WO2020250591A1 - 圧電素子 - Google Patents

圧電素子 Download PDF

Info

Publication number
WO2020250591A1
WO2020250591A1 PCT/JP2020/018079 JP2020018079W WO2020250591A1 WO 2020250591 A1 WO2020250591 A1 WO 2020250591A1 JP 2020018079 W JP2020018079 W JP 2020018079W WO 2020250591 A1 WO2020250591 A1 WO 2020250591A1
Authority
WO
WIPO (PCT)
Prior art keywords
growth control
control layer
layer
piezoelectric element
perovskite
Prior art date
Application number
PCT/JP2020/018079
Other languages
English (en)
French (fr)
Inventor
梅田 賢一
藤井 隆満
幸洋 奥野
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202080042855.4A priority Critical patent/CN113950751A/zh
Priority to EP20823705.7A priority patent/EP3985747B1/en
Priority to JP2021525938A priority patent/JP7167337B2/ja
Publication of WO2020250591A1 publication Critical patent/WO2020250591A1/ja
Priority to US17/539,343 priority patent/US20220093843A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • H10N30/708Intermediate layers, e.g. barrier, adhesion or growth control buffer layers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/088Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/079Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing using intermediate layers, e.g. for growth control

Definitions

  • the present invention relates to a piezoelectric element.
  • PZT Lead zirconate titanate
  • the PZT film is used for a ferroelectric memory (FeRAM: Ferroelectric Random Access Memory), which is a non-volatile memory, taking advantage of its ferroelectricity.
  • FeRAM Ferroelectric Random Access Memory
  • MEMS piezoelectric element using a PZT film is being put into practical use by fusing with a MEMS (Micro Electro-Mechanical Systems) technology.
  • the PZT film has been developed into various devices such as an inkjet head (actuator), a micromirror device, an angular velocity sensor, a gyro sensor, and a vibration power generation device.
  • the PZT film In order to realize the excellent piezoelectricity and ferroelectricity required for the above-mentioned various devices, the PZT film needs to be composed of crystals having a perovskite structure.
  • an impurity phase a pyrochlore phase
  • the pyrochlore phase is a normal dielectric, the dielectric constant and piezoelectric characteristics of the PZT film deteriorate. Therefore, there is a demand for a technique for suppressing the pyrochlore phase and obtaining a perovskite single-phase PZT thin film.
  • Pb lead
  • Pb is a highly volatile and extremely unstable element
  • it is considered difficult to stably form a PZT composition.
  • it is required to control the Pb component.
  • it is often grown in an atmosphere with excess Pb in consideration of the volatility of Pb. By doing so, it is said that it is possible to obtain a PZT having a good perovskite structure, but the pyrochlore phase is still present in the interface region (early layer) where the most unstable initial nucleus is formed. It will be formed.
  • Patent Document 1 discloses a method of forming BaTiO 3 as an orientation control layer on a platinum (Pt) thin film and forming PbTiO 3 on the platinum (Pt) thin film by a CVD (Chemical Vapor Deposition) method.
  • Patent Document 2 discloses a method of forming a PZT film having good crystalline properties by using a material having an oxygen octahedral structure as an orientation control layer.
  • Patent Document 1 describes that a PZT layer that inherits the orientation of the Pt thin film can be formed by providing the BaTiO 3 on the Pt thin film and forming the PbTiO 3 layer on the BaTiO 3 .
  • Strontium titanate (SrTIO 3 ), barium oxide (BaO), and strontium oxide (SrO) can be expected to have the same effect as long as the compound is the same oxide as PZT and has a lattice constant relatively close to that of PZT. ), Selene oxide (CeO), magnesium oxide (MgO) and other compounds are given as examples of the orientation control layer.
  • a single-phase PZT film can be obtained by using a material having an oxygen octahedral structure such as a perovskite structure as an orientation control layer.
  • a material having an oxygen octahedral structure such as a perovskite structure
  • the orientation control layer is limited to a specific crystal structure. Therefore, when trying to form a film over a large area, not only the composition control of PZT but also the composition control of the orientation control layer is required, which requires more complicated control, lowers productivity, and higher cost. Become.
  • the problem that a good perovskite structure cannot be obtained due to the formation of the pyrochlore phase is not limited to PZT, but is a problem common to piezoelectric layers containing perovskite-type oxides containing Pb.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a piezoelectric element provided with a piezoelectric layer containing a single-phase perovskite-type oxide containing Pb at low cost.
  • the growth control layer contains a metal oxide represented by the following general formula (1) as a main component. M d N 1-d O e (1)
  • M is composed of one or more metal elements substitutable for the A site of the perovskite type oxide, and has an electronegativity of less than 0.95.
  • N is at least selected from the group consisting of Sc, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Ru, Co, Ir, Ni, Cu, Zn, Ga, Sn, In and Sb.
  • M of the general formula (1) contains at least one selected from the group consisting of Li, Na, K, Mg, Ca, Sr, Ba, La, Cd, and Bi as a main component.
  • Piezoelectric element ⁇ 3> The piezoelectric element according to ⁇ 1>, wherein M of the general formula (1) contains Ba as a main component.
  • M in the general formula (1) is Ba.
  • ⁇ 6> The piezoelectric element according to any one of ⁇ 1> to ⁇ 4>, wherein 0.3 ⁇ d. ⁇ 7>
  • the piezoelectric element according to any one of ⁇ 1> to ⁇ 4>, wherein 0.45 ⁇ d. ⁇ 8> The piezoelectric element according to any one of ⁇ 1> to ⁇ 7>, wherein the growth control layer has a film thickness of 0.63 nm or more and 170 nm or less.
  • ⁇ 9> The piezoelectric element according to any one of ⁇ 1> to ⁇ 7>, wherein the growth control layer has a film thickness of 0.63 nm or more and 40 nm or less.
  • N in the general formula (1) is selected from the group consisting of Ru, Ir, Sn, Ni, Co, Ta, and Nb.
  • FIG. 1 It is sectional drawing which shows the schematic structure of the piezoelectric element of one Embodiment of this disclosure. It is a figure which shows the relationship between the composition ratio d of a growth control layer, and the XRD intensity of a pyrochlore phase. It is a figure which shows the relationship between electronegativity and composition ratio d of a growth control layer. It is a figure which shows the relationship between electronegativity and composition ratio d of a growth control layer. It is a figure which shows the relationship between the film thickness of a growth control layer and the XRD intensity of a pyrochlore phase. It is a figure which shows the relationship between the film thickness of a growth control layer, and the XRD intensity of (100) of a perovskite structure. It is a figure which shows the relationship between the film formation temperature of a PZT film and the XRD intensity of a pyrochlore phase.
  • FIG. 1 is a schematic cross-sectional view of the piezoelectric element of the present embodiment.
  • the piezoelectric element 1 is an element in which a lower electrode layer 12, a growth control layer 14, a piezoelectric layer 16 and an upper electrode layer 18 are laminated in this order on a substrate 10.
  • the piezoelectric element 1 is configured such that an electric field is applied to the piezoelectric layer 16 by the lower electrode layer 12 and the upper electrode layer 18 in the thickness direction.
  • the substrate 10 is not particularly limited, and examples thereof include substrates such as silicon, glass, stainless steel (SUS), yttria-stabilized zirconia (YSZ), alumina, sapphire, and silicon carbide.
  • substrates such as silicon, glass, stainless steel (SUS), yttria-stabilized zirconia (YSZ), alumina, sapphire, and silicon carbide.
  • SUS stainless steel
  • YSZ yttria-stabilized zirconia
  • alumina aluminum oxide
  • sapphire silicon carbide
  • silicon carbide silicon carbide
  • a laminated substrate such as an SOI substrate having a SiO 2 oxide film formed on the surface of the silicon substrate may be used.
  • the lower electrode layer 12 is an electrode for applying a voltage to the piezoelectric layer 16.
  • the main component of the lower electrode layer 12 is not particularly limited, and gold (Au), Pt, iridium (Ir), ruthenium (Ru), titanium (Ti), molybdenum (Mo), tantalum (Ta), aluminum (Al), Metals such as copper (Cu) and silver (Ag), metal oxides such as indium oxide (ITO: Indium Tin Oxide), iridium oxide (IrO 2 ), ruthenium oxide (RuO 2 ), LaNiO 3 , and SrRuO 3 , and These combinations can be mentioned. It is particularly preferable to use Ir as the lower electrode layer 12.
  • the upper part and the lower part do not mean the top and bottom, and among the pair of electrode layers provided sandwiching the piezoelectric layer 16, the electrode layer arranged on the substrate side is opposite to the lower electrode layer and the substrate.
  • the electrode layer provided on the side is merely referred to as an upper electrode layer.
  • the thickness of the lower electrode layer 12 and the upper electrode layer 18 is not particularly limited, and is preferably about 50 nm to 300 nm.
  • the piezoelectric layer 16 contains a perovskite-type oxide containing Pb as a main component of A site (hereinafter, referred to as a Pb-containing perovskite-type oxide).
  • the piezoelectric layer 16 is basically made of a Pb-containing perovskite-type oxide. However, the piezoelectric layer 16 may contain unavoidable impurities in addition to the Pb-containing perovskite-type oxide.
  • the A-site element of the perovskite-type oxide generally represented by the formula ABO 3 may be simply referred to as A-site
  • the B-site element may be simply referred to as B-site.
  • the "main component” means a component accounting for 50 mol% or more. That is, "containing Pb as the main component of A site” means that 50 mol% or more of the A site element is Pb.
  • Other elements in the A site and elements in the B site do not matter.
  • a perovskite-type oxide represented by the following general formula (2) is preferable.
  • Pb a1 ⁇ a2 (Zr b1 Ti b2 ⁇ b3 ) O c (2)
  • Pb and ⁇ are A-site elements, and ⁇ is at least one element other than Pb.
  • Zr, Ti and ⁇ are B-site elements.
  • c 1: 1: 3 is standard, but within a range in which a perovskite structure can be obtained. It may deviate from the standard value.
  • the A-site elements other than Pb include lithium (Li), sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba). ), Lantern (La), strontium (Cd), and bismuth (Bi, etc. ⁇ is one or a combination of two or more of these.
  • B-site elements other than Ti and Zr include scandium (Sc), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), and manganese (W). Mn), iron (Fe), ruthenium (Ru), cobalt (Co), iridium (Ir), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), indium (In), tin ( Sn), antimony (Sb) and the like can be mentioned.
  • is one or a combination of two or more of these.
  • the film thickness of the piezoelectric layer 16 is not particularly limited, and is usually 200 nm or more, for example, 0.2 ⁇ m to 5 ⁇ m.
  • the thickness of the piezoelectric layer 16 is preferably 1 ⁇ m or more.
  • the growth control layer 14 contains a metal oxide represented by the general formula (1).
  • the growth control layer 14 is basically composed of a metal oxide represented by the general formula (1). However, the growth control layer 14 may contain unavoidable impurities.
  • M is composed of one or more metal elements that can be replaced with A sites of the Pb-containing perovskite-type oxide provided in the upper layer of the growth control layer 14, and has an electronegativity of less than 0.95.
  • M contains at least one selected from the group of Li, Na, K, Mg, Ca, Sr, Ba, La, Cd, and Bi as a main component within the range where the electronegativity is less than 0.95. Is preferable.
  • main component may be composed of only one element, or a combination of two or more elements may be used as the main component.
  • M may contain a metal element that can be substituted with A site other than the above metal element.
  • the electronegativity of M is the sum of the electronegativity of each metal element x the content ratio of the metal element in M.
  • N is at least one selected from the group consisting of Sc, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Ru, Co, Ir, Sn, Ni, Cu, Zn, Ga, In and Sb.
  • the main component is one.
  • N consists of a metal species capable of functioning as a B-site element in a Pb-containing perovskite oxide. N may contain a B-site element other than the above metal element.
  • O is an oxygen element.
  • the composition ratio e changes depending on the valences of M and N.
  • the Pb-containing perovskite-type oxide is a metal element substitutable for A sites and an element substitutable for B sites depends on the relative ion sizes of the three types A, B, and O, that is, the ionic radius. Determined by. According to Netsu Sokutei 26 (3) 64-75, the A site has 12 coordinations and the B site has 6 coordinations in the perovskite type oxide. Therefore, in order to obtain the perovskite type structure, AOs and BOs are alternately stacked. It will depend on the size of the two layers. The tolerance factor t expresses this as a quantitative measure, and it is expressed by the following equation.
  • t (rA + rO) / ⁇ 2 (rB + rO) ⁇
  • rA, rB, and rO are the ionic radii at the respective positions of the A, B, and O ions, respectively.
  • an element substitutable for A site and an element substitutable for B site are defined as having a tolerance factor of 1.05 to 0.90.
  • the ionic radius the one in the ionic radius table prepared by Shannon is used. The ionic radius of Shannon is described in R. D. Schannon, Acta Crystallogr. A32, 751 (1976).
  • a piezoelectric layer made of a single-phase perovskite-type oxide having no pyrochlore phase can be formed by providing a growth control layer satisfying the above conditions (see Test 1 below).
  • “there is no pyrochlore phase” means that the diffraction peak of the pyrochlore phase is not observed in the usual XRD (X-ray diffraction) measurement.
  • the pyrochlore phase does not appear and the single layer contains Pb.
  • a perovskite-type oxide layer can be formed. Since the allowable range of M d N 1-d O e composition ratio d is wide, at the time of forming the growth control layer, it is possible to suppress complication of the temperature control at the time of a large area, high cost Can be avoided.
  • the conventional growth control layer was limited to those having a perovskite structure or an oxygen octahedral structure. However, by setting the electronegativity in an appropriate range, the growth control layer is not limited to one having an octahedral structure such as a perovskite oxygen structure, and a layer having an amorphous structure can also be used.
  • a growth control layer is allowed to act as a seed crystal, and the PZT formed on the growth control layer is microscopically epitaxially grown to obtain a PZT having good crystallinity.
  • lattice matching is not always required. Since the growth control layer contains an element substitutable for the A site of the Pb-containing perovskite oxide, a pseudo Pb atmosphere can be created in the vicinity of the interface where Pb is likely to be insufficient, and the initial stage of the piezoelectric layer can be created. It is considered that the perovskite structure can be stably formed from the time of formation.
  • the A site of the perovskite structure is partially composed of M of the growth control layer at the interface of the piezoelectric layer with the growth control layer, but M is not doped over the entire area of the Pb-containing perovskite. Therefore, there is no effect on piezoelectricity. Further, since the perovskite structure is formed by the action of M at the interface, the formation of the pyrochlore phase can be suppressed, and the piezoelectric layer can be formed without causing the pyrochlore phase.
  • an oxide containing a highly reactive metal element with an electronegativity of less than 0.95 is used as the growth control layer, it is highly effective in complementing the Pb-missing A site at the initial stage of film formation, and has a perovskite structure. It is possible to promote the production of Pb-containing perovskite oxide and stably grow the Pb-containing perovskite oxide.
  • the allowable range of the Pb amount of the piezoelectric layer provided on the growth control layer can be expanded.
  • the piezoelectric layer for example, when a Pb a (Zr b1 Ti b2 X b3) O 3, it is possible perovskite formed in a very wide composition range with 0.9 ⁇ a ⁇ 1.5 (Examples below reference.).
  • M is preferably Ba as a main component, and M is particularly preferably Ba.
  • M is particularly preferably Ba.
  • M is particularly preferable that M is Ba.
  • M contains Ba, the film formation temperature of the piezoelectric layer provided on the growth control layer is significantly lowered as compared with the case where there is no growth control layer and the case where the growth control layer without Ba is provided. be able to.
  • M d N 1-d Oe 0.2 ⁇ d is preferable, 0.3 ⁇ d is more preferable, and 0.45 ⁇ d is particularly preferable.
  • d 0.2 or more, the choice of element species that can be used as M can be increased.
  • d By setting d to 0.3 or more and 0.45 or more, the choice of element species can be further increased.
  • the film thickness of the growth control layer 14 is preferably 0.63 nm or more and 170 nm or less, more preferably 0.63 nm or more and 40 nm or less, and particularly preferably 0.63 m or more and 10 nm or less.
  • the film thickness of the growth control layer 14 is 0.63 nm or more, the effect of suppressing the pyrochlore phase can be sufficiently obtained. Further, when it is 40 nm or less, the effect of obtaining a good perovskite phase is high.
  • N is preferably Ru, Ir, Sn, Zr, Ta, Ni, Co or Nb.
  • the growth control layer can be a growth control layer having high conductivity, so that the growth control layer can also function as a part of the lower electrode.
  • Test 1 The conditions of the growth control layer were determined based on the results of preparing samples of growth control layers having different compositions and evaluating them. The sample preparation method and evaluation method used for determining the conditions of the growth control layer will be described below.
  • Example preparation method ⁇ Film film substrate>
  • a substrate in which a Ti adhesion layer having a thickness of 10 nm and an Ir lower electrode layer having a thickness of 150 nm were sequentially laminated on a 25 mm square Si substrate on which a thermal oxide film of 1 ⁇ m was formed was used.
  • a substrate with a lower electrode was placed in the sputtering apparatus, argon (Ar) was flowed so as to have a vacuum degree of 0.8 Pa, and the substrate temperature was set to 500 ° C.
  • Ar argon
  • a co-sputtering technique using multiple targets was used to form the growth control layers with different composition ratios.
  • the target arrangement during co-sputtering is such that the substrate and the target are arranged diagonally instead of the arrangement where the target is directly under the substrate, so that it is possible to simultaneously realize film formation of multiple targets in the same environment. become.
  • By controlling the power applied to each target at the time of film formation different composition and growth control layers were formed.
  • the growth control layer composition was evaluated in advance, and conditions were set to obtain a growth control layer having a desired composition ratio. Specifically, a substrate was separately prepared for the growth control layer composition evaluation, and the composition was evaluated by fluorescent X-ray (XRF: X-ray Flourescence) to determine the composition conditions. A PANalytical fluorescent X-ray device, Axios, was used as the evaluation device. In the condition setting process, the film thickness of the layer for composition evaluation was set to 300 nm in order to obtain sufficient fluorescent X-ray intensity. A tactile film thickness meter, Deck Tack 6M, manufactured by ULVAC, Inc. was used for film thickness measurement.
  • XRF fluorescent X-ray
  • the composition was controlled by adjusting the power input to each target during sputtering film formation.
  • the film thickness was adjusted so as to obtain a desired film thickness. Using the conditions obtained in this way, a sample provided with the growth control layer shown in Table 2 below was prepared.
  • RF radio frequency
  • a sintered body of Pb x Zr 0.52-d / 2 Ti 0.48-d / 2 Nb d ) having a diameter of 120 mm was used.
  • four types of target materials of X 1.0, 1.15, 1.2, and 1.3 were prepared.
  • the distance between the target and the substrate was 60 mm.
  • a substrate with a lower electrode equipped with a growth control layer is placed in the RF sputtering apparatus, and the thickness is 1 under the conditions of a vacuum degree of 0.3 Pa and an Ar / O 2 mixed atmosphere (O 2 volume fraction 2.0%).
  • a 0.0 ⁇ m Nb-doped PZT film (hereinafter, simply referred to as a PZT film) was formed as a piezoelectric layer.
  • a piezoelectric layer was formed in the same manner as described above, except that a substrate with a lower electrode without a growth control layer was installed in the sputtering apparatus. ..
  • the substrate temperature was set to 500 to 750 ° C., and 500 W of electric power was applied to the target.
  • the lowest temperature at which a PZT film having a good perovskite structure without a pyrochlore phase could be formed was investigated in the range of 500 to 750 ° C.
  • a PZT film is formed on a growth control layer having the same composition at different substrate temperatures (deposition temperature) in the range of 500 to 750 ° C., and a plurality of subsamples having different film formation temperatures of the PZT film are formed for each sample No. Made.
  • the relationship between the Pb composition X in the target material, the film formation temperature, and the Pb composition ⁇ 1 in the PZT film after film formation is as shown in Table 1.
  • the amount of Nb doping to the B site in the PZT film after film formation was 14.1 mol% regardless of the film formation temperature and the amount of Pb.
  • Table 2 shows the results for the subsample obtained at the lowest film formation temperature when there are multiple samples obtained with a good perovskite structure among the multiple subsamples having different film formation temperatures and Pb composition X. Indicated. On the other hand, for the samples for which a good perovskite structure could not be obtained in the temperature range of 500 to 750 °, the temperature at which the PZT film could be formed was not shown, so the temperature is not shown in Table 2.
  • ⁇ PZT composition evaluation> The composition of the obtained PZT film was evaluated by XRF to determine the composition.
  • PZT crystallinity evaluation was performed by XRD using RINT-ULTIMA III manufactured by RIGAKU. From the obtained data, the intensity of the pyrochlore phase, which is a heterogeneous phase, was calculated and evaluated. The region where the pyrochlore phase is detected is the (222) plane near the XRD diffraction 29 °. The diffraction intensity of the obtained pyrochlore phase (222) plane near 29 ° of XRD diffraction was evaluated according to the following criteria.
  • Table 2 shows the composition of M of each sample, electronegativity, composition of composition ratios d and N, and the lower limit of the film formation temperature of PZT. In addition, the intensity of the pyrochlore phase and the determination result for each sample are shown.
  • the electronegativity of M, or Ba, is 0.89.
  • the electronegativity of Ba is 0.89.
  • M is La, Sr, for the case of Ba, respectively, and the range of composition ratio d of XRD intensity of pyrochlore phase satisfy 10 3 or less is extracted as shown in Table 3.
  • FIG. 3 shows a graph in which the lower and upper limits of composition are plotted with the electronegativity of M shown in Table 3 on the horizontal axis and the composition ratio d on the vertical axis.
  • the lower limit of composition was fitted with a straight line
  • the upper limit of composition was fitted with a curved line.
  • the straight line indicating the lower limit of composition M min and the upper limit of composition M max could be expressed by the following equations as functions of electronegativity X, respectively.
  • M min 1.41X-1.05
  • M max A1 ⁇ exp (-X / t1) + y0
  • A1 1.68 ⁇ 10 12
  • the pyrochlore phase can be sufficiently suppressed if the region between the lower limit of composition and the upper limit of composition, that is, the composition d of M is in the range of M min ⁇ d ⁇ M max . 1.41X-1.05 ⁇ d ⁇ A1 ⁇ exp (-X / t1) + y0
  • FIG. 4 shows a graph in which each sample shown in Table 2 is plotted with electronegativity on the horizontal axis and composition ratio d on the vertical axis. M max and M min are also shown in FIG.
  • Table 2 a sample having an evaluation of A or B for the pyrochlore phase is indicated by a white circle marker ( ⁇ ), and a sample having an evaluation C is indicated by a black circle marker ( ⁇ ). The number assigned near the marker is the sample No. Is shown.
  • the regions sandwiched by the functions M max and M min were all samples of A or B evaluation.
  • the electronegativity and composition ratio of the growth control layer of the present disclosure are defined as M max ⁇ d ⁇ M min and X ⁇ 0.95.
  • a piezoelectric layer made of a Pb-containing perovskite-type oxide having no pyrochlore phase can be obtained in 0.2 ⁇ d. Since the range of electronegativity that can be taken can be expanded by setting 0.3 ⁇ d, the options of M can be increased. If M contains K, which has a lower electronegativity than Ba, the electronegativity can be lowered, and it is considered that the lower limit of d can be widened.
  • FIG. 5 is a graph showing the relationship between the film thickness of the growth control layer and the reflection intensity of the pyrochlore phase.
  • FIG. 6 is a graph showing the relationship between the film thickness of the growth control layer and the XRD intensity of (100) of the perovskite structure.
  • the diffraction intensity peaked at a film thickness of about 5 nm, and a piezoelectric layer having the best crystallinity could be obtained.
  • the diffraction intensity decreases as the film thickness exceeds 5 nm and becomes thicker.
  • the film thickness is preferably 40 nm or less.
  • the film thickness of the growth control layer is preferably 0.63 nm or more and 170 nm or less, and further preferably 0.63 nm or more and 40 nm or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Physical Vapour Deposition (AREA)
  • Semiconductor Memories (AREA)

Abstract

低コストに作製可能な、Pbを含有する単相のペロブスカイト型酸化物を含む圧電体層を備えた圧電素子を得る。圧電素子は、基板上に、下部極層、成長制御層、鉛をAサイトの主成分として含有するペロブスカイト型酸化物を含む圧電体層、及び上部電極層をこの順に備え、成長制御層が、M1-dで表される金属酸化物を含む。ここで、Mはペロブスカイト型酸化物のAサイトに置換可能な1以上の金属元素からなり、0<d<1であって、電気陰性度をXとした場合、1.41X-1.05≦d≦A1・exp(-X/t1)+y0,A1=1.68×1012,t1=0.0306,y0=0.59958である。

Description

圧電素子
 本発明は、圧電素子に関する。
 優れた圧電性及び強誘電性を有するチタン酸ジルコン酸鉛(Pb(Zr,Ti)O3)、以下においてPZTという。)からなる薄膜が知られている。PZT膜はその強誘電性を生かし、不揮発性メモリである強誘電体メモリ(FeRAM:Ferroelectric Random Access Memory)に使用されている。さらには近年、MEMS(Micro Electro-Mechanical Systems)技術との融合により、PZT膜を用いたMEMS圧電素子が実用化されつつある。PZT膜は、インクジェットヘッド(アクチュエータ)やマイクロミラーデバイス、角速度センサ、ジャイロセンサ、及び振動発電デバイスなど様々なデバイスへと展開されている。
 上記の各種デバイスに求められる優れた圧電性及び強誘電性を実現するためには、PZT膜はペロブスカイト構造の結晶から構成される必要がある。しかし、PZT膜は、成膜の際に、不純物相であるパイロクロア(pyrochlore)相が生成され易い。パイロクロア相は常誘電体であるため、PZT膜の誘電率や圧電特性の悪化が起こる。そのため、パイロクロア相を抑制し、ペロブスカイト単相のPZT薄膜を得る技術が求められている。
 鉛(Pb)が、揮発性が高く非常に不安定な元素であるために、安定にPZTを組成形成するのが難しいと考えられている。安定にPZTを形成させるためには、Pb成分を制御することが求められる。一般的には、Pbの揮発性を考慮してPb過剰な雰囲気で成長させることが多い。このようにすることで、良好なペロブスカイト構造のPZTを得ることが可能であると言われているが、最も不安定である初期核が形成される界面領域(初期層)においては依然としてパイロクロア相が形成されてしまう。
 他方、Pbの不安定性を制御するために、成長制御層(シード層、バッファー層、あるいは配向制御層とも呼ばれる)の導入が検討されている。例えば、特許文献1では、白金(Pt)薄膜上にBaTiOを配向制御層として形成し、その上にPbTiOをCVD(Chemical Vapor Deposition)法により形成する方法が開示されている。また、特許文献2では、配向制御層として酸素八面体構造を有する材料を用いることで良好な結晶性のPZT膜を形成する方法が開示されている。
特開平7-142600号公報 特開2001-223403号公報
 特許文献1では、Pt薄膜上にBaTiOを備え、その上にPbTiO層を形成することによってPt薄膜の配向性を受け継いだPZT層を形成することができると記載されている。そして、PZTと同じ酸化物であり、かつ、PZTに格子定数が比較的近い化合物であれば同様の効果が期待できるとして、チタン酸ストロンチウム(SrTiO)、酸化バリウム(BaO)、酸化ストロンチウム(SrO)、酸化セレン(CeO)、酸化マグネシウム(MgO)などの化合物が配向制御層の例として挙げられている。
 しかしながら、特許文献1では電極がPt膜に限定されており、他の電極を用いた場合については検討されていない。
 特許文献2では、配向制御層としてペロブスカイト構造などの酸素八面体構造を有する材料を用いることで、単相のPZT膜が得られる。しかしながら、特許文献2では配向制御層の結晶構造と格子マッチングをさせることで単相のPZT膜を成長させているため、配向制御層は特定の結晶構造に限られる。そのため大面積に成膜しようとした際に、PZTの組成制御のみならず、配向制御層の組成制御も必要となってくるため、より複雑な制御が必要となり、生産性が低下し、コスト高になってしまう。
 パイロクロア相の形成によって、良好なペロブスカイト構造が得られなくなる問題はPZTに限らず、Pbを含むペロブスカイト型酸化物を含む圧電体層に共通する問題である。
 本開示は、上記事情に鑑みてなされたものであって、Pbを含有する単相のペロブスカイト型酸化物を含む圧電体層を備えた圧電素子を低コストに提供することを目的とする。
<1>
 基板上に、下部電極層、成長制御層、鉛をAサイトの主成分として含有するペロブスカイト型酸化物を含む圧電体層、及び上部電極層をこの順に備えた圧電素子であって、
 成長制御層が、下記一般式(1)で表される金属酸化物を主成分とし、
 M1-d    (1)
 ここで、Mはペロブスカイト型酸化物のAサイトに置換可能な1以上の金属元素からなり、かつ、電気陰性度が0.95未満であり、
 Nは、Sc、Zr、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Ru、Co、Ir,Ni、Cu、Zn、Ga、Sn、In及びSbからなる群より選択される少なくとも1つを主成分とし、
 Oは酸素元素であり、
 d、eは組成比を示し、0<d<1であって、電気陰性度をXとした場合、
1.41X-1.05≦d≦A1・exp(-X/t1)+y0
A1=1.68×1012,t1=0.0306,y0=0.59958である圧電素子。
<2>
 一般式(1)のMが、Li、Na、K、Mg、Ca、Sr、Ba、La、Cd、及びBiからなる群より選択される少なくとも1つを主成分とする<1>に記載の圧電素子。
<3>
 一般式(1)のMがBaを主成分として含む、<1>に記載の圧電素子。
<4>
 一般式(1)のMがBaである<1>に記載の圧電素子。
<5>
 0.2≦dである<1から<4>のいずれかに記載の圧電素子。
<6>
 0.3≦dである<1>から<4>のいずれかに記載の圧電素子。
<7>
 0.45≦dである<1>から<4>のいずれかに記載の圧電素子。
<8>
 成長制御層の膜厚が0.63nm以上170nm以下である<1>から<7>のいずれかに記載の圧電素子。
<9>
 成長制御層の膜厚が0.63nm以上40nm以下である<1>から<7>のいずれか記載の圧電素子。
<10>
 一般式(1)のNがRu、Ir、Sn、Ni、Co、Ta、及びNbからなる群から選択される<1>から<9>のいずれかに記載の圧電素子。
 本開示によれば、Pbを含有する単相のペロブスカイト構造の圧電体層を備えた圧電素子を低コストに提供することができる。
本開示の一実施形態の圧電素子の概略構成を示す断面図である。 成長制御層の組成比dとパイロクロア相のXRD強度との関係を示す図である。 電気陰性度と成長制御層の組成比dとの関係を示す図である。 電気陰性度と成長制御層の組成比dとの関係を示す図である。 成長制御層の膜厚とパイロクロア相のXRD強度の関係を示す図である。 成長制御層の膜厚とペロブスカイト構造の(100)のXRD強度との関係を示す図である。 PZT膜の成膜温度とパイロクロア相のXRD強度との関係を示す図である。
 以下、図面を参照して本発明の実施の形態について説明する。
 図1は、本実施形態の圧電素子の断面模式図である。図1に示すように、圧電素子1は、基板10上に、下部電極層12、成長制御層14、圧電体層16及び上部電極層18が、順に積層された素子である。圧電素子1は、圧電体層16に対して、下部電極層12と上部電極層18とにより厚み方向に電界が印加されるように構成されている。
 基板10としては特に制限なく、シリコン、ガラス、ステンレス鋼(SUS)、イットリウム安定化ジルコニア(YSZ)、アルミナ、サファイヤ、シリコンカーバイド等の基板が挙げられる。基板10としては、シリコン基板の表面にSiO酸化膜が形成されたSOI基板等の積層基板を用いてもよい。
 下部電極層12は、圧電体層16に電圧を加えるための電極である。下部電極層12の主成分としては特に制限なく、金(Au)、Pt、イリジウム(Ir)、ルテニウム(Ru)、チタン(Ti)、モリブデン(Mo)、タンタル(Ta)、アルミニウム(Al)、銅(Cu)、銀(Ag)等の金属、酸化インジウム(ITO:Indium Tin Oxide)、酸化イリジウム(IrO)、酸化ルテニウム(RuO)、LaNiO、及びSrRuO等の金属酸化物、及びこれらの組合せが挙げられる。下部電極層12としては、Irを用いることが特に好ましい。
 上部電極層18は、上記下部電極層12と対をなし、圧電体層16に電圧を加えるための電極である。上部電極層18の主成分としては特に制限なく、下部電極層12で例示した材料の他、クロム(Cr)等の一般的に半導体プロセスで用いられている電極材料、及びこれらの組合せが挙げられる。
 なお、本明細書において、上部、下部は天地を意味するものではなく、圧電体層16挟んで設けられる一対の電極層のうち、基板側に配置される電極層を下部電極層、基板と反対側に設けられる電極層を上部電極層と称しているに過ぎない。
 下部電極層12と上部電極層18の厚みは特に制限なく、50nm~300nm程度であることが好ましい。
 圧電体層16は、PbをAサイトの主成分として含有するペロブスカイト型酸化物(以下において、Pb含有ペロブスカイト型酸化物と称す。)を含む。圧電体層16は、基本的にはPb含有ペロブスカイト型酸化物からなる。但し、圧電体層16はPb含有ペロブスカイト型酸化物の他に不可避不純物を含んでいてもよい。なお、本明細書において、一般的に式ABOで表されるペロブスカイト型酸化物のAサイト元素を単にAサイトといい、Bサイト元素を単にBサイトということがある。また、本明細書において「主成分」とは50mol%以上を占める成分であることを意味する。すなわち、「PbをAサイトの主成分として含有する」とは、Aサイト元素中、50mol%以上の成分がPbであることを意味する。Aサイト中の他の元素及びBサイトの元素は問わない。
 例えば、下記一般式(2)で示されるペロブスカイト型酸化物が好ましい。
(Pba1αa2)(Zrb1Tib2βb3)O   (2)
 式中、Pb及びαはAサイト元素であり、αはPb以外の少なくとも1種の元素である。Zr,Ti及びβはBサイト元素である。a1≧0.5、b1>0、b2>0、b3≧0、であり、(a1+a2):(b1+b2+b3):c=1:1:3が標準であるが、ペロブスカイト構造を取り得る範囲内で標準値からずれてもよい。
 Pb含有ペロブスカイト型酸化物において、Pb以外のAサイト元素としては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ランタン(La)、カドミウム(Cd)、及びビスマス(Biなどが挙げられる。αはこれらのうちの1つもしくは2以上の組み合わせである。
 また、Ti、Zr以外のBサイト元素としては、スカンジウム(Sc)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、クロム(Cr)、モリブデン(Mo)、タングステン(W)、マンガン(Mn)、鉄(Fe)、ルテニウム(Ru)、コバルト(Co)、イリジウム(Ir)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、インジウム(In)、スズ(Sn)、及びアンチモン(Sb)などが挙げられる。βはこれらのうちの1つもしくは2以上の組み合わせである。
 圧電体層16の膜厚は特に制限なく、通常200nm以上であり、例えば0.2μm~5μmである。圧電体層16の膜厚は1μm以上が好ましい。
 成長制御層14は、一般式(1)で表される金属酸化物を含む。成長制御層14は基本的には、一般式(1)で表される金属酸化物からなる。但し、成長制御層14は、不可避不純物を含んでいてもよい。
 M1-d    (1)
 ここで、Mは成長制御層14の上層に備えられるPb含有ペロブスカイト型酸化物のAサイトに置換可能な1以上の金属元素からなり、かつ、電気陰性度が0.95未満である。Mは、電気陰性度が0.95未満となる範囲で、Li、Na、K、Mg、Ca、Sr,Ba,La、Cd、及びBiの群より選択される少なくとも1つを主成分とすることが好ましい。本明細書において「少なくとも1つを主成分とする」とは、1つの元素のみで主成分を構成するものとしてもよいし、2つ以上の元素の組み合わせを主成分としてもよいことを意味する。Mは上記金属元素以外のAサイトに置換可能な金属元素を含んでいてもよい。Mが2以上の金属元素からなる場合、Mの電気陰性度は、それぞれの金属元素の電気陰性度×その金属元素のM中における含有割合の和、とする。
 NはSc、Zr、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Ru、Co、Ir、Sn、Ni、Cu、Zn、Ga、In及びSbからなる群より選択される少なくとも1つを主成分とする。NはPb含有ペロブスカイト型酸化物においてBサイト元素として機能し得る金属種からなる。Nは上記金属元素以外のBサイト元素を含んでいてもよい。
 Oは酸素元素である。
 また、d、eは組成比を示し、0<d<1であって、Mの電気陰性度をXとした場合、1.41X-1.05≦d≦A1・exp(-X/t1)+y0
A1=1.68×1012,t1=0.0306,y0=0.59958である。
 なお、組成比eはM、Nの価数によって変化する。
 なお、Pb含有ペロブスカイト型酸化物のAサイトに置換可能な金属元素、Bサイトに置換可能な元素であるか否かは、A,B,O三種類の相対的イオンの大きさ、すなわちイオン半径によって定まる。Netsu Sokutei 26 (3) 64-75によれば、ペロブスカイト型酸化物ではAサイトは12配位、Bサイトは6配位をとるため、ペロブスカイト型構造をとるためには交互に積み重なったAO、BO層のサイズに依存することになる。これを定量的な尺度として表したのがトレランスファクターtであり、これは次式で表される。
 t=(rA+rO)/{√2(rB+rO)}ここでrA,rB,rOはそれぞれA,B,Oイオンのそれぞれの位置でのイオン半径である。
 通常ペロブスカイト型酸化物はt=1.05~0.90前後で出現し、理想的なペロブスカイト型構造はt=1で実現される。本明細書においては、Aサイトに置換可能な元素、Bサイトに置換可能な元素は、トレランスファクターが1.05~0.90を満たすものと定義する。なお、イオン半径はShannonにより作成されたイオン半径表のものを用いる。シャノンのイオン半径については、R. D. Schannon, Acta Crystallogr. A32, 751 (1976)に記載されている。
 上記の条件を満たす成長制御層を備えることによって、パイロクロア相がない単相のペロブスカイト型酸化物からなる圧電体層を形成することができることを、本発明者らは見出した(後記、試験1参照)。ここで、「パイロクロア相がない」とは、通常のXRD(X-ray diffraction)測定において、パイロクロア相の回折ピークが観察されないことをいう。
 成長制御層中の、Aサイトに置換可能な金属元素であるMの電気陰性度Xをパラメータとして、Mの組成比を上記範囲とすることにより、パイロクロア相を出現させず、単層のPb含有ペロブスカイト型酸化物層を成膜できる。M1-dの組成比dの許容範囲が広いため、成長制御層の成膜時において、大面積化した際の温度制御の複雑化を抑制することができ、高コスト化を避けることができる。
 従来の成長制御層は、ペロブスカイト構造あるいは、酸素八面体構造を有するものに限られていた。しかしながら、電気陰性度を適切な範囲にすることで、成長制御層は、ペロブスカイト酸素構造などの八面体構造を有するものに限られることなく、さらには、アモルファス構造からなる層を用いることもできる。
 従来は、成長制御層を種結晶として作用させ、その上に形成されるPZTを微視的にエピタキシャル成長させることで、良好な結晶性のPZTを得ていた。一方、本開示においては、格子マッチングは必ずしも必要とされない。成長制御層は、Pb含有ペロブスカイト酸化物のAサイトに置換可能な元素を含んでいることから、Pb不足になりやすい界面近傍において、擬似的にPb雰囲気を作ることができ、圧電体層の初期形成時からペロブスカイト構造を安定に形成することができると考えられる。圧電体層の成長制御層との界面においてペロブスカイト構造のAサイトは一部成長制御層のMにより構成されていると考えられるが、Pb含有ペロブスカイトの全域に亘ってMがドープされるわけではないことから、圧電性への影響はない。また、界面においてMの作用によってペロブスカイト構造が形成されるため、パイロクロア相の生成を抑制することができ、パイロクロア相を生じさせることなく、圧電体層を形成することができる。特に、電気陰性度が0.95未満の非常に反応性の高い金属元素を含む酸化物を成長制御層として用いているので、成膜初期においてPb抜けAサイトを補完する効果が高く、ペロブスカイト構造の生成を促進させることができ、安定にPb含有ペロブスカイト酸化物を成長させることが可能である。
 上記条件を満たす成長制御層を備えることによって、成長制御層上に設ける圧電体層のPb量の許容範囲を広げることができる。たとえば、圧電体層が、例えば、Pb(Zrb1Tib2b3)Oである場合、0.9≦a≦1.5と極めて広い組成域においてペロブスカイト形成が可能である(後記実施例参照。)。
 なお、成長制御層14は、MがBaを主成分とすることが好ましく、MがBaであることが特に好ましい。MにおいてBaを50mol%以上含むことで、dの許容される範囲を格段広げることができ、好ましい。MがBaであることが特に好ましい。
 なお、MがBaを含む場合、成長制御層がない場合及びBaを含まない成長制御層を備えた場合と比較して、成長制御層上に設ける圧電体層の成膜温度を大幅に低くすることができる。
 M1-dにおいて、0.2≦dが好ましく、0.3≦dがより好ましく、0.45≦dが特に好ましい。
 dを0.2以上とすることで、Mとして用いることができる元素種の選択肢を増やすこができる。dを0.3以上、0.45以上とすることによって、さらに、元素種の選択肢を増やすことができる。
 成長制御層14の膜厚は0.63nm以上170nm以下であることが好ましく、0.63nm以上40nm以下であることがより好ましく、0.63m以上10nm以下であることが特に好ましい。成長制御層14の膜厚は0.63nm以上であれば、パイロクロア相を抑制する効果を十分得ることができる。また、40nm以下であれば、良好なペロブスカイト相を得る効果が高い。
 また、Nは、Ru、Ir、Sn、Zr、Ta、Ni、Co又はNbであることが好ましい。Nがこれらの金属である場合、異相が出にくいため、スパッタ成膜時に使用するターゲットを高密度に作製しやすい。特にRu、Ir、Snにおいては高い導電率の成長制御層とすることができるので、成長制御層を下部電極の一部としても機能させることができる。
[試験1]
 上記成長制御層の条件は、異なる組成の成長制御層のサンプルを作製し、評価を行った結果に基づいて決定した。以下に、成長制御層の条件の決定に用いたサンプルの作製方法及び評価方法を説明する。
(サンプルの作製方法)
<成膜基板>
 成膜基板として、熱酸化膜が1μm形成されている25mm角のSi基板上に10nm厚のTi密着層と150nm厚のIr下部電極層が順次積層されている基板を用いた。
<成長制御層の成膜>
 パスカル社製の複数のターゲットを独立に制御可能なスパッタリング装置を用いた。スパッタリング装置内に下部電極付きの基板を載置し、真空度0.8Paになるようにアルゴン(Ar)をフローし、基板温度が500℃になるように設定した。組成比の異なる成長制御層の成膜のために、複数のターゲットを用いる共スパッタの手法を用いた。共スパッタ時のターゲット配置は、ターゲットが基板直下に来る配置ではなく、基板とターゲットが斜めに配置された構造にすることによって、複数のターゲットの成膜を同一環境下で同時に実現することが可能になる。成膜時に各ターゲットに投入するパワーを制御することで、異なる組成及び成長制御層を成膜した。
 なお、組成比の異なる成長制御層を成膜する前に、予め成長制御層組成評価行い、所望の組成比の成長制御層を得るための条件出しを行った。具体的には、成長制御層組成評価用に別途基板を準備し、蛍光X線(XRF:X-ray Flourescence)にて組成評価を実施し、組成の条件を決定した。評価装置にはPANalytical社製蛍光X線装置アクシオスを用いた。条件出し過程においては、十分な蛍光X線強度を得るために、組成評価のための層の膜厚は300nmとした。膜厚測定には、アルバック社製触診式膜厚計デックタック6Mを用いた。条件出しに当たって、スパッタ成膜時の各ターゲットへの投入電力を調整することで組成を制御した。また、所望の膜厚になるように成膜時間を調整した。このようにして得られた条件を用い、後記表2に示す成長制御層を備えたサンプルを作製した。
<圧電体層の成膜>
 成膜装置としてRF(radio frequency)スパッタリング装置(アルバック社製スパッタリング装置MPS型)を用いた。ターゲット材には直径120mmのPb(Zr0.52-d/2Ti0.48-d/2Nb)の焼結体を用いた。ここでは、d=0.12のNbドープ量とし、X=1.0、1.15、1.2、1.3の4種のターゲット材を用意した。ターゲットと基板との間の距離は60mmとした。
RFスパッタリング装置内に、成長制御層を備えた下部電極付き基板を載置し、真空度0.3Pa、Ar/O混合雰囲気(O体積分率2.0%)の条件下で厚み1.0μmNbドープPZT膜(以下、単にPZT膜という。)を圧電体層として成膜した。なお、成長制御層を備えていないサンプルを作製する場合には、成長制御層を備えていない下部電極付き基板をスパッタリング装置内に設置する以外は、上記と同様にして圧電体層を成膜した。
 基板温度設定500~750℃とし、ターゲットに500Wの電力を投入した。
 各組成の成長制御層について、500~750℃の範囲で、パイロクロア相を備えない良好なペロブスカイト構造を有するPZT膜を成膜することができる最も低い温度を調べた。同一の組成の成長制御層上に、500~750℃の範囲の異なる基板温度(成膜温度)でPZT膜を成膜し、サンプルNo毎にPZT膜の成膜温度が異なる複数のサブサンプルを作製した。
 ターゲット材料におけるPb組成X、成膜温度、及び、成膜後のPZT膜におけるPb組成α1の関係は表1に示す通りであった。なお、成膜後におけるPZT膜におけるBサイトへのNbドープ量は成膜温度、Pb量にかかわらず14.1mol%であった。
Figure JPOXMLDOC01-appb-T000001
 
(評価方法)
<PZT成膜温度評価>
 RIGAKU製、RINT-ULTIMAIIIを用いてXRD(X-ray Diffraction)にてPZT結晶性評価を実施した。得られたデータから、異相であるパイロクロア相の強度を算出した。パイロクロアが検出される領域は、XRD回折29°近傍である。
 各サブサンプルのXRD測定を行い、回折角度29°近傍にパイロクロア相のピークが観察されない場合には、良好なペロブスカイト構造が形成されていると判断した。成膜温度とPb組成Xが異なる複数のサブサンプル中に良好なペロブスカイト構造を得られたサンプルが複数ある場合には、そのうち最も低い成膜温度で得られたサブサンプルについての結果を表2に示した。他方、500~750°の温度範囲において良好なペロブスカイト構造を得ることができなかったサンプルについてはPZT膜を成膜できた温度はないため、表2中に温度を示していない。
<PZT組成評価>
 得られたPZT膜について、XRFにて組成評価を実施し、組成を求めた。A-サイトにおけるPb量はその不安定さゆえに成膜温度に伴い変化する。そこで、Pb/(Zr+Ti+Nb)と定義している。B-サイト元素は、成膜温度によらず一定のためZr+Ti+Nb=1となるように組成比を算出した。
<PZT結晶性評価>
 RIGAKU製、RINT-ULTIMAIIIを用いてXRDにてPZT結晶性評価を実施した。得られたデータから、異相であるパイロクロア相の強度を算出し、評価した。パイロクロア相が検出される領域は、XRD回折29°近傍の(222)面である。得られたXRD回折29°近傍のパイロクロア相(222)面の回折強度について以下の基準で評価した。
 A:100cps以下
 B:100cps超、1000cps以下
 C:1000cps超
 なお、100cpsはノイズと同程度であり、29°近傍において100cpsを超えるピークがない場合には、パイロクロア相はXRDでは検出されないレベルであることを意味する。評価Bの範囲であれば、パイロクロア相は従来と比較して十分に抑制されており、圧電性の低下は許容される範囲である。なお、表2中において、100cps以下の場合は1×10、10000cps以上の場合は1×10として表記した。
 表2に各サンプルのMの組成、電気陰性度、組成比d、Nの組成、PZTの成膜温度下限値を示す。また、各サンプルについてのパイロクロア相の強度、判定結果を示す。
Figure JPOXMLDOC01-appb-T000002
 サンプルNo.1~9は成長制御層として、M=Ba、N=RuとしたBaRu1-dを用い、dを変化させたサンプルである。M、すなわちBaの電気陰性度は0.89である。
 サンプルNo.10~12は成長制御層として、M=Ba、N=TaとしたBaTa1-dを用い、dを変化させたサンプルである。Baの電気陰性度は0.89である。
 サンプルNo.13~19は成長制御層として、M=Ba,Sr、N=Ruとした(Ba,Sr)Ru1-dを用い、BaとSrとの比を変化させることでMの電気陰性度を0.90~0.94の範囲で変化させ、かつdを変化させたサンプルである。
 サンプルNo.20~28は成長制御層として、M=Sr、N=RuとしたSrRu1-dを用い、dを変化させたサンプルである。Srの電気陰性度は0.95である。
 サンプルNo.29~36は成長制御層として、M=La、N=RuとしたLaRu1-dを用い、dを変化させたサンプルである。Laの電気陰性度は1.1である。
 図2に、成長制御層として、BaRu1-dを用いたサンプル1~9、成長制御層としてSrRu1-dを用いたサンプル20~28及び成長制御層としてLaRu1-dを用いたサンプル29~30について、それぞれ成長制御層中Mの組成比dとパイロクロア相のXRD強度との関係を図2に示す。
 図2に示すように、Baを用いた場合、非常に広い組成範囲0.2≦dにおいてパイロクロア相が十分抑制されたPZT膜を得ることができた。
 図2から、MがLa、Sr、Baそれぞれの場合について、パイロクロア相のXRD強度が10以下を満たす組成比dの範囲を表3の通り抽出した。
Figure JPOXMLDOC01-appb-T000003
 表3に示すMの電気陰性度を横軸、組成比dを縦軸として、組成下限及び上限の値をそれぞれプロットしたグラフを図3に示す。図3において、組成下限値については直線で、組成上限については曲線でフィッティングを行った。組成下限Mminを示す直線、組成上限を示すMmaxは、それぞれ電気陰性度Xの関数として下記の式で表すことができた。
 Mmin=1.41X-1.05
 Mmax=A1・exp(-X/t1)+y0
 A1=1.68×1012,t1=0.0306,y0=0.59958
 組成下限、及び組成上限に挟まれる領域、すなわち、Mの組成dが、Mmin≦d≦Mmaxの範囲であれば、パイロクロア相を十分抑制できると推定される。
 1.41X-1.05≦d≦A1・exp(-X/t1)+y0
 図3に示すように、電気陰性度Xが小さいほど組成比dの取り得る範囲が広がる。この組成比dの取り得る範囲は電気陰性度X=0.95を境に急激に広がることから、電気陰性度としては0.95未満と規定した。組成比dの取り得る範囲が広ければ、大面積化を行った際に、面内における組成ばらつきを許容できる範囲が広がるため、温度制御などの成膜における制御を簡素化することができ、低コストな製造が可能となる。
 図4に、表2に示した各サンプルを横軸電気陰性度、縦軸組成比dでプロットしたグラフを示す。図4中にMmax及びMminを併せて示す。図4では、表2においてパイロクロア相に関する評価がAもしくはBであるサンプルを白抜き円マーカー(〇)で示し、評価Cであるサンプルを黒円マーカー(●)で示す。マーカーの近傍に付された番号はサンプルNo.を示す。図4に示すように、関数Mmax、Mminで挟まれた領域はすべてAもしくB評価のサンプルであった。
 以上の通り、上記試験結果に基づいて、本開示の成長制御層の取り得る電気陰性度及び組成比を、Mmax≦d≦Mmin、X<0.95と規定した。
 MとしてBaを用いた場合、0.2≦dでパイロクロア相のないPb含有ペロブスカイト型酸化物からなる圧電体層を得ることができる。0.3≦dとすることで取り得る電気陰性度の範囲を広げることができるので、Mの選択肢を増加することができる。
 なお、MとしてBaよりも電気陰性度の低いKを含むものとすれば、電気陰性度を低くすることができるので、dの下限値を広げることができると考えられる。
[試験2]
 Ba0.45Ru0.55Oを成長制御層として、その膜厚を変化させたサンプルを作製し、PZT膜の結晶性の成長制御層の膜厚依存性について調べた。作製方法は、上記サンプルの作製方法と同様とし、成長制御層の膜厚のみ、0.5nm~170nmの間で変化させた。
 各サンプルの圧電体層について、上記のPZT結晶性評価と同様にして、パイロクロア相のXRD強度を測定した。得られた結果を図5に示す。図5は、成長制御層の膜厚とパイロクロア相の反射強度との関係を示すグラフである。
 図5に示すように、膜厚を0.63nm以上とすることで、十分なパイロクロア相の抑制効果を得ることができることが分かった。
 また、各サンプルの圧電体層について、PZT結晶性評価と同様にしてXRD測定を行った。ここでは、取得したデータからペロブスカイト構造の(100)によるXRD強度を算出した。ペロブスカイト構造の(100)のピーク強度が高いほど、良好な結晶性のペロブスカイト型酸化物が得られていることを意味する。得られた結果を図6に示す。図6は、成長制御層の膜厚とペロブスカイト構造の(100)のXRD強度との関係を示すグラフである。
 図6に示すように、膜厚5nm程度で回折強度がピークとなり、最も結晶性が良好な圧電体層を得ることができることが分かった。膜厚が5nmを超えて厚くなるにつれて回折強度が低下している。XRD強度が1×10cps以上のより結晶性の良いペロブスカイト型酸化物を得るには、膜厚40nm以下とすることが好ましい。
 以上の結果から、成長制御層の膜厚は0.63nm以上、170nm以下が好ましく、さらには、0.63nm以上、40nm以下であることが好ましいことが明らかである。
[成膜温度についての考察]
 上記試験1で作製したサンプルのうち、一例として、サンプルNo.5のBa0.45Ru0.55、サンプルNo.25のSr0.46Ru0.54、を成長制御層とした場合ついて、異なる成膜温度で成膜して得られたPZT膜の、成膜温度とパイロクロア相のXRD強度との関係を図6に示す。なお、図7中には、比較として、成長制御層を備えず、下部電極層上に直接PZT膜を成膜した場合についても示している。
 成長制御層を備えていない場合には、750℃でパイロクロア相を比較的抑えたPZT膜を得ることができたが、パイロクロア相をなくすことはできなかった。図7に示すように、サンプルNo.5においてパイロクロア相のない良好なペロブスカイト構造を得られる最低温度(PZT成膜温度)は550℃、サンプルNo.25では600℃であった。成長制御層を備えることで、パイロクロア相を抑制すると同時に、成膜温度を低くすることができることが明らかである。また、電気陰性度が本開示の条件を満たすサンプルNo.5は525℃の成膜温度においてもパイロクロア相を十分抑制したPZT膜を得ることが可能であった。本開示の技術によれば、このように、パイロクロア相を抑制する効果に加え、成膜温度を大幅に低下させることができるという効果が得られる。低い成膜温度で成膜できることにより、さらに温度制御が簡単になり、製造コストを抑制することが可能となる。
[検証実験1]
 Ba0.45Ru0.55Oを成長制御層として用いた場合、Sr0.46Ru0.54Oを成長制御層として用いた場合、及び成長制御層を備えなかった場合について、Pb量が異なるPZT膜を形成し、ペロブスカイト構造を得ることができる範囲について調べた。
 作製方法は、上記サンプルの作製方法と同様とした。但し、Pb量の異なる複数のターゲットを用意し、様々なPb量のPZT膜を成膜した。
 表4において、Pb量が異なるPZT膜毎に、基板温度525~750℃の範囲でペロブスカイト構造のサンプルが複数得られた場合には、最も結晶性が良好なサンプルについて評価した。結晶性の評価は上記と同様の基準で行った。作製しなかった、あるいは評価していないものについては表4中「-」を示している。ペロブスカイトの結晶性は、上記と同様に、XRDを用いてパイロクロア相のXRD強度を算出して、評価した。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、電気陰性度<0.95を満たすBa0.45Ru0.55Oを成長制御層として用いた場合、Sr0.46Ru0.54Oの場合、あるいは、成長制御層がない場合と比較して、PZT膜におけるPb量の範囲を非常に広い範囲で設定可能であった。このようにパイロクロア相を抑えて良好なペロブスカイト構造のPZT膜を成膜可能なPb量の範囲が広いため、本開示の圧電素子を適用するデバイス毎に適切な圧電性を有する圧電体膜を備えた圧電素子を提供することが可能となる。
 1  圧電素子
 10  基板
 12  下部電極層
 14  成長制御層
 16  圧電体層
 18  上部電極層

Claims (10)

  1.  基板上に、下部電極層、成長制御層、鉛を含有するペロブスカイト型酸化物を主成分とする圧電体層、及び上部電極層をこの順に備えた圧電素子であって、
     前記成長制御層が、下記一般式(1)で表される金属酸化物を含み、
     M1-d    (1)
     Mは前記ペロブスカイト型酸化物に置換可能な1以上の金属元素からなり、かつ、電気陰性度が0.95未満であり、
     Nは、Sc、Zr、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Ru、Co、Ir,Ni、Cu、Zn、Ga、Sn、In及びSbからなる群より選択される少なくとも1つを主成分とし、
     Oは酸素元素であり、
     d、eは組成比を示し、0<d<1であって、前記電気陰性度をXとした場合、
    1.41X-1.05≦d≦A1・exp(-X/t1)+y0
    A1=1.68×1012,t1=0.0306,y0=0.59958である圧電素子。
  2.  前記一般式(1)のMが、Li、Na、K、Mg、Ca、Sr、Ba、La、Cd、及びBiのからなる群より選択される少なくとも1つを主成分とする請求項1に記載の圧電素子。
  3.  前記一般式(1)のMがBaを主成分として含む、請求項1に記載の圧電素子。
  4.  前記一般式(1)のMがBaである請求項1に記載の圧電素子。
  5.  0.2≦d
    である請求項1から4のいずれか1項に記載の圧電素子。
  6.  0.3≦d
    である請求項1から4のいずれか1項に記載の圧電素子。
  7.  0.45≦d
    である請求項1から4のいずれか1項に記載の圧電素子。
  8.  前記成長制御層の膜厚が0.63nm以上170nm以下である請求項1から7のいずれか1項に記載の圧電素子。
  9.  前記成長制御層の膜厚が0.63nm以上40nm以下である請求項1から7のいずれか1項に記載の圧電素子。
  10.  前記一般式(1)のNがRu、Ir、Sn、Ni、Co、Ta、及びNbからなる群より選択される請求項1から9のいずれか1項に記載の圧電素子。
PCT/JP2020/018079 2019-06-12 2020-04-28 圧電素子 WO2020250591A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080042855.4A CN113950751A (zh) 2019-06-12 2020-04-28 压电元件
EP20823705.7A EP3985747B1 (en) 2019-06-12 2020-04-28 Piezoelectric element
JP2021525938A JP7167337B2 (ja) 2019-06-12 2020-04-28 圧電素子及び圧電素子の作製方法
US17/539,343 US20220093843A1 (en) 2019-06-12 2021-12-01 Piezoelectric element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-109610 2019-06-12
JP2019109610 2019-06-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/539,343 Continuation US20220093843A1 (en) 2019-06-12 2021-12-01 Piezoelectric element

Publications (1)

Publication Number Publication Date
WO2020250591A1 true WO2020250591A1 (ja) 2020-12-17

Family

ID=73780947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018079 WO2020250591A1 (ja) 2019-06-12 2020-04-28 圧電素子

Country Status (5)

Country Link
US (1) US20220093843A1 (ja)
EP (1) EP3985747B1 (ja)
JP (1) JP7167337B2 (ja)
CN (1) CN113950751A (ja)
WO (1) WO2020250591A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024529A1 (ja) 2020-07-28 2022-02-03 富士フイルム株式会社 圧電膜付き基板及び圧電素子
EP4142455A1 (en) 2021-08-31 2023-03-01 FUJIFILM Corporation Piezoelectric laminate and piezoelectric element
EP4142456A1 (en) 2021-08-31 2023-03-01 FUJIFILM Corporation Piezoelectric laminate and piezoelectric element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142600A (ja) 1993-11-12 1995-06-02 Oki Electric Ind Co Ltd 薄膜の形成方法
JP2001223403A (ja) 2000-02-08 2001-08-17 Matsushita Electric Ind Co Ltd 強誘電体薄膜およびその形成方法とこれを用いた強誘電体薄膜素子
JP2006186258A (ja) * 2004-12-28 2006-07-13 Seiko Epson Corp 圧電素子、圧電アクチュエーター、圧電ポンプ、インクジェット式記録ヘッド、インクジェットプリンター、表面弾性波素子、薄膜圧電共振子、周波数フィルタ、発振器、電子回路、および電子機器
WO2015194458A1 (ja) * 2014-06-20 2015-12-23 株式会社アルバック 多層膜の製造方法および多層膜
JP2019016793A (ja) * 2017-07-07 2019-01-31 アドバンストマテリアルテクノロジーズ株式会社 膜構造体及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006722A (ja) * 2002-03-27 2004-01-08 Seiko Epson Corp 圧電アクチュエータ、インクジェット式ヘッド及び吐出装置
JP2005166912A (ja) * 2003-12-02 2005-06-23 Seiko Epson Corp 強誘電体薄膜の製造方法、強誘電体メモリ素子、圧電体素子、インクジェット式記録ヘッド、インクジェットプリンター、表面弾性波素子、周波数フィルタ、発振器、電子回路、及び電子機器
JPWO2014007015A1 (ja) * 2012-07-02 2016-06-02 株式会社村田製作所 圧電薄膜素子及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142600A (ja) 1993-11-12 1995-06-02 Oki Electric Ind Co Ltd 薄膜の形成方法
JP2001223403A (ja) 2000-02-08 2001-08-17 Matsushita Electric Ind Co Ltd 強誘電体薄膜およびその形成方法とこれを用いた強誘電体薄膜素子
JP2006186258A (ja) * 2004-12-28 2006-07-13 Seiko Epson Corp 圧電素子、圧電アクチュエーター、圧電ポンプ、インクジェット式記録ヘッド、インクジェットプリンター、表面弾性波素子、薄膜圧電共振子、周波数フィルタ、発振器、電子回路、および電子機器
WO2015194458A1 (ja) * 2014-06-20 2015-12-23 株式会社アルバック 多層膜の製造方法および多層膜
JP2019016793A (ja) * 2017-07-07 2019-01-31 アドバンストマテリアルテクノロジーズ株式会社 膜構造体及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024529A1 (ja) 2020-07-28 2022-02-03 富士フイルム株式会社 圧電膜付き基板及び圧電素子
EP4142455A1 (en) 2021-08-31 2023-03-01 FUJIFILM Corporation Piezoelectric laminate and piezoelectric element
EP4142456A1 (en) 2021-08-31 2023-03-01 FUJIFILM Corporation Piezoelectric laminate and piezoelectric element

Also Published As

Publication number Publication date
EP3985747A1 (en) 2022-04-20
EP3985747B1 (en) 2023-12-13
CN113950751A (zh) 2022-01-18
JPWO2020250591A1 (ja) 2020-12-17
US20220093843A1 (en) 2022-03-24
EP3985747A4 (en) 2022-09-14
JP7167337B2 (ja) 2022-11-08

Similar Documents

Publication Publication Date Title
JP7166987B2 (ja) 圧電素子
WO2020250591A1 (ja) 圧電素子
WO2020250632A1 (ja) 圧電素子
CN102959752B (zh) 压电薄膜元件的制造方法、压电薄膜元件以及压电薄膜元件用部件
EP2846370B1 (en) Piezoelectric element
US20100079555A1 (en) Lead-containing perovskite-type oxide film and method of producing the same, piezoelectric device using a lead-containing perovskite-type oxide film, as well as liquid ejecting apparatus using a piezoelectric device
JP6850870B2 (ja) 圧電体膜、圧電素子、及び、圧電素子の製造方法
WO2022024529A1 (ja) 圧電膜付き基板及び圧電素子
WO2022070522A1 (ja) 圧電積層体及び圧電素子
WO2022070524A1 (ja) 圧電積層体及び圧電素子
US20230301193A1 (en) Piezoelectric laminate and piezoelectric element
US20230263066A1 (en) Substrate with a piezoelectric film and piezoelectric element
WO2022070523A1 (ja) 圧電素子
WO2022209717A1 (ja) 圧電素子及び圧電素子の製造方法
CN116648131A (zh) 压电层叠体、压电元件及压电层叠体的制造方法
CN116113307A (zh) 压电层叠体、压电元件及压电层叠体的制造方法
CN115884658A (zh) 压电层叠体及压电元件
CN115734698A (zh) 压电层叠体及压电元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021525938

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020823705

Country of ref document: EP

Effective date: 20220112