WO2022199152A1 - 电极组件、电池单体、电池以及用电设备 - Google Patents

电极组件、电池单体、电池以及用电设备 Download PDF

Info

Publication number
WO2022199152A1
WO2022199152A1 PCT/CN2021/139225 CN2021139225W WO2022199152A1 WO 2022199152 A1 WO2022199152 A1 WO 2022199152A1 CN 2021139225 W CN2021139225 W CN 2021139225W WO 2022199152 A1 WO2022199152 A1 WO 2022199152A1
Authority
WO
WIPO (PCT)
Prior art keywords
inactive material
material portion
active material
inactive
connection layer
Prior art date
Application number
PCT/CN2021/139225
Other languages
English (en)
French (fr)
Inventor
赵钱
杜国栋
邹启凡
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to JP2022567037A priority Critical patent/JP2023527677A/ja
Priority to KR1020227038144A priority patent/KR20220164005A/ko
Priority to EP21932759.0A priority patent/EP4131510A4/en
Publication of WO2022199152A1 publication Critical patent/WO2022199152A1/zh
Priority to US17/978,994 priority patent/US20240030495A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of batteries, in particular to an electrode assembly, a battery cell, a battery and an electrical device.
  • a rechargeable battery cell which can be called a secondary battery cell, refers to a battery cell that can activate active materials by charging and continue to be used after the battery cell is discharged.
  • Rechargeable battery cells are widely used in electronic devices, such as cell phones, laptop computers, battery cars, electric vehicles, electric planes, electric ships, electric toy cars, electric toy ships, electric toy planes, and electric tools, among others.
  • the rechargeable battery cells may include nickel-cadmium cells, nickel-hydrogen cells, lithium-ion cells, secondary alkaline zinc-manganese cells, and the like.
  • the present application provides an electrode assembly, a battery cell, a battery and an electrical equipment, which can reduce the risk of short circuit and improve the safety performance.
  • an embodiment of the present application provides an electrode assembly, which includes a first pole piece and a second pole piece with opposite polarities, and the first pole piece and the second pole piece are superposed and arranged.
  • the first pole piece includes a first active material portion and a plurality of first inactive material portions protruding from the first active material portion, and the plurality of first inactive material portions are stacked.
  • a connection layer is provided between at least two adjacent first inactive material parts, and the connection layer and the first active material part are arranged at intervals along the first direction, and are used to connect two adjacent first inactive material parts, One direction is the direction in which the first inactive material portion protrudes from the first active material portion.
  • connection layer connects two adjacent first inactive material portions to form constraints between the two first inactive material portions.
  • the connection layer can reduce the dislocation and bifurcation of the two first inactive material parts, reduce the risk of short circuit, and improve the safety.
  • the connection layer and the first active material portion are arranged at intervals along the first direction, so as to reduce the risk of the active material falling off due to the deformation of the connection layer.
  • the first inactive material portion includes a first region, a second region and a third region that are continuously arranged along the first direction, the second region is at least partially covered by the connection layer, and both the first region and the third region are Not covered by the connection layer, the second region is located on the side of the first region away from the first active material portion.
  • the third region may be used for welding with the current collecting member.
  • connection layer is spaced apart from an edge of the first inactive material portion along a second direction, and the second direction is perpendicular to the first direction.
  • the connecting layer is a colloid and is adhered to the surface of the first inactive material portion.
  • the colloid is hot melt adhesive.
  • connection layer is provided between any two adjacent first inactive material parts.
  • the connection layer connects all the first inactive material parts to form constraints among the plurality of first inactive material parts, reduce the bifurcation and dislocation of the plurality of first inactive material parts, reduce the risk of short circuit, and improve the safety .
  • a plurality of connection layers are disposed between two adjacent first inactive material parts, and the plurality of connection layers are arranged at intervals along a second direction, and the second direction is perpendicular to the first direction.
  • the plurality of connection layers are respectively connected to the plurality of regions of the first inactive material portion to more uniformly connect the two first inactive material portions.
  • the second pole piece includes a second active material portion and a plurality of second inactive material portions protruding from the second active material portion, and the plurality of second inactive material portions are stacked.
  • the electrode assembly further includes a separator including a separator and a protrusion protruding from the separator, and the separator is used to separate the first active material portion and the second active material portion. An end of the protruding portion facing away from the isolation portion is located between two adjacent first inactive material portions, and the connection layer fixes the end portion to the first inactive material portion.
  • the protruding portion can separate the root of the first inactive material portion from the second pole piece, thereby reducing the risk of the first inactive material portion conducting with the second pole piece during the bending process.
  • the connection layer fixes the end of the protruding portion to the first inactive material portion. Therefore, in the embodiment of the present application, the protruding portion can be prevented from being folded back between the first active material portion and the second active material portion, thereby ensuring the insulating effect of the protruding portion.
  • an embodiment of the present application further provides a battery cell, which includes: an outer casing; an electrode terminal disposed in the outer casing; at least one electrode assembly of the first aspect, accommodated in the outer casing, and the first inactive material part is electrically connected to the electrode terminal.
  • the battery cell further includes a current collecting member for connecting the electrode terminal and the first inactive material portion.
  • a region of the first inactive material portion that is not covered by the connection layer and located on the side of the connection layer away from the first active material portion is used for welding to the current collecting member.
  • the first inactive material portion is bent in a region covered by the tie layer.
  • an embodiment of the present application further provides a battery, including: a box body; and at least one battery cell according to the second aspect, wherein the battery cell is accommodated in the box body.
  • an embodiment of the present application further provides an electrical device, including the battery of the third aspect, where the battery is used to provide electrical energy.
  • FIG. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • FIG. 2 is an exploded schematic diagram of a battery provided by some embodiments of the present application.
  • FIG. 3 is a schematic structural diagram of the battery module shown in FIG. 2;
  • FIG. 4 is an exploded schematic diagram of the battery cell shown in FIG. 3;
  • FIG. 5 is a schematic structural diagram of an electrode assembly provided by some embodiments of the present application.
  • FIG. 6 is a front view of an electrode assembly provided by a specific embodiment of the present application.
  • FIG. 7 is a schematic cross-sectional view of the electrode assembly shown in FIG. 6 taken along line A-A;
  • FIG. 8 is a schematic cross-sectional view of the electrode assembly shown in FIG. 6 taken along line B-B;
  • FIG. 9 is an enlarged schematic view of the electrode assembly shown in FIG. 8 at the circular frame C;
  • Fig. 10 is the partial structure schematic diagram of the first pole piece of the electrode assembly provided by some embodiments of the application under the unfolded state;
  • FIG. 11 is a partial cross-sectional schematic diagram of a battery cell provided by some embodiments of the present application.
  • FIG. 12 is an enlarged schematic view of the battery cell shown in FIG. 11 at block D;
  • FIG. 13 is a schematic diagram of the electrode assembly and the current collecting member provided in some embodiments of the present application during the welding process.
  • the terms “installed”, “connected”, “connected” and “attached” should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two components.
  • plural refers to two or more (including two).
  • the battery cells may include lithium-ion secondary battery cells, lithium-sulfur battery cells, sodium-lithium-ion battery cells, sodium-ion battery cells, or magnesium-ion battery cells, etc. Not limited.
  • the battery cell may be in the form of a cylinder, a flat body, a rectangular parallelepiped, or other shapes, which are not limited in the embodiments of the present application.
  • the battery cells are generally divided into three types according to the packaging method: cylindrical battery cells, square battery cells, and soft-pack battery cells, which are not limited in the embodiments of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the batteries mentioned in this application may include battery modules or battery packs, and the like.
  • Batteries typically include a case for enclosing one or more battery cells. The box can prevent liquids or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive pole piece, a negative pole piece and a separator.
  • the battery cell mainly relies on the movement of metal ions between the positive pole piece and the negative pole piece to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, and the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium, or lithium manganate.
  • the negative pole piece includes a negative electrode current collector and a negative electrode active material layer, and the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the separator has a large number of penetrating micropores, which can ensure the free passage of electrolyte ions and has good permeability to lithium ions.
  • the material of the spacer may be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene).
  • the electrode assembly may be a wound structure or a laminated structure, and the embodiment of the present application is not limited thereto.
  • the positive electrode piece includes a positive electrode active material portion and a plurality of positive electrode inactive material portions protruding from the positive electrode active material portion, and the plurality of positive electrode inactive material portions are stacked.
  • the positive electrode active material portion is at least partially provided with a positive electrode active material layer, and the positive electrode inactive material portion is at least partially provided with no positive electrode active material layer.
  • the positive electrode inactive material portion may also be referred to as a positive electrode tab.
  • the negative electrode piece includes a negative electrode active material portion and a plurality of negative electrode inactive material portions protruding from the negative electrode active material portion, and the plurality of negative electrode inactive material portions are stacked.
  • the negative electrode active material portion is at least partially provided with a negative electrode active material layer, and the negative electrode inactive material portion is at least partially provided with no negative electrode active material layer.
  • the negative electrode inactive material portion may also be referred to as a negative electrode tab.
  • the present application can bend the positive electrode inactive material portion and the negative electrode inactive material portion.
  • the plurality of positive electrode inactive material portions may be dislocated and branched, causing the risk of contact between the positive electrode inactive material portion and the negative electrode pole piece, resulting in short circuit.
  • the plurality of negative electrode inactive material portions may be dislocated and branched, causing the risk of contact between the negative electrode inactive material portion and the positive electrode electrode piece, resulting in a short circuit.
  • the electrode assembly includes a first pole piece and a second pole piece with opposite polarities, and the first pole piece and the second pole piece are superposed and arranged.
  • the first pole piece includes a first active material portion and a plurality of first inactive material portions protruding from the first active material portion, and the plurality of first inactive material portions are stacked.
  • a connection layer is provided between at least two adjacent first inactive material parts, and the connection layer and the first active material part are arranged at intervals along the first direction, and are used to connect two adjacent first inactive material parts,
  • One direction is the direction in which the first inactive material portion protrudes from the first active material portion.
  • Electrical equipment can be vehicles, mobile phones, portable devices, notebook computers, ships, spacecraft, electric toys and power tools, and so on.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include airplanes, rockets, space shuttles, spacecraft, etc.
  • electric toys include fixed Electric toys that are portable or mobile, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting power tools, grinding power tools, assembling power tools and railway power tools, such as, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, electric impact drills, concrete vibrators and electric planers, etc.
  • the embodiments of the present application do not impose special restrictions on the above-mentioned electrical equipment.
  • the electric device is a vehicle as an example for description.
  • FIG. 1 is a schematic structural diagram of a vehicle 1 according to some embodiments of the present application.
  • a battery 2 is disposed inside the vehicle 1 , and the battery 2 can be disposed at the bottom, head or tail of the vehicle 1 .
  • the battery 2 can be used for power supply of the vehicle 1 , for example, the battery 2 can be used as an operating power source of the vehicle 1 .
  • the vehicle 1 may also include a controller 3 and a motor 4, and the controller 3 is used to control the battery 2 to supply power to the motor 4, for example, for starting, navigating, and driving the vehicle 1 for work power requirements.
  • the battery 2 can not only be used as the operating power source of the vehicle 1 , but can also be used as the driving power source of the vehicle 1 to provide driving power for the vehicle 1 instead of or partially instead of fuel or natural gas.
  • FIG. 2 is an exploded schematic diagram of a battery 2 provided by some embodiments of the present application.
  • the battery 2 includes a case 5 and battery cells (not shown in FIG. 2 ), and the battery cells are accommodated in the case 5 .
  • the box body 5 is used for accommodating the battery cells, and the box body 5 can have various structures.
  • the box body 5 may include a first box body part 51 and a second box body part 52, the first box body part 51 and the second box body part 52 are covered with each other, and the first box body part 51 and the second box body part 52 cover each other.
  • the two box parts 52 together define an accommodating space 53 for accommodating battery cells.
  • the second box portion 52 may be a hollow structure with one end open, the first box portion 51 is a plate-like structure, and the first box portion 51 is covered with the opening side of the second box portion 52 to form an accommodating space 53
  • the first box part 51 and the second box part 52 can also be hollow structures with one side open, and the opening side of the first box part 51 is covered with the opening side of the second box part 52 , so as to form the box body 5 with the accommodating space 53 .
  • the first box body portion 51 and the second box body portion 52 may have various shapes, such as a cylinder, a rectangular parallelepiped, and the like.
  • a sealing member such as a sealant, a sealing ring, etc., may also be provided between the first case part 51 and the second case part 52 .
  • the first case portion 51 may also be referred to as an upper case cover, and the second case portion 52 may also be referred to as a lower case body.
  • the battery 2 there may be one battery cell or a plurality of battery cells. If there are multiple battery cells, the multiple battery cells can be connected in series or in parallel or in a mixed connection.
  • a mixed connection means that there are both series and parallel connections in the multiple battery cells. Multiple battery cells can be directly connected in series or in parallel or mixed together, and then the whole composed of multiple battery cells can be accommodated in the box 5; of course, multiple battery cells can also be connected in series or in parallel or
  • the battery modules 6 are formed in a mixed connection, and a plurality of battery modules 6 are connected in series or in parallel or in a mixed connection to form a whole, and are accommodated in the box 5 .
  • FIG. 3 is a schematic structural diagram of the battery module 6 shown in FIG. 2 .
  • There are a plurality of battery cells 7 and the plurality of battery cells 7 are first connected in series or in parallel or mixed to form a battery module 6 .
  • a plurality of battery modules 6 are connected in series or in parallel or mixed to form a whole, and are accommodated in the box.
  • the plurality of battery cells 7 in the battery module 6 can be electrically connected through a bus component, so as to realize parallel connection, series connection or mixed connection of the plurality of battery cells 7 in the battery module 6 .
  • FIG. 4 is an exploded schematic diagram of the battery cell 7 shown in FIG. 3 .
  • the battery cell 7 provided in the embodiment of the present application includes an electrode assembly 10 and a casing 20 , and the electrode assembly 10 is accommodated in the casing 20 .
  • the housing 20 may also be used to contain an electrolyte, such as an electrolyte.
  • the housing 20 can be in a variety of configurations.
  • the housing 20 may include a housing 21 and an end cover 22, the housing 21 is a hollow structure with an opening on one side, and the end cover 22 covers the opening of the housing 21 and forms a sealing connection to form a A sealed space for accommodating the electrode assembly 10 and the electrolyte.
  • the housing 21 can be in various shapes, such as a cylinder, a rectangular parallelepiped, and the like.
  • the shape of the case 21 may be determined according to the specific shape of the electrode assembly 10 .
  • the end cap 22 may also have various structures, for example, the end cap 22 is a plate-like structure, a hollow structure with one end open, and the like.
  • the casing 21 is a rectangular parallelepiped structure
  • the end cover 22 is a plate-like structure
  • the end cover 22 is covered with the opening at the top of the casing 21 .
  • the battery cell 7 further includes two electrode terminals 30 , both of which are mounted on the end cap 22 .
  • the two electrode terminals 30 are respectively a positive electrode terminal and a negative electrode terminal, and both the positive electrode terminal and the negative electrode terminal are used for electrical connection with the electrode assembly 10 to output the electric energy generated by the electrode assembly 10.
  • the battery cell 7 further includes a current collecting member 40 for connecting the electrode terminal 30 and the electrode assembly 10 .
  • a current collecting member 40 for connecting the electrode terminal 30 and the electrode assembly 10 .
  • there are two current collecting members 40 one current collecting member 40 is used to connect the positive electrode terminal and the positive electrode piece of the electrode assembly 10
  • the other current collecting member 40 is used to connect the negative electrode terminal and the negative electrode of the electrode assembly 10 . pole piece.
  • the battery cell 7 further includes a pressure relief mechanism 50 mounted on the end cover 22 , and the pressure relief mechanism 50 is used to release the battery cell 7 when the internal pressure or temperature of the battery cell 7 reaches a predetermined value. internal pressure.
  • the pressure relief mechanism 50 is located between the positive electrode terminal and the negative electrode terminal, and the pressure relief mechanism 50 may be a component such as an explosion-proof valve, a rupture disk, a gas valve, a pressure relief valve or a safety valve.
  • the housing 20 may also have other structures.
  • the housing 20 includes a housing 21 and two end caps 22 .
  • the housing 21 is a hollow structure with openings on opposite sides, and one end cap 22 corresponds to a cap. It is closed to one opening of the case 21 and forms a sealed connection to form a sealed space for accommodating the electrode assembly 10 and the electrolyte.
  • the positive electrode terminal and the negative electrode terminal can be installed on the same end cover 22, or can be installed on different end covers 22; it can be that a pressure relief mechanism 50 is installed on one end cover 22, or it can be The pressure relief mechanism 50 is installed on both end caps 22 .
  • the number of electrode assemblies 10 accommodated in the casing 20 may be one or a plurality of them. Exemplarily, in FIG. 4 , there are two electrode assemblies 10 .
  • FIG. 5 is a schematic structural diagram of an electrode assembly provided by some embodiments of the present application
  • FIG. 6 is a front view of an electrode assembly provided by a specific embodiment of the present application
  • FIG. 7 is a schematic cross-sectional view of the electrode assembly shown in FIG. 6 taken along the line A-A
  • FIG. 8 is a schematic cross-sectional view of the electrode assembly shown in FIG. 6 taken along the line B-B.
  • the electrode assembly shown in Figure 5 is partially deployed.
  • the electrode assembly 10 of the embodiment of the present application includes a first pole piece 11 and a second pole piece 12 with opposite polarities, and the first pole piece 11 and the second pole piece 12 are superimposed.
  • the first pole piece 11 is a positive pole piece
  • the second pole piece 12 is a negative pole piece
  • the first pole piece 11 is a negative pole piece
  • the second pole piece 12 is a positive pole piece pole piece.
  • the electrode assembly 10 further includes a separator 13 for separating the first pole piece 11 and the second pole piece 12 .
  • the spacer 13 is disposed between the first pole piece 11 and the second pole piece 12 .
  • the electrode assembly 10 is a rolled structure.
  • the first pole piece 11 , the spacer 13 and the second pole piece 12 are all strip-shaped structures.
  • the electrode assembly 10 is formed by stacking the first pole piece 11 , the separator 13 and the second pole piece 12 in sequence and winding for more than two turns, and the electrode assembly 10 is in a flat shape.
  • the electrode assembly 10 may be directly wound into a flat shape, or may be wound into a hollow cylindrical structure first, and then flattened into a flat shape after being wound.
  • the electrode assembly 10 is a laminated structure.
  • the electrode assembly 10 includes a plurality of first pole pieces 11 and a plurality of second pole pieces 12, the first pole pieces 11 and the second pole pieces 12 are alternately stacked, and the direction of the stacking is parallel to the thickness direction of the first pole piece 11 and the second pole piece 12.
  • the thickness direction of the pole piece 12 is a laminated structure.
  • the electrode assembly 10 includes a plurality of first pole pieces 11 and a plurality of second pole pieces 12, the first pole pieces 11 and the second pole pieces 12 are alternately stacked, and the direction of the stacking is parallel to the thickness direction of the first pole piece 11 and the second pole piece 12.
  • the thickness direction of the pole piece 12 is a laminated structure.
  • the first pole piece 11 includes a first current collector 111 and a first active material layer 112 coated on the surface of the first current collector 111 .
  • the first current collector 111 includes a first current collecting part and a first conductive part extending from an end of the first current collecting part, the first conductive part protrudes from the first current collecting part, and at least a partial area of the first current collecting part is coated. Covered with the first active material layer 112, at least part of the first conductive part is not coated with the first active material layer 112, and the region of the first conductive part not coated with the first active material layer 112 is used for electrical connection with the electrode terminal .
  • the first pole piece 11 includes a first active material portion 113 and a plurality of first inactive material portions 114 protruding from the first active material portion 113 .
  • the plurality of first inactive material portions 114 Cascade settings.
  • the first active material portion 113 includes a first current collecting portion and a portion of the first active material layer 112 coated on the first current collecting portion, and the first inactive material portion 114 includes a first conductive portion.
  • the first inactive material portion 114 may also be referred to as a first tab.
  • the second pole piece 12 includes a second current collector 121 and a second active material layer 122 coated on the surface of the second current collector 121 .
  • the second current collector 121 includes a second current collecting part and a second conductive part extending from an end of the second current collecting part, the second conductive part protrudes from the second current collecting part, and at least a partial area of the second current collecting part is coated with Covered with the second active material layer 122, at least part of the second conductive portion is not coated with the second active material layer 122, and the region of the second conductive portion not coated with the second active material layer 122 is used for electrical connection with the electrode terminal .
  • the second pole piece 12 includes a second active material portion 123 and a plurality of second inactive material portions 124 protruding from the second active material portion 123 .
  • the plurality of second inactive material portions 124 cascading settings.
  • the second active material portion 123 includes a second current collecting portion and a portion of the second active material layer 122 coated on the second current collecting portion, and the second inactive material portion 124 includes a second conductive portion.
  • the second inactive material portion 124 may also be referred to as a second tab.
  • the plurality of first inactive material portions 114 are stacked together and connected to the current collecting member 40 .
  • the plurality of first inactive material portions 114 are welded to the current collecting member 40 .
  • the inventors bent a plurality of first inactive material parts 114 stacked together.
  • the inventors found that the constraints between the plurality of first inactive material portions 114 are relatively small, and during the bending process, the plurality of first inactive material portions 114 stacked together are prone to bifurcation and dislocation, and the first inactive material portions 114 are easily branched and displaced.
  • the root of the material part 114 ie, the part close to the first active material part 113
  • the inventors improve the structure of the battery cell, which will be described in detail below with reference to different embodiments.
  • FIG. 9 is an enlarged schematic view of the electrode assembly 10 shown in FIG. 8 at the circle frame C. As shown in FIG.
  • a connection layer 14 is provided between at least two adjacent first inactive material parts 114 , and the connection layer 14 is used to connect two adjacent first inactive material parts 114.
  • connection layer 14 connects two adjacent first inactive material parts 114 to form constraints between the two first inactive material parts 114 .
  • the connection layer 14 can reduce the dislocation of the two first inactive material parts 114 and reduce the number of stacked first inactive material parts 114 between the two first inactive material parts 114 Risk of fork.
  • a constraint can be formed between the two first inactive material parts 114 , the plurality of first inactive material parts 114 can be shaped, and the bifurcation, misalignment, reducing the risk of short circuits and improving safety.
  • connection layer 14 and the first active material portion 113 are spaced apart along a first direction X, wherein the first direction X is a direction in which the first inactive material portion 114 protrudes from the first active material portion 113 .
  • first direction X is a direction in which the first inactive material portion 114 protrudes from the first active material portion 113 .
  • the first inactive material portion 114 is connected to an end portion of the first active material portion 113 along the first direction X.
  • connection layer 14 is spaced from the first active material layer 112 along the first direction X.
  • connection layer 14 may also be deformed along with the bending of the first inactive material portion 114; if the connection layer 14 is connected to the first active material portion 113, then the connection When the layer 14 is deformed, a force will be applied to the first active material part 113 (when the battery cell vibrates, the connecting layer 14 will also apply a force to the first active material part 113 ), causing the activity of the first active material part 113 Risk of material shedding.
  • connection layer 14 and the first active material portion 113 are arranged at intervals along the first direction X, thereby reducing the risk of the active material falling off due to the deformation of the connection layer 14 .
  • connection layer 14 extends to the surface of the first active material part 113 facing the second active material part 123, the connection layer 14 blocks the transport of lithium ions between the first active material part 113 and the second active material part 123, The charge and discharge performance of the electrode assembly 10 is affected.
  • the connection layer 14 is disposed at intervals from the first active material portion 113 to prevent the connection layer 14 from affecting the transport of lithium ions.
  • connection layer 14 is a colloid and is adhered to the surface of the first inactive material portion 114 .
  • the gel is a hot melt adhesive.
  • Hot melt adhesives are mainly made of thermoplastic elastomers, with tackifiers, plasticizers, antioxidants, flame retardants and fillers as additives through melt mixing.
  • the thermoplastic elastomer includes one or more of PE-polyethylene, polyvinyl chloride, polystyrene, polyamide, polyoxymethylene, polycarbonate, polyphenylene ether, polysulfone, rubber, and the like.
  • connection layer 14 is disposed between any two adjacent first inactive material portions 114 .
  • the connection layer 14 connects all the first inactive material parts 114 to form constraints among the plurality of first inactive material parts 114 , reduce the bifurcation and dislocation of the plurality of first inactive material parts 114 , and reduce the risk of short circuit , to improve security.
  • hot melt adhesive is applied to the surface of the set first inactive material part 114; after the winding forming, the plurality of first inactive material parts 114 are stacked up and down, The first inactive material parts 114 are pressed together, and the plurality of first inactive material parts 114 are bonded together by hot melt adhesive.
  • the connection layer 14 is formed after the hot melt adhesive is cured.
  • the spacer 13 includes a spacer 131 and a protrusion 132 protruding from the spacer 131 , and the spacer 131 is used to isolate the first active material part 113 and the second active material part 123 .
  • An end of the protruding portion 132 facing away from the isolation portion 131 is located between two adjacent first inactive material portions 114 , and the connection layer 14 fixes the end portion to the first inactive material portion 114 .
  • the protruding portion 132 can separate the root of the first inactive material portion 114 from the second pole piece 12 , thereby reducing the risk of the first inactive material portion 114 being conductive with the second pole piece 12 during the bending process.
  • the connection layer 14 fixes the end of the protruding portion 132 to the first inactive material portion 114. Therefore, in this embodiment of the present application, the protruding portion 132 can be prevented from being folded back between the first active material portion 113 and the second active material portion 123, ensuring that the The insulating effect of the protrusions 132 .
  • the thickness of the connection layer 14 is less than the thickness of the first active material layer 112 .
  • the ratio of the thickness of the connection layer 14 to the thickness of the first active material layer 112 is 0.1-0.5.
  • connection layer 14 (not shown in the figure) is also provided between at least two adjacent second inactive material parts 124 , and the connection layer 14 is used to connect two adjacent second non-active material parts 124 . Active material part 124 . In some embodiments, the connection layer 14 is disposed between any two adjacent second inactive material portions 124 .
  • FIG. 10 is a partial structural schematic diagram of the first pole piece 11 of the electrode assembly 10 provided in some embodiments of the present application in an unfolded state.
  • the first inactive material portion 114 includes a first region 114a, a second region 114b and a third region 114c that are continuously arranged along the first direction X, and the second region 114b is at least partially
  • the connection layer 14 is covered, the first region 114 a and the third region 114 c are not covered by the connection layer 14 , and the second region 114 b is located on the side of the first region 114 a away from the first active material portion 113 .
  • the third region 114c may be used for welding with the current collecting member 40 .
  • the surface of the second region 114 b may be completely covered by the connection layer 14 , or only a part of the surface may be covered by the connection layer 14 .
  • the first active material layer 112 is partially disposed in the first region 114 a , and the connection layer 14 is disposed spaced apart from the first active material layer 112 . In other embodiments, the first active material layer 112 may not be provided in the first region 114a.
  • connection layer 14 and the edge of the first inactive material portion 114 are spaced apart along the second direction Y, and the second direction Y is perpendicular to the first direction X.
  • the plurality of first inactive material parts 114 may be displaced in the second direction Y; if the connection layer 14 is flush with the edges of the first inactive material parts 114 along the second direction Y, Then, the connection layer 14 may be unable to connect two adjacent first inactive material parts 114 due to the dislocation in the second direction Y.
  • connection layer 14 and the edge of the first inactive material portion 114 along the second direction Y are arranged at intervals, so as to effectively connect two adjacent first inactive material portions 114 .
  • the distance between the connection layer 14 and the edge of the first inactive material portion 114 along the second direction Y is 5 mm-20 mm.
  • a plurality of connection layers 14 are disposed between two adjacent first inactive material portions 114 , and the plurality of connection layers 14 are disposed along the second direction Y at intervals.
  • the plurality of connection layers 14 are respectively connected to the plurality of regions of the first inactive material portion 114 to connect the two first inactive material portions 114 more uniformly.
  • two connection layers 14 are disposed between two adjacent first inactive material portions 114 .
  • connection layer 14 is a strip-shaped structure, and the dimension of the connection layer 14 along the first direction X is larger than the dimension of the connection layer 14 along the second direction Y.
  • FIG. 11 is a partial cross-sectional schematic diagram of a battery cell provided by some embodiments of the present application;
  • FIG. 12 is an enlarged schematic diagram of the battery cell shown in FIG. 11 at block D.
  • FIG. 11 is a partial cross-sectional schematic diagram of a battery cell provided by some embodiments of the present application;
  • FIG. 12 is an enlarged schematic diagram of the battery cell shown in FIG. 11 at block D.
  • the first inactive material portion 114 is electrically connected to the electrode terminal 30 .
  • the current collecting member 40 is used to connect the electrode terminal 30 and the first inactive material portion 114 .
  • a region of the first inactive material portion 114 that is not covered by the connection layer 14 and located on the side of the connection layer 14 away from the first active material portion 113 is used for welding to the current collecting member 40 , that is, the first inactive material portion
  • the third area 114c of 114 is used for welding to the current collecting member 40 .
  • the third region 114c is located on the lower side of the current collecting member 40 and abuts the lower surface of the current collecting member 40 .
  • the first inactive material portion 114 is bent in a region covered by the connection layer 14 . Specifically, the first inactive material portion 114 is bent in the second region 114b. By bending the first inactive material portion 114 , the space occupied by the first inactive material portion 114 can be reduced, and the energy density of the battery cell can be improved.
  • the second regions 114b of the plurality of first inactive material portions 114 are connected via the connection layer 14, so in the process of bending the second regions 114b, the second regions 114b of the plurality of first inactive material portions 114 are less likely to be displaced,
  • the bifurcation further restricts the deformation of the first region 114a and reduces the risk of the first region 114a being inserted into the first active material part 113 and the second active material part 123 .
  • FIG. 13 is a schematic diagram of the electrode assembly and the current collecting member provided in some embodiments of the present application during the welding process.
  • the third region 114c of the first inactive material portion 114 is first attached to one current collecting member 40, and then the third region 114c of the first inactive material portion 114 is welded to The current collecting member 40 .
  • the first inactive material portion 114 is bent at the second region 114b to turn the main body portion of the electrode assembly 10 to one side of the current collecting member 40 in the thickness direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

本申请公开了一种电极组件、电池单体、电池以及用电设备。该电极组件包括极性相反的第一极片和第二极片,第一极片与第二极片叠加设置。第一极片包括第一活性物质部和突出于第一活性物质部的多个第一非活性物质部,多个第一非活性物质部层叠设置。至少相邻的两个第一非活性物质部之间设有连接层,连接层与第一活性物质部沿第一方向间隔设置,并用于连接相邻的两个第一非活性物质部,第一方向为第一非活性物质部突出于第一活性物质部的方向。连接层连接相邻的两个第一非活性物质部,以在两个第一非活性物质部之间形成约束。在折弯过程中,连接层可以减小这两个第一非活性物质部的错位、分叉,降低短路风险,提高安全性。

Description

电极组件、电池单体、电池以及用电设备
相关申请的交叉引用
本申请要求享有于2021年03月23日提交的名称为“电极组件、电池单体、电池以及用电设备”的中国专利申请202120592570.x的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池领域,特别是涉及一种电极组件、电池单体、电池以及用电设备。
背景技术
可再充电电池单体,可以称为二次电池单体,是指在电池单体放电后可通过充电的方式使活性物质激活而继续使用的电池单体。可再充电电池单体广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。可再充电电池单体可以包括镉镍电池单体、氢镍电池单体、锂离子电池单体和二次碱性锌锰电池单体等。
在电池技术的发展中,除了提高电池的性能外,安全问题也是一个不可忽视的问题。如果电池的安全问题不能保证,那该电池就无法使用。因此,如何增强电池的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请提供一种电极组件、电池单体、电池以及用电设备,其能降低短路风险,提高安全性能。
第一方面,本申请实施例提供了一种电极组件,其包括极性相反的第一极片和第二极片,第一极片与第二极片叠加设置。第一极片包括第一活性物质部和突出于第一活性物质部的多个第一非活性物质部,多个第一非活性物质部层叠设置。至少相邻的两个第一非活性物质部之间设有连接层,连接层与第一活性物质部沿第一方向间隔设置,并用于连接相邻的 两个第一非活性物质部,第一方向为第一非活性物质部突出于第一活性物质部的方向。
在上述方案中,连接层连接相邻的两个第一非活性物质部,以在两个第一非活性物质部之间形成约束。在折弯过程中,连接层可以减小这两个第一非活性物质部的错位、分叉,降低短路风险,提高安全性。连接层与第一活性物质部沿第一方向间隔设置,从而降低因连接层变形而引发活性物质脱落的风险。
在一些实施例中,第一非活性物质部包括沿第一方向连续设置的第一区域、第二区域和第三区域,第二区域至少部分被连接层覆盖,第一区域和第三区域均未被连接层覆盖,第二区域位于第一区域背离第一活性物质部的一侧。可选地,第三区域可用于与集流构件焊接。
在一些实施例中,连接层与第一非活性物质部沿第二方向的边缘间隔设置,第二方向垂直于第一方向。
在一些实施例中,连接层为胶体,并粘接于第一非活性物质部的表面。可选地,该胶体为热熔胶。
在一些实施例中,任意两个相邻的第一非活性物质部之间均设置有连接层。连接层将所有的第一非活性物质部连接,以在多个第一非活性物质部之间形成约束,减少多个第一非活性物质部的分叉、错位,降低短路风险,提高安全性。
在一些实施例中,相邻的两个第一非活性物质部之间设置有多个连接层,多个连接层沿第二方向间隔设置,第二方向垂直于第一方向。多个连接层分别连接于第一非活性物质部的多个区域,以更均匀地连接两个第一非活性物质部。
在一些实施例中,第二极片包括第二活性物质部和突出于第二活性物质部的多个第二非活性物质部,多个第二非活性物质部层叠设置。电极组件还包括隔离件,隔离件包括隔离部和突出于隔离部的突出部,隔离部用于隔离第一活性物质部和第二活性物质部。突出部背离隔离部的端部位于相邻的两个第一非活性物质部之间,并且连接层将端部固定于第一非活性物质部。
上述方案中,突出部可以将第一非活性物质部的根部与第二极片隔开,降低第一非活性物质部在折弯过程中与第二极片导通的风险。连接层将突出部的端部固定于第一非活性物质部,因此,本申请实施例可以避免突出部回折到第一活性物质部和第二活性物质部之间,保证突出部的绝缘效果。
第二方面,本申请实施例还提供了一种电池单体,其包括:外壳;电极端子,设置于外壳;至少一个第一方面的电极组件,容纳于外壳中,第一非活性物质部电连接于电极端子。
在一些实施例中,电池单体还包括集流构件,用于连接电极端子和第一非活性物质部。第一非活性物质部的未被连接层覆盖且位于连接层背离第一活性物质部的一侧的区域用于焊接于集流构件。
在一些实施例中,第一非活性物质部在被连接层覆盖的区域折弯。
第三方面,本申请实施例还提供了一种电池,包括:箱体;至少一个第二方面的电池单体,电池单体收容于箱体内。
第四方面,本申请实施例还提供了一种用电设备,包括第三方面的电池,电池用于提供电能。
附图说明
下面将参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸示意图;
图3为图2所示的电池模块的结构示意图;
图4为图3所示的电池单体的爆炸示意图;
图5为本申请一些实施例提供的电极组件的结构示意图;
图6为本申请具体实施例提供的电极组件的正视图;
图7为图6所示的电极组件沿线A-A作出的剖视示意图;
图8为图6所示的电极组件沿线B-B作出的剖视示意图;
图9为图8所示的电极组件在圆框C处的放大示意图;
图10为本申请一些实施例提供的电极组件的第一极片在展开状态 下的局部结构示意图;
图11为本申请一些实施例提供的电池单体的局部剖视示意图;
图12为图11所示的电池单体在方框D处的放大示意图;
图13为本申请一些实施例提供的电极组件与集流构件在焊接过程中的示意图。
在附图中,附图未必按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离件组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。隔离件具有大量贯通的微孔,能够保证电解质离子自由通过,对锂离子有很好的穿透性。隔离件的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
从正极极片的外形上看,正极极片包括正极活性物质部和突出于正极活性物质部的多个正极非活性物质部,多个正极非活性物质部层叠设置。正极活性物质部至少部分设置有正极活性物质层,正极非活性物质部至少部分未设置正极活性物质层。正极非活性物质部也可称之为正极极耳。
同样地,从负极极片的外形上看,负极极片包括负极活性物质部和突出于负极活性物质部的多个负极非活性物质部,多个负极非活性物质部层叠设置。负极活性物质部至少部分设置有负极活性物质层,负极非活性物质部至少部分未设置负极活性物质层。负极非活性物质部也可称之为负极极耳。
在电池单体中,为了节省正极非活性物质部和负极非活性物质部占用的空间,本申请可以将正极非活性物质部和负极非活性物质部折弯。然而,发明人发现,在折弯层叠的多个正极非活性物质部时,多个正极非活性物质部可能会出现错位、分叉,引发正极非活性物质部与负极极片接触的风险,造成短路。在折弯层叠的多个负极非活性物质部时,多个负极非活性物质部可能会出现错位、分叉,引发负极非活性物质部与正极极片接触的风险,造成短路。
鉴于此,本申请实施例提供一种技术方案,具体地,电极组件包括极性相反的第一极片和第二极片,第一极片与第二极片叠加设置。第一极片包括第一活性物质部和突出于第一活性物质部的多个第一非活性物质部,多个第一非活性物质部层叠设置。至少相邻的两个第一非活性物质部之间设有连接层,连接层与第一活性物质部沿第一方向间隔设置,并用于连接相邻的两个第一非活性物质部,第一方向为第一非活性物质部突出于第一活性物质部的方向。这种结构使得第一非活性物质部在局部定型,不易出现错位、分叉,具有较好的安全性。
本申请实施例描述的技术方案适用于电池以及使用电池的用电设备。
用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式 或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1的结构示意图,车辆1的内部设置有电池2,电池2可以设置在车辆1的底部或头部或尾部。电池2可以用于车辆1的供电,例如,电池2可以作为车辆1的操作电源。
车辆1还可以包括控制器3和马达4,控制器3用来控制电池2为马达4供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池2不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池2的爆炸示意图,电池2包括箱体5和电池单体(图2未示出),电池单体容纳于箱体5内。
箱体5用于容纳电池单体,箱体5可以是多种结构。在一些实施例中,箱体5可以包括第一箱体部51和第二箱体部52,第一箱体部51与第二箱体部52相互盖合,第一箱体部51和第二箱体部52共同限定出用于容纳电池单体的容纳空间53。第二箱体部52可以是一端开口的空心结构,第一箱体部51为板状结构,第一箱体部51盖合于第二箱体部52的开口侧,以形成具有容纳空间53的箱体5;第一箱体部51和第二箱体部52也均可以是一侧开口的空心结构,第一箱体部51的开口侧盖合于第二箱体部52的开口侧,以形成具有容纳空间53的箱体5。当然,第一箱体部51和第二箱体部52可以是多种形状,比如,圆柱体、长方体等。
为提高第一箱体部51与第二箱体部52连接后的密封性,第一箱体部51与第二箱体部52之间也可以设置密封件,比如,密封胶、密封圈等。
假设第一箱体部51盖合于第二箱体部52的顶部,第一箱体部51亦 可称之为上箱盖,第二箱体部52亦可称之为下箱体。
在电池2中,电池单体可以是一个,也可以是多个。若电池单体为多个,多个电池单体之间可串联或并联或混联,混联是指多个电池单体中既有串联又有并联。多个电池单体之间可直接串联或并联或混联在一起,再将多个电池单体构成的整体容纳于箱体5内;当然,也可以是多个电池单体先串联或并联或混联组成电池模块6,多个电池模块6再串联或并联或混联形成一个整体,并容纳于箱体5内。
在一些实施例中,请参照图3,图3为图2所示的电池模块6的结构示意图。电池单体7为多个,多个电池单体7先串联或并联或混联组成电池模块6。多个电池模块6再串联或并联或混联形成一个整体,并容纳于箱体内。
电池模块6中的多个电池单体7之间可通过汇流部件实现电连接,以实现电池模块6中的多个电池单体7的并联或串联或混联。
请参照图4,图4为图3所示的电池单体7的爆炸示意图。本申请实施例提供的电池单体7包括电极组件10和外壳20,电极组件10容纳于外壳20内。
在一些实施例中,外壳20还可用于容纳电解质,例如电解液。外壳20可以是多种结构形式。
在一些实施例中,外壳20可以包括壳体21和端盖22,壳体21为一侧开口的空心结构,端盖22盖合于壳体21的开口处并形成密封连接,以形成用于容纳电极组件10和电解质的密封空间。
壳体21可以是多种形状,比如,圆柱体、长方体等。壳体21的形状可根据电极组件10的具体形状来确定。比如,若电极组件10为圆柱体结构,则可选用为圆柱体壳体;若电极组件10为长方体结构,则可选用长方体壳体。当然,端盖22也可以是多种结构,比如,端盖22为板状结构、一端开口的空心结构等。示例性的,在图4中,壳体21为长方体结构,端盖22为板状结构,端盖22盖合于壳体21顶部的开口处。
在一些实施例中,电池单体7还包括两个电极端子30,两个电极端子30均安装于端盖22上。两个电极端子30分别为正极电极端子和负极电 极端子,正极电极端子和负极电极端子均用于与电极组件10电连接,以输出电极组件10所产生的电能。
在一些实施例中,电池单体7还包括集流构件40,用于连接电极端子30和电极组件10。示例性地,集流构件40为两个,一个集流构件40用于连接正极电极端子和电极组件10的正极极片,另一个集流构件40用于连接负极电极端子和电极组件10的负极极片。
在一些实施例中,电池单体7还包括装于端盖22上的泄压机构50,泄压机构50用于在电池单体7的内部压力或温度达到预定值时泄放电池单体7内部的压力。示例性的,泄压机构50位于正极电极端子和负极电极端子之间,泄压机构50可以是诸如防爆阀、防爆片、气阀、泄压阀或安全阀等部件。
当然,在一些实施例中,外壳20也可以是其他结构,比如,外壳20包括壳体21和两个端盖22,壳体21为相对的两侧开口的空心结构,一个端盖22对应盖合于壳体21的一个开口处并形成密封连接,以形成用于容纳电极组件10和电解质的密封空间。在这种结构中,正极电极端子和负极电极端子可安装在同一个端盖22上,也可以安装在不同的端盖22上;可以是一个端盖22上安装有泄压机构50,也可以是两个端盖22上均安装有泄压机构50。
需要说明的是,在电池单体7中,容纳于外壳20内的电极组件10可以是一个,也可以是多个。示例性的,在图4中,电极组件10为两个。
接下来结合附图对电极组件10的具体结构进行详细阐述。
图5为本申请一些实施例提供的电极组件的结构示意图;图6为本申请具体实施例提供的电极组件的正视图;图7为图6所示的电极组件沿线A-A作出的剖视示意图;图8为图6所示的电极组件沿线B-B作出的剖视示意图。图5所示的电极组件在局部展开。
如图5至图8所示,本申请实施例的电极组件10包括极性相反的第一极片11和第二极片12,第一极片11与第二极片12叠加设置。在一些实施例中,第一极片11为正极极片,第二极片12为负极极片;在另一些实施例中,第一极片11为负极极片,第二极片12为正极极片。
在一些实施例中,电极组件10还包括隔离件13,隔离件13用于将第一极片11和第二极片12隔开。示例性地,隔离件13设置于第一极片11和第二极片12之间。
在一些实施例中,电极组件10为卷绕式结构。其中,第一极片11、隔离件13以及第二极片12均为带状结构。将第一极片11、隔离件13以及第二极片12依次层叠并卷绕两圈以上形成电极组件10,并且电极组件10呈扁平状。在电极组件10制作时,电极组件10可直接卷绕为扁平状,也可以先卷绕成中空的圆柱形结构,卷绕之后再压平为扁平状。
在另一些实施例中,电极组件10为叠片式结构。电极组件10包括多个第一极片11和多个第二极片12,第一极片11和第二极片12交替层叠,层叠的方向平行于第一极片11的厚度方向和第二极片12的厚度方向。
第一极片11包括第一集流体111和涂覆于第一集流体111表面的第一活性物质层112。第一集流体111包括第一集流部和从第一集流部的端部延伸的第一导电部,第一导电部突出于第一集流部,第一集流部的至少部分区域涂覆有第一活性物质层112,第一导电部的至少部分区域未涂覆第一活性物质层112,第一导电部的未涂覆第一活性物质层112的区域用于与电极端子电连接。
从第一极片11的外形看,第一极片11包括第一活性物质部113和突出于第一活性物质部113的多个第一非活性物质部114,多个第一非活性物质部114层叠设置。其中,第一活性物质部113包括第一集流部和第一活性物质层112的涂覆于第一集流部上的部分,第一非活性物质部114包括第一导电部。第一非活性物质部114也可称作第一极耳。
第二极片12包括第二集流体121和涂覆于第二集流体121表面的第二活性物质层122。第二集流体121包括第二集流部和从第二集流部的端部延伸的第二导电部,第二导电部突出于第二集流部,第二集流部的至少部分区域涂覆有第二活性物质层122,第二导电部的至少部分区域未涂覆第二活性物质层122,第二导电部的未涂覆第二活性物质层122的区域用于与电极端子电连接。
从第二极片12的外形看,第二极片12包括第二活性物质部123和 突出于第二活性物质部123的多个第二非活性物质部124,多个第二非活性物质部124层叠设置。其中,第二活性物质部123包括第二集流部和第二活性物质层122的涂覆于第二集流部上的部分,第二非活性物质部124包括第二导电部。第二非活性物质部124也可称作第二极耳。
在一些实施例中,多个第一非活性物质部114层叠在一起并连接于集流构件40。示例性地,多个第一非活性物质部114焊接于集流构件40。
为了节省第一非活性物质部114占用的空间,发明人将层叠在一起的多个第一非活性物质部114折弯。发明人发现,多个第一非活性物质部114之间的约束较小,在折弯的过程中,层叠在一起的多个第一非活性物质部114容易分叉、错位,第一非活性物质部114的根部(即靠近第一活性物质部113的部分)容易变形并插入到第一活性物质部113和第二活性物质部123之间,引发第一非活性物质部114与第二活性物质部123接触的风险,从而造成短路,导致安全事故。
基于发明人发现的上述问题,发明人对电池单体的结构进行改进,下面结合不同的实施例详细描述。
图9为图8所示的电极组件10在圆框C处的放大示意图。
如图9所示,在一些实施例中,至少相邻的两个第一非活性物质部114之间设有连接层14,连接层14用于连接相邻的两个第一非活性物质部114。
在本申请实施例中,连接层14连接相邻的两个第一非活性物质部114,以在两个第一非活性物质部114之间形成约束。在折弯过程中,连接层14可以减小这两个第一非活性物质部114的错位,降低层叠的多个第一非活性物质部114在这两个第一非活性物质部114之间分叉的风险。换言之,本申请通过设置连接层14,可以在两个第一非活性物质部114之间形成约束,对多个第一非活性物质部114定型,减少第一非活性物质部114的分叉、错位,降低短路风险,提高安全性。
在一些实施例中,连接层14与第一活性物质部113沿第一方向X间隔设置,其中,第一方向X为第一非活性物质部114突出于第一活性物质部113的方向。示例性地,第一非活性物质部114连接于第一活性物质 部113沿第一方向X的端部。示例性地,连接层14与第一活性物质层112沿第一方向X间隔设置。
在折弯第一非活性物质部114的过程中,连接层14也可能会随着第一非活性物质部114的折弯而变形;如果连接层14连接于第一活性物质部113,那么连接层14在变形时会向第一活性物质部113施加作用力(当电池单体震动时,连接层14也会向第一活性物质部113施加作用力),引发第一活性物质部113的活性物质脱落的风险。
在本申请实施例中,连接层14与第一活性物质部113沿第一方向X间隔设置,从而降低因连接层14变形而引发活性物质脱落的风险。
如果连接层14延伸到第一活性物质部113的面向第二活性物质部123的表面,那么连接层14会阻挡锂离子在第一活性物质部113和第二活性物质部123之间的传输,影响电极组件10的充放电性能。本申请实施例将连接层14与第一活性物质部113间隔设置,以避免连接层14影响锂离子的传输。
在一些实施例中,连接层14为胶体,并粘接于第一非活性物质部114的表面。示例性地,该胶体为热熔胶。热熔胶主要由热塑性弹性体为主,以增粘剂、增塑剂、抗氧化剂、阻燃剂及填料为添加成分经熔融混合而成。可选的,热塑性弹性体包括PE-聚乙烯、聚氯乙烯、聚苯乙烯、聚酰胺、聚甲醛、聚碳酸酯、聚苯醚、聚砜、橡胶等其中一种或者多种。
在一些实施例中,任意两个相邻的第一非活性物质部114之间均设置有连接层14。连接层14将所有的第一非活性物质部114连接,以在多个第一非活性物质部114之间形成约束,减少多个第一非活性物质部114的分叉、错位,降低短路风险,提高安全性。
在电极组件10的卷绕成型过程中,在设定的第一非活性物质部114的表面涂覆热熔胶;卷绕成型后,多个第一非活性物质部114上下层叠,然后将多个第一非活性物质部114压合在一起,热熔胶将多个第一非活性物质部114粘接在一起。热熔胶固化后形成连接层14。
在一些实施例中,隔离件13包括隔离部131和突出于隔离部131的突出部132,隔离部131用于隔离第一活性物质部113和第二活性物质 部123。突出部132背离隔离部131的端部位于相邻的两个第一非活性物质部114之间,并且连接层14将端部固定于第一非活性物质部114。
突出部132可以将第一非活性物质部114的根部与第二极片12隔开,降低第一非活性物质部114在折弯过程中与第二极片12导通的风险。连接层14将突出部132的端部固定于第一非活性物质部114,因此,本申请实施例可以避免突出部132回折到第一活性物质部113和第二活性物质部123之间,保证突出部132的绝缘效果。
在一些实施例中,连接层14的厚度小于第一活性物质层112的厚度。示例性地,连接层14的厚度与第一活性物质层112的厚度的比值为0.1-0.5。
在一些实施例中,至少相邻的两个第二非活性物质部124之间也设有连接层14(图中未示出),该连接层14用于连接相邻的两个第二非活性物质部124。在一些实施例中,任意两个相邻的第二非活性物质部124之间均设置有连接层14。
图10为本申请一些实施例提供的电极组件10的第一极片11在展开状态下的局部结构示意图。
如图10所示,在一些实施例中,第一非活性物质部114包括沿第一方向X连续设置的第一区域114a、第二区域114b和第三区域114c,第二区域114b至少部分被连接层14覆盖,第一区域114a和第三区域114c均未被连接层14覆盖,第二区域114b位于第一区域114a背离第一活性物质部113的一侧。示例性地,第三区域114c可用于与集流构件40焊接。
第二区域114b的表面可以完全被连接层14覆盖,也可以仅部分区域被连接层14覆盖。
在一些实施例中,第一区域114a的局部设置有第一活性物质层112,连接层14与第一活性物质层112间隔设置。在另一些实施例中,第一区域114a也可未设置第一活性物质层112。
在一些实施例中,连接层14与第一非活性物质部114沿第二方向Y的边缘间隔设置,第二方向Y垂直于第一方向X。在卷绕成型中,由于工艺误差,多个第一非活性物质部114可能在第二方向Y上错位;如果连 接层14与第一非活性物质部114沿第二方向Y的边缘齐平,那么连接层14可能会因为第二方向Y上的错位而无法连接相邻的两个第一非活性物质部114。因此,在本实施例中,连接层14与第一非活性物质部114沿第二方向Y的边缘间隔设置,以有效地连接相邻的两个第一非活性物质部114。示例性地,连接层14与第一非活性物质部114沿第二方向Y的边缘的间距为5mm-20mm。
在一些实施例中,相邻的两个第一非活性物质部114之间设置有多个连接层14,多个连接层14沿第二方向Y间隔设置。多个连接层14分别连接于第一非活性物质部114的多个区域,以更均匀地连接两个第一非活性物质部114。示例性地,相邻的两个第一非活性物质部114之间设置有两个连接层14。
在一些实施例中,连接层14为条形结构,连接层14沿第一方向X的尺寸大于连接层14沿第二方向Y的尺寸。
图11为本申请一些实施例提供的电池单体的局部剖视示意图;图12为图11所示的电池单体在方框D处的放大示意图。
如图11和图12所示,在一些实施例中,第一非活性物质部114电连接于电极端子30。
在一些实施例中,集流构件40用于连接电极端子30和第一非活性物质部114。具体地,第一非活性物质部114的未被连接层14覆盖且位于连接层14背离第一活性物质部113的一侧的区域用于焊接于集流构件40,即第一非活性物质部114的第三区域114c用于焊接于集流构件40。
在一些实施例中,第三区域114c位于集流构件40的下侧并贴合于集流构件40的下表面。
在一些实施例中,第一非活性物质部114在被连接层14覆盖的区域折弯。具体地,第一非活性物质部114在第二区域114b折弯。通过折弯第一非活性物质部114,可以减小第一非活性物质部114占用的空间,提高电池单体的能量密度。
多个第一非活性物质部114的第二区域114b经由连接层14连接,所以在弯折第二区域114b的过程中,多个第一非活性物质部114的第二 区域114b不易出现错位、分叉,进而约束第一区域114a的变形,降低第一区域114a插入第一活性物质部113和第二活性物质部123的风险。
图13为本申请一些实施例提供的电极组件与集流构件在焊接过程中的示意图。
如图13所示,在焊接时,先将第一非活性物质部114的第三区域114c贴合到一个集流构件40上,然后将第一非活性物质部114的第三区域114c焊接于该集流构件40。焊接完成后,第一非活性物质部114在第二区域114b弯折,以将电极组件10的主体部分翻转到集流构件40沿厚度方向的一侧。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件,尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (12)

  1. 一种电极组件,包括极性相反的第一极片和第二极片,所述第一极片与所述第二极片叠加设置;
    所述第一极片包括第一活性物质部和突出于所述第一活性物质部的多个第一非活性物质部,多个所述第一非活性物质部层叠设置;
    至少相邻的两个所述第一非活性物质部之间设有连接层,所述连接层与所述第一活性物质部沿第一方向间隔设置,并用于连接相邻的两个所述第一非活性物质部,所述第一方向为所述第一非活性物质部突出于所述第一活性物质部的方向。
  2. 根据权利要求1所述的电极组件,其中,所述第一非活性物质部包括沿所述第一方向连续设置的第一区域、第二区域和第三区域,所述第二区域至少部分被所述连接层覆盖,所述第一区域和所述第三区域均未被所述连接层覆盖,所述第二区域位于所述第一区域背离所述第一活性物质部的一侧。
  3. 根据权利要求1所述的电极组件,其中,所述连接层与所述第一非活性物质部沿第二方向的边缘间隔设置,所述第二方向垂直于所述第一方向。
  4. 根据权利要求1所述的电极组件,其中,所述连接层为胶体,并粘接于所述第一非活性物质部的表面。
  5. 根据权利要求1所述的电极组件,其中,任意两个相邻的所述第一非活性物质部之间均设置有所述连接层。
  6. 根据权利要求1所述的电极组件,其中,相邻的两个所述第一非活性物质部之间设置有多个所述连接层,多个所述连接层沿第二方向间隔设置,所述第二方向垂直于所述第一方向。
  7. 根据权利要求1-6任一项所述的电极组件,其中,
    所述第二极片包括第二活性物质部和突出于所述第二活性物质部的多 个第二非活性物质部,多个所述第二非活性物质部层叠设置;
    所述电极组件还包括隔离件,所述隔离件包括隔离部和突出于所述隔离部的突出部,所述隔离部用于隔离所述第一活性物质部和所述第二活性物质部;
    所述突出部背离所述隔离部的端部位于相邻的两个所述第一非活性物质部之间,并且所述连接层将所述端部固定于所述第一非活性物质部。
  8. 一种电池单体,包括:
    外壳;
    电极端子,设置于所述外壳;
    至少一个如权利要求1-7中任一项所述的电极组件,容纳于所述外壳中,所述第一非活性物质部电连接于所述电极端子。
  9. 根据权利要求8所述的电池单体,其中,所述电池单体还包括集流构件,用于连接所述电极端子和所述第一非活性物质部;
    所述第一非活性物质部的未被所述连接层覆盖且位于所述连接层背离所述第一活性物质部的一侧的区域用于焊接于所述集流构件。
  10. 根据权利要求9所述的电池单体,其中,所述第一非活性物质部在被所述连接层覆盖的区域折弯。
  11. 一种电池,包括:
    箱体;
    至少一个如权利要求8-10中任一项所述的电池单体,所述电池单体收容于所述箱体内。
  12. 一种用电设备,包括权利要求11所述的电池,所述电池用于提供电能。
PCT/CN2021/139225 2021-03-23 2021-12-17 电极组件、电池单体、电池以及用电设备 WO2022199152A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022567037A JP2023527677A (ja) 2021-03-23 2021-12-17 電極コンポーネント、電池セル、電池及び電力消費機器
KR1020227038144A KR20220164005A (ko) 2021-03-23 2021-12-17 전극 어셈블리, 배터리 셀, 배터리 및 전자기기
EP21932759.0A EP4131510A4 (en) 2021-03-23 2021-12-17 ELECTRODE ARRANGEMENT, BATTERY CELL, BATTERY AND POWER CONSUMPTION DEVICE
US17/978,994 US20240030495A1 (en) 2021-03-23 2022-11-02 Electrode assembly, battery cell, battery, and electric device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202120592570.X 2021-03-23
CN202120592570.XU CN214411248U (zh) 2021-03-23 2021-03-23 电极组件、电池单体、电池以及用电设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/978,994 Continuation US20240030495A1 (en) 2021-03-23 2022-11-02 Electrode assembly, battery cell, battery, and electric device

Publications (1)

Publication Number Publication Date
WO2022199152A1 true WO2022199152A1 (zh) 2022-09-29

Family

ID=78030111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139225 WO2022199152A1 (zh) 2021-03-23 2021-12-17 电极组件、电池单体、电池以及用电设备

Country Status (6)

Country Link
US (1) US20240030495A1 (zh)
EP (1) EP4131510A4 (zh)
JP (1) JP2023527677A (zh)
KR (1) KR20220164005A (zh)
CN (1) CN214411248U (zh)
WO (1) WO2022199152A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214411248U (zh) * 2021-03-23 2021-10-15 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池以及用电设备
CN115911776A (zh) * 2022-04-15 2023-04-04 宁德时代新能源科技股份有限公司 叠片式电极组件、电池单体、电池及用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203690386U (zh) * 2014-01-17 2014-07-02 东莞新能源科技有限公司 电芯及电化学装置
WO2018079165A1 (ja) * 2016-10-26 2018-05-03 株式会社日立製作所 積層型二次電池及びその製造方法
CN109585908A (zh) * 2018-12-27 2019-04-05 深圳瑞隆新能源科技有限公司 一种软包装锂离子电芯及电池
CN111180665A (zh) * 2019-06-28 2020-05-19 宁德时代新能源科技股份有限公司 一种电极极片和电化学装置
CN214411248U (zh) * 2021-03-23 2021-10-15 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池以及用电设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020013733A (ja) * 2018-07-19 2020-01-23 株式会社豊田自動織機 蓄電装置、及び蓄電装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203690386U (zh) * 2014-01-17 2014-07-02 东莞新能源科技有限公司 电芯及电化学装置
WO2018079165A1 (ja) * 2016-10-26 2018-05-03 株式会社日立製作所 積層型二次電池及びその製造方法
CN109585908A (zh) * 2018-12-27 2019-04-05 深圳瑞隆新能源科技有限公司 一种软包装锂离子电芯及电池
CN111180665A (zh) * 2019-06-28 2020-05-19 宁德时代新能源科技股份有限公司 一种电极极片和电化学装置
CN214411248U (zh) * 2021-03-23 2021-10-15 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池以及用电设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4131510A4 *

Also Published As

Publication number Publication date
KR20220164005A (ko) 2022-12-12
JP2023527677A (ja) 2023-06-30
US20240030495A1 (en) 2024-01-25
EP4131510A4 (en) 2024-03-27
EP4131510A1 (en) 2023-02-08
CN214411248U (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
WO2022213400A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2022199152A1 (zh) 电极组件、电池单体、电池以及用电设备
WO2022247292A1 (zh) 电池单体、电池以及用电装置
WO2022226971A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023004823A1 (zh) 卷绕式电极组件、电池单体、电池及用电设备
US20230387558A1 (en) Battery cell, battery, and electrical apparatus
WO2023000859A1 (zh) 电池单体、电池以及用电装置
CN115413379A (zh) 电极组件、电池单体、电池及电极组件的制造方法和设备
WO2023197905A1 (zh) 端盖组件、电池单体、电池和用电设备
US11955658B2 (en) Battery cell and manufacturing method and manufacturing system thereof, battery and power consumption apparatus
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2022188484A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电设备
WO2023028815A1 (zh) 卷绕式电极组件、电池单体、电池及用电设备
WO2023087285A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2023000184A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2023028864A1 (zh) 泄压装置、电池单体、电池及用电设备
WO2023004829A1 (zh) 电池单体、电池、用电装置及电池单体的制造方法和设备
WO2022246839A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2024007258A1 (zh) 极片组件、电极组件、电池单体、电池和用电设备
WO2024055167A1 (zh) 电池单体、电池和用电设备
WO2022236736A1 (zh) 电极组件、电池单体、电池以及用电装置
EP4106087A1 (en) Battery cell, battery, power-consuming device, and manufacturing method and device for battery
WO2024077557A1 (zh) 电池单体、电池及用电设备
US20240154251A1 (en) Current collecting component, battery cell, battery, and electric device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20227038144

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022567037

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021932759

Country of ref document: EP

Effective date: 20221028

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE