WO2023240797A1 - 电池和用电装置 - Google Patents

电池和用电装置 Download PDF

Info

Publication number
WO2023240797A1
WO2023240797A1 PCT/CN2022/115018 CN2022115018W WO2023240797A1 WO 2023240797 A1 WO2023240797 A1 WO 2023240797A1 CN 2022115018 W CN2022115018 W CN 2022115018W WO 2023240797 A1 WO2023240797 A1 WO 2023240797A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery cell
cells
battery cells
cell
Prior art date
Application number
PCT/CN2022/115018
Other languages
English (en)
French (fr)
Inventor
陈佳华
刘倩
李全国
孙婧轩
肖得隽
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023240797A1 publication Critical patent/WO2023240797A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of batteries, and in particular to a battery and an electrical device.
  • Batteries are widely used in electronic devices, such as mobile phones, laptops, battery cars, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes, electric tools, etc.
  • the present application provides a battery and an electrical device, which can improve the cycle performance of the battery.
  • the present application provides a battery, which includes a plurality of first battery cells and battery units.
  • the battery unit and the plurality of first battery cells are stacked along a first direction.
  • the battery unit includes a plurality of second battery cells arranged along a second direction, the second direction being perpendicular to the first direction.
  • the first battery cell and the second battery cell have different shapes.
  • each second battery cell at least partially overlaps the first battery cell.
  • a gap is provided between at least two adjacent second battery cells of the battery unit.
  • each second battery cell since each second battery cell has a portion that overlaps the first battery cell in the first direction, each second battery cell can limit the first battery cell in the first direction. Deformation to improve the shape of the first battery cell and increase the overall strength of the battery.
  • a plurality of first battery cells and a plurality of second battery cells are mixed and arranged so that a gap is formed between at least two second battery cells. This gap can provide space for the expansion of the first battery cells. space, thereby reducing the expansion force experienced by the first battery cell, improving the cycle performance of the first battery cell, and extending the life of the battery.
  • the first battery cell has two first surfaces oppositely arranged along the first direction, and the first surfaces are planar. At least part of the outer surface of the second battery cell is an arc-shaped surface, and the arc-shaped surface is used to connect with the first surface. In the second direction, a gap is formed between the arcuate surfaces of two adjacent second battery cells.
  • the arc surface is connected to the first surface, which can reduce the heat transfer area between the first battery cell and the second battery cell, and reduce the heat transfer area between the first battery cell and the second battery cell.
  • the heat transfer rate reduces the risk of heat diffusion and improves the safety of the battery when a certain battery cell experiences thermal runaway.
  • the first battery cell is a square battery cell
  • the second battery cell is a cylindrical battery cell
  • the gaps between the cylindrical battery cells can provide space for the expansion of the prismatic battery cells, thereby reducing the expansion force on the prismatic battery cells.
  • Improve the cycle performance of prismatic battery cells when cylindrical battery cells and prismatic battery cells are mixedly arranged, the gaps between the cylindrical battery cells can provide space for the expansion of the prismatic battery cells, thereby reducing the expansion force on the prismatic battery cells.
  • a gap is provided between any two adjacent second battery cells.
  • the plurality of gaps can provide more space for the expansion of the first battery cell, thereby reducing the expansion force experienced by the first battery cell, improving the cycle performance of the first battery cell, and extending the life of the battery.
  • the first battery cell includes a first housing with a dimension L 1 along the second direction.
  • the number of second battery cells of the battery unit is n, and the size of each second battery cell along the second direction is D 1 .
  • L 1 , D 1 and n satisfy: L 1 ⁇ (n-1) ⁇ D 1 .
  • the size of the area in the first direction where the second battery cell is located at the end of the battery unit along the second direction and the first battery cell overlaps in the first direction can be roughly guaranteed to be D 1 /2, so that Each second battery cell of the battery unit can be effectively supported and limited by the first battery cell.
  • the first battery cell includes a first housing with a dimension L 1 along the second direction.
  • the number of second battery cells of the battery unit is n
  • the size of each second battery cell along the second direction is D 1 , L 1 , D 1 and n satisfy: n ⁇ D 1 ⁇ 0.5 ⁇ L 1 .
  • the above technical solution can enable the battery unit to effectively utilize the space in the second direction.
  • L 1 , D 1 and n satisfy: L 1 ⁇ (n+1)D 1 .
  • the above technical solution can enable the battery unit to effectively utilize the space in the second direction and reduce the loss of energy density of the battery.
  • the first battery cell includes a first casing, and a dimension of the first casing along the first direction is L 2 .
  • the size of each second battery cell along the first direction is D 2 , and D 2 ⁇ 2 ⁇ L 2 .
  • D 2 is positively related to the size of the gap along the first direction. If D 2 is too large, space may be wasted, resulting in insufficient energy density of the battery.
  • the above technical solution makes D 2 ⁇ 2 ⁇ L 2 to reduce the loss of battery energy density.
  • the battery further includes a functional component, at least partially received in the void.
  • the voids provide space for functional components, making the overall structure of the battery more compact.
  • the functional component includes at least one of a heat exchange component, a heat insulation component, a buffer component, and an adhesive component.
  • a battery unit is provided between at least two adjacent first battery cells.
  • the gaps of the battery cells can provide space for the expansion of the first battery cells on both sides, thereby improving the cycle performance of the first battery cells.
  • a battery unit is provided between any two adjacent first battery cells.
  • the battery unit may separate the first battery cells to prevent adjacent first battery cells from directly pressing each other.
  • the gaps in the battery cells can provide space for expansion of each first battery cell, thereby improving the cycle performance of the first battery cells and extending the life of the battery.
  • a plurality of battery units are provided, and the plurality of battery units and the plurality of first battery cells are alternately arranged along the first direction.
  • Each battery unit can provide space for the expansion of its adjacent first battery cell, which can reduce the superposition of expansion amounts of multiple first battery cells in the first direction and improve the cycle performance of the first battery cell. Extend battery life.
  • At least one end of the battery along the first direction is configured as a battery unit.
  • the gaps in the battery unit can act to disperse the stress, thereby reducing the risk of failure of the first battery unit.
  • both ends of the battery along the first direction are configured as battery cells.
  • the battery unit can protect the first battery cell from both ends to reduce the risk of failure of the first battery cell.
  • a plurality of battery cells are provided, and the plurality of battery cells and the plurality of first battery cells are stacked along a first direction.
  • the number of the second battery cells of the plurality of battery units first decreases and then increases.
  • the above technical solution reduces the number of second battery cells in the battery unit in the middle of the battery to provide more space for the expansion of the first battery cell, reduce the expansion force experienced by the first battery cell, and improve the performance of the first battery cell. body performance.
  • the first battery cell includes a first casing and a first electrode terminal disposed on the first casing, and the first electrode terminal is disposed on one side of the first casing along the second direction.
  • the first battery cell includes a first casing and a first electrode terminal disposed on the first casing.
  • the first electrode terminal is disposed on one side of the first casing along a third direction, and the third direction is perpendicular to the third direction. first direction and second direction.
  • the battery further includes a plurality of bus components for electrically connecting a plurality of first battery cells and a plurality of second battery cells of the battery unit.
  • the first battery cell includes a first electrode terminal and a second electrode terminal of opposite polarity
  • the second battery cell includes a third electrode terminal and a fourth electrode terminal of opposite polarity.
  • the plurality of bus parts include a first bus part for electrically connecting the third electrode terminal and the first electrode terminal of the plurality of second battery cells of the battery unit.
  • the first bus component is connected to the third electrode terminals of the plurality of second battery cells of the battery unit, so as to connect the plurality of second battery cells of the battery unit in parallel.
  • the first bus component is also connected to the first electrode terminal of the first battery cell, so that the first battery cell and the battery unit can be connected in series or in parallel.
  • the third electrode terminal and the first electrode terminal have opposite polarities.
  • the first bus component connects the plurality of second battery cells and the first battery cells of the battery unit in series.
  • the first electrode terminal is located at one end of the first battery cell along a third direction, and the third direction is perpendicular to the first direction and the second direction.
  • the third electrode terminal is located at an end of the second battery cell away from the first electrode terminal along the third direction.
  • the first bus part includes a first connection part, a second connection part and a third connection part.
  • the first connection part is used to connect the first electrode terminal
  • the third connection part is used to connect the plurality of second battery cells of the battery unit.
  • the second connection part is used to connect the first connection part and the third connection part, and both the first connection part and the third connection part are bent relative to the second connection part.
  • the first bus part with a bent structure can connect the first electrode terminal and the third electrode terminal located on opposite sides, thereby realizing the connection between the first battery cell and the plurality of second battery cells of the battery unit. Electrical connection.
  • the first battery cell is a lithium-ion battery cell and the second battery cell is a sodium-ion battery cell.
  • the first battery cell uses a lithium-ion battery cell to ensure the energy density of the battery.
  • the second battery cell uses a sodium ion battery cell to reduce the risk of failure of the second battery cell when it is squeezed by the first battery cell.
  • the energy density and safety of the battery can be balanced by assembling lithium-ion battery cells and sodium-ion battery cells into a group.
  • the first battery cell is a ternary lithium battery cell
  • the second battery cell is a sodium ion battery cell or a lithium iron phosphate battery cell.
  • the first battery cell uses a ternary lithium battery cell to ensure the energy density of the battery.
  • the second battery cell uses a sodium ion battery cell or a lithium iron phosphate battery cell to reduce the risk of failure of the second battery cell when it is squeezed by the first battery cell.
  • the present application provides an electrical device, which includes the battery provided in any embodiment of the first aspect, and the battery is used to provide electric energy.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • FIG. 2 is an exploded schematic diagram of a battery provided by some embodiments of the present application.
  • FIG. 3 is a schematic structural diagram of a battery provided by some embodiments of the present application.
  • Figure 4 is an exploded schematic diagram of the first battery cell shown in Figure 3;
  • Figure 5 is a schematic cross-sectional view of the second battery cell shown in Figure 3;
  • FIG. 6 is a simplified schematic diagram of a battery provided by other embodiments of the present application.
  • FIG. 7 is a simplified schematic diagram of a battery provided by other embodiments of the present application.
  • FIG. 8 is a simplified schematic diagram of a battery provided by other embodiments of the present application.
  • FIG. 9 is a simplified schematic diagram of a battery provided by other embodiments of the present application.
  • Figure 10 is a schematic top view of the battery shown in Figure 3;
  • Figure 11 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • Figure 12 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • Figure 13 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • Figure 14 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • Figure 15 is another structural schematic diagram of the battery of Figure 14, in which the frame structure is omitted;
  • Figure 16 is a schematic structural diagram of the battery shown in Figure 15 from another angle;
  • Figure 17 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • Figure 18 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • Figure 19 is a simplified schematic diagram of a battery provided by other embodiments of the present application.
  • Figure 20 is a simplified schematic diagram of a battery provided by other embodiments of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • parallel includes not only the absolutely parallel situation, but also the roughly parallel situation that is conventionally recognized in engineering; at the same time, the term “perpendicular” includes not only the absolutely vertical situation, but also the roughly parallel situation that is conventionally recognized in engineering. vertical situation.
  • battery cells may include lithium-ion battery cells, lithium-sulfur battery cells, sodium-lithium-ion battery cells, sodium-ion battery cells or magnesium-ion battery cells, etc.
  • the embodiments of this application are not limited to this. .
  • the battery mentioned in the embodiments of this application refers to a single physical module including multiple battery cells to provide higher voltage and capacity.
  • a battery may generally include a case for enclosing one or more battery cells.
  • the box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes a casing and an electrode assembly contained in the casing.
  • the electrode assembly includes a positive electrode piece, a negative electrode piece and a separator.
  • Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector includes a positive electrode current collector and a positive electrode tab.
  • the positive electrode current collector is coated with the positive electrode active material layer.
  • the positive electrode tab is not coated with the positive electrode active material layer.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material layer includes positive electrode active materials.
  • the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode piece includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector includes a negative electrode current collector and a negative electrode tab.
  • the negative electrode current collector is coated with the negative electrode active material layer.
  • the negative electrode tab is not coated with the negative electrode active material layer.
  • the negative electrode current collector may be made of copper, and the negative electrode active material layer may include a negative electrode active material.
  • the negative electrode active material may be carbon or silicon.
  • the material of the isolator can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • embodiments of the present application provide a battery in which a plurality of first battery cells and a plurality of second battery cells are mixedly arranged so that at least two adjacent second battery cells form a
  • the gap can provide space for the expansion of the first battery cell, thereby reducing the expansion force experienced by the first battery cell and improving the cycle performance of the first battery cell.
  • Electrical devices can be vehicles, cell phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the following embodiments take the electrical device as a vehicle as an example.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • a battery 2 is provided inside the vehicle 1 , and the battery 2 can be provided at the bottom, head, or tail of the vehicle 1 .
  • the battery 2 may be used to power the vehicle 1 , for example, the battery 2 may be used as an operating power source for the vehicle 1 .
  • the vehicle 1 may also include a controller 3 and a motor 4.
  • the controller 3 is used to control the battery 2 to provide power to the motor 4, for example, to meet the power requirements for starting, navigation and driving of the vehicle 1.
  • the battery 2 can not only be used as the operating power source of the vehicle 1, but also can be used as the driving power source of the vehicle 1, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1.
  • Figure 2 is an exploded schematic diagram of a battery provided by some embodiments of the present application.
  • the battery 2 includes a case 5 and a battery cell (not shown in FIG. 2 ), and the battery cell is accommodated in the case 5 .
  • the box 5 is used to accommodate battery cells, and the box 5 can be of various structures.
  • the box body 5 may include a first box body part 5a and a second box body part 5b.
  • the first box body part 5a and the second box body part 5b cover each other.
  • the first box body part 5a and the second box body part 5b cover each other.
  • the two box portions 5b jointly define an accommodating space 5c for accommodating battery cells.
  • the second box part 5b can be a hollow structure with one end open, and the first box part 5a is a plate-like structure.
  • the first box part 5a is covered with the opening side of the second box part 5b to form a receiving space 5c.
  • the box body 5; the first box body part 5a and the second box body part 5b can also be a hollow structure with one side open, and the opening side of the first box body part 5a is covered with the opening side of the second box body part 5b , to form a box 5 having an accommodation space 5c.
  • the first box part 5a and the second box part 5b can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • a sealing member may also be provided between the first box part 5a and the second box part 5b, such as sealant, sealing ring, etc. .
  • the first box part 5a can also be called an upper box cover, and the second box part 5b can also be called a lower box.
  • the multiple battery cells there are multiple battery cells, and the multiple battery cells can be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the multiple battery cells are connected in series and in parallel.
  • Multiple battery cells can be directly connected in series or parallel or mixed together, and then the whole composed of multiple battery cells can be accommodated in the box 5; of course, multiple battery cells can also be connected in series or parallel first or
  • a battery module 6 is formed by a mixed connection, and multiple battery modules 6 are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 5 .
  • Figure 3 is a schematic structural diagram of a battery provided by some embodiments of the present application
  • Figure 4 is an exploded schematic diagram of the first battery cell shown in Figure 3
  • Figure 5 is a schematic cross-sectional view of the second battery cell shown in Figure 3.
  • a battery 2 that includes a plurality of first battery cells 10 and battery units 20 .
  • the battery unit 20 and the plurality of first battery cells 10 are stacked along the first direction X.
  • the battery unit 20 includes a plurality of second battery cells 30 arranged along a second direction Y that is perpendicular to the first direction X. In the first direction X, each second battery cell 30 at least partially overlaps the first battery cell 10 . In the second direction Y, a gap G is provided between at least two adjacent second battery cells 30 of the battery unit 20 .
  • the battery unit 20 may be one or multiple.
  • the plurality of first battery cells 10 may be arranged on the same side of the battery unit 20 along the first direction X, or may be arranged on both sides of the battery unit 20 along the first direction X.
  • This example does not limit the order in which the battery units 20 and the first battery cells 10 are stacked.
  • multiple battery units 20 and multiple first battery cells 10 may be alternately arranged along the first direction X, or there may be multiple
  • the battery units 20 are continuously arranged, and the plurality of first battery cells 10 are arranged continuously.
  • the battery units 20 and the first battery cells 10 may also be arranged in other arrangements.
  • the number of second battery cells 30 in the plurality of battery units 20 may be the same or different.
  • the second direction Y is perpendicular to the first direction X.
  • this embodiment does not require the second direction Y to be absolutely perpendicular to the first direction X, and a certain error is allowed.
  • the angle between the second direction Y and the first direction X is 80°-100°, the first direction X can be considered to be perpendicular to the second direction Y.
  • the first battery cell 10 and the second battery cell 30 may use the same chemical system, or they may use different chemical systems.
  • the chemical system targets the positive active material of the battery cell.
  • the first battery cell 10 may be a sodium ion battery cell, a lithium ion battery cell, a magnesium ion battery cell or other metal ion battery cells
  • the second battery cell 30 may be a sodium ion battery cell.
  • Lithium-ion battery cells include, but are not limited to, lithium nickel cobalt manganese system battery cells, lithium iron phosphate battery cells, lithium cobalt oxide battery cells, lithium manganese iron phosphate battery cells, and lithium nickel oxide battery cells. Or battery cells of other systems.
  • the projection of the second battery cell 30 along the first direction X partially overlaps the projection of the first battery cell 10 along the first direction X. In some alternative examples, the projection of the second battery cell 30 along the first direction X is located within the projection of the first battery cell 10 along the first direction X.
  • the size of the first battery cell 10 along the second direction Y is larger than the size of the second battery cell 30 along the second direction Y, so that each second battery cell 30 is aligned with the first battery cell 10 in the first direction.
  • the overlapping portion of X is larger than the size of the second battery cell 30 along the second direction Y, so that each second battery cell 30 is aligned with the first battery cell 10 in the first direction.
  • the gap G separates at least part of one second battery cell 30 from at least part of the other second battery cell 30 .
  • at least part of the surface of one second battery cell 30 facing the other second battery cell 30 along the second direction Y is spaced apart from the other second battery cell 30 to form the gap G.
  • the gap G only separates a part of one second battery cell 30 from the other second battery cell 30 in the second direction Y. ; That is to say, two adjacent second battery cells 30 may be in contact. In other examples, among two adjacent second battery cells 30, the gap G completely separates one second battery cell 30 from another second battery cell 30 in the second direction Y, That is to say, two adjacent second battery cells 30 are not in contact.
  • each second battery cell 30 has a portion that overlaps the first battery cell 10 in the first direction X, each second battery cell 30 can restrict the first battery cell 10 in the first direction X. deformation to improve the morphology of the first battery cell 10 and increase the overall strength of the battery 2.
  • a plurality of first battery cells 10 and a plurality of second battery cells 30 are mixed and arranged so that a gap G is formed between at least two second battery cells 30 .
  • the gap G may be a first battery.
  • the expansion of the cell 10 provides space, thereby reducing the expansion force experienced by the first battery cell 10 , improving the cycle performance of the first battery cell 10 , and extending the life of the battery 2 .
  • the first battery cell 10 adjacent to the battery unit 20 covers the gap G from one side of the gap G along the first direction X.
  • the first battery cell 10 has two first surfaces 10a arranged oppositely along the first direction X, and the first surfaces 10a are planar. At least part of the outer surface 30a of the second battery cell 30 is an arc-shaped surface, and the arc-shaped surface is used to connect with the first surface 10a. In the second direction Y, a gap G is formed between the arcuate surfaces of two adjacent second battery cells 30 .
  • the arc surface can be an elliptical arc surface, a cylindrical surface, a sphere or other arc surface.
  • the arcuate surface may directly contact the first surface 10a, or may be connected to the first surface 10a through other structures.
  • the curved surface may be bonded to the first surface 10a through colloid.
  • the arcuate surface contacts the first surface 10a, the two are approximately in line contact or point contact.
  • the arcuate surface is connected to the first surface 10a, which can reduce the distance between the first battery cell 10 and the second battery.
  • the heat transfer area between the cells 30 reduces the heat transfer rate between the first battery cell 10 and the second battery cell 30. When a certain battery cell experiences thermal runaway, it reduces the risk of heat diffusion and improves battery performance. 2 security.
  • the first battery cell 10 and the second battery cell 30 have different shapes.
  • the first battery cell 10 and the second battery cell 30 have different shapes, which can make the shape and size of the gap G more flexible.
  • the shape of the first battery cell 10 refers to the shape of the housing of the first battery cell 10
  • the shape of the second battery cell 30 refers to the shape of the housing of the second battery cell 30 .
  • the first battery cell 10 may be a square battery cell
  • the second battery cell 30 may be a cylindrical battery cell, a hexagonal prism battery cell, an elliptical column battery cell, or other shapes of battery cells.
  • the first battery cell 10 is a square battery cell
  • the second battery cell 30 is a cylindrical battery cell.
  • the casing of the square battery cell is generally in the shape of a rectangular parallelepiped, and the casing of the cylindrical battery cell is generally in the shape of a cylinder.
  • Cylindrical battery cells have cylindrical surfaces. When multiple cylindrical battery cells are arranged along the second direction Y, gaps G will be formed between the cylindrical surfaces of adjacent battery cells.
  • the gap G between the cylindrical battery cells can provide space for the expansion of the prismatic battery cells, thereby reducing the expansion force on the prismatic battery cells and improving the performance of the prismatic battery cells. circulatory performance of the body.
  • the contact between the cylindrical battery cells and the square battery cells is line contact. It can reduce the heat transfer area between cylindrical battery cells and prismatic battery cells, and reduce the heat transfer rate between cylindrical battery cells and prismatic battery cells.
  • a gap G is provided between any two adjacent second battery cells 30 .
  • the plurality of gaps G can provide more space for the expansion of the first battery cell 10, thereby reducing the expansion force on the first battery cell 10, improving the cycle performance of the first battery cell 10, and extending the life of the battery 2. .
  • the first battery cell 10 includes a first housing 11 and a first electrode assembly 12 accommodated in the first housing 11 .
  • the first housing 11 has a hollow structure, and an accommodation cavity for accommodating the first electrode assembly 12 and the electrolyte is formed inside.
  • the first housing 11 can have various shapes.
  • the first housing 11 is in the shape of a rectangular parallelepiped.
  • the first housing 11 includes a first housing 111 and a first end cover 112.
  • the first housing 111 has an opening, and the first end cover 112 is used to cover the opening of the first housing 111.
  • the second battery cell 30 includes a second housing 31 and a second electrode assembly 32 accommodated in the second housing 31 .
  • the second housing 31 has a hollow structure, and an accommodation cavity for accommodating the second electrode assembly 32 and the electrolyte is formed inside.
  • the second housing 31 can have various shapes.
  • the second housing 31 is cylindrical.
  • the second housing 31 includes a second housing 311 and a second end cover 312.
  • the second housing 311 has an opening, and the second end cover 312 is used to cover the opening of the second housing 311.
  • Both the first electrode assembly 12 and the second electrode assembly 32 include a positive electrode piece, a negative electrode piece and a separator, and the separator is used to insulate and isolate the positive electrode piece and the negative electrode piece.
  • the electrode assembly mainly relies on the movement of metal ions between the positive and negative electrode plates to work.
  • a gap G is formed between the second housings 31 of two adjacent second battery cells 30 .
  • a gap G is formed between the second housings 311 of two adjacent second battery cells 30.
  • the size of the second housing 31 along the third direction Z is greater than the size of the second housing 31 along the first direction X, and the size of the second housing 31 along the third direction Z is greater than the size of the second housing 31 along the second direction.
  • the third direction Z is perpendicular to the first direction X and the second direction Y.
  • the first battery cell 10 further includes a first electrode terminal 13 and a second electrode terminal 14 disposed on the first housing 11 .
  • One of the first electrode terminal 13 and the second electrode terminal 14 is electrically connected to the positive electrode tab of the first electrode assembly 12 , and the other is electrically connected to the negative electrode tab of the first electrode assembly 12 .
  • the first electrode terminal 13 and the second electrode terminal 14 are used to electrically connect the first electrode assembly 12 with an external circuit to realize charging and discharging of the first electrode assembly 12 .
  • the first electrode terminal 13 and the second electrode terminal 14 may be disposed on the same side of the first housing 11 , or may be disposed on opposite sides of the first housing 11 respectively.
  • the second battery cell 30 further includes a third electrode terminal 33 and a fourth electrode terminal 34 provided on the second housing 31 .
  • One of the third electrode terminal 33 and the fourth electrode terminal 34 is electrically connected to the positive electrode tab of the second electrode assembly 32 , and the other is electrically connected to the negative electrode tab of the second electrode assembly 32 .
  • the third electrode terminal 33 and the fourth electrode terminal 34 are used to electrically connect the second electrode assembly 32 with an external circuit to achieve charging and discharging of the second electrode assembly 32 .
  • the third electrode terminal 33 and the fourth electrode terminal 34 may be disposed on the same side of the second housing 31 , or may be disposed on opposite sides of the second housing 31 respectively.
  • the first battery cell 10 is a lithium-ion battery cell
  • the second battery cell 30 is a sodium-ion battery cell.
  • lithium-ion battery cells Compared with lithium-ion battery cells, sodium-ion battery cells have better low-temperature resistance, needle puncture resistance, extrusion resistance and other safety properties. Compared with sodium-ion battery cells, lithium-ion battery cells have higher energy density.
  • the first battery cell 10 is a lithium-ion battery cell to ensure the energy density of the battery 2 .
  • the second battery cell 30 uses a sodium ion battery cell to reduce the risk of failure of the second battery cell 30 when it is squeezed by the first battery cell 10 .
  • the energy density and safety of the battery 2 can be balanced by assembling lithium-ion battery cells and sodium-ion battery cells into a group.
  • the first battery cell 10 is a ternary lithium battery cell
  • the second battery cell 30 is a sodium ion battery cell or a lithium iron phosphate battery cell.
  • ternary lithium battery cells Compared with sodium-ion battery cells and lithium iron phosphate battery cells, ternary lithium battery cells have higher energy density. Compared with ternary lithium battery cells, sodium-ion battery cells or lithium iron phosphate battery cells are safer.
  • all the second battery cells 30 may be sodium-ion battery cells, or all the second battery cells 30 may be lithium iron phosphate battery cells, or some of the second battery cells 30 may be sodium-ion battery cells.
  • the second battery cells 30 are sodium ion battery cells, and some of the second battery cells 30 are lithium iron phosphate battery cells.
  • the first battery cell 10 is a ternary lithium battery cell to ensure the energy density of the battery 2 .
  • the second battery cell 30 uses a sodium ion battery cell or a lithium iron phosphate battery cell to reduce the risk of failure of the second battery cell 30 when it is squeezed by the first battery cell 10 . This embodiment can balance the energy density and safety of the battery 2 .
  • FIG. 6 is a simplified schematic diagram of a battery 2 provided by other embodiments of the present application.
  • the first battery cell 10 includes a first housing 11 , and the size of the first housing 11 along the second direction Y is L 1 .
  • the number of second battery cells 30 in the battery unit 20 is n, and the size of each second battery cell 30 along the second direction Y is D 1 .
  • L 1 , D 1 and n satisfy: L 1 ⁇ (n-1) ⁇ D 1 .
  • n is a positive integer greater than 1.
  • L 1 is the maximum dimension of the first housing 11 along the second direction Y.
  • the first housing 11 includes two second surfaces 10b oppositely arranged along the second direction Y, and the second surface 10b is perpendicular to the second direction Y; L 1 is the distance between the two second surfaces 10b along the second direction Y. spacing.
  • D 1 is the maximum size of the second battery cell 30 along the second direction Y.
  • D 1 is the maximum dimension of the second housing of the second battery cell 30 along the second direction Y.
  • the second battery cell 30 is a cylindrical battery cell, and D 1 is the diameter of the cylindrical battery cell.
  • n ⁇ D 1 can be used to characterize the space occupied by the battery unit 20 along the second direction Y; if the value of n ⁇ D 1 is too large, some second battery cells 30 may not be able to compete with the first battery cells 10 in the first direction Y. Overlapping in the direction X causes these second battery cells 30 to be unable to be supported and limited by the first battery cells 10 .
  • n ⁇ D 1 ⁇ L 1 +D 1 in this way, the second battery cell 30 located at the end of the battery unit 20 along the second direction Y overlaps with the first battery cell 10 in the first direction X.
  • the size of the area along the second direction Y can be roughly guaranteed to be D 1 /2, so that each second battery cell 30 of the battery unit 20 can be effectively supported and limited by the first battery cell 10 .
  • the area of first surface 10a is greater than the area of second surface 10b.
  • FIG. 7 is a simplified schematic diagram of a battery 2 provided by other embodiments of the present application.
  • the first battery cell 10 includes a first housing 11 , and the size of the first housing 11 along the second direction Y is L 1 .
  • the number of second battery cells 30 in the battery unit 20 is n, and the size of each second battery cell 30 along the second direction Y is D 1 .
  • L 1 , D 1 and n satisfy: n ⁇ D 1 ⁇ 0.5 ⁇ L 1 .
  • n ⁇ D 1 can be used to characterize the space occupied by the battery unit 20 along the second direction Y; if the value of n ⁇ D 1 is too small, then the space utilization rate of the battery unit 20 in the second direction Y is low; the implementation of this application For example, n ⁇ D 1 ⁇ 0.5 ⁇ L 1 allows the battery unit 20 to effectively utilize the space in the second direction Y.
  • FIG 8 is a simplified schematic diagram of a battery 2 provided by other embodiments of the present application.
  • L 1 , D 1 and n satisfy: L 1 ⁇ (n+1)D 1 .
  • n ⁇ D 1 can be used to characterize the space occupied by the battery unit 20 along the second direction Y.
  • n ⁇ D 1 ⁇ L 1 -D 1 enables the battery unit 20 to effectively utilize the space in the second direction Y and reduce the loss of energy density of the battery 2 .
  • FIG. 9 is a simplified schematic diagram of a battery 2 provided by other embodiments of the present application.
  • L 1 n ⁇ D 1 .
  • the first battery cell 10 includes a first housing 11 , and the size of the first housing 11 along the first direction X is L 2 .
  • the size of each second battery cell 30 along the first direction X is D 2 , and D 2 ⁇ 2 ⁇ L 2 .
  • L 2 is the maximum dimension of the first housing 11 along the first direction X.
  • the first surface 10a is perpendicular to the first direction X
  • L2 is the distance between the two first surfaces 10a along the first direction X.
  • D 2 is the maximum size of the second battery cell 30 along the first direction X.
  • D 2 is the maximum dimension of the second housing of the second battery cell 30 along the first direction X.
  • the second battery cell 30 is a cylindrical battery cell, and D 1 is equal to D 2 .
  • D 2 is positively related to the size of the gap G along the first direction X. If D 2 is too large, space may be wasted, resulting in insufficient energy density of the battery 2 . In the embodiment of the present application, D 2 ⁇ 2 ⁇ L 2 is set to reduce the loss of energy density of the battery 2 .
  • D 2 equals L 2 .
  • This embodiment can simplify the arrangement of multiple battery units 20 and multiple first battery units 10. For example, under the premise that the total number of first battery units 10 and battery units 20 is constant, the first battery unit 10 can be changed. The number will not change the overall size of the battery 2 along the first direction X.
  • the battery 2 further includes a functional component 40 , at least partially received in the gap G.
  • the functional component 40 may fill only part of the gap G, or may fill the gap G completely. In some examples, the functional component 40 fills the gap G, and the functional component 40 is configured to be compressible. In this way, the functional component 40 is compressed when the first battery cell 10 expands to compensate for the expansion of the first battery cell 10 . Provide space.
  • Functional components 40 are components in the battery 2 used to implement specific functions, including but not limited to heat exchange components, heat insulation components, buffer components, adhesive components, sensors, wires and other components.
  • the gap G in this embodiment can provide space for the functional components 40, thereby making the overall structure of the battery 2 more compact.
  • the functional component 40 includes at least one of a heat exchange component, a thermal insulation component, a buffer component, and an adhesive component.
  • the heat exchange member may be used to exchange heat with the first battery cell 10 .
  • a flow channel for heat exchange medium can be provided inside the heat exchange element. When the heat exchange medium flows through the heat exchange element, the heat exchange medium can exchange heat with the first battery cell 10 through the heat exchange element, so that the first battery cell The body 10 works within the appropriate temperature.
  • the heat exchange member may be used to exchange heat with the second battery cell 30 .
  • the heat insulator in the second direction Y, at least part of the heat insulator is located between two adjacent second battery cells 30 to reduce heat transfer between the two second battery cells 30 .
  • the heat insulator can also be used to block heat transfer between the first battery cell 10 and the second battery cell 30 .
  • the bumper is configured to be compressible.
  • the buffer member can limit the position of the second battery cell 30 in the second direction Y, thereby reducing the risk of the second battery cell 30 being displaced in the second direction Y.
  • the buffer member may be compressed when the first battery cell 10 expands to provide space for the expansion of the first battery cell 10 .
  • the adhesive member can connect two adjacent second battery cells 30 to improve the overall strength of the battery unit 20 .
  • the adhesive member can also bond the second battery cell 30 and the first battery cell 10 .
  • FIG. 10 is a schematic top view of the battery 2 shown in FIG. 3 .
  • a battery unit 20 is provided between at least two adjacent first battery cells 10 .
  • first battery cells 10 are adjacent means that no other first battery cells 10 are placed between the two first battery cells 10 .
  • the gap G of the battery unit 20 can provide space for the expansion of the first battery cells 10 on both sides, thereby improving the cycle performance of the first battery cells 10 .
  • a battery unit 20 is provided between any two adjacent first battery cells 10 .
  • the battery unit 20 may separate the first battery cells 10 to prevent adjacent first battery cells 10 from directly pressing each other.
  • the gap G of the battery unit 20 can provide space for the expansion of each first battery unit 10 , thereby improving the cycle performance of the first battery unit 10 and extending the life of the battery 2 .
  • a plurality of battery units 20 are provided, and the plurality of battery units 20 and the plurality of first battery cells 10 are alternately arranged along the first direction X.
  • One battery unit 20 is disposed between any two adjacent first battery cells 10 , and one first battery cell 10 is disposed between any two adjacent battery cells 20 .
  • Each battery unit 20 can provide space for the expansion of the adjacent first battery unit 10, which can reduce the superposition of the expansion amounts of multiple first battery units 10 in the first direction X and improve the performance of the first battery unit. 10 cycle performance, extending the life of the battery 2.
  • FIG 11 is a schematic structural diagram of a battery 2 provided by other embodiments of the present application.
  • At least one end of the battery 2 along the first direction X is provided as a battery unit 20 .
  • the second battery cell 30 is a cylindrical battery cell. Compared with square battery cells, cylindrical battery cells have better mechanical properties and stronger collision resistance. In this embodiment, the cylindrical battery cell is arranged at the end of the battery 2, which can reduce the risk of battery 2 failure and improve the stability of the battery 2.
  • the second battery cell 30 is configured as a sodium-ion battery cell or a lithium iron phosphate battery cell with better safety performance.
  • both ends of the battery 2 along the first direction X are provided as battery units 20 .
  • the battery unit 20 can protect the first battery cell 10 from both ends to reduce the risk of failure of the first battery cell 10 .
  • Figure 12 is a schematic structural diagram of a battery 2 provided by other embodiments of the present application.
  • a plurality of battery units 20 are provided, and the plurality of battery units 20 and the plurality of first battery cells 10 are stacked along the first direction X.
  • This embodiment does not limit the order in which the plurality of battery units 20 and the plurality of first battery cells 10 are stacked.
  • the plurality of battery units 20 and the plurality of first battery cells 10 may be alternately arranged along the first direction X, or they may A plurality of battery units 20 are continuously arranged, and a plurality of first battery cells 10 are arranged continuously.
  • the battery units 20 and the first battery cells 10 may also be arranged in other arrangements.
  • the number of second battery cells 30 in the plurality of battery units 20 may be the same or different.
  • the number of the second battery cells 30 of the plurality of battery units 20 first decreases and then increases.
  • the number of second battery cells 30 of the multiple battery units 20 is not required.
  • the number of battery cells 30 must be different. For example, some adjacent battery units 20 have the same number of second battery cells 30 .
  • the plurality of battery units 20 and the plurality of first battery cells 10 are stacked along the first direction The greater the expansion force the battery cell 10 receives.
  • the embodiment of the present application reduces the number of second battery cells 30 in the battery unit 20 in the middle of the battery 2 to provide more space for the expansion of the first battery cell 10 and reduce the expansion force experienced by the first battery cell 10 , improving the performance of the first battery cell 10 .
  • the first battery cell 10 includes a first casing and a first electrode terminal 13 disposed on the first casing.
  • the first electrode terminal 13 is disposed on one side of the first casing along the third direction Z.
  • the third The direction Z is perpendicular to the first direction X and the second direction Y.
  • the first housing includes two third surfaces 10c oppositely arranged along the third direction Z, and the first electrode terminal 13 protrudes from one third surface 10c.
  • the area of the first surface 10a is greater than the area of the second surface 10b, and the area of the first surface 10a is greater than the area of the third surface 10c.
  • the first battery cell 10 further includes a second electrode terminal 14 , and the second electrode terminal 14 and the first electrode terminal 13 are disposed on the same side of the first housing along the third direction Z.
  • Figure 13 is a schematic structural diagram of a battery 2 provided by other embodiments of the present application.
  • the first battery cell 10 includes a first casing and a first electrode terminal 13 disposed on the first casing.
  • the first electrode terminal 13 is disposed on the first casing along the second direction Y. side.
  • the first housing includes two second surfaces 10b oppositely arranged along the second direction Y, and the first electrode terminal 13 protrudes from one second surface 10b.
  • Figure 14 is a schematic structural view of the battery 2 provided by other embodiments of the present application
  • Figure 15 is another schematic structural view of the battery 2 of Figure 14, in which the frame structure 60 is omitted
  • Figure 16 is the battery shown in Figure 15 from another angle The structural diagram below.
  • the battery 2 further includes a plurality of bus parts 50 , and the plurality of bus parts 50 are used to connect the plurality of first battery cells 10 and the plurality of second battery cells 20 .
  • the battery cells 30 are electrically connected.
  • the plurality of bus components 50 connect the plurality of first battery cells 10 and the plurality of second battery cells 30 in series, parallel or mixed connection.
  • the mixed connection refers to the plurality of first battery cells 10 and the plurality of second battery cells. There are both series and parallel connections in 30.
  • the battery 2 further includes a frame structure 60 for supporting and fixing the first battery cell 10 and the second battery cell 30 .
  • the frame structure 60 includes two end plates 61 and two side plates 62 , the two end plates 61 are arranged along the first direction X, and the two side plates 62 connect the two end plates 61 to form a substantially Rectangular frame structure 60.
  • the battery unit 20 and the plurality of first battery cells 10 are stacked along the first direction X between the two end plates 61 , and the two end plates 61 clamp the plurality of battery units 20 and the plurality of first battery cells 10 .
  • the first battery cell 10 includes a first electrode terminal 13 and a second electrode terminal 14 with opposite polarity
  • the second battery cell 30 includes a third electrode terminal 33 and a fourth electrode terminal with opposite polarity.
  • the plurality of bus parts 50 include first bus parts 51 for electrically connecting the third electrode terminals 33 and the first electrode terminals 13 of the plurality of second battery cells 30 of the battery unit 20 .
  • the first bus part 51 connects the third electrode terminals 33 of the plurality of second battery cells 30 of the battery unit 20 to connect the plurality of second battery cells 30 of the battery unit 20 in parallel.
  • the first bus part 51 is also connected to the first electrode terminal 13 of the first battery cell 10, so that the first battery cell 10 and the battery unit 20 can be connected in series or in parallel.
  • the third electrode terminal 33 and the first electrode terminal 13 have opposite polarities.
  • the first bus part 51 connects the plurality of second battery cells 30 of the battery unit 20 and the first battery cells 10 in series.
  • the first electrode terminal 13 is located at one end of the first battery cell 10 along the third direction Z, and the third direction Z is perpendicular to the first direction X and the second direction Y.
  • the third electrode terminal 33 is located at an end of the second battery cell 30 away from the first electrode terminal 13 along the third direction Z.
  • the first bus part 51 includes a first connection part 511 , a second connection part 512 and a third connection part 513 .
  • the first connection part 511 is used to connect the first electrode terminal 13
  • the third connection part 513 is used to connect the battery unit 20
  • the third electrode terminals 33 of the plurality of second battery cells 30 and the second connection part 512 are used to connect the first connection part 511 and the third connection part 513, and the first connection part 511 and the third connection part 513 are both relative to The second connecting portion 512 is bent.
  • the first bus part 51 with a bent structure can connect the first electrode terminal 13 and the third electrode terminal 33 located on opposite sides, thereby realizing multiple connections between the first battery cell 10 and the battery unit 20 . Electrical connection of the second battery cell 30 .
  • the plurality of bus parts 50 further includes a second bus part 52 , the second bus part 52 is used to connect the fourth electrode terminal 34 of the plurality of second battery cells 30 of the battery unit 20 with the second electrode terminal. 14 electrical connections.
  • the first electrode terminal 13 and the second electrode terminal 14 are located at the same end of the first battery cell 10 along the third direction Z, and the third electrode terminal 33 is located at the second battery cell 30 along the third direction Z.
  • the fourth electrode terminal 34 is located at an end of the second battery cell 30 facing the first electrode terminal 13 along the third direction Z, away from the end of the first electrode terminal 13 .
  • the battery unit 20 is provided with two first battery cells 10 on both sides along the first direction X, and the first bus part 51 connects the third electrode terminals 33 of the plurality of second battery cells 30 of the battery unit 20 with The first electrode terminal 13 of one first battery cell 10 is electrically connected, and the second bus part 52 connects the fourth electrode terminal 34 of the plurality of second battery cells 30 of the battery unit 20 with the fourth electrode terminal 13 of another first battery cell 10 .
  • the second electrode terminal 14 is electrically connected.
  • the first bus part 51 and the second bus part 52 connect the battery unit 20 and the two first battery cells 10 in series.
  • the second bus part 52 since the second electrode terminal 14 and the fourth electrode terminal 34 are located on the same side of the battery 2 along the third direction Z, the second bus part 52 does not need to be bent.
  • the second bus part 52 is an L-shaped flat plate.
  • Figure 17 is a schematic structural diagram of a battery 2 provided by other embodiments of the present application.
  • the battery unit 20 may be disposed at both ends and the middle of the battery 2 along the first direction X.
  • some first battery cells 10 are continuously arranged along the first direction X. Among these first battery cells 10 , there are no battery cells 20 between adjacent first battery cells 10 .
  • the plurality of bus components further include a third bus component 53 , which is used to connect the continuously arranged first battery cells 10 in series, parallel or mixed connection.
  • Figure 18 is a schematic structural diagram of a battery 2 provided by other embodiments of the present application.
  • the battery 2 includes a plurality of battery columns 70 , and each battery column 70 includes a plurality of battery cells 20 and a plurality of first battery cells 10 stacked along the first direction X.
  • the plurality of battery columns 70 are arranged in a direction perpendicular to the first direction X.
  • the arrangement direction of the plurality of battery columns 70 is parallel to the arrangement direction of the plurality of second battery cells 30 of the battery unit 20 .
  • the arrangement direction of the plurality of battery columns 70 is perpendicular to the arrangement direction of the plurality of second battery cells 30 of the battery unit 20.
  • FIG 19 is a simplified schematic diagram of a battery 2 provided by other embodiments of the present application.
  • the second battery cell 30 may be other special-shaped battery cells.
  • the second battery cell 30 is in the shape of a racetrack.
  • the projection of the second housing of the second battery cell 30 in the third direction is in the shape of a racetrack.
  • FIG 20 is a simplified schematic diagram of a battery 2 provided by other embodiments of the present application.
  • the second battery cell 30 may also be a prismatic battery 2 . At least two adjacent second battery cells 30 are spaced apart to form a gap G.
  • the present application also provides an electrical device, including the battery of any of the above embodiments, and the battery is used to provide electrical energy to the electrical device.
  • the powered device can be any of the aforementioned devices or systems that use batteries.
  • the present application provides a battery 2 that includes a plurality of first battery cells 10 and a plurality of battery units 20 , the plurality of battery units 20 and a plurality of third battery units 20 .
  • a battery cell 10 is alternately stacked along the first direction X.
  • the battery unit 20 includes a plurality of second battery cells 30 arranged along a second direction Y that is perpendicular to the first direction X.
  • the first battery cell 10 is a square battery cell
  • the second battery cell 30 is a cylindrical battery cell.
  • each second battery cell 30 at least partially overlaps the first battery cell 10 .
  • a gap G is provided between any two second battery cells 30 of the battery unit 20 .
  • the gap G is provided with heat exchange parts.
  • the first battery cell 10 includes a first housing 11 with a size L 1 along the second direction Y.
  • the number of second battery cells 30 in the battery unit 20 is n, and the diameter of each second battery cell 30 is D 1 .
  • L 1 , D 1 and n satisfy: (n-1) ⁇ D 1 ⁇ L 1 ⁇ (n+1)D 1 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

本申请公开了一种电池和用电装置。本申请实施例的电池包括多个第一电池单体和电池单元。电池单元与多个第一电池单体沿第一方向堆叠。电池单元包括沿第二方向布置的多个第二电池单体,第二方向垂直于第一方向。第一电池单体和第二电池单体具有不同的形状。在第一方向上,各第二电池单体与第一电池单体至少部分地重叠。在第二方向上,电池单元的至少两个相邻的第二电池单体之间设有空隙。空隙可以为第一电池单体的膨胀提供空间,进而减小第一电池单体受到的膨胀力,改善第一电池单体的循环性能,提高电池的寿命。

Description

电池和用电装置
相关申请的交叉引用
本申请要求享有于2022年06月14日提交的名称为“电池和用电装置”的中国专利申请202221478328.0的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池领域,特别是涉及一种电池和用电装置。
背景技术
电池广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。
在电池技术的发展中,如何改善电池的循环性能,是电池技术中一个重要的研究方向。
发明内容
本申请提供一种电池和用电装置,其能改善电池的循环性能。
第一方面,本申请提供一种电池,其包括多个第一电池单体和电池单元。电池单元与多个第一电池单体沿第一方向堆叠。电池单元包括沿第二方向布置的多个第二电池单体,第二方向垂直于第一方向。第一电池单体和第二电池单体具有不同的形状。在第一方向上,各第二电池单体与第一电池单体至少部分地重叠。在第二方向上,电池单元的至少两个相邻的第二电池单体之间设有空隙。
上述技术方案中,由于各第二电池单体在第一方向上均存在与第一电池单体重叠的部分,所以各第二电池单体均能够在第一方向上限制第一电池单体的变形,以改善第一电池单体的形貌,提高电池的整体强度。本实施例将多个第一电池单体和多个第二电池单体混合排布,以使至少两个第二电池单体之间形成空隙,该空隙可以为第一电池单体的膨胀提供空间,进而减小第一电池单体受到的膨胀力,改善第一电池单体的循环性能,提高电池的寿命。
在一些实施方式中,第一电池单体具有沿第一方向相对设置的两个第一表面,第一表面为平面。第二电池单体的外表面的至少部分为弧形面,弧形面用于与第一表面相连接。在第二方向上,两个相邻的第二电池单体的弧形面之间形成空隙。
上述技术方案中,弧形面与第一表面相连接,可以减小第一电池单体与第二电池单体之间的热传递面积,降低第一电池单体与第二电池单体之间的热传递速率,当某个电池单体出现热失控时,降低热扩散的风险,提高电池的安全性。
在一些实施方式中,第一电池单体为方形电池单体,第二电池单体为圆柱电池单体。
上述技术方案中,圆柱电池单体和方形电池单体混合排布时,圆柱电池单体之间的空隙可以为方形电池单体的膨胀提供空间,进而减小方形电池单体受到的膨胀力,改善方形电池单体的循环性能。
在一些实施方式中,在电池单元中,任意两个相邻的第二电池单体之间设有空隙。多个空隙可以为第一电池单体的膨胀提供更多的空间,进而减小第一电池单体受到的膨胀力,改善第一电池单体的循环性能,提高电池的寿命。
在一些实施方式中,第一电池单体包括第一外壳,第一外壳沿第二方向的尺寸为L 1。电池单元的第二电池单体的数量为n,各第二电池单体沿第二方向的尺寸为D 1。L 1、D 1和n满足:L 1≥(n-1)·D 1
上述技术方案中,位于电池单元沿第二方向端部的第二电池单体与第一电池单体在第一方向上重叠的区域沿第二方向的尺寸可大致保证在D 1/2,从而使电池单元的各第二电池单体可以被第一电池单体有效地支撑和限位。
在一些实施方式中,第一电池单体包括第一外壳,第一外壳沿第二方向的尺寸为L 1。电池单元的第二电池单体的数量为n,各第二电池单体沿第二方向的尺寸为D 1,L 1、D 1和n满足:n·D 1≥0.5·L 1
上述技术方案可以使电池单元有效地利用第二方向上的空间。
在一些实施方式中,L 1、D 1和n满足:L 1≤(n+1)D 1
上述技术方案可使电池单元有效地利用第二方向上的空间,降低电池的能量密度的损失。
在一些实施方式中,第一电池单体包括第一外壳,第一外壳沿第一方向的尺寸为L 2。各第二电池单体沿第一方向的尺寸为D 2,D 2<2·L 2
D 2与空隙沿第一方向的尺寸正相关,如果D 2过大,可能会造成空间浪费,导致电池的能量密度不足。上述技术方案使D 2<2·L 2,以降低电池的能量密度的损失。
在一些实施方式中,电池还包括功能部件,功能部件的至少部分容纳于空隙。空隙可以为功能部件提供空间,从而使电池的整体结构更为紧凑。
在一些实施方式中,功能部件包括换热件、隔热件、缓冲件和粘接件的至少一种。
在一些实施方式中,至少两个相邻的第一电池单体之间设有电池单元。电池单元的空隙可以为其两侧的第一电池单体的膨胀提供空间,从而改善第一电池单体的循环性能。
在一些实施方式中,任意两个相邻的第一电池单体之间设有电池单元。电池单元可以将第一电池单体隔开,以避免相邻的第一电池单体彼此直接挤压。电池单元的空隙可以为每个第一电池单体的膨胀提供空间,从而改善第一电池单体的循环性能,延长电池的寿命。
在一些实施方式中,电池单元设置为多个,多个电池单元和多个第一电池单体沿第一方向交替设置。各电池单元可以为与其相邻的第一电池单体的膨胀提供空间,这样可以减少多个第一电池单体在第一方向上的膨胀量的叠加,改善第一电池单体的循环性能,延长电池的寿命。
在一些实施方式中,电池沿第一方向的至少一端设置为电池单元。当电池沿第一方向的一侧受到外部冲击时,电池单元的空隙可以起到分散应力的作用,从而降低第一电池单体失效的风险。
在一些实施方式中,电池沿第一方向的两端均设置为电池单元。电池单元可以从两端保护第一电池单体,以降低第一电池单体失效的风险。
在一些实施方式中,电池单元设置为多个,多个电池单元和多个第一电池单体沿第一方向堆叠。
在一些实施方式中,在第一方向上,多个电池单元的第二电池单体的数量呈先减小后增大的趋势。
多个电池单元和多个第一电池单体沿第一方向堆叠,多个第一电池单体的膨胀量会向电池的中部叠加,也就是说,越靠近中部,第一电池单体受到的膨胀力越大。上述技术方案减少了电池中部的电池单元的第二电池单体的数量,以为第一电池单体的膨胀提供更多的空间,减小第一电池单体受到的膨胀力,改善第一电池单体的性能。
在一些实施方式中,第一电池单体包括第一外壳和设置于第一外壳的第一电极端子,第一电极端子设置于第一外壳沿第二方向的一侧。
在一些实施方式中,第一电池单体包括第一外壳和设置于第一外壳的第一电极端子,第一电极端子设置于第一外壳沿第三方向的一侧,第三方向垂直于第一方向和第二方向。
在一些实施方式中,电池还包括多个汇流部件,多个汇流部件用于将多个第一电池单体和电池单元的多个第二电池单体电连接。
在一些实施方式中,第一电池单体包括极性相反的第一电极端子和第二电极端子,第二电池单体包括极性相反的第三电极端子和第四电极端子。多个汇流部件包括第一汇流部件,第一汇流部件用于将电池单元的多个第二电池单体的第三电极端子与第一电极端子电连接。
上述技术方案中,第一汇流部件连接电池单元的多个第二电池单体的第三电极端子,以将电池单元的多个第二电池单体并联。第一汇流部件还连接于第一电池单体的第一电极端子,这样可以将第一电池单体与电池单元串联或并联。
在一些实施方式中,第三电极端子和第一电极端子的极性相反。第一汇流部件将电池单元的多个第二电池单体与第一电池单体串联。
在一些实施方式中,第一电极端子位于第一电池单体沿第三方向的一端,第三方向垂直于第一方向和第二方向。第三电极端子位于第二电池单体沿第三方向背离第一电极端子的一端。第一汇流部件包括第一连接部、第二连接部和第三连接部,第一连接部用于连接第一电极端子,第三连接部用于连接电池单元的多个第二电池单体的第三电极端子,第二连接部用于连接第一连接部和第三连接部,且第一连接部和第三连接部均相对于第二连接部弯折。
上述技术方案中,具有弯折结构的第一汇流部件可以连接位于相反两侧的第一电极端子和第三电极端子,进而实现第一电池单体与电池单元的多个第二电池单体的电连接。
在一些实施方式中,第一电池单体为锂离子电池单体,第二电池单体为钠离子电池单体。第一电池单体采用锂离子电池单体,以保证电池的能量密度。第二电池单体采用钠离子电池单体,以降低第二电池单体在受到第一电池单体的挤压时失效的风险。本实施例通过将锂离子电池单体和钠离子电池单体装配成组,可以平衡电池的能量密度和安全性。
在一些实施方式中,第一电池单体为三元锂电池单体,第二电池单体为钠离子电池单体或磷酸铁锂电池单体。第一电池单体采用三元锂电池单体,以保证电池的能量密度。第二电池单体采用钠离子电池单体或磷酸铁锂电池单体,以降低第二电池单体在受到第一电池单体的挤压时失效的风险。
第二方面,本申请提供一种用电装置,其包括第一方面任一实施例提供的电池,电池用于提供电能。
附图说明
下面将参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸示意图;
图3为本申请一些实施例提供的电池的结构示意图;
图4为图3所示的第一电池单体的爆炸示意图;
图5为图3所示的第二电池单体的剖视示意图;
图6为本申请另一些实施例提供的电池的简化示意图;
图7为本申请另一些实施例提供的电池的简化示意图;
图8为本申请另一些实施例提供的电池的简化示意图;
图9为本申请另一些实施例提供的电池的简化示意图;
图10为图3所示的电池的俯视示意图;
图11为本申请另一些实施例提供的电池的结构示意图;
图12为本申请另一些实施例提供的电池的结构示意图;
图13为本申请另一些实施例提供的电池的结构示意图;
图14为本申请另一些实施例提供的电池的结构示意图;
图15为图14的电池的另一结构示意图,其中框架结构省略;
图16为图15所示的电池在另一角度下的结构示意图;
图17为本申请另一些实施例提供的电池的结构示意图;
图18为本申请另一些实施例提供的电池的结构示意图;
图19为本申请另一些实施例提供的电池的简化示意图;
图20为本申请另一些实施例提供的电池的简化示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例 是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中术语“平行”不仅包括绝对平行的情况,也包括了工程上常规认知的大致平行的情况;同时,“垂直”也不仅包括绝对垂直的情况,还包括工程上常规认知的大致垂直的情况。
本申请中,电池单体可以包括锂离子电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。
本申请的实施例所提到的电池是指包括多个电池单体以提供更高的电压和容量的单一的物理模块。电池一般可包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括外壳和容纳于外壳内的电极组件,电极组件包括正极极片、负极极片和隔离件。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面;正极集流体包括正极集流部和正极极耳,正极集流部涂覆有正极活性物质层,正极极耳未涂覆正极活性物质层。以锂离子电池为例,正极集流体的材料可以为铝,正 极活性物质层包括正极活性物质,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面;负极集流体包括负极集流部和负极极耳,负极集流部涂覆有负极活性物质层,负极极耳未涂覆负极活性物质层。负极集流体的材料可以为铜,负极活性物质层包括负极活性物质,负极活性物质可以为碳或硅等。隔离件的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
由于电池单体在充放电循环的过程中会发生膨胀,相邻的电池单体会因膨胀而彼此施加膨胀力。如果两个电池单体之间的膨胀力过大,那么电池单体的电极组件内部的电解液会被压出,影响电池单体的循环性能。
鉴于此,本申请实施例提供了一种电池,其将多个第一电池单体和多个第二电池单体混合排布,以使至少两个相邻的第二电池单体之间形成空隙,该空隙可以为第一电池单体的膨胀提供空间,进而减小第一电池单体受到的膨胀力,改善第一电池单体的循环性能。
本申请实施例描述的技术方案适用于使用电池的用电装置。
用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
以下实施例为了方便说明,以用电装置为车辆为例进行说明。
图1为本申请一些实施例提供的车辆的结构示意图。
如图1所示,车辆1的内部设置有电池2,电池2可以设置在车辆1的底部或头部或尾部。电池2可以用于车辆1的供电,例如,电池2可以作为车辆1的操作电源。
车辆1还可以包括控制器3和马达4,控制器3用来控制电池2为马达4供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池2不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
图2为本申请一些实施例提供的电池的爆炸示意图。
如图2所示,电池2包括箱体5和电池单体(图2未示出),电池单体容纳于箱体5内。
箱体5用于容纳电池单体,箱体5可以是多种结构。在一些实施例中,箱体5可以包括第一箱体部5a和第二箱体部5b,第一箱体部5a与第二箱体部5b相互盖合,第一箱体部5a和第二箱体部5b共同限定出用于容纳电池单体的容纳空间5c。第二箱体部5b可以是一端开口的空心结构,第一箱体部5a为板状结构,第一箱体部5a盖合 于第二箱体部5b的开口侧,以形成具有容纳空间5c的箱体5;第一箱体部5a和第二箱体部5b也均可以是一侧开口的空心结构,第一箱体部5a的开口侧盖合于第二箱体部5b的开口侧,以形成具有容纳空间5c的箱体5。当然,第一箱体部5a和第二箱体部5b可以是多种形状,比如,圆柱体、长方体等。
为提高第一箱体部5a与第二箱体部5b连接后的密封性,第一箱体部5a与第二箱体部5b之间也可以设置密封件,比如,密封胶、密封圈等。
假设第一箱体部5a盖合于第二箱体部5b的顶部,第一箱体部5a亦可称之为上箱盖,第二箱体部5b亦可称之为下箱体。
在电池2中,电池单体为多个,多个电池单体之间可串联或并联或混联,混联是指多个电池单体中既有串联又有并联。多个电池单体之间可直接串联或并联或混联在一起,再将多个电池单体构成的整体容纳于箱体5内;当然,也可以是多个电池单体先串联或并联或混联组成电池模块6,多个电池模块6再串联或并联或混联形成一个整体,并容纳于箱体5内。
图3为本申请一些实施例提供的电池的结构示意图;图4为图3所示的第一电池单体的爆炸示意图;图5为图3所示的第二电池单体的剖视示意图。
如图3至图5所示,本申请实施例提供了一种电池2,其包括多个第一电池单体10和电池单元20。电池单元20与多个第一电池单体10沿第一方向X堆叠。电池单元20包括沿第二方向Y布置的多个第二电池单体30,第二方向Y垂直于第一方向X。在第一方向X上,各第二电池单体30与第一电池单体10至少部分地重叠。在第二方向Y上,电池单元20的至少两个相邻的第二电池单体30之间设有空隙G。
电池单元20可以是一个,也可以是多个。
在一些示例中,电池单元20为一个,多个第一电池单体10可以布置在电池单元20沿第一方向X的同一侧,也可以布置在电池单元20沿第一方向X的两侧。
在另一些示例中,电池单元20为多个,多个电池单元20和多个第一电池单体10沿第一方向X堆叠。本示例对电池单元20和第一电池单体10堆叠的顺序不作限定,例如,可以是多个电池单元20和多个第一电池单体10沿第一方向X交替布置,也可以是多个电池单元20连续布置、多个第一电池单体10连续布置,还可以是以其它布置方式布置电池单元20和第一电池单体10。多个电池单元20的第二电池单体30的数量可以相同,也可以不相同。
在本实施例中,第二方向Y垂直于第一方向X。当然,本实施例不要求第二方向Y与第一方向X绝对垂直,允许存在一定的误差。示例性地,当第二方向Y与第一方向X之间的角度为80°-100°时,可认为第一方向X垂直于第二方向Y。
第一电池单体10和第二电池单体30可以是采用相同的化学体系,也可以采用不同的化学体系。化学体系针对的是电池单体的正极活性物质。示例性地,第一电池单体10可以是钠离子电池单体、锂离子电池单体、镁离子电池单体或其它金属离子电池单体,第二电池单体30可以是钠离子电池单体、锂离子电池单体、镁离子电池单体或其它金属离子电池单体。锂离子电池单体包括但不限于锂镍钴锰体系电池单体、磷酸铁锂系电池单体、钴酸锂系电池单体、磷酸锰铁锂系电池单体、镍酸锂系电池单体 或其它体系的电池单体。
在一些示例中,第二电池单体30沿第一方向X的投影与第一电池单体10沿第一方向X的投影部分地重叠。在另一些替代的示例中,第二电池单体30沿第一方向X的投影位于第一电池单体10沿第一方向X的投影内。
第一电池单体10沿第二方向Y的尺寸大于第二电池单体30沿第二方向Y的尺寸,以使各第二电池单体30均存在与第一电池单体10在第一方向X上重叠的部分。
在两个相邻的第二电池单体30中,在第二方向Y上,空隙G将一个第二电池单体30的至少部分与另一个第二电池单体30的至少部分隔开。换言之,一个第二电池单体30沿第二方向Y面向另一个第二电池单体30的表面的至少部分与另一个第二电池单体30间隔开,以形成所述空隙G。
在一些示例中,在两个相邻的第二电池单体30中,在第二方向Y上,空隙G仅将一个第二电池单体30的一部分与另一个第二电池单体30隔开;也就是说,两个相邻的第二电池单体30可以存在接触。在另一些示例中,在两个相邻的第二电池单体30中,在第二方向Y上,空隙G将一个第二电池单体30与另一个第二电池单体30完全隔开,也就是说,两个相邻的第二电池单体30不接触。
空隙G中可以设置其它部件,也可以不设置其它部件。
由于各第二电池单体30在第一方向X上均存在与第一电池单体10重叠的部分,所以各第二电池单体30均能够在第一方向X上限制第一电池单体10的变形,以改善第一电池单体10的形貌,提高电池2的整体强度。本实施例将多个第一电池单体10和多个第二电池单体30混合排布,以使至少两个第二电池单体30之间形成空隙G,该空隙G可以为第一电池单体10的膨胀提供空间,进而减小第一电池单体10受到的膨胀力,改善第一电池单体10的循环性能,提高电池2的寿命。
在一些实施例中,与电池单元20相邻的第一电池单体10从空隙G沿第一方向X的一侧覆盖空隙G。
在一些实施例中,第一电池单体10具有沿第一方向X相对设置的两个第一表面10a,第一表面10a为平面。第二电池单体30的外表面30a的至少部分为弧形面,弧形面用于与第一表面10a相连接。在第二方向Y上,两个相邻的第二电池单体30的弧形面之间形成空隙G。
弧形面可以是椭圆弧面、圆柱面、球面或其它弧形曲面。
弧形面可以直接与第一表面10a相抵接,也可以通过其它结构连接于第一表面10a。示例性地,弧形面可通过胶体粘接于第一表面10a。
当弧形面与第一表面10a接触时,两者近似为线接触或点接触,本实施例使弧形面与第一表面10a相连接,可以减小第一电池单体10与第二电池单体30之间的热传递面积,降低第一电池单体10与第二电池单体30之间的热传递速率,当某个电池单体出现热失控时,降低热扩散的风险,提高电池2的安全性。
在一些实施例中,第一电池单体10和第二电池单体30具有不同的形状。
第一电池单体10和第二电池单体30具有不同的形状,可以使空隙G的形状、尺寸更为灵活。
示例性地,第一电池单体10的形状指的是第一电池单体10的外壳的形状,第二电池单体30的形状指的第二电池单体30的外壳的形状。
示例性地,第一电池单体10可为方形电池单体,第二电池单体30可为圆柱电池单体、六棱柱电池单体、椭圆柱电池单体或其它形状的电池单体。
在一些实施例中,第一电池单体10为方形电池单体,第二电池单体30为圆柱电池单体。
方形电池单体的外壳大体呈长方体状,圆柱电池单体的外壳大体呈圆柱体状。圆柱电池单体具有圆柱面。当多个圆柱电池单体沿第二方向Y布置时,相邻的电池单体的圆柱面之间会形成空隙G。
圆柱电池单体和方形电池单体混合排布时,圆柱电池单体之间的空隙G可以为方形电池单体的膨胀提供空间,进而减小方形电池单体受到的膨胀力,改善方形电池单体的循环性能。
在布置圆柱电池单体和方形电池单体时,使圆柱电池单体的轴向垂直于第一方向X和第二方向Y,这样,圆柱电池单体与方形电池单体的接触为线接触,可以减小圆柱电池单体和方形电池单体之间的热传递面积,降低圆柱电池单体与方形电池单体之间的热传递速率。
在一些实施例中,在电池单元20中,任意两个相邻的第二电池单体30之间设有空隙G。
多个空隙G可以为第一电池单体10的膨胀提供更多的空间,进而减小第一电池单体10受到的膨胀力,改善第一电池单体10的循环性能,提高电池2的寿命。
在一些实施例中,第一电池单体10包括第一外壳11和容纳于第一外壳11内的第一电极组件12。第一外壳11为空心结构,其内部形成用于容纳第一电极组件12和电解液的容纳腔。第一外壳11可以使多种形状,示例性地,第一外壳11为长方体状。
在一些实施例中,第一外壳11包括第一壳体111和第一端盖112,第一壳体111具有开口,第一端盖112用于盖合第一壳体111的开口。
在一些实施例中,第二电池单体30包括第二外壳31和容纳于第二外壳31内的第二电极组件32。第二外壳31为空心结构,其内部形成用于容纳第二电极组件32和电解液的容纳腔。第二外壳31可以使多种形状,示例性地,第二外壳31为圆柱体状。
在一些实施例中,第二外壳31包括第二壳体311和第二端盖312,第二壳体311具有开口,第二端盖312用于盖合第二壳体311的开口。
第一电极组件12和第二电极组件32均包括正极极片、负极极片和隔离件,隔离件用于将正极极片和负极极片绝缘隔离。电极组件主要依靠金属离子在正极极片和负极极片之间移动来工作。
在一些实施例中,在电池单元20中,两个相邻的第二电池单体30的第二外壳31之间形成空隙G。示例性地,在电池单元20中,两个相邻的第二电池单体30的第二壳体311之间形成空隙G。
在一些实施例中,第二外壳31沿第三方向Z的尺寸大于第二外壳31沿第一方向X的尺寸,第二外壳31沿第三方向Z的尺寸大于第二外壳31沿第二方向Y的尺寸。 第三方向Z垂直于第一方向X和第二方向Y。
在一些实施例中,第一电池单体10还包括设置于第一外壳11的第一电极端子13和第二电极端子14。第一电极端子13和第二电极端子14中的一者电连接于第一电极组件12的正极极片,另一者电连接于第一电极组件12的负极极片。第一电极端子13和第二电极端子14用于将第一电极组件12与外部电路电连接,以实现第一电极组件12的充电和放电。
在一些实施例中,第一电极端子13和第二电极端子14可以设置于第一外壳11的同一侧,也可以分别设置在第一外壳11的相反的两侧。
在一些实施例中,第二电池单体30还包括设置于第二外壳31的第三电极端子33和第四电极端子34。第三电极端子33和第四电极端子34中的一者电连接于第二电极组件32的正极极片,另一者电连接于第二电极组件32的负极极片。第三电极端子33和第四电极端子34用于将第二电极组件32与外部电路电连接,以实现第二电极组件32的充电和放电。
在一些实施例中,第三电极端子33和第四电极端子34可以设置于第二外壳31的同一侧,也可以分别设置在第二外壳31的相反的两侧。
在一些实施例中,第一电池单体10为锂离子电池单体,第二电池单体30为钠离子电池单体。
相较于锂离子电池单体,钠离子电池单体具有更好的耐低温性能、耐针刺性能、耐挤压性能以及其它安全性能。相较于钠离子电池单体,锂离子电池单体具有更高的能量密度。
在本实施例中,第一电池单体10采用锂离子电池单体,以保证电池2的能量密度。第二电池单体30采用钠离子电池单体,以降低第二电池单体30在受到第一电池单体10的挤压时失效的风险。本实施例通过将锂离子电池单体和钠离子电池单体装配成组,可以平衡电池2的能量密度和安全性。
在一些实施例中,第一电池单体10为三元锂电池单体,第二电池单体30为钠离子电池单体或磷酸铁锂电池单体。
相较于钠离子电池单体和磷酸铁锂电池单体,三元锂电池单体具有更高的能量密度。相较于三元锂电池单体,钠离子电池单体或磷酸铁锂电池单体的安全性更好。
在电池单元20中,可以是全部的第二电池单体30均为钠离子电池单体,也可以是全部的第二电池单体30均为磷酸铁锂电池单体,还可以是部分的第二电池单体30为钠离子电池单体,部分的第二电池单体30为磷酸铁锂电池单体。
在本实施例中,第一电池单体10采用三元锂电池单体,以保证电池2的能量密度。第二电池单体30采用钠离子电池单体或磷酸铁锂电池单体,以降低第二电池单体30在受到第一电池单体10的挤压时失效的风险。本实施例可以平衡电池2的能量密度和安全性。
图6为本申请另一些实施例提供的电池2的简化示意图。
如图6所示,在一些实施例中,第一电池单体10包括第一外壳11,第一外壳11沿第二方向Y的尺寸为L 1。电池单元20的第二电池单体30的数量为n,各第二电池 单体30沿第二方向Y的尺寸为D 1。L 1、D 1和n满足:L 1≥(n-1)·D 1
n为大于1的正整数。
L 1为第一外壳11沿第二方向Y的最大尺寸。示例性地,第一外壳11包括沿第二方向Y相对设置的两个第二表面10b,第二表面10b垂直于第二方向Y;L 1为两个第二表面10b沿第二方向Y的间距。
D 1为第二电池单体30沿第二方向Y的最大尺寸。示例性地,D 1为第二电池单体30的第二壳体沿第二方向Y的最大尺寸。可选地,第二电池单体30为圆柱电池单体,D 1为圆柱电池单体的直径。
n·D 1可用于表征电池单元20沿第二方向Y上占用的空间;如果n·D 1的值过大,那么一些第二电池单体30可能无法与第一电池单体10在第一方向X上重叠,造成这些第二电池单体30无法被第一电池单体10支撑和限位。本申请实施例使n·D 1≤L 1+D 1,这样,位于电池单元20沿第二方向Y端部的第二电池单体30与第一电池单体10在第一方向X上重叠的区域沿第二方向Y的尺寸可大致保证在D 1/2,从而使电池单元20的各第二电池单体30可以被第一电池单体10有效地支撑和限位。
在一些实施例中,第一表面10a的面积大于第二表面10b的面积。
图7为本申请另一些实施例提供的电池2的简化示意图。
如图7所示,在一些实施例中,第一电池单体10包括第一外壳11,第一外壳11沿第二方向Y的尺寸为L 1。电池单元20的第二电池单体30的数量为n,各第二电池单体30沿第二方向Y的尺寸为D 1。L 1、D 1和n满足:n·D 1≥0.5·L 1
n·D 1可用于表征电池单元20沿第二方向Y上占用的空间;如果n·D 1的值过小,那么电池单元20在第二方向Y上的空间利用率偏低;本申请实施例使n·D 1≥0.5·L 1,以使电池单元20有效地利用第二方向Y上的空间。
图8为本申请另一些实施例提供的电池2的简化示意图。
如图8所示,在一些实施例中,L 1、D 1和n满足:L 1≤(n+1)D 1
n·D 1可用于表征电池单元20沿第二方向Y上占用的空间。本申请实施例使n·D 1≥L 1-D 1,以使电池单元20有效地利用第二方向Y上的空间,降低电池2的能量密度的损失。
图9为本申请另一些实施例提供的电池2的简化示意图。
如图9所示,在一些实施例中,(n-1)·D 1≤L 1≤(n+1)D 1
在一些实施例中,L 1=n·D 1
在一些实施例中,第一电池单体10包括第一外壳11,第一外壳11沿第一方向X的尺寸为L 2。各第二电池单体30沿第一方向X的尺寸为D 2,D 2<2·L 2
L 2为第一外壳11沿第一方向X的最大尺寸。示例性地,第一表面10a垂直于第一方向X,L 2为两个第一表面10a沿第一方向X的间距。
D 2为第二电池单体30沿第一方向X的最大尺寸。示例性地,D 2为第二电池单体30的第二壳体沿第一方向X的最大尺寸。可选地,第二电池单体30为圆柱电池单体,D 1等于D 2
D 2与空隙G沿第一方向X的尺寸正相关,如果D 2过大,可能会造成空间浪费, 导致电池2的能量密度不足。本申请实施例使D 2<2·L 2,以降低电池2的能量密度的损失。
在一些实施例中,0.5L 2<D 2<2·L 2
在一些实施例中,D 2等于L 2。本实施例可以简化多个电池单元20和多个第一电池单体10的排布方式,例如,在第一电池单体10和电池单元20总数一定的前提下,改变第一电池单体10的数量,不会改变电池2沿第一方向X的总尺寸。
在一些实施例中,电池2还包括功能部件40,功能部件40的至少部分容纳于空隙G。
功能部件40可以仅填充空隙G的一部分,也可以将空隙G填满。在一些示例中,功能部件40将空隙G填满,且功能部件40配置为可压缩的,这样,功能部件40在第一电池单体10膨胀时被压缩,以为第一电池单体10的膨胀提供空间。
功能部件40为电池2中的用于实现特定功能的部件,其包括但不限于换热件、隔热件、缓冲件、粘接件、传感器、导线等部件。
本实施例的空隙G可以为功能部件40提供空间,从而使电池2的整体结构更为紧凑。
在一些实施例中,功能部件40包括换热件、隔热件、缓冲件和粘接件的至少一种。
在一些示例中,换热件可用于与第一电池单体10换热。换热件内部可设置有供换热介质的流道,当换热介质流经换热件时,换热介质可通过换热件与第一电池单体10换热,以使第一电池单体10在合适的温度内工作。可选地,换热件可用于与第二电池单体30换热。
在一些示例中,在第二方向Y上,隔热件的至少部分位于相邻的两个第二电池单体30之间,以减少两个第二电池单体30之间的传热。可选地,隔热件还可用于阻隔第一电池单体10和第二电池单体30之间的传热。
在一些示例中,缓冲件被配置为可压缩的。缓冲件可以在第二方向Y上对第二电池单体30进行限位,降低第二电池单体30在第二方向Y上偏移的风险。缓冲件可在第一电池单体10膨胀时被压缩,以为第一电池单体10的膨胀提供空间。
在一些示例中,粘接件可以将相邻的两个第二电池单体30连接,以提高电池单元20整体的强度。可选地,粘接件还可将第二电池单体30和第一电池单体10粘接。
图10为图3所示的电池2的俯视示意图。
如图10所示,在一些实施例中,至少两个相邻的第一电池单体10之间设有电池单元20。
两个第一电池单体10相邻是指这两个第一电池单体10之间没有设置其它第一电池单体10。
两个相邻的第一电池单体10之间的电池单元20可以为一个,也可以为多个。
在本申请实施例中,电池单元20的空隙G可以为其两侧的第一电池单体10的膨胀提供空间,从而改善第一电池单体10的循环性能。
在一些实施例中,任意两个相邻的第一电池单体10之间设有电池单元20。
电池单元20可以将第一电池单体10隔开,以避免相邻的第一电池单体10彼此直接挤压。电池单元20的空隙G可以为每个第一电池单体10的膨胀提供空间,从而改善第一电池单体10的循环性能,延长电池2的寿命。
在一些实施例中,电池单元20设置为多个,多个电池单元20和多个第一电池单体10沿第一方向X交替设置。
任意相邻的两个第一电池单体10之间设有一个电池单元20,任意相邻的两个电池单元20之间设有一个第一电池单体10。
各电池单元20可以为与其相邻的第一电池单体10的膨胀提供空间,这样可以减少多个第一电池单体10在第一方向X上的膨胀量的叠加,改善第一电池单体10的循环性能,延长电池2的寿命。
图11为本申请另一些实施例提供的电池2的结构示意图。
如图11所示,在一些实施例中,电池2沿第一方向X的至少一端设置为电池单元20。
当电池2沿第一方向X的一侧受到外部冲击时,电池单元20的空隙G可以起到分散应力的作用,从而降低第一电池单体10失效的风险。
在一些实施例中,第二电池单体30为圆柱电池单体。相较于方形电池单体,圆柱电池单体具有更好的力学性能,其抗碰撞能力更强。本实施例将圆柱电池单体设置在电池2的端部,可以降低电池2失效的风险,提高电池2的稳定性。
在一些实施例中,第二电池单体30设置为安全性能更好的钠离子电池单体或磷酸铁锂电池单体。
在一些实施例中,电池2沿第一方向X的两端均设置为电池单元20。电池单元20可以从两端保护第一电池单体10,以降低第一电池单体10失效的风险。
图12为本申请另一些实施例提供的电池2的结构示意图。
如图12所示,电池单元20设置为多个,多个电池单元20和多个第一电池单体10沿第一方向X堆叠。
本实施例对多个电池单元20和第一电池单体10堆叠的顺序不作限定,例如,可以是多个电池单元20和多个第一电池单体10沿第一方向X交替布置,也可以是多个电池单元20连续布置、多个第一电池单体10连续布置,还可以是以其它布置方式布置电池单元20和第一电池单体10。多个电池单元20的第二电池单体30的数量可以相同,也可以不相同。
在一些实施例中,在第一方向X上,多个电池单元20的第二电池单体30的数量呈先减小后增大的趋势。
在排列布置多个电池单元20时,只要满足多个电池单元20的第二电池单体30的数量呈先减小后增大的趋势即可,并不要求相邻的电池单元20的第二电池单体30的数量一定不同。示例性地,部分相邻的电池单元20的第二电池单体30的数量相同。
多个电池单元20和多个第一电池单体10沿第一方向X堆叠,多个第一电池单体10的膨胀量会向电池2的中部叠加,也就是说,越靠近中部,第一电池单体10受到的膨胀力越大。本申请实施例减少了电池2中部的电池单元20的第二电池单体30的数 量,以为第一电池单体10的膨胀提供更多的空间,减小第一电池单体10受到的膨胀力,改善第一电池单体10的性能。
在一些实施例中,第一电池单体10包括第一外壳和设置于第一外壳的第一电极端子13,第一电极端子13设置于第一外壳沿第三方向Z的一侧,第三方向Z垂直于第一方向X和第二方向Y。
在一些实施例中,第一外壳包括沿第三方向Z相对设置的两个第三表面10c,第一电极端子13凸出于一个第三表面10c。
第一表面10a的面积大于第二表面10b的面积,且第一表面10a的面积大于第三表面10c的面积。
在一些实施例中,第一电池单体10还包括第二电极端子14,第二电极端子14与第一电极端子13设于第一外壳沿第三方向Z的同一侧。
图13为本申请另一些实施例提供的电池2的结构示意图。
如图13所示,在一些实施例中,第一电池单体10包括第一外壳和设置于第一外壳的第一电极端子13,第一电极端子13设置于第一外壳沿第二方向Y的一侧。
第一外壳包括沿第二方向Y相对设置的两个第二表面10b,第一电极端子13凸出于一个第二表面10b。
图14为本申请另一些实施例提供的电池2的结构示意图;图15为图14的电池2的另一结构示意图,其中框架结构60省略;图16为图15所示的电池在另一角度下的结构示意图。
如图14至图16所示,在一些实施例中,电池2还包括多个汇流部件50,多个汇流部件50用于将多个第一电池单体10和电池单元20的多个第二电池单体30电连接。
多个汇流部件50将多个第一电池单体10和多个第二电池单体30串联、并联或混联,混联是指多个第一电池单体10和多个第二电池单体30中既有串联又有并联。
在一些实施例中,电池2还包括框架结构60,框架结构60用于支撑和固定第一电池单体10和第二电池单体30。
在一些实施例中,框架结构60包括两个端板61和两个侧板62,两个端板61沿第一方向X设置,两个侧板62连接两个端板61,以形成大体为矩形的框架结构60。
电池单元20和多个第一电池单体10沿第一方向X堆叠在两个端板61之间,两个端板61夹紧多个电池单元20和多个第一电池单体10。
在一些实施例中,第一电池单体10包括极性相反的第一电极端子13和第二电极端子14,第二电池单体30包括极性相反的第三电极端子33和第四电极端子34。多个汇流部件50包括第一汇流部件51,第一汇流部件51用于将电池单元20的多个第二电池单体30的第三电极端子33与第一电极端子13电连接。
第一汇流部件51连接电池单元20的多个第二电池单体30的第三电极端子33,以将电池单元20的多个第二电池单体30并联。第一汇流部件51还连接于第一电池单体10的第一电极端子13,这样可以将第一电池单体10与电池单元20串联或并联。
在一些实施例中,第三电极端子33和第一电极端子13的极性相反。第一汇流 部件51将电池单元20的多个第二电池单体30与第一电池单体10串联。
在一些实施例中,第一电极端子13位于第一电池单体10沿第三方向Z的一端,第三方向Z垂直于第一方向X和第二方向Y。第三电极端子33位于第二电池单体30沿第三方向Z背离第一电极端子13的一端。第一汇流部件51包括第一连接部511、第二连接部512和第三连接部513,第一连接部511用于连接第一电极端子13,第三连接部513用于连接电池单元20的多个第二电池单体30的第三电极端子33,第二连接部512用于连接第一连接部511和第三连接部513,且第一连接部511和第三连接部513均相对于第二连接部512弯折。
在本实施例中,具有弯折结构的第一汇流部件51可以连接位于相反两侧的第一电极端子13和第三电极端子33,进而实现第一电池单体10与电池单元20的多个第二电池单体30的电连接。
在一些实施例中,多个汇流部件50还包括第二汇流部件52,第二汇流部件52用于将电池单元20的多个第二电池单体30的第四电极端子34与第二电极端子14电连接。
在一些实施例中,第一电极端子13和第二电极端子14位于第一电池单体10沿第三方向Z的同一端,第三电极端子33位于第二电池单体30沿第三方向Z背离第一电极端子13的一端,第四电极端子34位于第二电池单体30沿第三方向Z面向第一电极端子13的一端。
示例性地,电池单元20沿第一方向X两侧设有两个第一电池单体10,第一汇流部件51将电池单元20的多个第二电池单体30的第三电极端子33与一个第一电池单体10的第一电极端子13电连接,第二汇流部件52将电池单元20的多个第二电池单体30的第四电极端子34与另一个第一电池单体10的第二电极端子14电连接。此时,第一汇流部件51和第二汇流部件52将电池单元20和两个第一电池单体10串联。
在一些实施例中,由于第二电极端子14和第四电极端子34位于电池2沿第三方向Z的同一侧,所以第二汇流部件52无需弯折。示例性地,第二汇流部件52为L形平板。
图17为本申请另一些实施例提供的电池2的结构示意图。
如图17所示,在一些实施例中,电池单元20可设置于电池2沿第一方向X的两端和中部。
在一些实施例中,一些第一电池单体10沿第一方向X连续设置。在这些第一电池单体10中,相邻的第一电池单体10之间无电池单元20。
示例性地,多个汇流部件还包括第三汇流部件53,第三汇流部件53用于将这些连续设置的第一电池单体10串联、并联或混联。
图18为本申请另一些实施例提供的电池2的结构示意图。
如图18所示,在一些实施例中,电池2包括多个电池列70,各电池列70包括沿第一方向X堆叠的多个电池单元20和多个第一电池单体10。
多个电池列70沿垂直于第一方向X的方向布置。在一些示例中,多个电池列70的布置方向平行于电池单元20的多个第二电池单体30的布置方向。在另一个示例 中,多个电池列70的布置方向垂直于电池单元20的多个第二电池单体30的布置方向。
图19为本申请另一些实施例提供的电池2的简化示意图。
如图19所示,在一些实施例中,第二电池单体30可以是其它异形电池单体。例如,第二电池单体30为跑道形,换言之,第二电池单体30的第二外壳在第三方向上的投影为跑道形。
图20为本申请另一些实施例提供的电池2的简化示意图。
如图20所示,在一些实施例中,第二电池单体30也可为方形电池2。至少两个相邻的第二电池单体30间隔设置,以形成空隙G。
根据本申请的一些实施例,本申请还提供了一种用电装置,包括以上任一实施例的电池,电池用于为用电装置提供电能。用电装置可以是前述任一应用电池的设备或系统。
根据本申请的一些实施例,参照图9和图10,本申请提供了一种电池2,其包括多个第一电池单体10和多个电池单元20,多个电池单元20与多个第一电池单体10沿第一方向X交替堆叠。电池单元20包括沿第二方向Y布置的多个第二电池单体30,第二方向Y垂直于第一方向X。第一电池单体10为方形电池单体,第二电池单体30为圆柱电池单体。
在第一方向X上,各第二电池单体30与第一电池单体10至少部分地重叠。在第二方向Y上,电池单元20的任意两个第二电池单体30之间设有空隙G。
空隙G内设有换热件。
第一电池单体10包括第一外壳11,第一外壳11沿第二方向Y的尺寸为L 1。电池单元20的第二电池单体30的数量为n,各第二电池单体30的直径为D 1。L 1、D 1和n满足:(n-1)·D 1≤L 1≤(n+1)D 1。第一外壳11沿第一方向X的尺寸为L 2,D 1=L 2
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (26)

  1. 一种电池,包括:
    多个第一电池单体;以及
    电池单元,与多个所述第一电池单体沿第一方向堆叠,所述电池单元包括沿第二方向布置的多个第二电池单体,所述第二方向垂直于所述第一方向,所述第一电池单体和所述第二电池单体具有不同的形状;
    在所述第一方向上,各所述第二电池单体与所述第一电池单体至少部分地重叠;在所述第二方向上,所述电池单元的至少两个相邻的所述第二电池单体之间设有空隙。
  2. 根据权利要求1所述的电池,其中,所述第一电池单体具有沿所述第一方向相对设置的两个第一表面,所述第一表面为平面;
    所述第二电池单体的外表面的至少部分为弧形面,所述弧形面用于与所述第一表面相连接;
    在所述第二方向上,两个相邻的所述第二电池单体的所述弧形面之间形成所述空隙。
  3. 根据权利要求2所述的电池,其中,所述第一电池单体为方形电池单体,所述第二电池单体为圆柱电池单体。
  4. 根据权利要求1所述的电池,其中,在所述电池单元中,任意两个相邻的所述第二电池单体之间设有所述空隙。
  5. 根据权利要求1-4任一项所述的电池,其中,
    所述第一电池单体包括第一外壳,所述第一外壳沿所述第二方向的尺寸为L 1
    所述电池单元的所述第二电池单体的数量为n,各所述第二电池单体沿所述第二方向的尺寸为D 1,L 1、D 1和n满足:
    L 1≥(n-1)·D 1
  6. 根据权利要求1-4任一项所述的电池,其中,
    所述第一电池单体包括第一外壳,所述第一外壳沿所述第二方向的尺寸为L 1
    所述电池单元的所述第二电池单体的数量为n,各所述第二电池单体沿所述第二方向的尺寸为D 1,L 1、D 1和n满足:
    n·D 1≥0.5·L 1
  7. 根据权利要求6所述的电池,其中,L 1、D 1和n满足:L 1≤(n+1)D 1
  8. 根据权利要求1-4任一项所述的电池,其中,
    所述第一电池单体包括第一外壳,所述第一外壳沿所述第一方向的尺寸为L 2
    各所述第二电池单体沿所述第一方向的尺寸为D 2,D 2<2·L 2
  9. 根据权利要求1-4任一项所述的电池,还包括功能部件,所述功能部件的至少部分容纳于所述空隙。
  10. 根据权利要求9所述的电池,其中,所述功能部件包括换热件、隔热件、缓冲件和粘接件的至少一种。
  11. 根据权利要求1-4任一项所述的电池,其中,至少两个相邻的所述第一电池 单体之间设有所述电池单元。
  12. 根据权利要求11所述的电池,其中,任意两个相邻的所述第一电池单体之间设有所述电池单元。
  13. 根据权利要求12所述的电池,其中,所述电池单元设置为多个,多个所述电池单元和多个所述第一电池单体沿所述第一方向交替设置。
  14. 根据权利要求1-4任一项所述的电池,其中,所述电池沿所述第一方向的至少一端设置为所述电池单元。
  15. 根据权利要求14所述的电池,其中,所述电池沿所述第一方向的两端均设置为所述电池单元。
  16. 根据权利要求1-4任一项所述的电池,其中,所述电池单元设置为多个,多个所述电池单元和多个所述第一电池单体沿所述第一方向堆叠。
  17. 根据权利要求16所述的电池,其中,在所述第一方向上,多个所述电池单元的所述第二电池单体的数量呈先减小后增大的趋势。
  18. 根据权利要求1-4任一项所述的电池,其中,所述第一电池单体包括第一外壳和设置于所述第一外壳的第一电极端子,所述第一电极端子设置于所述第一外壳沿所述第二方向的一侧。
  19. 根据权利要求1-4任一项所述的电池,其中,所述第一电池单体包括第一外壳和设置于所述第一外壳的第一电极端子,所述第一电极端子设置于所述第一外壳沿第三方向的一侧,所述第三方向垂直于所述第一方向和所述第二方向。
  20. 根据权利要求1-4任一项所述的电池,还包括多个汇流部件,所述多个汇流部件用于将多个所述第一电池单体和所述电池单元的多个所述第二电池单体电连接。
  21. 根据权利要求20所述的电池,其中,
    所述第一电池单体包括极性相反的第一电极端子和第二电极端子,所述第二电池单体包括极性相反的第三电极端子和第四电极端子;
    所述多个汇流部件包括第一汇流部件,所述第一汇流部件用于将所述电池单元的多个所述第二电池单体的第三电极端子与所述第一电极端子电连接。
  22. 根据权利要求21所述的电池,其中,所述第三电极端子和所述第一电极端子的极性相反。
  23. 根据权利要求21所述的电池,其中,所述第一电极端子位于所述第一电池单体沿第三方向的一端,所述第三方向垂直于所述第一方向和所述第二方向;
    所述第三电极端子位于所述第二电池单体沿所述第三方向背离所述第一电极端子的一端;
    所述第一汇流部件包括第一连接部、第二连接部和第三连接部,所述第一连接部用于连接所述第一电极端子,所述第三连接部用于连接所述电池单元的多个所述第二电池单体的第三电极端子,所述第二连接部用于连接所述第一连接部和所述第三连接部,且所述第一连接部和所述第三连接部均相对于所述第二连接部弯折。
  24. 根据权利要求1-4任一项所述的电池,其中,所述第一电池单体为锂离子电池单体,所述第二电池单体为钠离子电池单体。
  25. 根据权利要求1-4任一项所述的电池,其中,所述第一电池单体为三元锂电池单体,所述第二电池单体为钠离子电池单体或磷酸铁锂电池单体。
  26. 一种用电装置,包括如权利要求1-25任一项所述的电池,所述电池用于提供电能。
PCT/CN2022/115018 2022-06-14 2022-08-26 电池和用电装置 WO2023240797A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221478328.0 2022-06-14
CN202221478328.0U CN217444527U (zh) 2022-06-14 2022-06-14 电池和用电装置

Publications (1)

Publication Number Publication Date
WO2023240797A1 true WO2023240797A1 (zh) 2023-12-21

Family

ID=83223388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115018 WO2023240797A1 (zh) 2022-06-14 2022-08-26 电池和用电装置

Country Status (2)

Country Link
CN (1) CN217444527U (zh)
WO (1) WO2023240797A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599932A (zh) * 2021-01-08 2021-04-02 蔚来汽车科技(安徽)有限公司 电池包、方法和车辆
CN112889174A (zh) * 2018-07-30 2021-06-01 凯尊创新有限公司 锂离子电池
CN215731966U (zh) * 2021-08-31 2022-02-01 蜂巢能源科技有限公司 电池模组及电池包
CN114335837A (zh) * 2021-12-31 2022-04-12 远景动力技术(江苏)有限公司 电池包
CN216389576U (zh) * 2021-11-30 2022-04-26 宁德时代新能源科技股份有限公司 电池和用电装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112889174A (zh) * 2018-07-30 2021-06-01 凯尊创新有限公司 锂离子电池
CN112599932A (zh) * 2021-01-08 2021-04-02 蔚来汽车科技(安徽)有限公司 电池包、方法和车辆
CN215731966U (zh) * 2021-08-31 2022-02-01 蜂巢能源科技有限公司 电池模组及电池包
CN216389576U (zh) * 2021-11-30 2022-04-26 宁德时代新能源科技股份有限公司 电池和用电装置
CN114335837A (zh) * 2021-12-31 2022-04-12 远景动力技术(江苏)有限公司 电池包

Also Published As

Publication number Publication date
CN217444527U (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
WO2023050969A1 (zh) 一种电池单体、电池及用电装置
WO2023174266A1 (zh) 壳体、电池单体、电池及用电设备
WO2024007419A1 (zh) 一种隔离组件、电池模组、电池和用电装置
CN216872134U (zh) 电池和用电设备
WO2023045400A1 (zh) 用电装置、电池、加热膜及其制造方法和制造设备
WO2024060403A1 (zh) 电池单体、电池、用电装置以及焊接设备
WO2023227076A1 (zh) 热管理部件、电池以及用电装置
WO2023134479A1 (zh) 电池和用电设备
WO2024036752A1 (zh) 电极组件、电池单体、电池及用电装置
WO2023221649A1 (zh) 电池和用电设备
WO2023155555A1 (zh) 电池单体、电池和用电设备
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2023240797A1 (zh) 电池和用电装置
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023000511A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
KR20230129053A (ko) 배터리, 전기 장치, 배터리 제조 방법 및 장치
KR20230126176A (ko) 배터리, 전기 장치, 배터리 제조 방법 및 장치
WO2023240462A1 (zh) 电池和用电装置
WO2023133737A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2024026829A1 (zh) 电池单体、电池以及用电装置
WO2023173721A1 (zh) 电池单体、电池模组、电池和用电装置
WO2023155212A1 (zh) 电池、用电设备、制备电池的方法和设备
CN117199736B (zh) 电池单体、电池以及用电装置
WO2023133747A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2024020910A1 (zh) 电池单体、电池以及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946470

Country of ref document: EP

Kind code of ref document: A1