WO2020226412A1 - 복합 전극을 포함하는 전고체전지 - Google Patents

복합 전극을 포함하는 전고체전지 Download PDF

Info

Publication number
WO2020226412A1
WO2020226412A1 PCT/KR2020/005934 KR2020005934W WO2020226412A1 WO 2020226412 A1 WO2020226412 A1 WO 2020226412A1 KR 2020005934 W KR2020005934 W KR 2020005934W WO 2020226412 A1 WO2020226412 A1 WO 2020226412A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
solid
electrode assembly
active material
solid electrolyte
Prior art date
Application number
PCT/KR2020/005934
Other languages
English (en)
French (fr)
Inventor
류지훈
김은비
이정필
이석우
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/428,311 priority Critical patent/US20220231326A1/en
Priority to CN202080033267.4A priority patent/CN113785427A/zh
Priority to EP20801469.6A priority patent/EP3910717A4/en
Priority to JP2021544643A priority patent/JP2022519083A/ja
Publication of WO2020226412A1 publication Critical patent/WO2020226412A1/ko
Priority to JP2023111780A priority patent/JP2023145484A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx

Definitions

  • the present invention relates to an all-solid-state battery including a composite electrode capable of supplementing the low electrochemical performance of the all-solid-state battery by disposing an electrode having a high heating value in the center of the electrode assembly.
  • the lithium ion secondary battery which is a kind of lithium secondary battery, has advantages of higher energy density, lower self-discharge rate, and longer life than nickel manganese or nickel cadmium batteries, but it has been pointed out as a disadvantage of stability against overheating.
  • an all-solid-state battery has been proposed as an alternative.
  • an electrolyte layer including a solid electrolyte and a positive electrode layer and a negative electrode layer including the solid electrolyte are formed of the electrolyte layer. It is formed on both sides, and may have a structure in which a current collector is combined with each of the positive and negative layers.
  • the all-solid-state battery has excellent safety compared to the conventional lithium-ion secondary battery, but the solid electrolyte has a problem in that performance such as capacity and output is poor because the ionic conductivity is low.
  • Patent Document 1 relates to a secondary battery in which a heat generating means insulated from an electrode is located on an electrode current collector, and a temperature control means and an electricity flow control means for controlling current through the heat generating means by sensing the temperature inside the battery It is equipped with.
  • Patent Document 2 provides a PTC layer between the positive electrode active material layer and the positive electrode current collector, and the PTC layer is composed of an aggregate of conductive particles, thereby blocking the flow of current under heating conditions due to overcharging of the battery to suppress the heat generation of the battery. It is about a non-aqueous electrolyte secondary battery that can be used.
  • Patent Document 3 relates to a non-aqueous secondary battery having a structure in which a conductive layer including a crystalline thermoplastic resin having a positive temperature coefficient resistor function, a conductive material and a binder that increases the resistance value when the temperature rises, covers the electrode current collector. .
  • Patent Document 2 and Patent Document 3 only disclose a technology for preventing the occurrence of heat generation by blocking the current when the temperature of the battery increases, but does not provide a method for maintaining the heating state of the battery. .
  • Patent Document 4 relates to a battery cell in which a heating element that radiates resistance heat by interaction inside the battery is located at one or both interfaces of a unit cell located at the center of an electrode assembly.
  • Patent Document 4 discloses a battery cell including a heating element that increases the internal temperature of the battery, but the battery cell including the heating element increases the thickness or relatively decreases the thickness of the electrode assembly, so that the energy density is reduced. A decreasing problem arises.
  • Patent Document 1 Japanese Patent Publication No. 5314872 (2013.07.12)
  • Patent Document 2 Japanese Laid-Open Patent Publication No. 2009-176599 (2009.08.06)
  • Patent Document 3 Japanese Laid-Open Patent Publication No. 2001-357854 (2001.12.26)
  • Patent Document 4 Korean Patent Publication No. 1760647 (2017.07.18)
  • the present invention is to solve the above problems, and by applying an electrode having a large amount of heat to some electrodes of the electrode assembly, the temperature of the battery is increased by itself by heat generated in the normal operating environment of the electrode assembly, thereby achieving high capacity and high energy density. It is an object of providing an all-solid-state battery having characteristics.
  • the all-solid-state battery according to the present invention includes an electrode assembly and a solid electrolyte, the electrode assembly includes a structure in which plate-shaped electrodes are stacked, and the electrodes are a first electrode having relatively high heat generation. And a second electrode having relatively low heat generation, and the first electrode has a structure positioned at a center of the electrode assembly.
  • the electrode assembly is a stacked electrode assembly
  • the first electrode and the second electrode have the same composition of the active material
  • the solid electrolyte content ratio of the first electrode is the solid electrolyte content ratio of the second electrode. Can be higher.
  • the electrode assembly is a lamination/stack type electrode assembly or a stack/folding type electrode assembly including a plurality of unit cells, and the unit cells are composed of a first unit cell composed of the first electrode and the second electrode.
  • the first electrode and the second electrode have the same composition of the active material, and the solid electrolyte content ratio of the first electrode may be higher than the solid electrolyte content ratio of the second electrode.
  • the electrode assembly is a stacked electrode assembly
  • the active material of the first electrode and the active material of the second electrode are hard carbon, soft carbon, artificial graphite, natural graphite coated with artificial graphite, natural graphite.
  • a negative active material having relatively high heat generation and a negative electrode active material having relatively low heat generation may be selected.
  • the electrode assembly is a lamination/stack type electrode assembly or a stack/folding type electrode assembly including a plurality of unit cells, and the unit cells are composed of a first unit cell composed of the first electrode and the second electrode.
  • the active material of the first electrode and the active material of the second electrode are hard carbon, soft carbon, artificial graphite, artificial graphite-coated natural graphite, natural graphite, and silicon oxide.
  • a thermal negative active material and a relatively low-heating negative active material may be selected.
  • each of the first unit cell and the second unit cell may contain a uniform active material.
  • the electrode may be an anode, a cathode, or an anode and a cathode.
  • the solid electrolyte may be a sulfide-based solid electrolyte, an oxide-based solid electrolyte, or a polymer-based solid electrolyte.
  • the temperature of the first electrode may be transferred to the second electrode, so that the temperature inside the battery may increase.
  • the all-solid-state battery may have a larger capacity at sub-zero temperatures as compared to an all-solid-state battery composed of a single electrode and having the same capacity at room temperature.
  • the present invention provides a battery pack including the all-solid-state battery, and a device including the battery pack.
  • the device may be any one selected from the group consisting of a mobile electronic device, a wearable electronic device, a tablet computer, a notebook computer, an electric vehicle, and a power storage device.
  • FIG. 1 is a side view of a stacked electrode assembly including a plurality of anodes and cathodes.
  • FIG. 2 is a side view of a stack/folding electrode assembly according to the present invention.
  • FIG 3 is a side view of a lamination/stack type electrode assembly according to the present invention.
  • the present invention relates to an all-solid-state battery including an electrode assembly and a solid electrolyte, wherein the electrode assembly has a structure in which plate-shaped electrodes are stacked.
  • an electrode assembly is a stacked electrode assembly in which plate-shaped electrodes are stacked, a stack/folding electrode assembly, or a lamination/stack structure, or a jelly-roll electrode assembly structure in which a long sheet-shaped electrode is wound Can be distinguished.
  • the jelly-roll type electrode assembly includes one positive electrode and one negative electrode, so it is difficult to diversify the configuration of the electrode, whereas the stack type, stack/folding type and lamination/stack type electrode assembly have a plurality of plate-shaped electrodes. Since they are constructed by stacking them, various types of anodes and cathodes can be applied.
  • the electrode assembly of the all-solid-state battery according to the present invention includes a relatively high heat generating first electrode and a relatively low heat generating second electrode, and the first electrode may be located in the center of the electrode assembly. .
  • the first electrode of high heat generation used in the present specification is an electrode having a relatively high heat generation, and an active material having high heat generation is used, or an electrode having a higher content ratio of a solid electrolyte than the second electrode, and the second electrode having low heat generation is the first electrode.
  • an electrode having relatively low heat generation compared to the electrode an active material having low heat generation is used, or an electrode having a lower content ratio of the solid electrolyte than the first electrode may be used.
  • the first electrode may be located in the center of the electrode assembly, and the first electrode may be disposed in the center of the electrode assembly composed of a plurality of electrodes, or include the first electrode or composed of the first electrode.
  • the unit cell can be placed in the center of the electrode assembly. By placing the first electrode having high heat generation properties in the center of the electrode assembly, the temperature of the first electrode is transferred to the second electrode, so that the temperature inside the battery may be increased.
  • the high-heat-generating first electrode may damage the active material or the internal structure of the electrode due to a high rate, thereby deteriorating the life characteristics, but the low-heat-generating second electrode, which has a relatively stable rate, is the active material or the internal structure of the electrode. Since there is little damage, it can exhibit relatively excellent lifespan characteristics.
  • the heat portions of the first electrode and the second electrode can be complemented with each other.
  • FIG. 1 shows a side view of a stacked electrode assembly including a plurality of anodes and cathodes.
  • the electrode assembly 100 is a stacked electrode having a structure in which a plurality of anodes 101 and 101' and a cathode 102 are stacked with a solid electrolyte layer 103 interposed therebetween. It is an assembly.
  • the anode 101' located in the center of the electrode assembly 100 is a first anode having high heat generation
  • the anode 101 located outside the electrode assembly 100 is a second anode having low heat generation.
  • the two negative electrodes 102 may be applied simultaneously or selectively as a first negative electrode having high heat generation, or may be applied as a second negative electrode having low heat generation. In this way, by arranging the positive electrode having high heat generation in the center of the electrode assembly, heat energy can be transmitted in both directions based on the stacking direction of the electrode, and thus the internal temperature of the battery can be uniformly increased.
  • 1(b) electrode assembly 110 is a stacked electrode assembly having a structure in which a plurality of anodes 111 and a plurality of cathodes 112 and 112' are stacked with a solid electrolyte layer 113 interposed therebetween. to be.
  • the cathode 112 ′ positioned at the center of the electrode assembly 110 may be a first cathode having high heat generation, and the cathode 112 positioned outside is a second cathode having low heat generation.
  • the two positive electrodes 111 may be applied simultaneously or selectively as a first positive electrode having high heat generation or as a second positive electrode having low heat generation.
  • the negative electrode having high heat generation in the center of the electrode assembly, heat energy can be transmitted in both directions based on the stacking direction of the electrode, so that the internal temperature of the battery can be uniformly increased.
  • the composition of the active material may be the same.
  • the negative electrode 112 and the negative electrode 112 ′ may be artificial graphite, natural graphite, natural graphite coated with artificial graphite, silicon oxide, hard carbon, or soft carbon.
  • the anode 101 and the anode 101' are Ni-Co-Mn oxide (LiNCMO 2 (LiNCM)), lithium nickel oxide (LiNiO 2 (LNO)), an oxide of an olivine structure (LFP (LiFePO 4 ) or LiMnPO 4 (LMP)), lithium cobalt oxide (LiCoO 2 (LCO)) or lithium manganese oxide (LiMn 2 O 4 (LMO)).
  • Ni-Co-Mn oxide LiNCMO 2 (LiNCM)
  • LiNiO 2 (LNO) lithium nickel oxide
  • LFP LiFePO 4
  • LiMnPO 4 (LMP) LiMnPO 4
  • LiCoO 2 (LCO) lithium cobalt oxide
  • LiMn 2 O 4 (LMO) lithium manganese oxide
  • the positive electrode 101 ′ and the negative electrode 112 ′ are made of an electrode active material having high heat generation.
  • the positive electrode 101 and the negative electrode 112 may have a form to which an electrode active material having low heat generation is applied.
  • the heat generating properties of the negative electrode active material are listed in the order of high to low, the order of hard carbon> soft carbon> artificial graphite> natural graphite coated with artificial graphite> natural graphite> silicon oxide. If listed in order, LMO> LCO> LiNCM> LNO> LMP, LFP.
  • the positive electrode 101 ′ and the negative electrode 112 ′ have relatively higher heat generation properties than the positive electrode 101 and the negative electrode 112, and relatively high heat generation positive and negative electrodes in consideration of the heat generation size described above, An anode and a cathode having relatively low heat generation can be selectively applied.
  • a positive electrode active material and a negative electrode active material may be selected and applied from among electrode active materials divided into a high heat generating group and a low heat generating group.
  • the negative electrode 112 may be one or more selected from the group consisting of artificial graphite, natural graphite, natural graphite coated with artificial graphite, and silicon oxide, and the negative electrode 112 ′ is composed of hard carbon and soft carbon. It may be one or more selected from the group.
  • the anode 101 is a Ni-Co-Mn oxide (LiNCMO 2 , Ni>60%) having more than 60% Ni, a lithium nickel oxide (LiNiO 2 (LNO)) and an oxide of an olivine structure (LFP (LiFePO 4 ) or LiMnPO 4 (LMP)) may be one or more selected from the group consisting of, and the anode 101 ′ is lithium cobalt oxide (LiCoO 2 (LCO)), lithium manganese oxide (LiMn 2 O 4 (LMO)) and Ni It may be one or more selected from the group consisting of 60% or less of Ni-Co-Mn oxide (LiNCMO 2 , Ni ⁇ 60%).
  • FIG. 2 is a side view of a stack/folding electrode assembly according to the present invention.
  • the electrode assembly 200 is a bi-cell composed of an anode/solid electrolyte layer/cathode/solid electrolyte layer/anode structure or a cathode/solid electrolyte layer/anode/solid electrolyte layer/cathode structure It is a stack/folding type electrode assembly in which the solid electrolyte layer is compressed while placing the unit cells 210, 220, 230, 240, 250, 260, 270, 280 in the form on one side of the solid electrolyte layer 290. , The fixing tape 291 is attached to the end of the solid electrolyte layer 290 to prevent the solid electrolyte layer from being released.
  • the electrode assembly 200 is composed of 8 unit cells, and the unit cells 210, 220, 230, 240 located in the center are compared with the unit cells 250, 260, 270, 280 located outside.
  • both the positive electrode and the negative electrode constituting the first unit cell may be a first positive electrode and a first negative electrode having high heat generation, or, in the first unit cell, only one of the positive electrode or the negative electrode may be the first positive electrode or the first positive electrode having high heat generation. 1 negative electrode can be applied.
  • both the positive electrode and the negative electrode constituting the second unit cell may be a second positive electrode and a second negative electrode having low heat generation.
  • the first anode and the first cathode, and the second anode and the second cathode are (i) a different solid electrolyte content ratio is applied and the same type of electrode active material is applied, or (ii) The case of applying the electrode active material having a relatively high calorific value and the electrode active material having a relatively low calorific value can be applied in the same manner.
  • first unit cells are applied to the center, and six unit cells excluding the first unit cell may be applied to the second unit cell, or located at the outermost part of the electrode assembly. It goes without saying that the unit cells 270 and 280 may apply the second unit cell, and the remaining six unit cells except for this may apply the first unit cell.
  • the positive and negative electrodes constituting the first unit cells 210, 220, 230, and 240 in the electrode assembly 200 of FIG. 2 may be designed in the same manner as electrode constituent materials such as an active material, a conductive material, and a solid electrolyte. Alternatively, it may be designed to selectively have a difference in type and/or a composition ratio of the electrode constituent materials in a state where the amount of heat generated is higher than that of the second unit cell.
  • the positive electrode and the negative electrode constituting the second unit cell 250, 260, 270, 280 may all be designed the same as electrode constituent materials such as an active material, a conductive material, and a solid electrolyte, or In a state where the amount of heat generated is low, it may be selectively designed to have a difference in type and/or composition ratio of the electrode constituent materials.
  • FIG 3 is a side view of a lamination/stack type electrode assembly according to the present invention.
  • the electrode assembly 300 is in a bi-cell form consisting of an anode/solid electrolyte layer/cathode/solid electrolyte layer/anode structure or a cathode/solid electrolyte layer/anode/solid electrolyte layer/cathode structure
  • the unit cells 310, 320, 330, 340, 350, 360, 370, and 380 of are stacked with the solid electrolyte layer 390 interposed therebetween and are thermally fused to a lamination/stack type electrode assembly.
  • the unit cells 330, 340, 350, and 360 located at the center of the electrode assembly 300 are high heat generating units having properties corresponding to the unit cells 210, 220, 230, 240, which are the first unit cells of FIG. It is a cell, and the unit cells 310, 320, 370, and 380 located on the outer periphery are low heat generating unit cells having properties corresponding to the second unit cells 250, 260, 270, and 280 of FIG. .
  • the description of the unit cells 330, 340, 350, 360 and the unit cells 310, 320, 370, 380 of the electrode assembly 300 is the unit cells 210, 220, 230, 240 of the electrode assembly 200 ) And the unit cells 250, 260, 270, and 280 may be applied in the same manner.
  • the solid electrolyte may be a sulfide-based solid electrolyte, an oxide-based solid electrolyte, or a polymer-based solid electrolyte.
  • the sulfide-based solid electrolyte contains a sulfur atom (S), has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and has electronic insulation.
  • the sulfide-based solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity, but may contain other elements other than Li, S and P depending on the purpose or case.
  • Li 2 SP 2 S 5 Li 2 SP 2 S 5 , Li 2 SP 2 S 5 -LiCl, Li 2 SP 2 S 5 -H 2 S, Li 2 SP 2 S 5 -H 2 S-LiCl, Li 2 S-LiI-P 2 S 5 , Li 2 S-LiI-Li 2 OP 2 S 5 , Li 2 S-LiBr-P 2 S 5 , Li 2 SLi 2 OP 2 S 5 , Li 2 S-Li 3 PO 4 -P 2 S 5 , Li 2 SP 2 S 5 -P 2 O 5 , Li 2 SP 2 S 5 -SiS 2 , Li 2 SP 2 S 5 -SiS 2 -LiCl, Li 2 SP 2 S 5 -SnS, Li 2 SP 2 S 5 -Al 2 S 3 , Li 2 S-GeS 2 , Li 2 S-GeS 2 -ZnS, Li 2 S-Ga 2 S 3
  • an amorphization method may be mentioned, for example.
  • the amorphization method include a mechanical milling method, a solution method, and a melt quenching method.
  • the mechanical milling method can be processed at room temperature (25°C), and the manufacturing process can be simplified. It is preferable because there is.
  • the oxide-based solid electrolyte is preferably a compound containing an oxygen atom (O), having ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and having electronic insulation.
  • O oxygen atom
  • Li xb La yb Zr zb M bb mb O nb (M bb is Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In, and Sn are at least one or more elements, xb satisfies 5 ⁇ xb ⁇ 10, yb satisfies 1 ⁇ yb ⁇ 4, zb satisfies 1 ⁇ zb ⁇ 4, mb satisfies 0 ⁇ mb ⁇ 2, nb satisfies 5 ⁇ nb ⁇ 20), Li xc B yc M cc zc O nc (M cc is C, S , Al, Si, Ga, Ge, In, and Sn are at least one or more elements, xc satisfies 0 ⁇ xc ⁇ 5, yc
  • phosphorus compounds containing Li, P, and O are also preferable.
  • lithium phosphate Li 3 PO 4
  • LiPON in which a part of oxygen of lithium phosphate is substituted with nitrogen
  • LiPOD 1 LiPOD 1
  • LiA 1 ON LiA 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc. or the like can be preferably used.
  • the polymeric solid electrolyte may be a solid polymer electrolyte formed by adding a polymer resin to each independently solvated lithium salt, or a polymer gel electrolyte in which an organic electrolyte containing an organic solvent and a lithium salt is contained in the polymer resin.
  • the solid polymer electrolyte is not particularly limited as long as it is an ion conductive material and is a polymer material that is generally used as a solid electrolyte material for an all-solid battery.
  • the solid polymer electrolyte may be, for example, a polyether polymer, a polycarbonate polymer, an acrylate polymer, a polysiloxane polymer, a phosphazene polymer, a polyethylene derivative, an alkylene oxide derivative, a phosphate ester polymer, a polyage lysine, It may include polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, a polymer including an ionic dissociation group, and the like.
  • the solid polymer electrolyte is a polymer resin, such as polymethyl methacrylate (PMMA), polycarbonate, polysiloxane, and/or phosphazene in the main chain of PEO (polyethyleneoxide).
  • PMMA polymethyl methacrylate
  • PEO polyethyleneoxide
  • a branched copolymer obtained by copolymerizing a polymer with a comonomer, a comb-like polymer, and a crosslinked polymer resin may be included.
  • the polymer gel electrolyte includes an organic electrolyte containing a lithium salt and a polymer resin, and the organic electrolyte includes 60 to 400 parts by weight based on the weight of the polymer resin.
  • the polymer resin applied to the polymer gel electrolyte is not limited to a specific component, but, for example, PVC (Poly vinyl chloride), PMMA (Poly Methyl Methacrylate), polyacrylonitrile (PAN), polyfluorinated Vinylidene (PVdF), and polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) may be included.
  • the lithium salt is an ionizable lithium salt and may be represented by Li + X - .
  • this lithium salt anion is not particularly limited, F -, Cl -, Br -, I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3 ) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2 ) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C - , (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -, SCN -,
  • a lamination/stack type electrode assembly including 8 unit cells was manufactured.
  • one unit cell having high heat generation is disposed in the center, and seven unit cells having low heat generation are disposed on both sides of the unit cell of the high heat generation to complete an electrode assembly including eight unit cells. I did.
  • the high heat generating unit cell is LiNi 0.8 Co 0.1 Mn 0.1 O 2 75% by weight as a positive electrode active material, Super P 5% by weight as a conductive material, polyethylene oxide (PEO) 15% by weight as a solid electrolyte, and polyvinylidene fluoride as a binder.
  • PVDF A positive electrode prepared using 5% by weight, artificial graphite 71% by weight as a negative electrode active material, Super C 2% by weight as a conductive material, polyethylene oxide (PEO) 23% by weight as a solid electrolyte, and styrene butyrene rubber as a binder (SBR) + carboxylmethyl cellulose (CMC) 4% by weight and a negative electrode prepared using.
  • the low heat generating unit cell is 85% by weight of LiNi 0.8 Co 0.1 Mn 0.1 O 2 as a positive electrode active material, 3% by weight of Super C as a conductive material, 8% by weight of polyethylene oxide (PEO) as a solid electrolyte, and polyvinylidene fluoride as a binder.
  • LiNi 0.8 Co 0.1 Mn 0.1 O 2 as a positive electrode active material
  • Super C as a conductive material
  • PEO polyethylene oxide
  • polyvinylidene fluoride as a binder.
  • PVDF polyethylene oxide
  • SBR styrene butyrene rubber
  • CMC carboxylmethyl cellulose
  • the solid electrolyte layer interposed between the positive electrode and the negative electrode is prepared by dissolving polyethylene oxide and LiFSI in acetonitrile at a ratio of 20 mol% and 1 mol%, casting thinly on a glass plate, and vacuum drying to a thickness of 100 ⁇ m.
  • Example 1 an electrode assembly was manufactured in the same manner as in Example 1, except that the number of high heat generating unit cells located in the center of the electrode assembly was two and the number of low heat generating unit cells was six.
  • Example 1 an electrode assembly was manufactured in the same manner as in Example 1, except that the number of high heating unit cells located in the center of the electrode assembly was 3 and the number of low heating unit cells was 5.
  • Example 1 an electrode assembly was manufactured in the same manner as in Example 1, except that the number of high heat generating unit cells located in the center of the electrode assembly was 4 and the number of low heat generating unit cells was four.
  • a lamination/stack type electrode assembly including 8 unit cells was manufactured.
  • All of the unit cells include electrodes having the same heating property.
  • LiNi 0.8 Co 0.1 Mn 0.1 O 2 as a positive electrode active material
  • Super C as a conductive material
  • PVDF polyvinylidene fluoride
  • CMC carboxylmethylcellulose
  • the electrode assembly of Comparative Example 1 was designed to have the same capacity as compared to the electrode assemblies of Examples 1 to 4 at room temperature.
  • the secondary battery including the electrode assembly prepared in Examples 1 to 4 and Comparative Example 1 was fully charged and fully charged under -10°C conditions. The previous was performed, and a graph showing the ratio of the improved dose based on the dose of Comparative Example 1 is shown in FIG. 4.
  • unit cells four high heat generating unit cells are disposed in the center, and two low heat generating unit cells are disposed on both sides of the high heat generating unit cells to provide an electrode assembly including eight unit cells. Completed.
  • the high heat generating unit cell is 80% by weight of natural graphite as an anode active material, 2% by weight of Super C as a conductive material, 13% by weight of polyethylene oxide (PEO) as a solid electrolyte, and styrene butylene rubber (SBR) + carboxylmethyl as a binder.
  • a negative electrode prepared using 5% by weight of cellulose (CMC), 80% by weight of LiNi 0.8 Co 0.1 Mn 0.1 O 2 as a positive electrode active material, 4% by weight of Super C as a conductive material, 10% by weight of polyethylene oxide (PEO) as a solid electrolyte
  • a positive electrode prepared using 6% by weight of PVDF as a binder a positive electrode prepared using 6% by weight of PVDF as a binder.
  • the low heat generating unit cell was manufactured in the same manner as the high heat generating unit cell, except that artificial graphite was used instead of natural graphite, which is a negative active material used in the high heat generating unit cell.
  • the solid electrolyte layer interposed between the positive electrode and the negative electrode was prepared by dissolving polyethylene oxide and LiFSI in acetonitrile at a ratio of 20 mol% and 1 mol%, casting thinly on a glass plate, and vacuum drying to a thickness of 100 ⁇ m.
  • An electrode assembly was manufactured in the same manner as in Example 5, except that soft carbon was used instead of the natural graphite used as the high heat generating negative electrode in Example 5.
  • An electrode assembly was manufactured in the same manner as in Example 5, except that hard carbon was used instead of the natural graphite used as the high heat generating negative electrode in Example 5.
  • a lamination/stack type electrode assembly including 8 unit cells was manufactured.
  • All of the unit cells include electrodes having the same heating property.
  • the unit cell was prepared by using the same positive electrode and solid electrolyte as in Example 5, except that a negative electrode including artificial graphite was applied as a negative electrode active material.
  • the electrode assembly of Comparative Example 2 was designed to have the same capacity as compared to the electrode assemblies of Examples 5 to 7 at room temperature.
  • the secondary batteries including the electrode assemblies prepared in Examples 5 to 7 and Comparative Example 2 were fully charged and Full discharge was performed, and a graph showing the ratio of the improved dose based on the dose of Comparative Example 2 is shown in FIG. 5.
  • An electrode assembly was manufactured in the same manner as in Example 1, except that a stack-type electrode assembly was prepared.
  • Example 6 In order to confirm the level of capacity improvement of the battery according to the location of the high heat generating electrode, the secondary battery including the electrode assembly prepared in Example 2 and Comparative Example 3 was fully charged and fully discharged under the condition of 10°C, and compared A graph showing the ratio of the improved dose based on the dose of Example 1 is shown in FIG. 6.
  • the secondary battery including the electrode assembly of Example 2 has a capacity improvement effect of about 3.5% compared to the secondary battery including the electrode assembly composed of only electrodes having a uniform heating value of Comparative Example 1. Can be seen.
  • the secondary battery including the electrode assembly of Comparative Example 3 in which unit cells having high heat generation properties are arranged only at both ends of the electrode assembly, appears to have a lower battery capacity than the secondary battery including the electrode assembly of Comparative Example 1.
  • unit cell 210, 220, 230, 240, 250, 260, 270, 280, 310, 320, 330, 340, 350, 360, 370, 380: unit cell
  • the all-solid-state battery including the composite electrode of the present application partially includes an electrode having a high calorific value, an effect of increasing the overall temperature of the battery can be obtained due to thermal energy generated during normal battery use.
  • an electrode assembly including both a high calorific value electrode and a low calorific value electrode, not only the temperature increase effect due to the high calorific value electrode but also the life improvement effect due to the low calorific value electrode can be maintained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 전극조립체 및 고체전해질을 포함하는 전고체전지에 있어서, 상기 전극조립체는 판상형의 전극들이 적층된 구조를 포함하고, 상기 전극들은 상대적으로 고발열성의 제1전극 및 상대적으로 저발열성의 제2전극을 포함하며, 상기 제1전극은 상기 전극조립체의 중심부에 위치하는 전고체전지에 대한 것으로서, 추가적인 부재를 부가하지 않으면서 전지의 온도를 증가함으로써 성능이 향상된 전고체전지를 제공할 수 있다.

Description

복합 전극을 포함하는 전고체전지
본 출원은 2019년 5월 8일자 한국 특허 출원 제 2019-0053694 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본원 발명은 발열량이 높은 전극을 전극조립체의 중심부에 배치함으로써 전고체전지의 낮은 전기화학적 성능을 보완할 수 있는 복합 전극을 포함하는 전고체전지에 대한 것이다.
휴대폰을 포함한 모바일 전자기기의 다기능화에 따라 고에너지 밀도의 리튬 이차전지에 대한 수요가 증가하고 있다.
이와 함께, 대용량 고출력의 에너지원이 필요한 전력 저장 장치 및 전기자동차 등에 리튬 이차전지를 사용하기 위하여 리튬 이차전지의 안전성 향상 및 고전압화에 대한 연구가 활발하게 이루어지고 있다.
상기 리튬 이차전지의 일종인 리튬 이온 이차전지는 니켈 망간 전지나 니켈 카드뮴 전지에 비하여 에너지 밀도가 높고 자기 방전율이 낮으며 수명이 긴 장점이 있으나, 과열에 대한 안정성 문제 등이 단점으로 지적되고 있다.
이와 같은 리튬 이온 이차전지의 문제점을 극복하기 위하여 전고체전지가 대안으로 제시되고 있는 바, 상기 전고체전지는 고체전해질을 포함하는 전해질층과 고체전해질을 포함하는 양극층 및 음극층이 상기 전해질층의 양면에 형성되어 있고, 각 양극층 및 음극층에는 집전체가 결합된 구조로 이루어질 수 있다.
상기 전고체전지는 기존의 리튬 이온 이차전지와 비교할 때 안전성은 우수하지만, 고체전해질은 이온전도도가 낮기 때문에 용량 및 출력 등의 성능이 열위한 문제가 있다.
이와 같은 문제를 해결하기 위하여, 온도 증가시 이온전도도가 크게 향상되는 전고체전지의 특징을 이용하는 기술이 대안으로 제시되고 있다.
구체적으로, 특허문헌 1은 전극과 절연되는 발열 수단이 전극집전체 상에 위치하는 이차전지에 대한 것으로서, 전지 내부의 온도를 감지하여 상기 발열 수단으로 통전을 제어하는 온도 제어 수단 및 전기흐름 제어수단을 구비하고 있다.
상기 특허문헌 1과 같이 별도의 발열 수단을 구비하는 경우에는 전지의 전체적인 크기가 증가하여 에너지밀도가 낮아지고, 외부 발열 수단에 별도의 전원이 필요한 경우에는 에너지가 낭비되는 문제가 있다.
특허문헌 2는 양극활물질층과 양극집전체 사이에 PTC층을 마련하고, 상기 PTC층은 도전성 입자의 집합체로 구성됨으로써 전지의 과충전 등에 따른 발열 조건에서 전류의 흐름을 차단하여 전지의 발열을 억제할 수 있는 비수전해질 이차전지에 대한 것이다.
특허문헌 3은 온도 상승시 저항값이 증가하는 정온도 계수 저항체 기능을 갖는 결정성 열가소성 수지, 도전재 및 결착제를 포함하는 도전층이 전극집전체를 피복하는 구조의 비수계 이차전지에 대한 것이다.
상기 특허문헌 2 및 특허문헌 3은 전지의 온도가 증가하는 경우 전류를 차단하여 발열현상이 발생하는 것을 방지하기 위한 기술을 개시하고 있을 뿐, 전지의 발열 상태를 유지하기 위한 방법을 제공하지 못하고 있다.
특허문헌 4는 전극조립체의 중앙에 위치하는 단위셀의 일측 또는 양측 계면에 전지 내부의 상호작용에 의해 저항열을 발산하는 발열체가 위치하는 전지셀에 대한 것이다.
상기 특허문헌 4는 전지 내부 온도를 증가시키는 발열체를 포함하는 전지셀을 개시하고 있으나, 상기 발열체를 포함하는 전지셀은 두께가 증가하게 되거나, 상대적으로 전극조립체의 두께가 감소하게 되므로, 에너지밀도가 감소하는 문제가 발생한다.
따라서, 전고체전지에서 전지의 온도를 증가시킴으로써 전지의 기능을 향상시킬 수 있는 동시에, 전지셀의 부피가 증가하지 않고, 별도의 외부 전원이 부가되지 않음으로써 에너지밀도가 낮아지는 것을 방지할 수 있는 기술에 대한 필요성이 높은 실정이다.
(선행기술문헌)
(특허문헌 1) 일본 등록특허공보 제5314872호 (2013.07.12)
(특허문헌 2) 일본 공개특허공보 제2009-176599호 (2009.08.06)
(특허문헌 3) 일본 공개특허공보 제2001-357854호 (2001.12.26)
(특허문헌 4) 대한민국 등록특허공보 제1760647호 (2017.07.18)
본원 발명은 상기와 같은 문제를 해결하기 위한 것으로서, 전극조립체의 일부 전극으로 발열량이 큰 전극을 적용함으로써 전지의 정상적인 작동 환경에서 발생하는 열에 의해 전지의 온도를 자체적으로 상승시킴으로써 고용량 및 고에너지 밀도의 특성을 갖는 전고체전지를 제공하는 것을 목적으로 한다.
이러한 목적을 달성하기 위하여, 본 발명에 따른 전고체전지는, 전극조립체 및 고체전해질을 포함하고, 상기 전극조립체는 판상형의 전극들이 적층된 구조를 포함하고, 상기 전극들은 상대적으로 고발열성의 제1전극 및 상대적으로 저발열성의 제2전극을 포함하며, 상기 제1전극은 상기 전극조립체의 중심부에 위치하는 구조로 이루어져 있다.
하나의 구체적인 예에서, 상기 전극조립체는 스택형 전극조립체이고, 상기 제1전극 및 제2전극은 활물질의 조성이 동일하며, 상기 제1전극의 고체전해질 함량비는 제2전극의 고체전해질 함량비보다 높을 수 있다.
또는, 상기 전극조립체는 복수의 단위셀들을 포함하는 라미네이션/스택형 전극조립체 또는 스택/폴딩형 전극조립체이고, 상기 단위셀들은 상기 제1전극으로 구성되는 제1단위셀 및 상기 제2전극으로 구성되는 제2단위셀로 구성되며, 상기 제1전극 및 제2전극은 활물질의 조성이 동일하며, 상기 제1전극의 고체전해질 함량비는 제2전극의 고체전해질 함량비보다 높을 수 있다.
다른 하나의 구체적인 예에서, 상기 전극조립체는 스택형 전극조립체이고, 상기 제1전극의 활물질 및 상기 제2전극의 활물질은 하드카본, 소프트카본, 인조흑연, 인조흑연이 피복된 천연흑연, 천연흑연 및 규소산화물 가운데, 상대적으로 고발열성의 음극활물질과 상대적으로 저발열성의 음극활물질이 선택될 수 있다.
또는, 상기 전극조립체는 복수의 단위셀들을 포함하는 라미네이션/스택형 전극조립체 또는 스택/폴딩형 전극조립체이고, 상기 단위셀들은 상기 제1전극으로 구성되는 제1단위셀 및 상기 제2전극으로 구성되는 제2단위셀로 구성되며, 상기 제1전극의 활물질 및 상기 제2전극의 활물질은 하드카본, 소프트카본, 인조흑연, 인조흑연이 피복된 천연흑연, 천연흑연 및 규소산화물 가운데, 상대적으로 고발열성의 음극활물질과 상대적으로 저발열성의 음극활물질이 선택될 수 있다.
또한, 상기 제1단위셀 및 제2단위셀 각각은 균일한 활물질을 포함할 수 있다.
상기 전극은 양극, 또는 음극, 또는 양극 및 음극일 수 있다.
상기 고체전해질은 황화물계 고체전해질, 산화물계 고체전해질 또는 고분자계 고체전해질일 수 있다.
상기 제1전극의 온도가 제2전극으로 전달되어 전지 내부의 온도가 증가될 수 있다.
상기 전고체전지는, 단일 전극으로 구성되고 상온에서 동일한 용량을 갖는 전고체전지와 비교할 때, 영하의 온도에서는 더 큰 용량을 갖는 것일 수 있다.
본 발명은, 상기 전고체전지를 포함하는 전지팩, 및 상기 전지팩을 포함하는 디바이스를 제공한다. 상기 디바이스는 모바일(mobile) 전자기기, 웨어러블(wearable) 전자기기, 태블릿 컴퓨터, 노트북 컴퓨터, 전기자동차 및 전력저장장치로 이루어진 군에서 선택되는 어느 하나일 수 있다.
도 1은 복수의 양극 및 음극들을 포함하는 스택형 전극조립체의 측면도이다.
도 2는 본 발명에 따른 스택/폴딩형 전극조립체의 측면도이다.
도 3은 본 발명에 따른 라미네이션/스택형 전극조립체의 측면도이다.
도 4는 실험예 1에 따른 결과를 나타내는 그래프이다.
도 5는 실험예 2에 따른 결과를 나타내는 그래프이다.
도 6은 실험예 3에 따른 결과를 나타내는 그래프이다.
이하 첨부된 도면을 참조하여 본원 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본원 발명을 쉽게 실시할 수 있는 실시예를 상세히 설명한다. 다만, 본원 발명의 바람직한 실시예에 대한 동작 원리를 상세하게 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본원 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.
또한, 도면 전체에 걸쳐 유사한 기능 및 작용을 하는 부분에 대해서는 동일한 도면 부호를 사용한다. 명세서 전체에서, 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고, 간접적으로 연결되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 포함한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 발명은 전극조립체 및 고체전해질을 포함하는 전고체전지에 대한 것으로서, 상기 전극조립체는 판상형의 전극들이 적층된 구조로 이루어진다.
일반적으로 전극조립체의 구조는 판상형의 전극들이 적층되는 형태의 스택형 전극조립체, 스택/폴딩형 전극조립체 또는 라미네이션/스택형 구조이거나, 긴 시트형의 전극을 권취하는 구조의 젤리-롤형 전극조립체 구조로 구분될 수 있다.
상기 젤리-롤형 전극조립체는 1개의 양극 및 1개의 음극을 포함하기 때문에 전극의 구성을 다양화하기 어려운 구조인 반면, 스택형, 스택/폴딩형 및 라미네이션/스택형 전극조립체는 복수의 판상형의 전극들을 적층하여 구성하기 때문에 다양한 종류의 양극 및 음극을 적용할 수 있다.
이에, 본 발명에 따른 전고체전지의 전극조립체는, 상대적으로 고발열성의 제1전극 및 상대적으로 저발열성의 제2전극을 포함하며, 상기 제1전극은 상기 전극조립체의 중심부에 위치할 수 있다.
본 명세서에서 사용하는 고발열성의 제1전극은 상대적으로 발열량이 높은 전극으로서 고발열성의 활물질을 사용하거나, 고체전해질의 함량비가 제2전극보다 높은 전극이며, 저발열성의 제2전극은 상기 제1전극과 비교할 때 상대적으로 발열성이 낮은 전극으로서, 저발열성의 활물질을 사용하거나 고체전해질의 함량비가 상기 제1전극보다 낮은 전극일 수 있다.
상기 제1전극은 전극조립체의 중심부에 위치할 수 있는 바, 복수의 전극들로 구성되는 전극조립체의 중심부에 제1전극을 배치할 수 있고, 또는 제1전극을 포함하거나 제1전극으로 구성되는 단위셀을 전극조립체의 중심부에 배치할 수 있다. 이와 같이 발열성이 높은 제1전극을 전극조립체의 중심부에 위치시킴으로써 상기 제1전극의 온도가 제2전극으로 전달되어 전지 내부의 온도가 증가될 수 있다.
일반적으로, 고발열성의 제1전극은 높은 rate에 의해 활물질이나 전극 내부 구조가 손상되어 수명 특성이 저하될 수 있으나, 상대적으로 rate가 안정적으로 나타나는 저발열성의 제2전극은 활물질이나 전극 내부 구조의 손상이 적기 때문에 상대적으로 우수한 수명 특성을 나타낼 수 있다.
따라서, 전극조립체의 전체적인 온도 증가를 위해 고발열성의 제1전극을 포함하는 동시에, 수명 특성이 안정적인 제2전극을 포함하는 경우, 제1전극 및 제2전극의 열위한 부분들을 상호 보완해줄 수 있다.
이와 관련하여, 도 1은 복수의 양극 및 음극들을 포함하는 스택형 전극조립체의 측면도를 도시하고 있다.
도 1을 참조하면, (a) 전극조립체(100)는 복수의 양극(101, 101') 및 음극(102)이 고체전해질층(103)을 사이에 개재한 상태로 적층되는 구조의 스택형 전극조립체이다.
전극조립체(100)의 중심부에 위치하는 양극(101')은 고발열성의 제1양극이고, 전극조립체(100)의 외측에 위치하는 양극(101)은 저발열성의 제2양극이다. 또한, 전지의 성능을 고려하여 2개의 음극(102)은 동시에 또는 선택적으로 고발열성의 제1음극으로 적용하거나, 또는 저발열성의 제2음극으로 적용할 수 있다. 이와 같이, 전극조립체의 중심부에 고발열성의 양극을 배치함으로써, 전극의 적층 방향을 기준으로 열에너지의 전달이 양방향으로 이루어질 수 있는 바, 전지 내부 온도를 균일하게 상승시킬 수 있다.
도 1의 (b) 전극조립체(110)는 복수의 양극(111) 및 복수의 음극(112, 112')이 고체전해질층(113)을 사이에 개재한 상태로 적층되는 구조의 스택형 전극조립체이다.
전극조립체(110)에서 중심에 위치하는 음극(112')은 고발열성의 제1음극일 수 있으며, 외측에 위치하는 음극(112)은 저발열성의 제2음극이다.
또한, 전지의 성능을 고려하여 2개의 양극(111)은 동시에 또는 선택적으로 고발열성의 제1양극으로 적용하거나 또는 저발열성의 제2양극으로 적용할 수 있다. 이와 같이, 전극조립체의 중심부에 고발열성의 음극을 배치함으로써, 전극의 적층 방향을 기준으로 열에너지의 전달이 양방향으로 이루어질 수 있는 바, 전지 내부 온도를 균일하게 상승시킬 수 있다.
하나의 구체적인 예에서, 양극(101)과 양극(101') 및 음극(112)과 음극(112') 각각은 고체전해질의 함량비에 차이가 있는 반면, 활물질의 조성이 동일할 수 있다.
예를 들어, 음극(112)과 음극(112')은 인조흑연, 천연흑연, 인조흑연이 피복된 천연흑연, 규소산화물, 하드카본 또는 소프트카본일 수 있다.
또한, 양극(101)과 양극(101')은 Ni-Co-Mn 산화물(LiNCMO 2 (LiNCM)), 리튬니켈산화물(LiNiO 2 (LNO)), 올리빈구조의 산화물(LFP (LiFePO 4) 또는 LiMnPO 4 (LMP)), 리튬코발트산화물(LiCoO 2 (LCO)) 또는 리튬망간산화물(LiMn 2O 4 (LMO))일 수 있다.
다른 하나의 구체적인 예에서, 양극(101') 및 음극(112')은 고발열성의 전극활물질이 적용되고. 양극(101) 및 음극(112)은 저발열성의 전극활물질이 적용되는 형태일 수 있다.
음극활물질의 발열성을 높은 것에서 낮은 순서로 나열하면, 하드카본 > 소프트카본 > 인조흑연 > 인조흑연이 피복된 천연흑연 > 천연흑연 > 규소산화물의 순서가 되고, 양극활물질의 발열성을 높은 것에서 낮은 순서로 나열하면, LMO > LCO> LiNCM > LNO > LMP, LFP의 순서가 된다.
양극(101') 및 음극(112')은 양극(101) 및 음극(112)보다 상대적으로 높은 발열성을 갖는 바, 상기에 기재된 발열성 크기를 고려하여 상대적으로 고발열성의 양극 및 음극과, 상대적으로 저발열성의 양극 및 음극을 선택적으로 적용할 수 있다.
또는, 고발열성 그룹 및 저발열성 그룹으로 나뉘어진 전극활물질들 가운데에서 양극활물질 및 음극활물질을 선택하여 적용할 수 있다.
예를 들어, 음극(112)은 인조흑연, 천연흑연, 인조흑연이 피복된 천연흑연 및 규소산화물로 이루어진 그룹에서 선택되는 1종 이상일 수 있고, 음극(112')은 하드카본 및 소프트카본으로 이루어진 그룹에서 선택되는 1종 이상일 수 있다.
양극(101)은 Ni이 60% 초과인 Ni-Co-Mn 산화물(LiNCMO 2, Ni>60%), 리튬니켈산화물(LiNiO 2 (LNO)) 및 올리빈구조의 산화물(LFP (LiFePO 4) 또는 LiMnPO 4 (LMP))로 이루어진 그룹에서 선택되는 1종 이상일 수 있고, 양극(101')은 리튬코발트산화물(LiCoO 2 (LCO)), 리튬망간산화물(LiMn 2O 4 (LMO)) 및 Ni이 60% 이하인 Ni-Co-Mn 산화물(LiNCMO 2, Ni<60%)로 이루어진 그룹에서 선택되는 1종 이상일 수 있다.
도 2는 본 발명에 따른 스택/폴딩형 전극조립체의 측면도이다.
도 2를 참조하면, 전극조립체(200)는 양극/고체전해질층/음극/고체전해질층/양극 구조 또는 음극/고체전해질층/양극/고체전해질층/음극 구조로 이루어진 바이셀(bi-cell)형태의 단위셀(210, 220, 230, 240, 250, 260, 270, 280)들을 고체전해질층(290)의 일측면 상에 위치시킨 상태에서 고체전해질층을 압착한 스택/폴딩형 전극조립체이고, 고체전해질층(290)의 끝단에 고정테이프(291)를 부착하여 고체전해질층이 풀리는 것을 방지하고 있다.
전극조립체(200)는 8개의 단위셀들로 구성되는 바, 중심부에 위치하는 단위셀(210, 220, 230, 240)은 외측에 위치하는 단위셀(250, 260, 270, 280)과 비교할 때 고체전해질 함량비가 높거나 발열량이 큰 활물질을 포함하는 고발열성의 제1전극을 포함하는 제1단위셀이고, 단위셀(250, 260, 270, 280)은 저발열성의 제2전극을 포함하는 제2단위셀이다.
구체적으로, 상기 제1단위셀을 구성하는 양극 및 음극 모두 고발열성의 제1양극 및 제1음극일 수 있고, 또는 상기 제1단위셀에서 양극 또는 음극 중 어느 하나만 고발열성의 제1양극 또는 제1음극을 적용할 수 있다.
다만, 상기 제2단위셀을 구성하는 양극 및 음극은 모두 저발열성의 제2양극 및 제2음극일 수 있다.
상기 제1양극 및 제1음극과, 제2양극 및 제2음극은 상기 도 1의 설명에서 설명한 바와 같이, (i) 고체전해질 함량비를 다르게 적용하고 전극활물질은 동일 종류를 적용하는 경우, 또는 (ii) 상대적으로 높은 발열량을 갖는 전극활물질과 상대적으로 낮은 발열량을 갖는 전극활물질을 적용하는 경우를 각각 동일하게 적용할 수 있다.
도 2에 도시한 바와 달리, 제1단위셀은 중심부에 2개만 적용되고 상기 제1단위셀을 제외한 6개의 단위셀들은 제2단위셀이 적용될 수 있으며, 또는 전극조립체의 최외각부에 위치하는 단위셀(270, 280)은 제2단위셀을 적용하고, 이를 제외한 나머지 6개의 단위셀은 제1단위셀을 적용할 수 있음은 물론이다.
도 2의 전극조립체(200)에서 제1단위셀(210, 220, 230, 240)을 구성하는 양극 및 음극은 활물질, 도전재, 및 고체전해질 등의 전극 구성 물질들이 모두 동일하게 설계될 수 있고, 또는 제2단위셀보다 발열량이 높은 상태에서 선택적으로 상기 전극 구성 물질들의 종류 차이 및/또는 조성비 차이가 있도록 설계될 수 있다.
또한, 제2단위셀(250, 260, 270, 280)을 구성하는 양극 및 음극은 활물질, 도전재, 및 고체전해질 등의 전극 구성 물질들이 모두 동일하게 설계될 수 있고, 또는 제1단위셀보다 발열량이 낮은 상태에서 선택적으로 상기 전극 구성 물질들의 종류 차이 및/또는 조성비 차이가 있도록 설계될 수 있다.
도 3은 본 발명에 따른 라미네이션/스택형 전극조립체의 측면도이다.
도 3을 참조하면 전극조립체(300)는 양극/고체전해질층/음극/고체전해질층/양극 구조 또는 음극/고체전해질층/양극/고체전해질층/음극 구조로 이루어진 바이셀(bi-cell)형태의 단위셀(310, 320, 330, 340, 350, 360, 370, 380)들이 고체전해질층(390)을 사이에 개재한 상태로 적층되어 열융착된 라미네이션/스택형 전극조립체이다.
전극조립체(300)에서 중심부에 위치하는 단위셀(330, 340, 350, 360)은 도 2의 제1단위셀인 단위셀(210, 220, 230, 240)과 대응되는 성질을 갖는 고발열성 단위셀이고, 외주부에 위치하는 단위셀(310, 320, 370, 380)은 도 2의 제2단위셀인 단위셀(250, 260, 270, 280)과 대응되는 성질을 갖는 저발열성 단위셀이다.
따라서, 전극조립체(300)의 단위셀(330, 340, 350, 360)과 단위셀(310, 320, 370, 380)의 설명은 전극조립체(200)의 단위셀(210, 220, 230, 240)과 단위셀(250, 260, 270, 280)의 설명과 동일하게 적용될 수 있다.
상기 고체전해질은 황화물계 고체전해질, 산화물계 고체전해질 또는 고분자계 고체전해질일 수 있다.
상기 황화물계 고체전해질은, 황 원자(S)를 함유하고, 또한 주기율표 제1족 또는 제2족에 속하는 금속의 이온 전도성을 가지며, 또한 전자 절연성을 갖는 것이 바람직하다. 상기 황화물계 고체전해질은, 원소로서 적어도 Li, S 및 P를 함유하고, 리튬 이온 전도성을 갖고 있는 것이 바람직하지만, 목적 또는 경우에 따라, Li, S 및 P 이외의 다른 원소를 포함할 수 있다.
구체적인 황화물계 고체전해질의 예를 하기에 나타낸다. 예를 들면 Li 2S-P 2S 5, Li 2S-P 2S 5-LiCl, Li 2S-P 2S 5-H 2S, Li 2S-P 2S 5-H 2S-LiCl, Li 2S-LiI-P 2S 5, Li 2S-LiI-Li 2O-P 2S 5, Li 2S-LiBr-P 2S 5, Li 2SLi 2O-P 2S 5, Li 2S-Li 3PO 4-P 2S 5, Li 2S-P 2S 5-P 2O 5, Li 2S-P 2S 5-SiS 2, Li 2S-P 2S 5-SiS 2-LiCl, Li 2S-P 2S 5-SnS, Li 2S-P 2S 5-Al 2S 3, Li 2S-GeS 2, Li 2S-GeS 2-ZnS, Li 2S-Ga 2S 3, Li 2S-GeS 2-Ga 2S 3, Li 2S-GeS 2-P 2S 5, Li 2S-GeS 2-Sb 2S 5, Li 2S-GeS 2-Al 2S 3, Li 2SSiS 2, Li 2S-Al 2S 3, Li 2S-SiS 2-Al 2S 3, Li 2S-SiS 2-P 2S 5, Li 2S-SiS 2-P 2S 5-LiI, Li 2S-SiS 2-LiI, Li 2S-SiS 2-Li 4SiO 4, Li 2SSiS 2-Li 3PO 4, 및 Li 10GeP 2S 12 등을 들 수 있다.
황화물계 고체전해질 재료를 합성하는 방법으로서는, 예를 들면 비정질화법을 들 수 있다. 상기 비정질화법으로서는, 예를 들면 메커니컬 밀링법, 용액법 및 용융 급랭법을 들 수 있고, 그 중에서도 메커니컬 밀링법은 상온(25℃)에서 처리가 가능하고, 제조 공정의 간략화를 도모할 수 있는 장점이 있으므로 바람직하다.
상기 산화물계 고체전해질은, 산소 원자(O)를 함유하고, 주기율표 제1족 또는 제2족에 속하는 금속의 이온 전도성을 가지며, 전자 절연성을 갖는 화합물이 바람직하다.
상기 산화물계 고체전해질로서, 예를 들면 Li xaLa yaTiO 3(xa=0.3~0.7, ya=0.3~0.7)(LLT), Li xbLa ybZr zbM bb mbO nb(M bb 는 Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In, 및 Sn 중 적어도 1종 이상의 원소이며, xb는 5≤xb≤10을 충족시키고, yb는 1≤yb≤4를 충족시키며, zb는 1≤zb≤4를 충족시키고, mb는 0≤mb≤2를 충족시키며, nb는 5≤nb≤20을 충족시킴), Li xcB ycM cc zcO nc(M cc는 C, S, Al, Si, Ga, Ge, In, 및 Sn 중 적어도 1종 이상의 원소이며, xc는 0≤xc≤5를 충족시키고, yc는 0≤yc≤1을 충족시키며, zc는 0≤zc≤1을 충족시키고, nc는 0≤nc≤6을 충족시킴), Li xd(Al, Ga) yd(Ti, Ge) zdSi adP mdO nd(단, 1≤xd≤3, 0≤yd≤1, 0≤zd≤2, 0≤ad≤1, 1≤md≤7, 3≤nd≤13), Li (3-2xe)M ee xeD eeO(단, 0≤xe≤0.1, M ee는 2가의 금속 원자이며, D ee는 할로젠 원자 또는 2종 이상의 할로젠 원자의 조합임), Li xfSi yfO zf(1≤xf≤5, 0<yf≤3, 1≤zf≤10), Li xgS ygO zg(1≤xg≤3, 0<yg≤2, 1≤zg≤10), Li 3BO 3-Li 2SO 4, Li 2O-B 2O 3-P 2O 5, Li 2O-SiO 2, Li 6BaLa 2Ta 2O 12, Li 3PO (4-3/2w)N w(w는 w<1), LISICON(Lithium super ionic conductor)형 결정 구조를 갖는 Li 3.5Zn 0.25GeO 4, 페로브스카이트형 결정 구조를 갖는 La 0.55Li 0.35TiO 3, NASICON(Natrium super ionic conductor)형 결정 구조를 갖는 LiTi 2P 3O 12, Li 1+xh+yh(Al, Ga) xh(Ti, Ge) 2-xhSi yhP 3-yhO 12(단, 0≤xh≤1, 0≤yh≤1), 및 가닛형 결정 구조를 갖는 Li 7La 3Zr 2O 12(LLZ) 등을 들 수 있다. 또 Li, P 및 O를 포함하는 인 화합물도 바람직하다. 예를 들면 인산 리튬(Li 3PO 4), 인산 리튬의 산소의 일부를 질소로 치환한 LiPON, 및 LiPOD 1(D 1은, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, 및 Au 등으로부터 선택된 적어도 1종) 등을 들 수 있다. 또, LiA 1ON(A 1은, Si, B, Ge, Al, C, Ga 등으로부터 선택된 적어도 1종) 등도 바람직하게 이용할 수 있다.
상기 고분자계 고체전해질은 각각 독립적으로 용매화된 리튬염에 고분자 수지가 첨가되어 형성된 고체 고분자 전해질이거나, 유기 용매와 리튬염을 함유한 유기 전해액을 고분자 수지에 함유시킨 고분자 겔 전해질일 수 있다.
예를 들어, 상기 고체 고분자 전해질은 이온 전도성 재질로 통상적으로 전고체전지의 고체 전해질 재료로 사용되는 고분자 재료이면 특별히 한정되는 것은 아니다. 상기 고체 고분자 전해질은 예를 들어, 폴리에테르계 고분자, 폴리카보네이트계 고분자, 아크릴레이트계 고분자, 폴리실록산계 고분자, 포스파젠계 고분자, 폴리에틸렌 유도체, 알킬렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리에지테이션 리신, 폴리에스테르설파이드, 폴리비닐알코올, 폴리불화비닐리덴, 이온성 해리기를 포함하는 중합체 등을 포함할 수 있다. 본 발명의 구체적인 일 실시예에 있어서, 상기 고체 고분자 전해질은 고분자 수지로서 PEO(polyethyleneoxide) 주쇄에 폴리메틸마타크릴레이트(Poly Methyl Methacrylate), PMMA), 폴리카보네이트, 폴리실록산 및/또는 포스파젠과 같은 무정형 고분자를 공단량체로 공중합시킨 가지형 공중합체, 빗형 고분자 수지 (comb-like polymer) 및 가교 고분자 수지 등이 포함될 수 있다.
상기 고분자 겔 전해질은 리튬염을 포함하는 유기 전해액과 고분자 수지를 포함하는 것으로서, 상기 유기 전해액은 고분자 수지의 중량 대비 60 중량부 ~ 400 중량부를 포함하는 것이다. 상기 고분자 겔 전해질에 적용되는 고분자 수지는 특정한 성분으로 한정되는 것은 아니나, 예를 들어, PVC(Poly vinyl chloride)계, PMMA(Poly Methyl Methacrylate)계, 폴리아크릴로니트릴(Polyacrylonitrile, PAN), 폴리불화비닐리덴(PVdF), 및 폴리불화비닐리덴-육불화프로필렌(poly(vinylidene fluoride-hexafluoropropylene: PVdF-HFP) 등이 포함될 수 있다.
상기 리튬염은 이온화 가능한 리튬염으로서 Li +X -로 표현할 수 있다. 이러한 리튬염의 음이온으로는 특별히 제한되지 않으나, F -, Cl -, Br -, I -, NO 3 -, N(CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2PF 4 -, (CF 3) 3PF 3 -, (CF 3) 4PF 2 -, (CF 3) 5PF -, (CF 3) 6P -, CF 3SO 3 -, CF 3CF 2SO 3 -, (CF 3SO 2) 2N -, (FSO 2) 2N -, CF 3CF 2(CF 3) 2CO -, (CF 3SO 2) 2CH -, (SF 5) 3C -, (CF 3SO 2) 3C -, CF 3(CF 2) 7SO 3 -, CF 3CO 2 -, CH 3CO 2 -, SCN -, 및 (CF 3CF 2SO 2) 2N - 등을 예시할 수 있다.
이하에서는, 본원 발명의 실시예를 참조하여 설명하지만, 이는 본원 발명의 더욱 용이한 이해를 위한 것으로, 본원 발명의 범주가 그것에 의해 한정되는 것은 아니다.
<실시예 1>
도 3에 도시된 바와 같이 8개의 단위셀을 포함하는 라미네이션/스택형 전극조립체를 제조하였다.
상기 단위셀들 가운데, 중심부에는 고발열성의 단위셀을 1개 배치하고, 상기 고발열성의 단위셀의 양측에는 7개의 저발열성의 단위셀을 배치하여 모두 8개의 단위셀들을 포함하는 전극조립체를 완성하였다.
상기 고발열성의 단위셀은 양극 활물질로서 LiNi 0.8Co 0.1Mn 0.1O 2 75 중량%, 도전재로서 Super P 5중량%, 고체전해질로서 폴리에틸렌옥사이드(PEO) 15중량% 및 바인더로서 폴리비닐리덴플루오라이드(PVDF) 5 중량%를 사용하여 제조된 양극과, 음극 활물질로서 인조흑연 71중량%, 도전재로서 Super C 2중량%, 고체전해질로서 폴리에틸렌옥사이드(PEO) 23중량% 및 바인더로서 스티렌부티렌고무(SBR)+카르복실메틸셀룰로오스(CMC) 4중량%를 사용하여 제조된 음극을 포함한다.
상기 저발열성의 단위셀은 양극 활물질로서 LiNi 0.8Co 0.1Mn 0.1O 2 85중량%, 도전재로서 Super C 3중량%, 고체전해질로서 폴리에틸렌옥사이드(PEO) 8중량% 및 바인더로서 폴리비닐리덴플루오라이드(PVDF) 4 중량%를 사용하여 제조된 양극과, 음극 활물질로서 인조흑연 83중량%, 도전재로서 Super C 1중량%, 고체전해질로서 폴리에틸렌옥사이드(PEO) 13중량% 및 바인더로서 스티렌부티렌고무(SBR)+카르복실메틸셀룰로오스(CMC) 3중량%를 사용하여 제조된 음극을 포함한다.
상기 양극과 음극 사이에 개재되는 고체전해질층은 폴리에틸렌옥사이드 및 LiFSI를 20 mol% 및 1 mol%의 비로 아세토니트릴에 용해하여 유리판 위에 얇게 캐스팅한 후 진공 건조하여 100 ㎛의 두께로 제조하여 사용한다.
<실시예 2>
상기 실시예 1에서 전극조립체 중심부에 위치하는 고발열성의 단위셀의 개수가 2개이고 저발열성의 단위셀의 개수가 6개인 점을 제외하고는 상기 실시예 1과 동일한 방법으로 전극조립체를 제조하였다.
<실시예 3>
상기 실시예 1에서 전극조립체 중심부에 위치하는 고발열성의 단위셀의 개수가 3개이고 저발열성의 단위셀의 개수가 5개인 점을 제외하고는 상기 실시예 1과 동일한 방법으로 전극조립체를 제조하였다.
<실시예 4>
상기 실시예 1에서 전극조립체 중심부에 위치하는 고발열성의 단위셀의 개수가 4개이고 저발열성의 단위셀의 개수가 4개인 점을 제외하고는 상기 실시예 1과 동일한 방법으로 전극조립체를 제조하였다.
<비교예 1>
도 3에 도시된 바와 같이 8개의 단위셀을 포함하는 라미네이션/스택형 전극조립체를 제조하였다.
상기 단위셀은 모두 동일한 발열성을 갖는 전극들을 포함한다.
구체적으로, 양극 활물질로서 LiNi 0.8Co 0.1Mn 0.1O 2 80 중량%, 도전재로서 Super C 4중량%, 고체전해질로서 폴리에틸렌옥사이드(PEO) 10중량% 및 바인더로서 폴리비닐리덴플루오라이드(PVDF) 6 중량%를 사용하여 제조된 양극과, 음극 활물질로서 인조흑연 77 중량%, 도전재로서 Super C 1.5중량%, 고체전해질로서 폴리에틸렌옥사이드(PEO) 18중량% 및 바인더로서 스티렌부티렌고무(SBR)+카르복실메틸셀룰로오스(CMC) 3.5중량%를 사용하여 제조된 음극을 포함한다.
비교예 1의 전극조립체는 상온에서 실시예 1 내지 4의 전극조립체와 비교할 때 동일한 용량을 갖도록 설계되었다.
<실험예 1>
고발열성의 전극을 포함하는 전극조립체의 저온 용량 개선 수준을 확인하기 위하여, 상기 실시예 1 내지 4 및 비교예 1에서 제조된 전극조립체를 포함하는 이차전지를 영하 10℃조건 하에서, 만충전 및 만방전을 수행하였고, 비교예 1의 용량을 기준으로 개선된 용량의 비율을 나타낸 그래프를 도 4에 도시하였다.
도 4를 참조하면, 고발열성 단위셀의 개수가 증가할수록 전지의 용량이 증가하는 흐름을 보이고 있는 것을 알 수 있다.
상기 실험은 저온 조건하에서 진행되었는 바, 본 발명의 경우 저온에서의 용량 개선 효과가 뛰어난 것을 확인할 수 있다.
<실시예 5>
도 3에 도시된 바와 같이 8개의 단위셀을 포함하는 라미네이션/스택형 전극조립체를 제조하였다.
상기 단위셀들 가운데, 중심부에는 고발열성의 단위셀을 4개 배치하고, 상기 고발열성의 단위셀의 양측에 각각 2개씩 저발열성의 단위셀을 배치하여 모두 8개의 단위셀들을 포함하는 전극조립체를 완성하였다.
상기 고발열성의 단위셀은 음극 활물질로서 천연흑연 80중량%, 도전재로서 Super C 2중량%, 고체전해질로서 폴리에틸렌옥사이드(PEO) 13중량% 및 바인더로서 스티렌부티렌고무(SBR)+카르복실메틸셀룰로오스(CMC) 5중량%를 사용하여 제조된 음극과, 양극 활물질로서 LiNi 0.8Co 0.1Mn 0.1O 2 80중량%, 도전재로서 Super C 4중량%, 고체전해질로서 폴리에틸렌옥사이드(PEO) 10중량% 및 바인더로서 PVDF 6중량%를 사용하여 제조된 양극을 포함한다.
상기 저발열성의 단위셀은 상기 고발열성의 단위셀에 사용된 음극 활물질인 천연흑연 대신에 인조흑연을 사용한 점을 제외하고 상기 고발열성의 단위셀과 동일한 방법으로 제조되었다.
상기 양극과 음극 사이에 개재되는 고체전해질층은 폴리에틸렌옥사이드 및 LiFSI를 20 mol% 및 1 mol%의 비로 아세토니트릴에 용해하여 유리판 위에 얇게 캐스팅한 후 진공 건조하여 100 ㎛의 두께로 제조하여 사용하였다.
<실시예 6>
상기 실시예 5에서 고발열성 음극으로 사용된 천연흑연 대신에 소프트카본을 사용한 점을 제외하고는 상기 실시예 5와 동일한 방법으로 전극조립체를 제조하였다.
<실시예 7>
상기 실시예 5에서 고발열성 음극으로 사용된 천연흑연 대신에 하드카본을 사용한 점을 제외하고는 상기 실시예 5와 동일한 방법으로 전극조립체를 제조하였다.
<비교예 2>
도 3에 도시된 바와 같이 8개의 단위셀을 포함하는 라미네이션/스택형 전극조립체를 제조하였다.
상기 단위셀은 모두 동일한 발열성을 갖는 전극들을 포함한다.
구체적으로 상기 단위셀은 음극 활물질로서 인조흑연을 포함하는 음극을 적용한 점을 제외하고 상기 실시예 5와 동일한 양극 및 고체전해질을 사용하여 전극조립체를 제조하였다.
비교예 2의 전극조립체는 상온에서 실시예 5 내지 7의 전극조립체와 비교할 때 동일한 용량을 갖도록 설계되었다.
<실험예 2>
발열성에 차이가 있는 음극 활물질을 적용함에 따른 저온 용량 개선 수준을 확인하기 위하여, 상기 실시예 5 내지 7 및 비교예 2에서 제조된 전극조립체를 포함하는 이차전지를 영하 10℃조건 하에서, 만충전 및 만방전을 수행하였고, 비교예 2의 용량을 기준으로 개선된 용량의 비율을 나타낸 그래프를 도 5에 도시하였다.
도 5를 참조하면, 음극 활물질의 종류에 따라 전지의 용량 증가 효과가 있는 것을 알 수 있는 바, 구체적으로, 천연 흑연, 소프트 카본 및 하드 카본 순서로 전지의 용량이 증가하는 것으로 확인된다.
상기 실험은 저온 조건하에서 진행되었는 바, 본 발명의 경우 저온에서의 용량 개선 효과가 뛰어난 것을 확인할 수 있다.
<비교예 3>
상기 실시예 1에서 제조된 고발열성의 단위셀 2개를 전극조립체의 양측 끝단에 배치하고 중심부에 저발열성의 단위셀 6개를 배치하여 도 3에 도시된 바와 같이 8개의 단위셀을 포함하는 라미네이션/스택형 전극조립체를 제조한 것을 제외하고, 상기 실시예 1과 동일한 방법에 의해 전극조립체를 제조하였다.
<실험예 3>
고발열성의 전극 위치에 따른 전지의 용량 개선 수준을 확인하기 위하여 상기 실시예 2 및 비교예 3에서 제조된 전극조립체를 포함하는 이차전지를 10℃조건 하에서, 만충전 및 만방전을 수행하였고, 비교예 1의 용량을 기준으로 개선된 용량의 비율을 나타낸 그래프를 도 6에 도시하였다.
도 6을 참조하면, 실시예 2의 전극조립체를 포함하는 이차전지는 비교예 1의 균일한 발열량을 갖는 전극으로만 구성된 전극조립체를 포함하는 이차전지와 비교할 때 약 3.5%의 용량 개선 효과가 있음을 알 수 있다.
그러나, 전극조립체의 양측 끝단에만 고발열성의 단위셀을 배치한 비교예 3의 전극조립체를 포함하는 이차전지는 비교예 1의 전극조립체를 포함하는 이차전지 보다 낮은 전지 용량을 갖는 것으로 나타난다.
따라서, 고발열성의 전극의 개수가 동일할 때, 이들을 전극조립체의 양측 끝단에 배치하는 경우보다 중심부에 배치하는 경우, 용량 증가 효과가 현저히 증가하는 것을 알 수 있다.
본원 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본원 발명의 범주내에서 다양한 응용 및 변형을 수행하는 것이 가능할 것이다.
(부호의 설명)
100, 110, 200, 300: 전극조립체
101, 101', 111: 양극
102, 112, 112': 음극
103, 113, 290, 390: 고체전해질층
210, 220, 230, 240, 250, 260, 270, 280, 310, 320, 330, 340, 350, 360, 370, 380: 단위셀
291: 고정테이프
이상에서 설명한 바와 같이, 본원의 복합 전극을 포함하는 전고체전지는 발열량이 높은 전극을 부분적으로 포함하는 바, 정상적인 전지 사용 중에 발생하는 열에너지로 인하여 전지의 전체적인 온도 증가 효과를 얻을 수 있다.
또한, 고발열량 전극과 저발열량 전극을 모두 포함하는 전극조립체를 적용함으로서, 고발열량 전극에 의한 온도 증가 효과뿐 아니라, 저발열량 전극에 의한 수명 개선 효과를 유지할 수 있다.
또한, 발열을 위해 별도의 발열부재를 부가하지 않기 때문에 추가적인 외부 전원이 불필요한 바, 외부 전원을 구비하기 위하여 전지의 부피가 증가하는 것을 방지할 수 있다.

Claims (12)

  1. 전극조립체 및 고체전해질을 포함하는 전고체전지에 있어서,
    상기 전극조립체는 판상형의 전극들이 적층된 구조를 포함하고,
    상기 전극들은 상대적으로 고발열성의 제1전극 및 상대적으로 저발열성의 제2전극을 포함하며,
    상기 제1전극은 상기 전극조립체의 중심부에 위치하는 전고체전지.
  2. 제1항에 있어서, 상기 전극조립체는 스택형 전극조립체이고,
    상기 제1전극 및 제2전극은 활물질의 조성이 동일하며, 상기 제1전극의 고체전해질 함량비는 제2전극의 고체전해질 함량비보다 높은 전고체전지.
  3. 제1항에 있어서, 상기 전극조립체는 복수의 단위셀들을 포함하는 라미네이션/스택형 전극조립체 또는 스택/폴딩형 전극조립체이고,
    상기 단위셀들은 상기 제1전극으로 구성되는 제1단위셀 및 상기 제2전극으로 구성되는 제2단위셀로 구성되며,
    상기 제1전극 및 제2전극은 활물질의 조성이 동일하며, 상기 제1전극의 고체전해질 함량비는 제2전극의 고체전해질 함량비보다 높은 전고체전지.
  4. 제1항에 있어서, 상기 전극조립체는 스택형 전극조립체이고,
    상기 제1전극의 활물질 및 상기 제2전극의 활물질은 하드카본, 소프트카본, 인조흑연, 인조흑연이 피복된 천연흑연, 천연흑연 및 규소산화물 가운데, 상대적으로 고발열성의 음극활물질과 상대적으로 저발열성의 음극활물질이 선택되는 전고체전지.
  5. 제1항에 있어서, 상기 전극조립체는 복수의 단위셀들을 포함하는 라미네이션/스택형 전극조립체 또는 스택/폴딩형 전극조립체이고,
    상기 단위셀들은 상기 제1전극으로 구성되는 제1단위셀 및 상기 제2전극으로 구성되는 제2단위셀로 구성되며,
    상기 제1전극의 활물질 및 상기 제2전극의 활물질은 하드카본, 소프트카본, 인조흑연, 인조흑연이 피복된 천연흑연, 천연흑연 및 규소산화물 가운데, 상대적으로 고발열성의 음극활물질과 상대적으로 저발열성의 음극활물질이 선택되는 전고체전지.
  6. 제5항에 있어서, 상기 제1단위셀 및 제2단위셀 각각은 균일한 활물질을 포함하는 전고체전지.
  7. 제1항에 있어서, 상기 전극은 양극, 또는 음극, 또는 양극 및 음극인 전고체전지.
  8. 제1항에 있어서, 상기 고체전해질은 황화물계 고체전해질, 산화물계 고체전해질 또는 고분자계 고체전해질인 전고체전지.
  9. 제1항에 있어서, 상기 제1전극의 온도가 제2전극으로 전달되어 전지 내부의 온도가 증가되는 전고체전지.
  10. 제1항에 있어서, 상기 전고체전지는, 단일 전극으로 구성되고 상온에서 동일한 용량을 갖는 전고체전지와 비교할 때, 영하의 온도에서는 더 큰 용량을 갖는 전고체전지.
  11. 제1항 내지 제10항 중 어느 한 항에 따른 전고체전지를 포함하는 전지팩.
  12. 제11항에 따른 전지팩을 포함하는 디바이스로서,
    상기 디바이스는 모바일(mobile) 전자기기, 웨어러블(wearable) 전자기기, 태블릿 컴퓨터, 노트북 컴퓨터, 전기자동차 및 전력저장장치로 이루어진 군에서 선택되는 어느 하나인 디바이스.
PCT/KR2020/005934 2019-05-08 2020-05-06 복합 전극을 포함하는 전고체전지 WO2020226412A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/428,311 US20220231326A1 (en) 2019-05-08 2020-05-06 All-solid-state batteries comprising composite electrode
CN202080033267.4A CN113785427A (zh) 2019-05-08 2020-05-06 包括复合电极的全固态电池
EP20801469.6A EP3910717A4 (en) 2019-05-08 2020-05-06 SOLID STATE BATTERY WITH COMPOUND ELECTRODE
JP2021544643A JP2022519083A (ja) 2019-05-08 2020-05-06 複合電極を含む全固体電池
JP2023111780A JP2023145484A (ja) 2019-05-08 2023-07-06 複合電極を含む全固体電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0053694 2019-05-08
KR1020190053694A KR20200129382A (ko) 2019-05-08 2019-05-08 복합 전극을 포함하는 전고체전지

Publications (1)

Publication Number Publication Date
WO2020226412A1 true WO2020226412A1 (ko) 2020-11-12

Family

ID=73050941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005934 WO2020226412A1 (ko) 2019-05-08 2020-05-06 복합 전극을 포함하는 전고체전지

Country Status (6)

Country Link
US (1) US20220231326A1 (ko)
EP (1) EP3910717A4 (ko)
JP (2) JP2022519083A (ko)
KR (1) KR20200129382A (ko)
CN (1) CN113785427A (ko)
WO (1) WO2020226412A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220153797A (ko) 2021-05-12 2022-11-21 한국과학기술연구원 산화물 고체전해질 시트의 제조방법
KR20230095417A (ko) 2021-12-22 2023-06-29 한국과학기술연구원 복합 고체전해질 시트의 제조방법
KR20230098397A (ko) 2021-12-24 2023-07-04 현대자동차주식회사 내구성이 개선된 전고체전지

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314872B2 (ko) 1973-12-03 1978-05-20
JPH0582140A (ja) * 1991-09-24 1993-04-02 Yuasa Corp 固体電解質リチウム電池の使用方法
JP2001357854A (ja) 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd 非水系二次電池
JP2004031269A (ja) * 2002-06-28 2004-01-29 Nissan Motor Co Ltd 二次電池
JP2008078109A (ja) * 2006-08-25 2008-04-03 Toyota Motor Corp 蓄電装置用電極及び蓄電装置
JP2009087814A (ja) * 2007-10-01 2009-04-23 Ohara Inc 発熱機構を備える二次電池
JP2009176599A (ja) 2008-01-25 2009-08-06 Panasonic Corp 非水電解質二次電池
KR20160087189A (ko) * 2015-01-13 2016-07-21 주식회사 엘지화학 발열체를 포함하는 전지셀
KR20190053694A (ko) 2017-11-10 2019-05-20 강재구 반려동물을 위한 보온 용기

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332579B (zh) * 2011-02-21 2014-10-08 东莞新能源科技有限公司 一种锂离子电池及其负极活性材料
JP2014143143A (ja) * 2013-01-25 2014-08-07 Toyota Industries Corp 蓄電装置
KR102307909B1 (ko) * 2015-05-08 2021-10-01 삼성에스디아이 주식회사 리튬 전지
JP6460063B2 (ja) * 2016-06-30 2019-01-30 トヨタ自動車株式会社 電池
JP7482436B2 (ja) * 2018-12-27 2024-05-14 パナソニックIpマネジメント株式会社 電極活物質の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314872B2 (ko) 1973-12-03 1978-05-20
JPH0582140A (ja) * 1991-09-24 1993-04-02 Yuasa Corp 固体電解質リチウム電池の使用方法
JP2001357854A (ja) 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd 非水系二次電池
JP2004031269A (ja) * 2002-06-28 2004-01-29 Nissan Motor Co Ltd 二次電池
JP2008078109A (ja) * 2006-08-25 2008-04-03 Toyota Motor Corp 蓄電装置用電極及び蓄電装置
JP2009087814A (ja) * 2007-10-01 2009-04-23 Ohara Inc 発熱機構を備える二次電池
JP2009176599A (ja) 2008-01-25 2009-08-06 Panasonic Corp 非水電解質二次電池
KR20160087189A (ko) * 2015-01-13 2016-07-21 주식회사 엘지화학 발열체를 포함하는 전지셀
KR101760647B1 (ko) 2015-01-13 2017-08-04 주식회사 엘지화학 발열체를 포함하는 전지셀
KR20190053694A (ko) 2017-11-10 2019-05-20 강재구 반려동물을 위한 보온 용기

Also Published As

Publication number Publication date
CN113785427A (zh) 2021-12-10
JP2022519083A (ja) 2022-03-18
EP3910717A4 (en) 2022-02-23
JP2023145484A (ja) 2023-10-11
EP3910717A1 (en) 2021-11-17
US20220231326A1 (en) 2022-07-21
KR20200129382A (ko) 2020-11-18

Similar Documents

Publication Publication Date Title
WO2020226412A1 (ko) 복합 전극을 포함하는 전고체전지
WO2016093589A1 (ko) 안전성이 향상된 전극조립체, 그의 제조방법 및 상기 전극조립체를 포함하는 전기화학소자
WO2019054729A1 (ko) 고체 전해질을 포함하는 전고체 전지용 전극
WO2018164455A1 (ko) 고분자 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극
WO2016137147A1 (ko) 이차 전지용 분리막, 그 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2012165758A1 (ko) 리튬 이차전지
WO2020076099A1 (ko) 복합 전해질막 및 상기 복합 전해질막을 포함하는 전고체 전지
WO2018182216A2 (ko) 다층 구조의 복합전해질 및 이를 이용한 이차전지
WO2020190029A1 (ko) 전고체 전지용 전해질막 및 이를 제조하는 방법
WO2020226472A1 (ko) 전고체 전지용 전해질막 및 이를 포함하는 전고체 전지
WO2020214009A1 (ko) 고체 전해질 복합체 및 이를 포함하는 전고체 전지용 전극
WO2021187961A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2020080805A1 (ko) 전고체 전지 제조 방법
WO2023018174A1 (ko) 산화물계 고체전해질 및 황화물계 고체전해질이 코팅된 양극활물질 및 이를 포함하는 전고체전지
WO2019098541A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020214008A1 (ko) 전고체 전지용 전해질막 및 이를 포함하는 전고체 전지
WO2021049881A1 (ko) 리튬이차전지용 양극, 이의 제조방법 및 이를 포함하는 리튬이차전지
WO2020242095A1 (ko) 전고체전지용 음극의 제조방법
WO2023191598A1 (ko) 전고체 전지용 양극 및 이를 포함하는 전고체 전지
WO2020116939A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2020159083A1 (ko) 절연층이 형성되어 있는 전극을 포함하는 스택형 전극조립체 및 이를 포함하는 리튬 이차전지
WO2021206430A1 (ko) 전고체 전지 및 상기 전고체 전지를 제조하는 방법
WO2022098151A1 (ko) 코팅층과 이온 전달층을 포함하는 전고체전지용 음극 및 이를 포함하는 리튬 이차전지.
WO2022211447A1 (ko) 2종의 고체전해질층을 포함하는 전고체전지
WO2016111542A1 (ko) 안전성이 향상된 전극 조립체 및 이를 포함하는 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20801469

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021544643

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020801469

Country of ref document: EP

Effective date: 20210811

NENP Non-entry into the national phase

Ref country code: DE