WO2024020766A1 - 电池单体、电池、用电装置及电池单体的制造方法 - Google Patents

电池单体、电池、用电装置及电池单体的制造方法 Download PDF

Info

Publication number
WO2024020766A1
WO2024020766A1 PCT/CN2022/107812 CN2022107812W WO2024020766A1 WO 2024020766 A1 WO2024020766 A1 WO 2024020766A1 CN 2022107812 W CN2022107812 W CN 2022107812W WO 2024020766 A1 WO2024020766 A1 WO 2024020766A1
Authority
WO
WIPO (PCT)
Prior art keywords
tab
sub
area
welding
battery cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/CN2022/107812
Other languages
English (en)
French (fr)
Inventor
雷育永
郭志君
王鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Contemporary Amperex Technology Co Ltd
Original Assignee
Contemporary Amperex Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Contemporary Amperex Technology Co Ltd filed Critical Contemporary Amperex Technology Co Ltd
Priority to CN202290000412.3U priority Critical patent/CN222735302U/zh
Priority to PCT/CN2022/107812 priority patent/WO2024020766A1/zh
Publication of WO2024020766A1 publication Critical patent/WO2024020766A1/zh
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of batteries, and in particular to a battery cell, a battery, an electrical device and a method for manufacturing a battery cell.
  • Electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy conservation and environmental protection.
  • battery technology is an important factor related to their development.
  • multiple electrode assemblies are usually provided in a battery cell.
  • multiple electrode assemblies are provided in a battery cell, there is a problem of a large number of connections between the tabs of the electrode assembly and the electrode terminals.
  • the present application provides a battery cell, a battery, an electrical device and a manufacturing method of the battery cell, which can simplify the interconnection of tabs and electrode terminals in the battery cell.
  • the present application provides a battery cell, including: a first electrode assembly and a second electrode assembly.
  • the first electrode assembly includes a first tab
  • the second electrode assembly includes a second tab;
  • the second pole is stacked with the second pole, and at least part of the first pole and the second pole are connected in the stacking area of the first pole and the second pole.
  • the first electrode assembly includes a first tab
  • the second electrode assembly includes a second tab
  • the first tab and the second tab are at least partially stacked, such that the first tab and The second tab can be connected to other components of the battery cell in its stacked area, which can simplify and reduce the number of connections between the first tab, the second tab and other components.
  • the first tab and the second tab are connected to each other in the stacking area of the first tab and the second tab, so that the tabs of the plurality of electrode assemblies are connected to each other more stably.
  • the first tab and the second tab are connected through a first welding zone in the lamination area.
  • the first welding area by arranging the first welding area so that the first tab and the second tab can be welded and connected to each other in the first welding area, the stability of the connection between the first tab and the second tab can be improved.
  • it further includes: an electrode terminal, and the first welding zone and the electrode terminal are connected through the second welding zone.
  • the electrode terminal and the first pole can be improved. The stability of the connection between the ear and the second pole.
  • the area of the first weld zone is greater than the area of the second weld zone.
  • the first welding area has a larger area, which facilitates the interconnection of the electrode terminal with the first and second tabs in the first welding area, which can improve the connection between the electrode terminal and the first and second tabs. Connection strength.
  • the second welding zone is located within the first welding zone, and the second welding zone is disposed close to the middle of the first welding zone.
  • the second welding area is located within the first welding area, that is, the electrode terminal is connected to the first tab and the second tab in the first welding area, which can improve the connection between the electrode terminal and the first tab and the second tab.
  • the stability of the relative position between the second pole lugs Compared with forming the second welding zone at the edge of the first welding zone, the second welding zone is arranged close to the middle of the first welding zone, which can further improve the connection strength between the electrode terminal and the first and second tabs.
  • the first welding zone is formed by at least one of ultrasonic welding and resistance welding. That is, the first tab and the second tab are connected to each other in the stacking area through at least one of ultrasonic welding and resistance welding to form a first welding area, which can improve the connection strength of the first tab and the second tab.
  • the second weld zone is formed by laser welding. That is, the electrode terminal is connected to the first welding zone through laser welding to form the second welding zone, which can improve the connection strength between the electrode terminal and the first and second tabs.
  • the first pole includes a plurality of first sub-tabs
  • the second pole includes a plurality of second sub-tabs
  • the first pole is located on one side of the second pole. That is, the plurality of first sub-lugs are located on one side of the plurality of second sub-lugs, making it easier to stack the first and second sub-lugs on each other and improving the manufacturing efficiency of the battery cells.
  • the first pole includes a plurality of first sub-tabs
  • the second pole includes a plurality of second sub-tabs
  • the first sub-tabs and the second sub-tabs are staggered and overlapped with each other.
  • a plurality of first sub-lugs and a plurality of second sub-lugs are staggered and stacked on each other, which can improve the stability of the connection between the first and second tabs.
  • an end cover is also included, and the electrode terminal is disposed on the end cover.
  • the size d of the stacked area of the first tab and the second tab satisfies: 5 mm ⁇ d ⁇ D/2, where D is the width of the end cap.
  • the first electrode assembly includes an electrode body, a first tab protrudes from a first end surface of the electrode body, and the first tab includes a top edge on a side away from the electrode body and is connected to the top edge and the first end surface. Two side edges, at least one side edge, are inclined toward the other side edge.
  • the width of the first tab gradually decreases, and the width of the free end of the first tab away from the electrode body is smaller, which can improve the first The problem of pole tab flanging caused by the free end of the pole tab being folded.
  • the angle between at least one side edge and the first end surface is a, and the complementary angle q of a is greater than or equal to 4 degrees. It can improve the problem that the free end of the first tab far away from the electrode body is large due to the small side edge inclination, and the first tab is easy to flange.
  • the complementary angle q of the angle between at least one side edge and the first end face satisfies the following relationship:
  • W0 is the width of the connection position between the first tab and the first end surface
  • h is the length of the first tab extending from the electrode body
  • d is the stacking area of the first tab and the second tab in the first electrode assembly. and the extension dimension in the side-by-side direction of the second electrode assembly. It can improve the overcurrent capability of the first pole due to the excessive inclination of the side edge and the small size of the first pole.
  • the first tab and the second tab have the same polarity.
  • the electrode terminal connected to the first tab and the second tab may be a positive electrode terminal or a negative electrode terminal.
  • embodiments of the present application further provide a battery, including the battery cell according to any of the embodiments of the first aspect.
  • an embodiment of the present application further provides an electrical device, including the battery cell of any of the above-mentioned first aspect embodiments, and the battery cell is used to provide electric energy.
  • embodiments of the present application also provide a method for manufacturing a battery cell, including:
  • first electrode assembly and a second electrode assembly, the first electrode assembly including a first tab, and the second electrode assembly including a second tab;
  • the first pole and the second pole are connected in the lamination area of the first pole and the second pole.
  • first the first tab and the second tab are at least partially stacked, so that the first tab and the second tab can simultaneously connect to other components of the battery cell in their stacked areas. , can simplify and reduce the number of connections between the first pole, the second pole and other components. Then, the first tab and the second tab are also connected to each other in the stacking area of the first tab and the second tab, so that the tabs of multiple electrode assemblies are more stably connected to each other.
  • the first tab includes a plurality of first sub-tabs
  • the second tab includes a plurality of second sub-tabs
  • the plurality of second sub-lugs are pre-welded to form a second sub-welding area, so that the plurality of second sub-lugs are connected to each other in the second sub-welding area.
  • first tabs and the second tabs are pre-welded respectively, so that the first sub- tabs of the plurality of first tabs can be connected to each other in the first sub-welding area, and the plurality of second tabs can be connected to each other in the first sub-welding area.
  • the second sub-pole tabs can be connected to each other in the second sub-welding area.
  • the interconnected first sub-pole tabs and the interconnected second sub-pole tabs facilitate the polarity of the first and second pole tabs being stacked on each other. operation, which can improve the manufacturing efficiency of battery cells.
  • in the step of "connecting the first tab and the second tab in the stacked area of the first tab and the second tab in the step of "connecting the first tab and the second tab in the stacked area of the first tab and the second tab".
  • the first sub-welding zone and the second sub-welding zone are overlapped and welded to form a first welding zone.
  • the first sub-welding zone and the second sub-welding zone are welded to form
  • the first welding area can improve the connection strength between the first tab and the second tab.
  • the first tab includes a plurality of first sub-tabs
  • the second tab includes a plurality of second sub-tabs
  • the first tab is connected to the stacked area of the first tab and the second tab.
  • Tibular tab and second tab it includes:
  • the stacked areas of the first tab and the second tab are welded to form a first welding area.
  • the first tab and the second tab are laminated, the first tab and the second tab are welded in the stacking area to form a first welding area.
  • the first tab and the second tab can be reduced.
  • the number of welding times of the two tabs improves the manufacturing efficiency of the battery cells; on the other hand, the first welding area can also improve the connection strength between the first tab and the second tab.
  • the step further includes:
  • the first welding area and the electrode terminal are welded to form a second welding area.
  • the first welding area and the electrode terminal are welded so that the electrode terminal can be connected to the first tab and the second tab at the same time.
  • the formed second welding zone can also improve the connection strength between the first tab, the second tab and the electrode terminal.
  • Figure 1 is a schematic structural diagram of a vehicle provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a battery pack provided by an embodiment of the present application.
  • Figure 3 is an isometric view of a battery cell provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of the exploded structure of a battery cell provided by an embodiment of the present application.
  • Figure 5 is an isometric view of the battery cell 40 during the manufacturing process provided by the embodiment of the present application.
  • Figure 6 is a top view of the battery cell 40 during the manufacturing process according to the embodiment of the present application.
  • Figure 7 is a cross-sectional view of A-A in Figure 6 in an example
  • Figure 8 is a partial enlarged structural diagram of position I in Figure 7;
  • Figure 9 is a cross-sectional view at line A-A in Figure 6 in another example.
  • Figure 10 is a partial enlarged structural diagram of II in Figure 9;
  • Figure 11 is a top view of a battery cell 40 during the manufacturing process according to another embodiment of the present application.
  • Figure 12 is a schematic flow chart of a manufacturing method of a battery cell provided by an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a certain step in a method for manufacturing a battery cell provided by an embodiment of the present application.
  • Vehicle 10. Battery; 11. Controller; 12. Motor;
  • First electrode assembly 110. First tab; 110a, first sub-tab; 111. Top edge; 112. Side edge; 120. Electrode body;
  • Second electrode assembly 210. Second pole; 210a, second sub-pole;
  • Electrode terminal 400. End cap; 410. Electrode terminal;
  • a first feature “above” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in direct contact. Indirect contact through intermediaries.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. . As the application fields of power batteries continue to expand, their market demand is also constantly expanding.
  • battery cells may include lithium ion secondary battery cells, lithium ion primary battery cells, lithium sulfur battery cells, sodium lithium ion battery cells, sodium ion battery cells or magnesium ion battery cells, etc.
  • the embodiments of the present application are not limited to this.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly includes a positive electrode piece, a negative electrode piece and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector;
  • the positive electrode current collector includes a positive electrode current collecting part and a positive electrode tab connected to the positive electrode current collecting part.
  • the positive electrode current collecting part The positive electrode active material layer is coated, and the positive electrode tab is not coated with the positive electrode active material layer.
  • the material of the cathode current collector can be aluminum, and the cathode active material layer includes cathode active materials.
  • the cathode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, and the negative electrode active material layer is coated on the surface of the negative electrode current collector; the negative electrode current collector includes a negative electrode current collecting part and a negative electrode tab connected to the negative electrode current collecting part, and the negative electrode current collecting part The negative electrode active material layer is coated, and the negative electrode tab is not coated with the negative electrode active material layer.
  • the negative electrode current collector may be made of copper, and the negative electrode active material layer may include a negative electrode active material.
  • the negative electrode active material may be carbon or silicon.
  • the material of the partition can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • the battery cell includes a casing, an electrode assembly located in the casing, and a top cover plate covering the opening of the casing.
  • the electrode assembly includes pole tabs, and the top cover plate is provided with Electrode terminals.
  • the battery cells will adopt an adapter-less design, that is, the tabs of the electrode assembly are directly connected to The electrode terminals are connected to each other.
  • the applicant found that before welding the tabs to the electrode terminals, the tabs of two or more electrode assemblies can be connected to each other as one body, and then the two or more connected tabs can be connected to the electrode terminals. Welding can solve the problem of excessive welding times.
  • the inventors conducted in-depth research and designed a manufacturing method of a battery cell, a battery, an electrical device and a battery cell.
  • the battery cell includes a first electrode assembly and a second electrode assembly.
  • the first electrode assembly includes a first tab
  • the second electrode assembly includes a second tab
  • the two poles are stacked on each other, and the first pole and the second pole are connected to each other in their stacked areas.
  • Electrical devices can be vehicles, cell phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 10 is disposed inside the vehicle 1 , and the battery 10 can be disposed at the bottom, head, or tail of the vehicle 1 .
  • the battery 10 may be used to power the vehicle 1 , for example, the battery 10 may serve as an operating power source for the vehicle 1 .
  • the vehicle 1 may also include a controller 11 and a motor 12 .
  • the controller 11 is used to control the battery 10 to provide power to the motor 12 , for example, for starting, navigating, and driving the vehicle 1 to meet its power requirements.
  • the battery 10 can not only be used as an operating power source of the vehicle 1 , but also can be used as a driving power source of the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery 10 may include multiple battery cells.
  • a battery cell refers to the smallest unit that constitutes a battery module or battery pack. Multiple battery cells may be connected in series and/or in parallel via electrode terminals for various applications.
  • the batteries mentioned in this application include battery modules or battery packs. Among them, multiple battery cells can be connected in series, parallel, or mixed. Hybrid refers to a mixture of series and parallel.
  • multiple battery cells can be directly formed into a battery pack, or the battery module 20 can be formed first, and then the battery module 20 can be formed into a battery pack.
  • FIG. 2 shows a schematic structural diagram of a battery 10 according to an embodiment of the present application.
  • the battery 10 includes a case 30 and a battery cell 40 , and the battery cell 40 is accommodated in the case 30 .
  • the box 30 may be a single cuboid, a simple three-dimensional structure such as a cylinder or a sphere, or a complex three-dimensional structure composed of a simple three-dimensional structure such as a cuboid, a cylinder or a sphere, which is not limited in the embodiments of the present application.
  • the material of the box body 30 can be alloy materials such as aluminum alloy, iron alloy, etc., or it can be polymer materials such as polycarbonate, polyisocyanurate foam plastics, or composite materials such as glass fiber and epoxy resin. The embodiments of the present application are not limited to this.
  • the box 30 is used to accommodate the battery cells 40, and the box 30 can be of various structures.
  • the box body 30 may include a first box body part 301 and a second box body part 302.
  • the first box body part 301 and the second box body part 302 cover each other.
  • the first box body part 301 and the second box body part 302 cover each other.
  • the two box portions 302 jointly define an accommodation space for accommodating the battery cells 40 .
  • the second box part 302 may be a hollow structure with one end open, and the first box part 301 may be a plate-like structure.
  • the first box part 301 covers the open side of the second box part 302 to form a container with a receiving space.
  • Box 30; the first box part 301 and the second box part 302 can also be hollow structures with one side open, and the open side of the first box part 301 is covered with the open side of the second box part 302, To form a box 30 with an accommodation space.
  • the first box part 301 and the second box part 302 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • a sealing member may also be provided between the first box part 301 and the second box part 302, such as sealant, sealing ring, etc. .
  • the first box part 301 can also be called an upper box cover, and the second box part 302 can also be called a lower box 30.
  • the battery 10 there may be one battery cell 40 or a plurality of battery cells 40 . If there are multiple battery cells 40 , the multiple battery cells 40 can be connected in series, in parallel, or in mixed connection. Mixed connection means that the multiple battery cells 40 are both connected in series and in parallel.
  • the plurality of battery cells 40 can be directly connected in series or in parallel or mixed together, and then the whole composed of the plurality of battery cells 40 can be accommodated in the box 30 ; of course, the plurality of battery cells 40 can also be connected in series first.
  • the battery modules 20 may be connected in parallel or mixed, and the plurality of battery modules 20 may be connected in series, parallel, or mixed to form a whole body, and be accommodated in the box 30 .
  • the plurality of battery cells 40 are first connected in series, parallel, or mixed to form the battery module 20 .
  • the plurality of battery modules 20 are connected in series, parallel, or mixed to form a whole body, and are accommodated in the box 30 .
  • the plurality of battery cells 40 in the battery module 20 can be electrically connected through bus components to realize parallel, series or mixed connection of the plurality of battery cells 40 in the battery module 20 .
  • the battery cell 40 may include a lithium ion battery cell 40, a sodium ion battery cell 40, a magnesium ion battery cell 40, etc., which are not limited in the embodiment of the present application.
  • the battery cell 40 may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited thereto.
  • Battery cells 40 are generally divided into three types according to packaging methods: cylindrical battery cells 40 , rectangular battery cells 40 and soft-pack battery cells 40 , and the embodiments of the present application are not limited thereto. However, for the sake of simplicity of description, the following embodiments take the rectangular battery cell 40 as an example.
  • FIG. 3 is an isometric view of a battery cell 40 provided in some embodiments of the present application
  • FIG. 4 is an exploded structural diagram of a battery cell 40 provided in some embodiments of the present application.
  • the battery cell 40 includes a first electrode assembly 100 and a second electrode assembly 200.
  • the first electrode assembly 100 includes a first tab 110
  • the second electrode assembly 200 includes a second tab 210;
  • the first tab 110 and the second tab 210 are stacked, and at least part of the first tab 110 and the second tab 210 are connected in the stacking area 310 of the first tab 110 and the second tab 210 .
  • the battery cell 40 further includes a case 600 and an end cover 400 covering the opening 610 of the case 600.
  • the case 600 and the end cover 400 are combined to form the outer shell of the battery cell 40.
  • the first electrode assembly 100 and the second electrode assembly 200 are located within the casing of the battery cell 40 .
  • the end cap 400 refers to a component that covers the opening 610 of the housing 600 to isolate the internal environment of the battery cell 40 from the external environment.
  • the shape of the end cap 400 may be adapted to the shape of the housing 600 to fit the housing 600 .
  • the end cap 400 can be made of a material with a certain hardness and strength (such as aluminum alloy). In this way, the end cap 400 is less likely to deform when subjected to extrusion and collision, so that the battery cell 40 can have higher durability. Structural strength and safety performance can also be improved.
  • Functional components such as electrode terminals 410 may be provided on the end cap 400 . The electrode terminal 410 may be used to electrically connect with the electrode assembly 100 for outputting or inputting electrical energy of the battery cell 40.
  • the end cap 400 may also be provided with a pressure relief mechanism for releasing the internal pressure when the internal pressure or temperature of the battery cell 40 reaches a threshold.
  • the end cap 400 can also be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiments of the present application.
  • a partition may be provided inside the end cover 400 , and the partition may be used to isolate the electrical connection components in the housing 600 from the end cover 400 to reduce the risk of short circuit.
  • the partition 200 may be made of plastic, rubber, or the like.
  • At least one of the first electrode assembly 100 and the second electrode assembly 200 is mainly formed by rolling a pole piece with active material and a separator.
  • the pole piece includes a positive electrode piece and a negative electrode piece.
  • the electrode assembly 100 is a component in the battery cell 40 where electrochemical reactions occur.
  • One or more electrode assemblies 100 may be contained within the housing 600 .
  • the first electrode assembly 100 and/or the second electrode assembly 200 includes an electrode body 120.
  • the portions of the positive electrode sheet and the negative electrode sheet coated with active material are rolled to form the electrode body 120.
  • the first tab 110 and/or the second tab 210 include a positive tab and a negative tab.
  • the connected parts of the positive tab and the negative tab that do not have active material respectively constitute the positive tab and the negative tab.
  • the positive tab and the negative tab can be located together on the electrode.
  • One end of the main body 120 is respectively located at two ends of the electrode main body 120 .
  • the case 600 is a component used to cooperate with the end cover 400 to form an internal environment of the battery cell 40 , wherein the formed internal environment can be used to accommodate the electrode assembly 100 , electrolyte (not shown in the figure), and other components.
  • the housing 600 and the end cover 400 may be independent components, and an opening 610 may be provided on the housing 600.
  • the end cover 400 covers the opening 610 at the opening 610 to form the internal environment of the battery cell 40.
  • the end cover 400 and the housing 600 can also be integrated. Specifically, the end cover 400 and the housing 600 can form a common connection surface before other components are put into the housing. When it is necessary to encapsulate the inside of the housing 600 When the end cap 400 is closed, the housing 600 is closed.
  • the housing 600 can be of various shapes and sizes, such as rectangular parallelepiped, cylinder, hexagonal prism, etc. Specifically, the shape of the housing 600 can be determined according to the specific shape and size of the electrode assembly 100 .
  • the housing 600 can be made of a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiments of the present application.
  • an insulator may be provided on the side of the end cap 400 facing the electrode assembly, that is, the insulator may be disposed between the end cap 400 and the electrode body 120 .
  • the insulating member may also be disposed between the inner wall surface of the housing 600 and the electrode body 120 .
  • the insulating parts can be made of rubber, plastic and other insulating materials.
  • the insulating part is made of rubber so that the insulating part has appropriate elasticity and better improves the stress concentration of the electrode body 120.
  • connection between the first tab 110 and the second tab 210 in the stacking area 310 of the first tab 110 and the second tab 210 may be that the first tab 110 and the second tab 210 are connected to each other before the electrode terminal 410 is connected, Or the first tab 110 and the second tab 210 are connected to each other in the step of connecting the electrode terminal 410 .
  • the first electrode assembly 100 includes a first tab 110
  • the second electrode assembly 200 includes a second tab 210
  • the first tab 110 and the second tab 210 are at least partially stacked
  • the first tab 110 and the second tab 210 can be connected to other components of the battery cell 10 in their stacking area 310.
  • the electrode terminal 410 can be connected to the tabs of more than two electrode assemblies in the same step, which can simplify the second tab.
  • the first tab 110 , the second tab 210 and the electrode terminal 410 are connected to each other.
  • first tab 110 and the second tab 210 are also connected to each other in the stacking area 310 of the first tab 110 and the second tab 210, so that the tabs of multiple electrode assemblies are more stably connected to each other.
  • the electrode terminal 410 is connected to the first tab 110 and the second tab 210 through the lamination region 310, the stability of the interconnection between the electrode terminal 410 and the first tab 110 and the second tab 210 can also be improved.
  • FIG. 5 is an isometric view of the battery cell 40 during the manufacturing process according to the embodiment of the present application.
  • the first tab 110 and the second tab 210 are connected through the first welding area 320 in the lamination area 310 .
  • the area of the first welding area 320 is smaller than the area of the stacking area 310 , and the first welding area 320 is within the stacking area 310 .
  • first welding area 320 There are many ways to arrange the first welding area 320. For example, before the first tab 110 and the second tab 210 are stacked on each other, the first tab 110 is pre-welded to form the first pre-welding area, and the second tab 210 is pre-welded. Welding forms a second pre-welding area, and the first pre-welding area and the second pre-welding area are stacked to form a first welding area 320 . Alternatively, after the first tab 110 and the second tab 210 are stacked on each other, the first tab 110 and the second tab 210 are pre-welded to form the first welding area 320 .
  • the first tab 110 and the second tab 210 can be improved. Stability of lug 210 connection.
  • the battery cell 40 further includes an electrode terminal 410 , and the first welding area 320 and the electrode terminal 410 are connected through the second welding area 500 .
  • the second welding zone 500 may be a welding zone formed when the first welding zone 320 and the electrode terminal 410 are connected by welding or the like.
  • the second welding zone 500 may also be a zone where the first welding zone 320 and the electrode terminal 410 are connected to each other.
  • the first welding zone 320 connecting the first tab 110 and the second tab 210 can be welded and connected to the electrode terminal 410 through the second welding zone 500 , which can improve the stability of the connection between the electrode terminal 410 and the first tab 110 and the second tab 210 .
  • the area of the first welding zone 320 is larger than the area of the second welding zone 500 .
  • first welding area 320 and the second welding area 500 there are various shapes of the first welding area 320 and the second welding area 500.
  • the first welding area 320 can be circular, polygonal, elliptical or irregular.
  • the shape of the second welding zone 500 may also be circular, polygonal, elliptical or irregular.
  • the extension size of the first welding zone 320 in the first direction X is greater than its extension size in the second direction Y
  • the extension size of the second welding zone 500 in the first direction Its extended size in the second direction Y facilitates the placement of the second welding area 500 within the first welding area 320 .
  • the first electrode assembly 100 and the second electrode assembly 200 are arranged side by side along the second direction Y.
  • the stacking area 310 of the first tab 110 and the second tab 210 may be hexagonal, and the shape of the first welding area 320 may be hexagon.
  • the shape of the second welding zone 500 may be waist-shaped.
  • the area of the first welding area 320 is larger, which facilitates the interconnection of the electrode terminal 410 with the first tab 110 and the second tab 210 in the first welding area 320 and can improve the electrode terminal 410 The connection strength between the first tab 110 and the second tab 210 .
  • the second welding zone 500 is located within the first welding zone 320 , and the second welding zone 500 is disposed close to the middle of the first welding zone 320 .
  • the second welding zone 500 may be disposed close to the middle of the first welding zone 320 in the first direction X and/or the second direction Y.
  • the second welding area 500 is located within the first welding area 320, that is, the electrode terminal 410 is connected to the first tab 110 and the second tab 210 in the first welding area 320, so that The stability of the relative position between the electrode terminal 410 and the first tab 110 and the second tab 210 is improved.
  • the second welding area 500 is arranged close to the middle of the first welding area 320 , which can further improve the connection between the electrode terminal 410 and the first tab 110 and the second tab 210 . connection strength.
  • the first welding zone 320 is formed by at least one of ultrasonic welding and resistance welding.
  • first tab 110 and the second tab 210 are connected to each other in the lamination area 310 through at least one of ultrasonic welding and resistance welding to form the first welding area 320, which can improve the performance of the first tab. 110 and the connection strength of the second tab 210.
  • the second welding zone 500 is formed by laser welding. That is, the electrode terminal 410 is connected to the first welding area 320 through laser welding to form the second welding area 500, which can improve the connection strength between the electrode terminal 410 and the first tab 110 and the second tab 210.
  • Figure 6 is a top view of the battery cell 40 during the manufacturing process provided by the embodiment of the present application;
  • Figure 7 is a cross-sectional view of A-A in Figure 6 in an example;
  • Figure 8 is I in Figure 7
  • FIG. 9 is a sectional view of another example at A-A in FIG. 6
  • FIG. 10 is a partially enlarged structural schematic view of II in FIG. 9 .
  • the first tab 110 includes a plurality of first sub-tabs 110a
  • the second tab 210 includes a plurality of second sub-tabs 210a.
  • the first pole 110 is located on one side of the second pole 210 . That is, the plurality of first sub-lugs 110a are located on one side of the plurality of second sub-lugs 210a, which makes the stacking operation of the first tabs 110 and the second sub-lugs 210 simpler and can improve the manufacturing efficiency of the battery cell 40. .
  • the first tab 110 includes a plurality of first sub-tabs 110a and the second tab 210 includes a plurality of second sub-tabs 210a
  • the first tab 110 is pre-soldered so that the plurality of first sub- tabs 110 a of the first tab 110 are connected to each other.
  • the second tab 210 is pre-soldered so that the plurality of second sub- tabs 110 a of the second tab 210 are connected to each other.
  • the tabs 210a are connected to each other.
  • the pre-welded first tab 110 and the second tab 210 are stacked on each other, and the stacked area 310 is subjected to ultrasonic welding, resistance welding, etc. to form the first welding area 320.
  • the first welding area 320 is connected to the electrode terminal 410 through laser welding to form the second welding area 500.
  • the first tab 110 and the second tab 210 may not be pre-soldered before the first tab 110 and the second tab 210 are stacked on each other.
  • ultrasonic welding, resistance welding, etc. are performed on the stacked area 310 to form the first welding area 320.
  • the first welding area 320 is connected to the electrode terminal 410 through laser welding to form the second welding area 500.
  • the first tab 110 includes a plurality of first sub-tabs 110a
  • the second tab 210 includes a plurality of second sub-tabs 210a
  • the first sub-tab 210a The pole tabs 110a and the second sub-pole tabs 210a are staggered and overlapped with each other.
  • a plurality of first sub-tabs 110a and a plurality of second sub-tabs 210a are staggered and stacked on each other, which can improve the stability of the connection between the first and second tabs 110 and 210.
  • the first sub-pole tabs 110a and the second sub-pole tabs 210a are staggered and overlapped with each other, which means that at least one first sub-pole tab 110a is located between two adjacent second sub-pole tabs 210a, and/or at least one second sub-pole tab 210a.
  • the sub-pole tab 210a is located between two adjacent first sub-pole tabs 110a.
  • a second sub-tab 210a is disposed between any two adjacent first sub-tabs 110a, so that the first sub-tabs 110a and the second sub-tabs 210a are fully interlaced, further improving the performance of the first sub-tabs 110a.
  • the stability of the connection with the second tab 210 is staggered and overlapped with each other, which means that at least one first sub-pole tab 110a is located between two adjacent second sub-pole tabs 210a, and/or at least one second sub-pole tab 210a.
  • the sub-pole tab 210a is located between two adjacent first sub-pole tabs 110a
  • the battery cell 40 further includes an end cover 400 , and the electrode terminal 410 is disposed on the end cover 400 , in the direction in which the two electrode assemblies are arranged side by side ( That is, in the second direction Y), the size d of the stacking area 310 of the first pole tab 110 and the second pole tab 210 satisfies: 5 mm ⁇ d ⁇ D/2, where D is the width of the end cap 400 .
  • D is the width of the end cap 400 in the direction in which the two electrode assemblies are arranged side by side.
  • the stacking area 310 of the first tab 110 and the second tab 210 can be improved. If it is too small, the connection between the first tab 110 and the second tab 210 will be unstable; if it is too large, the stacking area 310 of the first tab 110 and the second tab 210 can also be improved. The size of the space occupied by 210.
  • the first electrode assembly 100 includes an electrode body 120 , a first tab 110 protrudes from a first end surface of the electrode body 120 , and the first tab 110 includes an electrode body 120 away from the electrode body 120 .
  • the top edge 111 on one side and two side edges 112 are connected to the top edge 111 and the first end surface, and at least one side edge 112 is inclined toward the other side edge 112 .
  • the two side edges 112 of the first tab 110 are inclined in a direction approaching each other, that is, the shape of the first tab 110 is a trapezoid.
  • the width of the first tab 110 gradually decreases along the path where the first tab 110 extends out of the electrode body 120 , and the width of the free end of the first tab 110 away from the electrode body 120 is smaller. , can improve the tab flanging problem caused by the free end of the first tab 110 being folded.
  • the second electrode assembly 200 may also include the above-mentioned electrode body 120.
  • the second tab 210 protrudes from the first end surface of the electrode body 120.
  • the second tab 210 includes a side facing away from the electrode body 120.
  • the top edge 111 and two side edges 112 are connected to the top edge 111 and the first end surface. At least one side edge 112 is inclined toward the other side edge 112 .
  • the width of the second tab 210 gradually decreases along the path of the second tab 210 extending out of the electrode body 120 , and the width of the free end of the second tab 210 away from the electrode body 120 is smaller. , can improve the tab flanging problem caused by the free end of the second tab 210 being folded.
  • the angle between at least one side edge 112 and the first end surface is a, and the complementary angle q of a is greater than or equal to 4 degrees.
  • the complementary angle q of the angle between at least one side edge 112 and the first end face satisfies the following relationship:
  • W0 is the width of the connection position between the first tab 110 and the first end surface
  • h is the length of the first tab 110 extending from the electrode body 120
  • d is the stacking area of the first tab 110 and the second tab 210.
  • 310 is an extension dimension in the side-by-side direction of the first electrode assembly 100 and the second electrode assembly 200 .
  • the first tab 110 and the second tab 210 have the same polarity. Therefore, the electrode terminal 410 connected to the first tab 110 and the second tab 210 may be the positive electrode terminal 410 or the negative electrode terminal 410.
  • the first pole tab 110 and the second pole tab 210 may both be positive pole tabs, or the first pole tab 110 and the second pole tab 210 may both be negative pole tabs.
  • the present application also provides a battery, including the battery cell 40 described in any of the above solutions.
  • the present application also provides an electrical device, including the battery cell 40 described in any of the above solutions, and the battery cell 40 is used to provide electrical energy to the electrical device.
  • the power-consuming device may be any of the aforementioned devices or systems using the battery cells 40 .
  • the present application also provides a method for manufacturing a battery cell 40.
  • the battery cell 40 is the battery cell 40 in any of the above embodiments. Please refer to FIGS. 3 to 11.
  • the manufacturing method of the battery cell 40 provided by the embodiment of the present application includes:
  • Step S01 Provide a first electrode assembly 100 and a second electrode assembly 200.
  • the first electrode assembly 100 includes a first tab 110 and the second electrode assembly 200 includes a second tab 210.
  • Step S02 At least part of the first tab 110 and the second tab 210 are stacked on each other.
  • Step S03 Connect the first tab 110 and the second tab 210 in the stacking area 310 of the first tab 110 and the second tab 210.
  • the first electrode assembly 100 and the second electrode assembly 200 are first provided, so that the battery cell 40 includes more than two electrode assemblies, which can improve the performance of the battery cell 40 . capacitance. Then, at least part of the first tab 110 of the first electrode assembly 100 and the second tab 210 of the second electrode assembly 200 are stacked on each other through step S02. Finally, in step S03, the first tab 110 and the second tab 210 are connected in the connection area. After the first tab 110 and the second tab 210 are connected, the connected first tab 110 and the second tab 210 can be directly connected to the electrode terminal 410 of the battery cell 40.
  • the connection process of the first tab 110 , the second tab 210 and the electrode terminal 410 can be simplified, the number of welding times can be reduced, and the battery life can be improved. Manufacturing efficiency of monomer 40.
  • the first tab 110 includes a plurality of first sub-tabs 110a
  • the second tab 210 includes a plurality of second sub-tabs 210a.
  • Figure 13 before step S02, include:
  • Step S021 Perform a pre-welding process on the plurality of first sub-lugs 110a to form a first sub-welding area, so that the plurality of first sub-lugs 110a are connected to each other in the first sub-welding area.
  • Step S022 Perform a pre-welding process on the plurality of second sub-lugs 210a to form a second sub-welding area, so that the plurality of second sub-lugs 210a are connected to each other in the second sub-welding area.
  • step S021 and step S022 are not limited.
  • the plurality of first sub-lugs 110a and the plurality of second sub-lugs 210a are pre-welded respectively through steps S021 and S022 before step S02, then in step S02, the plurality of first sub-lugs 110a and the plurality of second sub-lugs 210a are pre-welded.
  • the first sub-lugs 110a are connected to each other, and the plurality of second sub-lugs 210a are also connected to each other, which facilitates the stacking operation of the first tabs 110 and the second tabs 210.
  • step S03 overlap the first sub-welding area and the second sub-welding area and weld the first sub-welding area and the second sub-welding area to form the first welding area 320. That is, the first welding area 320 is formed in the area where the first sub-lugs 110a are connected to each other and the area where the second sub-lugs 210a are connected to each other, which can improve the stability of the connection between the first tab 110 and the second tab 210.
  • the first tab 110 includes a plurality of first sub-tabs 110a
  • the second tab 210 includes a plurality of second sub-tabs 210a
  • step S03 welding the first tab 110 and the lamination area 310 of the second tab 210 to form a first welding area 320 . That is, after the first pole tab 110 and the second pole tab 210 are stacked, the first pole tab 110 and the second pole tab 210 are connected to each other to form the first welding area 320. There is no need to connect the first pole tab 110 and the second pole Pre-welding the ears 210 can simplify the manufacturing process of the battery cells 40 and improve the manufacturing efficiency of the battery cells 40 .
  • step S03 further includes: welding the first welding area 320 and the electrode terminal 410 to form the second welding area 500. That is, the electrode terminal 410 is connected to the first tab 110 and the second tab 210 in the area where the first tab 110 and the second tab 210 are connected to each other. There is no need to connect the first tab 110 to the electrode terminal 410 and the second electrode respectively.
  • the lug 210 and the electrode terminal 410 can simplify the manufacturing process of the battery cell 40 and also ensure the stability of the relative positions of the first lug 110 , the second lug 210 and the electrode terminal 410 .
  • the battery cell 40 includes a first electrode assembly 100 and a second electrode assembly 200.
  • the first electrode assembly 100 includes a first tab 110
  • the second electrode assembly 200 includes a second tab 210;
  • the first tab 110 and the second tab 210 are stacked, and at least part of the first tab 110 and the second tab 210 are connected in the stacking area 310 of the first tab 110 and the second tab 210 .
  • the first tab 110 and the second tab 210 are connected through a first welding area 320 in the lamination area 310 .
  • the battery cell 40 further includes an electrode terminal 410 , and the first welding area 320 and the electrode terminal 410 are connected through the second welding area 500 .
  • the area of the first welding area 320 is larger than the area of the second welding area 500 .
  • the second welding area 500 is located within the first welding area 320 , and the second welding area 500 is located close to the middle of the first welding area 320 .
  • the battery cell 40 also includes an end cover 400, and the electrode terminal 410 is provided on the end cover 400.
  • the size d of the stacking area 310 of the first tab 110 and the second tab 210 satisfies: 5mm ⁇ d ⁇ D/2, where D is the width of the end cover 400.
  • the first electrode assembly 100 includes an electrode body 120.
  • a first tab 110 protrudes from a first end surface of the electrode body 120.
  • the first tab 110 includes a top edge 111 on a side away from the electrode body 120 and is connected to the top edge 111 and the first tab 110.
  • One end face has two side edges 112.
  • the angle between at least one side edge 112 and the first end face is a.
  • the complementary angle q of a is greater than or equal to 4 degrees and less than or equal to arctan[W0/(4h-2d)].
  • W0 is the The width of the connection position between one pole tab 110 and the first end surface
  • h is the length of the first pole tab 110 extending from the electrode body 120
  • d is the stacking area 310 of the first pole tab 110 and the second pole tab 210 on the first electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

一种电池单体、电池、用电装置及电池单体的制造方法,电池单体40包括:第一电极组件100和第二电极组件200,第一电极组件100包括第一极耳110,第二电极组件包括第二极耳210;第一极耳110和第二极耳210层叠设置,至少部分第一极耳110和第二极耳210在第一极耳110和第二极耳210的层叠区域连接。第一极耳110和第二极耳210至少部分层叠设置,使得电池单体40的电极端子410能够在第一极耳110和第二极耳210的层叠位置同时连接第一极耳110和第二极耳210,能够简化第一极耳110、第二极耳210与电极端子410的相互连接。

Description

电池单体、电池、用电装置及电池单体的制造方法 技术领域
本申请涉及电池领域,特别涉及一种电池单体、电池、用电装置及电池单体的制造方法。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
为了扩大电容量,电池单体内通常设置有多个电极组件,当电池单体内设置有多个电极组件时,电极组件的极耳与电极端子连接时存在连接次数多的问题。
发明内容
鉴于上述问题,本申请提供一种电池单体、电池、用电装置及电池单体的制造方法,能够简化电池单体中极耳与电极端子的相互连接。
第一方面,本申请提供了一种电池单体,包括:第一电极组件和第二电极组件,第一电极组件包括第一极耳,第二电极组件包括第二极耳;第一极耳和第二极耳层叠设置,至少部分第一极耳和第二极耳在第一极耳和第二极耳的层叠区域连接。
本申请实施例的技术方案中,第一电极组件包括第一极耳,第二电极组件包括第二极耳,且第一极耳和第二极耳至少部分层叠设置,使得第一极耳和第二极耳能够在其层叠区域连接电池单体的其他部件,能够简化并减少第一极耳、第二极耳与其他部件的连接次数。第一极耳和第二极耳在第一极耳和第二极耳的层叠区域相互连接,使得多个电极组件的极耳相互连接更加稳定。
在一些实施例中,第一极耳和第二极耳在层叠区域通过第一熔接区连接。在这些实施例中,通过设置第一熔接区,使得第一极耳和第二极耳可以在第一 熔接区相互熔接连接,能够提高第一极耳和第二极耳连接的稳定性。
在一些实施例中,还包括:电极端子,第一熔接区与电极端子通过第二熔接区连接。在这些实施例中,通过设置第二熔接区,使得连接第一极耳和第二极耳的第一熔接区能够通过第二熔接区与电极端子相互熔接连接,能够提高电极端子和第一极耳、第二极耳连接的稳定性。
在一些实施例中,第一熔接区的面积大于第二熔接区的面积。第一熔接区的面积较大,便于电极端子在第一熔接区内与第一极耳、第二极耳相互连接,能够提高电极端子与第一极耳、第二极耳三者之间的连接强度。
在一些实施例中,第二熔接区位于第一熔接区之内,且第二熔接区靠近第一熔接区的中部设置。在这些实施例中,第二熔接区位于第一熔接区之内,即电极端子在第一熔接区内与第一极耳、第二极耳相互连接,能够提高电极端子与第一极耳、第二极耳之间相对位置的稳定性。相比在第一熔接区的边缘形成第二熔接区,第二熔接区靠近第一熔接区的中部设置,能够进一步提高电极端子与第一极耳、第二极耳的连接强度。
在一些实施例中,第一熔接区通过超声波焊接、电阻焊中的至少一种形成。即第一极耳和第二极耳在层叠区域通过超声波焊接、电阻焊中的至少一种相互连接形成第一熔接区,能够提高第一极耳和第二极耳的连接强度。
在一些实施例中,第二熔接区通过激光焊接形成。即电极端子通过激光焊接与第一熔接区相互连接以形成第二熔接区,能够提高电极端子与第一极耳、第二极耳之间的连接强度。
在一些实施例中,第一极耳包括多个第一子极耳,第二极耳包括多个第二子极耳,第一极耳位于第二极耳的一侧。即多个第一子极耳位于多个第二子极耳的一侧,使得第一极耳和第二极耳的相互层叠操作更加简单,能够提高电池单体的制造效率。
在一些实施例中,第一极耳包括多个第一子极耳,第二极耳包括多个第二子极耳,第一子极耳和第二子极耳相互交错叠置。在这些实施例中,多个第一子极耳和多个第二子极耳相互交错叠置,能够提高第一极耳和第二极耳连接的稳定性。
在一些实施例中,还包括端盖,电极端子设置于端盖,在两个电极组件的并排设置方向上,第一极耳和第二极耳的层叠区域的尺寸d满足:5mm≤d≤D/2,其中,D为端盖的宽度。当第一极耳和第二极耳的层叠区域的尺寸满足上述关系时,既能够改善由于第一极耳和第二极耳层叠区域过小导致第一极耳和第二极耳的连接不稳定;也能够改善第一极耳和第二极耳的层叠区域过大增加第一极耳和第二极耳占据的空间尺寸。
在一些实施例中,第一电极组件包括电极主体,第一极耳由电极主体的第一端面伸出,第一极耳包括背离电极主体一侧的顶边缘及连接于顶边缘和第一端面两个侧边缘,至少一个侧边缘朝向另一侧边缘倾斜设置。在这些可选的实施例中,在第一极耳伸出电极主体的路径上,第一极耳的宽度逐渐减小,第一极耳背离电极主体的自由端的宽度较小,能够改善第一极耳的自由端翻折导致的极耳翻边问题。
在一些实施例中,至少一个侧边缘与第一端面的角度为a,a的余角q大于或等于4度。能够改善由于侧边缘倾斜度过小导致第一极耳远离电极主体的自由端尺寸较大,第一极耳容易翻边的问题。
在一些实施例中,至少一个侧边缘与第一端面夹角的余角q满足如下关系式:
q≤arctan[W0/(4h-2d)]
其中,W0为第一极耳与第一端面连接位置的宽度,h为第一极耳伸出于电极主体的长度,d为第一极耳和第二极耳的层叠区域在第一电极组件和第二电极组件并排方向上的延伸尺寸。能够改善由于侧边缘的倾斜过大,导致第一极耳的尺寸过小影响第一极耳的过流能力。
在一些实施例中,第一极耳与第二极耳极性相同。使得连接于第一极耳和第二极耳的电极端子可以为正极电极端子或负极电极端子。
第二方面,本申请实施例还提供一种电池,包括上述任一第一方面实施例的电池单体。
第三方面,本申请实施例还提供一种用电装置,包括上述任一第一方面实施例的电池单体,电池单体用于提供电能。
第四方面,本申请实施例还提供一种电池单体的制造方法,包括:
提供第一电极组件和第二电极组件,第一电极组件包括第一极耳,第二电极组件包括第二极耳;
将至少部分第一极耳和第二极耳相互层叠设置;
在第一极耳和第二极耳的层叠区域连接第一极耳和第二极耳。
在本申请实施例提供的制造方法中,首先将第一极耳和第二极耳至少部分层叠设置,使得第一极耳和第二极耳能够在其层叠区域同时连接电池单体的其他部件,能够简化并减少第一极耳、第二极耳与其他部件的连接次数。然后第一极耳和第二极耳还在第一极耳和第二极耳的层叠区域相互连接,使得多个电极组件的极耳相互连接更加稳定。
在一些实施例中,第一极耳包括多个第一子极耳,第二极耳包括多个第二子极耳,
在将第一极耳和第二极耳相互层叠设置的步骤之前:
对多个第一子极耳进行预焊处理形成第一子熔接区,使得多个第一子极耳在第一子熔接区相互连接;
对多个第二子极耳进行预焊处理形成第二子熔接区,使得多个第二子极耳在第二子熔接区相互连接。
在这些实施例中,分别对第一极耳和第二极耳进行预焊接,使得多个第一极耳的第一子极耳在第一子熔接区能够相互连接,多个第二极耳的第二子极耳能够在第二子熔接区相互连接,相互连接的第一子极耳和相互连接的第二子极耳便于极性将第一极耳和第二极耳相互层叠设置的操作,能够提高电池单体的制造效率。在一些实施例中,在“在第一极耳和第二极耳的层叠区域连接第一极耳和第二极耳”步骤中,
将第一子熔接区与第二子熔接区重叠并熔接第一子熔接区与第二子熔接区以形成第一熔接区。
在这些实施例中,由于多个第一子极耳在第一子熔接区连接,多个第二子极耳在第二子熔接区连接,熔接第一子熔接区和第二子熔接区形成第一熔接区,能够提高第一极耳和第二极耳的连接强度。
在一些实施例中,第一极耳包括多个第一子极耳,第二极耳包括多个第 二子极耳,在“在第一极耳和第二极耳的层叠区域连接第一极耳和第二极耳”步骤中,包括:
熔接第一极耳和第二极耳的层叠区域,以形成第一熔接区。
在这些实施例中,将第一极耳和第二极耳层叠以后,在层叠区域对第一极耳和第二极耳进行熔接形成第一熔接区,一方面能够减少第一极耳和第二极耳的熔接次数,提高电池单体的制造效率;另一方面第一熔接区还能够提高第一极耳和第二极耳的连接强度。
在一些实施例中,在第一极耳和第二极耳的层叠区域连接第一极耳和第二极耳的步骤之后还包括:
熔接第一熔接区及电极端子,以形成第二熔接区。
在这些实施例中,熔接第一熔接区及电极端子,使得电极端子能够同时连接第一极耳和第二极耳,相对于第一极耳和第二极耳分别与电极端子熔接的方案,能够减少熔接次数,提高电池单体的制造效率。形成的第二熔接区还能够提高第一极耳、第二极耳和电极端子的连接强度。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1是本申请一实施例提供的车辆的结构示意图;
图2是本申请一实施例提供的电池包的结构示意图;
图3是本申请一实施例提供的一种电池单体的轴测图;
图4是本申请一实施例提供的一种电池单体的分解结构示意图;
图5是本申请实施例提供的电池单体40在制造过程中的轴测图;
图6是本申请实施例提供的电池单体40在制造过程中的俯视图;
图7是一种示例中图6中A-A处的剖视图;
图8是图7中I处的局部放大结构示意图;
图9是另一种示例中图6中A-A处的剖视图;
图10是图9中II处的局部放大结构示意图;
图11是本申请另一实施例提供的电池单体40在制造过程中的俯视图;
图12是本申请实施例提供的一种电池单体的制造方法流程示意图;
图13是本申请实施例提供的一种电池单体的制造方法中某步骤的流程示意图。
具体实施方式中的附图标号如下:
1、车辆;10、电池;11、控制器;12、马达;
20、电池模块;
30、箱体;301、第一箱体部;302、第二箱体部;
40、电池单体;
100、第一电极组件;110、第一极耳;110a、第一子极耳;111、顶边缘;112、侧边缘;120、电极主体;
200、第二电极组件;210、第二极耳;210a、第二子极耳;
310、层叠区域;320、第一熔接区;
400、端盖;410、电极端子;
500、第二熔接区;
600、壳体;610、开口;
X、第一方向;Y、第二方向;Z;第三方向。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
需要注意的是,除非另有说明,本申请实施例使用的技术术语或者科学术 语应当为本申请实施例所属领域技术人员所理解的通常意义。
在本申请实施例的描述中,技术术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
此外,技术术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请实施例的描述中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本 申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件包括正极极片、负极极片和隔板。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面;正极集流体包括正极集流部和连接于正极集流部的正极极耳,正极集流部涂覆有正极活性物质层,正极极耳未涂覆正极活性物质层。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质层包括正极活性物质,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面;负极集流体包括负极集流部和连接于负极集流部的负极极耳,负极集流部涂覆有负极活性物质层,负极极耳未涂覆负极活性物质层。负极集流体的材料可以为铜,负极活性物质层包括负极活性物质,负极活性物质可以为碳或硅等。隔板的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
本发明人注意到,在电池单体中,电池单体包括壳体、位于壳体内的电极组件和盖设于壳体开口处的顶盖板,电极组件包括极耳,顶盖板上设置有电极端子。为了解决极耳通过转接片与电极端子焊接导致的过流路径过长,电流过流导致的温升过高问题,电池单体会选用无转接片设计,即电极组件的极耳直接与电极端子相互连接。
在相关技术中,为了提高电池单体的电容量,同一电池单体中通常设置有两个以上的电极组件,两个以上的电极组件的极耳与同一电极端子相互连接存在焊接次数多等问题。
为了解决上述技术问题,申请人研究发现,在极耳与电极端子焊接之前,可以先将两个以上的电极组件的极耳相互连接为一体,然后将连接后的两个以上极耳与电极端子焊接,能够解决极焊接次数多的问题。
基于以上考虑,为了解决电池单体中电极端子与极耳连接时焊接次数多的问题,发明人经过深入研究,设计了一种电池单体、电池、用电装置及电池单体的制造方法。在这样的电池单体中,电池单体包括第一电极组件和第二电极组件,第一电极组件包括第一极耳,第二电极组件包括第二极耳,至少部分第一极耳和第二极耳相互层叠设置,且第一极耳和第二极耳在其层叠区域相互连接。
本申请实施例描述的技术方案适用于电池以及使用电池的用电装置。
用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的电池和用电设备,还可以适用于所有包括箱体的电池以及使用电池的用电设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1的结构示意图。车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部设置有电池10,电池10可以设置在车辆1的底部或头部或尾部。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源。车辆1还可以包括控制器11和马达12,控制器11用来控制电池10为马达12供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池10不仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池10可以包括多个电池单体,电池单 体是指组成电池模块或电池包的最小单元。多个电池单体可经由电极端子而被串联和/或并联在一起以应用于各种应用场合。本申请中所提到的电池包括电池模块或电池包。其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。本申请的实施例中多个电池单体可以直接组成电池包,也可以先组成电池模块20,电池模块20再组成电池包。
图2示出了本申请一实施例的电池10的结构示意图。
如图2所示,电池10包括箱体30和电池单体40,电池单体40容纳于箱体30内。
箱体30可以是单独的长方体或者圆柱体或球体等简单立体结构,也可以是由长方体或者圆柱体或球体等简单立体结构组合而成的复杂立体结构,本申请实施例对此并不限定。箱体30的材质可以是如铝合金、铁合金等合金材料,也可以是如聚碳酸酯、聚异氰脲酸酯泡沫塑料等高分子材料,或者是如玻璃纤维加环氧树脂的复合材料,本申请实施例对此也并不限定。
箱体30用于容纳电池单体40,箱体30可以是多种结构。在一些实施例中,箱体30可以包括第一箱体部301和第二箱体部302,第一箱体部301与第二箱体部302相互盖合,第一箱体部301和第二箱体部302共同限定出用于容纳电池单体40的容纳空间。第二箱体部302可以是一端开口的空心结构,第一箱体部301为板状结构,第一箱体部301盖合于第二箱体部302的开口侧,以形成具有容纳空间的箱体30;第一箱体部301和第二箱体部302也均可以是一侧开口的空心结构,第一箱体部301的开口侧盖合于第二箱体部302的开口侧,以形成具有容纳空间的箱体30。当然,第一箱体部301和第二箱体部302可以是多种形状,比如,圆柱体、长方体等。
为提高第一箱体部301与第二箱体部302连接后的密封性,第一箱体部301与第二箱体部302之间也可以设置密封件,比如,密封胶、密封圈等。
假设第一箱体部301盖合于第二箱体部302的顶部,第一箱体部301亦可称之为上箱盖,第二箱体部302亦可称之为下箱体30。
在电池10中,电池单体40可以是一个,也可以是多个。若电池单体40为多个,多个电池单体40之间可串联或并联或混联,混联是指多个电池单体40中既有串联又有并联。多个电池单体40之间可直接串联或并联或混联在一 起,再将多个电池单体40构成的整体容纳于箱体30内;当然,也可以是多个电池单体40先串联或并联或混联组成电池模块20,多个电池模块20再串联或并联或混联形成一个整体,并容纳于箱体30内。
请继续参与图2,在一些实施例中,电池单体40为多个,多个电池单体40先串联或并联或混联组成电池模块20。多个电池模块20再串联或并联或混联形成一个整体,并容纳于箱体30内。
电池模块20中的多个电池单体40之间可通过汇流部件实现电连接,以实现电池模块20中的多个电池单体40的并联或串联或混联。
本申请中,电池单体40可以包括锂离子电池单体40、钠离子电池单体40或镁离子电池单体40等,本申请实施例对此并不限定。电池单体40可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体40一般按封装的方式分成三种:柱形电池单体40、方体方形电池单体40和软包电池单体40,本申请实施例对此也不限定。但为描述简洁,下述实施例均以方体方形电池单体40为例进行说明。
图3为本申请一些实施例提供的电池单体40的轴测图,图4为本申请一些实施例提供的电池单体40的分解结构示意图。
如图3和图4所示,电池单体40包括第一电极组件100和第二电极组件200,第一电极组件100包括第一极耳110,第二电极组件200包括第二极耳210;第一极耳110和第二极耳210层叠设置,至少部分第一极耳110和第二极耳210在第一极耳110和第二极耳210的层叠区域310连接。
电池单体40还包括壳体600和盖合于壳体600开口610处的端盖400,壳体600和端盖400组合形成电池单体40的外壳。第一电极组件100和第二电极组件200位于电池单体40的外壳内。
端盖400是指盖合于壳体600的开口610处以将电池单体40的内部环境隔绝于外部环境的部件。不限地,端盖400的形状可以与壳体600的形状相适应以配合壳体600。可选地,端盖400可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖400在受挤压碰撞时就不易发生形变,使电池单体40能够具备更高的结构强度,安全性能也可以有所提高。端盖400上可以设置有如电极端子410等的功能性部件。电极端子410可以用于与电极组 件100电连接,以用于输出或输入电池单体40的电能。在一些实施例中,端盖400上还可以设置有用于在电池单体40的内部压力或温度达到阈值时泄放内部压力的泄压机构。端盖400的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。在一些实施例中,在端盖400的内侧还可以设置有隔板,隔板可以用于隔离壳体600内的电连接部件与端盖400,以降低短路的风险。示例性的,隔板200可以是塑料、橡胶等。
第一电极组件100和第二电极组件200中的至少一者主要由具有活性物质的极片和隔膜卷绕形成,极片包括正极片和负极片。电极组件100是电池单体40中发生电化学反应的部件。壳体600内可以包含一个或更多个电极组件100。第一电极组件100和/或第二电极组件200包括电极主体120,正极片和负极片上涂覆有活性物质的部分卷绕形成电极主体120。第一极耳110和/或第二极耳210包括正极耳和负极耳,正极片和负极片上连接的不具有活性物质的部分各自构成正极耳和负极耳,正极耳和负极耳可以共同位于电极主体120的一端或是分别位于电极主体120的两端。
壳体600是用于配合端盖400以形成电池单体40的内部环境的组件,其中,形成的内部环境可以用于容纳电极组件100、电解液(在图中未示出)以及其他部件。壳体600和端盖400可以是独立的部件,可以于壳体600上设置开口610,通过在开口610处使端盖400盖合开口610以形成电池单体40的内部环境。不限地,也可以使端盖400和壳体600一体化,具体地,端盖400和壳体600可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体600的内部时,再使端盖400盖合壳体600。壳体600可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体600的形状可以根据电极组件100的具体形状和尺寸大小来确定。壳体600的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
可选的,端盖400朝向电极组件的一侧可以设置有绝缘件,即绝缘件可以设置于端盖400和电极主体120之间。在其他实施例中,绝缘件还可以设置于壳体600的内壁面与电极主体120之间。绝缘件的材料设置方式有多种,绝缘件可以选用橡胶、塑胶等绝缘材料。绝缘件选用橡胶,使得绝缘件具有合 适的弹性,更好地改善电极主体120的受力集中。
第一极耳110和第二极耳210在第一极耳110和第二极耳210的层叠区域310连接可以为第一极耳110和第二极耳210在连接电极端子410之前相互连接,或者第一极耳110和第二极耳210在连接电极端子410的步骤中相互连接。
本申请实施例的技术方案中,第一电极组件100包括第一极耳110,第二电极组件200包括第二极耳210,且第一极耳110和第二极耳210至少部分层叠设置,使得第一极耳110和第二极耳210能够在其层叠区域310连接电池单体10的其他部件,例如电极端子410在同一步骤中可以连接两个以上的电极组件的极耳,能够简化第一极耳110、第二极耳210与电极端子410的相互连接。
此外,第一极耳110和第二极耳210还在第一极耳110和第二极耳210的层叠区域310相互连接,使得多个电极组件的极耳相互连接更加稳定。而当电极端子410通过层叠区域310连接第一极耳110和第二极耳210时,还能够提高电极端子410和第一极耳110、第二极耳210相互连接的稳定性。
请参阅图3至图5,图5是本申请实施例提供的电池单体40在制造过程中的轴测图。
根据本申请的一些实施例,如图3至图5所示,第一极耳110和第二极耳210在层叠区域310通过第一熔接区320连接。
可选的,第一熔接区320的面积小于层叠区域310的面积,且第一熔接区320在层叠区域310内。
第一熔接区320的设置方式有多种,例如在第一极耳110和第二极耳210相互层叠设置之前,第一极耳110预焊形成第一预焊区,第二极耳210预焊形成第二预焊区,第一预焊区和第二预焊区层叠形成第一熔接区320。或者,在第一极耳110和第二极耳210相互层叠设置之后,对第一极耳110和第二极耳210进行预焊形成第一熔接区320。
在这些可选的实施例中,通过设置第一熔接区320,使得第一极耳110和第二极耳210可以在第一熔接区320相互熔接连接,能够提高第一极耳110 和第二极耳210连接的稳定性。
根据本申请的一些实施例,请继续参阅图3至图5,如上所述电池单体40还包括电极端子410,第一熔接区320与电极端子410通过第二熔接区500连接。
第二熔接区500可以为第一熔接区320与电极端子410通过焊接等方式连接时形成的焊接区域,第二熔接区500也可以为第一熔接区320与电极端子410相互连接的区域。
在这些可选的实施例中,通过设置第二熔接区500,使得连接第一极耳110和第二极耳210的第一熔接区320能够通过第二熔接区500与电极端子410相互熔接连接,能够提高电极端子410和第一极耳110、第二极耳210连接的稳定性。
根据本申请的一些实施例,请继续参阅图3至图5,第一熔接区320的面积大于第二熔接区500的面积。
第一熔接区320和第二熔接区500的形状方式有多种,例如第一熔接区320可以为圆形、多边形、椭圆形或者不规则图形。第二熔接区500的形状也可以为圆形、多边形、椭圆形或者不规则图形。
可选的,当第一熔接区320在第一方向X上的延伸尺寸大于其自身在第二方向Y上的延伸尺寸时,第二熔接区500在第一方向X上的延伸尺寸也大于其自身在第二方向Y上的延伸尺寸,便于将第二熔接区500设置于第一熔接区320之内。可选的,第一电极组件100和第二电极组件200沿第二方向Y并排设置。
可选的,当第一极耳110和第二极耳210为梯形时,第一极耳110和第二极耳210的层叠区域310可以为六边形,第一熔接区320的形状可以为六边形。第二熔接区500的形状可以为腰形。
在这些可选的实施例中,第一熔接区320的面积较大,便于电极端子410在第一熔接区320内与第一极耳110、第二极耳210相互连接,能够提高电极端子410与第一极耳110、第二极耳210三者之间的连接强度。
根据本申请的一些实施例,请继续参阅图3至图5,第二熔接区500位于第一熔接区320之内,且第二熔接区500靠近第一熔接区320的中部 设置。
可选的,第二熔接区500可以靠近第一熔接区320在第一方向X和/或第二方向Y上的中部设置。
在这些可选的实施例中,第二熔接区500位于第一熔接区320之内,即电极端子410在第一熔接区320内与第一极耳110、第二极耳210相互连接,能够提高电极端子410与第一极耳110、第二极耳210之间相对位置的稳定性。相比在第一熔接区320的边缘形成第二熔接区500,第二熔接区500靠近第一熔接区320的中部设置,能够进一步提高电极端子410与第一极耳110、第二极耳210的连接强度。
根据本申请的一些实施例,第一熔接区320通过超声波焊接、电阻焊中的至少一种形成。
在这些可选的实施例中,第一极耳110和第二极耳210在层叠区域310通过超声波焊接、电阻焊中的至少一种相互连接形成第一熔接区320,能够提高第一极耳110和第二极耳210的连接强度。
根据本申请的一些实施例,第二熔接区500通过激光焊接形成。即电极端子410通过激光焊接与第一熔接区320相互连接以形成第二熔接区500,能够提高电极端子410与第一极耳110、第二极耳210之间的连接强度。
请参阅图6至图10,图6是本申请实施例提供的电池单体40在制造过程中的俯视图;图7是一种示例中图6中A-A处的剖视图,图8是图7中I处的局部放大结构示意图;图9是另一种示例中图6中A-A处的剖视图,图10是图9中II处的局部放大结构示意图。
根据本申请的一些实施例,如图6至图10所示,第一极耳110包括多个第一子极耳110a,第二极耳210包括多个第二子极耳210a。如图7和图8所示,第一极耳110位于第二极耳210的一侧。即多个第一子极耳110a位于多个第二子极耳210a的一侧,使得第一极耳110和第二极耳210的相互层叠操作更加简单,能够提高电池单体40的制造效率。
当第一极耳110包括多个第一子极耳110a,第二极耳210包括多个第二子极耳210a时,在第一极耳110和第二极耳210相互层叠设置之前,可以对 第一极耳110进行预焊处理使得第一极耳110的多个第一子极耳110a相互连接,对第二极耳210进行预焊处理使得第二极耳210的多个第二子极耳210a相互连接。然后将预焊处理后的第一极耳110和第二极耳210相互层叠设置,并对层叠区域310进行超声波焊接、电阻焊等形成第一熔接区320。最后将第一熔接区320通过激光焊接连接于电极端子410并形成第二熔接区500。
或者,在另一些实施例中,在第一极耳110和第二极耳210相互层叠设置之前,也可以不对第一极耳110和第二极耳210进行预焊处理,在第一极耳110和第二极耳210相互层叠设置之后,对层叠区域310进行超声波焊接、电阻焊等形成第一熔接区320。最后将第一熔接区320通过激光焊接连接于电极端子410并形成第二熔接区500。
根据本申请的一些实施例,如图9和图10所示,第一极耳110包括多个第一子极耳110a,第二极耳210包括多个第二子极耳210a,第一子极耳110a和第二子极耳210a相互交错叠置。
在这些可选的实施例中,多个第一子极耳110a和多个第二子极耳210a相互交错叠置,能够提高第一极耳110和第二极耳210连接的稳定性。
第一子极耳110a和第二子极耳210a相互交错叠置是指,至少一个第一子极耳110a位于相邻的两个第二子极耳210a之间,和/或至少一个第二子极耳210a位于相邻的两个第一子极耳110a之间。可选的,任相邻的两个第一子极耳110a之间均设置有一第二子极耳210a,使得第一子极耳110a和第二子极耳210a充分交错,进一步提高第一极耳110和第二极耳210连接的稳定性。
根据本申请的一些实施例,如图3至图10所示,如上所述,电池单体40还包括端盖400,电极端子410设置于端盖400,在两个电极组件的并排设置方向(即第二方向Y)上,第一极耳110和第二极耳210的层叠区域310的尺寸d满足:5mm≤d≤D/2,其中,D为端盖400的宽度。
D为端盖400在两个电极组件的并排设置方向上的宽度。
在这些可选的实施例中,当第一极耳110和第二极耳210的层叠区域310的尺寸满足上述关系时,既能够改善由于第一极耳110和第二极耳210层叠区域310过小导致第一极耳110和第二极耳210的连接不稳定;也能 够改善第一极耳110和第二极耳210的层叠区域310过大增加第一极耳110和第二极耳210占据的空间尺寸。
根据本申请的一些实施例,如图11所示,第一电极组件100包括电极主体120,第一极耳110由电极主体120的第一端面伸出,第一极耳110包括背离电极主体120一侧的顶边缘111及连接于顶边缘111和第一端面两个侧边缘112,至少一个侧边缘112朝向另一侧边缘112倾斜设置。
可选的,第一极耳110的两个侧边缘112沿相互靠近的方向倾斜设置,即第一极耳110的形状为梯形。
在这些可选的实施例中,在第一极耳110伸出电极主体120的路径上,第一极耳110的宽度逐渐减小,第一极耳110背离电极主体120的自由端的宽度较小,能够改善第一极耳110的自由端翻折导致的极耳翻边问题。
在另一些实施例中,第二电极组件200也可以包括上述的电极主体120,第二极耳210由电极主体120的第一端面伸出,第二极耳210包括背离电极主体120一侧的顶边缘111及连接于顶边缘111和第一端面两个侧边缘112,至少一个侧边缘112朝向另一侧边缘112倾斜设置。
在这些可选的实施例中,在第二极耳210伸出电极主体120的路径上,第二极耳210的宽度逐渐减小,第二极耳210背离电极主体120的自由端的宽度较小,能够改善第二极耳210的自由端翻折导致的极耳翻边问题。
根据本申请的一些实施例,如图11所示,至少一个侧边缘112与第一端面的角度为a,a的余角q大于或等于4度。
在这些可选的实施例中,当a的余角q满足上述关系式时,能够改善由于侧边缘112倾斜度过小导致第一极耳110远离电极主体120的自由端尺寸较大,第一极耳110容易翻边的问题。
根据本申请的一些实施例,如图11所示,至少一个侧边缘112与第一端面夹角的余角q满足如下关系式:
q≤arctan[W0/(4h-2d)]
其中,W0为第一极耳110与第一端面连接位置的宽度,h为第一极耳110伸出于电极主体120的长度,d为第一极耳110和第二极耳210的层 叠区域310在第一电极组件100和第二电极组件200并排方向上的延伸尺寸。
在这些可选的实施例中,当a的余角q满足上述关系式时,能够改善由于侧边缘112的倾斜过大,导致第一极耳110的尺寸过小影响第一极耳110的过流能力。
在一些实施例中,第一极耳110与第二极耳210极性相同。使得连接于第一极耳110和第二极耳210的电极端子410可以为正极电极端子410或负极电极端子410。
第一极耳110和第二极耳210可以同为正极耳,或者第一极耳110和第二极耳210还可以同为负极耳。
根据本申请的一些实施例,本申请还提供了一种电池,包括以上任一方案所述的电池单体40。
根据本申请的一些实施例,本申请还提供了一种用电装置,包括以上任一方案所述的电池单体40,并且电池单体40用于为用电装置提供电能。
用电装置可以是前述任一应用电池单体40的设备或系统。
根据本申请的一些实施例,本申请还提供了一种电池单体40的制造方法,电池单体40位上述任一实施例中的电池单体40,请结合图3至图11,并参阅图12,本申请实施例提供的电池单体40的制造方法包括:
步骤S01:提供第一电极组件100和第二电极组件200,第一电极组件100包括第一极耳110,第二电极组件200包括第二极耳210。
步骤S02:将至少部分第一极耳110和第二极耳210相互层叠设置。
步骤S03:在第一极耳110和第二极耳210的层叠区域310连接第一极耳110和第二极耳210。
在本申请实施例提供的电池单体40的制造方法中,首先提供第一电极组件100和第二电极组件200,使得电池单体40包括两个以上的电极组件,能够提高电池单体40的电容量。然后通过步骤S02将至少部分第一电极组件100的第一极耳110和第二电极组件200的第二极耳210相互层叠设置。最后在步骤S03中在连接区域连接第一极耳110和第二极耳210。第一极耳 110和第二极耳210连接后,可以直接将连接的第一极耳110和第二极耳210与电池单体40的电极端子410相互连接。相对于第一极耳110和第二极耳210分别与电极端子410相互连接来说,能够简化第一极耳110、第二极耳210和电极端子410的连接工艺,减少焊接次数,提高电池单体40的制造效率。
根据本申请的一些实施例,第一极耳110包括多个第一子极耳110a,第二极耳210包括多个第二子极耳210a,如图13所示,在步骤S02之前还可以包括:
步骤S021:对多个第一子极耳110a进行预焊处理形成第一子熔接区,令多个第一子极耳110a在第一子熔接区相互连接。
步骤S022:对多个第二子极耳210a进行预焊处理形成第二子熔接区,使得多个第二子极耳210a在第二子熔接区相互连接。
步骤S021和步骤S022的先后顺序不做限定。
在这些可选的实施例中,在步骤S02之前分别通过步骤S021和步骤S022分别对多个第一子极耳110a和多个第二子极耳210a进行预焊,那么在步骤S02中,多个第一子极耳110a已经相互连接,多个第二子极耳210a也相互连接,方便第一极耳110和第二极耳210的层叠操作。
根据本申请的一些实施例,在步骤S03中:将第一子熔接区与第二子熔接区重叠并熔接第一子熔接区与第二子熔接区以形成第一熔接区320。即在第一子极耳110a相互连接的区域和第二子极耳210a相互连接的区域形成第一熔接区320,能够提高第一极耳110和第二极耳210相互连接的稳定性。
根据本申请的一些实施例,第一极耳110包括多个第一子极耳110a,第二极耳210包括多个第二子极耳210a,那么在步骤S03中:熔接第一极耳110和第二极耳210的层叠区域310,以形成第一熔接区320。即在第一极耳110和第二极耳210层叠设置之后,再将第一极耳110和第二极耳210相互连接形成第一熔接区320,无需对第一极耳110和第二极耳210进行预焊,能够简化电池单体40的制造工艺,提高电池单体40的制造效率。
根据本申请的一些实施例,步骤S03之后还包括:熔接第一熔接区320及电极端子410,以形成第二熔接区500。即在第一极耳110和第二极耳210 相互连接的区域连接电极端子410与第一极耳110、第二极耳210,无需分别连接第一极耳110与电极端子410、第二极耳210与电极端子410,能够简化电池单体40的制造工艺,还能够保证第一极耳110、第二极耳210与电极端子410三者中两两之间相对位置的稳定性。
如图3至图11所示,电池单体40包括第一电极组件100和第二电极组件200,第一电极组件100包括第一极耳110,第二电极组件200包括第二极耳210;第一极耳110和第二极耳210层叠设置,至少部分第一极耳110和第二极耳210在第一极耳110和第二极耳210的层叠区域310连接。第一极耳110和第二极耳210在层叠区域310通过第一熔接区320连接。电池单体40还包括电极端子410,第一熔接区320与电极端子410通过第二熔接区500连接。第一熔接区320的面积大于第二熔接区500的面积,第二熔接区500位于第一熔接区320之内,且第二熔接区500靠近第一熔接区320的中部设置。电池单体40还包括端盖400,电极端子410设置于端盖400,在两个电极组件的并排设置方向上,第一极耳110和第二极耳210的层叠区域310的尺寸d满足:5mm≤d≤D/2,其中,D为端盖400的宽度。第一电极组件100包括电极主体120,第一极耳110由电极主体120的第一端面伸出,第一极耳110包括背离电极主体120一侧的顶边缘111及连接于顶边缘111和第一端面两个侧边缘112,至少一个侧边缘112与第一端面的角度为a,a的余角q大于或等于4度且小于或等于arctan[W0/(4h-2d)],W0为第一极耳110与第一端面连接位置的宽度,h为第一极耳110伸出于电极主体120的长度,d为第一极耳110和第二极耳210的层叠区域310在第一电极组件100和第二电极组件200并排方向上的延伸尺寸。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (19)

  1. 一种电池单体,包括:
    第一电极组件和第二电极组件,所述第一电极组件包括第一极耳,所述第二电极组件包括第二极耳;
    至少部分所述第一极耳和所述第二极耳层叠设置,所述第一极耳和所述第二极耳在所述第一极耳和所述第二极耳的层叠区域连接。
  2. 根据权利要求1所述的电池单体,其中,所述第一极耳和所述第二极耳在所述层叠区域通过第一熔接区连接。
  3. 根据权利要求2所述的电池单体,其中,还包括:电极端子,所述第一熔接区与所述电极端子通过第二熔接区连接。
  4. 根据权利要求3所述的电池单体,其中,所述第一熔接区的面积大于所述第二熔接区的面积。
  5. 根据权利要求4所述的电池单体,其中,所述第二熔接区位于所述第一熔接区之内,且所述第二熔接区靠近所述第一熔接区的中部设置。
  6. 根据权利要求3-5任一项所述的电池单体,其中,
    所述第一熔接区通过超声波焊接、电阻焊中的至少一种形成;
    和/或,所述第二熔接区通过激光焊接形成。
  7. 根据权利要求2-6任一项所述的电池单体,其中,所述第一极耳包括多个第一子极耳,所述第二极耳包括多个第二子极耳,所述第一极耳位于所述第二极耳的一侧,或者,所述第一子极耳和所述第二子极耳相互交错叠置。
  8. 根据权利要求1-7任一项所述的电池单体,其中,还包括端盖,所述电极端子设置于所述端盖,在两个所述电极组件的并排设置方向上,所述第一极耳和所述第二极耳的层叠区域的尺寸d满足:5mm≤d≤D/2,其中,D为所述端盖的宽度。
  9. 根据权利要求1-8任一项所述的电池单体,其中,所述第一电极组件包括电极主体,所述第一极耳由所述电极主体的第一端面伸出,所述第一极耳包括背离所述电极主体一侧的顶边缘及连接于所述顶边缘和所述第一端面两个侧边缘,至少一个所述侧边缘朝向另一所述侧边缘倾斜设置。
  10. 根据权利要求9所述的电池单体,其中,至少一个所述侧边缘与所述第一端面的角度为a,a的余角q大于或等于4度。
  11. 根据权利要求9所述的电池单体,其中,至少一个所述侧边缘与所述第一端面夹角的余角q满足如下关系式:
    q≤arctan[W0/(4h-2d)]
    其中,W0为所述第一极耳与所述第一端面连接位置的宽度,h为所述第一极耳伸出于所述电极主体的长度,d为所述第一极耳和所述第二极耳的层叠区域在所述第一电极组件和所述第二电极组件并排方向上的延伸尺寸。
  12. 根据权利要求1-11任一项所述的电池单体,其中,所述第一极耳与所述第二极耳极性相同。
  13. 一种电池,其特征在于,包括权利要求1-12任一项所述的电池单体。
  14. 一种用电装置,其特征在于,包括权利要求1-12任一项所述的电池单体,所述电池单体用于提供电能。
  15. 一种电池单体的制造方法,其中,包括:
    提供第一电极组件和第二电极组件,所述第一电极组件包括第一极耳,所述第二电极组件包括第二极耳;
    将至少部分所述第一极耳和所述第二极耳相互层叠设置;
    在所述第一极耳和所述第二极耳的层叠区域连接所述第一极耳和所述第二极耳。
  16. 根据权利要求15所述的制造方法,其中,所述第一极耳包括多个第一子极耳,所述第二极耳包括多个第二子极耳,
    在将至少部分所述第一极耳和所述第二极耳相互层叠设置的步骤之前:
    对多个所述第一子极耳进行预焊处理形成第一子熔接区,使得多个所述第一子极耳在所述第一子熔接区相互连接;
    对多个所述第二子极耳进行预焊处理形成第二子熔接区,使得多个所述第二子极耳在所述第二子熔接区相互连接。
  17. 根据权利要求16所述的制造方法,其中,在“在所述第一极耳和所述第二极耳的层叠区域连接所述第一极耳和所述第二极耳”步骤中,
    将所述第一子熔接区与所述第二子熔接区重叠并熔接所述第一子熔接区与所述第二子熔接区以形成第一熔接区。
  18. 根据权利要求15所述的制造方法,其中,所述第一极耳包括多个第一子极耳,所述第二极耳包括多个第二子极耳,在“在所述第一极耳和所述第二极耳的层叠区域连接所述第一极耳和所述第二极耳”步骤中,包括:
    熔接所述第一极耳和所述第二极耳的层叠区域,以形成第一熔接区。
  19. 根据权利要求17或者18所述的方法,其中,在所述第一极耳和所述第二极耳的层叠区域连接所述第一极耳和所述第二极耳的步骤之后还包括:
    熔接所述第一熔接区及电极端子,以形成第二熔接区。
PCT/CN2022/107812 2022-07-26 2022-07-26 电池单体、电池、用电装置及电池单体的制造方法 Ceased WO2024020766A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202290000412.3U CN222735302U (zh) 2022-07-26 2022-07-26 电池单体、电池、用电装置
PCT/CN2022/107812 WO2024020766A1 (zh) 2022-07-26 2022-07-26 电池单体、电池、用电装置及电池单体的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/107812 WO2024020766A1 (zh) 2022-07-26 2022-07-26 电池单体、电池、用电装置及电池单体的制造方法

Publications (1)

Publication Number Publication Date
WO2024020766A1 true WO2024020766A1 (zh) 2024-02-01

Family

ID=89704908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107812 Ceased WO2024020766A1 (zh) 2022-07-26 2022-07-26 电池单体、电池、用电装置及电池单体的制造方法

Country Status (2)

Country Link
CN (1) CN222735302U (zh)
WO (1) WO2024020766A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119481609A (zh) * 2024-11-11 2025-02-18 阳光电源股份有限公司 电池单体
CN119742462A (zh) * 2025-01-21 2025-04-01 宁德时代新能源科技股份有限公司 裸电芯的组装方法及电池单体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014011040A (ja) * 2012-06-29 2014-01-20 Toyota Industries Corp 蓄電装置及び電極組立体の製造方法
JP2016021281A (ja) * 2014-07-11 2016-02-04 株式会社豊田自動織機 蓄電装置
JP2018006114A (ja) * 2016-06-30 2018-01-11 株式会社豊田自動織機 蓄電装置
JP2021018845A (ja) * 2019-07-17 2021-02-15 古河電池株式会社 非水電解質二次電池およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014011040A (ja) * 2012-06-29 2014-01-20 Toyota Industries Corp 蓄電装置及び電極組立体の製造方法
JP2016021281A (ja) * 2014-07-11 2016-02-04 株式会社豊田自動織機 蓄電装置
JP2018006114A (ja) * 2016-06-30 2018-01-11 株式会社豊田自動織機 蓄電装置
JP2021018845A (ja) * 2019-07-17 2021-02-15 古河電池株式会社 非水電解質二次電池およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119481609A (zh) * 2024-11-11 2025-02-18 阳光电源股份有限公司 电池单体
CN119742462A (zh) * 2025-01-21 2025-04-01 宁德时代新能源科技股份有限公司 裸电芯的组装方法及电池单体

Also Published As

Publication number Publication date
CN222735302U (zh) 2025-04-08

Similar Documents

Publication Publication Date Title
WO2023050969A1 (zh) 一种电池单体、电池及用电装置
US20250015426A1 (en) Housing, battery cell, battery, and power consuming device
US20240274925A1 (en) Battery cell, manufacturing method and system thereof, battery, and powered device
CN217158413U (zh) 电池单体的壳体、电池单体、电池以及用电装置
CN218414802U (zh) 电池单体、电池及用电装置
US20240055646A1 (en) Wound electrode assembly, battery cell, battery, and electrical device
CN220527038U (zh) 电池单体、电池、用电装置及储能装置
US20250015466A1 (en) End cover assembly, battery cell and battery
WO2024040528A1 (zh) 电池单体、电池及用电装置
WO2024036752A1 (zh) 电极组件、电池单体、电池及用电装置
WO2024020766A1 (zh) 电池单体、电池、用电装置及电池单体的制造方法
WO2023092459A1 (zh) 电极组件、电池单体、电池以及用电装置
US20230223642A1 (en) Pressure relief apparatus, battery cell, battery, and electrical device
CN219144431U (zh) 电极组件、电池单体、电池及用电装置
WO2023197905A1 (zh) 端盖组件、电池单体、电池和用电设备
US20250079651A1 (en) Battery Cell, Battery and Electrical Equipment
JP7652920B2 (ja) タブ溶接構造、電池セル、電力消費機器、タブの溶接方法及びタブの溶接機器
WO2024026829A1 (zh) 电池单体、电池以及用电装置
CN221226383U (zh) 电池单体、电池和用电设备
CN117134051A (zh) 电池单体、电池和用电装置
WO2024040503A1 (zh) 电极组件、制备方法、电池单体、电池及用电装置
WO2023168954A1 (zh) 电芯、电芯的制造方法、电池单体、电池及用电设备
CN221226309U (zh) 电池单体、电池和用电设备
CN220569775U (zh) 电池单体、电池以及用电装置
CN220672722U (zh) 电池单体、电池和用电装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202290000412.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 202290000412.3

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 22952232

Country of ref document: EP

Kind code of ref document: A1