WO2023221649A1 - 电池和用电设备 - Google Patents

电池和用电设备 Download PDF

Info

Publication number
WO2023221649A1
WO2023221649A1 PCT/CN2023/083833 CN2023083833W WO2023221649A1 WO 2023221649 A1 WO2023221649 A1 WO 2023221649A1 CN 2023083833 W CN2023083833 W CN 2023083833W WO 2023221649 A1 WO2023221649 A1 WO 2023221649A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery cell
connection part
cells
battery cells
Prior art date
Application number
PCT/CN2023/083833
Other languages
English (en)
French (fr)
Inventor
李全国
刘倩
叶永煌
喻春鹏
孙婧轩
肖得隽
陈佳华
Original Assignee
江苏时代新能源科技有限公司
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏时代新能源科技有限公司, 宁德时代新能源科技股份有限公司 filed Critical 江苏时代新能源科技有限公司
Publication of WO2023221649A1 publication Critical patent/WO2023221649A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, and in particular to a battery and electrical equipment.
  • Embodiments of the present application provide a battery and electrical equipment that can reduce the risk of thermal runaway spread of the battery, thereby enhancing the safety of the battery.
  • a battery including: a plurality of first battery cells and a plurality of second battery cells, and at least one second battery cell is disposed between any two of the first battery cells. body, any one of the second battery cells is adjacent to at least one of the second battery cells; wherein the thermal stability of the second battery cell is higher than the thermal stability of the first battery cell .
  • the battery includes a plurality of first battery cells and a plurality of second battery cells. It means that at least one second battery cell is arranged between two first battery cells, and the thermal stability of the second battery cell is higher than the thermal stability of the first battery cell. That is to say, with thermal stability A good second battery cell isolates multiple first battery cells with poor thermal stability. In this way, when the first battery cell undergoes thermal runaway, the barrier of the second battery cell will reduce the thermal runaway. proliferation risk, thereby enhancing battery safety.
  • the capacity of the first battery cell is greater than the capacity of the second battery cell.
  • the second battery cell is a sodium ion battery.
  • the electrode materials used in sodium-ion batteries are mainly sodium salts.
  • Sodium salt raw materials are abundant and cheap. Due to the characteristics of sodium salts, low-concentration electrolytes are allowed to be used, which can reduce production costs. Moreover, sodium ions have good thermal stability and can effectively block heat. Uncontrolled proliferation.
  • the battery includes: a plurality of battery cell groups, each of the plurality of battery cell groups including a plurality of the first battery cells arranged along a first direction. and a plurality of second battery cells, wherein in the first direction, two first battery cells are separated by at least two adjacent second battery cells, and the plurality of second battery cells battery cell groups are arranged along a second direction, and in the second direction, there is at least one second battery cell between any two first battery cells, and the first direction and the The second direction intersects, and the first direction and the second direction are both perpendicular to the axis of the first battery cell and the axis of the second battery cell.
  • This arrangement can ensure that any first battery cell is surrounded by the second battery cell, blocking the spread of uncontrolled heat.
  • the first battery cell and the second battery cell are cylindrical battery cells, and the plurality of battery cell groups are staggered along the second direction.
  • the battery cells of two adjacent battery cell groups are staggered, which can make full use of the space between adjacent curved surfaces.
  • the orthographic projections of the axes of all battery cells in two adjacent battery cell groups on the first plane do not overlap, and the orthographic projections of the axes of all battery cells in two adjacent battery cell groups are not adjacent and are separated by one battery cell group.
  • the orthographic projections of the axes of all the battery cells in the two battery cell groups on a first plane are coincident, and the first plane is perpendicular to the plane formed by the first direction and the second direction.
  • Battery cells in different battery cell groups can be arranged in a staggered manner, reducing the distance between multiple battery cells. There are no gaps, and this misaligned arrangement makes reasonable use of space and improves the space utilization of multiple battery cells in the battery.
  • two adjacent second battery cells and one first battery cell are alternately arranged along the first direction.
  • the battery includes a bus component, and the bus component is used to connect two adjacent second battery cells in parallel and then connect one of the first battery cells in series.
  • the bus component includes a first connection part and a second connection part, and the first connection part and the second connection part form a V shape; wherein, the first end of the first connection part Connected to the electrode terminal of one of the two adjacent second battery cells, the second end of the first connection part is connected to the third end of the second connection part and then connected to the pole of one of the first battery cells, and the fourth end of the second connection part is connected to the other of the two adjacent second battery cells. Electrode terminal connections.
  • the bus part is V-shaped, which can ensure that two adjacent second batteries are connected when two adjacent second battery cells and one first battery cell are alternately arranged along the first direction in the battery cell group.
  • the cells are connected in parallel and connected in series with a first battery cell, so that the discharge capacity of the battery will not be affected by the low-capacity second battery, ensuring that the battery has a higher capacity.
  • the V-shaped bus component can also ensure that a The first battery cell and the two second battery cells have equal binding forces and will not be deformed due to expansion of the battery 10 in the later stages of the cycle.
  • the angle between the first connecting part and the second connecting part is 40° ⁇ 70°.
  • the included angle between the first connecting part and the second connecting part is 50° ⁇ 65°.
  • such an included angle setting can ensure that both ends of the first connection part and the second connection part can be connected to the electrode terminals of the corresponding battery cells, thereby realizing the bus component to connect the two
  • the adjacent second battery cells are connected in parallel and then connected in series with the first battery cells.
  • the bus component includes a third connection part and a fourth connection part, and the third connection part and the fourth connection part form a T shape; wherein, the first end of the third connection part The second end of the fourth connection part is connected to the electrode terminal of two adjacent second battery cells respectively, the third end of the fourth connection part is connected to the electrode terminal of one of the first battery cells, and the third end of the fourth connection part is connected to the electrode terminal of the first battery cell.
  • the fourth end of the four connecting parts is connected to the middle part of the third connecting part.
  • the bus part is in a T shape, which can ensure that two adjacent second batteries are connected when two adjacent second battery cells and one first battery cell are alternately arranged along the first direction in the battery cell group. After the cells are connected in parallel and connected in series with a first battery cell, the discharge capacity of the battery will not be affected by the low-capacity second battery cell and cannot be exerted, ensuring that the battery has a higher capacity.
  • the width W3 of the third connection part and the width W4 of the fourth connection part satisfy: W3 ⁇ W4.
  • the bus part is T-shaped
  • the current is divided into two at the intersection of the T shape and flows through the two second battery cells respectively. Therefore, the width W3 of the third connection part is also reduced accordingly, which can reduce the weight of the bus part. Improve the gravimetric energy density of batteries.
  • the battery includes end plates disposed at both ends of the battery cell group in the first direction.
  • End plates are provided at both ends of the battery cell group to fix the battery cell group, restrict the movement of the battery cells within the battery, ensure the stability of the internal structure of the battery, and improve the safety of the battery.
  • the first surface of the end plate facing the inside of the battery is provided with a structural member protruding toward the inside of the battery, and the structural member is filled in the first surface of the battery in the first direction. in the space between the battery cell at the end and the first surface of the end plate.
  • the structural member is a ladder-shaped structural member
  • the ladder-shaped structural member includes a structure along the a top wall opposite to the end plate in the first direction and a side wall connected to the end plate; the top wall and the side wall abut against the end of the battery in the first direction Battery cells.
  • the top wall and side wall of the trapezoidal structural member can abut the cylindrical surface of the battery cells at the end of the battery in the first direction, thereby limiting the battery cells at the end of the battery in the first direction. of movement.
  • the second surface of the end plate facing away from the interior of the battery is provided with reinforcing ribs.
  • Setting reinforcement ribs on the surface of the end plate can prevent the battery cells from expanding and squeezing the end plate, causing the end plate to deform.
  • the reinforcing rib is an X-shaped structure.
  • X-shaped structural reinforcement can more effectively prevent end plate deformation.
  • the end plate is a hollow structure. This can reduce the weight of the end plate and increase the weight energy density of the battery.
  • beams are provided within the hollow structure.
  • the cross beam can ensure the structural strength of the end plate and prevent the end plate from being easily deformed and damaged.
  • the battery includes side plates, and the side plates are disposed at both ends of the battery cell group in a third direction, and the third direction is parallel to the axis of the battery cell.
  • Side plates are provided at both ends of the battery cell group to fix the battery cell group, restrict the movement of the battery cells within the battery, ensure the stability of the internal structure of the battery, and improve the safety of the battery.
  • the third surface of the side plate facing the inside of the battery is provided with a groove that is recessed in a direction away from the inside of the battery, and the fourth surface of the side plate facing away from the inside of the battery is provided with a groove.
  • the groove is provided corresponding to the battery cell group.
  • the groove extends along the first direction and is opposite to the explosion-proof valve of each battery cell in the battery cell group in the third direction.
  • the groove extends along the first direction and can guide the excrement along the It is discharged from the battery in the direction in which the groove extends.
  • the bottom wall of the groove opposite to the explosion-proof valve has a thickness greater than that of the side wall. The thickness of the plate in areas other than the groove.
  • an electrical device including: the battery in the above first aspect or any possible implementation of the first aspect, where the battery is used to provide electrical energy.
  • At least one second battery cell is disposed between any two first battery cells, and the thermal stability of the second battery cell is higher than that of the first battery cell. , that is to say, use second battery cells with good thermal stability to separate multiple first battery cells with poor thermal stability. In this way, when the first battery cells undergo thermal runaway, due to the second battery The barrier of the monomer will reduce the risk of thermal runaway spread, thus enhancing the safety of the battery.
  • Figure 1 is a schematic structural diagram of a vehicle disclosed in an embodiment of the present application.
  • Figure 2 is a partial structural schematic diagram of a battery disclosed in an embodiment of the present application.
  • Figure 3 is a partial structural schematic diagram of a battery disclosed in an embodiment of the present application.
  • Figure 4 is a partial structural schematic diagram of a battery disclosed in an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a first battery cell and a second battery cell disclosed in an embodiment of the present application
  • Figure 6 is a partial structural schematic diagram of a battery disclosed in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a V-shaped bus component disclosed in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a T-shaped bus component disclosed in an embodiment of the present application.
  • Figure 9 is an exploded view of a battery disclosed in an embodiment of the present application.
  • Figure 10 is a partial structural schematic diagram of a battery disclosed in an embodiment of the present application.
  • Figure 11 is a schematic diagram of a side plate disclosed in an embodiment of the present application.
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium-sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, prismatic battery cells and soft pack battery cells. The application examples are not limited to this either.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode plate, a negative electrode plate and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode collector that is coated with the positive electrode active material layer. Fluid, the positive electrode current collector without the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode collector that is coated with the negative electrode active material layer.
  • Fluid, the negative electrode current collector that is not coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the isolation film can be polypropylene (PP) or polyethylene (polyethylene, PE).
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. . As the application fields of power batteries continue to expand, their market demand is also constantly expanding.
  • a battery which includes: a plurality of first battery cells and a plurality of second battery cells, and at least one second battery is disposed between any two first battery cells. cells, any second battery cell is adjacent to at least one second battery cell; wherein the thermal stability of the second battery cell is higher than the thermal stability of the first battery cell.
  • Power-consuming devices can be vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the following embodiments take the electrical equipment as a vehicle as an example.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or a new energy vehicle. Extended range vehicles, etc.
  • a motor 40 , a controller 30 and a battery 10 may be disposed inside the vehicle 1 .
  • the controller 30 is used to control the battery 10 to provide power to the motor 40 .
  • the battery 10 may be disposed at the bottom, front or rear of the vehicle 1 .
  • the battery 10 can be used to supply power to the vehicle 1 .
  • the battery 10 can be used as an operating power source of the vehicle 1 and used in the circuit system of the vehicle 1 , for example, to meet the power requirements for starting, navigation, and operation of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source of the vehicle 1 , but also can be used as a driving power source of the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel, or in mixed connection.
  • Hybrid connection refers to a mixture of series and parallel connection.
  • Batteries may also be called battery packs.
  • multiple battery cells may be first connected in series, parallel, or mixed to form a battery module, and then multiple battery modules may be connected in series, parallel, or mixed to form a battery.
  • multiple battery cells can directly form a battery, or they can first form a battery module, and then the battery module can form a battery.
  • FIG. 2 shows a schematic diagram of the partial structure of a battery 10 according to an embodiment of the present application.
  • the battery 10 in the embodiment of the present application includes: a plurality of first battery cells 21 and a plurality of second battery cells 22. Any two At least one second battery cell 22 is disposed between the first battery cells 21. Any second battery cell 22 is adjacent to at least one second battery cell 22. The thermal stability of the second battery cell 22 Higher than the thermal stability of the first battery cell 21 .
  • the battery cell in Figure 2 is a schematic illustration of the battery cell in the embodiment of the present application, and the battery cell in the embodiment of the present application is not limited thereto.
  • the battery cell in the embodiment of the present application It can also be a flat body, rectangular parallelepiped or other shapes.
  • the thermal stability of a battery cell refers to the maximum temperature that a fully charged battery cell can withstand in a high temperature environment without igniting or exploding. The higher the temperature a battery cell withstands, the better the thermal stability of the battery cell is. Therefore, when some of the battery cells in the battery 10 catch fire, the probability that the surrounding battery cells will be baked at high temperature and cause thermal runaway spread is lower.
  • the battery 10 in the embodiment of the present application includes a plurality of first battery cells 21 and a plurality of second battery cells 22. At least one second battery cell 22 is disposed between any two first battery cells 21, and the third battery cell 22 is disposed between any two first battery cells 21.
  • the thermal stability of the second battery cell 22 is higher than the thermal stability of the first battery cell 21. That is to say, the second battery cells 22 with good thermal stability are used to combine multiple first batteries with poor thermal stability.
  • the cells 21 are separated. In this way, when the first battery cell 21 undergoes thermal runaway, the barrier of the second battery cell 22 will reduce the risk of thermal runaway diffusion, thus enhancing the safety of the battery 10 .
  • the capacity of the first battery cell 21 is greater than the capacity of the second battery cell 22 .
  • the capacity of a battery cell refers to the amount of electricity stored in the battery cell.
  • battery cell capacity is one of the important performance indicators to measure the performance of a battery cell. It indicates the amount of electricity released by a battery cell under certain conditions (discharge rate, temperature, termination voltage, etc.) (JS-150D can be used for discharge testing ).
  • the second battery cell 22 is a sodium ion battery.
  • the electrode materials used in sodium-ion batteries are mainly sodium salts.
  • Sodium salt raw materials are abundant and cheap. Due to the characteristics of sodium salts, low-concentration electrolytes are allowed to be used, which can reduce production costs. Moreover, sodium ions have good thermal stability and can effectively block heat. Uncontrolled proliferation.
  • the first battery cell 21 may be a lithium-ion battery.
  • lithium-ion batteries The thermal stability of lithium-ion batteries is worse than that of sodium-ion batteries, but lithium-ion batteries have a higher capacity, which can ensure that the battery 10 has a higher capacity.
  • Lithium-ion batteries include lithium iron phosphate batteries, lithium iron manganese phosphate batteries, ternary batteries, etc. This application does not limit the types of lithium-ion batteries.
  • the battery 10 includes: a plurality of battery cell groups, and each of the plurality of battery cell groups includes a plurality of first battery cells arranged along a first direction x.
  • the cell groups are arranged along the second direction y, and in the second direction y, there is at least one second battery cell 22 between any two first battery cells 21, and the first direction x and the second direction y intersect,
  • the first direction x and the second direction y are both perpendicular to the axis of the first battery cell 21 and the axis of the second battery cell 22 .
  • the second direction y intersects the first direction x, that is, the second direction y intersects with the arrangement direction of the battery cells in the battery cell group.
  • the second direction y can intersect with the arrangement direction of the battery cells in the battery cell group.
  • the arrangement direction is perpendicular, or it can have a certain angle with the arrangement direction of the battery cells in the battery cell group (as shown in the y' direction in Figure 2), but the second direction y needs to be perpendicular to the first battery cell.
  • the axis of the body 21 and the axis of the second battery cell 22 Only two schematic directions are shown in FIG. 2 , but the second direction y is not limited thereto.
  • This arrangement can ensure that any first battery cell 21 is surrounded by the second battery cells 22 to prevent the spread of uncontrolled heat.
  • the first battery cell 21 and the second battery cell 22 are cylindrical battery cells, and multiple battery cell groups are staggered along the second direction y.
  • the battery cells of two adjacent battery cell groups are staggered, which can make full use of the space between adjacent curved surfaces.
  • the orthographic projections of the axes of all battery cells in two adjacent battery cell groups on the first plane 15 do not overlap, are not adjacent, and The axes of all the battery cells in the two battery cell groups separated by one battery cell group coincide with the orthographic projections on the first plane 15, and the first plane 15 is perpendicular to the first direction x and the second direction y. flat.
  • Battery cells in different battery cell groups can be arranged in a staggered manner, which reduces the gaps between multiple battery cells. This staggered arrangement makes reasonable use of space and improves the space utilization of multiple battery cells in the battery. .
  • two adjacent second battery cells 22 and one first battery cell 21 are alternately arranged along the first direction x.
  • the battery 10 in the embodiment of the present application may also include a bus component 14, which is used to realize electrical connections between multiple battery cells, such as parallel connection, series connection, or mixed connection.
  • the bus component 14 can connect two adjacent second battery cells 22 in parallel with one first battery cell by connecting the electrode terminals of the battery cells. Body 21 in series.
  • the bus part 14 may be fixed to the electrode terminal of the battery cell by welding.
  • the bus component 14 includes a first connecting part 141 and a second connecting part 142 , and the first connecting part 141 and the second connecting part 142 form a V shape.
  • the first end of the first connection part 141 is connected to the electrode terminal of one of the two adjacent second battery cells 22
  • the second end of the first connection part 141 is connected to the second end of the first connection part 141
  • the third end of the connecting portion 142 is connected to the electrode terminal of one first battery cell 21
  • the fourth end of the second connecting portion 142 is connected to the other second battery among the two adjacent second battery cells 22 .
  • the electrode terminals of the cell 22 are connected.
  • the electrode terminals of the battery cell can be used to electrically connect with the internal electrode assembly of the battery cell to output electric energy.
  • two electrode terminals included in any battery cell are used as an example for description.
  • the two electrode terminals are respectively a positive electrode terminal and a negative electrode terminal.
  • the positive electrode terminal is used for electrical connection with the positive electrode tab
  • the negative electrode terminal is used for electrical connection with the negative electrode tab.
  • the positive electrode terminal and the positive electrode tab can be connected directly or indirectly, and the negative electrode terminal and the negative electrode tab can be connected directly or indirectly.
  • the positive electrode terminal is electrically connected to the positive electrode tab through a connecting member
  • the negative electrode terminal is electrically connected to the negative electrode tab through a connecting member.
  • the two electrode terminals in the embodiment of the present application can be respectively provided on the two cylindrical bottom surfaces of the battery cell.
  • the two cylindrical bottom surfaces of the first battery cell 21 are respectively provided with A first electrode terminal 211.
  • a second electrode terminal 221 is respectively provided on the two cylindrical bottom surfaces of the second battery cell 22 to facilitate the implementation of multiple battery cells. electrical connection between.
  • the material of the bus component 14 can be aluminum, copper, iron, gold, silver or alloy conductive materials, which is not limited in this application.
  • the bus part 14 is V-shaped, which can ensure that two adjacent second battery cells 22 and one first battery cell 21 in the battery cell group are alternately arranged along the first direction x.
  • the second battery cell 22 is connected in parallel and then connected in series with a first battery cell 21, so that the discharge capacity of the battery 10 will not be affected by the low-capacity second battery cell 22 and cannot be exerted, ensuring that the battery 10 has a higher capacity.
  • the V-shaped bus part 14 can also ensure that the binding force on one first battery cell 21 and two second battery cells 22 is equal, and will not deform due to the expansion of the battery 10 at the later stage of the cycle.
  • the angle between the first connecting part 141 and the second connecting part 142 is ⁇ , and ⁇ may be 40° ⁇ 70°.
  • the angle ⁇ between the first connecting part 141 and the second connecting part 142 may be 50° ⁇ 65°.
  • the angle ⁇ between the first connection part 141 and the second connection part 142 is related to whether the circumferential surface diameters of the first battery cell 21 and the second battery cell 22 are the same.
  • the circumferential diameters of the first battery cell 21 and the second battery cell 22 may be the same or different, so the angle ⁇ between the first connection part 141 and the second connection part 142 is determined according to the The relationship between the circumferential diameters of the first battery cell 21 and the second battery cell 22 is adjusted to ensure that both ends of the first connection part 141 and the second connection part 142 can be connected to the corresponding battery cells.
  • the electrode terminals are connected, so that the bus component 14 connects two adjacent second battery cells 22 in parallel and then connects them in series with the first battery cell 21 .
  • the width W1 of the first connecting part 141 and the width W2 of the second connecting part 142 may be 5 mm to 35 mm.
  • W1 and W2 may be 10 mm to 30 mm.
  • Such a width setting can ensure that the bus component 14 realizes the electrical connection between battery cells, while also reducing the weight of the bus component 14 and improving the weight energy density of the battery 10 .
  • the bus part 14 may also be T-shaped.
  • the bus part 14 includes a third connection part 143 and a fourth connection part 144, and the third connection part 143 and the fourth connection part 144 form a T shape.
  • first end and the second end of the third connection part 143 are connected to the electrode terminals of two adjacent second battery cells 22 respectively, and the third end of the fourth connection part 144 is connected to one first battery cell. 21 is connected to the electrode terminal, and the fourth end of the fourth connection part 144 is connected to the middle part of the third connection part 143 .
  • the bus part 14 is T-shaped, which can ensure that two adjacent second battery cells 22 and one first battery cell 21 in the battery cell group are alternately arranged along the first direction x.
  • the second battery cell 22 is connected in parallel and then connected in series with a first battery cell 21, so that the discharge capacity of the battery 10 will not be reduced by the low-capacity one.
  • the second battery cell 22 is affected and cannot function, ensuring that the battery 10 has a higher capacity.
  • the width W3 of the third connection part 143 and the width W4 of the fourth connection part 144 satisfy: W3 ⁇ W4.
  • the bus part 14 is T-shaped, the current is divided into two at the intersection of the T shape and flows through the two second battery cells 22 respectively. Therefore, the width W3 of the third connection part 143 is also reduced accordingly, which can reduce the bus part. 14 weight, increasing the weight energy density of the battery 10.
  • the battery 10 includes end plates 12 , and the end plates 12 are disposed at both ends of the battery cell group in the first direction x.
  • End plates 12 are provided at both ends of the battery cell group to fix the battery cell group, restrict the movement of the battery cells in the battery 10, ensure the stability of the internal structure of the battery 10, and improve the safety of the battery 10.
  • the first surface 121 of the end plate 12 facing the inside of the battery 10 is provided with a structural member 123 protruding toward the inside of the battery 10 .
  • the structural member 123 is filled in the battery 10 in the first direction. x in the space between the battery cells at the end and the first surface 121 of the end plate 12 .
  • the structural member 123 is a ladder-shaped structural member.
  • the ladder-shaped structural member includes a top wall 1231 arranged opposite to the end plate 12 along the first direction x and connected to the end plate 12
  • the side wall, the top wall 1231 and the side wall abut the battery cell at the end of the battery 10 in the first direction Two side walls 1233.
  • the structural member 123 in the embodiment of the present application is a trapezoidal structural member to match the cylindrical battery cells in the embodiment of the present application.
  • the battery cells in the embodiment of the present application are not limited to cylindrical battery cells, so the structure
  • the component 123 is not limited to a trapezoidal structural component.
  • the shape and structure of the structural component 123 in the embodiment of the present application can be designed accordingly according to the shape of the battery cells and the arrangement of the battery cells, which is not limited by the present application.
  • the top wall and side wall of the trapezoidal structural member can abut the cylindrical surface of the battery cell at the end of the battery 10 in the first direction x, thereby limiting the end of the battery 10 in the first direction x. movement of battery cells.
  • the second surface 122 of the end plate 12 facing away from the interior of the battery 10 is provided with reinforcing ribs 124 .
  • Providing reinforcing ribs 124 on the surface of the end plate 12 can prevent the battery cells from expanding and extruding the end plate 12 to cause deformation of the end plate 12 .
  • the reinforcing ribs 124 have an X-shaped structure.
  • the X-shaped structural reinforcement ribs 124 can more effectively prevent the end plate 12 from deforming.
  • the end plate 12 is a hollow structure. This can reduce the weight of the end plate 12 and increase the weight energy density of the battery 10 .
  • cross beams 125 are provided in the hollow structure.
  • the cross beam 125 can ensure the structural strength of the end plate 12 and prevent the end plate 12 from being easily deformed and damaged.
  • the battery 10 includes side plates 13.
  • the side plates 13 are provided at both ends of the battery cell group in the third direction z.
  • the third direction z is parallel to the axis of the battery cell. .
  • Side plates 13 are provided at both ends of the battery cell group to fix the battery cell group, restrict the movement of the battery cells in the battery 10, ensure the stability of the internal structure of the battery 10, and improve the safety of the battery 10.
  • the third surface 131 of the side plate 13 facing the inside of the battery 10 is provided with a groove 133 that is recessed in a direction away from the inside of the battery 10
  • the fourth surface 132 of the side plate 13 facing away from the inside of the battery 10 is provided with a groove 133 .
  • a convex portion 134 corresponding to the groove 133 protrudes in a direction away from the inside of the battery 10.
  • the groove 133 is provided corresponding to the battery cell group.
  • the groove 133 extends along the first direction x and is opposite to the explosion-proof valve 23 of each battery cell in the battery cell group in the third direction z.
  • the groove 133 is along the first direction x
  • the excrement can be guided to be discharged from the battery 10 along the direction in which the groove 133 extends.
  • the thickness L2 of the bottom wall of the groove 133 opposite to the explosion-proof valve 23 is greater than the thickness L1 of other areas of the side plate 13 except for the groove.
  • the thickness L3 of the two side walls of the groove 133 may also be greater than the thickness L1 of other areas of the side plate 13 except the groove 133 . In this way, it can be further ensured that the groove 133 for accommodating excrement will not be damaged by the impact force generated when the explosion-proof valve 23 ruptures and releases excrement.
  • the electrical equipment may include the aforementioned embodiments. Batteries in 10.
  • the electrical equipment may be a vehicle 1, a ship, a spacecraft, etc., but the embodiment of the present application is not limited to this.
  • the weight is measured.
  • the specific results are as follows in Table 1.
  • the specific test method is: place the battery in an environment of 25°C for 2 hours to make the battery temperature consistent with the ambient temperature. Then connect the battery to the charger and discharger, and set the charger and discharger to charge the battery at a charging rate of 1C until the battery voltage reaches the rated upper limit voltage of the battery and then stops. Then let the battery sit for 2 hours to allow the temperature generated by battery charging to drop to room temperature. Place the fully charged battery in the thermostat and set the heating rate to 1°C/minute. When the temperature of the thermostat rises to 80°C, set the temperature to be kept warm for 2 hours. Then increase the temperature by 5°C at a heating rate of 1°C/min and keep it at this temperature for 30 minutes. Then increase it by 5°C and keep it for 30 minutes until the battery catches fire and explodes. The temperature at this time is recorded as the maximum withstand temperature of the battery. The test results are shown in Table 2.
  • the thermal stability of sodium-ion batteries is better, and its thermal stability is higher than lithium iron manganese phosphate batteries, lithium iron phosphate batteries, ternary five-series batteries, ternary six-series batteries, and ternary eight-series batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Materials Engineering (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请涉及电池技术领域,公开了一种电池和用电设备,该电池包括:多个第一电池单体和多个第二电池单体,任意两个第一电池单体之间设置有至少一个第二电池单体,任意一个第二电池单体与至少一个第二电池单体相邻;其中,第二电池单体的热稳定性高于第一电池单体的热稳定性。本申请实施例的技术方案,能够降低电池热失控扩散的风险,从而增强电池的安全性。

Description

电池和用电设备
相关申请的交叉引用
本申请要求享有于2022年05月18日提交的名称为“电池和用电设备”的中国专利申请202210537274.9的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种电池和用电设备。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的性能外,安全问题也是一个不可忽视的问题。如果电池的安全问题不能保证,那该电池就无法使用。因此,如何增强电池的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请实施例提供了一种电池和用电设备,能够降低电池热失控扩散的风险,从而增强电池的安全性。
第一方面,提供了一种电池,包括:多个第一电池单体和多个第二电池单体,任意两个所述第一电池单体之间设置有至少一个所述第二电池单体,任意一个所述第二电池单体与至少一个所述第二电池单体相邻;其中,所述第二电池单体的热稳定性高于所述第一电池单体的热稳定性。
在本申请实施例中,电池包括多个第一电池单体和多个第二电池单体,任 意两个第一电池单体之间设置有至少一个第二电池单体,而第二电池单体的热稳定性高于第一电池单体的热稳定性,也就是说,用热稳定性好的第二电池单体将多个热稳定性较差的第一电池单体隔开,这样,当第一电池单体发生热失控时,由于第二电池单体的阻隔,会降低热失控扩散的风险,从而增强电池的安全性。
在一些实施例中,所述第一电池单体的容量大于所述第二电池单体的容量。
这样,在降低电池热失控扩散的风险的同时,还可以保证电池具有较大的容量,增加电池的续航时间,提升电池的性能。
在一些实施例中,所述第二电池单体为钠离子电池。
钠离子电池使用的电极材料主要是钠盐,钠盐原材料储量丰富,价格低廉,由于钠盐特性,允许使用低浓度电解液,可降低生产成本,且钠离子热稳定性好,可以有效阻隔热失控的扩散。
在一些实施例中,所述电池包括:多个电池单体组,所述多个电池单体组中的每个电池单体组包括沿第一方向排列的多个所述第一电池单体和多个所述第二电池单体,其中,在所述第一方向上,两个所述第一电池单体被至少两个相邻的所述第二电池单体隔开,所述多个电池单体组沿第二方向排列,且在所述第二方向上,任意两个所述第一电池单体之间具有至少一个所述第二电池单体,所述第一方向和所述第二方向相交,所述第一方向和所述第二方向均垂直于所述第一电池单体的轴线和所述第二电池单体的轴线。这样的排列方式可以保证任意一个第一电池单体的四周被第二电池单体包围,阻隔热失控的扩散。
在一些实施例中,第一电池单体和所述第二电池单体为圆柱形电池单体,所述多个电池单体组沿所述第二方向错位排列。相邻两个电池单体组的电池单体之间交错设置,能够充分利用相邻曲面之间的空间。
在一些实施例中,相邻两个所述电池单体组内的全部电池单体的轴线在第一平面上的正投影不重合,不相邻的且中间间隔一个所述电池单体组的两个所述电池单体组内的全部电池单体的轴线在第一平面上的正投影重合,所述第一平面垂直于所述第一方向和所述第二方向形成的平面。
不同电池单体组中的电池单体可以错位排列,减小了多个电池单体之间的 空隙,且该种错位排列方式合理利用空间,提高了电池内多个电池单体的空间利用率。
在一些实施例中,在所述电池单体组中,两个相邻的所述第二电池单体和一个所述第一电池单体沿所述第一方向交替排列。
在一些实施例中,所述电池包括汇流部件,所述汇流部件用于将两个相邻的所述第二电池单体并联后与一个所述第一电池单体串联。
通过汇流部件将两个较低容量的第二电池单体并联后再与第一电池单体串联,可以确保电池的放电容量不至于被低容量的第二电池单体影响而发挥不出来,保证了电池的较高容量。
在一些实施例中,所述汇流部件包括第一连接部和第二连接部,所述第一连接部和所述第二连接部形成V字形;其中,所述第一连接部的第一端与两个相邻的所述第二电池单体中的一个所述第二电池单体的电极端子连接,所述第一连接部的第二端与所述第二连接部的第三端连接后与一个所述第一电池单体的极柱连接,所述第二连接部的第四端与两个相邻的所述第二电池单体中的另一个所述第二电池单体的电极端子连接。
汇流部件呈V字形,可以在电池单体组中的两个相邻的第二电池单体和一个第一电池单体沿第一方向交替排列的情况下,保证两个相邻的第二电池单体并联后与一个第一电池单体串联,使得电池的放电容量不至于被低容量的第二电池电池影响而发挥不出来,保证电池具有较高容量,V字形汇流部件还可以确保对一个第一电池单体和两个第二电池单体的束缚力相等,不会因循环后期因电池10的膨胀而发生形变。
在一些实施例中,所述第一连接部和所述第二连接部之间的夹角为40°~70°。
在一些实施例中,所述第一连接部和所述第二连接部之间的所述夹角为50°~65°。
基于电池单体的排列方式,这样的夹角设置可以保证第一连接部和第二连接部的两个端部都可以与相对应的电池单体的电极端子连接,从而实现汇流部件将两个相邻的第二电池单体并联后与第一电池单体串联。
在一些实施例中,所述第一连接部的宽度W1与所述第二连接部的宽度W2 满足:W1=W2。
这样,可以保证流过两个第二电池单体的电流相等,确保两个第二电池单体的电流一致性更高。
在一些实施例中,所述汇流部件包括第三连接部和第四连接部,所述第三连接部和所述第四连接部形成T字形;其中,所述第三连接部的第一端和第二端分别与两个相邻的所述第二电池单体的电极端子连接,所述第四连接部的第三端与一个所述第一电池单体的电极端子连接,所述第四连接部的第四端连接于所述第三连接部的中部。
汇流部件呈T字形,可以在电池单体组中的两个相邻的第二电池单体和一个第一电池单体沿第一方向交替排列的情况下,保证两个相邻的第二电池单体并联后与一个第一电池单体串联,使得电池的放电容量不至于被低容量的第二电池单体影响而发挥不出来,保证电池具有较高容量。
在一些实施例中,所述第三连接部的宽度W3与所述第四连接部的宽度W4满足:W3≤W4。
因为汇流部件呈T字形,在T形的交点处电流一分为二分别流经两个第二电池单体,因此,第三连接部的宽度W3也相应减小,可以降低汇流部件的重量,提高电池的重量能量密度。
在一些实施例中,所述电池包括端板,所述端板设置于所述电池单体组在所述第一方向上的两端。
在电池单体组的两端设置端板,对电池单体组进行固定,限制电池内的电池单体的移动,保证电池内部的结构稳定,提升电池的安全性。
在一些实施例中,所述端板的朝向所述电池内部的第一表面设置有向所述电池内部凸出的结构件,所述结构件填充于所述电池在所述第一方向上的端部的电池单体与所述端板的所述第一表面之间的空间内。
这样,可以保证电池单体与端板间无多余的空间,从而进一步限制电池单体在第一方向上的移动,保证电池内部的结构稳定,提升电池的安全性。
在一些实施例中,所述结构件为梯形结构件,所述梯形结构件包括沿所述 第一方向与所述端板相对设置的顶壁以及与所述端板连接的侧壁,所述顶壁和所述侧壁抵接于所述电池在所述第一方向上的端部的电池单体。
梯形结构件由于其形状设计,其顶壁和侧壁可以与电池在第一方向上的端部的电池单体的圆柱面相抵接,从而限制电池在第一方向上的端部的电池单体的移动。
在一些实施例中,所述端板的背离所述电池内部的第二表面设置有加强筋。
在端板的表面设置加强筋可以防止电池单体膨胀挤压端板造成端板变形。
在一些实施例中,所述加强筋为X型结构。X型结构加强筋可以更有效防止端板变形。
在一些实施例中,所述端板为中空结构。这样可以减轻端板的重量,提升电池的重量能量密度。
在一些实施例中,所述中空结构内设置有横梁。横梁可以保证端板的结构强度,使端板不易变形损坏。
在一些实施例中,所述电池包括侧板,所述侧板设置于所述电池单体组在第三方向上的两端,所述第三方向平行于所述电池单体的轴线。
在电池单体组的两端设置侧板,对电池单体组进行固定,限制电池内的电池单体的移动,保证电池内部的结构稳定,提升电池的安全性。
在一些实施例中,所述侧板的朝向所述电池内部的第三表面设置有向远离所述电池内部的方向凹陷的凹槽,所述侧板的背离所述电池内部的第四表面设置有与所述凹槽对应的向远离所述电池内部的方向凸出的凸部,所述凹槽与所述电池单体组对应设置。
在一些实施例中,所述凹槽沿所述第一方向延伸,与所述电池单体组中的每个电池单体的防爆阀在所述第三方向上相对设置。
这样,电池单体的防爆阀与侧板之间具有一定的距离,可以避免防爆阀破裂释放出的排泄物直接冲击侧板,破坏侧板;凹槽沿第一方向延伸,可以引导排泄物沿着凹槽延伸的方向从电池内排出。
在一些实施例中,所述凹槽的与所述防爆阀相对的底壁的厚度大于所述侧 板的除所述凹槽外的其他区域的厚度。
将凹槽的底壁设置的较厚,可以避免凹槽的底壁被防爆阀破裂释放出的排泄物冲击损坏。
第二方面,提供了一种用电设备,包括:上述第一方面或第一方面的任意可能的实现方式中的电池,所述电池用于提供电能。
本申请实施例的技术方案中,任意两个第一电池单体之间设置有至少一个第二电池单体,而第二电池单体的热稳定性高于第一电池单体的热稳定性,也就是说,用热稳定性好的第二电池单体将多个热稳定性较差的第一电池单体隔开,这样,当第一电池单体发生热失控时,由于第二电池单体的阻隔,会降低热失控扩散的风险,从而增强电池的安全性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池的局部结构示意图;
图3是本申请一实施例公开的一种电池的局部结构示意图;
图4是本申请一实施例公开的一种电池的局部结构示意图;
图5是本申请一实施例公开的一种第一电池单体和第二电池单体的结构示意图;
图6是本申请一实施例公开的一种电池的局部结构示意图;
图7是本申请一实施例公开的一种V字形汇流部件的示意图;
图8是本申请一实施例公开的一种T字形汇流部件的示意图;
图9是本申请一实施例公开的一种电池的爆炸图;
图10是本申请一实施例公开的一种电池的局部结构示意图;
图11是本申请一实施例公开的一种侧板的示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本 申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
在电池技术的发展中,除了提高电池的性能外,安全问题也是一个不可忽视的问题。在电池使用过程中,电池热失控危险性极高,因此如何有效阻止热失控的扩散,降低热失控扩散的风险成为研究人员关注的重点。
鉴于此,本申请实施例提供了一种电池,该电池包括:多个第一电池单体和多个第二电池单体,任意两个第一电池单体之间设置有至少一个第二电池单体,任意一个第二电池单体与至少一个第二电池单体相邻;其中,第二电池单体的热稳定性高于第一电池单体的热稳定性。在本申请实施例中,任意两个第一电池单体之间设置有 至少一个第二电池单体,而第二电池单体的热稳定性高于第一电池单体的热稳定性,也就是说,用热稳定性好的第二电池单体将多个热稳定性较差的第一电池单体隔开,这样,当第一电池单体发生热失控时,由于第二电池单体的阻隔,会降低热失控扩散的风险,从而增强电池的安全性。
本申请实施例描述的技术方案均适用于各种使用电池的用电设备。
用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池也可以称为电池包。在一些实施例中,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。
图2示出了本申请实施例的一种电池10的局部结构的示意图。如图2所示,本申请实施例的电池10包括:多个第一电池单体21和多个第二电池单体22,任意两 个第一电池单体21之间设置有至少一个第二电池单体22,任意一个第二电池单体22与至少一个第二电池单体22相邻,第二电池单体22的热稳定性高于第一电池单体21的热稳定性。
应理解,图2中的电池单体是本申请实施例中的电池单体的一种示意性图示,本申请实施例的电池单体不限于此,比如,本申请实施例的电池单体还可以是扁平体、长方体或其它形状等。
电池单体的热稳定性是指满充的电池单体在高温环境下所耐受的不起火爆炸的最高温度。电池单体承受温度越高说明电池单体的热稳定性越好,那么电池10内的部分电池单体起火燃烧时,周围的电池单体受到高温烘烤导致热失控扩散的几率越低。
本申请实施例的电池10包括多个第一电池单体21和多个第二电池单体22,任意两个第一电池单体21之间设置有至少一个第二电池单体22,而第二电池单体22的热稳定性高于第一电池单体21的热稳定性,也就是说,用热稳定性好的第二电池单体22将多个热稳定性较差的第一电池单体21隔开,这样,当第一电池单体21发生热失控时,由于第二电池单体22的阻隔,会降低热失控扩散的风险,从而增强电池10的安全性。
在本申请实施例中,第一电池单体21的容量大于第二电池单体22的容量。
电池单体的容量是指电池单体存储电量的大小。具体地,电池单体容量是衡量电池单体性能的重要性能指标之一,它表示在一定条件下(放电率、温度、终止电压等)电池单体放出的电量(可用JS-150D做放电测试)。
这样,在降低电池10热失控扩散的风险的同时,还可以保证电池10具有较大的容量,增加电池10的续航时间,提升电池10的性能。
可选地,在本申请实施例中,第二电池单体22为钠离子电池。
钠离子电池使用的电极材料主要是钠盐,钠盐原材料储量丰富,价格低廉,由于钠盐特性,允许使用低浓度电解液,可降低生产成本,且钠离子热稳定性好,可以有效阻隔热失控的扩散。
可选地,本申请实施例中,第一电池单体21可以为锂离子电池。
锂离子电池的热稳定性较钠离子电池的差,但锂离子电池具有较高的容量,可以保证电池10具有较高的容量。
锂离子电池包括磷酸铁锂电池,磷酸锰铁锂电池,三元电池等,本申请对锂离子电池的种类不做限定。
在本申请实施例中,如图2所示,电池10包括:多个电池单体组,多个电池单体组中的每个电池单体组包括沿第一方向x排列的多个第一电池单体21和多个第二电池单体22,其中,在第一方向x上,两个第一电池单体21被至少两个相邻的第二电池单体22隔开,多个电池单体组沿第二方向y排列,且在第二方向y上,任意两个第一电池单体21之间具有至少一个第二电池单体22,第一方向x和第二方向y相交,第一方向x和第二方向y均垂直于第一电池单体21的轴线和第二电池单体22的轴线。
应理解,第二方向y与第一方向x相交,也就是第二方向y与电池单体组中的电池单体的排列方向相交,第二方向y可以与电池单体组中的电池单体的排列方向垂直,也可以与电池单体组中的电池单体的排列方向具有一定的夹角(如图2中的y’方向所示),但第二方向y需垂直于第一电池单体21的轴线和第二电池单体22的轴线。图2中仅示出了两个示意性的方向,但第二方向y不限于此。
这样的排列方式可以保证任意一个第一电池单体21的四周被第二电池单体22包围,阻隔热失控的扩散。
在本申请实施例中,如图2所示,第一电池单体21和第二电池单体22为圆柱形电池单体,多个电池单体组沿第二方向y错位排列。相邻两个电池单体组的电池单体之间交错设置,能够充分利用相邻曲面之间的空间。
可选地,在本申请实施例中,如图3所示,相邻两个电池单体组内的全部电池单体的轴线在第一平面15上的正投影不重合,不相邻的且中间间隔一个电池单体组的两个电池单体组内的全部电池单体的轴线在第一平面15上的正投影重合,第一平面15垂直于第一方向x和第二方向y形成的平面。
不同电池单体组中的电池单体可以错位排列,减小了多个电池单体之间的空隙,且该种错位排列方式合理利用空间,提高了电池内多个电池单体的空间利用率。
在本申请实施例中,如图2所示,在电池单体组中,两个相邻的第二电池单体22和一个第一电池单体21沿第一方向x交替排列。
应理解,本申请实施例的电池10还可以包括汇流部件14,该汇流部件14用于实现多个电池单体之间的电连接,例如并联或串联或混联。具体地,汇流部件14可通过连接电池单体的电极端子将两个相邻的第二电池单体22并联后与一个第一电池单 体21串联。进一步地,汇流部件14可通过焊接固定于电池单体的电极端子。
通过汇流部件14将两个较低容量的第二电池单体22并联后再与第一电池单体21串联,可以确保电池10的放电容量不至于被低容量的第二电池单体22影响而发挥不出来,保证了电池10的较高容量。
可选地,在本申请实施例中,如图4所示,汇流部件14包括第一连接部141和第二连接部142,第一连接部141和第二连接部142形成V字形。
具体地,第一连接部141的第一端与两个相邻的第二电池单体22中的一个第二电池单体22的电极端子连接,第一连接部141的第二端与第二连接部142的第三端连接后与一个第一电池单体21的电极端子连接,第二连接部142的第四端与两个相邻的第二电池单体22中的另一个第二电池单体22的电极端子连接。
电池单体的电极端子可以用于与电池单体的内部的电极组件电连接,以输出电能,这里以任意一个电池单体包括的两个电极端子为例进行描述。该两个电极端子分别为正极电极端子和负极电极端子,正极电极端子用于与正极极耳电连接,负极电极端子用于与负极极耳电连接。正极电极端子与正极极耳可以直接连接,也可以间接连接,负极电极端子与负极极耳可以直接连接,也可以间接连接。例如,正极电极端子通过一个连接构件与正极极耳电连接,负极电极端子通过一个连接构件与负极极耳电连接。
可选地,本申请实施例的两个电极端子可以分别设置于电池单体的两个圆柱底面,如图5的(a)所示,第一电池单体21的两个圆柱底面分别设置有一个第一电极端子211,类似的,如图5的(b)所示,第二电池单体22的两个圆柱底面分别设置有一个第二电极端子221,以便于实现多个电池单体之间的电连接。
汇流部件14的材质可选铝,铜,铁,金,银或者合金类导电材料,本申请对此不做限定。
汇流部件14呈V字形,可以在电池单体组中的两个相邻的第二电池单体22和一个第一电池单体21沿第一方向x交替排列的情况下,保证两个相邻的第二电池单体22并联后与一个第一电池单体21串联,使得电池10的放电容量不至于被低容量的第二电池单体22影响而发挥不出来,保证电池10具有较高容量,V字形汇流部件14还可以确保对一个第一电池单体21和两个第二电池单体22的束缚力相等,不会因循环后期因电池10的膨胀而发生形变。
在本申请实施例中,如图6所示,第一连接部141和第二连接部142之间的夹角为α,α可以为40°~70°。
可选地,在本申请实施例中,第一连接部141和第二连接部142之间的夹角α可以为50°~65°。
基于电池单体的排列方式,第一连接部141和第二连接部142之间的夹角α与第一电池单体21和第二电池单体22的圆周面直径大小是否相同有关,在本申请实施例中,第一电池单体21和第二电池单体22的圆周面直径大小可以相同,也可以不同,因此第一连接部141和第二连接部142之间的夹角α根据第一电池单体21和第二电池单体22的圆周面直径大小的关系进行调整,这样可以保证第一连接部141和第二连接部142的两个端部都可以与相对应的电池单体的电极端子连接,从而实现汇流部件14将两个相邻的第二电池单体22并联后与第一电池单体21串联。
在本申请实施例中,如图6所示,第一连接部141的宽度W1与第二连接部142的宽度W2满足:W1=W2。
这样,可以保证流过两个第二电池单体22的电流相等,确保两个第二电池单体22的电流一致性更高。
进一步地,在本申请实施例中,第一连接部141的宽度W1与第二连接部142的宽度W2可以为5mm~35mm。
可选地,在本申请实施例中,W1和W2可以为10mm~30mm。
这样的宽度设置,可以保证汇流部件14实现电池单体间的电连接的同时,减轻汇流部件14的重量,提升电池10的重量能量密度。
可选地,在本申请实施例中,如图7所示,汇流部件14还可以为T字形。具体地,汇流部件14包括第三连接部143和第四连接部144,第三连接部143和第四连接部144形成T字形。
具体地,第三连接部143的第一端和第二端分别与两个相邻的第二电池单体22的电极端子连接,第四连接部144的第三端与一个第一电池单体21的电极端子连接,第四连接部144的第四端连接于第三连接部143的中部。
汇流部件14呈T字形,可以在电池单体组中的两个相邻的第二电池单体22和一个第一电池单体21沿第一方向x交替排列的情况下,保证两个相邻的第二电池单体22并联后与一个第一电池单体21串联,使得电池10的放电容量不至于被低容量的 第二电池单体22影响而发挥不出来,保证电池10具有较高容量。
在本申请实施例中,如图8所示,第三连接部143的宽度W3与第四连接部144的宽度W4满足:W3≤W4。
可选地,在本申请实施例中,1/2W4≤W3≤W4。
因为汇流部件14呈T字形,在T形的交点处电流一分为二分别流经两个第二电池单体22,因此,第三连接部143的宽度W3也相应减小,可以降低汇流部件14的重量,提高电池10的重量能量密度。
在本申请实施例中,如图9所示,电池10包括端板12,端板12设置于电池单体组在第一方向x上的两端。
在电池单体组的两端设置端板12,对电池单体组进行固定,限制电池10内的电池单体的移动,保证电池10内部的结构稳定,提升电池10的安全性。
在本申请实施例中,如图9所示,端板12的朝向电池10内部的第一表面121设置有向电池10内部凸出的结构件123,结构件123填充于电池10在第一方向x上的端部的电池单体与端板12的第一表面121之间的空间内。
这样,可以保证电池单体与端板12间无多余的空间,从而进一步限制电池单体在第一方向x上的移动,保证电池10内部的结构稳定,提升电池10的安全性。
可选地,在本申请实施例中,如图10所示,结构件123为梯形结构件,梯形结构件包括沿第一方向x与端板12相对设置的顶壁1231以及与端板12连接的侧壁,顶壁1231和侧壁抵接于电池10在第一方向x上的端部的电池单体,如图10所示,梯形结构件的侧壁可以为第一侧壁1232和第二侧壁1233。
应理解,本申请实施例中的结构件123为梯形结构件是与本申请实施例中的圆柱形电池单体相匹配,本申请实施例的电池单体不限于圆柱形电池单体,故结构件123也不限于梯形结构件,本申请实施例的结构件123的形状构造可根据电池单体的形状以及电池单体的排布形式而进行相应设计,本申请对此不做限定。
梯形结构件由于其形状设计,其顶壁和侧壁可以与电池10在第一方向x上的端部的电池单体的圆柱面相抵接,从而限制电池10在第一方向x上的端部的电池单体的移动。
在本申请实施例中,端板12的背离电池10内部的第二表面122设置有加强筋124。
在端板12的表面设置加强筋124可以防止电池单体膨胀挤压端板12造成端板12变形。
可选地,在本申请实施例中,加强筋124为X型结构。X型结构加强筋124可以更有效防止端板12变形。
在本申请实施例中,端板12为中空结构。这样可以减轻端板12的重量,提升电池10的重量能量密度。
进一步地,中空结构内设置有横梁125。横梁125可以保证端板12的结构强度,使端板12不易变形损坏。
在本申请实施例中,如图9所示,电池10包括侧板13,侧板13设置于电池单体组在第三方向z上的两端,第三方向z平行于电池单体的轴线。
在电池单体组的两端设置侧板13,对电池单体组进行固定,限制电池10内的电池单体的移动,保证电池10内部的结构稳定,提升电池10的安全性。
在本申请实施例中,侧板13的朝向电池10内部的第三表面131设置有向远离电池10内部的方向凹陷的凹槽133,侧板13的背离电池10内部的第四表面132设置有与凹槽133对应的向远离电池10内部的方向凸出的凸部134,凹槽133与电池单体组对应设置。
进一步地,凹槽133沿第一方向x延伸,与电池单体组中的每个电池单体的防爆阀23在第三方向z上相对设置。
这样,电池单体的防爆阀23与侧板13之间具有一定的距离,可以避免防爆阀23破裂释放出的排泄物直接冲击侧板13,破坏侧板13;凹槽133沿第一方向x延伸,可以引导排泄物沿着凹槽133延伸的方向从电池10内排出。
在本申请实施例中,凹槽133的与防爆阀23相对的底壁的厚度L2大于侧板13的除凹槽外的其他区域的厚度L1。
将凹槽133的底壁设置的较厚,可以避免凹槽133的底壁被防爆阀23破裂释放出的排泄物冲击损坏。
可选地,凹槽133的两个侧壁的厚度L3也可以大于侧板13的除凹槽133外的其他区域的厚度L1。这样,可以进一步保证容纳排泄物的凹槽133不会被防爆阀23破裂释放排泄物时产生的冲击力损坏。
本申请是实施例还提供了一种用电设备,该用电设备可以包括前述实施例 中的电池10。可选地,该用电设备可以为车辆1、船舶或航天器等,但本申请实施例对此并不限定。
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。
在本申请实施例中的T字形汇流部件采用不同材质,以及设置第三连接部和第四连接部不同宽度的情况下,称量其重量,具体结果如下表1。
由表1可知,当第四连接部W4的宽度一定时,随着第三连接部W3宽度的减小,T字形汇流部件的重量减小。因此,在保证T字形汇流部件的电连接效果的情况下,可尽量减小第三连接部W3的宽度,从而减小T字形汇流部件的重量,可以提高电池10的重量能量密度。在T字形汇流部件的尺寸相同的情况下,铝制T字形汇流部件的重量较铜制的轻,用铝材料制作T字形汇流部件也可减小T字形汇流部件的重量,可以提高电池10的重量能量密度。
对不同种类的电池单体进行热稳定性测试,具体测试方法为:在25℃环境下将电池放置2小时,使电池温度与环境温度达到一致。然后将电池与充放电机连接,设定充放电机以1C的充电倍率对电池进行充电,直到电池电压达到此电池的额定上限电压后停止。然后将电池静置2小时使电池充电产生的温度降低至室温。把满充电池放置在温箱内,设置升温速率为1℃/分钟。当温箱温度升至80℃时,在此温度下设置保温2小时。然后以1℃/分钟的升温速率升高5℃然后在此温度下保温30分钟,再升高5℃保温30分钟,直到电池发生起火爆炸,记录此时的温度为电池的最高耐受温度。测试结果如表2所示。
由表2可知,钠离子电池的热稳定性较好,其热稳定性高于磷酸锰铁锂电池、磷酸铁锂电池、三元五系电池、三元六系电池以及三元八系电池。
表1不同材质及尺寸的T字形汇流部件的重量
表2不同种类的电池单体的热稳定性测试
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (26)

  1. 一种电池,其特征在于,包括:
    多个第一电池单体(21)和多个第二电池单体(22),任意两个所述第一电池单体(21)之间设置有至少一个所述第二电池单体(22),任意一个所述第二电池单体(22)与至少一个所述第二电池单体(22)相邻;
    其中,所述第二电池单体(22)的热稳定性高于所述第一电池单体(21)的热稳定性。
  2. 根据权利要求1所述的电池,其特征在于,所述第一电池单体(21)的容量大于所述第二电池单体(22)的容量。
  3. 根据权利要求1或2所述的电池,其特征在于,所述第二电池单体(22)为钠离子电池。
  4. 根据权利要求1至3中任一项所述的电池,其特征在于,所述电池包括:
    多个电池单体组,所述多个电池单体组中的每个电池单体组包括沿第一方向(x)排列的多个所述第一电池单体(21)和多个所述第二电池单体(22),其中,在所述第一方向(x)上,两个所述第一电池单体(21)被至少两个相邻的所述第二电池单体(22)隔开,所述多个电池单体组沿第二方向(y)排列,且在所述第二方向(y)上,任意两个所述第一电池单体(21)之间具有至少一个所述第二电池单体(22),所述第一方向(x)和所述第二方向(y)相交,所述第一方向(x)和所述第二方向(y)均垂直于所述第一电池单体(21)的轴线和所述第二电池单体(22)的轴线。
  5. 根据权利要求4所述的电池,其特征在于,所述第一电池单体(21)和所述第二电池单体(22)为圆柱形电池单体,所述多个电池单体组沿所述第二方向(y)错位排列。
  6. 根据权利要求5所述的电池,其特征在于,相邻两个所述电池单体组内的全部电池单体的轴线在第一平面(15)上的正投影不重合,不相邻的且中间间隔一个所述电池单体组的两个所述电池单体组内的全部电池单体的轴线在第一平面(15)上的正投影重合,所述第一平面(15)垂直于所述第一方向(x)和所述第二方向(y)形成的平面。
  7. 根据权利要求6所述的电池,其特征在于,在所述电池单体组中,两个相邻的所述第二电池单体(22)和一个所述第一电池单体(21)沿所述第一方向(x)交替排列。
  8. 根据权利要求7所述的电池,其特征在于,所述电池包括汇流部件(14),所述汇流部件(14)用于将两个相邻的所述第二电池单体(22)并联后与一个所述第一电池单体(21)串联。
  9. 根据权利要求8所述的电池,其特征在于,所述汇流部件(14)包括第一连接部(141)和第二连接部(142),所述第一连接部(141)和所述第二连接部(142)形成V字形;
    其中,所述第一连接部(141)的第一端与两个相邻的所述第二电池单体(22)中的一个所述第二电池单体(22)的电极端子连接,所述第一连接部(141)的第二端与所述第二连接部(142)的第三端连接后与一个所述第一电池单体(21)的极柱连接,所述第二连接部(142)的第四端与两个相邻的所述第二电池单体(22)中的另一个所述第二电池单体(22)的电极端子连接。
  10. 根据权利要求9所述的电池,其特征在于,所述第一连接部(141)和所述第二连接部(142)之间的夹角为40°~70°。
  11. 根据权利要求10所述的电池,其特征在于,所述第一连接部(141)和所述第二连接部(142)之间的所述夹角为50°~65°。
  12. 根据权利要求9所述的电池,其特征在于,所述第一连接部(141)的宽度W1与所述第二连接部(142)的宽度W2满足:W1=W2。
  13. 根据权利要求8所述的电池,其特征在于,所述汇流部件(14)包括第三连接部(143)和第四连接部(144),所述第三连接部(143)和所述第四连接部(144)形成T字形;
    其中,所述第三连接部(143)的第一端和第二端分别与两个相邻的所述第二电池单体(22)的电极端子连接,所述第四连接部(144)的第三端与一个所述第一电池单体(21)的电极端子连接,所述第四连接部(144)的第四端连接于所述第三连接部(143)的中部。
  14. 根据权利要求13所述的电池,其特征在于,所述第三连接部(143)的宽度W3与所述第四连接部(144)的宽度W4满足:W3≤W4。
  15. 根据权利要求6至14中任一项所述的电池,其特征在于,所述电池包括端板(12),所述端板(12)设置于所述电池单体组在所述第一方向(x)上的两端。
  16. 根据权利要求15所述的电池,其特征在于,所述端板(12)的朝向所述电池内部的第一表面(121)设置有向所述电池内部凸出的结构件(123),所述结构件(123)填充于所述电池在所述第一方向(x)上的端部的电池单体与所述端板(12)的所述第一表面(121)之间的空间内。
  17. 根据权利要求16所述的电池,其特征在于,所述结构件(123)为梯形结构件,所述梯形结构件包括沿所述第一方向(x)与所述端板(12)相对设置的顶壁(1231)以及与所述端板(12)连接的侧壁,所述顶壁(1231)和所述侧壁抵接于所述电池在所述第一方向(x)上的端部的电池单体。
  18. 根据权利要求15至17中任一项所述的电池,其特征在于,所述端板(12)的背离所述电池内部的第二表面(122)设置有加强筋(124)。
  19. 根据权利要求18所述的电池,其特征在于,所述加强筋(124)为X型结构。
  20. 根据权利要求15至19中任一项所述的电池,其特征在于,所述端板(12)为中空结构。
  21. 根据权利要求20所述的电池,其特征在于,所述中空结构内设置有横梁(125)。
  22. 根据权利要求6至21中任一项所述的电池,其特征在于,所述电池包括侧板(13),所述侧板(13)设置于所述电池单体组在第三方向(z)上的两端,所述第三方向(z)平行于所述电池单体的轴线。
  23. 根据权利要求22所述的电池,其特征在于,所述侧板(13)的朝向所述电池内部的第三表面(131)设置有向远离所述电池内部的方向凹陷的凹槽(133),所述侧板(13)的背离所述电池内部的第四表面(132)设置有与所述凹槽(133)对应的向远离所述电池内部的方向凸出的凸部(134),所述凹槽(133)与所述电池单体组对应设置。
  24. 根据权利要求23所述的电池,其特征在于,所述凹槽(133)沿所述第一方向(x)延伸,与所述电池单体组中的每个电池单体的防爆阀(23)在所述第三方向(z)上相对设置。
  25. 根据权利要求24所述的电池,其特征在于,所述凹槽(133)的与所述防爆阀(23)相对的底壁的厚度L2大于所述侧板(13)的除所述凹槽(133)外的其他区域的厚度L1。
  26. 一种用电设备,其特征在于,包括:根据权利要求1至25中任一项所述的电池,所述电池用于提供电能。
PCT/CN2023/083833 2022-05-18 2023-03-24 电池和用电设备 WO2023221649A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210537274.9 2022-05-18
CN202210537274.9A CN114639900B (zh) 2022-05-18 2022-05-18 电池和用电设备

Publications (1)

Publication Number Publication Date
WO2023221649A1 true WO2023221649A1 (zh) 2023-11-23

Family

ID=81952732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083833 WO2023221649A1 (zh) 2022-05-18 2023-03-24 电池和用电设备

Country Status (2)

Country Link
CN (1) CN114639900B (zh)
WO (1) WO2023221649A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114639900B (zh) * 2022-05-18 2023-04-14 江苏时代新能源科技有限公司 电池和用电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210668460U (zh) * 2019-08-28 2020-06-02 深圳市柒号网络科技有限公司 锂电池模组
CN211858708U (zh) * 2020-03-02 2020-11-03 威睿电动汽车技术(宁波)有限公司 一种抗冲击电池模组及电池包
CN112599932A (zh) * 2021-01-08 2021-04-02 蔚来汽车科技(安徽)有限公司 电池包、方法和车辆
CN113036242A (zh) * 2021-05-28 2021-06-25 蜂巢能源科技有限公司 电池模组和电池包
CN215988840U (zh) * 2021-10-14 2022-03-08 中航锂电科技有限公司 一种电池及电池装置
CN114639900A (zh) * 2022-05-18 2022-06-17 江苏时代新能源科技有限公司 电池和用电设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210668460U (zh) * 2019-08-28 2020-06-02 深圳市柒号网络科技有限公司 锂电池模组
CN211858708U (zh) * 2020-03-02 2020-11-03 威睿电动汽车技术(宁波)有限公司 一种抗冲击电池模组及电池包
CN112599932A (zh) * 2021-01-08 2021-04-02 蔚来汽车科技(安徽)有限公司 电池包、方法和车辆
CN113036242A (zh) * 2021-05-28 2021-06-25 蜂巢能源科技有限公司 电池模组和电池包
CN215988840U (zh) * 2021-10-14 2022-03-08 中航锂电科技有限公司 一种电池及电池装置
CN114639900A (zh) * 2022-05-18 2022-06-17 江苏时代新能源科技有限公司 电池和用电设备

Also Published As

Publication number Publication date
CN114639900B (zh) 2023-04-14
CN114639900A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
WO2023050969A1 (zh) 一种电池单体、电池及用电装置
CN115425372B (zh) 电极极片、电极组件、电池单体、电池和用电设备
CN216872134U (zh) 电池和用电设备
WO2023070677A1 (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
WO2023134479A1 (zh) 电池和用电设备
WO2023221649A1 (zh) 电池和用电设备
US20220311056A1 (en) Electrode assembly, battery cell, battery, manufacturing method and device for electrode assembly
WO2023004833A1 (zh) 电池单体、电池、用电装置及制备电池单体的方法和设备
US20240088477A1 (en) Battery, power consumption device, and method and device for producing battery
WO2024045692A1 (zh) 电池模组、电池以及用电装置
WO2024036752A1 (zh) 电极组件、电池单体、电池及用电装置
CN216872125U (zh) 电池单体、电池和用电设备
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
EP4258419A1 (en) Battery, electrical device, and battery preparation method and device
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
CN116830368A (zh) 电池、用电设备、制造电池的方法和设备
KR20230129053A (ko) 배터리, 전기 장치, 배터리 제조 방법 및 장치
EP4258441A1 (en) Battery, electric device, and battery preparation method and device
WO2023173428A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023133737A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2024020766A1 (zh) 电池单体、电池、用电装置及电池单体的制造方法
WO2023197133A1 (zh) 电池单体的壳体、电池单体、电池以及用电装置
WO2024040503A1 (zh) 电极组件、制备方法、电池单体、电池及用电装置
WO2023065366A1 (zh) 电池、用电设备、制备电池单体的方法和设备
WO2024000367A1 (zh) 电池单体、电池和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806607

Country of ref document: EP

Kind code of ref document: A1