WO2023245330A1 - 电池及用电设备 - Google Patents

电池及用电设备 Download PDF

Info

Publication number
WO2023245330A1
WO2023245330A1 PCT/CN2022/099786 CN2022099786W WO2023245330A1 WO 2023245330 A1 WO2023245330 A1 WO 2023245330A1 CN 2022099786 W CN2022099786 W CN 2022099786W WO 2023245330 A1 WO2023245330 A1 WO 2023245330A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
insulating member
thermal management
management component
battery cell
Prior art date
Application number
PCT/CN2022/099786
Other languages
English (en)
French (fr)
Inventor
郭海建
蔡秋红
黄小腾
侯跃攀
宋飞亭
胡利军
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/099786 priority Critical patent/WO2023245330A1/zh
Priority to CN202280007287.3A priority patent/CN116802926A/zh
Priority to PCT/CN2023/070133 priority patent/WO2023155623A1/zh
Priority to CN202380008512.XA priority patent/CN116848705A/zh
Priority to PCT/CN2023/070125 priority patent/WO2023155620A1/zh
Priority to CN202320014474.6U priority patent/CN220042013U/zh
Priority to PCT/CN2023/070131 priority patent/WO2023155622A1/zh
Priority to CN202380008510.0A priority patent/CN116868417A/zh
Priority to CN202320014583.8U priority patent/CN219203337U/zh
Priority to CN202320014404.0U priority patent/CN219575742U/zh
Priority to CN202320014214.9U priority patent/CN219203335U/zh
Priority to CN202380008511.5A priority patent/CN116724443A/zh
Priority to CN202380008508.3A priority patent/CN116491016A/zh
Priority to PCT/CN2023/070135 priority patent/WO2023155624A1/zh
Priority to CN202380008507.9A priority patent/CN116745978A/zh
Priority to PCT/CN2023/070126 priority patent/WO2023155621A1/zh
Priority to CN202320014354.6U priority patent/CN219203336U/zh
Priority to PCT/CN2023/070136 priority patent/WO2023155625A1/zh
Priority to CN202380008509.8A priority patent/CN116802897A/zh
Publication of WO2023245330A1 publication Critical patent/WO2023245330A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/597Protection against reversal of polarity

Definitions

  • the present application relates to the field of battery technology, specifically, to a battery and electrical equipment.
  • Secondary batteries such as lithium-ion batteries, sodium-ion batteries, solid-state batteries, etc.
  • have outstanding advantages such as high energy density and good cycle performance, and are widely used in portable electronic devices, electric vehicles, power tools, drones, and energy storage Equipment and other fields.
  • the safety of batteries is one of the main concerns of users and one of the main factors restricting the development of batteries. Therefore, how to improve the safety performance of batteries has become an urgent problem in the battery field.
  • Embodiments of the present application provide a battery and electrical equipment to improve the safety performance of the battery.
  • inventions of the present application provide a battery.
  • the battery includes a battery cell and a thermal management component.
  • the thermal management component is used for heat exchange with the battery cell; wherein, an insulating member is provided on the surface of the thermal management component, and the insulating member is used for heat exchange. Used to insulate battery cells and thermal management components.
  • an insulating member is provided on the surface of the thermal management component, and no insulating structure is provided on the surface of the battery cell or the blue film on the surface of the battery cell is damaged or the water vapor inside the battery condenses on the surface of the thermal management component.
  • the insulating member provided on the surface of the thermal management component can insulate between the battery cell and the thermal management component, reducing the risk of battery short circuit, thereby improving the safety performance of the battery.
  • the thermal conductivity of the insulating member is ⁇ 0.1W/(m ⁇ K).
  • the ⁇ of the insulating part is ⁇ 0.1W/(m ⁇ K), so that the insulating part has better thermal conductivity, so that the battery cell and the thermal management component have better thermal conductivity, thereby improving the battery performance.
  • the heat transfer efficiency between the unit and the thermal management components is ⁇ 0.1W/(m ⁇ K), so that the insulating part has better thermal conductivity, so that the battery cell and the thermal management component have better thermal conductivity, thereby improving the battery performance.
  • the density G of the insulating member is ⁇ 1.5 g/cm3.
  • the density G of the insulating part is ⁇ 1.5g/cm3.
  • the weight of the insulating part can be made smaller, thereby making the weight of the battery smaller. Reducing the impact of the installation of insulating parts on the weight of the battery is beneficial to the lightweight of the battery.
  • the compressive strength P of the insulating member satisfies 0.01MPa ⁇ P ⁇ 200MPa.
  • the compressive strength P of the insulating member satisfies 0.01MPa ⁇ P ⁇ 200MPa, which can make the insulating member have a certain elasticity and enable the insulating member to reduce the impact on the overall battery through its own deformation when the battery cell expands and deforms.
  • the elastic insulator can also play a buffering role through its own deformation when the battery is subjected to impact, playing a certain protective role for the battery cells and improving the safety of the battery.
  • the material of the insulating member includes at least one of polyethylene terephthalate, polyimide, and polycarbonate.
  • polyethylene terephthalate, polyimide, and polycarbonate have the advantages of good impact strength and heat aging resistance.
  • the thermal management component includes a heat regulating tube for containing the fluid medium and for heat exchange with the battery cell, and the insulating member further includes a first insulating member, and the first insulating member is It is at least partially disposed between the heat regulating tube and the battery cell.
  • the heat regulating tube is used to accommodate the fluid medium.
  • the fluid medium flows in the heat regulating tube and can transfer its own heat to the battery cell or take away the heat of the battery cell, thereby regulating the temperature of the battery cell.
  • Temperature regulation The method is simple and efficient.
  • At least part of the first insulating member is arranged between the heat regulating tube and the battery cell, which can insulate and isolate the heat exchange tube and the battery cell while performing heat exchange, thereby improving the safety of the battery.
  • the thickness of the first insulating member is h 1
  • the wall thickness of the heat regulating tube is h 2
  • the thickness of the first insulating member is h 1
  • the wall thickness of the heat regulating tube is h 2
  • h 1 /h 2 ⁇ 0.00625
  • the larger the creepage distance between the heat exchange tube and the battery cell the higher the safety.
  • the first insulating member is elastic, the first Even if the insulator is compressed and deformed, a large distance can be separated between the heat exchange tube and the battery cell, thereby reducing the risk of electrical contact between the two in various usage scenarios.
  • a partition is provided inside the heat regulating tube, and the partition is used to separate the inside of the heat regulating tube to form a plurality of flow channels.
  • the separator separates the interior of the heat regulating tube to form multiple flow channels, which facilitates the control of the distribution of the fluid medium inside the heat regulating tube according to actual needs, so as to reasonably adjust the temperature of the battery cells.
  • the thermal management component further includes a manifold, the manifold includes a manifold chamber connected to a plurality of flow channels, the insulating member further includes a second insulating member, and the second insulating member At least part of the component is disposed between the manifold and the battery cell.
  • the manifold is connected to multiple flow channels, the manifold can be arranged at the inlet and/or outlet of the multiple flow channels, and the manifold can be used to flow the fluid medium at the inlet of the multiple flow channels.
  • Channel distribution can also be used for collection at the outlet of multiple flow channels.
  • At least part of the second insulating member is disposed between the manifold and the battery cell to insulate and isolate the manifold and the battery cell. Improve the overall safety of the battery.
  • the second insulating member covers at least part of the outer surface of the manifold to insulate and isolate the battery cells and the manifold.
  • the second insulating member covers at least part of the outer surface of the manifold.
  • the second insulating member may completely cover the outer surface of the manifold, or may only cover the side surface of the manifold facing the battery cells.
  • the second insulating member It can be used to insulate and isolate bus pipes and battery cells, thereby reducing the risk of battery short circuit and improving battery safety performance.
  • the thickness of the second insulating member is h 3
  • the wall thickness of the heat regulating tube is h 2
  • the thermal management component is inserted between two adjacent battery cells.
  • the preset direction can be the thickness direction, length direction, etc. of the battery cells.
  • the thermal management component is inserted into two adjacent battery cells.
  • the thermal management component can conduct heat transfer with the battery cells on both sides at the same time. Exchange can improve the efficiency of heat exchange.
  • an embodiment of the present application provides an electrical device, including the battery provided in the embodiment of the first aspect.
  • the battery provided by the embodiment of the first aspect has better safety performance, and the electrical equipment is powered by the battery provided by the embodiment of the first aspect, which can improve the safety of electricity consumption.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Figure 2 is an exploded view of a battery provided by some embodiments of the present application.
  • Figure 3 is a schematic diagram of a partial structure of a battery provided by some embodiments of the present application.
  • Figure 4 is an isometric view of a thermal management component provided by some embodiments of the present application.
  • Figure 5 is a cross-sectional view of a thermal management component provided by some embodiments of the present application.
  • Figure 6 is an enlarged view of position A in Figure 5 in this application;
  • Figure 7 is a cross-sectional view of a thermal management component provided with a partition inside according to some embodiments of the present application.
  • Figure 8 is an enlarged view of B in Figure 5;
  • Figure 9 is an enlarged view of C in Figure 5;
  • Figure 10 is a cross-sectional view of a thermal management component provided by other embodiments of the present application.
  • Figure 11 is an enlarged view of D in Figure 10;
  • Figure 12 is an enlarged view of position E in Figure 10.
  • Icon 1000-vehicle; 100-battery; 10-box; 11-first part; 12-second part; 20-battery cell; 30-thermal management component; 31-thermal regulation tube; 32-divider; 33 - flow channel; 34-manifold; 34a-manifold chamber; 341-first manifold; 3411-first manifold chamber; 3412-medium inlet; 342-second manifold; 3421-second manifold chamber; 3422- Medium outlet; 36-first guide tube; 361-first limiter; 37-second guide tube; 371-second limiter; 40-insulator; 40a-first insulator; 40b-th Two insulators; 40c-third insulator; 200-controller; 300-motor; X-first direction; Y-second direction; Z-third direction.
  • the indicated orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, or the orientation or positional relationship in which the product of this application is commonly placed when used, or the orientation or positional relationship of this application.
  • the orientation or positional relationship commonly understood by those skilled in the art is only for the convenience of describing the present application and simplifying the description, and does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation on this application.
  • the terms “first”, “second”, “third”, etc. are only used to distinguish descriptions and shall not be understood as indicating or implying relative importance.
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. . As the application fields of power batteries continue to expand, their market demand is also constantly expanding.
  • the battery includes a box and multiple battery cells.
  • the multiple battery cells are accommodated in the box.
  • the multiple battery cells are connected in series, in parallel or in mixed connection.
  • Mixed connection means that the multiple battery cells are both in series and in parallel.
  • Multiple battery cells can be directly connected in series, parallel, or mixed together, and then the whole composed of multiple battery cells can be accommodated in the box.
  • the surface of the battery cell is provided with a blue film.
  • the blue film covers the outer surface of the battery cell casing to prevent the shells of adjacent battery cells from contacting or the shells of the battery cells. Contact between the body and the box causes a short circuit.
  • a water-cooling plate or heating plate is installed between adjacent battery cells.
  • the surface of the water-cooling plate or heating plate has no insulation protection, and the water vapor inside the battery is easily liquefied on the water-cooling plate or heating plate.
  • On the surface of the board if the blue film is damaged, the risk of battery short circuit will further increase.
  • the inventor designed a battery after in-depth research.
  • the battery includes a battery cell and a thermal management component for heat exchange with the battery cell.
  • An insulating piece is provided on the surface of the management component, and the insulating piece can be used to insulate and isolate the battery cell and the thermal management component.
  • the insulator is set on the surface of the thermal management component and is not easily damaged by the expansion of the battery cell shape or self-heating.
  • the insulator provided on the surface of the thermal management component can insulate between the battery cells and the thermal management component, reducing the risk of battery short circuit.
  • the batteries disclosed in the embodiments of the present application can be used, but are not limited to, in electrical equipment such as vehicles, ships, or aircrafts. They can also be used in power systems equipped with the batteries disclosed in the present application to form the electrical equipment. In this way, it is beneficial to alleviate battery problems.
  • the blue film of the battery cell is damaged or the water vapor liquefies on the surface of the thermal management component, causing the problem of battery short circuit and improving the safety of electrical equipment.
  • Embodiments of the present application provide an electrical device that uses a battery as a power source.
  • the electrical device may be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric vehicle, a ship, a spacecraft, etc.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • an electrical device is a vehicle.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but also can be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is an exploded view of the battery 100 provided by some embodiments of the present application.
  • the battery 100 includes a case 10 and battery cells 20 , and the battery cells 20 are accommodated in the case 10 .
  • the box 10 is used to provide an accommodation space for the battery cells 20, and the box 10 can adopt a variety of structures.
  • the box 10 may include a first part 11 and a second part 12 , the first part 11 and the second part 12 cover each other, and the first part 11 and the second part 12 jointly define a space for accommodating the battery cells 20 of accommodation space.
  • the second part 12 may be a hollow structure with one end open, and the first part 11 may be a plate-like structure.
  • the first part 11 covers the open side of the second part 12 so that the first part 11 and the second part 12 jointly define a receiving space.
  • the first part 11 and the second part 12 may also be hollow structures with one side open, and the open side of the first part 11 is covered with the open side of the second part 12.
  • the box 10 formed by the first part 11 and the second part 12 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • the battery 100 there may be a plurality of battery cells 20, and the plurality of battery cells 20 may be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the plurality of battery cells 20 are connected in series and in parallel.
  • the plurality of battery cells 20 can be directly connected in series or in parallel or mixed together, and then the whole composed of the plurality of battery cells 20 can be accommodated in the box 10 ; of course, the battery 100 can also be a plurality of battery cells 20 First, the battery modules are connected in series, parallel, or mixed to form a battery module, and then multiple battery modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 10 .
  • the battery 100 may also include other structures.
  • the battery 100 may further include a bus component for realizing electrical connections between multiple battery cells 20 .
  • Each battery cell 20 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 20 may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes.
  • the battery 100 includes a battery cell 20 and a thermal management component 30 .
  • the thermal management component 30 is disposed on one side of the battery cell 20 .
  • the thermal management component 30 is used to regulate the battery.
  • the thermal management component 30 is a structure that exchanges heat with the battery cell 20 , such as a heating resistance wire, a heat conductive member passing a heat exchange medium, and some materials that can undergo chemical reactions to produce temperature changes according to changes in the environment. Heat exchange with the battery cell 20 is achieved through the temperature change of the thermal management component 30 itself. In this case, if the temperature of the thermal management component 30 is lower than the temperature of the battery cell 20 , the thermal management component 30 can cool down the battery cell 20 to avoid thermal runaway due to excessive temperature of the battery cell 20 ; The temperature is higher than the temperature of the battery cell 20 , the thermal management component 30 can heat the battery cell 20 to ensure that the battery 100 can operate normally.
  • the thermal management component 30 may also be a structure capable of accommodating the fluid medium, and heat is transferred between the battery cell 20 and the fluid medium through the thermal management component 30 and the insulator 40, thereby achieving heat exchange between the battery cell 20 and the fluid medium.
  • the fluid medium can be liquid (eg, water) or gas (eg, air).
  • the thermal management component 30 can cool down the battery cell 20 to avoid thermal runaway due to excessive temperature of the battery cell 20 ; If the temperature of the fluid medium contained inside the thermal management component 30 is higher than the temperature of the battery cell 20, the thermal management component 30 can heat the battery cell 20 to ensure that the battery 100 can operate normally.
  • the insulating member 40 is connected to the surface of the thermal management component 30 so that the insulating member 40 can cover part or all of the surface of the thermal management component 30 .
  • the number of battery cells 20 may be one or multiple. Among them, multiple means two or more.
  • the thermal management component 30 may be disposed on one side of the battery cell 20 and between the battery cell 20 and the inner wall of the box 10 .
  • the insulating member 40 may only insulate and isolate the battery cell 20 and the thermal management component 30 .
  • the insulating member 40 can not only insulate and isolate the battery cell 20 and the thermal management component 30, but also can insulate and isolate the thermal management component 30 and the inner wall of the box 10, further reducing the risk of short circuit of the battery 100, thereby further improving the efficiency of the battery 100. Battery 100 safe.
  • the plurality of battery cells 20 are stacked and arranged along a certain direction (the third direction Z).
  • a thermal management component 30 may be provided between two adjacent battery cells 20 .
  • the insulating member 40 disposed on the thermal management component 30 between two adjacent battery cells 20 can simultaneously insulate and isolate the two battery cells 20 and the thermal management component 30 .
  • a thermal management component 30 may also be provided between the two battery cells 20 at the end and the inner wall of the box 10, and an insulating member 40 connected to the thermal management component 30 Only the battery cells 20 and the thermal management component 30 may be insulated.
  • the insulating member 40 connected to the thermal management component 30 may insulate the battery cells 20 and the thermal management component 30 as well as the thermal management component 30 . and the inner wall of the box 10 to further reduce the risk of short circuit of the battery 100, thereby further improving the safety of the battery 100.
  • the thermal management component 30 is provided with an insulating member 40 on its surface, and no insulation structure is provided on the surface of the battery cell 20 or the blue film on the surface of the battery cell 20 is damaged or the water vapor inside the battery 100 liquefies on the surface of the thermal management component 30 , the insulating member 40 disposed on the surface of the thermal management component 30 can insulate between the battery cell 20 and the thermal management component 30 , reducing the risk of short circuit of the battery 100 , thereby improving the safety performance of the battery 100 .
  • the insulating member 40 plays an insulating role between the thermal management component 30 and the battery cell 20 , in some embodiments, the insulating member 40 may have better thermal conductivity so that the insulating member 40 can transfer heat. effect. Therefore, in some embodiments, the thermal conductivity coefficient ⁇ of the insulating member 40 ⁇ 0.1 W/(m ⁇ K).
  • Thermal conductivity refers to the heat transferred through an area of 1 square meter in 1 hour for a 1m thick material with a temperature difference of 1 degree (K, °C) on both sides of the material.
  • the unit is watt/m ⁇ degree. (W/(m ⁇ K), where K can be replaced by °C).
  • the ⁇ ⁇ 0.1 W/(m ⁇ K) of the insulating member 40 can make the insulating member 40 have better thermal conductivity, so that the battery cell 20 and the thermal management component 30 can have better heat conduction capability, thereby improving the battery performance.
  • the density G of the insulating member 40 is ⁇ 1.5 g/cm 3 .
  • the density G of the insulating member 40 ⁇ 1.5g/cm 3 makes the weight of the insulating member 40 smaller, thereby making the weight of the battery 100 smaller, reducing the impact of the arrangement of the insulating member 40 on the weight of the battery 100 , and benefiting the battery 100 Lightweight.
  • the compressive strength P of the insulating member 40 satisfies 0.01MPa ⁇ P ⁇ 200MPa.
  • Compressive strength refers to the maximum compressive stress that a sample endures until it breaks or yields during a compression test.
  • the compressive strength P of the insulating member 40 satisfies 0.01MPa ⁇ P ⁇ 200MPa, which can make the insulating member 40 have a certain degree of elasticity, and can enable the insulating member 40 to reduce the impact on the overall battery 100 through its own deformation when the battery cell 20 expands and deforms.
  • the elastic insulating member 40 can also play a buffering role through its own deformation when the battery 100 is subjected to impact, thereby playing a certain protective role for the battery cells 20 and improving the safety of the battery 100 .
  • the material of the insulating member 40 includes at least one of polyethylene terephthalate, polyimide, and polycarbonate.
  • the material of the insulating member 40 may include only one of polyethylene terephthalate, polyimide, and polycarbonate. In other embodiments, the material of the insulating member 40 may include two or three types of polyethylene terephthalate, polyimide, and polycarbonate.
  • the insulating member 40 includes a stacked first insulating part and a second insulating part. The first insulating part is made of polyethylene terephthalate, and the second insulating part is made of polyimide, or the first insulating part is made of polyimide.
  • the material of the insulating part is polyimide, and the material of the second insulating part is polycarbonate, or the material of the first insulating part is polyethylene terephthalate, and the material of the second insulating part is polycarbonate.
  • the insulating member 40 includes a stacked first insulating part, a second insulating part and a third insulating part.
  • the first insulating part is made of polyethylene terephthalate
  • the second insulating part is made of polyethylene terephthalate.
  • the material of the third insulating part is polycarbonate.
  • the material of the insulating member 40 includes at least one of polyethylene terephthalate, polyimide, and polycarbonate.
  • the insulating member 40 has the advantages of good impact strength and good heat aging resistance.
  • the thermal conductivity of polyethylene terephthalate is generally 0.24W/m ⁇ K
  • the thermal conductivity of polyimide is generally 0.1-0.5W/m ⁇ K
  • the thermal conductivity of polycarbonate is generally 0.16-0.25W. /m ⁇ K. Therefore, all three materials have good thermal conductivity. If at least one of the three materials is used to form the insulating member 40, the insulating member 40 will have better thermal conductivity and improve the thermal conductivity of the battery cell 20.
  • the heat exchange performance and heat exchange efficiency between components 30 are managed.
  • the battery cell 20 and the thermal management component 30 are connected through an insulator 40 .
  • the insulator 40 may be connected only to the thermal management component 30 .
  • the insulating member 40 is connected to both the thermal management component 30 and the battery cell 20 , so that the battery cell 20 , the thermal management component 30 , and the insulating member 40 can maintain a relatively stable connection relationship, thus The relative stability of the insulating member 40 , the thermal management component 30 and the battery cell 20 is improved, and the risk of insulation failure caused by the movement of the insulating member 40 between the thermal management component 30 and the battery cell 20 is reduced.
  • the insulating member 40 is a coating applied on the surface of the thermal management component 30 . That is, the insulating member 40 is connected to the thermal management component 30 in a coating manner. In this case, the insulating member 40 may or may not be connected to the battery cell 20 .
  • the insulating member 40 is a coating applied on the surface of the thermal management component 30, which can make the insulating member 40 and the thermal management component 30 fit more closely, thereby improving the connection stability of the insulating member 40 and the thermal management component 30 and reducing the insulation. The risk of component 40 detaching from thermal management component 30.
  • the insulating member 40 and the thermal management component 30 are connected through an adhesive layer.
  • the adhesive layer may be a glue layer disposed on the insulating member 40 and/or the thermal management component 30 . After the adhesive layer adheres the thermal management component 30 and the insulating component 40, the adhesive layer is located between the thermal management component 30 and the insulating component 40.
  • the insulating member 40 may be connected to the battery cell 20 through another adhesive layer, or may not be connected to the battery cell 20 .
  • the insulation component 40 and the thermal management component 30 are connected through an adhesive layer, and the connection method is simple and convenient.
  • the insulating member 40 is potted between the thermal management component 30 and the battery cell 20 . Potting is a process in which a liquid compound is poured into a device mechanically or manually, and then solidifies into a thermosetting polymer insulation material with excellent performance under normal temperature or heating conditions.
  • the insulating member 40 is provided between the thermal management component 30 and the battery cell 20 by potting, which can strengthen the integrity of the overall structure formed by the battery cell 20, the insulating member 40 and the thermal management component 30, and improve the resistance to external impact and The ability to vibrate.
  • the thermal management component 30 includes a thermal adjustment tube 31 for containing the fluid medium and for heat exchange with the battery cell 20
  • the insulation member 40 includes The first insulating member 40 a is at least partially disposed between the heat regulating tube 31 and the battery cell 20 .
  • the thermal management component 30 may be disposed on one side of the battery cell 20 along the thickness direction. At least part of the first insulating member 40a covers at least part of the outer surface of the heat regulating tube 31. At least part of the first insulating member 40 a may only cover part of the outer surface of the heat regulating tube 31 , for example, at least part of the first insulating member 40 a covers the outer surface of the heat regulating tube 31 facing the battery cell 20 . At least part of the first insulating member 40a may cover the entire outer surface of the heat regulating tube 31.
  • the battery cell 20 and the thermal management component 30 are connected through the insulating member 40
  • the battery cell 20 and the heat regulating tube 31 may be connected through the first insulating member 40a.
  • the heat regulating tube 31 contains a fluid medium, and heat is transferred between the battery cell 20 and the fluid medium through the heat regulating tube 31 and the first insulating member 40a. If the temperature of the fluid medium contained in the heat regulating tube 31 is lower than the temperature of the battery cell 20, the thermal management component 30 can cool down the battery cell 20 to avoid thermal runaway due to excessive temperature of the battery cell 20; The temperature of the fluid medium inside the regulating tube 31 is higher than the temperature of the battery cell 20 , and the thermal management component 30 can heat the battery cell 20 to ensure that the battery 100 can operate normally.
  • the heat regulating tube 31 is used to accommodate the fluid medium.
  • the fluid medium flows in the heat regulating tube 31 and can transfer its own heat to the battery cell 20 (heating the battery cell 20) or take away the heat of the battery cell 20 (heating the battery cell 20).
  • the temperature of the battery cell 20 is lowered), thereby adjusting the temperature of the battery cell 20.
  • the temperature adjustment method is simple and efficient.
  • the thickness of the first insulating member 40a is h 1
  • the wall thickness of the heat regulating tube 31 is h 2
  • h1/h2 can be 0.01, 0.015, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, etc.
  • the thickness of the first insulating member 40 a is h 1
  • the wall thickness of the heat regulating tube 31 is h 2
  • the first insulating member 40a is an elastic member so that the first insulating member 40a has buffering properties
  • the first insulating member 40a will Buffering capacity is limited.
  • Thermal regulating tubes 31 with different wall thicknesses have different requirements for the buffering capacity of the first insulating member 40a.
  • the monomer 20 generates greater stress, and the better the buffering performance of the first insulating member 40a is, the smaller the stress generated can be. Therefore, h 1 /h 2 ⁇ 0.00625. Therefore, the first insulating member 40a has better buffering performance.
  • a partition 32 is provided inside the heat regulating tube 31 .
  • the partition 32 is used to separate the inside of the heat regulating tube 31 to form a plurality of flow channels 33 arranged along the first direction X.
  • the first direction X is parallel to the width direction of the battery cell 20 .
  • the partition 32 and the heat regulating tube 31 can be integrally formed.
  • the partition 32 and the heat regulating tube 31 are formed through an integral molding process such as pouring and extrusion.
  • the partition 32 and the heat regulating tube 31 may also be arranged separately and then connected to the inner wall of the heat regulating tube 31 through welding, bonding, snapping, etc.
  • the first direction is a square-shell battery
  • only one flow channel 33 may be formed inside the heat regulating tube 31 .
  • the partitions 32 divide the interior of the thermal conditioning to form a plurality of flow channels 33 .
  • Each flow channel 33 extends along the second direction Y, and the second direction Y is perpendicular to the first direction X.
  • the second direction Y is parallel to the length direction of the battery cell 20 .
  • Each flow channel 33 can be independent of each other or connected with each other. Only some of the plurality of flow channels 33 may contain the fluid medium, or each of the flow channels 33 may contain the fluid medium. Therefore, the partition 32 divides the interior of the heat regulating tube 31 to form a plurality of flow channels 33 to facilitate controlling the distribution of the fluid medium inside the heat regulating tube 31 according to actual needs, so as to reasonably adjust the temperature of the battery cell 20 .
  • the thermal management component 30 further includes a manifold 34.
  • the manifold 34 includes a manifold chamber 34a (shown in Figures 8 and 9).
  • the manifold chamber 34a (shown in Figures 8 and 9) 34a is connected with the plurality of flow channels 33.
  • the insulating member 40 includes a second insulating member 40b. At least part of the second insulating member 40b is disposed between the manifold 34 and the battery cell 20.
  • the manifold 34 can be located on one side of the battery cell 20. Since the manifold 34 also contains a fluid medium, the manifold 34 can also be used to exchange heat with the battery cell 20.
  • the insulating member 40b covers at least part of the outer surface of the manifold 34.
  • the second insulating member 40b can completely cover the outer surface of the manifold 34, or can only cover the side surface of the manifold 34 facing the battery cell 20.
  • the second insulating member 40b It can be used to insulate and isolate the bus pipe 34 and the battery cells 20, thereby reducing the risk of battery short circuit and improving the safety performance of the battery.
  • the manifold 34 includes a first manifold 341 and a second manifold 342; the first manifold 341 is provided with a medium inlet 3412, and the first manifold 341 is provided with a medium inlet 3412.
  • the first manifold chamber 3411 connected to the medium inlet 3412 is formed inside the manifold 341
  • the second manifold 342 is provided with a medium outlet 3422
  • the second manifold chamber 3421 connected to the medium outlet 3422 is formed inside the second manifold 342.
  • the first merging chamber 3411 and the second merging chamber 3421 are both connected to each flow channel 33 .
  • the medium inlet 3412 is provided at the first manifold 341, and the medium outlet 3422 is provided at the second manifold 342.
  • the first manifold chamber 3411 of the first manifold 341 and the second manifold chamber 3421 of the second manifold 342 are connected with each flow. If the channels 33 are connected, the fluid medium can enter the first merging chamber 3411 from the medium inlet 3412, and then be distributed to each flow channel 33 through the first merging chamber 3411.
  • the fluid medium in each flow channel 33 can flow along the second direction Y.
  • the second manifold 342 is collected in the second manifold chamber 3421 and discharged from the medium outlet 3422.
  • the thermal management component 30 may not be provided with a manifold 34, and each flow channel 33 may be provided with a medium inlet 3412 and a medium outlet 3422.
  • the fluid medium enters the flow from the respective medium inlet 3412 of each flow channel 33. channel 33, and discharged from their respective flow channels 33. This arrangement facilitates independent control of the total amount and flow rate of the fluid medium in each flow channel 33 .
  • the arrangement of the first manifold 341 is conducive to the distribution of the fluid medium to each flow channel 33 and the uniformity of temperature adjustment of the battery cells 20
  • the arrangement of the second manifold 342 is conducive to the rapid discharge of the fluid medium. , improve heat exchange efficiency.
  • the second insulating member 40b covers at least part of the outer surface of the manifold 34 to insulate the battery cells 20 and the manifold 34 .
  • the second insulating member 40b covers at least part of the outer surface of the manifold 34 can be understood to mean that part of the second insulating member 40b covers at least part of the outer surface of the first manifold 341 to insulate and isolate the battery cell 20 and the third.
  • only part of the second insulating part 40b may cover at least part of the outer surface of the first bus part 341 or only part of the second insulating part 40b may cover at least part of the outer surface of the second bus part 342, or the second insulating part 40b
  • the portion of the second insulating member 40b covers at least part of the outer surface of the first bus part 341 and the part of the second insulating part 40b covers at least part of the outer surface of the second bus part 342.
  • the part of the second insulating part 40b may only cover part of the outer surface of the first bus part 341, such as part of the second insulating part 40b. Only the outer peripheral surface of the first busbar 341 is covered, and the two end surfaces of the first busbar 341 along the first direction The creepage distance between the battery cell 20 and the part of the first bus part 341 that does not cover the insulating part 40 reduces the risk of short circuit of the battery 100; or the part of the insulating part 40 covers the entire outer surface of the first bus part 341. In other embodiments, as shown in FIGS. 10 and 11 , the insulating member 40 may not cover the outer surface of the first bus piece 341 .
  • the first busbar 341 extends along the first direction X
  • the second busbar 342 extends along the first direction X.
  • part of the insulating part 40 may only cover part of the outer surface of the second bus part 342, for example, part of the insulating part 40 only covers the second bus part 342.
  • the outer peripheral surface of the bus 342, while the two end surfaces of the second bus 342 along the first direction The creepage distance between the body 20 and the part of the second bus part 342 that does not cover the insulating part 40 is reduced, thereby reducing the risk of short circuit of the battery 100; or the part of the second insulating part 40b covers the entire outer surface of the second bus part 342.
  • the insulating member 40 may not cover the outer surface of the second bus piece 342 .
  • the second insulating piece covers at least part of the outer surface of the manifold.
  • the second insulating piece can completely cover the outer surface of the manifold, or can only cover the side surface of the manifold facing the battery cells.
  • the second insulating piece can be used for Insulation separates the bus pipe and battery cells, thereby reducing the risk of battery short circuit and improving battery safety performance.
  • the thickness of the second insulating member is h3
  • the wall thickness of the heat regulating tube is h2
  • h3 / h2 ⁇ 0.00625 is a thickness of the second insulating member
  • h 3 /h 2 can be 0.01, 0.015, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, etc.
  • the medium inlet 3412 is provided with a first guide tube 36, and the medium outlet 3422 is provided with a second guide tube 37.
  • the insulating member 40 also includes a third insulating member 40c; a portion of the third insulating member 40c covers the outer surface of the first conduit 36, so that the insulation isolates the battery cell 20 and the first conduit 36; and/or, Part of the third insulating member 40c covers the outer surface of the second flow conduit 37, so that the battery cell 20 and the second flow conduit 37 are insulated.
  • Only the medium inlet 3412 may be provided with the first guide tube 36, or only the medium outlet 3422 may be provided with the second guide tube 37, or the medium inlet 3412 may be provided with the first guide tube 36 and the medium outlet 3422 may be provided with the third guide tube 37.
  • Two guide tubes 37. Figures 4 and 5 show the situation where the medium inlet 3412 is provided with the first guide tube 36 and the medium outlet 3422 is provided with the second guide tube 37.
  • part of the insulator 40 when part of the insulating member 40 covers the outer surface of the first guide tube 36 , part of the insulator 40 may only cover part of the outer surface of the first guide tube 36 . , for example, part of the insulating member 40 only covers the outer peripheral surface of the first guide tube 36 , while the two axial end surfaces of the first guide tube 36 are not covered by the insulating member 40 , whereas the insulating member 40 only covers the heat regulating tube. 31.
  • the case of the first busbar 341 and the second busbar 342 can increase the gap between the battery cells 20 (shown in Figures 2 and 3) and the portion of the first guide tube 36 that does not cover the insulator 40.
  • the insulating member 40 covers the entire outer surface of the first guide tube 36 . In other embodiments, as shown in FIGS. 10 and 11 , the insulating member 40 may not cover the outer surface of the first guide tube 36 .
  • part of the insulator 40 may only cover part of the outer surface of the second guide tube 37 , for example, part of the insulating member 40 only covers the outer peripheral surface of the second guide tube 37 , while the two axial end surfaces of the second guide tube 37 are not covered by the insulating member 40 , whereas the insulating member 40 only covers the heat regulating tube. 31.
  • the case of the first busbar 341 and the second busbar 342 can increase the gap between the battery cell 20 (shown in Figures 2 and 3) and the portion of the second guide tube 37 that does not cover the insulator 40.
  • the insulating member 40 may not cover the outer surface of the second guide tube 37 .
  • the first guide tube 36 and the second guide tube 37 are coaxially arranged, and the axial direction of the first guide tube 36 and the axial direction of the second guide tube 37 are both aligned with The second direction Y is parallel.
  • one end of the first guide tube 36 is inserted into the medium inlet 3412 on the first manifold 341 and is welded to the first manifold 341 .
  • One end of the second guide tube 37 is inserted into the medium outlet 3422 on the second manifold 342 and is welded to the second manifold 342 .
  • the outer peripheral surface of the first guide tube 36 is provided with a first limiting portion 361 .
  • the first limiting portion 361 protrudes from the outer peripheral surface of the first guide tube 36 along the radial direction of the first guide tube 36 .
  • the first limiting portion 361 The portion 361 is used to limit the distance that the first guide tube 36 is inserted into the first bus piece 341 .
  • the first limiting portion 361 abuts against the outer wall of the first manifold 341 .
  • the first guide tube 36 can be welded to the first bus piece 341 through the first limiting portion 361 .
  • the second limiting portion 371 is provided on the outer circumferential surface of the second guiding tube 37 .
  • the second limiting portion 371 protrudes from the outer circumferential surface of the second guiding tube 37 along the radial direction of the second guiding tube 37 .
  • the portion 371 is used to limit the distance at which the second guide tube 37 is inserted into the second manifold 342 .
  • the second limiting portion 371 abuts against the outer wall of the second manifold 342 .
  • the second flow guide tube 37 can be welded to the second manifold 342 through the second limiting portion 371 .
  • the medium inlet 3412 may not be provided with the first guide tube 36
  • the medium outlet 3422 may not be provided with the second guide tube 37 .
  • the arrangement of the first guide tube 36 facilitates the fluid medium to enter the first confluence chamber 3411 of the first confluence part 341
  • the arrangement of the second guide tube 37 facilitates the fluid medium to be discharged from the second confluence chamber 3421 of the second confluence part 342 .
  • Part of the insulating member 40 covers the outer surface of the first guide tube 36, which can insulate and isolate the first guide tube 36 and the battery cell 20, and/or part of the insulating member 40 covers the outer surface of the second guide tube 37,
  • the second flow tube 37 and the battery cell 20 can be insulated and isolated, thereby reducing the risk of short circuit of the battery 100 and improving the safety performance of the battery 100 .
  • the first busbar 341 and the second busbar 342 are respectively located on both sides of the battery cell 20 , and the first direction X and the second direction Y are perpendicular.
  • the first bus part 341 and the second bus part 342 are respectively located on both sides of the battery cell 20, so that the arrangement direction of the first bus part 341 and the second bus part 342 is staggered with the extension direction of the tabs of the battery cell 20, so that The first bus part 341 and the second bus part 342 are staggered from the electric energy output pole of the battery cell 20 to prevent the first bus part 341 and the second bus part 342 from affecting the charging and discharging of the battery cell 20 or to avoid the first bus part 341 and the second bus 342 affect the series, parallel or mixed connection between the battery cells 20 .
  • the plurality of battery cells 20 are stacked and arranged along the third direction Z.
  • the third direction Z is parallel to the thickness direction of the battery cell 20 .
  • the first direction X, the second direction Y and the third direction Z are perpendicular to each other.
  • the heat regulating tube 31 extends beyond both ends of the battery cell 20 in the second direction Y.
  • the first busbar 341 and the second busbar 342 are respectively connected to both ends of the heat regulating tube 31 along the second direction Y.
  • the plurality of battery cells 20 can be arranged on top of each other along the third direction Z without interfering with the first bus 341 and the second bus 342 , so that the multiple battery cells 20 can be arranged more compactly, which is beneficial to reducing the size of the battery. 100 volume.
  • the thermal management component is inserted between two adjacent battery cells.
  • a thermal management component is inserted between two adjacent battery cells along a predetermined direction.
  • the preset direction is parallel to the third direction.
  • the preset direction can also be other directions, for example, the preset direction is the length direction of the battery cell or the width direction of the battery cell.
  • the thermal management component is inserted into two adjacent battery cells. The thermal management component can conduct heat exchange with the battery cells on both sides at the same time, which can improve the efficiency of heat exchange.
  • the battery cell 20 includes a casing and an insulating layer (not shown in the figure) connected to the outer surface of the casing.
  • the insulating layer is used to insulate the insulating member 40 and the casing.
  • the insulating layer can be a blue film covering the outer surface of the casing or an insulating coating coating the outer surface of the casing.
  • An insulating layer is connected to the surface of the outer casing of the battery cell 20 .
  • the insulating layer and the insulating member 40 jointly insulate and isolate the battery cell 20 and the thermal management component 30 , further reducing the risk of short circuit of the battery 100 .
  • An embodiment of the present application also provides an electrical device.
  • the electrical device includes the battery 100 provided in any of the above embodiments.
  • the battery 100 provided by any of the above embodiments has good safety performance. Electrical equipment can be powered by the battery 100 provided by any of the above embodiments, which can improve the safety of electricity consumption.
  • the embodiment of the present application provides a battery 100.
  • the battery 100 includes a thermal management component 30, an insulator 40 and a plurality of battery cells 20.
  • the battery cells 20 are square-shell batteries.
  • the thermal management component 30 includes a thermal regulating tube 31, a partition 32, a first manifold 341 provided with a medium inlet 3412, a second manifold 342 provided with a medium outlet 3422, a first guide pipe 36 and a second guide pipe. 37.
  • the partition 32 divides the inside of the heat regulating tube 31 to form a plurality of flow channels 33 arranged along the first direction X, and each flow channel 33 extends along the second direction Y.
  • each flow channel 33 along the second direction Y are respectively connected with the first converging chamber 3411 of the first converging member 341 and the second converging chamber 3421 of the second converging member 342 .
  • the fluid medium enters the first converging chamber 3411 of the first converging part 341 from the first guide tube 36 through the medium inlet 3412, and then each flow channel 33 is configured from the first converging chamber 3411.
  • the fluid medium flows from the first converging chamber 3411 along the second direction Y.
  • the flow channel 33 flows to the second manifold chamber 3421 of the second manifold 342 and is discharged from the second guide tube 37 through the medium outlet 3422.
  • the insulating member 40 is connected to the surface of the thermal management component 30 , wherein part of the insulating part 40 covers the outer peripheral surface of the heat regulating tube 31 , part of the insulating part 40 covers the entire outer surface of the first bus 341 , and part of the insulating part 40 covers The entire outer surface of the second bus piece 342 is partially covered by the insulating member 40 and the outer peripheral surface of the first guide tube 36 , and the portion of the insulating member 40 covers the outer peripheral surface of the second guide tube 37 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了一种电池及用电设备,涉及电池技术领域。电池包括电池单体和热管理部件,热管理部件用于与电池单体热交换;热管理部件的表面设置有绝缘件,绝缘件用于绝缘隔离电池单体和热管理部件。热管理部件的表面设置有绝缘件,在电池的单体的表面未设置绝缘结构或者电池单体的表面蓝膜破损或者电池内部的水蒸气冷凝在热管理部件的表面的情况下,设置于热管理部件表面的绝缘件能够在电池单体和热管理部件之间起到绝缘作用,降低电池短路的风险,从而提高电池的安全性能。

Description

电池及用电设备 技术领域
本申请涉及电池技术领域,具体而言,涉及一种电池及用电设备。
背景技术
二次电池,例如锂离子电池、钠离子电池、固态电池等,具备能量密度大、循环性能好等突出优点,并广泛应用于便携式电子设备、电动交通工具、电动工具、无人机、储能设备等领域。而电池的安全问题是用户主要关注的问题之一,也是制约电池发展的主要因素之一。因此,如何提高电池的安全性能成为电池领域亟待解决的问题。
发明内容
本申请实施例提供一种电池及用电设备,以提高电池的安全性能。
第一方面,本申请实施例提供一种电池,电池包括电池单体和热管理部件,热管理部件用于与电池单体热交换;其中,热管理部件的表面设置有绝缘件,绝缘件用于绝缘隔离电池单体和热管理部件。
上述技术方案中,热管理部件的表面设置有绝缘件,在电池的单体的表面未设置绝缘结构或者电池单体的表面蓝膜破损或者电池内部的水蒸气冷凝在热管理部件的表面的情况下,设置于热管理部件表面的绝缘件能够在电池单体和热管理部件之间起到绝缘作用,降低电池短路的风险,从而提高电池的安全性能。
在本申请第一方面的一些实施例中,绝缘件的导热系数λ≥0.1W/(m·K)。
上述技术方案中,绝缘件的λ≥0.1W/(m·K),使得绝缘件具有较好的导热性能,从而使得电池单体和热管理部件之间具有较好的热传导能力,从而提高电池单体和热管理部件之间的换热效率。
在本申请第一方面的一些实施例中,绝缘件的密度G≤1.5g/cm3。
上述技术方案中,绝缘件的密度G≤1.5g/cm3,在绝缘件的设置体积不变、能够满足绝缘要求的情况下,可以使得绝缘件的重量较小,从而使得电池的重量较小,降低绝缘件的设置对电池的重量的影响,有利于电池的轻量化。
在本申请第一方面的一些实施例中,绝缘件的压缩强度P满足0.01MPa≤P≤200MPa。
上述技术方案中,绝缘件的压缩强度P满足0.01MPa≤P≤200MPa,可以使得绝缘件具有一定的弹性,可以使得绝缘件能够在电池单体膨胀变形时通过自身的形变以降低对电池整体的影响,或者,具有弹性的绝缘件还能够在电池经受冲击时通过自身的形变起缓冲作用,对电池单体起一定的防护作用,提高电池的安全性。
在本申请第一方面的一些实施例中,绝缘件的材质包括聚对苯二甲酸乙二醇酯、聚酰亚胺、聚碳酸酯中的至少一种。
上述技术方案中,聚对苯二甲酸乙二醇酯、聚酰亚胺、聚碳酸酯具有抗冲击强度好、耐热老化性能好等优点。
在本申请第一方面的一些实施例中,热管理部件包括热调节管,热调节管用于容纳流体介质并用于与电池单体热交换,绝缘件还包括第一绝缘件,第一绝缘件的至少部分设置于热调节管和电池单体之间。
上述技术方案中,热调节管用于容纳流体介质,流体介质在热调节管内流动,能够将自身的热量传递给电池单体或者带走电池单体的热量,从而调节电池单体的温度,温度调节方式简单、高效,第一绝缘件的至少部分设置于热调节管和电池单体之间,可以在热交换管和电池单体进行热 交换的同时绝缘隔离两者,提高电池的安全性。
在本申请第一方面的一些实施例中,第一绝缘件的厚度为h 1,热调节管的壁厚为h 2,h 1/h 2≤0.5。
上述技术方案中,当h 1/h 2≤0.5时,绝缘件和热调节管的管壁形成的整体的结构的热阻不会太大,从而保证电池单体和热调节管内部的流体介质之间有较高的换热效率,并且,还能够降低第一绝缘件对电池内部体积的占用率,将更多的空间用于提高电池整体的能量密度。
在本申请第一方面的一些实施例中,第一绝缘件的厚度为h 1,热调节管的壁厚为h 2,h 1/h 2≥0.00625。
上述技术方案中,h 1/h 2≥0.00625,使得热交换管和电池单体之间的爬电距离越大,安全性越高,在第一绝缘件具有弹性的一些技术方案中,第一绝缘件即便被压缩形变也能使得热交换管与电池单体之间被分隔出较大的距离,从而降低两者在各种使用场景下产生电接触的风险。
在本申请第一方面的一些实施例中,热调节管内部设有分隔件,分隔件用于将热调节管内部分隔形成多个流道。
上述技术方案中,分隔件将热调节管的内部分隔形成多个流道,便于根据实际需要控制流体介质在热调节管内部的分布,以便合理调节电池单体的温度。
在本申请第一方面的一些实施例中,热管理部件还包括汇流管,汇流管包括汇流腔室,该汇流腔室与多个流道连通,绝缘件还包括第二绝缘件,第二绝缘件的至少部分设置于汇流管和电池单体之间。
上述技术方案中,汇流管与多个流道连通,汇流管可以设置在多个流道的进口处和/或出口处,汇流管可以用于在多个流道的进口处对流体介质进行流道分配,也可以用于在多个流道的出口处用于汇集,第二绝缘件的至少部分设置于汇流管和电池单体之间,以对汇流管和电池单体进行绝缘隔离,以提高电池整体的安全性。
在本申请第一方面的一些实施例中,第二绝缘件覆盖所述汇流管的至少部分外表面,以绝缘隔离电池单体和汇流管。
上述技术方案中,第二绝缘件覆盖汇流管的至少部分外表面,第二绝缘件可以完全覆盖汇流管的外表面,也可以仅覆盖汇流管朝向电池单体的一侧表面,第二绝缘件能够用于绝缘隔离汇流管和电池单体,从而降低电池短路的风险,提高电池的安全性能。
在本申请第一方面的一些实施例中,第二绝缘件的厚度为h 3,热调节管的壁厚为h 2,h 3/h 2≥0.00625。
上述技术方案中,h 3/h 2≥0.00625,使得汇流管和电池单体之间的爬电距离越大,安全性越高,从而降低两者在各种使用场景下产生电接触的风险。
在本申请第一方面的一些实施例中,电池单体为多个并沿预设方向排列,热管理部件插设于相邻的两个电池单体之间。
上述技术方案中,预设方向可以为电池单体的厚度方向、长度方向等,热管理部件插设于相邻的两个电池单体,热管理部件可以同时与两侧的电池单体进行热交换,能够提高热交换的效率。
第二方面,本申请实施例提供一种用电设备,包括第一方面实施例提供的电池。
上述技术方案中,第一方面实施例提供的电池安全性能较好,用电设备通过第一方面实施例提供的电池供电,能够提高用电安全。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单 地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸图;
图3为本申请一些实施例提供的电池的部分结构的示意图;
图4为本申请一些实施例提供的热管理部件的轴测图;
图5为本申请一些实施例提供的热管理部件的剖视图;
图6为本申请为图5中A处的放大图;
图7为本申请一些实施例提供的内部设有分隔件的热管理部件的剖视图;
图8为图5中B处的放大图;
图9为图5中C处的放大图;
图10为本申请另一些实施例供的热管理部件的剖视图;
图11为图10中D处的放大图;
图12为图10中E处的放大图。
图标:1000-车辆;100-电池;10-箱体;11-第一部分;12-第二部分;20-电池单体;30-热管理部件;31-热调节管;32-分隔件;33-流道;34-汇流管;34a-汇流腔室;341-第一汇流件;3411-第一汇流室;3412-介质入口;342-第二汇流件;3421-第二汇流室;3422-介质出口;36-第一导流管;361-第一限位部;37-第二导流管;371-第二限位部;40-绝缘件;40a-第一绝缘件;40b-第二绝缘件;40c-第三绝缘件;200-控制器;300-马达;X-第一方向;Y-第二方向;Z-第三方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请实施例的描述中,需要说明的是,指示方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,或者是本领域技术人员惯常理解的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
电池包括箱体和多个电池单体,多个电池单体容纳于箱体内,多个电池单体串联、并联或者混联,混联是指多个电池单体中既有串联又有并联。多个电池单体之间可直接串联或并联或混联在一起,再将多个电池单体构成的整体容纳于箱体内。为了降低电池内部短路的风险,电池单体的表面设有蓝膜,蓝膜包覆在电池单体的壳体的外表面,避免相邻的电池单体的壳体接触或者电池单体的壳体与箱体接触导致短路。
发明人注意到,随着电池的使用,电池单体表面的蓝膜容易破损,在蓝膜破损的情况下,相邻的电池单体之间以及电池单体和箱体之间发生绝缘失效,电池短路的风险增大。
且为了调节电池单体的温度,且相邻的电池单体之间设置有水冷板或加热板,水冷板或加热板的表面无绝缘防护,在电池内部的水蒸气容易液化在水冷板或加热板的表面,在蓝膜破损的情况下,电池短路风险进一步增大。
基于上述考虑,为了缓解因蓝膜破损而导致电池短路的问题,发明人经过深入研究,设计了一种电池,电池包括电池单体和用于与电池单体进行热交换的热管理部件,热管理部件的表面设置有绝缘件,绝缘件可以用于绝缘隔离电池单体和热管理部件。
绝缘件设置于热管理部件的表面,不容易受电池单体外形膨胀或自发热的原因造成损坏,在电池的单体的表面未设置或者电池单体的表面蓝膜破损情况下,当电池内部的水蒸气液化在热管理部件的表面时,设置于热管理部件表面的绝缘件能够在电池单体和热管理部件之间起到绝缘作用,降低电池短路的风险。
本申请实施例公开的电池可以但不限用于车辆、船舶或飞行器等用电设备中,还可以用于具备本申请公开的电池组成该用电设备的电源系统,这样,有利于缓解电池因电池单体蓝膜破损或水蒸气液化于热管理部件表面导致电池短路的问题,提升用电设备的用电安全。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电设备为车辆为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的爆炸图。电池100包括箱体10和电池单体20,电池单体20容纳于箱体10内。其中,箱体10用于为电池单体20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,第一部分11和第二部分12共同限定出用于容纳电池单体20的容纳空间。第二部分12可以为一端开口的空心结构,第一部分11可以为板状结构,第一部分11盖合于第二部分12的开口侧,以使第一部分11与第二部分12共同限定出容纳空间;第一部分11和第二部分12也可以是均为一侧开口的空心结构,第一部分11的开口侧盖合于第二部分12的开口侧。当然,第一部分11和第二部分12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20 先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。
如图3-图6所示,在一些实施例中,电池100包括电池单体20和热管理部件30,热管理部件30设置于电池单体20的一侧,热管理部件30用于调节电池单体20的温度;其中,热管理部件30的表面设置有绝缘件40,绝缘件40用于绝缘隔离电池单体20和热管理部件30。
热管理部件30是和电池单体20进行热交换的结构,比如发热电阻丝、通有热交换介质的导热件以及根据所处的环境变化能够发生化学反应而产生温度变化的一些材料。通过热管理部件30自身的温度变化从而实现和电池单体20热交换。这种情况下,若是热管理部件30的温度低于电池单体20的温度,热管理部件30可以对电池单体20降温,避免电池单体20温度过高出现热失控;若是热管理部件30的温度高于电池单体20的温度,热管理部件30可以对电池单体20加热,以保证电池100能够正常工作。
热管理部件30也可以是能够容纳流体介质的结构,通过热管理部件30和绝缘件40在电池单体20和流体介质之间传递热量,从而实现电池单体20和流体介质之间热交换。流体介质可以是液体(如,水)、气体(如,空气)。这种情况下,若是容纳在热管理部件30内部的流体介质的温度低于电池单体20的温度,热管理部件30可以对电池单体20降温,避免电池单体20温度过高出现热失控;若是容纳在热管理部件30内部的流体介质的温度高于电池单体20的温度,热管理部件30可以对电池单体20加热,以保证电池100能够正常工作。
绝缘件40连接于热管理部件30的表面,以使绝缘件40能够覆盖热管理部件30的部分表面或者全部表面。
电池单体20的数量可以是一个,也可以是多个。其中,多个是两个及两个以上。
在电池单体20为一个的实施例中,热管理部件30可以设置于电池单体20的一侧并位于电池单体20和箱体10的内壁之间。在一些实施例中,绝缘件40可以只绝缘隔离电池单体20和热管理部件30。在另一些实施例中,绝缘件40既可以绝缘隔离电池单体20和热管理部件30,也可以绝缘隔离热管理部件30和箱体10的内壁,进一步降低电池100短路的风险,从而进一步提高电池100的安全。
在电池单体20为多个的实施例中,多个电池单体20沿某一方向(第三方向Z)堆叠布置。相邻的两个电池单体20之间可以设置热管理部件30。设置于相邻的两个电池单体20之间的热管理部件30上的绝缘件40可以同时绝缘隔离所述两个电池单体20和热管理部件30。沿多个电池单体20的堆叠方向,位于最端部的两个电池单体20和箱体10的内壁之间也可以设置热管理部件30,连接在该热管理部件30上的绝缘件40可以只绝缘隔离电池单体20和热管理部件30,当然,连接在该热管理部件30上的绝缘件40既可以绝缘隔离电池单体20和热管理部件30,也可以绝缘隔离热管理部件30和箱体10的内壁,进一步降低电池100短路的风险,从而进一步提高电池100的安全。
热管理部件30的表面设置有绝缘件40,在电池单体20的表面未设置绝缘结构或者电池单体20的表面蓝膜破损或者电池100内部的水蒸气液化在热管理部件30的表面的情况下,设置于热管理部件30表面的绝缘件40能够在电池单体20和热管理部件30之间起到绝缘作用,降低电池100短路的风险,从而提高电池100的安全性能。
由于绝缘件40在热管理部件30和电池单体20之间即起到绝缘作用,在一些实施例中,绝缘件40可以具有较好的导热性能,以便于绝缘件40能够起到传递热量的作用。因此,在一些实施例中,绝缘件40的导热系数λ≥0.1W/(m·K)。
导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时,通过1平方米面积传递的热量,单位为瓦/米·度(W/(m·K),此处为K可用℃代替)。
绝缘件40的λ≥0.1W/(m·K),可以使得绝缘件40具有较好的导热性能,从而使得电池单体20和热管理部件30之间具有较好的热传导能力,从而提高电池单体20和热管理部件30之间的换热效率。
在一些实施例中,绝缘件40的密度G≤1.5g/cm 3
在热管理部件30的表面设置有绝缘件40,会增加电池100的重量。绝缘件40的密度越小,绝缘件40的质量越小,绝缘件40的密度越大,绝缘件40的质量越大。绝缘件40的密度G≤1.5g/cm 3,使得绝缘件40的重量较小,从而使得电池100的重量较小,降低绝缘件40的设置对电池100的重量的影响,有利于电池100的轻量化。
在一些实施例中,绝缘件40的压缩强度P满足0.01MPa≤P≤200MPa。
压缩强度是指,在压缩试验中,试样直至破裂或产生屈服时所承受的最大压缩应力。
绝缘件40的压缩强度P满足0.01MPa≤P≤200MPa,可以使得绝缘件40具有一定的弹性,可以使得绝缘件40能够在电池单体20膨胀变形时通过自身的形变以降低对电池100整体的影响,或者,具有弹性的绝缘件40还能够在电池100经受冲击时通过自身的形变起缓冲作用,对电池单体20起一定的防护作用,提高电池100的安全性。
绝缘件40的材质有多种选择,比如,在一些实施例中,绝缘件40的材质包括聚对苯二甲酸乙二醇酯、聚酰亚胺、聚碳酸酯中的至少一种。
绝缘件40的材质可以只包括聚对苯二甲酸乙二醇酯、聚酰亚胺、聚碳酸酯中的一种。在另一些实施例中,绝缘件40的材质可以包括聚对苯二甲酸乙二醇酯、聚酰亚胺、聚碳酸酯中的两种或者三种。比如绝缘件40包括层叠设置的第一绝缘部和第二绝缘部,第一绝缘部的材质为聚对苯二甲酸乙二醇酯,第二绝缘部的材质为聚酰亚胺,或者第一绝缘部的材质为聚酰亚胺,第二绝缘部的材质为聚碳酸酯,或者第一绝缘部的材质为聚对苯二甲酸乙二醇酯,第二绝缘部的材质为聚碳酸酯。在又一些实施例中,绝缘件40包括层叠设置的第一绝缘部、第二绝缘部和第三绝缘部,第一绝缘部的材质为聚对苯二甲酸乙二醇酯,第二绝缘部的材质为聚酰亚胺,第三绝缘部的材质为聚碳酸酯。
聚对苯二甲酸乙二醇酯、聚酰亚胺、聚碳酸酯具有抗冲击强度好、耐热老化性能好等优点。因此,绝缘件40的材质包括聚对苯二甲酸乙二醇酯、聚酰亚胺、聚碳酸酯中的至少一种,绝缘件40具有抗冲击强度好、耐热老化性能好等优点。此外,聚对苯二甲酸乙二醇酯导热系数一般为0.24W/m·K、聚酰亚胺导热系数一般为0.1-0.5W/m·K,聚碳酸酯导热系数一般为0.16-0.25W/m·K,因此,三种材质均具有较好的导热能力,采用三种材质中的至少一种形成绝缘件40,则绝缘件40具有较好的导热性能,提高电池单体20和热管理部件30之间的换热性能和换热效率。
在一些实施例中,电池单体20与热管理部件30通过绝缘件40连接。
在另一些实施例中,绝缘件40可以只与热管理部件30连接。
在本实施例中,绝缘件40既与热管理部件30连接,又与电池单体20连接,则电池单体20、热管理部件30、绝缘件40三者能够保持相对稳定的连接关系,从而提高绝缘件40、热管理部件30和电池单体20的相对稳定性,降低绝缘件40在热管理部件30和电池单体20之间活动而导致绝缘失效的风险。
将绝缘件40连接于热管理部件30的方式有很多,比如,在一些实施例中,绝缘件40为涂设于热管理部件30的表面的涂层。即,绝缘件40以涂覆的方式连接热管理部件30。这种情况下,绝缘件40可以与电池单体20连接,也可以不与电池单体20连接。绝缘件40为涂设于热管理部件30的表面的涂层,能够使得绝缘件40与热管理部件30贴合的更紧密,从而提高绝缘件40与热管理部件30的连接稳定性,降低绝缘件40从热管理部件30脱落的风险。
再比如,在另一些实施例中,绝缘件40与热管理部件30通过粘接层连接。粘接层可以是设置在绝缘件40和/或热管理部件30上的胶层。粘接层粘接热管理部件30和绝缘件40后,粘接层 位于热管理部件30和绝缘件40之间。这种情况下,绝缘件40可以通过另一个粘接层与电池单体20连接,也可以不与电池单体20连接。通过粘接层连接绝缘件40和热管理部件30,连接方式简单方便。
再比如,在另一些实施例中,绝缘件40灌封于热管理部件30与电池单体20之间。灌封就是将液态复合物用机械或手工方式灌入器件内,在常温或加热条件下固化成为性能优异的热固性高分子绝缘材料的工艺。通过灌封的方式在热管理部件30和电池单体20之间设置绝缘件40,能够强化电池单体20、绝缘件40和热管理部件30形成的整体结构的整体性,提高抵抗外部冲击和震动的能力。
结合参照图3、图4和图5,在一些实施例中,热管理部件30包括热调节管31,热调节管31用于容纳流体介质并用于与电池单体20热交换,绝缘件40包括第一绝缘件40a,第一绝缘件40a的至少部分设置于热调节管31和电池单体20之间。
在电池单体20为方壳电池的实施例中,热管理部件30可以设置在电池单体20沿厚度方向的一侧。第一绝缘件40a的至少部分覆盖热调节管31的至少部分外表面。第一绝缘件40a的至少部分可以只覆盖热调节管31的部分外表面,比如第一绝缘件40a的至少部分覆盖热调节管31面向电池单体20的外表面。第一绝缘件40a的至少部分可以覆盖热调节管31的全部外表面。
在电池单体20与热管理部件30通过绝缘件40连接的实施例中,电池单体20和热调节管31可以通过第一绝缘件40a连接。
热调节管31内容纳流体介质,通过热调节管31和第一绝缘件40a在电池单体20和流体介质之间传递热量。若是容纳在热调节管31内部的流体介质的温度低于电池单体20的温度,热管理部件30可以对电池单体20降温,避免电池单体20温度过高出现热失控;若是容纳在热调节管31内部的流体介质的温度高于电池单体20的温度,热管理部件30可以对电池单体20加热,以保证电池100能够正常工作。
热调节管31用于容纳流体介质,流体介质在热调节管31内流动,能够将自身的热量传递给电池单体20(加热电池单体20)或者带走电池单体20的热量(对电池单体20降温),从而调节电池单体20的温度,温度调节方式简单、高效。
如图6所示,在一些实施例中,第一绝缘件40a的厚度为h 1,热调节管31的壁厚为h 2,h 1/h 2≤0.5。
h1/h2可以为0.01、0.015、0.1、0.15、0.2、0.25、0.3、0.35、0.4等。
当h 1/h 2≤0.5时,第一绝缘件40a和热调节管31的管壁形成的整体的结构的热阻不会太大,从而保证电池单体20和热调节管31内部的流体介质之间有较高的换热效率。
请继续参见图6,在一些实施例中,第一绝缘件40a的厚度为h 1,热调节管31的壁厚为h 2,h 1/h 2≥0.00625。
在第一绝缘件40a为弹性件,以使第一绝缘件40a具有缓冲性能的实施例中,当第一绝缘件40a的厚度相对热调节管31的壁厚过小时,第一绝缘件40a的缓冲能力有限。不同壁厚的热调节管31对第一绝缘件40a的缓冲能力有不同的要求,热调节管31的管壁的厚度越大,刚度越大,容易在受到电池单体20挤压时对电池单体20产生较大的应力,而第一绝缘件40a的缓冲性能越好,能够减小产生地应力。因此,h 1/h 2≥0.00625。使得第一绝缘件40a具有较好的缓冲性能。
如图7所示,在一些实施例中,热调节管31内部设有分隔件32,分隔件32用于将热调节管31内部分隔形成沿第一方向X排列的多个流道33。
在电池单体20为方壳电池的实施例中,第一方向X与电池单体20的宽度方向平行。
分隔件32和热调节管31可以一体成型,比如分隔件32和热调节管31通过浇筑、挤压等一体成型的工艺形成。分隔件32和热调节管31也可以是分体设置后通过焊接、粘接、卡接等方式连接于热调节管31的内壁。
在电池单体20为方壳电池的实施例中,第一方向X平行电池100单的高度方向,电池单体20的高度方向为电池单体20的电极组件的极耳伸出方向。
在另一些实施例中,热调节管31内部也可以只形成一个流道33。
在本实施例中,分隔件32将热调节的内部分隔形成多个流道33。各个流道33均沿第二方向Y延伸,第二方向Y与第一方向X垂直。在电池单体20为方壳电池的实施例中,第二方向Y平行电池单体20的长度方向。
各个流道33可以彼此独立,也可以彼此连通。多个流道33中可以只有部分流道33容纳有流体介质,也可以是每个流道33内均容纳有流体介质。因此,分隔件32将热调节管31的内部分隔形成多个流道33,便于根据实际需要控制流体介质在热调节管31内部的分布,以便合理调节电池单体20的温度。
请继续参见图3、图4和图5,在一些实施例中,热管理部件30还包括汇流管34,汇流管34包括汇流腔室34a(图8、图9中示出),汇流腔室34a与多个流道33连通,绝缘件40包括第二绝缘件40b,第二绝缘件40b的至少部分设置于汇流管34和电池单体20之间。
在本实施例中,汇流管34可以位于电池单体20的一侧,由于汇流管34中同样容纳有流体介质,因此,汇流管34同样可以用于对电池单体20进行换热,第二绝缘件40b覆盖汇流管34的至少部分外表面,第二绝缘件40b可以完全覆盖汇流管34的外表面,也可以仅覆盖汇流管34朝向电池单体20的一侧表面,第二绝缘件40b能够用于绝缘隔离汇流管34和电池单体20,从而降低电池短路的风险,提高电池的安全性能。
请结合参见图4、图5、图8和图9,在本实施例中,汇流管34包括第一汇流件341和第二汇流件342;第一汇流件341设置有介质入口3412,第一汇流件341的内部形成有与介质入口3412连通的第一汇流室3411,第二汇流件342设置有介质出口3422,第二汇流件342的内部形成有与介质出口3422连通的第二汇流室3421,第一汇流室3411和第二汇流室3421均与每个流道33连通。
介质入口3412设置于第一汇流件341,介质出口3422设置于第二汇流件342,第一汇流件341的第一汇流室3411和第二汇流件342的第二汇流室3421均与每个流道33连通,则流体介质能够从介质入口3412进入第一汇流室3411,再经第一汇流室3411分配置至每个流道33,每个流道33的流体介质能够沿第二方向Y流向第二汇流件342并汇集在第二汇流室3421,从介质出口3422排出。
在另一些实施例中,热管理部件30也可以不是设置汇流管34,每个流道33对应设置一个介质入口3412和介质出口3422,流体介质从每个流道33各自的介质入口3412进入流道33,并从各自的流道33排出。这种设置方式便于独立控制每个流道33内的流体介质的总量和流速。
而本实施例中,第一汇流件341的设置有利于流体介质分配至每个流道33,有利于电池单体20温度调节的均匀性,第二汇流件342的设置有利于流体介质快速排出,提高换热效率。
在一些实施例中,第二绝缘件40b覆盖汇流管34的至少部分外表面,以绝缘隔离电池单体20和汇流管34。
“第二绝缘件40b覆盖汇流管34的至少部分外表面”,可以理解为,第二绝缘件40b的部分覆盖第一汇流件341的至少部分外表面,以绝缘隔离述电池单体20和第一汇流件341;和/或,第二绝缘件40b的部分覆盖第二汇流件342的至少部分外表面,以绝缘隔离电池单体20和第二汇流件342。
其中,可以仅只有第二绝缘件40b的部分覆盖第一汇流件341的至少部分外表面或只有第二绝缘件40b的部分覆盖第二汇流件342的至少部分外表面,或者第二绝缘件40b的部分覆盖第一汇流件341的至少部分外表面且第二绝缘件40b的部分覆盖第二汇流件342的至少部分外表面。
在第二绝缘件40b的部分覆盖第一汇流件341的至少部分表面的情况下,第二绝缘件40b的部分可以只覆盖第一汇流件341的部分外表面,比如第二绝缘件40b的部分只是覆盖第一汇流件 341的外周面,而第一汇流件341沿第一方向X的两个端面未被绝缘件40覆盖,相对于绝缘件40仅覆盖热调节管31的情况,能够增大电池单体20与第一汇流件341未覆盖绝缘件40的部分之间的爬电距离,从而降低电池100短路的风险;或者绝缘件40的部分覆盖第一汇流件341的全部外表面。在另一些实施例中,如图10、图11所示,绝缘件40也可以不覆盖第一汇流件341的外表面。第一汇流件341沿第一方向X延伸,第二汇流件342沿第一方向X延伸。
在第二绝缘件40b的部分覆盖第二汇流件342的至少部分表面的情况下,绝缘件40的部分可以只覆盖第二汇流件342的部分外表面,比如绝缘件40的部分只是覆盖第二汇流件342的外周面,而第二汇流件342沿第一方向X的两个端面未被第二绝缘件40b覆盖,相对于绝缘件40仅覆盖热调节管31的情况,能够增大电池单体20与第二汇流件342未覆盖绝缘件40的部分之间的爬电距离,从而降低电池100短路的风险;或者第二绝缘件40b的部分覆盖第二汇流件342的全部外表面。在另一些实施例中,如图10、图12所示,绝缘件40也可以不覆盖第二汇流件342的外表面。
因此,第二绝缘件覆盖汇流管的至少部分外表面,第二绝缘件可以完全覆盖汇流管的外表面,也可以仅覆盖汇流管朝向电池单体的一侧表面,第二绝缘件能够用于绝缘隔离汇流管和电池单体,从而降低电池短路的风险,提高电池的安全性能。
如图8、图9所示,在一些实施例中,第二绝缘件的厚度为h 3,热调节管的壁厚为h 2,h 3/h 2≥0.00625。
在一些实施例中,绝缘件40为等厚结构,即第一绝缘件的厚度与第二绝缘件的厚度相等,h 1=h 3。在另一些实施例中,第一绝缘件的厚度与第二绝缘件的厚度不相等。
h 3/h 2可以为0.01、0.015、0.1、0.15、0.2、0.25、0.3、0.35、0.4等。
h 3/h 2≥0.00625,使得汇流管34和电池单体20之间的爬电距离越大,安全性越高,从而降低两者在各种使用场景下产生电接触的风险。
在一些实施例中,请结合参照图4、图5、图8、图9,在一些实施例中,介质入口3412设有第一导流管36,介质出口3422设有第二导流管37;绝缘件40还包括第三绝缘件40c;第三绝缘件40c的部分覆盖第一导流管36的外表面,以使绝缘隔离电池单体20和第一导流管36;和/或,第三绝缘件40c的部分覆盖第二导流管37的外表面,以使绝缘隔离电池单体20和第二导流管37。
可以仅只有介质入口3412设置有第一导流管36,或者可以仅只有介质出口3422设有第二导流管37,或者介质入口3412设置有第一导流管36且介质出口3422设置有第二导流管37。图4和图5中示出了介质入口3412设置有第一导流管36且介质出口3422设置有第二导流管37的情况。
如图4、图5、图8所示,在绝缘件40的部分覆盖第一导流管36的外表面的情况下,绝缘件40的部分可以只覆盖第一导流管36的部分外表面,比如绝缘件40的部分只是覆盖第一导流管36的外周面,而第一导流管36沿轴向的两个端面未被绝缘件40覆盖,相对于绝缘件40仅覆盖热调节管31、第一汇流件341和第二汇流件342的情况,能够增大电池单体20(图2、图3中示出)与第一导流管36未覆盖绝缘件40的部分之间的爬电距离,从而降低电池100(图1、图2中示出)短路的风险;或者绝缘件40的部分覆盖第一导流管36的全部外表面。在另一些实施例中,如图10、图11所示,绝缘件40也可以不覆盖第一导流管36的外表面。
如图4、图5、图9所示,在绝缘件40的部分覆盖第二导流管37的外表面的情况下,绝缘件40的部分可以只覆盖第二导流管37的部分外表面,比如绝缘件40的部分只是覆盖第二导流管37的外周面,而第二导流管37沿轴向的两个端面未被绝缘件40覆盖,相对于绝缘件40仅覆盖热调节管31、第一汇流件341和第二汇流件342的情况,能够增大电池单体20(图2、图3中示出)与第二导流管37未覆盖绝缘件40的部分之间的爬电距离,从而降低电池100(图1、图2中所示)短路的风险;或者绝缘件40的部分覆盖第二导流管37的全部外表面。在另一些实施例中,如图10、图12所示,绝缘件40也可以不覆盖第二导流管37的外表面。
如图4、图5、图10所示,第一导流管36和第二导流管37同轴布置,第一导流管36的轴向和第二导流管37的轴向均与第二方向Y平行。
如图8、图9、图11、图12所示,第一导流管36的一端插设于第一汇流件341上的介质入口3412内,并和第一汇流件341焊接。第二导流管37的一端插设于第二汇流件342上的介质出口3422内,并和第二汇流件342焊接。
第一导流管36的外周面设有第一限位部361,第一限位部361沿第一导流管36的径向凸出第一导流管36的外周面,第一限位部361用于限制第一导流管36向第一汇流件341内部插设的距离。当第一导流管36插设于第一汇流件341的介质入口3412后,第一限位部361与第一汇流件341的外壁相抵。第一导流管36可以通过第一限位部361与第一汇流件341焊接。
第二导流管37的外周面设有第二限位部371,第二限位部371沿第二导流管37的径向凸出第二导流管37的外周面,第二限位部371用于限制第二导流管37向第二汇流件342内部插设的距离。当第二导流管37插设于第二汇流件342的介质流出口后,第二限位部371与第二汇流件342的外壁相抵。第二导流管37可以通过第二限位部371与第二汇流件342焊接。
在另一些实施例中,介质入口3412可以不设置第一导流管36,介质出口3422可以不设置第二导流管37。
第一导流管36的设置便于流体介质进入第一汇流件341的第一汇流室3411,第二导流管37的设置便于流体介质从第二汇流件342的第二汇流室3421排出。绝缘件40的部分覆盖第一导流管36的外表面,能够绝缘隔离第一导流管36和电池单体20,和/或绝缘件40的部分覆盖第二导流管37的外表面,能够绝缘隔离第二导流管37和电池单体20,从而降低电池100短路的风险,提高电池100的安全性能。
在一些实施例中,沿第二方向Y,第一汇流件341和第二汇流件342分别位于电池单体20的两侧,第一方向X和第二方向Y垂直。
第一汇流件341和第二汇流件342分别位于电池单体20的两侧,使得第一汇流件341和第二汇流件342的布置方向与电池单体20的极耳伸出方向错开,从而使得第一汇流件341和第二汇流件342均于电池单体20的电能输出极错开设置,避免第一汇流件341和第二汇流件342影响电池单体20充放电或者避免第一汇流件341和第二汇流件342影响各个电池单体20之间串联、并联或者混联。
在电池单体20为多个的实施例中,多个电池单体20沿第三方向Z堆叠布置。在电池单体20为方壳电池的实施例中,第三方向Z与电池单体20的厚度方向平行。第一方向X、第二方向Y和第三方向Z两两垂直。
如图3所示,热调节管31沿第二方向Y超出电池单体20沿第二方向Y的两端。第一汇流件341和第二汇流件342分别连接于热调节管31沿第二方向Y的两端。多个电池单体20能够沿第三方向Z对叠布置而不会与第一汇流件341和第二汇流件342干涉,使得多个电池单体20能够布置的更加紧凑,有利于减小电池100的体积。
在一些实施例中,电池单体为多个并沿预设方向排列,热管理部件插设于相邻的两个电池单体之间。
在电池单体为多个的实施例中,沿预设方向相邻的两个电池单体之间插设一个热管理部件。在本实施例中,预设方向与第三方向平行。
在另一些实施例中,根据实际需要,预设方向也可以是其他方向,比如预设方向为电池单体的长度方向或者电池单体的宽度方向。热管理部件插设于相邻的两个电池单体,热管理部件可以同时与两侧的电池单体进行热交换,能够提高热交换的效率。
在一些实施例中,电池单体20包括外壳和连接于外壳的外表面的绝缘层(图中未示出),绝缘层用于绝缘隔离绝缘件40和外壳。
绝缘层可以包覆在外壳的外表面的蓝膜或者是涂覆在外壳的外表面的绝缘涂层。
电池单体20的外壳的表面连接有绝缘层,绝缘层和绝缘件40共同绝缘隔离电池单体20和热管理部件30,进一步降低电池100短路的风险。
本申请实施例还提供一种用电设备,用电设备包括上述任意实施例提供的电池100。
上述任意实施例提供的电池100安全性能较好,用电设备通过上述任意实施例提供的电池100供电,能够提高用电安全。
本申请实施例提供一种电池100,电池100包括热管理部件30、绝缘件40和多个电池单体20,电池单体20为方壳电池。
多个电池单体20沿第三方向Z堆叠布置,相邻的两个电池单体20之间设置热管理部件30。热管理部件30包括热调节管31、分隔件32、设有介质入口3412的第一汇流件341、设有介质出口3422的第二汇流件342、第一导流管36和第二导流管37。分隔件32将热调节管31内部分隔形成沿第一方向X排布的多个流道33,每个流道33沿第二方向Y延伸。每个流道33沿第二方向Y的两端分别于第一汇流件341的第一汇流室3411和第二汇流件342的第二汇流室3421连通。流体介质从第一导流管36经介质入口3412进入第一汇流件341的第一汇流室3411内,再由第一汇流室3411分配置每个流道33,流体介质沿第二方向Y从流道33流向第二汇流件342的第二汇流室3421,并经过介质出口3422从第二导流管37排出。
绝缘件40连接于热管理部件30的表面,其中,绝缘件40的部分覆盖热调节管31的外周面,绝缘件40的部分覆盖第一汇流件341的全部外表面,绝缘件40的部分覆盖第二汇流件342的全部外表面,绝缘件40的部分覆盖第一导流管36的外周面,绝缘件40的部分覆盖第二导流管37的外周面。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种电池,包括:
    电池单体;以及
    热管理部件,所述热管理部件用于与所述电池单体热交换;
    其中,所述热管理部件的表面设置有绝缘件,所述绝缘件用于绝缘隔离所述电池单体和所述热管理部件。
  2. 根据权利要求1所述的电池,其中,所述绝缘件的导热系数λ≥0.1W/(m·K)。
  3. 根据权利要求1-2中任一项所述的电池,其中,所述绝缘件的密度G≤1.5g/cm3。
  4. 根据权利要求1-3中任一项所述的电池,其中,所述绝缘件的压缩强度P满足0.01MPa≤P≤200MPa。
  5. 根据权利要求1-4中任一项所述的电池,其中,所述绝缘件的材质包括聚对苯二甲酸乙二醇酯、聚酰亚胺、聚碳酸酯中的至少一种。
  6. 根据权利要求1-5中任一项所述的电池,其中,所述热管理部件包括热调节管,所述热调节管用于容纳流体介质并用于与所述电池单体热交换,所述绝缘件包括第一绝缘件,所述第一绝缘件的至少部分设置于所述热调节管和所述电池单体之间。
  7. 根据权利要求6所述的电池,其中,所述第一绝缘件的厚度为h 1,所述热调节管的壁厚为h 2,h 1/h 2≤0.5。
  8. 根据权利要求6-7中任一项所述的电池,其中,所述第一绝缘件的厚度为h 1,所述热调节管的壁厚为h 2,h 1/h 2≥0.00625。
  9. 根据权利要求6-8中任一项所述的电池,其中,所述热调节管内部设有分隔件,所述分隔件用于将所述热调节管内部分隔形成多个流道。
  10. 根据权利要求9所述的电池,其中,所述热管理部件还包括汇流管,所述汇流管包括汇流腔室,所述汇流腔室与所述多个流道连通,所述绝缘件包括第二绝缘件,所述第二绝缘件的至少部分设置于所述汇流管和所述电池单体之间。
  11. 根据权利要求10所述的电池,其中,所述第二绝缘件覆盖所述汇流管的至少部分外表面,以绝缘隔离所述电池单体和所述汇流管。
  12. 根据权利要求10-11中任一项所述的电池,其中,所述第二绝缘件的厚度为h 3,所述汇流管的壁厚为h 2,h 3/h 2≥0.00625。
  13. 根据权利要求1-12中任一项所述的电池,其中,所述电池单体为多个并沿预设方向排列,所述热管理部件插设于相邻的两个电池单体之间。
  14. 一种用电装置,包括如权利要求1-13中任一项所述的电池,所述电池用于为所述用电装置提供电能。
PCT/CN2022/099786 2022-02-21 2022-06-20 电池及用电设备 WO2023245330A1 (zh)

Priority Applications (19)

Application Number Priority Date Filing Date Title
PCT/CN2022/099786 WO2023245330A1 (zh) 2022-06-20 2022-06-20 电池及用电设备
CN202280007287.3A CN116802926A (zh) 2022-06-20 2022-06-20 电池及用电设备
PCT/CN2023/070133 WO2023155623A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008512.XA CN116848705A (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070125 WO2023155620A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014474.6U CN220042013U (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070131 WO2023155622A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008510.0A CN116868417A (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014583.8U CN219203337U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014404.0U CN219575742U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014214.9U CN219203335U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008511.5A CN116724443A (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008508.3A CN116491016A (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070135 WO2023155624A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008507.9A CN116745978A (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070126 WO2023155621A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014354.6U CN219203336U (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070136 WO2023155625A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008509.8A CN116802897A (zh) 2022-02-21 2023-01-03 电池和用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/099786 WO2023245330A1 (zh) 2022-06-20 2022-06-20 电池及用电设备

Publications (1)

Publication Number Publication Date
WO2023245330A1 true WO2023245330A1 (zh) 2023-12-28

Family

ID=88050180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099786 WO2023245330A1 (zh) 2022-02-21 2022-06-20 电池及用电设备

Country Status (2)

Country Link
CN (1) CN116802926A (zh)
WO (1) WO2023245330A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277378A (ja) * 2008-05-12 2009-11-26 Denso Corp 組電池
JP2009301877A (ja) * 2008-06-13 2009-12-24 Toyoda Gosei Co Ltd 組電池装置
CN110676421A (zh) * 2018-07-02 2020-01-10 重庆金康新能源汽车有限公司 电池模组及电动汽车
CN212676355U (zh) * 2020-09-11 2021-03-09 珠海银隆电器有限公司 散热结构、电池模组以及散热系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013015784A1 (de) * 2013-09-21 2015-04-09 Daimler Ag Batterie mit einer Vielzahl von Batterieeinzelzellen
CN212810495U (zh) * 2020-08-21 2021-03-26 宁德时代新能源科技股份有限公司 一种电池以及用电设备
CN116365160A (zh) * 2020-10-19 2023-06-30 江苏时代新能源科技有限公司 电池和用电设备
CN216055077U (zh) * 2021-08-31 2022-03-15 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置
CN216389636U (zh) * 2021-12-16 2022-04-26 宁德时代新能源科技股份有限公司 电池模块、电池和用电设备
CN217158581U (zh) * 2022-06-20 2022-08-09 宁德时代新能源科技股份有限公司 电池及用电设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277378A (ja) * 2008-05-12 2009-11-26 Denso Corp 組電池
JP2009301877A (ja) * 2008-06-13 2009-12-24 Toyoda Gosei Co Ltd 組電池装置
CN110676421A (zh) * 2018-07-02 2020-01-10 重庆金康新能源汽车有限公司 电池模组及电动汽车
CN212676355U (zh) * 2020-09-11 2021-03-09 珠海银隆电器有限公司 散热结构、电池模组以及散热系统

Also Published As

Publication number Publication date
CN116802926A (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
CN216872113U (zh) 电池和用电设备
CN216872114U (zh) 电池和用电设备
CN217182265U (zh) 电池和用电设备
CN216872134U (zh) 电池和用电设备
CN217562707U (zh) 电池单体、电池及用电设备
CN217158581U (zh) 电池及用电设备
WO2023134110A1 (zh) 电池和用电设备
WO2023134107A1 (zh) 电池和用电设备
WO2023078187A1 (zh) 电池组、电池的热管理系统以及用电装置
WO2023164993A1 (zh) 热管理部件、电池及用电装置
WO2023004720A1 (zh) 电池、用电装置以及电池的制造方法和制造系统
US20240088477A1 (en) Battery, power consumption device, and method and device for producing battery
WO2022082392A1 (zh) 电池、用电设备、制备电池的方法和设备
US20230268588A1 (en) Battery, power consumption device, and method and device for producing battery
WO2023245330A1 (zh) 电池及用电设备
WO2023134319A1 (zh) 电池和用电设备
WO2023159486A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023092849A1 (zh) 电池单体、电池及用电设备
WO2023000511A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2023155212A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2024124689A1 (zh) 电池及用电装置
WO2023159487A1 (zh) 电池、用电设备、制备电池的方法和设备
CN220821711U (zh) 电池壳体及电池包
WO2024146020A1 (zh) 电池及用电设备
WO2023133737A1 (zh) 电池、用电设备、制备电池的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947111

Country of ref document: EP

Kind code of ref document: A1