.
  • the side wall 13 of the battery cell 1 can be connected to the top cover 22, thereby limiting the movement of the battery cell 1 in the box body 2 and improving the space utilization in the battery 100, making the structure of the battery 100 more compact.
  • the second gap 32 By providing the second gap 32 between the battery cell 1 and the box body 21, when the battery 100 is hit by an external force, the second gap 32 can buffer the collision between the battery cell 1 and the box body 21, thereby improving the safety performance of the battery 100.
  • the second gap 32 in the battery 100 for buffering the collision between the battery cell 1 and the body can also be used as a reserved space between the pole 11 and the box body 2 for meeting electrical safety, thereby improving the space utilization rate in the battery 100 and making the structure of the battery 100 more compact.
  • the box body 2 also includes a bottom plate 24 arranged between the top cover 22 and the bottom cover 23, and the battery cell 1 also includes a bottom 12 arranged opposite to the pole 11 in the second direction Y and a side wall 13 connected between the pole 11 and the bottom 12.
  • the side wall 13 is connected to the bottom plate 24, and the bottom plate 24 and the bottom cover 23 are spaced apart.
  • the first direction X intersects with the second direction Y.
  • the bottom plate 24 may be disposed in parallel with the bottom cover 23 or the top cover 22 , and both ends of the bottom plate 24 in the second direction Y and/or the third direction Z may be connected to the box body 21 .
  • the distance between the bottom plate 24 and the bottom cover 23 may be slightly smaller than or equal to the size of the first gap 31 .
  • the side wall 13 of the battery cell 1 and the bottom plate 24 can be connected in various ways. In some embodiments, the side wall 13 of the battery cell 1 can be connected to the bottom plate 24 by adhesive or welding. In other embodiments, the side wall 13 of the battery cell 1 can be connected to the bottom plate 24 by bolts.
  • the side wall 13 of the battery cell 1 may include a large side wall 13a and a small side wall 13b, and the surface area of the large side wall 13a is greater than the surface area of the small side wall 13b.
  • the connection part between the side wall 13 of the battery cell 1 and the bottom plate 24 can be reasonably selected according to the structure and size of the box body 2 and the battery cell 1.
  • the large side wall 13a of the battery cell 1 can be connected to the bottom plate 24.
  • the small side wall 13b of the battery cell 1 can be connected to the bottom plate 24.
  • a bottom plate 24 is provided between the top cover 22 and the bottom cover 23 to support the battery cell 1.
  • the bottom plate 24 and the bottom cover 23 are spaced apart so that the space between the bottom plate 24 and the bottom cover 23 can buffer the collision between the battery cell 1 and the bottom cover 23, thereby improving the safety performance of the battery 100.
  • the top cover thickness T1 of the top cover 22 and the bottom plate thickness T3 of the bottom plate 24 satisfy the following relationship: 0.3mm ⁇ T1+ T3 ⁇ 16.5mm .
  • the structural strength of the box body 2 is relatively small, and the box body 2 is prone to deformation or even rupture.
  • the sum of the top cover thickness T1 and the bottom plate thickness T3 is greater than 16.5mm, the excessively thick top cover 22 and bottom plate 24 are likely to make the battery 100 have a larger volume and weight, and the battery 100 is likely to be over-designed.
  • the definition of the top cover thickness T1 may be the same as the definition of the top cover thickness T1 in the aforementioned embodiment.
  • the bottom plate thickness T3 may refer to the thickness of any position on the bottom plate 24, or the bottom plate thickness T3 may refer to the average thickness of multiple positions on the bottom plate 24. In some embodiments, the bottom plate thickness T3 may refer to the minimum thickness of the bottom plate 24. In other embodiments, the bottom plate thickness T3 may refer to the average thickness of the entire bottom plate 24.
  • the bottom plate thickness T 3 may be greater than the top cover thickness T 1 , so that the bottom plate 24 for supporting the battery cell 1 has better structural strength.
  • top cover thickness T1 and the bottom plate thickness T3 By reasonably setting the relationship between the top cover thickness T1 and the bottom plate thickness T3 , the top cover 22 and the bottom plate 24 can meet the structural strength requirements while the top cover 22 and the bottom cover 23 are not likely to have excess thickness.
  • FIG8 is a schematic cross-sectional view of battery cells 1 arranged side by side along a first direction X in some embodiments of the present application
  • FIG9 is a schematic cross-sectional view of battery cells 1 arranged side by side along a third direction Z in other embodiments of the present application.
  • a plurality of battery cells 1 are arranged side by side along the first direction X and/or the third direction Z, the side walls 13 of two adjacent battery cells 1 are connected, and the first direction X, the second direction Y and the third direction Z intersect each other.
  • the large side walls 13 a and/or the small side walls 13 b of two adjacent battery cells 1 may be connected according to the structure and size of the box body 2 and the battery cell 1 .
  • the large side wall 13a of the battery cell 1 close to the bottom plate 24 can be connected to the bottom plate 24, and the large side walls 13a of two adjacent battery cells 1 are connected, so that there is a larger force-bearing area between the battery cell 1 and the bottom plate 24, thereby improving the structural stability inside the battery 100.
  • the small side wall 13b of the battery cell 1 can be connected to the bottom plate 24, and the large side walls 13a of two adjacent battery cells 1 are connected, so that there is a larger contact area between the two adjacent battery cells 1, thereby improving the structural stability inside the battery 100.
  • the poles 11 of the multiple battery cells 1 are all facing the second gap 32, thereby further improving the space utilization in the battery 100, making the structure of the battery 100 more compact, and the side-by-side arrangement of the multiple battery cells 1 also improves the structural strength of the battery 100.
  • the number n of battery cells 1, the weight G of a single battery cell 1, the top cover thickness T1 of the top cover 22, and the bottom plate thickness T3 of the bottom plate 24 satisfy the following relationship: 0.1 ⁇ ( T1 + T3 )/n*G ⁇ 16.5.
  • the ratio of the sum of the top cover thickness T1 and the bottom plate thickness T3 to the total weight of all battery cells 1 is less than 0.1, the structural strength of the box body 2 is relatively small, and the box body 2 is easily affected by the weight of the battery cell 1 and deformed or even broken.
  • the overly thick top cover 22 and bottom plate 24 are likely to make the battery 100 have a larger volume and weight, and the battery 100 is likely to be over-designed.
  • the unit of the weight G of the battery cell 1 is kg, and the units of the top cover thickness T1 and the bottom plate thickness T3 are mm.
  • the definitions of the top cover thickness T1 and the bottom plate thickness T3 may be the same as those in the above embodiment.
  • the top cover 22 and the bottom plate 24 can meet the structural strength requirements for supporting the battery cells 1 while not having excess thickness.
  • a buffer (not shown) is filled between the top cover 22 and the bottom cover 23 , and the buffer is used to provide buffering when the battery 100 is hit.
  • the buffer may be a foam material.
  • the buffer may be foamed polyurethane or melamine foam.
  • the buffer when the pole 11 faces the first gap 31 , the buffer may be filled between the pole 11 and the bottom cover 23 , so that the buffer can be used to buffer the collision between the pole 11 and the bottom cover 23 .
  • the buffer when the pole 11 faces the second gap 32 , the buffer may be filled between the bottom plate 24 and the bottom cover 23 , so that the buffer can be used to buffer the collision between the bottom plate 24 and the bottom cover 23 .
  • a buffer may be filled between the battery cell 1 and the box body 21 , so that the buffer can be used to buffer the collision between the battery cell 1 and the box body 21 .
  • the collision resistance of the battery 100 is improved.
  • the number n of battery cells 1 is less than or equal to ten.
  • the box 2 does not need to bear too much weight of the battery cells 1, and the volume required by the box 2 does not need to be too large, thereby improving the structural utilization of the battery 100.
  • an electric device comprising the battery 100 in any of the above embodiments, the battery 100 being used to provide electric energy.
  • a battery 100 is provided in some embodiments of the present application, and the battery 100 includes a box body 2 and a battery cell 1.
  • the box body 2 includes a box body 21 and a top cover 22 and a bottom cover 23 arranged oppositely on both sides of the box body 21 along a first direction X.
  • the battery cell 1 is arranged in the box body 2, and the battery cell 1 includes a pole 11 and a bottom 12 arranged oppositely, and a side wall 13 connected between the pole 11 and the bottom 12.
  • the battery cells 1 When the battery cells 1 are arranged toward the first gap 31, multiple battery cells 1 are arranged side by side along the second direction Y and/or the third direction Z, the bottom 12 of the battery cell 1 is connected to the top cover 22 of the box body 2, and the pole 11 and the bottom cover 23 are filled with buffer material.
  • the number n of battery cells 1, the weight G of a single battery cell 1, the top cover thickness T1 of the top cover 22, and the bottom cover thickness T2 of the bottom cover 23 satisfy the following relationship: 0.1 ⁇ ( T1 + T2 )/n*G ⁇ 16.5, where the number n of battery cells 1 is less than or equal to 10.
  • the battery cells 1 When the battery cells 1 are arranged toward the second gap 32, multiple battery cells 1 are arranged side by side along the first direction X and/or the third direction Z.
  • the box body 2 also has a bottom plate 24 arranged between the top cover 22 and the bottom cover 23.
  • the side wall 13 of the battery cell 1 close to the side of the bottom plate 24 is connected to the bottom plate 24.
  • the bottom plate 24 and the bottom cover 23 are filled with buffer material.
  • the number n of battery cells 1, the weight G of a single battery cell 1, the top cover thickness T1 of the top cover 22, and the bottom plate thickness T3 of the bottom plate 24 satisfy the following relationship: 0.1 ⁇ ( T1 + T3 )/n*G ⁇ 16.5, where the number n of battery cells 1 is less than or equal to 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请实施例提供一种电池及用电装置,电池包括箱体和电池单体,箱体包括箱主体以及沿第一方向在箱主体的两侧相对设置的顶盖与底盖;电池单体设置于箱体内,电池单体包括极柱,其中,电池单体与底盖和箱主体中的至少一者之间存在间隙,极柱朝向间隙设置。

Description

电池及用电装置 技术领域
本申请涉及电池技术领域,特别是涉及一种电池及用电装置。
背景技术
随着节能减排观念的推广,使用电能作为驱动能的领域也越来越多,因此各个领域对于电池的需求也越来越大,电池领域技术的发展对其他领域的发展来说也越来越重要。
在现有的大多数电池中,电池的箱体与被容纳于箱体中的电池单体间需要一定的预留空间以满足电气安全,但该预留空间的设置使得箱体内的空间利用率较差,进而使得电池的结构不够紧凑。
发明内容
鉴于上述问题,本申请提供一种电池及用电装置,其内部空间利用率较高且结构较为紧凑。
本申请第一方面的实施例提供了一种电池,电池包括箱体和电池单体,箱体包括箱主体以及沿第一方向在箱主体的两侧相对设置的顶盖与底盖;电池单体设置于箱体内,电池单体包括极柱,其中,电池单体与底盖和箱主体中的至少一者之间存在间隙,极柱朝向间隙设置。
在本申请一些实施例的技术方案中,电池包括箱体和电池单体,箱体包括箱主体以及沿第一方向在箱主体的两侧相对设置的顶盖与底盖,箱体能够用于容纳电池单体。电池单体设置于箱体内,电池单体与底盖和箱主体中的至少一者之间存在间隙,当电池受到外力碰撞时,电池单体与底 盖和箱主体间的间隙能够起到缓冲碰撞的作用,使得电池单体与箱体间不易产生相互的碰撞,提高了电池的安全性能。电池单体具有极柱,极柱用于输入或输出电流,将极柱朝向间隙设置,使得电池内用于缓冲碰撞的间隙也能够作为极柱与箱体间所需的用于满足电气安全的预留空间,提高了电池内的空间利用率,使得电池的结构较为紧凑。
根据本申请第一方面的实施方式,间隙包括电池单体与底盖间的第一间隙,极柱朝向第一间隙,电池单体还包括与极柱在第一方向上相对设置的底部,底部与顶盖连接。通过在电池单体与底盖间设置第一间隙,当电池在受到外力碰撞时,第一间隙能够缓冲电池单体与底盖间的碰撞,提高了电池的安全性能。通过将电池单体的底部与顶盖连接并将极柱朝向第一间隙,使得电池内用于缓冲电池单体与底盖间的碰撞的第一间隙也能够作为极柱与箱体间所需的用于满足电气安全的预留空间,提高了电池内的空间利用率,使得电池的结构较为紧凑。
根据本申请第一方面前述任一实施方式,顶盖的顶盖厚度T 1与底盖的底盖厚度T 2满足如下关系式:0.3mm≤T 1+T 2≤16.5mm。通过合理的设置顶盖厚度T 1与底盖厚度T 2间的关系,可使得顶盖与底盖在满足结构强度的同时顶盖与底盖不易具有多余的厚度。
根据本申请第一方面前述任一实施方式,电池单体还包括连接于极柱与底部间的侧壁,其中,多个电池单体沿第二方向和/或第三方向并排设置,相邻的两个电池单体的侧壁相连接,第一方向、第二方向和第三方向两两相交。通过将多个电池单体沿第二方向和/或第三方向并排设置,多个电池单体的极柱均朝向第一间隙,从而进一步提高电池内的空间利用率,使得电池的结构较为紧凑,多个电池单体的并排设置也提高了电池的结构强度。
根据本申请第一方面前述任一实施方式,其中电池单体的数量n、 单个电池单体的重量G、顶盖的顶盖厚度T 1与底盖的底盖厚度T 2满足如下关系式:0.1≤(T 1+T 2)/n*G≤16.5。通过合理的设置电池单体的数量n、单个电池单体的重量G、顶盖厚度T 1与底盖厚度T 2间的关系,可使得顶盖与底盖在满足用来承载电池单体的结构强度的同时顶盖与底盖不易具有多余的厚度。
根据本申请第一方面前述任一实施方式,间隙包括电池单体与箱主体间的第二间隙,极柱朝向第二间隙设置。通过在电池单体与箱主体间设置第二间隙,当电池在受到外力碰撞时,第二间隙能够缓冲电池单体与箱主体间的碰撞,提高了电池的安全性能。通过将电池单体的极柱朝向第二间隙,使得电池内用于缓冲电池单体与主体间的碰撞的第二间隙也能够作为极柱与箱体间所需的用于满足电气安全的预留空间,提高了电池内的空间利用率,使得电池的结构较为紧凑。
根据本申请第一方面前述任一实施方式,箱体还包括设置于顶盖与底盖间的底板,电池单体还包括与极柱在第二方向上相对设置的底部以及连接于极柱与底部间的侧壁,侧壁与底板连接,底板与底盖之间间隔设置,第一方向与第二方向相交。通过在顶盖与底盖间设置底板以用于承托电池单体,底板与底盖之间间隔分布使得底板与底盖间的空间能够缓冲电池单体与底盖间的碰撞,提高了电池的安全性能。
根据本申请第一方面前述任一实施方式,顶盖的顶盖厚度T 1与底板的底板厚度T 3满足如下关系式:0.3mm≤T 1+T 3≤16.5mm。通过合理的设置顶盖厚度T 1与底板厚度T 3间的关系,可使得顶盖与底板在满足结构强度的同时顶盖与底盖不易具有多余的厚度。
根据本申请第一方面前述任一实施方式,多个电池单体沿第一方向和/或第三方向并排设置,相邻的两个电池单体的侧壁相连接,第一方向、第二方向与第三方向两两相交。通过将多个电池单体沿第一方向和/或第三 方向并排设置,多个电池单体的极柱均朝向第二间隙,从而进一步提高电池内的空间利用率,使得电池的结构较为紧凑,多个电池单体的并排设置也提高了电池的结构强度。
根据本申请第一方面前述任一实施方式,其中电池单体的数量n、单个电池单体的重量G、顶盖的顶盖厚度T 1与底板的底板厚度T 3满足如下关系式:0.1≤(T 1+T 3)/n*G≤16.5。通过合理的设置电池单体的数量n、单个电池单体的重量G、顶盖厚度T 1与底板厚度T 3间的关系,可使得顶盖与底板在满足用来承载电池单体的结构强度的同时顶盖与底板不易具有多余的厚度。
根据本申请第一方面前述任一实施方式,顶盖与底盖间填充有缓冲件,缓冲件用于在电池受到碰撞时提供缓冲。通过在顶盖与底盖间设置能够提供缓冲的缓冲件,提高了电池的耐碰撞能力。
根据本申请第一方面前述任一实施方式,电池单体的数量n小于或等于10。通过设置较为合理的电池单体数量,使得箱体不用承载过大的电池单体重量,使得箱体所需的体积不用过大,提高了电池的结构利用率。
本申请第二方面的实施例提供了一种用电装置,用电装置包括上述任一实施方式中的电池,电池用于提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例的车辆的结构示意图;
图2为本申请一些实施例的电池的结构示意图;
图3为本申请一些实施例的极柱朝向电池单体与底盖间的间隙的剖视示意图;
图4为本申请一些实施例的电池单体沿第二方向并排设置的剖视示意图;
图5为本申请一些实施例的电池单体沿第三方向并排设置的剖视示意图;
图6为本申请一些实施例的极柱朝向电池单体与箱主体间的间隙的剖视示意图;
图7为本申请另一些实施例的极柱朝向电池单体与箱主体间的间隙的剖视示意图;
图8为本申请一些实施例的电池单体沿第一方向并排设置的剖视示意图;
图9为本申请另一些实施例的电池单体沿第三方向并排设置的剖视示意图。
在附图中,附图并未按照实际的比例绘制。
标记说明:
车辆1000;
电池100;控制器200;马达300;
电池单体1;极柱11;底部12;侧壁13;大侧壁13a;小侧壁13b;
箱体2;箱主体21;顶盖22;底盖23;底板24;
间隙3;第一间隙31;第二间隙32;
第一方向X;
第二方向Y;
第三方向Z。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
本申请人注意到,随着电池技术的发展,人们越来越希望电池具有 较为紧凑的结构。在现有的大多数电池中,电池单体的极柱与箱体间往往需要设置一定的预留空间以满足电池的电气安全,由于电池单体的极柱往往朝向箱体的顶盖,使得该预留空间往往设置于电池单体与箱体的顶盖之间,而电池单体与箱体间在多个方向上还需具有用于缓冲碰撞的间隙。因此,用于缓冲碰撞的间隙与预留空间的分开设置使得箱体内的空间利用率较差,进而使得电池的结构不够紧凑。
为了提高电池内部空间的利用率,使得电池具有较为紧凑的结构,申请人研究发现,可以将电池内用于缓冲碰撞的间隙设置为极柱与箱体间所需的用于满足电气安全的预留空间。
例如,箱体包括箱主体和底盖,将电池单体与箱主体或电池单体与底盖间的间隙设置为极柱与箱体间所需的用于满足电气安全的预留空间,将极柱朝向间隙设置。
在这样的电池中,当电池受到外力碰撞时,电池单体与箱主体或电池单体与底盖间的间隙能够起到缓冲碰撞的作用。将极柱朝向电池单体与箱主体或电池单体与底盖间的间隙,使得电池内用于缓冲碰撞的间隙也能够作为极柱与箱体间所需的用于满足电气安全的预留空间,提高了电池内的空间利用率,使得电池的结构较为紧凑。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括的用于封装一个或多个电池单体的箱体可以在一定程度上避免液体或其他异物影响电池单体的充电或放电。这种电池适用于各种使用电池的用电设备,例如手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等;电池用于为上述用电设备提供电能。
本申请一些实施例提供的用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。
应理解,本申请一些实施例描述的技术方案不仅仅局限适用于上述所描述的电池和用电设备,还可以适用于所有包括箱体的电池以及使用电池的用电设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
图2为本申请一些实施例的电池100的结构示意图,图3为本申请一些实施例的极柱11朝向电池单体1与底盖23间的间隙3的剖视示意 图,图中X方向为第一方向X,图中Y方向为第二方向Y,图中Z方向为第三方向Z,第一方向X、第二方向Y与第三方向Z两两相交。
如图2和图3所示,本申请提供了一种电池100,电池100包括箱体2和电池单体1,箱体2包括箱主体21以及沿第一方向X在箱主体21的两侧相对设置的顶盖22与底盖23;电池单体1设置于箱体2内,电池单体1包括极柱11,其中,电池单体1与底盖23和箱主体21中的至少一者之间存在间隙3,极柱11朝向间隙3设置。
在一些实施例中,箱主体21、顶盖22与底盖23可以共同限定出用于容纳电池单体1的容纳空间,箱体2可以一定程度上避免液体或其他异物影响电池单体1的充电或放电。例如,箱主体21可以与底盖23一体成型为一端开口的空心结构,顶盖22可以为板状结构,顶盖22盖合于箱主体21与底盖23形成的空心结构的开口侧,以使得箱主体21、顶盖22与底盖23可以共同限定出容纳空间。又例如,顶盖22可以与一部分箱主体21一体成型为一端开口的空心结构,底盖23可以与另一部分箱主体21一体成型为一端开口的空心结构,顶盖22与一部分箱主体21形成的空心结构的开口侧盖合于底盖23与另一部分箱主体21形成的空心结构的开口侧,以使得箱主体21、顶盖22与底盖23可以共同限定出容纳空间。另外,箱体2的形状可以为多种,例如,箱体2可呈圆柱体或长方体等。
在一些实施例中,在电池100中的电池单体1可以是多个,多个电池单体1之间可串联或并联或混联,混联是指多个电池单体1中既有串联又有并联。多个电池单体1之间可直接串联或并联或混联在一起,再将多个电池单体1构成的整体容纳于箱体2内;当然,电池100也可以是多个电池单体1先串联或并联或混联组成电池100模块形式,多个电池100模块再串联或并联或混联形成一个整体,并容纳于箱体2内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件(图中未示 出),汇流部件用于实现多个电池单体1之间的电连接。
在一些实施例中,电池单体1的种类可以为多种,例如,电池单体1可以为锂离子二次电池单体1、锂离子一次电池单体1、锂硫电池单体1、钠锂离子电池单体1、钠离子电池单体1或镁离子电池单体1等。电池单体1的形状可以为多种,例如,电池单体1可呈圆柱体、扁平体、长方体或其它形状等。
在一些实施例中,极柱11用于输出或输入电池单体1的电能。例如,极柱11可以用于与电池单体1的电极组件(图中未示出)电连接,以实现输出或输入电池单体1的电能。
在一些实施例中,电池单体1与底盖23之间可存在能够缓冲电池单体1与底盖23间的碰撞的间隙3,或者电池单体1与箱主体21之间可存在能够缓冲电池单体1与箱主体21检的碰撞的间隙3。在另一些实施例中,电池单体1与底盖23和箱主体21之间均存在能够起到缓冲碰撞作用的间隙3。极柱11可朝向电池单体1与底盖23之间的间隙3,和/或,极柱11可朝向电池单体1与箱主体21之间的间隙3。
在本申请一些实施例的技术方案中,电池100包括箱体2和电池单体1,箱体2包括箱主体21以及沿第一方向X在箱主体21的两侧相对设置的顶盖22与底盖23,箱体2能够用于容纳电池单体1。电池单体1设置于箱体2内,电池单体1与底盖23和箱主体21中的至少一者之间存在间隙3,当电池100受到外力碰撞时,电池单体1与底盖23和箱主体21间的间隙3能够起到缓冲碰撞的作用,使得电池单体1与箱体2间不易产生相互的碰撞,提高了电池100的安全性能。电池单体1具有极柱11,极柱11用于输入或输出电流,将极柱11朝向间隙3设置,使得电池100内用于缓冲碰撞的间隙3也能够作为极柱11与箱体2间所需的用于满足电气安全的预留空间,提高了电池100内的空间利用率,使得电池100的结构较 为紧凑。
请参照图3,在一些实施例中,间隙3包括电池单体1与底盖23间的第一间隙31,极柱11朝向第一间隙31,电池单体1还包括与极柱11在第一方向X上相对设置的底部12,底部12与顶盖22连接。
第一间隙31的尺寸可根据电池单体1的具体结构和箱体2的具体结构来进行设置,以使得第一间隙31能够缓冲电池单体1与底盖23间的碰撞,并使得电池100的结构较为紧凑。在一些实施例中,电池单体1与底盖23间的第一间隙31可以指电池单体1的极柱11与底盖23间的间隙3。在一些实施例中,第一间隙31可以大于或等于7mm。
电池单体1的底部12与顶盖22的连接方式可以为多种。在一些实施例中,电池单体1的底部12可以与顶盖22间通过胶材连接或焊接。在另一些实施例中,电池单体1的底部12可以与顶盖22间通过螺栓连接。
通过在电池单体1与底盖23间设置第一间隙31,当电池100在受到外力碰撞时,第一间隙31能够缓冲电池单体1与底盖23间的碰撞,提高了电池100的安全性能。通过将电池单体1的底部12与顶盖22连接并将极柱11朝向第一间隙31,使得电池100内用于缓冲电池单体1与底盖23间的碰撞的第一间隙31也能够作为极柱11与箱体2间所需的用于满足电气安全的预留空间,提高了电池100内的空间利用率,使得电池100的结构较为紧凑。
在一些实施例中,顶盖22的顶盖厚度T 1与底盖23的底盖厚度T 2满足如下关系式:0.3mm≤T 1+T 2≤16.5mm。当顶盖厚度T 1与底盖厚度T 2之和小于0.3mm时,箱体2所具有的结构强度较小,箱体2易发生变形甚至破裂。当顶盖厚度T 1与底盖厚度T 2之和大于16.5mm时,过厚的顶盖22与底盖23易使得电池100具有较大的体积和重量,易使得电池100出现过设计的情况。
顶盖厚度T 1可以指的是顶盖22上任意一处位置所具有的厚度,顶盖厚度T 1也可以指的是顶盖22上多处位置的平均厚度。在一些实施例中,顶盖厚度T 1可以指的是顶盖22所具有的最小厚度。在另一些实施例中,顶盖厚度T 1可以指的是整个顶盖22所具有的平均厚度。
底盖厚度T 2可以指的是底盖23上任意一处位置所具有的厚度,底盖厚度T 2也可以指的是底盖23上多处位置的平均厚度。在一些实施例中,底盖厚度T 2可以指的是底盖23所具有的最小厚度。在另一些实施例中,底盖厚度T 2可以指的是整个底盖23所具有的平均厚度。
在一些实施例中,顶盖厚度T 1可以大于底盖厚度T 2,使得与电池单体1的底部12连接的顶盖22具有较好的结构强度。
通过合理的设置顶盖厚度T 1与底盖厚度T 2间的关系,可使得顶盖22与底盖23在满足结构强度的同时顶盖22与底盖23不易具有多余的厚度。
图4为本申请一些实施例的电池单体1沿第二方向Y并排设置的剖视示意图,图5为本申请一些实施例的电池单体1沿第三方向Z并排设置的剖视示意图。
如图4和图5所示,在一些实施例中,电池单体1还包括连接于极柱11与底部12间的侧壁13,其中,多个电池单体1沿第二方向Y和/或第三方向Z并排设置,相邻的两个电池单体1的侧壁13相连接,第一方向X、第二方向Y和第三方向Z两两相交。
通过将多个电池单体1沿第二方向Y和/或第三方向Z并排设置,多个电池单体1的极柱11均朝向第一间隙31,从而进一步提高电池100内的空间利用率,使得电池100的结构较为紧凑,多个电池单体1的并排设置也提高了电池100的结构强度。
在一些实施例中,其中电池单体1的数量n、单个电池单体1的重 量G、顶盖22的顶盖厚度T 1与底盖23的底盖厚度T 2满足如下关系式:0.1≤(T 1+T 2)/n*G≤16.5。当顶盖厚度T 1与底盖厚度T 2的和与所有电池单体1的总重量之间的比值小于0.1时,箱体2所具有的结构强度较小,箱体2易受电池单体1的重量影响而发生变形甚至破裂。当顶盖厚度T 1与底盖厚度T 2的和与所有电池单体1的总重量之间的比值大于16.5时,过厚的顶盖22与底盖23易使得电池100具有较大的体积和重量,易使得电池100出现过设计的情况。
电池单体1的重量G的单位为kg,顶盖厚度T 1与底盖厚度T 2的单位为mm。其中,顶盖厚度T 1与底盖厚度T 2的定义可以与前述实施例中的顶盖厚度T 1与底盖厚度T 2的定义相同。
通过合理的设置电池单体1的数量n、单个电池单体1的重量G、顶盖厚度T 1与底盖厚度T 2间的关系,可使得顶盖22与底盖23在满足用来承载电池单体1的结构强度的同时顶盖22与底盖23不易具有多余的厚度。
图6为本申请一些实施例的极柱11朝向电池单体1与箱主体21间的间隙3的剖视示意图,图7为本申请另一些实施例的极柱11朝向电池单体1与箱主体21间的间隙3的剖视示意图。
如图6和图7所示,在一些实施例中,间隙3包括电池单体1与箱主体21间的第二间隙32,极柱11朝向第二间隙32设置。
第二间隙32的尺寸可根据电池单体1的具体结构和箱体2的具体结构来进行设置,以使得第二间隙32能够缓冲电池单体1与箱主体21间的碰撞,并使得电池100的结构较为紧凑。在一些实施例中,电池单体1与箱主体21间的第二间隙32可以指电池单体1的极柱11与箱主体21间的间隙3。在一些实施例中,第二间隙32可以大于或等于4mm。
在一些实施例中,电池单体1在第二方向Y和/或第三方向Z的两 侧均与箱主体21间存在第二间隙32,使得电池单体1与箱主体21间在多个方向上均不易产生相互碰撞。在一些实施例中,电池单体1的极柱11可以朝向其中的至少一个第二间隙32设置。
在一些实施例中,当电池单体1的极柱11朝向第二间隙32设置时,电池单体1的侧壁13可与顶盖22连接,从而限制电池单体1在箱体2内的移动,且提高了电池100内的空间利用率,使得电池100的结构较为紧凑。
通过在电池单体1与箱主体21间设置第二间隙32,当电池100在受到外力碰撞时,第二间隙32能够缓冲电池单体1与箱主体21间的碰撞,提高了电池100的安全性能。通过将电池单体1的极柱11朝向第二间隙32,使得电池100内用于缓冲电池单体1与主体间的碰撞的第二间隙32也能够作为极柱11与箱体2间所需的用于满足电气安全的预留空间,提高了电池100内的空间利用率,使得电池100的结构较为紧凑。
请继续参照图6与图7,在一些实施例中,箱体2还包括设置于顶盖22与底盖23间的底板24,电池单体1还包括与极柱11在第二方向Y上相对设置的底部12以及连接于极柱11与底部12间的侧壁13,侧壁13与底板24连接,底板24与底盖23之间间隔设置,第一方向X与第二方向Y相交。
在一些实施例中,底板24可以与底盖23或顶盖22平行设置,底板24在第二方向Y和/或第三方向Z的两端可以与箱主体21连接。
在一些实施例中,底板24与底盖23之间的距离可以略小于或等于第一间隙31的尺寸。
电池单体1的侧壁13与底板24的连接方式可以为多种。在一些实施例中,电池单体1的侧壁13可以与底板24间通过胶材连接或焊接。在另一些实施例中,电池单体1的侧壁13可以与底板24间通过螺栓连接。
在一些实施例中,电池单体1的侧壁13可以包括大侧壁13a和小侧壁13b,大侧壁13a的表面积大于小侧壁13b的表面积。可根据箱体2和电池单体1的结构和尺寸,合理的选择电池单体1的侧壁13与底板24间的连接部位。在一些实施例中,可以设置电池单体1的大侧壁13a与底板24连接。在另一些实施例中,可以设置电池单体1的小侧壁13b可以与底板24连接。
通过在顶盖22与底盖23间设置底板24以用于承托电池单体1,底板24与底盖23之间间隔分布使得底板24与底盖23间的空间能够缓冲电池单体1与底盖23间的碰撞,提高了电池100的安全性能。
在一些实施例中,顶盖22的顶盖厚度T 1与底板24的底板厚度T 3满足如下关系式:0.3mm≤T 1+T 3≤16.5mm。当顶盖厚度T 1与底板厚度T 3之和小于0.3mm时,箱体2所具有的结构强度较小,箱体2易发生变形甚至破裂。当顶盖厚度T 1与底板厚度T 3之和大于16.5mm时,过厚的顶盖22与底板24易使得电池100具有较大的体积和重量,易使得电池100出现过设计的情况。
顶盖厚度T 1的定义可以与前述实施例中的顶盖厚度T 1的定义相同。
底板厚度T 3可以指的是底板24上任意一处位置所具有的厚度,底板厚度T 3也可以指的是底板24上多处位置的平均厚度。在一些实施例中,底板厚度T 3可以指的是底板24所具有的最小厚度。在另一些实施例中,底板厚度T 3可以指的是整个底板24所具有的平均厚度。
在一些实施例中,底板厚度T 3可以大于顶盖厚度T 1,使得用于承托电池单体1的底板24具有较好的结构强度。
通过合理的设置顶盖厚度T 1与底板厚度T 3间的关系,可使得顶盖22与底板24在满足结构强度的同时顶盖22与底盖23不易具有多余的厚度。
图8为本申请一些实施例的电池单体1沿第一方向X并排设置的剖视示意图,图9为本申请另一些实施例的电池单体1沿第三方向Z并排设置的剖视示意图。
如图8和图9所示,在一些实施例中,多个电池单体1沿第一方向X和/或第三方向Z并排设置,相邻的两个电池单体1的侧壁13相连接,第一方向X、第二方向Y与第三方向Z两两相交。
在一些实施例中,可根据箱体2和电池单体1的结构和尺寸来相应设置相邻两个电池单体1的大侧壁13a和/或小侧壁13b相连接。
在一些实施例中,当多个电池单体1沿第一方向X并排设置时,可设置靠近底板24一侧的电池单体1的大侧壁13a与底板24连接,相邻两个电池单体1的大侧壁13a相连接,使得电池单体1与底板24间具有较大的受力面积,提高了电池100内部的结构稳定性。
在一些实施例中,当多个电池单体1沿第三方向Z并排设置时,可设置电池单体1的小侧壁13b与底板24连接,相邻两个电池单体1的大侧壁13a相连接,使得相邻两个电池单体1间具有较大的接触面积,提高了电池100内部的结构稳定性。
通过将多个电池单体1沿第一方向X和/或第三方向Z并排设置,多个电池单体1的极柱11均朝向第二间隙32,从而进一步提高电池100内的空间利用率,使得电池100的结构较为紧凑,多个电池单体1的并排设置也提高了电池100的结构强度。
在一些实施例中,其中电池单体1的数量n、单个电池单体1的重量G、顶盖22的顶盖厚度T 1与底板24的底板厚度T 3满足如下关系式:0.1≤(T 1+T 3)/n*G≤16.5。当顶盖厚度T 1与底板厚度T 3的和与所有电池单体1的总重量之间的比值小于0.1时,箱体2所具有的结构强度较小,箱体2易受电池单体1的重量影响而发生变形甚至破裂。当顶盖厚度T 1与 底板厚度T 3的和与所有电池单体1的总重量之间的比值大于16.5时,过厚的顶盖22与底板24易使得电池100具有较大的体积和重量,易使得电池100出现过设计的情况。
电池单体1的重量G的单位为kg,顶盖厚度T 1与底板厚度T 3的单位为mm。其中,顶盖厚度T 1与底板厚度T 3的定义可以与前述实施例中的顶盖厚度T 1与底板厚度T 3的定义相同。
通过合理的设置电池单体1的数量n、单个电池单体1的重量G、顶盖厚度T 1与底板厚度T 3间的关系,可使得顶盖22与底板24在满足用来承载电池单体1的结构强度的同时顶盖22与底板24不易具有多余的厚度。
在一些实施例中,顶盖22与底盖23间填充有缓冲件(图中未示出),缓冲件用于在电池100受到碰撞时提供缓冲。
缓冲件可以为发泡材料,在一些实施例中,缓冲件可以为发泡聚氨酯或三聚氰胺泡绵。
在一些实施例中,当极柱11朝向第一间隙31时,缓冲件可以填充于极柱11与底盖23之间,使得缓冲件能够用于缓冲极柱11与底盖23之间的碰撞。
在另一些实施例中,当极柱11朝向第二间隙32时,缓冲件可以填充于底板24与底盖23之间,使得缓冲件能够用于缓冲底板24与底盖23之间的碰撞。
在一些实施例中,电池单体1与箱主体21之间也可填充有缓冲件,使得缓冲件能够用于缓冲电池单体1与箱主体21之间的碰撞。
通过在顶盖22与底盖23间设置能够提供缓冲的缓冲件,提高了电池100的耐碰撞能力。
在一些实施例中,电池单体1的数量n小于或等于10。
通过设置较为合理的电池单体1数量,使得箱体2不用承载过大的电池单体1重量,使得箱体2所需的体积不用过大,提高了电池100的结构利用率。
根据本申请的一些实施例,本申请的再一些实施例中还提供了一种用电装置,用电装置包括上述任一实施例中的电池100,电池100用于提供电能。
根据本申请的一些实施例,本申请的一些实施例中提供了一种电池100,该电池100包括箱体2和电池单体1。箱体2包括箱主体21以及沿第一方向X在箱主体21的两侧相对设置的顶盖22与底盖23。电池单体1设置于箱体2内,电池单体1包括相对设置的极柱11和底部12以及连接于极柱11与底部12间的侧壁13。其中,电池单体1与底盖23间存在第一间隙31,电池单体1与箱主体21间存在第二间隙32,极柱11朝向第一间隙31和/或第二间隙32设置。当电池单体1朝向第一间隙31设置时,多个电池单体1沿第二方向Y和/或第三方向Z并排设置,电池单体1的底部12与箱体2的顶盖22连接,极柱11与底盖23间填充有缓冲材料,电池单体1的数量n、单个电池单体1的重量G、顶盖22的顶盖厚度T 1与底盖23的底盖厚度T 2满足如下关系式:0.1≤(T 1+T 2)/n*G≤16.5,其中电池单体1的数量n小于或等于10。当电池单体1朝向第二间隙32设置时,多个电池单体1沿第一方向X和/或第三方向Z并排设置,箱体2还具有设置于顶盖22与底盖23之间的底板24,靠近底板24一侧的电池单体1的侧壁13与底板24连接,底板24与底盖23间填充有缓冲材料,电池单体1的数量n、单个电池单体1的重量G、顶盖22的顶盖厚度T 1与底板24的底板厚度T 3满足如下关系式:0.1≤(T 1+T 3)/n*G≤16.5,其中电池单体1的数量n小于或等于10。
本领域技术人员应能理解,上述实施例均是示例性而非限制性的。在不同实施例中出现的不同技术特征可以进行组合,以取得有益效果。本领域技术人员在研究附图、说明书及权利要求书的基础上,应能理解并实现所揭示的实施例的其他变化的实施例。在权利要求书中,术语“包括”并不排除其他装置或步骤;物品没有使用数量词修饰时旨在包括 一个/种或多个/种物品,并可以与“一个/种或多个/种物品”互换使用”;术语“第一”、“第二”用于标示名称而非用于表示任何特定的顺序。权利要求中的任何附图标记均不应被理解为对保护范围的限制。权利要求中出现的多个部分的功能可以由一个单独的硬件或软件模块来实现。某些技术特征出现在不同的从属权利要求中并不意味着不能将这些技术特征进行组合以取得有益效果。

Claims (13)

  1. 一种电池,包括:
    箱体(2),所述箱体(2)包括箱主体(21)以及沿第一方向在所述箱主体(21)的两侧相对设置的顶盖(22)与底盖(23);
    电池单体(1),所述电池单体(1)设置于所述箱体(2)内,所述电池单体(1)包括极柱(11),
    其中,所述电池单体(1)与所述底盖(23)和所述箱主体(21)中的至少一者之间存在间隙(3),所述极柱(11)朝向所述间隙(3)设置。
  2. 根据权利要求1所述的电池,其中,所述间隙(3)包括所述电池单体(1)与所述底盖(23)间的第一间隙(31),所述极柱(11)朝向所述第一间隙(31),所述电池单体(1)还包括与所述极柱(11)在所述第一方向上相对设置的底部(12),所述底部(12)与所述顶盖(22)连接。
  3. 根据权利要求2所述的电池,其中,所述顶盖(22)的顶盖厚度T 1与所述底盖(23)的底盖厚度T 2满足如下关系式:
    0.3mm≤T 1+T 2≤16.5mm。
  4. 根据权利要求2所述的电池,其中,所述电池单体(1)还包括连接于所述极柱(11)与所述底部(12)间的侧壁(13),
    其中,多个所述电池单体(1)沿第二方向和/或第三方向并排设置,相邻的两个所述电池单体(1)的所述侧壁(13)相连接,所述第一方向、所述第二方向和所述第三方向两两相交。
  5. 根据权利要求4所述的电池,其中,其中所述电池单体(1)的数量n、单个所述电池单体(1)的重量G、所述顶盖(22)的顶盖厚度T 1与 所述底盖(23)的底盖厚度T 2满足如下关系式:
    0.1≤(T 1+T 2)/n*G≤16.5。
  6. 根据权利要求1所述的电池,其中,所述间隙(3)包括所述电池单体(1)与所述箱主体(21)间的第二间隙(32),所述极柱(11)朝向所述第二间隙(32)设置。
  7. 根据权利要求6所述的电池,其中,所述箱体(2)还包括设置于所述顶盖(22)与所述底盖(23)间的底板(24),所述电池单体(1)还包括与所述极柱(11)在第二方向上相对设置的底部(12)以及连接于所述极柱(11)与所述底部(12)间的侧壁(13),所述侧壁(13)与所述底板(24)连接,所述底板(24)与所述底盖(23)之间间隔设置,所述第一方向与所述第二方向相交。
  8. 根据权利要求7所述的电池,其中,所述顶盖(22)的顶盖厚度T 1与所述底板(24)的底板厚度T 3满足如下关系式:
    0.3mm≤T 1+T 3≤16.5mm。
  9. 根据权利要求7所述的电池,其中,多个所述电池单体(1)沿所述第一方向和/或第三方向并排设置,相邻的两个所述电池单体(1)的所述侧壁(13)相连接,所述第一方向、所述第二方向与所述第三方向两两相交。
  10. 根据权利要求9所述的电池,其中,其中所述电池单体(1)的数量n、单个所述电池单体(1)的重量G、所述顶盖(22)的顶盖厚度T 1与所述底板(24)的底板厚度T 3满足如下关系式:
    0.1≤(T 1+T 3)/n*G≤16.5。
  11. 根据权利要求1至10任一项所述的电池,其中,所述顶盖(22)与所述底盖(23)间填充有缓冲件,所述缓冲件用于在所述电池受到碰撞 时提供缓冲。
  12. 根据权利要求1至10任一项所述的电池,其中,所述电池单体(1)的数量n小于或等于10。
  13. 一种用电装置,所述用电装置包括如权利要求1至12所述的电池,所述电池用于提供电能。
PCT/CN2022/123501 2022-09-30 2022-09-30 电池及用电装置 WO2024065769A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/123501 WO2024065769A1 (zh) 2022-09-30 2022-09-30 电池及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/123501 WO2024065769A1 (zh) 2022-09-30 2022-09-30 电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024065769A1 true WO2024065769A1 (zh) 2024-04-04

Family

ID=90475715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123501 WO2024065769A1 (zh) 2022-09-30 2022-09-30 电池及用电装置

Country Status (1)

Country Link
WO (1) WO2024065769A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216698608U (zh) * 2021-12-28 2022-06-07 宁德时代新能源科技股份有限公司 电池和用电设备
CN216903182U (zh) * 2021-11-03 2022-07-05 宁德时代新能源科技股份有限公司 电池箱体、集成液冷电池箱体、电池及用电装置
CN217134495U (zh) * 2022-04-12 2022-08-05 宁德时代新能源科技股份有限公司 电池和用电装置
CN217182349U (zh) * 2022-05-06 2022-08-12 中创新航科技股份有限公司 电池包
CN115101880A (zh) * 2022-05-06 2022-09-23 中创新航科技股份有限公司 电池包及车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216903182U (zh) * 2021-11-03 2022-07-05 宁德时代新能源科技股份有限公司 电池箱体、集成液冷电池箱体、电池及用电装置
CN216698608U (zh) * 2021-12-28 2022-06-07 宁德时代新能源科技股份有限公司 电池和用电设备
CN217134495U (zh) * 2022-04-12 2022-08-05 宁德时代新能源科技股份有限公司 电池和用电装置
CN217182349U (zh) * 2022-05-06 2022-08-12 中创新航科技股份有限公司 电池包
CN115101880A (zh) * 2022-05-06 2022-09-23 中创新航科技股份有限公司 电池包及车辆

Similar Documents

Publication Publication Date Title
WO2022134055A1 (zh) 电池的箱体、电池、用电装置、制备箱体的方法和装置
WO2024021304A1 (zh) 热管理部件、电池以及用电设备
WO2023198012A1 (zh) 电池和用电设备
EP4089769B1 (en) Electrode assembly, battery cell, battery, and method and device for manufacturing electrode assembly
US20230411756A1 (en) Battery, electric device, and method and device for manufacturing battery
WO2023207617A1 (zh) 采样组件、电池及用电装置
WO2023221649A1 (zh) 电池和用电设备
WO2024021293A1 (zh) 热管理部件、电池以及用电装置
WO2024036752A1 (zh) 电极组件、电池单体、电池及用电装置
WO2024065769A1 (zh) 电池及用电装置
WO2024031418A1 (zh) 电池、用电装置以及电池的成型方法
WO2024000085A1 (zh) 电池及用电装置
CN216872125U (zh) 电池单体、电池和用电设备
WO2022170492A1 (zh) 电池、用电装置、制备电池的方法和设备
KR20230129053A (ko) 배터리, 전기 장치, 배터리 제조 방법 및 장치
CN220934296U (zh) 电池和车辆
WO2024082216A1 (zh) 电池箱、电池及用电装置
WO2024026829A1 (zh) 电池单体、电池以及用电装置
CN219534751U (zh) 电池的箱体、电池以及用电装置
WO2023240797A1 (zh) 电池和用电装置
WO2023133737A1 (zh) 电池、用电设备、制备电池的方法和设备
CN218827514U (zh) 热管理部件、电池以及用电设备
WO2024098234A1 (zh) 一种电池单体、电池及用电装置
CN220934160U (zh) 卷针、电极组件、电池单体、电池和用电设备
WO2023133747A1 (zh) 电池、用电设备、制备电池的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960382

Country of ref document: EP

Kind code of ref document: A1