WO2023240552A1 - 热管理部件、电池及用电设备 - Google Patents

热管理部件、电池及用电设备 Download PDF

Info

Publication number
WO2023240552A1
WO2023240552A1 PCT/CN2022/099229 CN2022099229W WO2023240552A1 WO 2023240552 A1 WO2023240552 A1 WO 2023240552A1 CN 2022099229 W CN2022099229 W CN 2022099229W WO 2023240552 A1 WO2023240552 A1 WO 2023240552A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow channel
management component
thermal management
partition
battery cell
Prior art date
Application number
PCT/CN2022/099229
Other languages
English (en)
French (fr)
Inventor
侯跃攀
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280007191.7A priority Critical patent/CN116802896A/zh
Priority to PCT/CN2022/099229 priority patent/WO2023240552A1/zh
Priority to CN202380008510.0A priority patent/CN116868417A/zh
Priority to PCT/CN2023/070125 priority patent/WO2023155620A1/zh
Priority to CN202380008509.8A priority patent/CN116802897A/zh
Priority to PCT/CN2023/070133 priority patent/WO2023155623A1/zh
Priority to CN202320014347.6U priority patent/CN219203386U/zh
Priority to CN202320014583.8U priority patent/CN219203337U/zh
Priority to CN202380008511.5A priority patent/CN116724443A/zh
Priority to CN202320014354.6U priority patent/CN219203336U/zh
Priority to CN202320014214.9U priority patent/CN219203335U/zh
Priority to CN202380008512.XA priority patent/CN116848705A/zh
Priority to PCT/CN2023/070135 priority patent/WO2023155624A1/zh
Priority to PCT/CN2023/070131 priority patent/WO2023155622A1/zh
Priority to CN202320014474.6U priority patent/CN220042013U/zh
Priority to CN202380008508.3A priority patent/CN116491016A/zh
Priority to CN202320014404.0U priority patent/CN219575742U/zh
Priority to CN202380008507.9A priority patent/CN116745978A/zh
Priority to PCT/CN2023/070126 priority patent/WO2023155621A1/zh
Priority to PCT/CN2023/070136 priority patent/WO2023155625A1/zh
Priority to CN202320147776.0U priority patent/CN219642916U/zh
Publication of WO2023240552A1 publication Critical patent/WO2023240552A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present application relates to the field of battery technology, specifically, to a thermal management component, a battery and electrical equipment.
  • Secondary batteries such as lithium-ion batteries, sodium-ion batteries, solid-state batteries, etc.
  • have outstanding advantages such as high energy density and good cycle performance, and are widely used in portable electronic devices, electric vehicles, power tools, drones, and energy storage Equipment and other fields.
  • the safety of batteries is one of the main concerns of users and one of the main factors restricting the development of batteries. Therefore, how to improve the safety performance of batteries has become an urgent problem in the battery field.
  • Embodiments of the present application provide a thermal management component, a battery and electrical equipment to improve the safety performance of the battery.
  • embodiments of the present application provide a thermal management component, including a stacked first thermal conductor, a second thermal conductor, and a partition.
  • the partition is disposed between the first thermal conductor and the second thermal conductor.
  • the first thermal conductive component and the partition component jointly define a first flow channel
  • the second thermal conductive component and the partition component jointly define a second flow channel.
  • the first thermal conductive member and the second thermal conductive member respectively define a first flow channel and a second flow channel located on both sides of the separator.
  • the thermal management component When the thermal management component is located between two adjacent battery cells, the The first flow channel and the second flow channel respectively correspond to two adjacent battery cells.
  • the fluid medium in the first flow channel and the fluid medium in the second flow channel can conduct heat exchange with the two battery cells respectively, reducing the adjacent battery cells.
  • the expansion of one battery cell will not squeeze or reduce the size of the flow channel corresponding to the other battery cell or have little impact on the size of the flow channel corresponding to the other battery cell, thus Ensure the heat exchange capacity of the flow channel corresponding to another battery cell, thereby ensuring the safety performance of the battery using this thermal management component.
  • the first flow channel and the second flow channel respectively correspond to two adjacent battery cells and can independently withstand the deformation caused by the expansion of the corresponding battery cells. Therefore, the expansion of one battery cell affects the expansion of the other battery cell.
  • the interference is very small or will not affect the expansion of another battery cell, which is conducive to the expansion release of the two adjacent battery cells and reduces the expansion of the two adjacent battery cells that interfere with each other and cause early leakage of the battery cells. voltage or a serious thermal runaway accident, further improving the safety performance of the battery.
  • the partition is provided with a first groove forming part of the first flow channel.
  • the first groove provided on the partition forms part of the first flow channel, and while ensuring that the cross-sectional area of the first flow channel is sufficient, the thermal management component is reduced in length along the first thermal conductive member and the second thermal conductive member. Dimensions in the stacking direction of components and dividers.
  • the first heat conducting member blocks a notch of the first groove facing the first heat conducting member to form the first flow channel.
  • the first thermal conductive member blocks the notch of the first groove facing the first thermal conductive member to form a first flow channel, so that the first thermal conductive member and the separator are in the first thermal conductive member, the second thermal conductive member and the separator.
  • the components are arranged more compactly in the stacking direction, thereby reducing the size of the thermal management component along the stacking direction of the first thermal conductive member, the second thermal conductive member and the separator.
  • the partition is provided with a second groove forming part of the second flow channel.
  • the second groove provided on the partition forms part of the second flow channel. While ensuring that the cross-sectional area of the second flow channel is sufficient, the thermal management component is reduced in length along the first thermal conductive member and the third thermal conductor. 2. Dimensions in the stacking direction of the thermally conductive parts and separators.
  • the second heat conducting member blocks a slot of the second groove facing the second heat conducting member to form the second flow channel.
  • the second heat conducting member blocks the notch of the second groove facing the second heat conducting member to form a second flow channel, so that the second heat conducting member and the partition member are connected between the first heat conducting member, the second heat conducting member and the second heat conducting member.
  • the separators are arranged more compactly in the stacking direction, thereby reducing the size of the thermal management component along the stacking direction of the first heat conductive member, the second heat conductive member and the separators.
  • first grooves there are a plurality of first grooves, and a plurality of the first grooves are arranged along the first direction; and/or there are a plurality of second grooves, The plurality of second grooves are arranged along the first direction, and the first direction is perpendicular to the stacking direction of the first thermal conductive member, the second thermal conductive member and the partition member.
  • first grooves which can form multiple first flow channels
  • second grooves which can form multiple second flow channels
  • the first grooves and the second grooves are alternately arranged along the first direction.
  • the first grooves and the second grooves are alternately arranged along the first direction, so that the first flow channels and the second flow channels are alternately arranged along the first direction, and the thermal management component is located between two adjacent battery cells.
  • the temperature gradient of the battery cell corresponding to the first flow channel is relatively uniform along the first direction
  • the temperature gradient of the battery cell corresponding to the second flow channel is relatively uniform along the first direction.
  • the partition is a corrugated plate.
  • the partition is a corrugated plate with a simple structure.
  • the partition includes a body part and a first partition part, and both ends of the first partition part along the second direction are respectively connected to the body part and the first partition part.
  • Thermal conductive member, the body part, the first partition part and the first thermal conductive member jointly define the first flow channel, the second direction is connected with the first thermal conductive member, the second thermal conductive member and The stacking directions of the separators are parallel.
  • the body part, the first partition part and the first heat conductive member jointly define a first flow channel, so that the thermal management component can accommodate more fluid media and make the fluid medium more uniformly distributed, which is beneficial to improving heat exchange efficiency and The uniformity of heat exchange reduces the temperature difference in different areas of the battery cell.
  • the first partition can support the first thermal conductive member and enhance the ability of the first thermal conductive member to resist deformation.
  • the partition further includes a second partition, and both ends of the second partition along the second direction are respectively connected to the body part and the second part.
  • the heat conducting member, the body part, the second partition part and the second heat conducting member jointly define the second flow channel.
  • the main body part, the second partition part and the second heat conductive member jointly define a second flow channel, so that the thermal management component can accommodate more fluid media and make the distribution of the fluid medium more uniform, which is beneficial to improving heat exchange efficiency. And heat exchange uniformity, reducing the temperature difference in different areas of the battery cell.
  • the second partition can support the first thermal conductive member and enhance the ability of the second thermal conductive member to resist deformation.
  • the extending direction of the first flow channel is consistent with the extending direction of the second flow channel.
  • the extending direction of the first flow channel and the extending direction of the second flow channel are consistent, which facilitates manufacturing.
  • the first flow channel has a first inlet and a first outlet
  • the second flow channel has a A second inlet and a second outlet
  • the direction from the first inlet to the first outlet is opposite to the direction from the second inlet to the second outlet.
  • the direction from the first inlet to the first outlet is opposite to the direction from the second inlet to the second outlet, that is, the flow direction of the fluid medium in the first flow channel and the flow direction of the fluid medium in the second flow channel are opposite, and the battery
  • the first flow channel and the second flow channel are This arrangement can reduce local differences in thermal management of battery cells within the battery and make heat exchange more uniform.
  • the thermal management component includes a communication cavity located at one end of the partition, the first flow channel is connected to the communication cavity, and the second flow channel is connected to the communication cavity.
  • the communicating cavities are connected.
  • the first flow channel is connected to the communication cavity and the second flow channel is connected to the communication cavity, then the fluid medium in the first flow channel can flow into the second flow channel, and the fluid medium flowing out from the outlet of the first flow channel flows from the third flow channel.
  • the inlet of the second flow channel flows into the second flow channel.
  • the thermal management component includes a medium inflow port and a medium outflow port.
  • the medium inflow port is connected to the communication chamber through the first flow channel, and the medium outflow port is connected to the communication chamber through the second flow channel.
  • the medium inlet and the medium leaving outlet are arranged to facilitate the fluid medium to enter the first flow channel and the second flow channel, and to facilitate the fluid medium to discharge from the first flow channel and the second flow channel after exchanging heat with the battery cells, so as to The fluid medium that has not undergone heat exchange is allowed to enter the first flow channel and the second flow channel, thereby ensuring the heat exchange capability of the fluid medium in the first flow channel and the second flow channel.
  • the medium inlet is provided at an end of the first heat conduction member away from the communication cavity; along the second flow channel In the extension direction, the medium outflow port is disposed at an end of the second heat conducting member away from the communication cavity.
  • the medium inlet is provided at an end of the first heat conduction member away from the communication cavity
  • the medium outflow outlet is provided at an end of the second heat conduction member away from the communication cavity
  • the fluid medium enters the first flow channel from the medium inlet and then flows along the first flow channel.
  • the channel extends through the entire first channel and enters the second channel. It flows through the entire second channel along the extension direction of the second channel and then is discharged from the medium outlet, so that the fluid medium flows in the thermal management component.
  • the path is the longest to fully exchange heat with the battery cells and improve heat exchange efficiency and heat exchange uniformity.
  • an end of the first flow channel away from the communication cavity along its extension direction and an end of the second flow channel away from the communication cavity along its extension direction are not connected to each other.
  • the end of the first flow channel away from the communication cavity along its extension direction and the end of the second flow channel away from the communication cavity along its extension direction are not connected with each other, so the fluid medium can only flow through the entire first flow channel after entering the first flow channel. After the passage, it enters the second flow channel from the connecting cavity and flows through the entire second flow channel before being discharged from the medium outlet, so that the fluid medium has the longest path to flow through in the thermal management component to fully exchange heat with the battery cells. Improve heat transfer efficiency and heat transfer uniformity.
  • first flow channels and multiple second flow channels there are multiple first flow channels and multiple second flow channels, and each first flow channel and each second flow channel are connected to the The cavity is connected.
  • the first flow channel and the second flow channel are connected with multiple and uniformly connected cavities, and the fluid medium of each first flow channel can flow into each second flow channel and flow out from the outlet of the first flow channel.
  • the fluid medium flows into the second flow channel from the inlet of the second flow channel.
  • each first flow channel communicates with the communication chamber and the medium inlet.
  • the fluid medium flowing in from the medium inlet can be distributed to each first flow channel, making the structure of the structural thermal management component simpler and easier to manufacture.
  • each first flow channel communicates with the communication chamber and one medium inlet.
  • each first flow channel is connected to the communication cavity and a medium inlet, which facilitates independent control of the entry of the fluid medium in each first flow channel and facilitates control of the fluid medium entering the required first flow channel according to actual needs, thereby controlling the fluid medium.
  • Distributed inside the heat regulating tube to reasonably adjust the temperature of the battery cells.
  • each second flow channel communicates with the communication chamber and one medium outflow port.
  • each second flow channel is connected to the communication cavity and a medium outlet, so that the fluid medium can be discharged from the second flow channel faster and the heat exchange efficiency is improved.
  • the partition is an integrally formed structure.
  • the partition is an integrally formed structure, which is easy to manufacture and has good structural strength.
  • the first thermal conductive member is welded to the partition, and/or the second thermal conductor is welded to the partition.
  • the first thermal conductor and the separator are realized by welding, so that the connection stability of the first thermal conductor and the separator is better; the second thermal conductor and the separator are realized by welding, so that the second thermal conductor and the separator are The connection stability is better.
  • an embodiment of the present application provides a battery, including adjacent first battery cells, second battery cells and a thermal management component provided according to the embodiment of the first aspect, the thermal management component being disposed on the Between the first battery cell and the second battery cell, the first thermal conductive member is thermally connected to the first battery cell, and the second thermal conductive member is thermally connected to the second battery cell.
  • the thermal management component is disposed between the first battery cell and the second battery cell, and the first thermal conductive member is thermally connected to the first battery cell, and the second thermal conductive member is thermally connected to the second battery cell.
  • the fluid medium in the first flow channel exchanges heat with the first battery cell to adjust the temperature of the first battery cell
  • the fluid medium in the second flow channel exchanges heat with the second battery cell to adjust the temperature of the second battery cell.
  • the temperature of the battery can be reduced to reduce the temperature difference between the first battery cell and the second battery cell, thereby ensuring the safety performance of the battery.
  • the expansion of the first battery cell will not squeeze or reduce the size of the second flow channel corresponding to the second battery cell or have little impact on the size of the second flow channel corresponding to the second battery cell, thereby ensuring that the second battery
  • the heat exchange capacity of the second flow channel corresponding to the cell; the expansion of the second battery cell will not squeeze or reduce the size of the first flow channel corresponding to the first battery cell or the first flow channel corresponding to the first battery cell.
  • the size has little impact, thereby ensuring the heat exchange capability of the first flow channel corresponding to the first battery cell, thereby ensuring the safety performance of the battery using the thermal management component.
  • the first flow channel and the second flow channel respectively correspond to the first battery cell and the second battery cell.
  • the first flow channel can withstand the deformation caused by the expansion of the first battery cell
  • the second flow channel can withstand the deformation caused by the expansion of the third battery cell.
  • the deformation caused by the expansion of the second battery cell. Therefore, the expansion of the first battery cell has little or no impact on the expansion of the second battery cell.
  • the expansion of the second battery cell has no impact on the expansion of the second battery cell.
  • the expansion interference of one battery cell has little or no impact on the expansion of the first battery cell, which is conducive to the expansion release of the first battery cell and the second battery cell, and reduces the energy consumption of the first battery cell and the second battery cell.
  • the expansion of the cells interferes with each other, causing the first battery cell and the second battery cell to release pressure in advance or cause a serious thermal runaway accident, further improving the safety performance of the battery.
  • an embodiment of the present application provides an electrical device, including the battery provided in an embodiment of the second aspect.
  • the battery provided by the embodiment of the second aspect has better safety performance, and the electrical equipment is powered by the battery provided by the embodiment of the second aspect, which can improve the safety of electricity consumption.
  • Figure 1 is a schematic structural diagram of a battery in the prior art
  • Figure 2 is a schematic diagram of the battery cell in Figure 1 after expansion
  • Figure 3 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Figure 4 is an exploded view of a battery provided by some embodiments of the present application.
  • Figure 5 is an exploded view of a thermal management component provided by some embodiments of the present application.
  • Figure 6 is a schematic diagram of a thermal management component installed between two adjacent battery cells
  • Figure 7 is a schematic diagram of the battery cell in Figure 6 after expansion
  • Figure 8 is a schematic diagram of a partition provided by some embodiments of the present application.
  • Figure 9 is a schematic diagram of a thermal management component with the partition of Figure 8.
  • Figure 10 is a schematic diagram of a partition provided by other embodiments of the present application.
  • FIG 11 is a schematic diagram of a thermal management component having the divider of Figure 10;
  • Figure 12 is a schematic diagram of the separator being a corrugated plate in some embodiments of the present application.
  • Figure 13 is a schematic structural diagram of a thermal management component provided by some embodiments of the present application.
  • Figure 14 is a schematic structural diagram of a battery cell provided with thermal management components on both sides according to an embodiment of the present application
  • Figure 15 is a schematic structural diagram of a thermal management component provided by other embodiments of the present application.
  • Figure 16 is a schematic structural diagram of a thermal management component provided by some embodiments of the present application.
  • Figure 17 is a schematic structural diagram of a battery provided by some embodiments of the present application.
  • Icon 1000-vehicle; 100', 100-battery; 10-box; 11-first part; 12-second part; 20', 20-battery cell; 21-first battery cell; 22-second Battery cell; 30', 30-thermal management components; 31-first thermal conductive member; 311-medium inlet; 32-second thermal conductive member; 321-medium outflow outlet; 33-separator; 331-first groove ; 332-first surface; 333-second surface; 334-first convex portion; 335-second groove; 336-second convex portion; 337-body portion; 338-first partition; 339-second Partition; 34-first flow channel; 35-second flow channel; 36-connected cavity; 37-medium inflow pipe; 38-medium outflow pipe; 39-blocking member; 310-splitting gap; 30a-first thermal management Component; 30b-second thermal management component; 30c-third thermal management component; 200-controller; 300-motor; ;Z-second direction.
  • the indicated orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, or the orientation or positional relationship in which the product of this application is commonly placed when used, or the orientation or positional relationship of this application.
  • the orientation or positional relationship commonly understood by those skilled in the art is only for the convenience of describing the present application and simplifying the description, and does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation on this application.
  • the terms “first”, “second”, “third”, etc. are only used to distinguish descriptions and shall not be understood as indicating or implying relative importance.
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. . As the application fields of power batteries continue to expand, their market demand is also constantly expanding.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • “Plural” appearing in this application means two or more (including two).
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium-sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, rectangular battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • battery safety also needs to be considered. Among them, whether the battery temperature is appropriate is one of the important factors affecting the safety performance of the battery. If the temperature of the battery is too high, it may cause thermal runaway inside the battery cell, resulting in a sudden increase in pressure or temperature. In severe cases, the battery cell may explode or catch fire. If the battery temperature is too low, the battery may not charge and discharge normally, affecting the normal use of the battery and the safety performance of the battery.
  • a thermal management component 30' can be provided inside the battery 100' to regulate the battery cells 20' of the battery 100'. temperature.
  • the thermal management component 30' cools down the battery cell 20'; when the temperature of the battery cell 20' is too low, the thermal management component 30' heats the battery cell 20'.
  • the heat pipe component 30 ′ is provided between the adjacent first battery cell 21 ′ and the second battery cell 22 ′, In the stacking direction of the cells 22', the first battery cell 21' and the second battery cell 22' share a flow channel of the thermal management component 30'.
  • the first battery cell 21' and the second battery cell 22' will expand, and the first battery cell 21' and the second battery cell 22' will squeeze the flow when expanding. channel, causing the thermal management component 30' to deform, and when one of the first battery cell 21' and the second battery cell 22' expands, the first battery cell 21' and the second battery cell 22' are extruded together.
  • the flow channel of the thermal management component 30' is pressed, so that the size of the flow channel in the stacking direction of the first battery cell 21' and the second battery cell 22' is reduced, thereby affecting the effect of the thermal management component 30' on the first battery cell.
  • the temperature regulating effect of the other one of the body 21' and the second battery cell 22' is pressed, so that the size of the flow channel in the stacking direction of the first battery cell 21' and the second battery cell 22' is reduced, thereby affecting the effect of the thermal management component 30' on the first battery cell.
  • the expansion degree and expansion time of the first battery cell 21' and the second battery cell 22' are not completely consistent, for example, the expansion amount of the first battery cell 21' is greater than that of the second battery cell. 22' and the first battery cell 21' expands before the second battery cell 22', then the expansion of the first battery cell 21' causes the thermal management component 30' to deform in a direction closer to the second battery cell 22', This occupies the expansion of the second battery cell 22', affects the expansion release of the second battery cell 22', and may cause the second battery cell 22' to release pressure in advance or even cause severe thermal runaway.
  • the thermal management component includes a first thermal conductive member, a second thermal conductive member and a partition arranged in a stack. component, the separator is disposed between the first thermal conductor and the second thermal conductor, the first thermal conductor and the separator jointly define a first flow channel, and the second thermal conductor and the separator jointly define a second flow channel.
  • the first flow channel and the second flow channel respectively correspond to the two adjacent battery cells, and the fluid medium in the first flow channel and the fluid medium in the second flow channel
  • the fluid medium can perform heat exchange with the two battery cells respectively, reducing the temperature difference between the two adjacent battery cells.
  • the expansion of one battery cell will not squeeze or reduce the flow channel corresponding to the other battery cell.
  • the size or the size of the flow channel corresponding to another battery cell has little impact, thereby ensuring the heat exchange effect of the flow channel corresponding to the other battery cell, thereby ensuring the safety performance of the battery using the thermal management component.
  • first flow channel and the second flow channel respectively correspond to two adjacent battery cells and can independently withstand the deformation caused by the expansion of the corresponding battery cells. Therefore, the expansion of one battery cell affects the expansion of the other battery cell. The interference is very small or will not affect the expansion of another battery cell, which is conducive to the expansion release of the two adjacent battery cells and reduces the expansion of the two adjacent battery cells that interfere with each other and cause early leakage of the battery cells. voltage or serious thermal runaway accidents, improving the safety performance of the battery.
  • the thermal management components disclosed in the embodiments of the present application can be used in batteries of electrical equipment such as vehicles, ships, or aircrafts, and can also be used in the power supply system of the electrical equipment composed of batteries equipped with the thermal management components disclosed in the present application. In this way , which helps alleviate the problem of adjacent battery cells expanding and interfering with each other, and improves battery safety.
  • Embodiments of the present application provide an electrical device that uses a battery as a power source.
  • the electrical device may be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric vehicle, a ship, a spacecraft, etc.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • an electrical device is a vehicle.
  • FIG. 3 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but also can be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 4 is an exploded view of the battery 100 provided by some embodiments of the present application.
  • the battery 100 includes a case 10 and battery cells 20 , and the battery cells 20 are accommodated in the case 10 .
  • the box 10 is used to provide an accommodation space for the battery cells 20, and the box 10 can adopt a variety of structures.
  • the box 10 may include a first part 11 and a second part 12 , the first part 11 and the second part 12 cover each other, and the first part 11 and the second part 12 jointly define a space for accommodating the battery cells 20 of accommodation space.
  • the second part 12 may be a hollow structure with one end open, and the first part 11 may be a plate-like structure.
  • the first part 11 covers the open side of the second part 12 so that the first part 11 and the second part 12 jointly define a receiving space.
  • the first part 11 and the second part 12 may also be hollow structures with one side open, and the open side of the first part 11 is covered with the open side of the second part 12.
  • the box 10 formed by the first part 11 and the second part 12 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • the battery 100 there may be a plurality of battery cells 20, and the plurality of battery cells 20 may be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the plurality of battery cells 20 are connected in series and in parallel.
  • the plurality of battery cells 20 can be directly connected in series or in parallel or mixed together, and then the whole composed of the plurality of battery cells 20 can be accommodated in the box 10 ; of course, the battery 100 can also be a plurality of battery cells 20 First, the battery modules are connected in series, parallel, or mixed to form a battery module, and then multiple battery modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 10 .
  • the battery 100 may also include other structures.
  • the battery 100 may further include a bus component for realizing electrical connections between multiple battery cells 20 .
  • Each battery cell 20 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 20 may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes.
  • the battery 100 further includes a thermal management component 30 disposed in the box 10 for regulating the temperature of the battery cells 20 in the box 10 .
  • the thermal management component 30 may reduce the temperature of the battery cell 20 or may increase the temperature of the battery cell 20 .
  • the thermal management component 30 may be a structure that can change its own stability to exchange heat with the battery cell 20, such as a heating resistance wire, a heat exchange medium, and some materials that can undergo chemical reactions to produce temperature changes according to changes in the environment. . Heat exchange with the battery cell 20 is achieved through the temperature change of the thermal management component 30 itself. In this case, if the temperature of the thermal management component 30 is lower than the temperature of the battery cell 20 , the thermal management component 30 can cool down the battery cell 20 to avoid thermal runaway due to excessive temperature of the battery cell 20 ; The temperature is higher than the temperature of the battery cell 20 , the thermal management component 30 can heat the battery cell 20 to ensure that the battery 100 can operate normally.
  • the thermal management component 30 may also be a structure capable of accommodating the fluid medium, and heat is transferred between the battery cell 20 and the fluid medium through the thermal management component 30 and the insulator, thereby achieving heat exchange between the battery cell 20 and the fluid medium.
  • the fluid medium can be liquid (eg, water) or gas (eg, air).
  • the thermal management component 30 can cool down the battery cell 20 to avoid thermal runaway due to excessive temperature of the battery cell 20 ; If the temperature of the fluid medium contained inside the thermal management component 30 is higher than the temperature of the battery cell 20, the thermal management component 30 can heat the battery cell 20 to ensure that the battery 100 can operate normally.
  • the thermal management component 30 includes a stacked first thermal conductive member 31 , a second thermal conductive member 32 , and a spacer 33 .
  • the spacer 33 is disposed between the first thermal conductor 31 and the second thermal conductor 31 .
  • the first heat conducting part 31 and the partition 33 jointly define a first flow channel 34
  • the second heat conducting part 32 and the partition 33 jointly define a second flow channel 35 .
  • the first flow channel 34 and the second flow channel 35 are both used to accommodate fluid media, and the fluid medium can circulate in the first flow channel 34 and the second flow channel 35 .
  • the first flow channel 34 and the second flow channel 35 can be independent of each other, the fluid medium in the first flow channel 34 will not enter the second flow channel 35, and the fluid medium in the second flow channel 35 will not enter the first flow channel 34 Inside.
  • the first flow channel 34 has a first inlet and a first outlet located at both ends of the first flow channel 34. The fluid medium enters the first flow channel 34 from the first inlet and passes through the first outlet.
  • the second flow channel 35 Discharge the first flow channel 34; along the extension direction of the second flow channel 35, the second flow channel 35 has a second inlet and a second outlet located at both ends of the second flow channel 35, and the fluid medium enters the second flow channel 35 from the second inlet. , and discharge the second flow channel 35 from the second outlet.
  • the first flow channel 34 and the second flow channel 35 may be connected to each other, and the fluid medium in the first flow channel 34 can enter the second flow channel 35 or the fluid medium in the second flow channel 35 can enter the first flow channel 34 .
  • the number of battery cells 20 may be one or multiple. Among them, multiple means two or more.
  • the thermal management component 30 is disposed on one side of the battery cell 20 and between the battery cell 20 and the inner wall of the box 10 .
  • the first flow channel 34 is arranged closer to the battery cell 20 than the second flow channel 35
  • the second flow channel 35 is arranged closer to the inner wall of the box 10 than the first flow channel 34 .
  • the plurality of battery cells 20 are stacked and arranged in a certain direction (the stacking direction X of the first thermal conductive member, the second thermal conductive member and the separator).
  • a thermal management component 30 may be provided between two adjacent battery cells 20 .
  • the two adjacent battery cells 20 are defined as the first battery cell 21 and the second battery cell 22 respectively.
  • the first flow channel 34 and the second flow channel 35 are arranged in the same direction as the first battery cell 21
  • the arrangement direction of the first flow channel 34 and the second flow channel 35 is the same as the stacking direction X of the first thermal conductive member, the second thermal conductive member and the separator.
  • the first flow channel 34 is provided corresponding to the first battery unit 21 .
  • the first heat conductive member 31 is used for thermal connection with the first battery unit 21 .
  • the fluid medium in the first flow channel 34 is used for heat exchange with the first battery unit 21 .
  • the second flow channel 35 is provided corresponding to the second battery cell 22,
  • the second thermal conductive member 32 is used to conduct heat conduction connection with the second battery cell 22, and the fluid medium in the second flow channel 35 It is used for heat exchange with the second battery cell 22 to adjust the temperature of the second battery cell 22 .
  • Thermal conductive connection means that heat can be transferred between the two.
  • the first thermal conductive member 31 and the first battery cell 21 are thermally conductive connected, then heat transmission can be carried out between the first battery cell 21 and the first thermal conductive member 31, then Heat can be transferred between the fluid medium in the first flow channel 34 and the first battery cell 21 through the first heat conducting member 31 , thereby achieving heat exchange between the fluid medium in the first flow channel 34 and the first battery cell 21 .
  • the second thermally conductive member 32 is thermally connected to the second battery cell 22 , so that heat can be transmitted between the second battery cell 22 and the second thermally conductive member 32 , and the second thermally conductive member 32 can be used in the second flow channel 35 Heat is transferred between the fluid medium and the second battery cell 22, thereby realizing heat exchange between the fluid medium in the second flow channel 35 and the second battery cell 22.
  • the fluid medium in the first flow channel 34 and the fluid medium in the second flow channel 35 can conduct heat exchange with the two battery cells 20 respectively, thereby reducing the heat loss of the two adjacent battery cells 20 . Due to the temperature difference, the expansion of one battery cell 20 will not squeeze or reduce the size of the flow channel corresponding to the other battery cell 20 or have little impact on the size of the flow channel corresponding to the other battery cell 20, thereby ensuring that the other The heat exchange effect of the flow channel corresponding to the battery cell 20 ensures the safety performance of the battery 100 using the thermal management component 30 .
  • the size of the first flow channel 34 in the stacking direction X of the first thermal conductive member, the second thermal conductive member and the separator will be reduced.
  • the first battery cell 21 will not affect the size of the second flow channel 35 in the stacking direction
  • the expansion of the battery cell 20 (second battery cell 22) corresponding to the second flow channel 35 will cause the second flow channel 35 to expand in the stacking direction X of the first thermal conductive member, the second thermal conductive member and the separator.
  • the size is reduced, but the second battery cell 22 will not affect the size of the first flow channel 34 in the stacking direction
  • first flow channel 34 and the second flow channel 35 respectively correspond to two adjacent battery cells 20, they can independently withstand the deformation caused by the expansion of the corresponding battery cells 20. Therefore, the expansion of one battery cell 20 affects the other.
  • the expansion of a battery cell 20 interferes little or does not affect the expansion of another battery cell 20 , which is beneficial to the expansion release of the two adjacent battery cells 20 and reduces the stress of the two adjacent battery cells 20 .
  • the expansions interfere with each other, causing the battery cells 20 to release pressure in advance or cause a serious thermal runaway accident, further improving the safety performance of the battery 100 .
  • the fluid medium in the first flow channel 34 and the fluid medium in the second flow channel 35 can conduct heat exchange with the two battery cells 20 respectively, thereby reducing the temperature difference between the two adjacent battery cells 20, thereby The safety performance of the battery 100 using the thermal management component 30 is ensured.
  • the number of the first flow channels 34 may be one or more, and the number of the second flow channels 35 may be one or more.
  • first flow channels 34 there are multiple first flow channels 34 , and/or there are multiple second flow channels 35 .
  • the number of the first flow channel 34 may be multiple, and the number of the second flow channel 35 may be one; the number of the first flow channel 34 may be one, and the number of the second flow channel 35 may be multiple; or the number of the first flow channel 35 may be one.
  • the number of channels 34 is multiple and the number of second flow channels 35 is multiple.
  • there are multiple first flow channels 34 that is, the first heat conductive member 31 and the partition 33 jointly define multiple first flow channels 34 , and the plurality of first flow channels 34 are arranged sequentially along the first direction Y, each The first flow channel 34 extends along the second direction Z.
  • the first direction Y is perpendicular to the second direction Z.
  • each second flow channel 35 extends along the second direction Z.
  • the arrangement directions of the plurality of first flow channels 34 and the arrangement directions of the plurality of second flow channels 35 may be different.
  • the extending direction of the first flow channel 34 and the extending direction of the second flow channel 35 may be different.
  • the extending directions of the plurality of first flow channels 34 may be different, and the extending directions of the plurality of second flow channels 35 may also be different.
  • the number of first flow channels 34 and/or the number of second flow channels 35 enable the thermal management component 30 to accommodate more fluid media and make the distribution of the fluid medium more uniform, which is beneficial to improving heat exchange efficiency and heat exchange uniformity. , reducing the temperature difference in different areas of the battery cell 20 .
  • the first flow channel 34 can be formed in various ways. In some embodiments, as shown in FIGS. 8-11 , the partition 33 is provided with a first groove 331 , and the first groove 331 forms part of the first flow channel 34 .
  • the part where the first groove 331 forms the first flow channel 34 refers to the part where the groove wall of the first groove 331 serves as the wall of the first flow channel 34.
  • the first groove 331 has various forms. For example, as shown in FIG. 8 , along the stacking direction 332 and the second surface 333 facing the second heat conductive member 32, the first surface 332 and the second surface 333 are arranged oppositely, and the first groove 331 is provided on the first surface 332 and is recessed in a direction close to the second surface 333. For another example, as shown in FIG. 10 , the first groove 331 is provided on the first surface 332 .
  • the first groove 331 is recessed from the first surface 332 toward the direction close to the second surface 333 , and is between the second surface 333 and the second surface 333 .
  • a first protrusion 334 is formed at a position corresponding to the groove 331 .
  • the first groove 331 penetrates at least one end of the partition 33 along the second direction Z.
  • the first groove 331 penetrates both ends of the partition 33 along the second direction Z, then the fluid medium can flow in from one end of the first flow channel 34 along the second direction Z, and from the first flow channel 34 along the second direction Z. The other end of direction Z flows out.
  • the first groove 331 provided on the partition 33 forms part of the first flow channel 34. While ensuring that the cross-sectional area of the first flow channel 34 is sufficient, the thermal management component 30 reduces the length of the first thermal conductor and the second thermal conductor. Dimensions in the stacking direction X of the components and separators.
  • the first heat conducting member 31 blocks the opening of the first groove 331 facing the first heat conducting member 31 to form the first flow channel 34 .
  • the side of the first heat conducting member 31 facing the partition 33 abuts the first surface 332, so that the first heat conducting member 31 blocks the notch of the first groove 331 facing the first heat conducting member 31,
  • the first flow channel 34 is formed.
  • the first heat conducting member 31 forms another part of the first flow channel 34 . Therefore, in an embodiment in which the side of the first heat conducting member 31 facing the partition 33 abuts the first surface 332 , the groove wall of the first groove 331 serves as part of the wall of the first flow channel 34 , and the first heat conducting member 31 faces the first surface 332 .
  • the surface of the partition 33 serves as another part of the wall of the first flow channel 34 .
  • the side of the first thermal conductive member 31 facing the partition 33 is against the first surface 332.
  • the surface of the first thermal conductive member 31 facing the partition 33 may be in contact with the first surface 332, but there is no connection relationship, or the first thermal conductive member 31 may be in contact with the first surface 332.
  • the surface of the member 31 facing the partition member 33 is in contact with the first surface 332, such as by welding.
  • the first groove 331 is not provided on the first surface 332 , and there is a gap between the side of the first heat conductive member 31 facing the partition 33 and the first surface 332 , then the first groove 331 and the first surface 332 have a gap. 332 and the first heat conducting member 31 jointly define the first flow channel 34 .
  • the first heat conducting member 31 blocks the notch of the first groove 331 facing the first heat conducting member 31 to form the first flow channel 34 , so that the first heat conducting member 31 and the partition 33 are connected between the first heat conducting member 33 and the second heat conducting member 33 .
  • the spacers are arranged more compactly in the stacking direction X, thereby reducing the size of the thermal management component 30 in the stacking direction X of the first thermal conductive member, the second heat conductive member and the spacers.
  • the first surface 332 of the partition 33 is not provided with the first groove 331 , and there is a gap between the side of the first thermal conductive member 31 facing the partition 33 and the first surface 332 , and the first surface 332 forms A portion of the wall of the first flow channel 34 , and the surface of the first heat conducting member 31 facing the partition 33 forms another portion of the wall of the first flow channel 34 .
  • the partition 33 is provided with a second groove 335, and the second groove 335 forms a shape of the second flow channel 35. part.
  • the portion where the second groove 335 forms the second flow channel 35 refers to the portion of the groove wall of the second groove 335 that serves as the wall of the second flow channel 35.
  • the second groove 335 has various forms. For example, as shown in FIG. 7 , along the stacking direction The direction of the first surface 332 is concave. For another example, as shown in FIG. 10 , the second groove 335 is provided on the second surface 333 . The second groove 335 is recessed from the second surface 333 toward the direction close to the first surface 332 , and is between the first surface 332 and the first surface 332 . A second protrusion 336 is formed at the corresponding position of the two grooves 335 .
  • the second groove 335 penetrates at least one end of the partition 33 along the second direction Z.
  • the second groove 335 runs through both ends of the partition 33 along the second direction Z, so the fluid medium can flow in from one end of the second flow channel 35 along the second direction Z, and from one end of the second flow channel 35 along the second direction Z. The other end of the second direction Z flows out.
  • the second groove 335 provided on the partition 33 forms part of the second flow channel 35. While ensuring that the cross-sectional area of the second flow channel 35 is sufficient, the thermal management component 30 is reduced in length along the first thermal conductive member and the second thermal conductive member. 2. Dimensions in the stacking direction X of the thermal conductive member and the separator.
  • the second heat conducting member 32 blocks the opening of the second groove 335 facing the second heat conducting member 32 to form the second flow channel 35 .
  • the side of the second heat conducting member 32 facing the partition 33 abuts the second surface 333, so that the second heat conducting member 32 blocks the notch of the second groove 335 facing the second heat conducting member 32, Thus, the second flow channel 35 is formed.
  • the second heat conducting member 32 forms another part of the first flow channel 34 . Therefore, in the embodiment in which the side of the second heat conducting member 32 facing the partition 33 abuts the second surface 333 , the groove wall of the second groove 335 serves as part of the wall of the second flow channel 35 , and the second heat conducting member 32 The surface facing the partition 33 serves as another part of the wall of the second flow channel 35 .
  • the side of the second heat conducting member 32 facing the partition 33 is in contact with the second surface 333 .
  • the surface of the second heat conducting member 32 facing the partition 33 may be in contact with the second surface 333 , but there is no connection relationship, or the second heat conducting member 32 may be in contact with the second surface 333 .
  • the surface of the member 32 facing the partition member 33 is in contact with the second surface 333, such as by welding.
  • the second groove 335 is not provided on the second surface 333 , and there is a gap between the side of the second heat conductive member 32 facing the partition 33 and the second surface 333 , then the second groove 335 and the second surface 333 and the second heat conducting member 32 jointly define the second flow channel 35 .
  • the second heat conducting member 32 blocks the opening of the second groove 335 facing the second heat conducting member 32 to form the second flow channel 35 , so that the second heat conducting member 32 and the partition 33 are connected between the first heat conducting member and the second heat conducting member 33 .
  • the thermal management component 30 is arranged more compactly in the stacking direction X of the first thermal conductive member, the second thermal conductive member and the separator, thereby reducing the size of the thermal management component 30 in the stacking direction X of the first thermal conductive member, the second thermal conductive member and the separator.
  • first flow channels 34 there are multiple first grooves 331, and the plurality of first grooves 331 are arranged along the first direction Y, and the first direction Y is vertical.
  • first direction Y is vertical.
  • the first heat conducting member 31 blocks the openings of the plurality of first grooves 331 facing the first heat conducting member 31 , thereby forming a plurality of first flow channels 34 .
  • the plurality of second grooves 335 are arranged along the first direction Y, and the first direction Y is perpendicular to the first thermal conductive member, the second The stacking direction X of the thermal conductor and the separator.
  • the second heat conducting member 32 blocks the plurality of second grooves 335 facing the slots of the second heat conducting member 32 , thereby forming a plurality of second flow channels 35 .
  • the partition 33 may be provided with a plurality of first grooves 331 only on the first surface 332, and a second groove 335 or no second groove 335 may be provided on the second surface 333; or the partition 33 may be provided only on the second surface.
  • 333 is provided with a plurality of second grooves 335, and the first surface 332 is provided with a first groove 331 or no first groove 331 is provided; or the partition 33 is provided with a plurality of first grooves 331 on the first surface 332 and the second groove 335 is provided on the first surface 332.
  • the surface 333 is provided with a plurality of second grooves 335 .
  • first grooves 331 which can form multiple first flow channels 34; and/or there are multiple second grooves 335, which can form multiple second flow channels 35, so that the thermal management component 30 can accommodate more.
  • the fluid medium and the fluid medium make the distribution of the fluid medium more uniform, which is beneficial to improving the heat exchange efficiency and heat exchange uniformity, and reducing the temperature difference in different areas of the battery cell 20 .
  • the first grooves 331 and the second grooves 335 are alternately arranged along the first direction Y.
  • the first grooves 331 and the second grooves 335 are alternately arranged in the first direction Y" means that along the stacking direction At least part of the projection on a surface 332 is located between two adjacent first grooves 331 along the first direction Y; and/or, along the stacking direction X of the first thermal conductive member, the second thermal conductive member and the partition member, At least part of the projection of each first groove 331 on the second surface 333 is located between two adjacent second grooves 335 along the first direction Y, so that the first flow channel 34 and the second flow channel 35 are in The first directions Y are arranged alternately. 8 and 9 show that along the stacking direction A situation between grooves 331.
  • the first grooves 331 and the second grooves 335 are alternately arranged along the first direction Y, so that the first flow channels 34 and the second flow channels 35 are alternately arranged along the first direction Y, and the thermal management components 30 are located in two adjacent battery cells.
  • the temperature gradient of the battery cell 20 corresponding to the first flow channel 34 is relatively uniform along the first direction Y
  • the temperature gradient of the battery cell 20 corresponding to the second flow channel 35 is relatively uniform along the first direction Y. .
  • the partition 33 is a corrugated plate.
  • the first groove 331 is provided on the first surface 332.
  • the first groove 331 is recessed from the first surface 332 toward the direction close to the second surface 333, and is between the second surface 333 and the first groove.
  • the first convex part 334 is formed at the corresponding position of 331;
  • the second groove 335 is provided on the second surface 333.
  • the second groove 335 is recessed from the second surface 333 toward the direction close to the first surface 332, and is located on the first surface 332.
  • a second convex part 336 is formed at a position corresponding to the second groove 335.
  • the first groove 331 and the second groove 335 are alternately arranged along the first direction Y.
  • the first convex part 334 and the second convex part 336 are arranged along the first direction Y.
  • the Y's are arranged alternately to form a corrugated plate.
  • the partition 33 may also be a component of other structural forms, as shown in FIGS. 8 and 9 .
  • the partition 33 is a corrugated plate, which has a simple structure and is easy to manufacture.
  • the first flow channel 34 may also be formed in other forms.
  • the partition 33 includes a body part 337 and a first partition part 338 , and the first partition part 338 is formed along the Both ends of the two directions Z are respectively connected to the body part 337 and the first heat conducting member 31.
  • the body part 337, the first partition 338 and the first heat conducting member 31 jointly define the first flow channel 34.
  • the second direction Z is connected to the first heat conducting member 31.
  • the stacking direction X of the thermally conductive member, the second thermally conductive member and the separator is parallel.
  • the body part 337 and the first partition part 338 both have a flat plate structure, and a first space is defined between the body part 337 and the first heat conducting member 31 .
  • the number of the first partitions 338 may be one or more.
  • the plurality of first partitions 338 are arranged at intervals along the first direction Y.
  • the plurality of first partitions 338 The first space is divided into a plurality of first sub-spaces, so that the body portion 337 , the first heat conductive member 31 and the plurality of first partition portions 338 jointly define a plurality of first flow channels 34 .
  • the body part 337 and the first partition part 338 may be integrally formed.
  • the body part 337 and the first partition part 338 may be formed through an integral molding process such as pouring and extrusion.
  • the main body part 337 and the first partition part 338 are provided separately, and then connected as a whole through welding, welding, screw connection, etc.
  • the body part 337 , the first partition part 338 and the first heat conductive member 31 jointly define a plurality of first flow channels 34 , so that the thermal management component 30 can accommodate more fluid media and make the fluid medium more evenly distributed, which is beneficial to improving heat transfer. efficiency and heat exchange uniformity, reducing temperature differences in different areas of the battery cell 20 .
  • the first partition 338 can support the first thermal conductive member 31 and enhance the ability of the first thermal conductive member 31 to resist deformation.
  • the second flow channel 35 can also be formed in other forms.
  • the partition 33 also includes a second partition 339 .
  • the two ends of the second partition 339 along the second direction Z are respectively connected to The body part 337 and the second heat conducting member 32 , the body part 337 , the second partition part 339 and the second heat conducting member 32 jointly define a second flow channel 35 .
  • the body part 337 and the second partition part 339 are both flat plates, and a second space is defined between the body part 337 and the second heat conductive member 32 .
  • the number of the second partitions 339 may be one or more.
  • the plurality of second partitions 339 are arranged at intervals along the first direction Y.
  • the plurality of second partitions 339 The second space is divided into a plurality of second sub-spaces, so that the body portion 337 , the second heat conductive member 32 and the plurality of second partitions 339 jointly define a plurality of second flow channels 35 .
  • the body part 337 and the second partition part 339 may be integrally formed.
  • the body part 337 and the second partition part 339 may be formed through an integral molding process such as pouring and extrusion.
  • the main body part 337 and the second partition part 339 are provided separately, and then connected as a whole through welding, welding, screw connection, etc.
  • the body part 337, the first partition part 338 and the second partition part 339 may be integrally formed.
  • the body portion 337 , the second partition portion 339 and the second heat conductive member 32 jointly define a plurality of second flow channels 35 , so that the thermal management component 30 can accommodate more fluid media and distribute the fluid medium more evenly, which is beneficial to improving the exchange rate. Thermal efficiency and heat exchange uniformity reduce temperature differences in different areas of the battery cell 20 .
  • the second partition 339 can support the first thermal conductive member 31 and enhance the ability of the second thermal conductive member 32 to resist deformation.
  • the first flow channel 34 and the second flow channel 35 may extend in the same direction, or may extend in different directions. In this embodiment, the extending direction of the first flow channel 34 is consistent with the extending direction of the second flow channel 35 . Both the first flow channel 34 and the second flow channel 35 extend along the second direction Z, which facilitates manufacturing.
  • the heat exchange capability between the fluid medium in the first flow channel 34 and the corresponding battery cell 20 gradually weakens, such as The thermal management component 30 is used to cool down the battery cell 20.
  • the thermal management component 30 is used to cool down the battery cell 20.
  • the temperature of the fluid medium located in the first flow channel 34 and the second flow channel 35 will gradually increase.
  • the higher temperature fluid medium has a negative impact on the battery.
  • the cooling ability of monomer 20 is weakened.
  • the first flow channel 34 has a first inlet (not shown in the figure) and a first outlet (not shown in the figure).
  • the second flow channel 35 has a second inlet (not shown in the figure) and a second outlet (not shown in the figure). The direction from the first inlet to the first outlet is opposite to the direction from the second inlet to the second outlet. .
  • the first inlet allows the fluid medium to enter the first flow channel 34
  • the first outlet allows the fluid medium to discharge from the first flow channel 34
  • the second inlet allows the fluid medium to enter the second flow channel 35
  • the second outlet allows the fluid medium to discharge from the second flow channel 35 .
  • one side of the battery cell 20 corresponds to the first flow channel 34 of one thermal management component 30 .
  • the other side of the cell 20 corresponds to the second flow channel 35 of another thermal management component 30 , then the fluid medium on both sides of the battery cell 20 flows in the opposite direction, along the first flow channel 34 and the second flow channel 35 In the extending direction (second direction Z), the heat exchange capabilities of the fluid medium in the first flow channel 34 and the fluid medium in the second flow channel 35 can complement each other, thereby reducing the difference in local temperatures of the battery cells 20 .
  • the direction from the first inlet to the first outlet is opposite to the direction from the second inlet to the second outlet, that is, the flow direction of the fluid medium in the first flow channel 34 is opposite to the flow direction of the fluid medium in the second flow channel 35.
  • the first flow channel 34 and the second flow channel This arrangement of the two flow channels 35 can reduce local differences in thermal management of the battery cells 20 within the battery 100, making heat exchange more uniform.
  • the thermal management component 30 includes a communication cavity 36 located at one end of the partition 33 , the first flow channel 34 is connected to the communication cavity 36 , and the second flow channel 35 is connected to the communication cavity 36 .
  • the communication cavity 36 is located at one end of the partition 33 , and the partition 33 , the first heat conducting member 31 and the second heat conducting member 32 jointly define the communication cavity 36 .
  • the communication cavity 36 is a gap in the second direction Z between one end of the partition 33 and the first heat conductive member 31 and the second heat conductive member 32 .
  • the communication cavity 36 can also be formed by other structures.
  • the thermal management component 30 also includes a communication tube.
  • the first flow channel 34 and the second flow channel 35 are connected through the communication tube.
  • the internal channel of the communication tube is It is the communicating cavity 36.
  • the number of the first flow channel 34 and the number of the second flow channel 35 may be multiple. In an embodiment where the number of first flow channels 34 is multiple, all first flow channels 34 may be connected to the communication chamber 36 , and then the fluid medium in each first flow channel 34 is discharged from the first outlet of the first flow channel 34 and passes through the first flow channel 34 .
  • the communication cavity 36 enters the second flow channel 35 from the second inlet. In other embodiments, some of the first flow channels 34 of the plurality of first flow channels 34 may be connected to the communication cavity 36 , and the fluid medium in these first flow channels 34 passes from the first outlet through the communication cavity 36 and then from the second inlet.
  • the direction pointed by the hollow arrow in FIG. 15 is the flow direction of the fluid medium in the first flow channel 34 and the second flow channel 35 .
  • all the second flow channels 35 may be connected to the communication chamber 36 , then the fluid medium in the first flow channel 34 is discharged from the first outlet through the first flow channel 34 .
  • the communication cavity 36 can enter each second flow channel 35 from the second inlet.
  • some of the second flow channels 35 among the plurality of second flow channels 35 may be connected to the communication cavity 36 , and the fluid medium in the first flow channel 34 connected to the communication cavity 36 passes through the communication cavity 36 .
  • the second inlet enters the second flow channel 35 connected with the communication cavity 36; if another part of the second flow channels 35 among the plurality of second flow channels 35 is not connected with the communication cavity 36, the fluid medium in the first flow channel 34 cannot enter.
  • first flow channels 34 and second flow channels 35 there are multiple first flow channels 34 and second flow channels 35, and each first flow channel 34 and each second flow channel 35 is connected to the communication cavity 36.
  • the numbers of the first flow channels 34 and the second flow channels 35 may be the same or different.
  • the first flow channel 34 is connected to the communication cavity 36 and the second flow channel 35 is connected to the communication cavity 36. Then the fluid medium in the first flow channel 34 can flow into the second flow channel 35 and exit from the outlet of the first flow channel 34 (first outlet). ) flows into the second flow channel 35 from the inlet (second inlet) of the second flow channel 35.
  • This arrangement can reduce the local difference in thermal management of the battery cells 20 in the battery 100, making the heat exchange more efficient. Evenly.
  • the thermal management component 30 includes a medium inlet 311 and a medium outflow outlet 321.
  • the medium inlet 311 is connected to the communication cavity 36 through the first flow channel 34, and the medium outflow outlet 321 communicates with the communication chamber 36 through the second flow channel 35 .
  • the medium inflow port 311 is provided on the first heat conductive member 31 and is connected with the first flow channel 34 .
  • the medium outflow port 321 is provided on the second heat conductive member 32 and is connected with the second flow channel 35 .
  • the fluid medium enters the first flow channel 34 from the medium inlet 311, flows into the second flow channel 35 through the communication cavity 36, and is discharged from the medium outlet 321.
  • the fluid medium exchanges heat with the battery cells 20 during the flow process.
  • the directions pointed by the hollow arrows in FIGS. 15 and 16 are the flow directions of the fluid medium in the first flow channel 34 and the second flow channel 35 .
  • the setting of the medium inlet 311 and the medium outlet facilitates the fluid medium to enter the first flow channel 34 and the second flow channel 35, and facilitates the fluid medium to discharge from the first flow channel 34 and the second flow channel 35 after exchanging heat with the battery cells 20. This allows the fluid medium that has not undergone heat exchange to enter the first flow channel 34 and the second flow channel 35 , thereby ensuring the heat exchange capability of the fluid medium in the first flow channel 34 and the second flow channel 35 .
  • the medium inlet 311 is provided at an end of the first heat conductive member 31 away from the communication cavity 36; along the extension direction of the second flow channel 35 , the medium outflow port 321 is provided at an end of the second heat conductive member 32 away from the communication cavity 36 .
  • the extending direction of the first flow channel 34 and the extending direction of the second flow channel 35 are both parallel to the second direction Z.
  • the extension direction of the first flow channel 34 and the extension direction of the second flow channel 35 may be different.
  • the extension direction of the first flow channel 34 is parallel to the second direction Z
  • the extension direction of the second flow channel 35 is parallel to the second direction Z.
  • Parallel to the preset direction the angle between the preset direction and the second direction Z is an acute angle or preset to be perpendicular to the second direction Z, and the preset direction is perpendicular to the stacking direction X of the first thermal conductive member, the second thermal conductive member and the separator.
  • a medium inflow pipe 37 is inserted into the medium inlet 311 to facilitate communication between the medium inlet 311 and equipment that provides fluid media.
  • a medium outflow pipe 38 is inserted into the medium outflow port 321 to facilitate communication between the medium outflow port 321 and equipment for recovering fluid media.
  • the medium inlet 311 is provided at an end of the first heat conduction member 31 away from the communication cavity 36
  • the medium outflow outlet 321 is provided at an end of the second heat conduction member 32 away from the communication cavity 36 , then the fluid medium enters the first flow channel 34 from the medium inlet 311 It flows through the entire first flow channel 34 along the extension direction of the first flow channel 34 and enters the second flow channel 35 , flows through the entire second flow channel 35 along the extension direction of the second flow channel 35 , and then is discharged from the medium outlet 321 .
  • the path of the fluid medium flowing through the thermal management component 30 is made the longest to fully exchange heat with the battery cells 20 and improve the heat exchange efficiency and heat exchange uniformity.
  • the end of the first flow channel 34 along its extension direction away from the communication cavity 36 and the end of the second flow channel 35 along its extension direction away from the communication cavity 36 are not connected to each other.
  • the extending direction of the first flow channel 34 and the extending direction of the second flow channel 35 are both parallel to the second direction Z.
  • the communication cavity 36 is located at one end of the partition 33 along the second direction Z.
  • the thermal management component 30 further includes a blocking member 39 , which is disposed at an end of the partition 33 away from the communication cavity 36 along the second direction Z to block the second flow channel 35 along the second direction.
  • Z is away from one end of the communication cavity 36 to prevent the fluid medium entering the first flow channel 34 from the medium inlet 311 from flowing into the second flow channel 35 in the first flow channel 34 in a direction away from the communication cavity 36 .
  • the blocking member 39 is provided at the end of the partition 33 away from the communication cavity 36 along the second direction Z, and can also be used to block the end of the first flow channel 34 away from the communication cavity 36 along the second direction Z. One end is used to prevent the fluid medium entering the first flow channel 34 from the medium inlet 311 from flowing into the second flow channel 35 in the direction away from the communication cavity 36 in the first flow channel 34 .
  • the blocking member 39 and the partition 33 may be arranged separately, and then the blocking member 39 and the partition 33 may be connected into an integral structure.
  • the blocking member 39 and the partition 33 may be connected by welding, bonding, etc. for the whole.
  • the blocking member 39 and the partition member 33 may also be integrally formed, for example, by an integral molding process such as pouring or stamping.
  • the fluid medium can be discharged from the medium inlet 311.
  • the end of the first flow channel 34 away from the communication cavity 36 along its extension direction and the end of the second flow channel 35 away from the communication cavity 36 along its extension direction are not connected with each other. Then the fluid medium can only flow through the entire first flow channel 34 after entering the first flow channel 34 .
  • the channel 34 then enters the second flow channel 35 from the connecting cavity 36 and flows through the entire second flow channel 35 before being discharged from the medium outlet 321, so that the fluid medium has the longest path to flow in the thermal management component 30 to communicate with the battery.
  • the monomer 20 fully exchanges heat, thereby improving the heat exchange efficiency and heat exchange uniformity.
  • each first flow channel 34 and each second flow channel 35 is connected to the communication cavity 36 .
  • the number of the first flow channel 34 may be one, and the number of the second flow channel 35 may be multiple, and each second flow channel 35 is connected to the communication chamber 36; or the number of the first flow channels 34 and The number of the second flow channels 35 is one; or the number of the second flow channels 35 may be one and the number of the first flow channels 34 may be multiple, and each first flow channel 34 is connected to the communication cavity 36 .
  • Both the first flow channel 34 and the second flow channel 35 are connected by multiple and uniformly connected cavities 36 .
  • the fluid medium in each first flow channel 34 can flow into each second flow channel 35 and flow out from the outlet of the first flow channel 34
  • the fluid medium flows into the second flow channel 35 from the inlet of the second flow channel 35. This arrangement can reduce the local difference in thermal management of the battery cells 20 in the battery 100, making the heat exchange more uniform.
  • the number of medium inlets 311 can be set differently. For example, please refer to FIG. 5 and FIG. 16 . In some embodiments, there is one medium inlet 311 , and each medium inlet 311 is one.
  • the first flow channel 34 communicates with the communication chamber 36 and the medium inlet 311.
  • a branching gap 310 is formed between the components 32, and the medium inlet 311 is connected to each first flow channel 34 through the branching gap 310.
  • the fluid medium flowing in from the medium inlet 311 enters the splitting gap 310 and is then distributed to each first flow channel 34 from the splitting gap 310 .
  • each first flow channel 34 communicates with the communication chamber 36 and one medium inlet 311 .
  • the number of medium inlets 311 is the same as the number of first flow channels 34 and corresponds one to one.
  • Each medium inlet 311 allows the fluid medium to flow into the corresponding first flow channel 34, which facilitates independent control of the entry of the fluid medium into each first flow channel 34 and facilitates control of the fluid medium entering the required first flow channel 34 according to actual needs, thereby controlling the fluid.
  • the medium is distributed inside the heat regulating tube in order to reasonably regulate the temperature of the battery cell 20 .
  • each second flow channel 35 communicates with the communication chamber 36 and one medium outflow port 321 .
  • the medium outflow ports 321 and the second flow channels 35 are arranged in one-to-one correspondence.
  • the fluid medium in each second flow channel 35 is discharged from the corresponding medium outflow port 321 .
  • Each second flow channel 35 is connected to the communication cavity 36 and a medium outflow port 321, so that the fluid medium can be discharged from the second flow channel 35 faster and the heat exchange efficiency is improved.
  • the partition 33 is an integrally formed structure.
  • the partition 33 may be a structure formed by one-piece molding methods such as stamping and pouring.
  • the partition 33 is a corrugated plate
  • the corrugated plate is formed by stamping.
  • the partition 33 is an integrally formed structure, which is easy to manufacture and has good structural strength.
  • the first thermal conductive member 31 may be an integrally formed structure
  • the second thermal conductive member 32 may be an integrally formed structure.
  • the first thermal conductive member 31 and the second thermal conductive member 32 are both cast or stamped.
  • the first thermal conductive member 31 is welded to the partition 33
  • the second thermal conductor 32 is welded to the partition 33 .
  • the first heat conductive member 31 and the separator 33 may be welded, the second heat conductor 32 and the separator 33 may be connected in other ways (such as bonding), or the second heat conductor 32 may be in contact with the separator 33 without any connection relationship. It is also possible that the second heat conductive member 32 and the separator 33 are welded, and the first heat conductor 31 and the separator 33 are connected in other ways (such as bonding) or the first heat conductor 31 is in contact with the separator 33 without a connection relationship. In this case, In the embodiment, both the first thermal conductive member 31 and the second thermal conductive member 32 are welded to the partition 33 .
  • the first thermal conductive member 31 is welded to the second convex portion 336, and the second thermal conductive member 32 is welded to the first convex portion 334 (please refer to Figure 11).
  • This connection method makes the separation
  • the member 33 can support the first thermal conductive member 31 and the second thermal conductive member 32 and improve the ability of the first thermal conductive member 31 and the second thermal conductive member 32 to resist expansion and deformation of the battery cell 20 .
  • the first thermal conductor 31 and the partition 33 are realized by welding, so that the connection stability between the first thermal conductor 31 and the partition 33 is better; the second thermal conductor 32 and the partition 33 are realized by welding, so that the second thermal conductor 32 and The connection stability of the partition 33 is better.
  • an embodiment of the present application provides a battery 100.
  • the battery 100 includes adjacent first battery cells 21, second battery cells 22 and a thermal management component 30 provided according to the embodiment of the first aspect.
  • the management component 30 is disposed between the first battery cell 21 and the second battery cell 22 , the first thermal conductive member 31 is thermally connected to the first battery cell 21 , and the second thermal conductive member 32 is thermally connected to the second battery cell 22 .
  • the fluid medium in the first flow channel 34 and the fluid medium in the second flow channel 35 can conduct heat exchange with the first battery unit 21 and the second battery unit 22 respectively, reducing the energy consumption of the first battery unit 21 and the second battery unit. Temperature difference of monomer 22.
  • the expansion of the first battery cell 21 will not squeeze or reduce the size of the second flow channel 35 corresponding to the second battery cell 22 or has little impact on the size of the second flow channel 35 corresponding to the second battery cell, so that The heat exchange capability of the second flow channel 35 corresponding to the second battery cell 22 is ensured; the expansion of the second battery cell 22 will not squeeze or reduce the size of the first flow channel 34 corresponding to the first battery cell 21 or cause damage to the first flow channel 34 corresponding to the first battery cell 21.
  • the size of the first flow channel 34 corresponding to a battery cell has little impact, thereby ensuring the heat exchange capability of the first flow channel 34 corresponding to the first battery cell 21 and ensuring the safety performance of the battery 100 using the thermal management component 30 .
  • first flow channel 34 and the second flow channel 35 correspond to the first battery cell 21 and the second battery cell 22 respectively, so the first flow channel 34 can withstand the deformation caused by the expansion of the first battery cell 21, and the second flow channel 34 can withstand the deformation caused by the expansion of the first battery cell 21.
  • the flow channel 35 can withstand the deformation caused by the expansion of the second battery cell 22. Therefore, the expansion of the first battery cell 21 has little or no interference with the expansion of the second battery cell 22.
  • the expansion of the second battery cell 22 has little or no impact on the expansion of the first battery cell 21, which is beneficial to the first battery cell 21 and the second battery cell.
  • the expansion of the body 22 is released, reducing the expansion of the first battery cell 21 and the second battery cell 22 and interfering with each other, causing the first battery cell 21 and the second battery cell 22 to release pressure in advance or a serious thermal runaway accident occurs, further Improve the safety performance of battery 100.
  • a thermal management component 30 can also be provided on the side of the first battery cell 21 facing away from the second battery cell 22 , and the side of the second battery cell 22 facing away from the first battery cell 21 .
  • a thermal management component 30 may also be provided on one side.
  • the thermal management component 30 located between the first battery cell 21 and the second battery cell 22 is defined as the first thermal management component 30a, located on a side of the first battery cell 21 away from the second battery cell 22.
  • the thermal management component 30 on the side of the second battery cell 22 is the second thermal management component 30b, and the thermal management component 30 on the side of the second battery cell 22 away from the first battery cell 21 is the third thermal management component 30c.
  • the fluid medium in the first flow channel 34 and the fluid medium in the second flow channel 35 of the first thermal management component 30a have opposite flow directions.
  • the fluid medium in the first flow channel 34 and the fluid medium in the second flow channel 35 of the second thermal management component 30b have opposite flow directions.
  • the fluid medium in the first flow channel 34 and the fluid medium in the second flow channel 35 of the third thermal management component 30c have opposite flow directions.
  • the second thermal conductive member 32 of the second thermal management component 30b is thermally connected to the side of the first battery cell 21 away from the second battery cell 22.
  • the flow direction of the fluid medium in the first flow channel 34 of the first thermal management component 30a and The direction of the second flow channel 35 of the second thermal management component 30b is opposite to that of the thermal management component 30. In this way, the heat exchange capabilities of the fluid media located on both sides of the first battery cell 21 along the second direction Z can complement each other, thereby reducing the difference in local temperature of the first battery cell 21 .
  • the first thermal conductive member 31 of the third thermal management component 30c is thermally connected to the side of the second battery cell 22 away from the first battery cell.
  • the flow direction of the fluid medium in the second flow channel 35 of the first thermal management component 30a and The direction of the first flow channel 34 of the third thermal management component 30c is opposite to that of the thermal management component 30. In this way, the heat exchange capabilities of the fluid media located on both sides of the second battery cell 22 along the second direction Z can complement each other, thereby reducing the difference in local temperature of the second battery cell 22 .
  • the thermal management component 30 is disposed between the first battery cell 21 and the second battery cell 22 , and the first thermal conductive member 31 is thermally connected to the first battery cell 21 , and the second thermal conductive member 32 is thermally connected to the second battery cell 22
  • Thermal conductive connection means that the fluid medium in the first flow channel 34 exchanges heat with the first battery cell 21 to adjust the temperature of the first battery cell 21, and the fluid medium in the second flow channel 35 interacts with the second battery cell 22. Heat exchange to adjust the temperature of the second battery cell 22 can reduce the temperature difference between the first battery cell 21 and the second battery cell 22, thereby ensuring the safety performance of the battery 100.
  • An embodiment of the present application also provides an electrical device.
  • the electrical device includes the battery 100 provided in any of the above embodiments.
  • the battery 100 provided by any of the above embodiments has good safety performance.
  • Electrical equipment can be powered by the battery 100 provided by any of the above embodiments, which can improve the safety of electricity consumption.
  • the embodiment of the present application provides a thermal management component 30 .
  • the thermal management component 30 includes a first thermal conductive member 31 , a second thermal conductive member 32 , a partition member 33 and a blocking member 39 .
  • the first heat conductive member 31, the partition member 33 and the second heat conductive member 32 are stacked.
  • the first thermal conductive member 31 and the second thermal conductive member 32 are welded, and both the first thermal conductive member 31 and the second thermal conductive member 32 are welded to the partition 33 .
  • the partition 33 is a corrugated plate, and the partition 33 and the blocking component 39 are integrally formed.
  • the partition 33 and the first thermal conductor 31 define a plurality of first flow channels 34 arranged along the first direction Y
  • the partition 33 and the second thermal conductor 32 define a plurality of second flow channels arranged along the first direction Y. Road 35. Both the first flow channel 34 and the second flow channel 35 extend along the second direction Z.
  • Each first flow channel 34 and each second flow channel 35 are connected with the communication cavity 36 .
  • the blocking member 39 blocks one end of the second flow channel 35 away from the communication cavity 36 in the second direction Z.
  • a diverting gap 310 is formed between the side of the blocking member 39 away from the communication cavity 36 in the second direction Z and the first heat conducting member 31 and the second heat conducting member 32 .
  • the first heat conductive member 31 is provided with a medium inlet 311 at one end away from the communication cavity 36 along the second direction Z.
  • a medium inflow pipe 37 is inserted in the medium inlet 311.
  • the medium inlet 311 and each first flow channel 34 are separated by Gap 310 is connected.
  • the second heat conductive member 32 is provided with a plurality of medium inlets 311 at one end away from the communication cavity 36 along the second direction Z.
  • Each medium inlet 311 is inserted with a medium outflow pipe 38 .
  • the medium outflow outlet 321 is connected to the second flow channel 35 They are arranged in a one-to-one correspondence.
  • the fluid medium enters the splitting gap 310 through the medium inflow pipe 37 and the medium inlet 311, and is then distributed from the splitting gap 310 to the first inlet of each first flow channel 34, and flows to the first outlet of the first flow channel 34, from each
  • the fluid medium flowing out of the first outlet of the first flow channel 34 is connected and collected, and then distributed from the communication chamber 36 to the second inlet of each second flow channel 35, so that the fluid medium enters the second flow channel 35 and flows to the second flow channel 35.
  • the liquid flows through the second outlet of the flow channel 35 and is discharged through the second outlet of the second flow channel 35 , the medium outflow port 321 and the medium outflow pipe 38 in sequence.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了一种热管理部件、电池及用电设备,涉及电池技术领域。热管理部件包括层叠设置的第一导热件、第二导热件和分隔件,分隔件设置于第一导热件和所述第二导热件之间,第一导热件和分隔件限定出第一流道,第二导热件和分隔件限定出第二流道。当热管理部件位于相邻的两个电池单体之间时,第一流道和第二流道分别对应相邻的两个电池单体,可以独立承受各自对应的电池单体膨胀导致的变形,一个电池单体膨胀对另一个电池单体的膨胀干涉很小或者不会对另一个电池单体的膨胀造成影响,有利于相邻的两个电池单体的膨胀释放,降低相邻的两个电池单体的膨胀相互干涉导致电池单体提前泄压或者发生严重的热失控事故,进一步提高电池的安全性能。

Description

热管理部件、电池及用电设备 技术领域
本申请涉及电池技术领域,具体而言,涉及一种热管理部件、电池及用电设备。
背景技术
二次电池,例如锂离子电池、钠离子电池、固态电池等,具备能量密度大、循环性能好等突出优点,并广泛应用于便携式电子设备、电动交通工具、电动工具、无人机、储能设备等领域。而电池的安全问题是用户主要关注的问题之一,也是制约电池发展的主要因素之一。因此,如何提高电池的安全性能成为电池领域亟待解决的问题。
发明内容
本申请实施例提供一种热管理部件、电池及用电设备,以提高电池的安全性能。
第一方面,本申请实施例提供一种热管理部件,包括层叠设置的第一导热件、第二导热件和分隔件,所述分隔件设置于所述第一导热件和所述第二导热件之间,所述第一导热件和所述分隔件共同限定出第一流道,所述第二导热件和所述分隔件共同限定出第二流道。
上述技术方案中,第一导热件和第二导热件分别限定出位于分隔件两侧的第一流道和第二流道,当热管理部件位于相邻的两个电池单体之间时,第一流道和第二流道分别对应相邻的两个电池单体,第一流道内的流体介质和第二流道内的流体介质可以分别与该两个电池单体进行热交换,减小相邻的两个电池单体的温度差异,一个电池单体的膨胀不会挤压减小另一个电池单体对应的流道的尺寸或者对另一个电池单体对应的流道的尺寸影响很小,从而保证另一个电池单体对应的流道的换热能力,从而保证使用该热管理部件的电池的安全性能。此外,第一流道和第二流道分别对应相邻的两个电池单体,可以独立承受各自对应的电池单体膨胀导致的变形,因此,一个电池单体膨胀对另一个电池单体的膨胀干涉很小或者不会对另一个电池单体的膨胀造成影响,有利于相邻的两个电池单体的膨胀释放,降低相邻的两个电池单体的膨胀相互干涉导致电池单体提前泄压或者发生严重的热失控事故,进一步提高电池的安全性能。
在本申请第一方面的一些实施例中,所述分隔件设置有第一凹槽,所述第一凹槽形成所述第一流道的部分。
上述技术方案中,设置在分隔件上的第一凹槽形成第一流道的部分,在保证第一流道的截面积足够的情况下,减小了热管理部件沿第一导热件、第二导热件和分隔件的层叠方向上的尺寸。
在本申请第一方面的一些实施例中,所述第一导热件封堵所述第一凹槽面向所述第一导热件的槽口,以形成所述第一流道。
上述技术方案中,第一导热件封堵第一凹槽面向第一导热件的槽口,以形成第一流道,使得第一导热件和分隔件在第一导热件、第二导热件和分隔件的层叠方向上设置的更加紧凑,从而减小了热管理部件沿第一导热件、第二导热件和分隔件的层叠方向上的尺寸。
在本申请第一方面的一些实施例中,所述分隔件设置有第二凹槽,所述第二凹槽形成所述第二流道的部分。
上述技术方案中,设置在分隔件上的第二凹槽形成第二流道的部分,在保证第二流道的截面积足够的情况下,减小了热管理部件沿第一导热件、第二导热件和分隔件的层叠方向上的尺寸。
在本申请第一方面的一些实施例中,所述第二导热件封堵所述第二凹槽面向所述第二导热件的槽口,以形成所述第二流道。
上述技术方案中,第二导热件封堵第二凹槽面向第二导热件的槽口,以形成第二流道,使得第二导热件和分隔件在第一导热件、第二导热件和分隔件的层叠方向上设置的更加紧凑,从而减小了热管理部件沿第一导热件、第二导热件和分隔件的层叠方向上的尺寸。
在本申请第一方面的一些实施例中,所述第一凹槽为多个,多个所述第一凹槽沿第一方向排列;和/或,所述第二凹槽为多个,多个所述第二凹槽沿所述第一方向排列,所述第一方向垂直于所述第一导热件、所述第二导热件和所述分隔件的层叠方向。
上述技术方案中,第一凹槽为多个,能够形成多个第一流道;和/或第二凹槽为多个,能够形成多个第二流道,使得热管理部件能够容纳更多的流体介质和使得流体介质分布更加均匀,有利于提高换热效率和换热均匀性,减小电池单体不同区域的温度差异。
在本申请第一方面的一些实施例中,所述第一凹槽和所述第二凹槽沿所述第一方向交替布置。
上述技术方案中,第一凹槽和第二凹槽沿第一方向交替布置,使得第一流道和第二流道沿第一方向交替布置,热管理部件位于相邻的两个电池单体之间时,与第一流道对应的电池单体沿第一方向温度分度较为均匀和与第二流道对应的电池单体沿第一方向温度分度较为均匀。
在本申请第一方面的一些实施例中,所述分隔件为波纹板。
上述技术方案中,分隔件为波纹板,结构简单。
在本申请第一方面的一些实施例中,所述分隔件包括本体部和第一分隔部,所述第一分隔部沿第二方向的两端分别连接于所述本体部和所述第一导热件,所述本体部、所述第一分隔部和所述第一导热件共同限定出所述第一流道,所述第二方向与所述第一导热件、所述第二导热件和所述分隔件的层叠方向平行。
上述技术方案中,本体部、第一分隔部和第一导热件共同限定出第一流道,使得热管理部件能够容纳更多的流体介质和使得流体介质分布更加均匀,有利于提高换热效率和换热均匀性,减小电池单体不同区域的温度差异。且第一分隔部能够支撑第一导热件,增强第一导热件抵抗变形的能力。
在本申请第一方面的一些实施例中,所述分隔件还包括第二分隔部,所述第二分隔部沿所述第二方向的两端分别连接于所述本体部和所述第二导热件,所述本体部、所述第二分隔部和所述第二导热件共同限定出所述第二流道。
上述技术方案中,本体部、第二分隔部和第二导热件共同限定出第二流道,使得热管理部件能够容纳更多的流体介质和使得流体介质分布更加均匀,有利于提高换热效率和换热均匀性,减小电池单体不同区域的温度差异。且第二分隔部能够支撑第一导热件,增强第二导热件抵抗变形的能力。
在本申请第一方面的一些实施例中,所述第一流道的延伸方向和所述第二流道的延伸方向一致。
上述技术方案中,第一流道的延伸方向和第二流道的延伸方向一致,方便制造。
在本申请第一方面的一些实施例中,沿所述第一流道和所述第二流道的延伸方向,所述第一流道具有第一进口和第一出口,所述第二流道具有第二进口和第二出口,所述第一进口至所述第一出口的方向与所述第二进口至所述第二出口的方向相反。
上述技术方案中,第一进口至第一出口的方向与第二进口至第二出口的方向相反,即第一流道内的流体介质的流动方向和第二流道内的流体介质的流动方向相反,电池单体越靠近对应的流道的进口处的区域的换热效果越好,电池单体越靠近对应的流道的出口处的区域的换热效果越差,第一流道和第二流道的这种布置方式能够减少电池内电池单体热管理的局部差异性,使得换热更加均匀。
在本申请第一方面的一些实施例中,所述热管理部件包括位于所述分隔件的一端的连通腔,所述第一流道与所述连通腔连通,所述第二流道与所述连通腔连通。
上述技术方案中,第一流道和连通腔连通以及第二流道和连通腔连通,则第一流道的流体介质能够流进第二流道,且从第一流道的出口流出的流体介质从第二流道的进口流进第二流道,这 种布置方式能够减少电池内电池单体热管理的局部差异性,使得换热更加均匀。
在本申请第一方面的一些实施例中,热管理部件包括介质流入口和介质流出口,介质流入口通过第一流道与连通腔连通,介质流出口通过第二流道与所述连通腔连通。
上述技术方案中,介质流入口和介质留出口的设置,便于流体介质进入第一流道和第二流道,且便于流体介质与电池单体换热后排出第一流道和第二流道,以使未进行换热的流体介质进入第一流道和第二流道,从而保证第一流道和第二流道内的流体介质的换热能力。
在本申请第一方面的一些实施例中,沿所述第一流道的延伸方向,所述介质流入口设置于所述第一导热件远离所述连通腔的一端;沿所述第二流道的延伸方向,所述介质流出口设置于所述第二导热件远离所述连通腔的一端。
上述技术方案中,介质流入口设置于第一导热件远离连通腔的一端,介质流出口设置于第二导热件远离连通腔的一端,则流体介质从介质流入口进入第一流道后沿第一流道的延伸方向流经整个第一流道并进入第二流道,并沿第二流道的延伸方向流经整个第二流道后从介质流出口排出,以使流体介质在热管理部件内流经的路径最长,以与电池单体充分换热,提高换热效率和换热均匀性。
在本申请第一方面的一些实施例中,所述第一流道沿其延伸方向远离所述连通腔的一端与所述第二流道沿其延伸方向远离所述连通腔的一端彼此不连通。
上述技术方案中,第一流道沿其延伸方向远离连通腔的一端与第二流道沿其延伸方向远离连通腔的一端彼此不连通,则流体介质进入第一流道后只能流经整个第一流道后从连通腔进入第二流道并流经整个第二流道后从介质流出口排出,以使流体介质在热管理部件内流经的路径最长,以与电池单体充分换热,提高换热效率和换热均匀性。
在本申请第一方面的一些实施例中,所述第一流道和所述第二流道均为多个,每个所述第一流道和每个所述第二流道均与所述连通腔连通。
上述技术方案中,第一流道和第二流道均为多个且均匀连通腔连通,每个第一流道的流体介质能够流进每个第二流道,且从第一流道的出口流出的流体介质从第二流道的进口流进第二流道,这种布置方式能够减少电池内电池单体热管理的局部差异性,使得换热更加均匀。
在本申请第一方面的一些实施例中,所述介质流入口为一个,每个所述第一流道连通所述连通腔和所述介质流入口。
上述技术方案中,质流入口为一个,则从介质流入口流入的流体介质能够被分配到每个第一流道,使得结构热管理部件的结构更加简单、便于制造。
在本申请第一方面的一些实施例中,所述介质流入口为多个,每个所述第一流道连通所述连通腔和一个所述介质流入口。
上述技术方案中,每个第一流道连通连通腔和一个介质流入口,便于独立控制各个第一流道的流体介质进入情况以及便于根据实际需要控制流体介质进入需要的第一流道,从而控制流体介质在热调节管内部的分布,以便合理调节电池单体的温度。
在本申请第一方面的一些实施例中,所述介质流出口为多个,每个所述第二流道连通所述连通腔和一个所述介质流出口。
上述技术方案中,每个第二流道连通连通腔和一个介质流出口,以使流体介质能够更快的排出第二流道,提高换热效率。
在本申请第一方面的一些实施例中,所述分隔件为一体成型结构。
上述技术方案中,分隔件为一体成型结构,便于制造且结构强度较好。
在本申请第一方面的一些实施例中,所述第一导热件与所述分隔件焊接,和/或,所述第二导热件与所述分隔件焊接。
上述技术方案中,通过焊接实现第一导热件和分隔件,使得第一导热件和分隔件的连接稳定性更好;通过焊接实现第二导热件和分隔件,使得第二导热件和分隔件的连接稳定性更好。
第二方面,本申请实施例提供一种电池,包括相邻的第一电池单体、第二电池单体和根据第一方面实施例提供的热管理部件,所述热管理部件设置于所述第一电池单体和所述第二电池单体之间,所述第一导热件与所述第一电池单体导热连接,所述第二导热件与所述第二电池单体导热连接。
上述技术方案中,热管理部件设置于第一电池单体和第二电池单体之间,且第一导热件与第一电池单体导热连接,第二导热件与第二电池单体导热连接,则第一流道内的流体介质和第一电池单体热交换,以调节第一电池单体的温度,第二流道内的流体介质与第二电池单体进行热交换,以调节第二电池单体的温度,能够减小第一电池单体和第二电池单体的温度差异,从而保证电池的安全性能。第一电池单体的膨胀不会挤压减小第二电池单体对应的第二流道的尺寸或者对第二电池单体对应的第二流道的尺寸影响很小,从而保证第二电池单体对应的第二流道的换热能力;第二电池单体的膨胀不会挤压减小第一电池单体对应的第一流道的尺寸或者对第一电池单体对应的第一流道的尺寸影响很小,从而保证第一电池单体对应的第一流道的换热能力,从而保证使用该热管理部件的电池的安全性能。此外,第一流道和第二流道分别对应第一电池单体和第二电池单体,因此第一流道可以承受因第一电池单体的膨胀导致的变形,第二流道可以承受因第二电池单体膨胀导致的变形,因此,第一电池单体膨胀对第二电池单体的膨胀干涉很小或者不会对第二电池单体的膨胀造成影响,第二电池单体膨胀对第一电池单体的膨胀干涉很小或者不会对第一电池单体的膨胀造成影响,有利于第一电池单体和第二电池单体的膨胀释放,降低第一电池单体和第二电池单体的膨胀相互干涉导致第一电池单体和第二电池单体提前泄压或者发生严重的热失控事故,进一步提高电池的安全性能。
第三方面,本申请实施例提供一种用电设备,包括第二方面实施例提供的电池。
上述技术方案中,第二方面实施例提供的电池安全性能较好,用电设备通过第二方面实施例提供的电池供电,能够提高用电安全。第一
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为现有技术中的电池的结构示意图;
图2为图1中电池的电池单体膨胀后的示意图;
图3为本申请一些实施例提供的车辆的结构示意图;
图4为本申请一些实施例提供的电池的爆炸图;
图5为本申请一些实施例提供的热管理部件的爆炸图;
图6为相邻的两个电池单体之间设置有热管理部件的示意图;
图7为图6中的电池单体膨胀后的示意图;
图8为本申请一些实施例提供的分隔件的示意图;
图9为具有图8中的分隔件的热管理部件的示意图;
图10为本申请另一些实施例提供的分隔件的示意图;
图11为具有图10中的分隔件的热管理部件的示意图;
图12为本申请一些实施例中分隔件为波纹板的示意图;
图13为本申请再一些实施例提供的热管理部件的结构示意图;
图14为本申请实施例提供的电池单体的两侧均设有热管理部件的结构示意图;
图15为本申请另一些实施例提供的热管理部件的结构示意图;
图16为本申请又一些实施例提供的热管理部件的结构示意图;
图17为本申请又一些实施例提供的电池的结构示意图。
图标:1000-车辆;100'、100-电池;10-箱体;11-第一部分;12-第二部分;20'、20-电池单体;21-第一电池单体;22-第二电池单体;30'、30-热管理部件;31-第一导热件;311-介质流入口;32-第二导热件;321-介质流出口;33-分隔件;331-第一凹槽;332-第一表面;333-第二表面;334-第一凸部;335-第二凹槽;336-第二凸部;337-本体部;338-第一分隔部;339-第二分隔部;34-第一流道;35-第二流道;36-连通腔;37-介质流入管;38-介质流出管;39-封堵件;310-分流间隙;30a-第一热管理部件;30b-第二热管理部件;30c-第三热管理部件;200-控制器;300-马达;X-第一导热件、第二导热件和分隔件的层叠方向;Y-第一方向;Z-第二方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请实施例的描述中,需要说明的是,指示方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,或者是本领域技术人员惯常理解的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。其中,电池温度是否合适是影响电池的 安全性能的重要因素之一。若是电池的温度过高,可能会导致电池单体内部发生热失控从而压力或温度骤升,严重可以导致电池单体爆炸、起火。若是电池温度过低,电池可能不能正常充放电,影响电池正常使用和电池的安全性能。
为了缓解电池温度不合适导致的电池安全问题,申请人研究发现,如图1、图2所示,可以在电池100'内部设置热管理部件30',以调节电池100'的电池单体20'的温度。在电池单体20'的温度过高时,热管理部件30'对电池单体20'降温;在电池单体20'的温度过低时,热管理部件30'对电池单体20'进行加热。然而,如图1所示,在相邻的第一电池单体21'和第二电池单体22'之间设置热管部件30'的情况下,沿第一电池单体21'和第二电池单体22'的堆叠方向,第一电池单体21'和第二电池单体22'共用热管理部件30'的一个流道。在电池100'充放电过程中,第一电池单体21'和第二电池单体22'会膨胀,则第一电池单体21'和第二电池单体22'膨胀时均挤压该流道,使得热管理部件30'发生形变,第一电池单体21'和第二电池单体22'中的一者膨时,第一电池单体21'和第二电池单体22'共同挤压热管理部件30'的流道,使得流道在第一电池单体21'和第二电池单体22'的堆叠方向上的尺寸变小,从而影响热管理部件30'对第一电池单体21'和第二电池单体22'中的另一者的温度调节效果。
此外,如图2所示,由于第一电池单体21'和第二电池单体22'的膨胀程度和膨胀时间并非完全一致,比如第一电池单体21'的膨胀量大于第二电池单体22'且第一电池单体21'先于第二电池单体22'膨胀,则第一电池单体21'膨胀使得热管理部件30'向靠近第二电池单体22'的方向形变,从而占据了第二电池单体22'的膨胀,影响第二电池单体22'的膨胀释放,可能导致第二电池单体22'提前泄压甚至出现严重的热失控。
基于上述考虑,为了缓解相邻的电池单体膨胀相互干涉的问题,发明人经过深入研究,设计了一种热管理部件,热管理部件包括层叠设置的第一导热件、第二导热件和分隔件,分隔件设置于第一导热件和第二导热件之间,第一导热件和分隔件共同限定出第一流道,第二导热件和分隔件共同限定出第二流道。
在该热管理部件设置于相邻的两个电池单体之间时,第一流道和第二流道分别对应相邻的两个电池单体,第一流道内的流体介质和第二流道内的流体介质可以分别与该两个电池单体进行热交换,减小相邻的两个电池单体的温度差异,一个电池单体的膨胀不会挤压减小另一个电池单体对应的流道的尺寸或者对另一个电池单体对应的流道的尺寸影响很小,从而保证另一个电池单体对应的流道的换热效果,从而保证使用该热管理部件的电池的安全性能。
此外,第一流道和第二流道分别对应相邻的两个电池单体,可以独立承受各自对应的电池单体膨胀导致的变形,因此,一个电池单体膨胀对另一个电池单体的膨胀干涉很小或者不会对另一个电池单体的膨胀造成影响,有利于相邻的两个电池单体的膨胀释放,降低相邻的两个电池单体的膨胀相互干涉导致电池单体提前泄压或者发生严重的热失控事故,提高电池的安全性能。
本申请实施例公开的热管理部件可以用于车辆、船舶或飞行器等用电设备的电池中,也可以用于由具备本申请公开的热管理部件的电池组成该用电设备的电源系统,这样,有利于缓解相邻的电池单体膨胀相互干涉的问题,提升电池的安全性。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆为例进行说明。
请参照图3,图3为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图4,图4为本申请一些实施例提供的电池100的爆炸图。电池100包括箱体10和电池单体20,电池单体20容纳于箱体10内。其中,箱体10用于为电池单体20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,第一部分11和第二部分12共同限定出用于容纳电池单体20的容纳空间。第二部分12可以为一端开口的空心结构,第一部分11可以为板状结构,第一部分11盖合于第二部分12的开口侧,以使第一部分11与第二部分12共同限定出容纳空间;第一部分11和第二部分12也可以是均为一侧开口的空心结构,第一部分11的开口侧盖合于第二部分12的开口侧。当然,第一部分11和第二部分12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。
在一些实施例中,电池100还包括热管理部件30,热管理部件30设置于箱体10内,用于调节箱体10内的电池单体20的温度。其中,热管理部件30可以是降低电池单体20的温度,也可以是升高电池单体20的温度。
热管理部件30可以是能够改变自身稳定从而和电池单体20进行热交换的结构,比如发热电阻丝、通有热交换介质以及根据所处的环境变化能够发生化学反应而产生温度变化的一些材料。通过热管理部件30自身的温度变化从而实现和电池单体20热交换。这种情况下,若是热管理部件30的温度低于电池单体20的温度,热管理部件30可以对电池单体20降温,避免电池单体20温度过高出现热失控;若是热管理部件30的温度高于电池单体20的温度,热管理部件30可以对电池单体20加热,以保证电池100能够正常工作。
热管理部件30也可以是能够容纳流体介质的结构,通过热管理部件30和绝缘件在电池单体20和流体介质之间传递热量,从而实现电池单体20和流体介质之间热交换。流体介质可以是液体(如,水)、气体(如,空气)。这种情况下,若是容纳在热管理部件30内部的流体介质的温度低于电池单体20的温度,热管理部件30可以对电池单体20降温,避免电池单体20温度过高出现热失控;若是容纳在热管理部件30内部的流体介质的温度高于电池单体20的温度,热管理部件30可以对电池单体20加热,以保证电池100能够正常工作。
如图5所示,在一些实施例中,热管理部件30包括层叠设置的第一导热件31、第二导热件32和分隔件33,分隔件33设置于第一导热件31和第二导热件32之间,第一导热件31和分隔件33共同限定出第一流道34,第二导热件32和分隔件33共同限定出第二流道35。
第一流道34和第二流道35均用于容纳流体介质,流体介质可以在第一流道34和第二流道35内流通。其中,第一流道34和第二流道35可以彼此独立,第一流道34内的流体介质不会进入第二流道35内,第二流道35内的流体介质不会进入第一流道34内。示例性地,沿第一流道34的延伸方向,第一流道34具有位于第一流道34两端的第一进口和第一出口,流体介质从第一进口进入第一流道34,并从第一出口排出第一流道34;沿第二流道35的延伸方向,第二流道35具有位于第二流道35两端的第二进口和第二出口,流体介质从第二进口进入第二流道35,并从第二出口排出第二流道35。
第一流道34和第二流道35可以彼此连通,第一流道34内的流体介质能够进入第二流道35或者第二流道35内的流体介质能够进入第一流道34。
电池单体20的数量可以是一个,也可以是多个。其中,多个是两个及两个以上。
在电池单体20为一个的实施例中,热管理部件30设置于电池单体20的一侧并位于电池单体20和箱体10的内壁之间。第一流道34相对第二流道35更加靠近电池单体20设置,第二流道35相对第一流道34更靠近箱体10的内壁设置。
在电池单体20为多个的实施例中,多个电池单体20沿某一方向(第一导热件、第二导热件和分隔件的层叠方向X)堆叠布置。如图6所示,相邻的两个电池单体20之间可以设置热管理部件30。为了方便叙述,定义相邻的两个电池单体20分别为第一电池单体21和第二电池单体22,第一流道34和第二流道35的布置方向与第一电池单体21和第二电池单体22的堆叠方向相同,第一流道34和第二流道35的布置方向与第一导热件、第二导热件和分隔件的层叠方向X相同。第一流道34对应第一电池单体21设置,第一导热件31用于与第一电池单体21导热连接,第一流道34内的流体介质用于与第一电池单体21热交换以调节第一电池单体21的温度;第二流道35对应第二电池单体22设置,第二导热件32用于与第二电池单体22导热连接,第二流道35内的流体介质用于与第二电池单体22热交换以调节第二电池单体22的温度。
导热连接是指两者之间能够进行热量传递,比如第一导热件31与第一电池单体21导热连接,则第一电池单体21和第一导热件31之间能够进行热量传动,则能够通过第一导热件31在第一流道34内的流体介质和第一电池单体21之间进行热量传递,从而实现第一流道34内的流体介质和第一电池单体21热交换。第二导热件32与第二电池单体22导热连接,则第二电池单体22和第二导热件32之间能够进行热量传动,则能够通过第二导热件32在第二流道35内的流体介质和第二电池单体22之间进行热量传递,从而实现第二流道35内的流体介质和第二电池单体22热交换
如图7所示,第一流道34内的流体介质和第二流道35内的流体介质可以分别与该两个电池单体20进行热交换,减小相邻的两个电池单体20的温度差异,一个电池单体20的膨胀不会挤压减小另一个电池单体20对应的流道的尺寸或者对另一个电池单体20对应的流道的尺寸影响很小,从而保证另一个电池单体20对应的流道的换热效果,从而保证使用该热管理部件30的电池100的安全性能。比如,第一流道34对应的电池单体20(第一电池单体21)膨胀,会使得第一流道34在第一导热件、第二导热件和分隔件的层叠方向X上的尺寸减小,但是第一电池单体21不会影响第二流道35在第一导热件、第二导热件和分隔件的层叠方向X的尺寸或者对第二流道在第一导热件、第二导热件和分隔件的层叠方向X的尺寸影响很小,从而保证第二流道35对对应的电池单体20(第二电池单体22)换热能力。同样的,第二流道35对应的电池单体20(第二电池单体22)膨胀,会使得第二流道35在第一导热件、第二导热件和分隔件的层叠方向X上的尺寸减小,但是第二电池单体22不会影响第一流道34在第一导热件、第二导热件和分隔件的层叠方向X的尺寸或者对第一流道34在第一导热件、第二导热件和分隔件的层叠方向X的尺寸影响很小,从而保证第一流道34对对应的电池单体20(第二电池单体22)换热能力。
由于第一流道34和第二流道35分别对应相邻的两个电池单体20,因此可以独立承受各自对应的电池单体20膨胀导致的变形,因此,一个电池单体20膨胀对另一个电池单体20的膨胀干涉很小或者不会对另一个电池单体20的膨胀造成影响,有利于相邻的两个电池单体20的膨胀释放,降低相邻的两个电池单体20的膨胀相互干涉导致电池单体20提前泄压或者发生严重的热失控事故,进一步提高电池100的安全性能。此外,第一流道34内的流体介质和第二流道35内的流体介质可以分别与该两个电池单体20进行热交换,减小相邻的两个电池单体20的温度差异,从而保证使用该热管理部件30的电池100的安全性能。
第一流道34的数量可以是一个或者多个,第二流道35的数量可以是一个或者多个。
在一些实施例中,第一流道34为多个,和/或,第二流道35为多个。
可以是第一流道34的数量为多个,第二流道35的数量为一个;也可以是第一流道34的数量为一个,第二流道35的数量为多个;也可以是第一流道34的数量为多个且第二流道35的数量为多个。在第一流道34为多个的实施例中,即第一导热件31和分隔件33共同限定出多个第一流道34,多个第一流道34沿第一方向Y依次排布,每个第一流道34沿第二方向Z延伸。第一方向Y垂直第二方向Z。在第二流道35为多个的实施例中,即第二导热件32和分隔件33共同限定 出多个第二流道35,多个第二流道35沿第一方向Y依次排布,每个第二流道35沿第二方向Z延伸。
在另一些实施例中,多个第一流道34的排布方向和多个第二流道35的排布方向可以不相同。第一流道34的延伸方向和第二流道35的延伸方向可以不相同。当然,多个第一流道34的延伸方向可以不相同,多个第二流道35的延伸方向也可以不相同。
第一流道34为多个和/或第二流道35为多个,使得热管理部件30能够容纳更多的流体介质和使得流体介质分布更加均匀,有利于提高换热效率和换热均匀性,减小电池单体20不同区域的温度差异。
第一流道34的成型方式有多种,在一些实施例中,如图8-图11所示,分隔件33设置有第一凹槽331,第一凹槽331形成第一流道34的部分。
“第一凹槽331形成第一流道34的部分”是指第一凹槽331的槽壁作为第一流道34的壁的部分。第一凹槽331有多种形式,比如,如图8所示,沿第一导热件、第二导热件和分隔件的层叠方向X,分隔件33具有面向第一导热件31的第一表面332和面向第二导热件32的第二表面333,第一表面332和第二表面333相对布置,第一凹槽331设置于第一表面332并向靠近第二表面333的方向凹陷。再比如,如图10所示,第一凹槽331设置于第一表面332,第一凹槽331从第一表面332向靠近第二表面333的方向凹陷,且在第二表面333的与第一凹槽331对应的位置形成第一凸部334。
第一凹槽331沿第二方向Z贯穿分隔件33的至少一端。在本实施例中,第一凹槽331沿第二方向Z贯穿分隔件33的两端,则流体介质可以从第一流道34沿第二方向Z的一端流入,从第一流道34沿第二方向Z的另一端流出。
设置在分隔件33上的第一凹槽331形成第一流道34的部分,在保证第一流道34的截面积足够的情况下,减小了热管理部件30沿第一导热件、第二导热件和分隔件的层叠方向X上的尺寸。
如图8-图11所示,在一些实施例种,第一导热件31封堵第一凹槽331面向第一导热件31的槽口,以形成第一流道34。
在一些实施例中,第一导热件31面向分隔件33的一侧与第一表面332相抵,以使第一导热件31封堵第一凹槽331的面向第一导热件31的槽口,从而形成第一流道34,换句话说,第一导热件31形成第一流道34的另一部分。因此,在第一导热件31面向分隔件33的一侧与第一表面332相抵的实施例中,第一凹槽331的槽壁作为第一流道34的壁的部分,第一导热件31面向分隔件33的表面作为第一流道34的壁的另一部分。第一导热件31面向分隔件33的一侧与第一表面332相抵,可以是第一导热件31面向分隔件33的表面与第一表面332接触,但没有连接关系,也可以是第一导热件31面向分隔件33的表面与第一表面332接触连接,比如焊接。
另一些实施例中,第一表面332未设置第一凹槽331,第一导热件31面向分隔件33的一侧与第一表面332之间存在间隙,则第一凹槽331、第一表面332和第一导热件31共同限定出第一流道34。
第一导热件31封堵第一凹槽331面向第一导热件31的槽口,以形成第一流道34,使得第一导热件31和分隔件33在第一导热件、第二导热件和分隔件的层叠方向X上设置的更加紧凑,从而减小了热管理部件30沿第一导热件、第二导热件和分隔件的层叠方向X上的尺寸。
在另一些实施例中,分隔件33的第一表面332未设置第一凹槽331,第一导热件31面向分隔件33的一侧与第一表面332之间存在间隙,第一表面332形成第一流道34的壁的部分,第一导热件31面向分隔件33的表面形成第一流道34的壁的另一部分。
第二流道35的成型方式有多种,如图8-图11所示,在一些实施例中,分隔件33设置有第二凹槽335,第二凹槽335形成第二流道35的部分。
“第二凹槽335形成第二流道35的部分”是指第二凹槽335的槽壁作为第二流道35的壁 的部分。第二凹槽335有多种形式,比如,如图7所示,沿第一导热件、第二导热件和分隔件的层叠方向X,第二凹槽335设置于第二表面333并向靠近第一表面332的方向凹陷。再比如,如图10所示,第二凹槽335设置于第二表面333,第二凹槽335从第二表面333向靠近第一表面332的方向凹陷,且在第一表面332的与第二凹槽335对应的位置形成第二凸部336。
第二凹槽335沿第二方向Z贯穿分隔件33的至少一端。在本实施例中,第二凹槽335沿第二方向Z贯穿分隔件33的两端,则流体介质可以从第二流道35沿第二方向Z的一端流入,从第二流道35沿第二方向Z的另一端流出。
设置在分隔件33上的第二凹槽335形成第二流道35的部分,在保证第二流道35的截面积足够的情况下,减小了热管理部件30沿第一导热件、第二导热件和分隔件的层叠方向X上的尺寸。
如图8-图11所示,在一些实施例中,第二导热件32封堵第二凹槽335面向第二导热件32的槽口,以形成第二流道35。
在一些实施例中,第二导热件32面向分隔件33的一侧与第二表面333相抵,以使第二导热件32封堵第二凹槽335的面向第二导热件32的槽口,从而形成第二流道35,换句话说,第二导热件32形成第一流道34的另一部分。因此,在第二导热件32面向分隔件33的一侧与第二表面333相抵的实施例中,第二凹槽335的槽壁作为第二流道35的壁的部分,第二导热件32面向分隔件33的表面作为第二流道35的壁的另一部分。第二导热件32面向分隔件33的一侧与第二表面333相抵,可以是第二导热件32面向分隔件33的表面与第二表面333接触,但没有连接关系,也可以是第二导热件32面向分隔件33的表面与第二表面333接触连接,比如焊接。
另一些实施例中,第二表面333未设置第二凹槽335,第二导热件32面向分隔件33的一侧与第二表面333之间存在间隙,则第二凹槽335、第二表面333和第二导热件32共同限定出第二流道35。
第二导热件32封堵第二凹槽335面向第二导热件32的槽口,以形成第二流道35,使得第二导热件32和分隔件33在第一导热件、第二导热件和分隔件的层叠方向X上设置的更加紧凑,从而减小了热管理部件30沿第一导热件、第二导热件和分隔件的层叠方向X上的尺寸。
请继续参照图8-图11,在第一流道34为多个的实施例中,第一凹槽331为多个,多个第一凹槽331沿第一方向Y排列,第一方向Y垂直于第一导热件、第二导热件和分隔件的层叠方向X。第一导热件31封堵多个第一凹槽331面向第一导热件31的槽口,从而形成多个第一流道34。
在第二流道35为多个的实施例中,第二凹槽335为多个,多个第二凹槽335沿第一方向Y排列,第一方向Y垂直于第一导热件、第二导热件和分隔件的层叠方向X。第二导热件32封堵多个第二凹槽335面向第二导热件32的槽口,从而形成多个第二流道35。
其中,分隔件33可以仅在第一表面332设置多个第一凹槽331,第二表面333设置一个第二凹槽335或者不设置第二凹槽335;或者分隔件33仅在第二表面333设置多个第二凹槽335,第一表面332设置一个第一凹槽331或者不设置第一凹槽331;或者分隔件33在第一表面332设置多个第一凹槽331且第二表面333设置多个第二凹槽335。
第一凹槽331为多个,能够形成多个第一流道34;和/或第二凹槽335为多个,能够形成多个第二流道35,使得热管理部件30能够容纳更多的流体介质和使得流体介质分布更加均匀,有利于提高换热效率和换热均匀性,减小电池单体20不同区域的温度差异。
请参照图8、图10,第一凹槽331和第二凹槽335沿第一方向Y交替布置。
“第一凹槽331和第二凹槽335在第一方向Y交替布置”,是指沿第一导热件、第二导热件和分隔件的层叠方向X,每个第二凹槽335在第一表面332上的投影沿第一方向Y的至少部分位于相邻的两个第一凹槽331之间;和/或,沿第一导热件、第二导热件和分隔件的层叠方向X,每个第一凹槽331在第二表面333上的投影沿第一方向Y的至少部分位于相邻的两个第二凹槽335之间,以使第一流道34和第二流道35在第一方向Y交替布置。图8、图9中示出了沿第一导热件、第二导热件和分隔件的层叠方向X,每个第二凹槽335在第一表面332上的投影全部位于相邻的两 个第一凹槽331之间的情况。图10、图11中示出了沿第一导热件、第二导热件和分隔件的层叠方向X,每个第二凹槽335在第一表面332上的投影沿第一方向Y的一部分位于相邻的两个第一凹槽331之间,每个第二凹槽335在第一表面332上的投影沿第一方向Y的另一部分与第一凹槽331重叠的情况。
第一凹槽331和第二凹槽335沿第一方向Y交替布置,使得第一流道34和第二流道35沿第一方向Y交替布置,热管理部件30位于相邻的两个电池单体20之间时,与第一流道34对应的电池单体20沿第一方向Y温度分度较为均匀和与第二流道35对应的电池单体20沿第一方向Y温度分度较为均匀。
请参照图10、图11、图12,在一些实施例中,分隔件33为波纹板。
在本实施例中,第一凹槽331设置于第一表面332,第一凹槽331从第一表面332向靠近第二表面333的方向凹陷,且在第二表面333的与第一凹槽331对应的位置形成第一凸部334;第二凹槽335设置于第二表面333,第二凹槽335从第二表面333向靠近第一表面332的方向凹陷,且在第一表面332的与第二凹槽335对应的位置形成第二凸部336,第一凹槽331和第二凹槽335沿第一方向Y交替布置,第一凸部334和第二凸部336沿第一方向Y交替布置,从而形成波纹板。
在另一些实施例中,分隔件33也可以是其他结构形式的部件,如图8、图9所示。
分隔件33为波纹板,结构简单,制造方便。
如图13所示,第一流道34的形成也可以是采用其他形式形成,比如,在另一些实施例中,分隔件33包括本体部337和第一分隔部338,第一分隔部338沿第二方向Z的两端分别连接于本体部337和第一导热件31,所本体部337、第一分隔部338和第一导热件31共同限定出第一流道34,第二方向Z与第一导热件、第二导热件和分隔件的层叠方向X平行。
本体部337和第一分隔部338均为平板结构,本体部337和第一导热件31之间限定出第一空间。第一分隔部338的数量可以是一个或者多个,在第一分隔部338为多个的实施例中,多个第一分隔部338沿第一方向Y间隔布置,多个第一分隔部338将第一空间分隔成多个第一子空间,从而本体部337、第一导热件31和多个第一分隔部338共同限定出多个第一流道34。本体部337和第一分隔部338可以一体成型,比如本体部337和第一分隔部338通过浇筑、挤压等一体成型工艺成型。本体部337和第一分隔部338分体设置,再通过焊接、焊接、螺钉连接等放置连接为整体。
本体部337、第一分隔部338和第一导热件31共同限定出多个第一流道34,使得热管理部件30能够容纳更多的流体介质和使得流体介质分布更加均匀,有利于提高换热效率和换热均匀性,减小电池单体20不同区域的温度差异。且第一分隔部338能够支撑第一导热件31,增强第一导热件31抵抗变形的能力。
第二流道35的形成也可以是采用其他形式形成,比如,请继续参照图13,分隔件33还包括第二分隔部339,第二分隔部339沿第二方向Z的两端分别连接于本体部337和第二导热件32,本体部337、第二分隔部339和第二导热件32共同限定出第二流道35。
本体部337和第二分隔部339均为平板结构,本体部337和第二导热件32之间限定出第二空间。第二分隔部339的数量可以是一个或者多个,在第二分隔部339为多个的实施例中,多个第二分隔部339沿第一方向Y间隔布置,多个第二分隔部339将第二空间分隔成多个第二子空间,从而本体部337、第二导热件32和多个第二分隔部339共同限定出多个第二流道35。本体部337和第二分隔部339可以一体成型,比如本体部337和第二分隔部339通过浇筑、挤压等一体成型工艺成型。本体部337和第二分隔部339分体设置,再通过焊接、焊接、螺钉连接等放置连接为整体。此外,本体部337、第一分隔部338和第二分隔部339三者可以一体成型。
本体部337、第二分隔部339和第二导热件32共同限定出多个第二流道35,使得热管理部件30能够容纳更多的流体介质和使得流体介质分布更加均匀,有利于提高换热效率和换热均匀性,减小电池单体20不同区域的温度差异。且第二分隔部339能够支撑第一导热件31,增强第二 导热件32抵抗变形的能力。
第一流道34和第二流道35可以沿相同的方向延伸,也可以沿不同的方向延伸。在本实施例中,第一流道34的延伸方向和第二流道35的延伸方向一致。第一流道34和第二流道35均沿第二方向Z延伸,方便制造。
对在第一流道34和第二流道35内流动的流体介质而言,沿流体介质的流动方向,第一流道34内的流体介质与对应的电池单体20的换热能力逐渐减弱,比如热管理部件30用于对电池单体20降温,沿流体介质的流动方向,位于第一流道34和第二流道35内的流体介质的温度会逐渐升高,温度较高的流体介质对电池单体20的降温能力减弱。
基于上述考虑,在一些实施例中,沿第一流道34和第二流道35的延伸方向,第一流道34具有第一进口(图中未示出)和第一出口(图中未示出),第二流道35具有第二进口(图中未示出)和第二出口(图中未示出),第一进口至第一出口的方向与第二进口至第二出口的方向相反。
第一进口供流体介质进入第一流道34,第一出口供流体介质排出第一流道34;第二进口供流体介质进入第二流道35,第二出口供流体介质排出第二流道35。
示例性地,如图14所示,在电池单体20的两侧均设有热管理部件30的实施例中,电池单体20一侧于一个热管理部件30的第一流道34对应,电池单体20另一侧与另一个热管理部件30的第二流道35对应,则该电池单体20的两侧的流体介质沿相反的方向流通,沿第一流道34和第二流道35的延伸方向(第二方向Z),第一流道34内的流体介质和第二流道35内的流体介质的换热能力能够互补,从而减小该电池单体20的局部温度的差异性。
因此,第一进口至第一出口的方向与第二进口至第二出口的方向相反,即第一流道34内的流体介质的流动方向和第二流道35内的流体介质的流动方向相反,电池单体20越靠近对应的流道的进口处的区域的换热效果越好,电池单体20越靠近对应的流道的出口处的区域的换热效果越差,第一流道34和第二流道35的这种布置方式能够减少电池100内电池单体20热管理的局部差异性,使得换热更加均匀。
如图15所示,在一些实施例中,热管理部件30包括位于分隔件33的一端的连通腔36,第一流道34与连通腔36连通,第二流道35与连通腔36连通。
连通腔36位于分隔件33的一端,分隔件33、第一导热件31和第二导热件32共同限定出连通连通腔36。在本实施例中,连通腔36为在第二方向Z位于分隔件33的一端和第一导热件31以及第二导热件32之间的间隙。
在另一些实施例中,连通腔36也可以是由其他结构形成,比如,热管理部件30还包括连通管,第一流道34和第二流道35通过连通管连通,连通管的内部通道即为连通腔36。
第一流道34和第二流道35的数量可以均为多个。在第一流道34数量为多个的实施例中,可以是全部第一流道34与连通腔36连通,则每个第一流道34内的流体介质从第一出口排出第一流道34后,经过连通腔36从第二进口进入第二流道35。在另一些实施例中,可以是多个第一流道34中的部分第一流道34与连通腔36连通,这些第一流道34中的流体介质从第一出口经过连通腔36后从第二进口进入第二流道35;多个第一流道34中的另一部分第一流道34未与连通腔36连通,这些第一流道34中的流体介质不能进入第二流道35。图15中的空心箭头所指的方向为流体介质在第一流道34和第二流道35内的流向。
在第二流道35数量为多个的实施例中,可以是全部第二流道35与连通腔36连通,则第一流道34内的流体介质从第一出口排出第一流道34后,经过连通腔36从第二进口可以进入每个第二流道35。在另一些实施例中,可以是多个第二流道35中的部分第二流道35与连通腔36连通,与连通腔36连通的第一流道34内的流体介质经过连通腔36后从第二进口进入与连通腔36连通的第二流道35;多个第二流道35中的另一部分第二流道35未与连通腔36连通,则第一流道34内的流体介质不能进入这些第二流道35。
在本实施例中,第一流道34和第二流道35的数量均为多个,每个第一流道34和每个第 二流道35均与连通腔36连通。
第一流道34和第二流道35的数量可以相同也可以不同。
第一流道34和连通腔36连通以及第二流道35和连通腔36连通,则第一流道34的流体介质能够流进第二流道35,且从第一流道34的出口(第一出口)流出的流体介质从第二流道35的进口(第二进口)流进第二流道35,这种布置方式能够减少电池100内电池单体20热管理的局部差异性,使得换热更加均匀。
请参照图5、图15、图16,在一些实施例中,热管理部件30包括介质流入口311和介质流出口321,介质流入口311通过第一流道34与连通腔36连通,介质流出口321通过第二流道35与所述连通腔36连通。
介质流入口311设置于第一导热件31,并与第一流道34连通,介质流出口321设置于第二导热件32,并与第二流道35连通。
流体介质从介质流入口311进入第一流道34,并经过连通腔36流进第二流道35后,从介质流出口321排出。流体介质在流动的过程中与电池单体20进行热交换。图15和图16中的空心箭头所指的方向均为流体介质在第一流道34和第二流道35内的流向。
介质流入口311和介质留出口的设置,便于流体介质进入第一流道34和第二流道35,且便于流体介质与电池单体20换热后排出第一流道34和第二流道35,以使未进行换热的流体介质进入第一流道34和第二流道35,从而保证第一流道34和第二流道35内的流体介质的换热能力。
请参照图15、图16,在一些实施例中,沿第一流道34的延伸方向,介质流入口311设置于第一导热件31远离连通腔36的一端;沿第二流道35的延伸方向,介质流出口321设置于第二导热件32远离连通腔36的一端。
第一流道34的延伸方向和第二流道35的延伸方向均与第二方向Z平行。在另一些实施例中,第一流道34的延伸方向和第二流道35的延伸方向可以不同,比如,第一流道34的延伸方向与第二方向Z平行,第二流道35的延伸方向与预设平行,预设方向与第二方向Z的夹角为锐角或者预设与第二方向Z垂直,预设方向垂直第一导热件、第二导热件和分隔件的层叠方向X。
介质流入口311插设有介质流入管37,方便介质流入口311与提供流体介质的设备连通。介质流出口321插设有介质流出管38,便于介质流出口321与回收流体介质的设备连通。
介质流入口311设置于第一导热件31远离连通腔36的一端,介质流出口321设置于第二导热件32远离连通腔36的一端,则流体介质从介质流入口311进入第一流道34后沿第一流道34的延伸方向流经整个第一流道34并进入第二流道35,并沿第二流道35的延伸方向流经整个第二流道35后从介质流出口321排出,以使流体介质在热管理部件30内流经的路径最长,以与电池单体20充分换热,提高换热效率和换热均匀性。
如图15、图16所示,在一些实施例中,第一流道34沿其延伸方向远离连通腔36的一端与第二流道35沿其延伸方向远离连通腔36的一端彼此不连通。
在本实施例中,第一流道34的延伸方向和第二流道35的延伸方向均与第二方向Z平行。连通腔36位于分隔件33沿第二方向Z的一端。如图16所示,热管理部件30还包括封堵件39,封堵件39设置于分隔件33沿第二方向Z远离连通腔36的一端,以封堵第二流道35沿第二方向Z远离连通腔36的一端,以阻止从介质流入口311进入第一流道34的流体介质在第一流道34内沿背离连通腔36的方向流进第二流道35。当然,在另一些实施例中,封堵件39设置于分隔件33沿第二方向Z远离连通腔36的一端,也可以用于封堵第一流道34沿第二方向Z远离连通腔36的一端,以阻止从介质流入口311进入第一流道34的流体介质在第一流道34内沿背离连通腔36的方向流进第二流道35。
封堵件39与分隔件33可以是分体设置,再将分体设置的封堵件39和分隔件33连接为整体结构,比如封堵件39和分隔件33通过焊接、粘接等方式连接为整体。封堵件39于分隔件33也可以是一体成型,比如通过浇筑、冲压等一体成型的工艺形成。
沿第一导热件、第二导热件和分隔件的层叠方向X,介质流出口321在分隔件33上的投影位于封堵件39面向连通腔36的一侧,以使第二流道35内的流体介质能够从介质流入口311排出。
第一流道34沿其延伸方向远离连通腔36的一端与第二流道35沿其延伸方向远离连通腔36的一端彼此不连通,则流体介质进入第一流道34后只能流经整个第一流道34后从连通腔36进入第二流道35并流经整个第二流道35后从介质流出口321排出,以使流体介质在热管理部件30内流经的路径最长,以与电池单体20充分换热,提高换热效率和换热均匀性。
在一些实施例中,第一流道34和第二流道35均为多个,每个第一流道34和每个第二流道35均与连通腔36连通。
在另一些实施例中,第一流道34的数量可以是一个,第二流道35的数量为多个,每个第二流道35均与连通腔36连通;或者第一流道34的数量和第二流道35的数量均为一个;或者第二流道35的数量可以是一个,第一流道34的数量为多个,每个第一流道34均与连通腔36连通。
第一流道34和第二流道35均为多个且均匀连通腔36连通,每个第一流道34的流体介质能够流进每个第二流道35,且从第一流道34的出口流出的流体介质从第二流道35的进口流进第二流道35,这种布置方式能够减少电池100内电池单体20热管理的局部差异性,使得换热更加均匀。
在第一流道34为多个的实施例中,介质流入口311的数量可以有不同的设置,比如,请结合参照图5、图16,在一些实施例中,介质流入口311为一个,每个第一流道34连通连通腔36和介质流入口311。
在封堵件39封堵第二流道35远离连通腔36的一端的实施例中,如图16所示,封堵件39背离连通腔36的一侧与第一导热件31和第二导热件32之间形成分流间隙310,介质流入口311与每个第一流道34通过分流间隙310连通。从介质流入口311流入的流体介质,进入分流间隙310,再从分流间隙310分配至每个第一流道34。
因此,质流入口为一个,便于实现各个第一流道34同步流入流体介质,且第一导热件31上设置的介质流入口311的数量较少,降低介质流入口311的设置对第一导热件31的结构强度的影响。也使得结构热管理部件30的结构更加简单、便于制造。
在另一些实施例中,介质流入口311为多个,每个第一流道34连通连通腔36和一个介质流入口311。
介质流入口311的数量和第一流道34的数量相同,且一一对应。每个介质流入口311供流体介质流入对应的第一流道34内,便于独立控制各个第一流道34的流体介质进入情况以及便于根据实际需要控制流体介质进入需要的第一流道34,从而控制流体介质在热调节管内部的分布,以便合理调节电池单体20的温度。
在第二流道35为多个的实施例中,如图3所示,介质流出口321为多个,每个第二流道35连通连通腔36和一个介质流出口321。
第二流道35为多个,介质流出口321为多个,介质流出口321和第二流道35一一对应设置,各个第二流道35内的流体介质从对应的介质流出口321排出。
在另一些实施例中,介质流出口321也可以为一个,该介质流出口321与每个第二流道35连通,所有第二流道35内的流体介质均从该介质流出口321排出。
而每个第二流道35连通连通腔36和一个介质流出口321,以使流体介质能够更快的排出第二流道35,提高换热效率。
在一些实施例中,分隔件33为一体成型结构。
分隔件33可以是采用冲压、浇筑等一体成型方式形成的结构。在分隔件33为波纹板的实施例中,波纹板采用冲压成型。分隔件33为一体成型结构,便于制造且结构强度较好。
在一些实施例中,第一导热件31可以是一体成型结构,第二导热件32可以是一体成型结构,比如第一导热件31和第二导热件32均采用浇筑或者冲压成型。
在一些实施例中,第一导热件31与分隔件33焊接,和/或,第二导热件32与分隔件33焊接。
可以是第一导热件31与分隔件33焊接,第二导热件32和分隔件33采用其他方式(比如粘接)连接或者第二导热件32与分隔件33接触而没有连接关系。也可以是第二导热件32与分隔件33焊接,第一导热件31和分隔件33采用其他方式(比如粘接)连接或者第一导热件31与分隔件33接触而没有连接关系,在本实施例中,第一导热件31和第二导热件32均与分隔件33焊接。在分隔板为波纹板的实施例中,第一导热件31与第二凸部336焊接,第二导热件32与第一凸部334焊接(请参照图11),这样的连接方式使得分隔件33能够起到支撑第一导热件31和第二导热件32的作用,提高第一导热件31和第二导热件32抵抗电池单体20膨胀变形的能力。
通过焊接实现第一导热件31和分隔件33,使得第一导热件31和分隔件33的连接稳定性更好;通过焊接实现第二导热件32和分隔件33,使得第二导热件32和分隔件33的连接稳定性更好。
如图17所示,本申请实施例提供一种电池100,电池100包括相邻的第一电池单体21、第二电池单体22和根据第一方面实施例提供的热管理部件30,热管理部件30设置于第一电池单体21和第二电池单体22之间,第一导热件31与第一电池单体21导热连接,第二导热件32与第二电池单体22导热连接。
第一流道34内的流体介质和第二流道35内的流体介质可以分别与第一电池单体21和第二电池单体22进行热交换,减小第一电池单体21和第二电池单体22的温度差异。
第一电池单体21的膨胀不会挤压减小第二电池单体22对应的第二流道35的尺寸或者对第二电池单体对应的第二流道35的尺寸影响很小,从而保证第二电池单体22对应的第二流道35的换热能力;第二电池单体22的膨胀不会挤压减小第一电池单体21对应的第一流道34的尺寸或者对第一电池单体对应的第一流道34的尺寸影响很小,从而保证第一电池单体21对应的第一流道34的换热能力,从而保证使用该热管理部件30的电池100的安全性能。
此外,第一流道34和第二流道35分别对应第一电池单体21和第二电池单体22,因此第一流道34可以承受因第一电池单体21的膨胀导致的变形,第二流道35可以承受因第二电池单体22膨胀导致的变形,因此,第一电池单体21膨胀对第二电池单体22的膨胀干涉很小或者不会对第二电池单体22的膨胀造成影响,第二电池单体22膨胀对第一电池单体21的膨胀干涉很小或者不会对第一电池单体21的膨胀造成影响,有利于第一电池单体21和第二电池单体22的膨胀释放,降低第一电池单体21和第二电池单体22的膨胀相互干涉导致第一电池单体21和第二电池单体22提前泄压或者发生严重的热失控事故,进一步提高电池100的安全性能。
请继续参照图17,在一些实施例中,第一电池单体21背离第二电池单体22的一侧也可以设置热管理部件30,第二电池单体22背离第一电池单体21的一侧也可以设置热管理部件30。为方便叙述,定义位于第一电池单体21和第二电池单体22之间的热管理部件30为第一热管理部件30a,位于第一电池单体21背离第二电池单体22的一侧的热管理部件30为第二热管理部件30b,位于第二电池单体22背离第一电池单体21的一侧的热管理部件30为第三热管理部件30c。
第一热管理部件30a的第一流道34内的流体介质和第二流道35内的流体介质的流动方向相反。第二热管理部件30b的第一流道34内的流体介质和第二流道35内的流体介质的流动方向相反。第三热管理部件30c的第一流道34内的流体介质和第二流道35内的流体介质的流动方向相反。
第二热管理部件30b的第二导热件32与第一电池单体21背离第二电池单体22的一侧导热连接,第一热管理部件30a的第一流道34的流体介质的流动方向和第二热管理部件30b的第二流道35的热管理部件30的方向相反。这样位于第一电池单体21的两侧的流体介质沿第二方向Z的换热能力能够互补,从而减小第一电池单体21的局部温度的差异性。
第三热管理部件30c的第一导热件31与第二电池单体22背离第一池单体的一侧导热连接,第一热管理部件30a的第二流道35的流体介质的流动方向和第三热管理部件30c的第一流道34的热管理部件30的方向相反。这样位于第二电池单体22的两侧的流体介质沿第二方向Z的换热能力能够互补,从而减小第二电池单体22的局部温度的差异性。
热管理部件30设置于第一电池单体21和第二电池单体22之间,且第一导热件31与第一电池单体21导热连接,第二导热件32与第二电池单体22导热连接,则第一流道34内的流体介质和第一电池单体21热交换,以调节第一电池单体21的温度,第二流道35内的流体介质与第二电池单体22进行热交换,以调节第二电池单体22的温度,能够减小第一电池单体21和第二电池单体22的温度差异,从而保证电池100的安全性能。
本申请实施例还提供一种用电设备,用电设备包括上述任意实施例提供的电池100。上述任意实施例提供的电池100安全性能较好,用电设备通过上述任意实施例提供的电池100供电,能够提高用电安全。
本申请实施例提供一种热管理部件30,热管理部件30包括第一导热件31、第二导热件32、分隔件33和封堵件39。第一导热件31、分隔件33和第二导热件32层叠设置。第一导热件31和第二导热件32焊接,第一导热件31和第二导热件32均与分隔件33焊接。
分隔件33为波纹板,分隔件33和封堵件39一体成型。分隔件33和第一导热件31限定出沿第一方向Y排布的多个第一流道34,分隔件33和第二导热件32限定出沿第一方向Y排布的多个第二流道35。第一流道34和第二流道35均沿第二方向Z延伸。分隔件33沿第二方向Z的一端与第一导热件31和第二导热件32之间具有间隙,以形成连通第一流道34和第二流道35的连通腔36,每个第一流道34和每个第二流道35均与连通腔36连通。封堵件39封堵第二流道35在第二方向Z上远离连通腔36的一端。封堵件39在第二方向Z上背离连通腔36的一侧与第一导热件31以及第二导热件32之间形成分流间隙310。
第一导热件31沿第二方向Z远离连通腔36的一端设置有一个介质流入口311,介质流入口311内插设有介质流入管37,介质流入口311和每个第一流道34通过分流间隙310连通。第二导热件32沿第二方向Z远离连通腔36的一端设置有多个介质流入口311,每个介质流入口311内插设有介质流出管38,介质流出口321与第二流道35一一对应设置,沿第一导热件、第二导热件和分隔件的层叠方向X上,介质流出口321在分隔件33上的投影位于封堵件39面向连通腔36的一侧。
流体介质经过介质流入管37和介质流入口311进入分流间隙310,再从分流间隙310分配至每个第一流道34的第一进口,并向第一流道34的第一出口流动,从每个第一流道34的第一出口流出的流体介质在连通汇集,再从连通腔36分配至每个第二流道35的第二进口,以使流体介质进入第二流道35,并向第二流道35的第二出口流动,并依次经过第二流道35的第二出口、介质流出口321和介质流出管38排出。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (24)

  1. 一种热管理部件,包括层叠设置的第一导热件、第二导热件和分隔件,所述分隔件设置于所述第一导热件和所述第二导热件之间,所述第一导热件和所述分隔件共同限定出第一流道,所述第二导热件和所述分隔件共同限定出第二流道。
  2. 根据权利要求1所述的热管理部件,其中,所述分隔件设置有第一凹槽,所述第一凹槽形成所述第一流道的部分。
  3. 根据权利要求2所述的热管理部件,其中,所述第一导热件封堵所述第一凹槽面向所述第一导热件的槽口,以形成所述第一流道。
  4. 根据权利要求2或3所述的热管理部件,其中,所述分隔件设置有第二凹槽,所述第二凹槽形成所述第二流道的部分。
  5. 根据权利要求4所述的热管理部件,其中,所述第二导热件封堵所述第二凹槽面向所述第二导热件的槽口,以形成所述第二流道。
  6. 根据权利要求4或5所述的热管理部件,其中,所述第一凹槽为多个,多个所述第一凹槽沿第一方向排列;和/或,所述第二凹槽为多个,多个所述第二凹槽沿所述第一方向排列,所述第一方向垂直于所述第一导热件、所述第二导热件和所述分隔件的层叠方向。
  7. 根据权利要求6所述的热管理部件,其中,所述第一凹槽和所述第二凹槽沿所述第一方向交替布置。
  8. 根据权利要求4-7任一项所述的热管理部件,其中,所述分隔件为波纹板。
  9. 根据权利要求1所述的热管理部件,其中,所述分隔件包括本体部和第一分隔部,所述第一分隔部沿第二方向的两端分别连接于所述本体部和所述第一导热件,所述本体部、所述第一分隔部和所述第一导热件共同限定出所述第一流道,所述第二方向与所述第一导热件、所述第二导热件和所述分隔件的层叠方向平行。
  10. 根据权利要求9所述的热管理部件,其中,所述分隔件还包括第二分隔部,所述第二分隔部沿所述第二方向的两端分别连接于所述本体部和所述第二导热件,所述本体部、所述第二分隔部和所述第二导热件共同限定出所述第二流道。
  11. 根据权利要求1-10任一项所述的热管理部件,其中,所述第一流道的延伸方向和所述第二流道的延伸方向一致。
  12. 根据权利要求11所述的热管理部件,其中,沿所述第一流道和所述第二流道的延伸方向,所述第一流道具有第一进口和第一出口,所述第二流道具有第二进口和第二出口,所述第一进口至所述第一出口的方向与所述第二进口至所述第二出口的方向相反。
  13. 根据权利要求1-12任一项所述的热管理部件,其中,所述热管理部件包括位于所述分隔件的一端的连通腔,所述第一流道与所述连通腔连通,所述第二流道与所述连通腔连通。
  14. 根据权利要求13所述的热管理部件,其中,所述热管理部件包括介质流入口和介质流出口,所述介质流入口通过所述第一流道与所述连通腔连通,所述介质流出口通过所述第二流道与所述连通腔连通。
  15. 根据权利要求14所述的热管理部件,其中,沿所述第一流道的延伸方向,所述介质流入口设置于所述第一导热件远离所述连通腔的一端;沿所述第二流道的延伸方向,所述介质流出口设置于所述第二导热件远离所述连通腔的一端。
  16. 根据权利要求15所述的热管理部件,其中,所述第一流道沿其延伸方向远离所述连通腔的一端与所述第二流道沿其延伸方向远离所述连通腔的一端彼此不连通。
  17. 根据权利要求14-16任一项所述的热管理部件,其中,所述第一流道和所述第二流道均为多个,每个所述第一流道和每个所述第二流道均与所述连通腔连通。
  18. 根据权利要求17所述的热管理部件,其中,所述介质流入口为一个,每个所述第一流道连通所述连通腔和所述介质流入口。
  19. 根据权利要求17所述的热管理部件,其中,所述介质流入口为多个,每个所述第一流道连通所述连通腔和一个所述介质流入口。
  20. 根据权利要求17-19任一项所述的热管理部件,其中,所述介质流出口为多个,每个所述第二流道连通所述连通腔和一个所述介质流出口。
  21. 根据权利要求1-20任一项所述的热管理部件,其中,所述分隔件为一体成型结构。
  22. 根据权利要求1-21任一项所述的热管理部件,其中,所述第一导热件与所述分隔件焊接,和/或,所述第二导热件与所述分隔件焊接。
  23. 一种电池,包括:
    相邻的第一电池单体和第二电池单体;
    根据权利要求1-22任一项所述的热管理部件,所述热管理部件设置于所述第一电池单体和所述第二电池单体之间,所述第一导热件与所述第一电池单体导热连接,所述第二导热件与所述第二电池单体导热连接。
  24. 一种用电设备,包括根据权利要求23所述的电池。
PCT/CN2022/099229 2022-02-21 2022-06-16 热管理部件、电池及用电设备 WO2023240552A1 (zh)

Priority Applications (21)

Application Number Priority Date Filing Date Title
CN202280007191.7A CN116802896A (zh) 2022-06-16 2022-06-16 热管理部件、电池及用电设备
PCT/CN2022/099229 WO2023240552A1 (zh) 2022-06-16 2022-06-16 热管理部件、电池及用电设备
CN202380008510.0A CN116868417A (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070125 WO2023155620A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008509.8A CN116802897A (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070133 WO2023155623A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014347.6U CN219203386U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014583.8U CN219203337U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008511.5A CN116724443A (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014354.6U CN219203336U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014214.9U CN219203335U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008512.XA CN116848705A (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070135 WO2023155624A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070131 WO2023155622A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014474.6U CN220042013U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008508.3A CN116491016A (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014404.0U CN219575742U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008507.9A CN116745978A (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070126 WO2023155621A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070136 WO2023155625A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320147776.0U CN219642916U (zh) 2022-06-16 2023-01-17 热管理部件、电池及用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/099229 WO2023240552A1 (zh) 2022-06-16 2022-06-16 热管理部件、电池及用电设备

Publications (1)

Publication Number Publication Date
WO2023240552A1 true WO2023240552A1 (zh) 2023-12-21

Family

ID=87814616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099229 WO2023240552A1 (zh) 2022-02-21 2022-06-16 热管理部件、电池及用电设备

Country Status (2)

Country Link
CN (2) CN116802896A (zh)
WO (1) WO2023240552A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023240552A1 (zh) * 2022-06-16 2023-12-21 宁德时代新能源科技股份有限公司 热管理部件、电池及用电设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216298A (ja) * 2013-04-30 2014-11-17 日立オートモティブシステムズ株式会社 電池モジュール
DE102018000759A1 (de) * 2018-01-31 2018-07-12 Daimler Ag Kühleinrichtung zum Kühlen einer Batterie eines Kraftfahrzeugs, insbesondere eines Kraftwagens
DE102018117059A1 (de) * 2018-07-13 2020-01-16 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batteriemodul für eine Traktionsbatterie eines elektrisch antreibbaren Kraftfahrzeugs
CN114608368A (zh) * 2020-12-08 2022-06-10 绍兴三花新能源汽车部件有限公司 换热器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007087090A2 (en) * 2006-01-25 2007-08-02 Advanced Energy Technology Inc. Heat spreaders with vias
CN108337748B (zh) * 2017-01-20 2021-02-23 比亚迪股份有限公司 加热装置
FR3063182B1 (fr) * 2017-02-23 2019-07-12 Valeo Systemes Thermiques Systeme de conditionnement thermique d'un vehicule automobile mettant en oeuvre un dispositif de gestion thermique d'un pack-batterie
GB2586058A (en) * 2019-08-01 2021-02-03 Senior Uk Ltd Contra flow channel battery heat exchanger
CN113571795B (zh) * 2020-04-29 2023-10-13 比亚迪股份有限公司 温控组件及电池包
CN112151724B (zh) * 2020-10-15 2022-05-13 中国第一汽车股份有限公司 一种壳体、动力电池总成及电动车
CN216055057U (zh) * 2021-06-25 2022-03-15 比亚迪股份有限公司 电池包箱体、电池包和车辆
CN216120483U (zh) * 2021-10-15 2022-03-22 宁德时代新能源科技股份有限公司 一种隔热装置、电池及用电设备
CN216389636U (zh) * 2021-12-16 2022-04-26 宁德时代新能源科技股份有限公司 电池模块、电池和用电设备
WO2023240552A1 (zh) * 2022-06-16 2023-12-21 宁德时代新能源科技股份有限公司 热管理部件、电池及用电设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216298A (ja) * 2013-04-30 2014-11-17 日立オートモティブシステムズ株式会社 電池モジュール
DE102018000759A1 (de) * 2018-01-31 2018-07-12 Daimler Ag Kühleinrichtung zum Kühlen einer Batterie eines Kraftfahrzeugs, insbesondere eines Kraftwagens
DE102018117059A1 (de) * 2018-07-13 2020-01-16 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batteriemodul für eine Traktionsbatterie eines elektrisch antreibbaren Kraftfahrzeugs
CN114608368A (zh) * 2020-12-08 2022-06-10 绍兴三花新能源汽车部件有限公司 换热器

Also Published As

Publication number Publication date
CN219642916U (zh) 2023-09-05
CN116802896A (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
CN216872114U (zh) 电池和用电设备
CN217182265U (zh) 电池和用电设备
WO2024021304A1 (zh) 热管理部件、电池以及用电设备
WO2024021248A1 (zh) 电池单体、电池及用电设备
WO2023240552A1 (zh) 热管理部件、电池及用电设备
WO2023078187A1 (zh) 电池组、电池的热管理系统以及用电装置
WO2024104020A1 (zh) 电池箱体、电池及用电装置
WO2023240407A1 (zh) 热管理部件、热管理系统、电池及用电装置
US20230268588A1 (en) Battery, power consumption device, and method and device for producing battery
WO2023185244A1 (zh) 一种散热结构、高压盒、电池和用电装置
CN216903119U (zh) 电池热管理系统、电池及用电装置
CN219144347U (zh) 一种大容量电池壳体及大容量电池
WO2023245501A1 (zh) 热管理部件、热管理系统、电池及用电装置
WO2024021293A1 (zh) 热管理部件、电池以及用电装置
CN216872163U (zh) 箱体、电池以及用电装置
WO2024031418A1 (zh) 电池、用电装置以及电池的成型方法
WO2023155208A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023164993A1 (zh) 热管理部件、电池及用电装置
WO2023092363A1 (zh) 电池箱体、电池、用电装置及电池箱体制造方法
WO2024065814A1 (zh) 集流体、热管理组件、电池以及用电装置
CN218677326U (zh) 电池及用电装置
CN219066968U (zh) 热管理组件、电池和用电装置
WO2023245502A1 (zh) 热管理部件、热管理系统、电池及用电装置
CN220106668U (zh) 电池的热防护构件、电池箱、电池及用电装置
CN220510175U (zh) 电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946241

Country of ref document: EP

Kind code of ref document: A1