WO2024036752A1 - 电极组件、电池单体、电池及用电装置 - Google Patents

电极组件、电池单体、电池及用电装置 Download PDF

Info

Publication number
WO2024036752A1
WO2024036752A1 PCT/CN2022/128182 CN2022128182W WO2024036752A1 WO 2024036752 A1 WO2024036752 A1 WO 2024036752A1 CN 2022128182 W CN2022128182 W CN 2022128182W WO 2024036752 A1 WO2024036752 A1 WO 2024036752A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole piece
electrode assembly
adhesive layer
battery
present application
Prior art date
Application number
PCT/CN2022/128182
Other languages
English (en)
French (fr)
Inventor
张楠
王红
刘江
程启
Original Assignee
江苏时代新能源科技有限公司
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏时代新能源科技有限公司, 宁德时代新能源科技股份有限公司 filed Critical 江苏时代新能源科技有限公司
Publication of WO2024036752A1 publication Critical patent/WO2024036752A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of energy storage devices, and in particular to an electrode assembly, a battery cell, a battery and an electrical device.
  • the internal structure of the electrode assembly is prone to deformation or dislocation, and a contact short circuit between the cathode pole piece and the anode pole piece may occur, which greatly affects the safety performance of the electrode assembly.
  • the present application provides an electrode assembly, a battery cell, a battery and an electrical device, which can improve the safety performance of the electrode assembly.
  • the present application provides an electrode assembly.
  • the electrode assembly includes a plurality of first pole pieces and a second pole piece that are alternately stacked.
  • a separator is provided between the first pole piece and the second pole piece.
  • Each first pole The pieces are arranged independently of each other, wherein the first pole piece has an opposite first end and a second end in the first direction, and an adhesive layer is provided on at least part of the first end and/or at least part of the second end, so that the first pole piece One pole piece is bonded to the separator through an adhesive layer.
  • the alternating stacking direction of the first pole piece and the second pole piece is the second direction, and the first direction intersects with the second direction.
  • the electrode assembly includes a first pole piece and a second pole piece that are alternately stacked in multiple layers, and metal ions can move between the first pole piece and the second pole piece.
  • a diaphragm is provided between the first pole piece and the second pole piece, and the diaphragm can prevent contact short circuit between the first pole piece and the second pole piece.
  • the first pole piece has an opposite first end and a second end in the first direction. Since each first pole piece is arranged independently of each other, the adhesive is provided on at least part of the first end and/or at least part of the second end.
  • the bonding layer enables the first pole piece to be bonded to the diaphragm through the adhesive layer, thereby limiting relative movement of at least some positions between the first pole piece and the diaphragm. Moreover, since the adhesive layer is provided on the first end and/or the second end, the first end and/or the second end of the first pole piece are less likely to be bent, and the end angle of the first pole piece is improved. The issue of discounts.
  • the first pole piece includes a first current collector
  • the first current collector includes an active material coating area and a vacant area located on at least one side of the active material coating area in the first direction
  • the adhesive layer is provided in at least partially empty areas.
  • the first current collector has opposite first and second surfaces in the second direction, the first surface is provided with an active material coating area and a blank area, and the adhesive layer is provided on the first surface. Leave the area blank.
  • an adhesive layer is provided in the empty area of the first surface of the first current collector, and no adhesive layer is provided on the second surface of the first current collector, so that the thermal composite lamination device is in contact with On the second surface of the first electrode, the thermal composite lamination equipment is less likely to bond with the adhesive layer, which improves the stability of the thermal composite lamination process.
  • the first pole piece further includes a first pole tab, and the first pole tab is connected to a side of the empty area of the first current collector facing away from the active material coating area.
  • the adhesive layer includes a plurality of sub-colloids spaced apart along a third direction, and the third direction intersects both the first direction and the second direction.
  • the electrolyte can pass through the gap between two adjacent sub-colloids, thereby improving the efficiency of the electrolyte to infiltrate the first pole piece.
  • the extension size of the adhesive layer in the first direction is 2 mm-20 mm, and/or the extension size of the adhesive layer in the second direction is 25 ⁇ m-120 ⁇ m.
  • the adhesive layer is at least one of a hot melt adhesive that is resistant to electrolyte or a hot melt pressure-sensitive adhesive that is resistant to electrolyte.
  • Hot-melt adhesives that are resistant to electrolytes and hot-melt pressure-sensitive adhesives that are resistant to electrolytes can maintain certain bonding properties in the electrolyte.
  • the second pole piece includes a plurality of sub-segments stacked along the second direction, and the plurality of sub-segments are integrally formed end-to-end in the third direction, and two adjacent sub-segments are arranged along the second direction.
  • the diaphragm, the first pole piece and the diaphragm are stacked in sequence in the direction.
  • a ceramic layer is provided on the first end without an adhesive layer and/or the second end without an adhesive layer, and the ceramic layer is used to improve the structure of the first end and/or the second end. strength. This enables the ceramic layer to improve the strength of the edge structure of the electrode assembly.
  • the present application provides a battery cell, which includes any one of the above electrode assemblies.
  • the present application provides a battery, which includes a plurality of the above-mentioned battery cells.
  • the present application provides an electrical device.
  • the electrical device includes the above-mentioned battery, and the battery is used to provide electrical energy.
  • Figure 1 is a schematic structural diagram of a vehicle according to some embodiments of the present application.
  • Figure 2 is a schematic diagram of the exploded structure of a battery according to some embodiments of the present application.
  • Figure 3 is a schematic diagram of the exploded structure of a battery cell according to some embodiments of the present application.
  • Figure 4 is a schematic structural diagram of an electrode assembly according to some embodiments of the present application.
  • FIG. 5 is a schematic structural diagram of an electrode assembly according to other embodiments of the present application.
  • Figure 6 is a schematic structural diagram of an electrode assembly according to some further embodiments of the present application.
  • Figure 7 is a schematic structural diagram of the first pole piece in some embodiments of the present application.
  • Figure 8 is a schematic top structural view of an electrode assembly according to some embodiments of the present application.
  • Figure 9 is a schematic top structural view of an electrode assembly according to other embodiments of the present application.
  • Figure 10 is a schematic structural diagram of an electrode assembly according to some embodiments of the present application.
  • Electrode assembly 3 first pole piece 31; first end 311; second end 312; adhesive layer 313; sub-colloid 313a; first current collector 314; active material coating area 314a; blank area 314b; first surface 314c; second surface 314d; ceramic layer 315; first pole tab 316; second pole piece 32; second current collector 321; sub-piece 322; second pole tab 323; diaphragm 33;
  • a first feature "on” or “below” a second feature may be a direct contact between the first and second features, or a first and second feature.
  • Features are indirectly contacted through intermediaries.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. . As the application fields of power batteries continue to expand, their market demand is also constantly expanding.
  • the safety performance of the electrode assembly becomes more and more important.
  • the movement of the pole pieces cannot be well restricted, making it easy for the corners of the pole pieces to fold.
  • the pole piece also causes the pole piece to be misaligned compared to the separator, which reduces the yield during thermal composite lamination, and also makes the electrode assembly unable to have high safety performance.
  • the separator is prone to shrinkage due to heat in high-temperature environments. Excessive shrinkage of the separator may even cause a contact short circuit between the cathode pole piece and the anode pole piece, greatly reducing the safety performance of the electrode assembly. .
  • an adhesive layer can be provided at the end of the pole piece.
  • the pole piece is divided into a first pole piece and a second pole piece, and an adhesive layer is provided on at least one end of the first pole piece along the first direction, so that the first pole piece is bonded to the first pole piece through the adhesive layer. diaphragm.
  • the adhesive layer provided on at least one end of the first pole piece along the first direction is bonded to the separator, the end of the first pole piece provided with the adhesive layer in the first direction It is not easy to be folded, and it also makes it difficult for misalignment between the first pole piece and the diaphragm to occur, which improves the safety performance of the electrode assembly.
  • the diaphragm is bonded to the adhesive layer provided on at least one end along the first direction, the thermal shrinkage of the diaphragm in a high-temperature environment is restricted to a certain extent, which reduces the damage to the first pole piece caused by the shrinkage of the diaphragm. The possibility of mutual contact and short circuit with the second pole piece improves the safety performance of the electrode assembly.
  • Some embodiments of the present application provide an electrode assembly, a battery cell including such an electrode assembly, a battery including a plurality of the battery cells, and an electrical device using the battery.
  • the battery cell including such an electrode assembly may include a lithium ion secondary battery cell, a lithium ion primary battery cell, a lithium sulfur battery cell, a sodium lithium ion battery cell, a sodium ion battery cell, or a magnesium ion battery cell. etc., some embodiments of the present application are not limited to this.
  • the battery cells may be in the shape of a flat body, a rectangular parallelepiped, or other shapes, and some embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells to a certain extent.
  • This kind of battery is suitable for various electrical devices that use batteries, such as mobile phones, portable devices, laptops, battery cars, electric toys, power tools, electric vehicles, ships and spacecraft, etc.
  • spacecraft include aircraft, rockets, aerospace Aircrafts and spacecrafts, etc.; batteries are used to provide electrical energy for the above electrical equipment.
  • the electrical devices provided by some embodiments of the present application may be vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys, electric tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but also can be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is an exploded view of the battery 100 provided by some embodiments of the present application.
  • the battery 100 includes a case and battery cells 10 .
  • the box may include an upper cover 20 and a lower cover 30 .
  • the upper cover 20 and the lower cover 30 cover each other.
  • the upper cover 20 and the lower cover 30 jointly define an accommodation space for accommodating the battery cells 10 .
  • the lower cover 30 can be a hollow structure with one end open, and the upper cover 20 can be a plate-like structure.
  • the upper cover 20 covers the open side of the lower cover 30 so that the upper cover 20 and the lower cover 30 jointly define a receiving space; the upper cover 20 can be a plate-shaped structure.
  • the box formed by the upper cover 20 and the lower cover 30 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • the battery 100 there may be a plurality of battery cells 10 , and the plurality of battery cells 10 may be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the plurality of battery cells 10 are connected in series and in parallel.
  • Multiple battery cells 10 can be directly connected in series or in parallel or mixed together, and then the whole composed of multiple battery cells 10 can be accommodated in the box; of course, the battery 100 can also be composed of multiple battery cells 10 connected in series first. They can be connected in parallel or mixed to form a battery module, and multiple battery modules can be connected in series, parallel or mixed to form a whole, and be accommodated in the box.
  • the battery 100 may also include other structures.
  • the battery 100 may further include a bus component for electrical connection between multiple battery cells 10 .
  • Each battery cell 10 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 10 may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes.
  • Figure 3 is a schematic diagram of the exploded structure of the battery cell 10 provided by some embodiments of the present application.
  • the X direction in Figure 3 is the first direction X
  • the Y direction in Figure 3 is the second direction Y
  • the Z direction in Figure 3 The direction is the third direction Z.
  • the battery cell 10 refers to the smallest unit that makes up the battery.
  • the battery cell 10 includes a case 1, an end cover 2, an electrode assembly 3, an electrode terminal 4, an adapter and other functional components.
  • the end cap 2 refers to a component that covers the opening of the case 1 to isolate the internal environment of the battery cell 10 from the external environment.
  • the shape of the end cap 2 can be adapted to the shape of the housing 1 to fit the housing 1 .
  • the end cap 2 can be made of a material with a certain hardness and strength (such as aluminum alloy). In this way, the end cap 2 is less likely to deform when subjected to extrusion and collision, so that the battery cell 10 can have higher durability. Structural strength and safety performance can also be improved.
  • Functional components such as electrode terminals 4 may be provided on the end cap 2 . The electrode terminal 4 can be used to electrically connect with the electrode assembly 3 for outputting or inputting electric energy of the battery cell 10 .
  • the end cap 2 may also be provided with a pressure relief mechanism 5 for releasing the internal pressure when the internal pressure or temperature of the battery cell 10 reaches a threshold value.
  • the end cap 2 can also be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in some embodiments of the present application.
  • an insulating member may also be provided inside the end cover 2 , and the insulating member may be used to isolate the electrical connection components in the housing 1 from the end cover 2 to reduce the risk of short circuit.
  • the insulating member may be plastic, rubber, or the like.
  • the end cap 2 also has a liquid injection hole for injecting electrolyte into the housing 1 through the liquid injection hole.
  • the case 1 is a component used to cooperate with the end cover 2 to form an internal environment of the battery cell 10 , wherein the formed internal environment can be used to accommodate the electrode assembly 3 , electrolyte and other components.
  • the housing 1 and the end cover 2 can be independent components, and an opening can be provided on the housing 1, and the end cover 2 covers the opening at the opening to form the internal environment of the battery cell 10.
  • the end cover 2 and the housing 1 can also be integrated.
  • the end cover 2 and the housing 1 can form a common connection surface before other components are put into the housing.
  • the housing 1 can be of various shapes and sizes, such as rectangular parallelepiped, hexagonal prism, etc.
  • the shape of the housing 1 can be determined according to the specific shape and size of the electrode assembly 3 .
  • the housing 1 can be made of a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc. Some embodiments of the present application do not impose special restrictions on this.
  • the electrode assembly 3 is a component in the battery cell 10 where electrochemical reactions occur.
  • One or more electrode assemblies 3 may be contained within the housing 1 .
  • the electrode assembly 3 can be mainly formed by stacking pole pieces, and separators are usually provided between the pole pieces.
  • Figure 4 is a schematic structural diagram of the electrode assembly 3 of some embodiments of the present application.
  • the X direction in Figure 4 is the first direction X
  • the Y direction in Figure 4 is the second direction Y.
  • the present application provides an electrode assembly 3.
  • the electrode assembly 3 includes a first pole piece 31 and a second pole piece 32 that are alternately stacked in multiple layers.
  • the space between the first pole piece 31 and the second pole piece 32 is A diaphragm 33 is provided, and each first pole piece 31 is provided independently of each other, wherein the first pole piece 31 has an opposite first end 311 and a second end 312 in the first direction X, at least part of the first end 311 and/or
  • An adhesive layer 313 is provided on at least part of the second end 312 so that the first pole piece 31 is bonded to the separator 33 through the adhesive layer 313.
  • the alternating stacking direction of the first pole piece 31 and the second pole piece 32 is the second Direction Y, the first direction X intersects the second direction Y.
  • first direction X and the second direction Y may be perpendicular to each other.
  • the first pole piece 31 can be a cathode pole piece
  • the second pole piece 32 can be an anode pole piece.
  • Metal ions can move between the first pole piece 31 and the second pole piece 32 by discharging on the first pole.
  • a diaphragm 33 is provided between the piece 31 and the second pole piece 32 to limit contact short circuit between the first pole piece 31 and the second pole piece 32.
  • the material of the diaphragm 33 can be PP (polypropylene, polypropylene) or PE. (polyethylene, polyethylene) etc.
  • the first pole pieces 31 are arranged independently of each other, and the electrode assembly 3 may be a stacked electrode assembly 3 . Among them, the first direction In other embodiments, the first pole piece 31 may be an anode pole piece, and the second pole piece 32 may be a cathode pole piece.
  • the adhesive layer 313 may be a hot melt adhesive coating.
  • the adhesive layer 313 may be a polyethylene hot melt adhesive coating, a polypropylene hot melt adhesive coating, or an ethylene-vinyl acetate copolymer hot melt adhesive. Coating, polyester hot melt adhesive coating or polyamide hot melt adhesive coating, etc.
  • the hot melt adhesive coating can bond the diaphragm 33 and the first pole piece 31 after thermal compounding.
  • the compounding temperature of the hot melt adhesive is about 70°C to 90°C.
  • the adhesive layer 313 may also be a hot-melt pressure-sensitive adhesive coating.
  • the adhesive layer 313 may be a styrene-butadiene-styrene block copolymer hot-melt pressure-sensitive adhesive, or the like.
  • the hot-melt pressure-sensitive adhesive can bond the diaphragm 33 and the first pole piece 31 after thermal compounding, and the compounding temperature of the hot-melt pressure-sensitive adhesive can be less than 50°C.
  • the electrode assembly 3 includes a first pole piece 31 and a second pole piece 32 that are alternately stacked in multiple layers. Metal ions can pass between the first pole piece 31 and the second pole piece 32 . move. A diaphragm 33 is provided between the first pole piece 31 and the second pole piece 32 . The diaphragm 33 can prevent contact short circuit between the first pole piece 31 and the second pole piece 32 .
  • the first pole piece 31 has an opposite first end 311 and a second end 312 in the first direction
  • An adhesive layer 313 is provided on the second end 312 so that the first pole piece 31 can be bonded to the diaphragm 33 through the adhesive layer 313, thereby limiting relative movement of at least some positions between the first pole piece 31 and the diaphragm 33.
  • the adhesive layer 313 is provided on the first end 311 and/or the second end 312, the first end 311 and/or the second end 312 of the first pole piece 31 is less likely to bend, which improves the stability of the first pole piece. The problem of discounting at the end corners of piece 31.
  • the first pole piece 31 includes a first current collector 314
  • the first current collector 314 includes an active material coating area 314 a and is located in the first direction X.
  • the adhesive layer 313 is disposed in at least part of the empty area 314b of the active material coating area 314a.
  • the first current collector 314 may be a cathode current collector, and the active material coating area 314a of the first current collector 314 may be coated with a cathode active material.
  • the material of the cathode current collector may be aluminum, and the cathode active material may be a cathode current collector.
  • the substance can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the second pole piece 32 may include a second current collector 321 , which may be an anode current collector.
  • the second current collector 321 may also include an active material coating area 314 a .
  • the active material coating area 314a of the second current collector 321 may be coated with an anode active material.
  • the material of the anode current collector may be copper, and the anode active material may be carbon or silicon.
  • the influence of the adhesive layer 313 on the electrolyte soaking the active material coating area 314a can be reduced.
  • FIG. 5 is a schematic structural diagram of the electrode assembly 3 of other embodiments of the present application.
  • the first current collector 314 has an opposite first surface 314c and a second surface 314d in the second direction Y, and the first surface 314c is provided with an active material coating area 314a and a blank area. 314b, the adhesive layer 313 is disposed in the empty area 314b of the first surface 314c.
  • the thermal composite lamination equipment includes a lamination mechanism, which is used to sequentially stack the first pole piece 31 and the second pole piece 32 on each layer of separator 33 during the thermal composite lamination process.
  • the first surface 314c can be the outer surface of the first current collector 314 facing the side of the diaphragm 33 when the thermal composite lamination process is performed
  • the second surface 314d can be the outer surface of the first current collector 314 when the thermal composite lamination process is performed. The outer surface facing the side of the lamination mechanism.
  • an active material coating area 314a is also provided on the second surface 314d of the first current collector 314, and the active material coating areas 314a on the first surface 314c and the second surface 314d are coated with Covered with cathode active material.
  • an adhesive layer 313 is provided in the empty area 314b of the first surface 314c of the first current collector 314, and no adhesive layer 313 is provided on the second surface 314d of the first current collector 314, so that When the lamination mechanism of the thermal composite lamination equipment contacts the second surface 314d of the first electrode, the lamination structure of the thermal composite lamination equipment is less likely to adhere to the adhesive layer 313, which improves the stability of the thermal composite lamination process. .
  • FIG. 6 is a schematic structural diagram of the electrode assembly 3 in some further embodiments of the present application.
  • the first pole piece 31 further includes a first pole tab 316 , which is connected to the side of the empty area 314 b of the first current collector 314 away from the active material coating area 314 a.
  • the material of the first tab 316 can be the same as the material of the first current collector 314 , the first tab 316 can be integrally formed with the first current collector 314 , and the first tab 316 is not coated with a cathode.
  • the active material, the material of the first tab 316 may be aluminum.
  • the second pole piece 32 also includes a second pole tab 323.
  • the material of the second pole tab 323 can be the same as the material of the second current collector 321.
  • the second pole tab 323 can be integrally formed with the second current collector 321.
  • the second tab 323 is not coated with an anode active material, and the material of the second tab 323 may be copper.
  • the first tab 316 and the second tab 323 can be located at one end of the electrode assembly 3 in the first direction X or respectively located at both ends of the electrode assembly 3 in the first direction X.
  • the anode active material and the cathode active material react with the electrolyte, and the first tab 316 and the second tab 323 are respectively connected to different electrode terminals 4 to form a current loop.
  • the conductive influence of the adhesive layer 313 on the first tab 316 is reduced.
  • FIG. 7 is a schematic structural diagram of the first pole piece 31 in some embodiments of the present application.
  • the Z direction in FIG. 7 is the third direction Z.
  • the adhesive layer 313 includes a plurality of sub-colloids 313a spaced apart along a third direction Z, where the third direction Z intersects both the first direction X and the second direction Y.
  • the third direction Z may be perpendicular to both the first direction X and the second direction Y.
  • This application does not limit the distance between two adjacent sub-colloids 313a.
  • a sub-colloid 313a is provided at 314b to reduce the possibility of folding at the first tab 316.
  • sub-colloids 313a are provided at both ends of the empty area 314b in the third direction Z, thereby reducing the possibility of the first pole piece 31 being turned over at an angle.
  • the electrolyte can pass through the gap between two adjacent sub-colloids 313a, which reduces the blocking effect of the adhesive layer 313 on the electrolyte infiltration of the electrode assembly 3 and improves the electrolysis efficiency.
  • the extension size of the adhesive layer 313 in the first direction X is 2 mm-20 mm, and/or the extension size of the adhesive layer 313 in the second direction Y is 25 ⁇ m-20 mm. 120 ⁇ m.
  • the adhesive layer 313 is at least one of a hot melt adhesive that is resistant to electrolyte or a hot melt pressure-sensitive adhesive that is resistant to electrolyte.
  • the electrolyte-resistant hot melt adhesive may include materials such as polyethylene and polypropylene. Polyethylene and polypropylene can be used to improve the bonding properties (including shear strength, tensile strength, etc.) of the hot melt adhesive. Tensile strength, acid and alkali resistance and electrolyte resistance) and high temperature resistance.
  • the electrolyte-resistant hot melt adhesive may also include rubber, and the rubber is used to improve the elongation at break and electrolyte resistance.
  • the electrolyte-resistant hot melt adhesive may also include polyolefin elastomer, which is used to improve high and low temperature resistance.
  • Electrolyte-resistant hot-melt adhesives and electrolyte-resistant hot-melt pressure-sensitive adhesives can maintain good bonding properties in electrolytes.
  • FIG. 8 is a schematic top structural view of the electrode assembly 3 of some embodiments of the present application.
  • the second pole piece 32 includes a plurality of sub-segments 322 arranged in a stack along the second direction Y, and the plurality of sub-segments 322 are integrally formed end to end in the third direction Z.
  • the diaphragm 33 , the first pole piece 31 and the diaphragm 33 are stacked in sequence along the second direction Y between two adjacent sub-pieces 322 .
  • the second pole piece 32 is arranged continuously without cutting, which simplifies the manufacturing process of the second pole piece 32 .
  • Figure 9 is a schematic top structural view of the electrode assembly 3 according to other embodiments of the present application.
  • the second pole piece 32 includes a plurality of sub-segments 322 stacked along the second direction Y, and the plurality of sub-segments 322 can be arranged independently of each other in the third direction Z,
  • the diaphragm 33 , the first pole piece 31 and the diaphragm 33 are stacked in sequence along the second direction Y between two adjacent sub-segments 322 .
  • FIG. 10 is a schematic structural diagram of the electrode assembly 3 of some further embodiments of the present application.
  • a ceramic layer 315 is provided on the first end 311 without the adhesive layer 313 and/or the second end 312 without the adhesive layer 313.
  • the ceramic layer 315 is used to improve the Structural strength of one end 311 and/or second end 312.
  • the ceramic layer 315 may include ceramic particles and polyvinylidene fluoride materials.
  • the strength of the edge structure of the electrode assembly 3 can be improved.
  • further embodiments of the present application further provide a battery cell.
  • the battery cell includes the electrode assembly 3 described in any of the above solutions.
  • further embodiments of the present application further provide a battery, which includes a plurality of the above-mentioned battery cells.
  • further embodiments of the present application further provide an electrical device.
  • the electrical device includes the above-mentioned battery, and the battery is used to provide electrical energy.
  • the powered device can be any of the aforementioned devices or systems that use batteries.
  • an electrode assembly 3 is provided.
  • the electrode assembly 3 includes a plurality of first pole pieces 31 and a second pole piece 31 that are alternately stacked.
  • a diaphragm 33 is provided between the first pole piece 31 and the second pole piece 32, and the first pole pieces 31 are arranged independently of each other.
  • the alternating stacking direction of the first pole piece 31 and the second pole piece 32 is the second direction Y
  • the first direction X and the second direction Y are perpendicular to each other
  • the first pole piece 31 has an opposite third direction in the first direction X.
  • the first pole piece 31 includes a first current collector 314 that includes an active material coating area 314a and blank areas 314b located on both sides of the active material coating area 314a in the first direction X.
  • the first pole piece 31 31 also includes a first tab 316 connected to a side of the void area 314b facing away from the active material coating area 314a.
  • the first current collector 314 has an opposite first surface 314c and a second surface 314d in the second direction Y.
  • An adhesive layer 313 is provided on the first surface 314c at the empty areas 314b located at the first end 311 and the second end 312.
  • the third direction Z is perpendicular to both the first direction X and the second direction Y.
  • the adhesive layer 313 includes a plurality of sub-colloids 313a spaced apart along the third direction Z.
  • the extension dimension of the adhesive layer 313 in the first direction X is 2 mm-20 mm, and the extension dimension of the adhesive layer 313 in the second direction Y is 25 ⁇ m-120 ⁇ m.
  • the adhesive layer 313 is at least one of a hot melt adhesive that is resistant to electrolyte or a hot melt pressure-sensitive adhesive that is resistant to electrolyte.
  • the hot melt adhesive that is resistant to electrolyte and the hot melt pressure-sensitive adhesive that is resistant to electrolyte can Maintains good bonding properties in electrolyte.
  • a ceramic layer 315 is provided on the first end 311 and/or the second end 312 that is not provided with the adhesive layer 313.
  • the ceramic layer 315 is used to improve the structural strength of the first end 311 and/or the second end 312.
  • the second pole piece 32 includes a plurality of sub-segments 322 stacked along the second direction Y, and the plurality of sub-segments 322 are integrally formed end-to-end in the third direction Z. Two adjacent sub-segments 322 are spaced along the first direction Y.
  • the diaphragm 33, the first pole piece 31 and the diaphragm 33 are stacked in sequence in the two directions Y.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请提供一种电极组件、电池单体、电池及用电装置,电极组件包括多层交替层叠设置的第一极片和第二极片,第一极片与第二极片间设置有隔膜,各第一极片相互独立设置,其中,第一极片在第一方向上具有相对的第一端与第二端,至少部分第一端和/或至少部分第二端上设置有粘接层,以使第一极片通过粘接层粘接于隔膜,第一极片和第二极片的交替层叠方向为第二方向。

Description

电极组件、电池单体、电池及用电装置
相关申请的交叉引用
本申请要求享有于2022年8月18日提交的名称为“电极组件、电池单体、电池及用电装置”的中国专利申请第202210991483.0号的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及储能器件技术领域,尤其涉及一种电极组件、电池单体、电池及用电装置。
背景技术
随着节能减排观念的推广,使用电能作为驱动能的领域也越来越多,因此各个领域对于电池的需求也越来越大,电池领域技术的发展对其他领域的发展来说也越来越重要。
在现有的电极组件生产制造过程中,电极组件的内部结构容易发生变形或错位,甚至可能发生阴极极片和阳极极片产生接触短路的情况,大大的影响了电极组件的安全性能。
发明内容
鉴于上述问题,本申请提供一种电极组件、电池单体、电池及用电装置,能够提高电极组件的安全性能。
第一方面,本申请提供了一种电极组件,电极组件包括多层交替层 叠设置的第一极片和第二极片,第一极片与第二极片间设置有隔膜,各第一极片相互独立设置,其中,第一极片在第一方向上具有相对的第一端与第二端,至少部分第一端和/或至少部分第二端上设置有粘接层,以使第一极片通过粘接层粘接于隔膜,第一极片和第二极片的交替层叠方向为第二方向,第一方向与第二方向相交。
本申请一些实施例的技术方案中,电极组件包括多层交替层叠设置的第一极片和第二极片,金属离子能够在第一极片与第二极片之间移动。第一极片与第二极片间设置有隔膜,隔膜能够防止第一极片与第二极片间产生接触短路。第一极片在第一方向上具有相对的第一端与第二端,由于各第一极片相互独立设置,因此,通过在至少部分第一端和/或至少部分第二端上设置粘接层,使得第一极片能够通过粘接层粘接于隔膜,限制了第一极片与隔膜间至少一些位置产生相对移动。并且,由于粘接层设置在第一端和/或第二端上,使得第一极片的第一端和/或第二端不易发生弯折,改善了第一极片的端部角位处打折的问题。
在一些实施例中,第一极片包括第一集流体,第一集流体包括活性物质涂覆区和在第一方向上位于活性物质涂覆区至少一侧的留空区,粘接层设置于至少部分留空区。通过将粘接层设置于活性物质涂覆区在第一方向上至少一侧的留空区,能够降低粘接层对电解液浸润活性物质涂覆区的影响。
在一些实施例中,第一集流体在第二方向上具有相对的第一表面和第二表面,第一表面设置有活性物质涂覆区和留空区,粘接层设置于第一表面的留空区。在本申请一些实施例中,第一集流体的第一表面的留空区设置有粘接层,第一集流体的第二表面上未设置有粘接层,使得热复合叠片设备在接触第一电极的第二表面时,热复合叠片设备不易与粘接层发生粘接,提高了热复合叠片工艺的稳定性。
在一些实施例中,第一极片还包括第一极耳,第一极耳连接于第一集流体的留空区背离活性物质涂覆区的一侧。通过将第一极耳设置在留空区背离涂覆区的一侧,降低了粘接层对第一极耳的导电影响。
在一些实施例中,粘接层包括沿第三方向间隔分布的多个子胶体,第三方向与第一方向、第二方向均相交。通过将多个子胶体沿第三方向间隔分布,使得电解液能够从相邻两个子胶体的间隙中通过,提高了电解液浸润第一极片的效率。
在一些实施例中,粘接层在第一方向上的延伸尺寸为2mm-20mm,和/或,粘接层在第二方向上的延伸尺寸为25μm-120μm。通过合理的设置粘接层在第一方向与第二方向上的延伸尺寸,提高了粘接层的粘接效率,且使得与粘接层粘接的隔膜在第二方向上不会过于的凸出或凹陷于第一极片的表面。
在一些实施例中,粘接层为耐受电解液的热熔胶或耐受电解液的热熔压敏胶中的至少一种。耐受电解液的热熔胶和耐受电解液的热熔压敏胶能够在电解液中保持一定的粘接性能。
在一些实施例中,第二极片包括沿第二方向层叠设置的多个子分片,且多个子分片在第三方向上的首尾相接一体成型设置,相邻两个子分片间沿第二方向依次层叠设置有隔膜、第一极片和隔膜。通过将多个子分片在第三方向上的首尾相接一体成型设置,使得第二极片为连续不切断设置,简化了第二极片的制造工艺。
在一些实施例中,未设置有粘接层的第一端和/或未设置有粘接层的第二端上设置有陶瓷层,陶瓷层用于提高第一端和/或第二端的结构强度。使得陶瓷层能够提高电极组件边缘结构的强度。
第二方面,本申请提供了一种电池单体,电池单体包括上述任一项的电极组件。
第三方面,本申请提供了一种电池,电池包括多个上述的电池单体。
第四方面,本申请提供了一种用电装置,用电装置包括上述的电池,电池用于提供电能。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本申请一些实施例的车辆的结构示意图;
图2为本申请一些实施例的电池的分解结构示意图;
图3为本申请一些实施例的电池单体的分解结构示意图;
图4为本申请一些实施例的电极组件的结构示意图;
图5为本申请另一些实施例的电极组件的结构示意图;
图6为本申请再一些实施例的电极组件的结构示意图;
图7为本申请一些实施例的第一极片的结构示意图;
图8为本申请一些实施例的电极组件的俯视结构示意图;
图9为本申请另一些实施例的电极组件的俯视结构示意图;
图10为本申请又一些实施例的电极组件的结构示意图。
在附图中,附图并未按照实际的比例绘制。
附图标号如下:
车辆1000;
电池100;控制器200;马达300;
电池单体10;上盖20;下盖30;
壳体1;
端盖2;注液孔21;
电极组件3;第一极片31;第一端311;第二端312;粘接层313;子胶体313a;第一集流体314;活性物质涂覆区314a;留空区314b;第一表面314c;第二表面314d;陶瓷层315;第一极耳316;第二极片32;第二集流体321;子分片322;第二极耳323;隔膜33;
电极端子4;
泄压机构5。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
需要注意的是,除非另有说明,本申请一些实施例使用的技术术语或者科学术语应当为本申请一些实施例所属领域技术人员所理解的通常意义。
在本申请一些实施例的描述中,技术术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请一些实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请一些实施例的限制。
此外,技术术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。在本申请一些实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本申请一些实施例的描述中,除非另有明确的规定和限定,技术术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请一些实施例中的具体含义。
在本申请一些实施例的描述中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
本申请人注意到,随着电池的用量逐渐增大,电极组件的安全性能也越来越重要。在电极组件的生产制造过程中,当使用热复合叠片设备对电极组件进行热复合叠片处理时,由于极片的移动无法受到较好的限制,使得极片端部的角位容易发生翻折,也使得极片相较于隔膜发生错位,降低了热复合叠片时的良率,也使得电极组件的无法具有较高的安全性能。并且,在电极组件的生产制造过程中,隔膜在高温环境下易受热发生收缩,甚至由于隔膜的过度收缩会导致阴极极片与阳极极片间产生接触短路,大大的降低了电极组件的安全性能。
为了降低生产制造过程中对电极组件安全性能产生的影响,提高电极组件的安全性能,申请人研究发现,可以在极片的端部设置粘接层。
例如,将极片分为第一极片和第二极片,在第一极片的沿第一方向的至少一端上设置有粘接层,以使第一极片通过粘接层粘接于隔膜。
在这样的电极组件中,由于第一极片的沿第一方向的至少一端上设置的粘接层与隔膜进行粘接,使得第一极片在第一方向上设置有粘接层的端部不易发生翻折,也使得第一极片与隔膜间不易发生错位,提高了电极组件的安全性能。并且,由于隔膜与沿第一方向的至少一端上设置的粘接层进行了粘接,使得隔膜在高温环境下的受热收缩受到了一定的限制,降低了因隔膜收缩而导致的第一极片与第二极片相互接触短路的可能性,提高了电极组件的安全性能。
本申请一些实施例提供一种电极组件,以及包括这种电极组件的电池单体、包括多个该电池单体的电池和使用该电池的用电装置。包括这种电极组件的电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请一些实施例对此并不限定。电池单体可呈扁平体、长方体或其它形状等,本申请一些实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以一定程度上避免液体或其他异物影响电池单体的充电或放电。这种电池适用于各种使用电池的用电设备,例如手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等;电池用于为上述用电设备提供电能。
本申请一些实施例提供的用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动 工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请一些实施例对上述用电装置不做特殊限制。
应理解,本申请一些实施例描述的技术方案不仅仅局限适用于上述所描述的电池和用电设备,还可以适用于所有包括箱体的电池以及使用电池的用电设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的爆炸图。电池100包括箱体和电池单体10。在一些实施例中,箱体可以包括上盖20和下盖30,上盖20与下盖30相互盖合,上盖20和下盖30共同限定出用于容纳电池单体10的容纳空间。下盖30可以为一端开口的空心结构,上盖20可以为板状结构,上盖20盖合于下盖30的开口侧,以使上盖20与下盖30共同限定出容纳空间;上盖20和下盖30也可以是均为一侧开口的空心结构,上盖20的开口侧盖合于下盖30的开口侧。当然,上盖20和下盖30形成的箱体可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体10可以是多个,多个电池单体10之间可串联或并联或混联,混联是指多个电池单体10中既有串联又有并联。多个电池单体10之间可直接串联或并联或混联在一起,再将多个电池单体10构成的整体容纳于箱体内;当然,电池100也可以是多个电池单体10 先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体10之间的电连接。
其中,每个电池单体10可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体10可呈圆柱体、扁平体、长方体或其它形状等。
请参照图3,图3为本申请一些实施例提供的电池单体10的分解结构示意图,图3中X方向为第一方向X,图3中Y方向为第二方向Y,图3中Z方向为第三方向Z。电池单体10是指组成电池的最小单元。如图3,电池单体10包括有壳体1、端盖2、电极组件3、电极端子4、转接件以及其他的功能性部件。
端盖2是指盖合于壳体1的开口处以将电池单体10的内部环境隔绝于外部环境的部件。不限地,端盖2的形状可以与壳体1的形状相适应以配合壳体1。可选地,端盖2可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖2在受挤压碰撞时就不易发生形变,使电池单体10能够具备更高的结构强度,安全性能也可以有所提高。端盖2上可以设置有如电极端子4等的功能性部件。电极端子4可以用于与电极组件3电连接,以用于输出或输入电池单体10的电能。在一些实施例中,端盖2上还可以设置有用于在电池单体10的内部压力或温度达到阈值时泄放内部压力的泄压机构5。端盖2的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请一些实施例对此不作特殊限制。在一些实施例中,在端盖2的内侧还可以设置有绝缘构件,绝缘构件可以用于隔离壳体1内的电连接部件与端盖2,以降低短路的风险。示例性的,绝缘构件可以是塑料、橡胶等。在一些实施例中,端盖2还具有注液孔,以通过注液孔向壳体1内注入电解液。
壳体1是用于配合端盖2以形成电池单体10的内部环境的组件,其中,形成的内部环境可以用于容纳电极组件3、电解液以及其他部件。壳体1和端盖2可以是独立的部件,可以于壳体1上设置开口,通过在开 口处使端盖2盖合开口以形成电池单体10的内部环境。不限地,也可以使端盖2和壳体1一体化,具体地,端盖2和壳体1可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体1的内部时,再使端盖2盖合壳体1。壳体1可以是多种形状和多种尺寸的,例如长方体形和六棱柱形等。具体地,壳体1的形状可以根据电极组件3的具体形状和尺寸大小来确定。壳体1的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请一些实施例对此不作特殊限制。
电极组件3是电池单体10中发生电化学反应的部件。壳体1内可以包含一个或更多个电极组件3。电极组件3可以主要由极片层叠放置形成,并且通常在极片之间设有隔膜。
根据本申请的一些实施例,图4为本申请一些实施例的电极组件3的结构示意图,图4中X方向为第一方向X,图4中Y方向为第二方向Y。
如图4所示,本申请提供了一种电极组件3,电极组件3包括多层交替层叠设置的第一极片31和第二极片32,第一极片31与第二极片32间设置有隔膜33,各第一极片31相互独立设置,其中,第一极片31在第一方向X上具有相对的第一端311与第二端312,至少部分第一端311和/或至少部分第二端312上设置有粘接层313,以使第一极片31通过粘接层313粘接于隔膜33,第一极片31和第二极片32的交替层叠方向为第二方向Y,第一方向X与第二方向Y相交。
在这些实施例中,第一方向X与第二方向Y可以相互垂直。
可选地,第一极片31可以为阴极极片,第二极片32可以为阳极极片,金属离子可在第一极片31与第二极片32之间移动,通过在第一极片31与第二极片32间设置隔膜33,以限制第一极片31与第二极片32间产生接触短路,可选地,隔膜33的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。第一极片31相互独立设置,电极组件3可以为叠片式电极组件3。其中,第一方向X可以为第一极片31出极耳的方向,能够降低粘接层313对电解液浸润电极组件3的阻挡影响。在另外的一些实施例中,第一极片31可以为阳极极片,第二极片32 可以为阴极极片。
可选地,粘接层313可以为热熔胶涂层,例如,粘接层313可为聚乙烯热熔胶涂层、聚丙烯热熔胶涂层、乙烯-醋酸乙烯酯共聚物热熔胶涂层、聚酯热熔胶涂层或聚酰胺热熔胶涂层等。热熔胶涂层在经过热复合后能够粘接隔膜33和第一极片31,热熔胶的复合温度约为70℃至90℃。
可选地,粘接层313还可以为热熔压敏胶涂层,例如,粘接层313可以为苯乙烯-丁二烯-苯乙烯嵌段共聚物热熔压敏胶等。热熔压敏胶在经过热复合后能够粘接隔膜33和第一极片31,热熔压敏胶的复合温度可以小于50℃。
在本申请一些实施例的技术方案中,电极组件3包括多层交替层叠设置的第一极片31和第二极片32,金属离子能够在第一极片31与第二极片32之间移动。第一极片31与第二极片32间设置有隔膜33,隔膜33能够防止第一极片31与第二极片32间产生接触短路。第一极片31在第一方向X上具有相对的第一端311与第二端312,由于各第一极片31相互独立设置,因此,通过在至少部分第一端311和/或至少部分第二端312上设置粘接层313,使得第一极片31能够通过粘接层313粘接于隔膜33,限制了第一极片31与隔膜33间至少一些位置产生相对移动。并且,由于粘接层313设置在第一端311和/或第二端312上,使得第一极片31的第一端311和/或第二端312不易发生弯折,改善了第一极片31的端部角位处打折的问题。
根据本申请的一些实施例,可选地,请继续参照图4,第一极片31包括第一集流体314,第一集流体314包括活性物质涂覆区314a和在第一方向X上位于活性物质涂覆区314a至少一侧的留空区314b,粘接层313设置于至少部分留空区314b。
在这些实施例中,第一集流体314可以为阴极集流体,第一集流体314的活性物质涂覆区314a上涂覆的可以是阴极活性物质,阴极集流体的材料可以为铝,阴极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。
可选地,如图4所示,第二极片32可以包括第二集流体321,第二集流体321可以为阳极集流体,第二集流体321也可以包括活性物质涂覆区314a,第二集流体321的活性物质涂覆区314a上涂覆的可以是阳极活性物质,阳极集流体的材料可以为铜,阳极活性物质可以为碳或硅等。
通过将粘接层313设置于活性物质涂覆区314a在第一方向X上至少一侧的留空区314b,能够降低粘接层313对电解液浸润活性物质涂覆区314a的影响。
根据本申请的一些实施例,图5为本申请另一些实施例的电极组件3的结构示意图。可选地,如图5所示,第一集流体314在第二方向Y上具有相对的第一表面314c和第二表面314d,第一表面314c设置有活性物质涂覆区314a和留空区314b,粘接层313设置于第一表面314c的留空区314b。
在这些实施例中,热复合叠片设备包括有叠片机构,在进行热复合叠片处理时,叠片机构用于在各层隔膜33上依次堆叠第一极片31和第二极片32,因此,第一表面314c可以为第一集流体314在进行热复合叠片处理时朝向隔膜33一侧的外表面,第二表面314d可以为第一集流体314在进行热复合叠片处理时朝向叠片机构一侧的外表面。
可选地,如图5所示,第一集流体314的第二表面314d上也设置有活性物质涂覆区314a,第一表面314c与第二表面314d上的活性物质涂覆区314a上涂覆有阴极活性物质。
在本申请一些实施例中,第一集流体314的第一表面314c的留空区314b设置有粘接层313,第一集流体314的第二表面314d上未设置有粘接层313,使得热复合叠片设备的叠片机构在接触第一电极的第二表面314d时,热复合叠片设备的叠片结构不易与粘接层313发生粘接,提高了热复合叠片工艺的稳定性。
根据本申请的一些实施例,图6为本申请再一些实施例的电极组件3的结构示意图。请参照图6,可选地,第一极片31还包括第一极耳316,第一极耳316连接于第一集流体314的留空区314b背离活性物质涂覆区314a的一侧。
在这些实施例中,第一极耳316的材料可以与第一集流体314的材料相同,第一极耳316可以与第一集流体314一体成型,第一极耳316上未涂覆有阴极活性物质,第一极耳316的材料可以为铝。可选地,第二极片32还包括第二极耳323,第二极耳323的材料可以与第二集流体321的材料相同,第二极耳323可以与第二集流体321一体成型,第二极耳323上未涂覆有阳极活性物质,第二极耳323的材料可以为铜。其中,第一极耳316与第二极耳323可以位于电极组件3在第一方向X上的一端或是分别位于电极组件3在第一方向X上的两端,在电池的充放电过程中,阳极活性物质和阴极活性物质与电解液发生反应,第一极耳316与第二极耳323分别连接于不同的电极端子4以形成电流回路。
通过将第一极耳316设置在留空区314b背离涂覆区的一侧,降低了粘接层313对第一极耳316的导电影响。
根据本申请的一些实施例,图7为本申请一些实施例的第一极片31的结构示意图,图7中Z方向为第三方向Z。请参照图7,可选地,粘接层313包括沿第三方向Z间隔分布的多个子胶体313a,第三方向Z与第一方向X、第二方向Y均相交。
在这些实施例中,第三方向Z可以与第一方向X、第二方向Y均垂直。
本申请对相邻两个子胶体313a间的距离不做限定,可选地,如图7所示,在第一方向X上第一极耳316处靠近活性物质涂覆区314a一端的留空区314b处设置有子胶体313a,以此降低第一极耳316处发生翻折的可能。
可选地,如图7所示,留空区314b在第三方向Z上的两端均设置有子胶体313a,以此降低第一极片31的角位发生翻折的可能。
通过将多个子胶体313a沿第三方向Z间隔分布,使得电解液能够从相邻两个子胶体313a的间隙中通过,降低了粘接层313对电解液浸润电极组件3的阻挡影响,提高了电解液浸润第一极片31的效率。
根据本申请的一些实施例,可选地,粘接层313在第一方向X上的延伸尺寸为2mm-20mm,和/或,粘接层313在第二方向Y上的延伸尺寸为 25μm-120μm。
通过合理的设置粘接层313在第一方向X与第二方向Y上的延伸尺寸,提高了粘接层313的粘接效率,且使得与粘接层313粘接的隔膜33在第二方向Y上不会过于的凸出或凹陷于第一极片31的表面。
根据本申请的一些实施例,可选地,粘接层313为耐受电解液的热熔胶或耐受电解液的热熔压敏胶中的至少一种。
在本申请一些实施例中,耐受电解液的热熔胶可以包括有聚乙烯、聚丙烯等材料,聚乙烯和聚丙烯能够用以提高热熔胶的粘接性能(包括剪切强度、拉伸强度、耐酸碱性能及耐电解液性能)与耐高温性能。可选地,耐受电解液的热熔胶也可以包括有橡胶,橡胶用以提高断裂伸长率及耐电解液性能。可选地,耐受电解液的热熔胶也可以包括有聚烯烃弹性体,聚烯烃弹性体用以提高耐高低温性能。
耐受电解液的热熔胶和耐受电解液的热熔压敏胶能够在电解液中保持良好的粘接性能。
根据本申请的一些实施例,图8为本申请一些实施例的电极组件3的俯视结构示意图。请参照图8,可选地,第二极片32包括沿第二方向Y层叠设置的多个子分片322,且多个子分片322在第三方向Z上的首尾相接一体成型设置,相邻两个子分片322间沿第二方向Y依次层叠设置有隔膜33、第一极片31和隔膜33。
通过将多个子分片322在第三方向Z上的首尾相接一体成型设置,使得第二极片32为连续不切断设置,简化了第二极片32的制造工艺。
图9为本申请另一些实施例的电极组件3的俯视结构示意图。在另一些实施例中,请参照图9,第二极片32包括沿第二方向Y层叠设置的多个子分片322,且多个子分片322在第三方向Z上可以为相互独立设置,相邻两个子分片322间沿第二方向Y依次层叠设置有隔膜33、第一极片31和隔膜33。
根据本申请的一些实施例,图10为本申请又一些实施例的电极组件3的结构示意图。请参照图10,可选地,未设置有粘接层313的第一端311和/或未设置有粘接层313的第二端312上设置有陶瓷层315,陶瓷层 315用于提高第一端311和/或第二端312的结构强度。
在这些实施例中,陶瓷层315可以包括有陶瓷颗粒与聚偏二氟乙烯材料。
通过在未设置有粘接层313的第一端311和/或第二端312上设置有陶瓷层315,能够提高电极组件3边缘结构的强度。
根据本申请的一些实施例,本申请的再一些实施例中还提供了一种电池单体,电池单体包括上述任一方案所述的电极组件3。
根据本申请的一些实施例,本申请的再一些实施例中还提供了一种电池,电池包括多个上述的电池单体。
根据本申请的一些实施例,本申请的再一些实施例中还提供了一种用电装置,用电装置包括上述的电池,电池用于提供电能。
用电装置可以是前述任一应用电池的设备或系统。
根据本申请的一些实施例,请参照图8与图10,本申请的一些实施例中提供了一种电极组件3,该电极组件3包括多层交替层叠设置的第一极片31和第二极片32,第一极片31与第二极片32间设置有隔膜33,各第一极片31相互独立设置。其中,第一极片31和第二极片32的交替层叠方向为第二方向Y,第一方向X与第二方向Y相互垂直,第一极片31在第一方向X上具有相对的第一端311与第二端312。第一极片31包括第一集流体314,第一集流体314包括活性物质涂覆区314a和在第一方向X上位于活性物质涂覆区314a两侧的留空区314b,第一极片31还包括连接于留空区314b背离活性物质涂覆区314a的一侧的第一极耳316,第一集流体314在第二方向Y上具有相对的第一表面314c与第二表面314d。在第一表面314c的位于第一端311和第二端312的留空区314b处均设置有粘接层313。第三方向Z与第一方向X、第二方向Y均垂直,粘接层313包括沿第三方向Z间隔分布的多个子胶体313a。粘接层313在第一方向X上的延伸尺寸为2mm-20mm,粘接层313在第二方向Y上的延伸尺寸为25μm-120μm。粘接层313为耐受电解液的热熔胶或耐受电解液的热熔压敏胶中的至少一种,耐受电解液的热熔胶和耐受电解液的热熔压敏胶能够在电解液中保持良好的粘接性能。未设置有粘接层313的第一端 311和/或第二端312上设置有陶瓷层315,陶瓷层315用于提高第一端311和/或第二端312的结构强度。第二极片32包括沿第二方向Y层叠设置的多个子分片322,且多个子分片322在第三方向Z上的首尾相接一体成型设置,相邻两个子分片322间沿第二方向Y依次层叠设置有隔膜33、第一极片31和隔膜33。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (11)

  1. 一种电极组件,电极组件包括:
    多层交替层叠设置的第一极片和第二极片,所述第一极片与所述第二极片间设置有隔膜,各所述第一极片相互独立设置;
    其中,所述第一极片在第一方向上具有相对的第一端与第二端,至少部分所述第一端和/或至少部分第二端上设置有粘接层,以使所述第一极片通过所述粘接层粘接于所述隔膜,所述粘接层包括沿第三方向间隔分布的多个子胶体,所述第一极片和所述第二极片的交替层叠方向为第二方向,所述第一方向与所述第二方向相交,所述第三方向与所述第一方向、所述第二方向均相交。
  2. 根据权利要求1所述的电极组件,其中,所述第一极片包括第一集流体,所述第一集流体包括活性物质涂覆区和在所述第一方向上位于所述活性物质涂覆区至少一侧的留空区,所述粘接层设置于至少部分所述留空区。
  3. 根据权利要求2所述的电极组件,其中,所述第一集流体在所述第二方向上具有相对的第一表面和第二表面,所述第一表面设置有所述活性物质涂覆区和所述留空区,所述粘接层设置于所述第一表面的所述留空区。
  4. 根据权利要求2至3任一项所述的电极组件,其中,所述第一极片还包括第一极耳,所述第一极耳连接于所述第一集流体的留空区背离所述活性物质涂覆区的一侧。
  5. 根据权利要求1至4任一项所述的电极组件,其中,所述粘接层在所述第一方向上的延伸尺寸为2mm-20mm,和/或,所述粘接层在第二方向上的延伸尺寸为25μm-120μm。
  6. 根据权利要求1至5任一项所述的电极组件,其中,所述粘接层为耐受电解液的热熔胶或耐受电解液的热熔压敏胶中的至少一种。
  7. 根据权利要求1至6任一项所述的电极组件,其中,所述第二极片包括沿第二方向层叠设置的多个子分片,且多个所述子分片在第三方向上的首尾相接一体成型设置,相邻两个所述子分片间沿所述第二方向依次层叠设置有所述隔膜、所述第一极片和所述隔膜。
  8. 根据权利要求1至7任一项所述的电极组件,其中,未设置有所述粘接层的所述第一端和/或未设置有所述粘接层的所述第二端上设置有陶瓷层,所述陶瓷层用于提高所述第一端和/或所述第二端的结构强度。
  9. 一种电池单体,电池单体包括根据权利要求1至8中任一项所述的电极组件。
  10. 一种电池,电池包括多个根据权利要求9所述的电池单体。
  11. 一种用电装置,用电装置包括根据权利要求10所述的电池,所述电池用于提供电能。
PCT/CN2022/128182 2022-08-18 2022-10-28 电极组件、电池单体、电池及用电装置 WO2024036752A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210991483.0 2022-08-18
CN202210991483.0A CN115084782B (zh) 2022-08-18 2022-08-18 电极组件、电池单体、电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024036752A1 true WO2024036752A1 (zh) 2024-02-22

Family

ID=83244032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128182 WO2024036752A1 (zh) 2022-08-18 2022-10-28 电极组件、电池单体、电池及用电装置

Country Status (2)

Country Link
CN (1) CN115084782B (zh)
WO (1) WO2024036752A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115084782B (zh) * 2022-08-18 2022-11-22 江苏时代新能源科技有限公司 电极组件、电池单体、电池及用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070048613A1 (en) * 2005-08-30 2007-03-01 Sanyo Electric Co., Ltd. Nonaqueous secondary battery
CN103579684A (zh) * 2012-07-31 2014-02-12 华为技术有限公司 锂离子电池及其电池芯
CN105703015A (zh) * 2016-04-01 2016-06-22 庄新国 一种叠片式锂离子电池
CN108350327A (zh) * 2015-11-11 2018-07-31 日东电工株式会社 粘合带
CN112993378A (zh) * 2021-03-26 2021-06-18 天津市捷威动力工业有限公司 一种应用于锂二次电池的电极组件
CN115084782A (zh) * 2022-08-18 2022-09-20 江苏时代新能源科技有限公司 电极组件、电池单体、电池及用电装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202094232U (zh) * 2011-06-10 2011-12-28 山东同大新能源有限公司 锰酸锂锂离子动力电池
CN110323365A (zh) * 2019-06-27 2019-10-11 惠州锂威新能源科技有限公司 一种软包式锂离子电池结构及其制备方法
CN214625134U (zh) * 2021-03-26 2021-11-05 天津市捷威动力工业有限公司 一种应用于锂二次电池的电极组件
CN114613934A (zh) * 2022-03-21 2022-06-10 上海兰钧新能源科技有限公司 复合极片单元及制片方法以及电芯和电池
CN114864859A (zh) * 2022-05-12 2022-08-05 浙江极氪智能科技有限公司 电池极片、电芯及电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070048613A1 (en) * 2005-08-30 2007-03-01 Sanyo Electric Co., Ltd. Nonaqueous secondary battery
CN103579684A (zh) * 2012-07-31 2014-02-12 华为技术有限公司 锂离子电池及其电池芯
CN108350327A (zh) * 2015-11-11 2018-07-31 日东电工株式会社 粘合带
CN105703015A (zh) * 2016-04-01 2016-06-22 庄新国 一种叠片式锂离子电池
CN112993378A (zh) * 2021-03-26 2021-06-18 天津市捷威动力工业有限公司 一种应用于锂二次电池的电极组件
CN115084782A (zh) * 2022-08-18 2022-09-20 江苏时代新能源科技有限公司 电极组件、电池单体、电池及用电装置

Also Published As

Publication number Publication date
CN115084782B (zh) 2022-11-22
CN115084782A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
WO2024060403A1 (zh) 电池单体、电池、用电装置以及焊接设备
EP4228059A1 (en) Electrical apparatus, battery, heating film and manufacturing method therefor and manufacturing device therefor
WO2023134479A1 (zh) 电池和用电设备
WO2023240749A1 (zh) 电极组件、电池单体、电池和用电设备
WO2024036752A1 (zh) 电极组件、电池单体、电池及用电装置
WO2022199152A1 (zh) 电极组件、电池单体、电池以及用电设备
CN116097488A (zh) 电极组件、电池单体、电池及电极组件的制造方法和设备
WO2023221649A1 (zh) 电池和用电设备
WO2023197905A1 (zh) 端盖组件、电池单体、电池和用电设备
WO2023168954A1 (zh) 电芯、电芯的制造方法、电池单体、电池及用电设备
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2023082150A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023082155A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
EP4148876A1 (en) Battery, electrical device, and method and device for preparing battery
WO2022170492A1 (zh) 电池、用电装置、制备电池的方法和设备
KR20230129053A (ko) 배터리, 전기 장치, 배터리 제조 방법 및 장치
KR20230126176A (ko) 배터리, 전기 장치, 배터리 제조 방법 및 장치
WO2024020766A1 (zh) 电池单体、电池、用电装置及电池单体的制造方法
WO2024026829A1 (zh) 电池单体、电池以及用电装置
WO2023133737A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023240797A1 (zh) 电池和用电装置
US20230369728A1 (en) Electrode assembly, method and system for manufacturing same, battery cell, battery, and electric apparatus
WO2023221606A1 (zh) 集流体、极片、电极组件、电池单体、电池及用电装置
WO2023230746A1 (zh) 电池单体、电池及用电装置
WO2024040503A1 (zh) 电极组件、制备方法、电池单体、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955524

Country of ref document: EP

Kind code of ref document: A1