WO2023191598A1 - 전고체 전지용 양극 및 이를 포함하는 전고체 전지 - Google Patents

전고체 전지용 양극 및 이를 포함하는 전고체 전지 Download PDF

Info

Publication number
WO2023191598A1
WO2023191598A1 PCT/KR2023/004408 KR2023004408W WO2023191598A1 WO 2023191598 A1 WO2023191598 A1 WO 2023191598A1 KR 2023004408 W KR2023004408 W KR 2023004408W WO 2023191598 A1 WO2023191598 A1 WO 2023191598A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
solid
solid electrolyte
active material
Prior art date
Application number
PCT/KR2023/004408
Other languages
English (en)
French (fr)
Inventor
이대진
하회진
김현승
박건호
유지상
조우석
Original Assignee
주식회사 엘지에너지솔루션
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션, 한국전자기술연구원 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202380013057.2A priority Critical patent/CN117751471A/zh
Priority to EP23781447.0A priority patent/EP4376127A1/en
Publication of WO2023191598A1 publication Critical patent/WO2023191598A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for an all-solid-state battery based on a nickel-rich lithium transition metal composite oxide and sulfide-based solid electrolyte. More specifically, it is about an all-solid-state battery with improved electrochemical properties by reducing the positive electrode active material/solid electrolyte interface resistance.
  • Lithium-ion secondary batteries are widely used as a power source for portable devices, including IT mobile devices, and the market has recently been growing in earnest from small batteries to medium-to-large batteries. In particular, the use of batteries for automobiles is rapidly increasing. In order for lithium ion secondary batteries to be used as a power source for electric vehicles, high energy density and high output characteristics are required, and securing safety is especially important.
  • An all-solid-state battery replaces the organic electrolyte with a solid electrolyte, and is a battery in which all battery components, such as electrodes and electrolyte, are made of solid. These all-solid-state batteries can fundamentally prevent the risk of ignition and explosion due to the higher safety of solid electrolytes compared to liquid electrolytes.
  • Solid electrolyte materials for all-solid-state batteries include gel-type polymer-based solid electrolytes, sulfide-based solid electrolytes, and oxide-based solid electrolytes.
  • sulfide-based solid electrolytes exhibit high lithium ion conductivity of more than 10 -3 S/cm, and are advantageous for sheet formation and large-area formation through smooth interfacial contact formation due to the soft mechanical properties of sulfide particles (powder), resulting in high energy density. It is suitable for manufacturing all-solid-state batteries.
  • a buffer layer of lithium metal oxide ( LiMe This shows an improving effect.
  • the lithium metal oxide layer is effective when the positive electrode active material is lithium cobalt oxide, but when the positive electrode active material is Ni-rich, there is little difference in the interfacial resistance effect depending on the presence or absence of the buffer layer. Therefore, there is a need to develop new technologies to suppress the interface resistance between Ni-rich positive electrode active material and solid electrolyte.
  • the purpose of the present invention is to provide a positive electrode for an all-solid-state battery with reduced interfacial resistance occurring between the interface of a solid electrolyte and a positive electrode active material.
  • Another object of the present invention is to provide an all-solid-state battery including the positive electrode. It will be readily apparent that other objects and advantages of the present invention can be realized by the means or methods described in the claims and combinations thereof.
  • a first aspect of the present invention is a positive electrode for an all-solid-state battery, wherein the positive electrode includes a positive electrode active material and a solid electrolyte, wherein the positive electrode active material includes a lithium transition metal complex oxide having a residual lithium content of more than 2,000 ppm, and the lithium transition
  • the metal composite oxide is a lithium transition metal composite oxide with a high nickel content in which nickel (Ni) is 70% or more by atomic fraction among the metal components excluding lithium, and the residual lithium is lithium hydroxide (LiOH), lithium carbonate (Li 2 CO 3 ), It contains one or more types of lithium sulfate (Li 2 SO 4 ) and lithium nitrate (LiNO 3 ).
  • a second aspect of the present invention is that in the first aspect, the solid electrolyte includes a sulfide-based solid electrolyte.
  • a third aspect of the present invention is that in the first or second aspect, the nickel-high content lithium transition metal complex oxide is contained in an amount of 80 wt% or more based on the total weight of the positive electrode active material.
  • a fourth aspect of the present invention is that according to any one of the first to third aspects, the lithium transition metal complex oxide includes one or more of the compounds represented by Formula 1 below.
  • M1 includes at least one selected from the group consisting of Al, Mg, Ge, Mo, Nb, Si, Ti, Zr, Cr, W, V and Fe, and M2 is boron (B ), phosphorus (P), and fluorine (F).
  • the fifth aspect of the present invention is according to any one of the first to fourth aspects, wherein the lithium transition metal complex oxide is LiNi 0.7 Co 0.15 Mn 0.15 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.88 Co 0.1 Al It contains one or more types from the group consisting of 0.02 O 2 , LiNi 0.84 Co 0.15 Al 0.01 O 2 and LiNi 0.8 Co 0.1 Mn 0.1 O 2 .
  • the sixth aspect of the present invention is according to any one of the second to fifth aspects, wherein the sulfide-based solid electrolyte is contained in an amount of 70 wt% or more based on the total weight of the solid electrolyte.
  • the seventh aspect of the present invention is according to any one of the first to sixth aspects, wherein the positive electrode active material is a nickel-high content lithium transition metal composite oxide with residual lithium exceeding 2,000 ppm, and is comprised of 70 wt% or more of 100 wt% of the positive electrode active material.
  • the solid electrolyte contains 70 wt% or more of sulfide-based solid electrolyte compared to 100 wt% of the solid electrolyte.
  • the eighth aspect of the present invention relates to an all-solid-state battery, wherein the all-solid-state battery includes an anode, a cathode, and a solid electrolyte membrane interposed between the anode and the cathode, and the anode is according to any one of the first to seventh aspects. will be.
  • a ninth aspect of the present invention is that in the eighth aspect, the negative electrode includes at least one selected from the group consisting of lithium metal and lithium alloy, and the lithium alloy includes a lithium indium alloy.
  • a tenth aspect of the present invention is that in the eighth or ninth aspect, the solid electrolyte membrane includes a sulfide-based solid electrolyte.
  • the resistance generated at the interface between the solid electrolyte and the active material is reduced by residual lithium bound to the surface of the positive electrode active material. Accordingly, the reversible capacity of the all-solid-state battery containing the positive electrode active material is improved, and the internal resistance (overvoltage) of the battery is reduced.
  • a water washing process to remove residual lithium can be omitted, and a separate process for binding residual lithium to the surface of the active material is not required, so process costs can be reduced when manufacturing a positive electrode active material.
  • FIG. 1 is an exploded view showing an all-solid-state battery divided by element according to an embodiment of the present invention.
  • Figures 2a and 2b are SEM images of positive electrode active materials prepared in Example 1 and Comparative Example, respectively.
  • Figure 3a shows the initial charge/discharge curve at 0.05C for an all-solid-state battery using the positive electrode active materials prepared in Comparative Example and Example 1
  • Figure 3b shows an all-solid-state battery using the positive electrode active materials prepared in Example 1 and Example 3. This shows the initial charge/discharge curve at 0.05C.
  • Figures 4a and 4b show the impedance resistance of the all-solid-state battery in the initial state of charge of Comparative Example and Example 1, respectively.
  • Figure 5 shows the discharge capacity according to the rate characteristic (C-rate) of the all-solid-state battery using the positive electrode active material prepared in Comparative Example and Example 1.
  • Figure 6 shows the results of measuring and analyzing the
  • Figure 7 shows the initial charge/discharge curve at 0.05C of an all-solid-state battery using the positive electrode active materials prepared in Comparative Example and Example 2.
  • Figure 8 shows the impedance resistance of the all-solid-state battery in the initial state of charge.
  • particle size (D 50 ) refers to the particle size at 50% of the cumulative distribution of particle numbers according to particle size, and the particle size may be measured using a laser diffraction method. . Specifically, after dispersing the powder to be measured in a dispersion medium, it is introduced into a commercially available laser diffraction particle size measuring device (for example, Microtrac S3500), and the difference in diffraction patterns according to particle size is measured when the particles pass through the laser beam, thereby distributing the particle size. Calculate . The D 50 particle size can be measured by calculating the particle diameter at a point that is 50% of the cumulative distribution of particle numbers according to particle size in the measuring device.
  • a laser diffraction particle size measuring device for example, Microtrac S3500
  • the first aspect of the present invention relates to a positive electrode for an all-solid-state battery containing a lithium transition metal complex oxide as a positive electrode active material.
  • the positive electrode includes a positive electrode active material and a solid electrolyte.
  • the positive electrode may include a current collector and a positive electrode active material layer disposed on one surface or both surfaces of the current collector.
  • the positive electrode active material layer may have a shape formed by integrating a mixture containing a positive electrode active material and a solid electrolyte into a layered structure.
  • the positive electrode active material may be included in an amount of 60 wt% or more based on 100 weight% of the positive electrode active material layer.
  • the solid electrolyte may be included in an amount of 40 wt% or more based on 100 wt% of the positive electrode active material layer.
  • the positive electrode active material and the solid electrolyte may be included in a ratio of 60:40 to 99.99:0.01 based on weight ratio.
  • the positive electrode active material includes a lithium transition metal complex oxide
  • the lithium transition metal complex oxide has a high nickel content (Ni) containing 70 mol% or more of nickel (Ni) based on atomic fraction among metal components excluding lithium.
  • -rich Contains lithium transition metal complex oxide.
  • the nickel-rich lithium transition metal composite oxide may include one or two or more types selected from Mn, Co, Al, and Mg in addition to nickel.
  • the Ni-rich lithium transition metal composite oxide is characterized by a residual lithium content of more than 2,000 ppm.
  • the positive electrode active material is a nickel-rich (Ni-rich) lithium transition metal composite oxide with residual lithium exceeding 2,000 ppm in an amount of 50 wt% or more, 70 wt% or more, or 80 wt% based on 100 wt% of the positive electrode active material. More may be included.
  • the positive electrode active material may be composed only of a nickel-rich (Ni-rich) lithium transition metal complex oxide with residual lithium exceeding 2,000 ppm.
  • the positive electrode active material may include 80 wt% or more of the nickel-rich lithium transition metal complex oxide based on the total weight of the positive electrode active material.
  • the nickel-rich (Ni-rich) lithium transition metal complex oxide may include one or more of the compounds represented by Formula 1 below.
  • M1 includes one or more selected from the group consisting of Al, Mg, Ge, Mo, Nb, Si, Ti, Zr, Cr, W, V and Fe, and M2 is phosphorus ( P) and fluorine (F), boron (B).
  • the M1 may preferably include Al.
  • the compound represented by Formula 1 may include one or more types selected from those where a and b are 0.
  • the Ni-rich lithium transition metal composite oxide has a nickel content (atomic fraction) of 70 mol% or more based on the total amount of metal elements excluding lithium.
  • nickel content atomic fraction
  • the atomic fraction of nickel in the lithium transition metal composite oxide of the present invention satisfies the above range, it is possible to achieve high capacity and high energy density of the battery without impairing the capacity characteristics of the lithium composite metal oxide.
  • the nickel-rich lithium transition metal complex oxide is, for example, LiNi 0.7 Co 0.15 Mn 0.15 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.88 Co 0.1 Al It may include one or more selected from the group consisting of 0.02 O 2 and LiNi 0.84 Co 0.15 Al 0.01 O 2 .
  • the Ni-rich lithium transition metal complex oxide has a residual lithium content of more than 2,000 ppm. In one embodiment of the present invention, residual lithium in the nickel-rich lithium transition metal complex oxide may be 5,000 ppm or more.
  • the positive electrode active material layer is manufactured by dispersing electrode materials such as the positive active material in a solvent to prepare a positive electrode slurry and then coating it on a current collector.
  • the residual lithium causes gelation of the positive electrode slurry during the positive electrode manufacturing process, which makes electrode manufacturing difficult.
  • the residual lithium causes gas generation through a side reaction with the electrolyte or causes a decrease in the electrochemical performance of the battery. Accordingly, conventionally, a water washing process has been introduced to remove such residual lithium when producing nickel-rich (Ni-rich) lithium transition metal complex oxide.
  • the inventors of the present invention found that in an all-solid-state battery using a solid electrolyte, especially when using a sulfide-based solid electrolyte material as the electrolyte material, the residual lithium present on the surface of the positive electrode active material prevents resistance formation at the positive electrode active material/solid electrolyte interface. It was focused on the fact that it plays a deterrent role.
  • the present invention has come to propose a positive electrode for an all-solid-state battery containing a positive electrode active material containing residual lithium over a predetermined range and a sulfide-based solid electrolyte.
  • the residual lithium may include one or more of lithium hydroxide (LiOH), lithium carbonate (Li 2 CO 3 ), lithium sulfate (Li 2 SO 4 ), and lithium nitrate (LiNO 3 ), for example, the residual lithium It may include one or more selected from lithium hydroxide (LiOH) and lithium carbonate (Li 2 CO 3 ).
  • a nickel-rich (Ni-rich) lithium transition metal composite oxide can be obtained by mixing a metal hydroxide for each metal component and a lithium source and then calcining the resulting mixture at high temperature.
  • the lithium source may include one or more lithium compounds selected from lithium hydroxide (LiOH), lithium carbonate (Li 2 CO 3 ), lithium sulfate (Li 2 SO 4 ), and lithium nitrate (LiNO 3 ).
  • the high nickel content (Ni-rich) produced rich) lithium transition metal complex oxide contains residual lithium, which is a by-product liberated from the lithium compound.
  • the residual lithium may be a production reaction by-product and/or an unreacted product derived from a compound introduced as a lithium source during the production of a nickel-rich (Ni-rich) lithium transition metal composite oxide.
  • the residual lithium can be additionally generated by manufacturing a nickel-rich (Ni-rich) lithium transition metal complex oxide and then leaving the manufactured product at room temperature in an atmospheric environment for a predetermined period of time.
  • Ni-rich lithium transition metal composite oxide according to the present invention when the Ni-rich lithium transition metal composite oxide according to the present invention is exposed to the atmosphere, it can react with carbon dioxide (CO 2 ) in the atmosphere to form Li 2 CO 3 .
  • the prepared positive electrode active material may be left in the air to increase the content of residual lithium.
  • the positive electrode active material can be left in the air at room temperature, which is about 25°C, for a period of 1 day to 2 months or less, or 1 day to 5 weeks or less.
  • a person skilled in the art can appropriately adjust temperature and time when leaving the positive electrode active material in the air, and the specific range thereof is not limited in the present invention.
  • the remaining lithium may be bonded to the surface of the nickel-rich (Ni-rich) lithium transition metal composite oxide particle.
  • the residual lithium may be introduced in the form of a coating layer that covers all or at least part of the surface of the Ni-rich lithium transition metal composite oxide particle. Referring to Figure 2a attached below, it is confirmed that a coating layer by residual lithium is formed on the surface of the Ni-rich lithium transition metal composite oxide particle.
  • the positive electrode active material particles such as the Ni-rich lithium transition metal composite oxide, may have the form of primary particles, and together or independently thereof, a plurality of the primary particles are aggregated 2 It may contain tea particles.
  • the positive electrode active material particles When the positive electrode active material particles have the form of secondary particles, residual lithium may be bound to the surface of the primary particles, and as a result, some residual lithium may also exist inside the secondary particles. Additionally, the secondary particles The surface also has a form in which all or part of the surface is covered with the residual lithium.
  • the bond may be at least one of a chemical bond and a physical bond.
  • the residual lithium may be bonded to the surface of the nickel-rich (Ni-rich) lithium transition metal composite oxide particle through ionic bonding, van der Waals bonding, and/or hydrogen bonding.
  • the content (ppm) of residual lithium can be measured, for example, by redox titration using a potentiometric method.
  • the method prepares an aqueous dispersion solution in which a predetermined amount of the positive electrode active material is dispersed, measures the change in pH and voltage using a titrant solution such as an aqueous HCl solution, and measures the change in voltage compared to the change in volume of the titrant solution (dE/dV [mV). /mL]) can be performed by checking the end point of the section where it is the maximum.
  • the pH of the water dispersion solution is 10 or more.
  • the pH may be measured using a 0.1N HCl titration solution in the water dispersion solution.
  • the nickel-rich lithium transition metal composite oxide particles may have a particle diameter (D 50 ) of 0.3 ⁇ m to 10 ⁇ m. However, it is not limited to this.
  • the positive electrode active material may further include other positive electrode active materials, if necessary, in addition to the nickel-rich lithium transition metal complex oxide.
  • the cathode active material that can be added in this way is not particularly limited as long as it is used as a cathode material in the secondary battery field, and a non-limiting example is Li 1+x Mn 2-x O 4 (where x is 0 to 0.33).
  • Lithium manganese oxide such as , LiMnO 3 , LiMn 2 O 3 ; lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , LiV 3 O 4 , V 2 O 5 , and Cu 2 V 2 O 7 ; LiNi x M 1-x O 2 (where M is one or more selected from Co, Mn, Fe, Cr, Zn, Al, Mg and Ta, and x is less than 0.7) lithium nickel composite oxide; LiMn 2 - x M _ , Cu or Zn), expressed as lithium manganese complex oxide; Lithium manganese composite oxide with spinel structure expressed as LiNi x Mn 2-x O 4 (x is less than 0.7); LiMn 2 O 4 in which part of Li in the chemical formula is replaced with an alkaline earth metal ion; disulfide compounds; Fe 2 (MoO 4 ) 3 may be included, and may include one or two or more types selected from these.
  • the solid electrolyte may include a polymer-based solid electrolyte and/or an inorganic-based solid electrolyte, preferably an inorganic-based solid electrolyte, and more preferably a sulfide-based solid electrolyte.
  • the positive electrode includes a sulfide-based solid electrolyte as a solid electrolyte, and the sulfide-based solid electrolyte may be 70 wt% or more, or 80 wt% or more, based on the total weight of the solid electrolyte.
  • the sulfide-based solid electrolyte exhibits high lithium ion conductivity of more than 10 -3 S/cm, and is advantageous for sheeting and large-area formation due to smooth interfacial contact formation due to the soft mechanical properties of sulfide particles (powder), making it an electrolyte with high energy density. Suitable for manufacturing solid batteries.
  • the sulfide-based solid electrolyte had the problem of not properly developing capacity due to the high interfacial resistance occurring at the interface with the positive electrode active material.
  • the interfacial resistance characteristics can be improved by combining it with a positive electrode active material with a high residual lithium content. You can.
  • the sulfide-based solid electrolyte contains sulfur atoms among the electrolyte components and is not limited to specific components, and may include one or more of a crystalline solid electrolyte, an amorphous solid electrolyte (glassy solid electrolyte), and a glass ceramic solid electrolyte. .
  • the sulfide-based solid electrolyte include LPS-type sulfide containing sulfur and phosphorus, Li x PS y Me z (Me is Cl, Br or I, x, y, and z are each greater than 0), Li 4-x Ge 1-x P x S 4 (x is 0.1 to 2, specifically x is 3/4, 2/3), Li 10 ⁇ 1 MP 2 , Se), Li 3.833 Sn 0.833 As 0.166 S 4 , Li 4 SnS 4 , Li 3.25 Ge 0.25 P 0.75 S 4 , Li 2 SP 2 S 5 , B 2 S 3 -Li 2 S, xLi 2 S-(100- x)P 2 S 5 (x is 70 to 80), Li 2 S-SiS 2 -Li 3 N, Li 2 SP 2 S 5 -LiI, Li 2 S-SiS 2 -LiI, Li 2 SB 2 S 3 - LiI, Li 7-x PS 6-x Cl x (0 ⁇ x ⁇ 2), Li
  • the solid electrolyte may additionally include an oxide-based solid electrolyte and/or a polymer-based solid electrolyte, if necessary.
  • the polymer-based solid electrolyte contains a polymer resin and a lithium salt, and is a solid polymer electrolyte in the form of a mixture of a solvated lithium salt and a polymer resin, or an organic electrolyte solution containing an organic solvent and a lithium salt contained in a polymer resin. It may be a polymer gel electrolyte.
  • the positive electrode may further include a conductive material.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • graphite such as natural graphite or artificial graphite
  • Carbon black such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black
  • Conductive fibers such as carbon fibers such as VGCF (Vapor grown carbon fiber) and metal fibers
  • Metal powders such as carbon fluoride, aluminum, and nickel powder
  • Conductive whiskeys such as zinc oxide and potassium titanate
  • Conductive metal oxides such as titanium oxide
  • It may contain one type or a mixture of two or more types selected from conductive materials such as polyphenylene derivatives.
  • the second aspect of the present invention relates to an all-solid-state battery including the positive electrode according to the present invention having the above-described structural characteristics.
  • the all-solid-state battery includes an anode, a cathode, and a solid electrolyte membrane interposed between the anode and the cathode.
  • the negative electrode may include a negative electrode active material and a solid electrolyte, and may further include a conductive material if necessary.
  • the negative electrode includes a negative electrode active material layer containing this electrode material.
  • the negative electrode includes a current collector, and may have a structure in which the negative electrode active material layer as described above is laminated on one surface of the current collector or the positive electrode surface.
  • the negative electrode active material can be any material that can be used as a negative electrode active material for a lithium ion secondary battery.
  • the negative electrode active material may include carbon such as non-graphitized carbon or graphitic carbon; Li x Fe 2 O 3 ( 0 ⁇ x ⁇ 1 ), Li x WO 2 (0 ⁇ x ⁇ 1 ) , Sn : Al, B, P, Si, elements of groups 1, 2, and 3 of the periodic table, halogen; metal complex oxides such as 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3;1 ⁇ z ⁇ 8); lithium metal; lithium alloy; lithium-indium alloy; silicon-based alloy; tin-based alloy; indium; indium-based alloy; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2
  • the solid electrolyte layer contains an ion conductive material
  • the ion conductive material may include a polymer-based solid electrolyte and/or an inorganic solid electrolyte component, and may be used as a solid electrolyte for an all-solid-state battery without limitation.
  • the ion conductive material included in the solid electrolyte layer may refer to the above-described polymer-based solid electrolyte and inorganic solid electrolyte.
  • the present invention provides a battery module including the secondary battery as a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source.
  • the device include a power tool that is powered by an omni-electric motor and moves; Electric vehicles, including Electric Vehicle (EV), Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), etc.; Electric two-wheeled vehicles, including electric bicycles (E-bikes) and electric scooters (E-scooters); electric golf cart; Examples include, but are not limited to, power storage systems.
  • Electric vehicles including Electric Vehicle (EV), Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), etc.
  • Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters)
  • electric golf cart Examples include, but are not limited to, power storage systems.
  • Nickel salt, cobalt salt, and manganese salt were mixed in a ratio of 70:10:20, a complex was added, and nickel-cobalt-manganese composite hydroxide was prepared by coprecipitation.
  • heat treatment was performed at about 850°C to obtain Ni-rich lithium transition metal composite oxide (LiNi 0.7 Co 0.1 NMn 0.2 O 2 ).
  • the residual lithium in the obtained Ni-rich lithium transition metal composite oxide was about 5000ppm, and the residual lithium was confirmed to be LiOH and Li 2 CO 3 .
  • Example 2 The composite oxide obtained in Example 1 was washed with water to prepare a positive electrode active material in which the surface residual lithium content consisting of LiOH and Li 2 CO 3 was reduced to 2,000 ppm.
  • the positive electrode active material of the comparative example was left in the air at room temperature (about 25°C) for 7 days to induce the generation of residual lithium composed of LiOH and Li 2 CO 3 to prepare a positive electrode active material with a surface lithium compound content of 4,500 ppm.
  • Example 1 The complex oxide obtained in Example 1 was left in the air at room temperature (about 25°C) for 5 weeks to induce the production of residual lithium composed of LiOH and Li 2 CO 3 to produce a positive electrode active material with a surface lithium compound content of 13,200 ppm. Manufactured.
  • the concentration (ppm) of residual lithium was confirmed by redox titration using the potentiometric method.
  • 0.1 g of the positive electrode active material obtained in each Example and Comparative Example was added to distilled water and stirred for 10 minutes to prepare a solution sample.
  • a small amount of 0.1 N HCl solution was added to the solution sample and the amount of residual lithium on the surface was measured by titrating and measuring changes in pH and voltage.
  • the titration was completed when a total of two end points appeared in the section where the change in voltage compared to the change in volume of HCl (dE/dV [mV/mL]) reached its maximum value.
  • the positive electrode active materials of the comparative examples and examples were used.
  • Li 6 PS 5 Cl was used as a solid electrolyte
  • Li-In was used as a negative electrode
  • Super C was used as a conductive material.
  • An all-solid-state battery was constructed using a 10 mm molded pressure cell. First, 100 mg of solid electrolyte was compressed at a pressure of 250 MPa to form a solid electrolyte layer.
  • the positive electrode was a positive electrode composite in which positive electrode active material/solid electrolyte/super C was mixed at a weight ratio of 70:30:3, and Al mesh and foil were used as current collectors.
  • As a counter electrode lithium and indium alloy was used by laminating Cu mesh and Cu foil together. After all the electrodes were inserted, the cells were finally pressed to a pressure of 440 MPa and the cell was assembled.
  • the structure and electrode configuration of the electrochemical cell used in this study are shown in Figure 1.
  • Figures 2a and 2b are SEM images of positive electrode active materials prepared in Example 1 and Comparative Example, respectively. Surface by-products resulting from residual lithium can be confirmed on the surface of Example 1 of the positive electrode active material. In comparison, it was confirmed that the surface of the comparative example, which was washed with water to remove residual lithium, was exposed to a relatively clean surface.
  • Figure 3a shows the initial charge/discharge curve at 0.05C of an all-solid-state battery using the positive electrode active materials prepared in Comparative Example and Example 1. It was confirmed that Example 1 exhibited higher charge/discharge capacity compared to the Comparative Example. This confirms that the overvoltage of the battery containing the positive electrode of Example 1 is improved when charging and discharging, and this can be understood to be due to the improvement in the resistance of the positive electrode.
  • Figure 3b is for comparing charge and discharge characteristics according to residual lithium content, and shows the initial charge and discharge curve at 0.05C of an all-solid-state battery using the positive electrode active materials of Examples 1 and 3 with different residual lithium contents. . It can be confirmed that Example 1 and Example 3 exhibit similar charge/discharge capacities. Therefore, it was confirmed that it was effective in improving the resistance of the positive electrode when the residual lithium content exceeded 2,000ppm.
  • Figures 4a and 4b show the impedance resistance of the all-solid-state battery in the initial charging state of Comparative Example and Example 1, respectively.
  • the battery resistance was measured using the AC-impedance method. Impedance measurement in the charging state was performed, and the total impedance resistance of the comparative example was confirmed to be 5,000 ohm, while the resistance of Example 1 was confirmed to be significantly reduced to 480 ohm. Therefore, it was confirmed that the positive electrode active material with a significant amount of residual lithium on the surface was effective in reducing interfacial resistance, and that the charge and discharge capacity was improved due to this.
  • Figure 5 shows the discharge capacity according to the rate characteristic (C-rate) of the all-solid-state battery using the positive electrode active material prepared in Comparative Example and Example 1. Compared to the comparative example, it can be confirmed that Example 1 exhibits significantly higher discharge capacity in all C-rate regions. As confirmed in the impedance results previously, this is an effect in which the interfacial resistance is significantly improved and the rate characteristics are improved.
  • Figure 6 shows the results of measuring and analyzing the
  • the intensity of the peak due to the P-O bond was high in the 531 eV region, and this was due to the formation of phosphorylate due to a side reaction between the positive electrode active material and the solid electrolyte.
  • Example 1 shows almost no peak in the corresponding region, which means that the residual lithium present on the positive electrode surface has the effect of suppressing side reactions between the positive electrode active material and the solid electrolyte. Therefore, it was confirmed that the residual lithium on the surface of the positive electrode active material proposed in the present invention has an excellent effect in suppressing side reactions between the positive electrode active material and the solid electrolyte and lowering the interfacial resistance.
  • Figure 7 shows the initial charge/discharge curve at 0.05C of an all-solid-state battery using the positive electrode active materials prepared in Comparative Example and Example 2. It was confirmed that the overvoltage of Example 2 was improved compared to the Comparative Example, and the charge and discharge capacity was partially recovered. It is clear that the residual lithium was regenerated on the surface of the positive electrode active material of Example 2, forming a positive electrode active material surface that was advantageous for reducing interfacial resistance.
  • Figure 8 shows the impedance resistance of the all-solid-state battery in the initial state of charge.
  • the battery resistance was measured using the AC-impedance method. Impedance measurement in the charging state was performed, and it was confirmed that the total impedance resistance of the comparative example was 5000 ohm, while the resistance of Example 2 was 3200 ohm, which decreased the impedance resistance. Therefore, it was confirmed that the residual lithium regenerated on the surface was effective in reducing the interface resistance of the positive electrode active material, and that the charge and discharge capacity was improved due to this. Therefore, the capacity recovery in Example 2 was confirmed as an effect of residual lithium contributing to improving the performance of the positive electrode active material in the all-solid-state battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명에 따른 전고체 전지용 양극은 양극 활물질의 표면에 결합되어 있는 잔류 리튬에 의해서 고체 전해질과 활물질간 계면에서 발생되는 저항이 감소된다. 이에 따라 상기 양극 활물질을 포함하는 전고체 전지는 가역 용량 향상되며, 전지 내부 저항(과전압)이 감소되는 효과가 있다. 또한, 양극 활물질의 제조시 잔류 리튬을 제거하기 위한 수세 공정이 생략될수 있고 잔류 리튬을 활물질 표면에 결합시키기 위한 별도의 공정이 필요하지 않으므로 양극 활물질 제조시 공정 비용이 절감될 수 있다.

Description

전고체 전지용 양극 및 이를 포함하는 전고체 전지
본 발명은 니켈 고함량(Nickel rich) 리튬 전이금속 복합 산화물 및 황화물계 고체 전해질을 기반으로 하는 전고체 전지용 양극에 대한 것이다. 더욱 상세하게는 양극 활물질/고체 전해질 계면 저항이 감소됨으로써 전기화학적 특성이 개선된 전고체 전지에 대한 것이다.
본 출원은 2022년 3월 31일자로 출원된 한국 특허출원 번호 제 10-2022-0040830 호에 대한 우선권 주장출원으로서, 해당 출원의 명세서에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
리튬 이온 이차 전지는 IT 모바일 기기를 비롯한 휴대용 기기의 전원으로 폭넓게 사용되고 있으며, 최근에는 소형 전지에서 중대형 전지로 시장이 본격적으로 성장하고 있다. 특히, 자동차용 전지로서의 사용이 급격히 증가하고 있는 추세이다. 리튬 이온 이차 전지가 전기 자동차의 전원으로 사용되기 위해서는 높은 에너지 밀도와 고출력 특성이 요구되며, 특히 안전성의 확보가 중요시되고 있다.
기존 리튬 이온 이차 전지는 액체 상태의 비수계 유기 전해질을 사용하고 있는데 이는 발화와 폭발의 위험성을 가지고 있다. 실제로 이를 적용한 제품의 폭발 사고자 지속적으로 발생하고 있기 때문에 이러한 문제점을 해결하는 것이 시급한 실정이다.
전고체 전지는 이러한 유기 전해질을 고체 전해질로 대체한 것으로, 전극 및 전해질 등 전지의 구성 요소가 모두 고체로 이루어진 전지이다. 이러한 전고체 전지는 액체 전해질 대비 고체 전해질의 높은 안전성에 기인하여 발화 및 폭발의 위험성을 원천적으로 방지할 수 있다.
전고체 전지용 고체 전해질 재료로는 젤 타입의 폴리머계 고체 전해질, 황화물계 고체 전해질 및 산화물계 고체 전해질 등이 있다. 그 중에서도 황화물계 고체 전해질은 10-3 S/cm 이상의 높은 리튬 이온 전도도를 나타내며, 황화물 입자(분말)의 무른 기계적 특성에 기인한 원활한 계면 접촉 형성으로 시트화 및 대면적화에 유리하여 고에너지 밀도를 갖는 전고체 전지 제조에 적합하다.
한편, 이러한 황화물계 고체 전해질을 적용한 전고체 전지의 경우, 양극 활물질과 황화물계 고체 전해질의 계면에서 발생하는 높은 계면 저항에 의해 용량이 제대로 발현되지 않는 문제점이 있다. 이러한 높은 계면 저항의 주 원인으로는 1) 양극 활물질과 고체 전해질의 포텐셜 차이로 고체 전해질 계면의 리튬 부족층이 형성되는 공간 전하층 현상, 2) 양극 활물질과 고체 전해질 계면에서의 화학적 반응에 의한 계면 불순물층 형성 등이 제안되고 있다. 특허문헌 한국특허출원 제10-2018-0081309호에 따르면 이러한 문제를 해결하기 위한 방안으로 양극 활물질 및 고체 전해질 계면에 리튬금속산화물(LiMexOy)의 버퍼층을 도입하여 계면 저항을 감소시킴으로서 전지 특성이 개선되는 효과를 보여주고 있다. 그러나 상기 리튬 금속산화물층은 양극 활물질이 리튬 코발트 산화물인 경우에는 효과적이나 Ni-rich 양극 활물질인 경우에는 버퍼층 유무에 따른 계면 저항 효과 차이가 거의 없다. 따라서 Ni-rich 양극 활물질과 고체 전해질 계면 저항을 억제시키기 위한 신규 기술 개발이 요구되고 있는 실정이다.
[특허 문헌]
한국특허출원 제10-2018-0081309호
[비특허 문헌]
N. Ohta, K. Takada, I. Sakaguchi, L. Zhang, R. Ma, K. Fukuda, M. Osada & T. Sasaki, Electrochemistry Communication 9 (2007) 1486-1490
N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada & T. Sasaki, Advanced Material 18 (2006) 2226-2229
본 발명은 고체 전해질과 양극 활물질 계면 사이에서 발생하는 계면 저항이 감소된 전고체 전지용 양극을 제공하는 것을 목적으로 한다. 본 발명의 또 다른 목적은 상기 양극을 포함하는 전고체 전지를 제공하는 것이다. 본 발명의 다른 목적 및 장점들은 특허청구범위에 기재된 수단 또는 방법 및 이의 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명의 제1 측면은 전고체 전지용 양극이며, 상기 양극은 양극 활물질 및 고체 전해질을 포함하며, 상기 양극 활물질은 잔류 리튬의 함량이 2,000ppm 초과인 리튬 전이 금속 복합 산화물을 포함하며, 상기 리튬 전이 금속 복합 산화물은 리튬을 제외한 금속 성분 중 니켈(Ni)이 원자 분율 기준 70% 이상인 니켈 고함량 리튬 전이금속 복합 산화물이며, 상기 잔류 리튬은 수산화 리튬(LiOH), 탄산 리튬(Li2CO3), 황산리튬(Li2SO4) 및 질산 리튬(LiNO3) 중 1종 이상을 포함하는 것이다.
본 발명의 제2 측면은 상기 제1 측면에 있어서, 상기 고체 전해질은 황화물계 고체 전해질을 포함하는 것이다.
본 발명의 제3 측면은 상기 제1 또는 제2 측면에 있어서, 상기 니켈 고함량 리튬 전이 금속 복합 산화물은 양극 활물질 총 중량 대비 80wt% 이상 포함되는 것이다.
본 발명의 제4 측면은 상기 제1 내지 제3 측면 중 어느 하나에 있어서, 상기 리튬 전이 금속 복합 산화물은 아래 화학식 1로 표시되는 화합물 중 하나 이상을 포함하는 것이다.
[화학식 1]
Li1+a(NixCoyMnzM1 w)1-aO2-bM2 b
상기 화학식 1에서 -0.1≤a≤0.3 이고, x+y+z+w는 1인 범위에서 0.7 ≤ x < 1.0 이고, y 및 Z는 각각 독립적으로 0 이상 0.3 이하이고, 0 ≤ w ≤ 0.1이고, 0 ≤ b ≤ 0.05이며, M1은 Al, Mg, Ge, Mo, Nb, Si, Ti, Zr, Cr, W, V 및 Fe로 이루어진 군에서 선택된 1종 이상을 포함하고, M2는 붕소 (B), 인(P) 및 불소(F)로 이루어진 군에서 선택된 1종 이상을 포함한다.
본 발명의 제5 측면은 상기 제1 내지 제4 측면 중 어느 하나에 있어서, 상기 리튬 전이 금속 복합 산화물은 LiNi0.7Co0.15Mn0.15O2, LiNi0.8Co0.1Mn0.1O2, LiNi0.88Co0.1Al0.02O2, LiNi0.84Co0.15Al0.01O2 및 LiNi0.8Co0.1Mn0.1O2로 구성된 그룹에서 1종 이상을 포함하는 것이다.
본 발명의 제6 측면은 상기 제2 측면 내지 제5 측면 중 어느 하나에 있어서, 상기 황화물계 고체 전해질은 고체 전해질 총 중량 대비 70wt% 이상 포함되는 것이다.
본 발명의 제7 측면은 상기 제1 내지 제6 측면 중 어느 하나에 있어서, 상기 양극 활물질은 잔류 리튬이 2,000ppm을 초과하는 니켈 고함량 리튬 전이금속 복합 산화물을 양극 활물질 100wt% 대비 70wt% 이상이고, 상기 고체 전해질은 고체 전해질 100wt% 대비 황화물계 고체 전해질이 70wt% 이상인 것이다.
본 발명의 제8 측면은 전고체 전지에 대한 것으로서, 상기 전고체 전지는 양극, 음극 및 상기 양극과 음극 사이에 고체 전해질막이 개재된 것이며, 상기 양극은 제1 내지 제7 측면 중 어느 하나에 따른 것이다.
본 발명의 제9 측면은 상기 제8 측면에 있어서, 상기 음극은 리튬 금속 및 리튬 합금으로 이루어진 군에서 선택된 중 1종 이상을 포함하며, 상기 리튬 합금은 리튬 인듐 합금을 포함하는 것이다.
본 발명의 제10 측면은 상기 제8 측면 또는 제9 측면에 있어서, 상기 고체 전해질막은 황화물계 고체 전해질을 포함하는 것이다.
본 발명에 따른 전고체 전지용 양극은 양극 활물질의 표면에 결합되어 있는 잔류 리튬에 의해서 고체 전해질과 활물질간 계면에서 발생되는 저항이 감소된다. 이에 따라 상기 양극 활물질을 포함하는 전고체 전지는 가역 용량 향상되며, 전지 내부 저항(과전압)이 감소되는 효과가 있다.
또한, 양극 활물질의 제조시 잔류 리튬을 제거하기 위한 수세 공정이 생략될 수 있고 잔류 리튬을 활물질 표면에 결합시키기 위한 별도의 공정이 필요하지 않으므로 양극 활물질 제조시 공정 비용이 절감될 수 있다.
본 명세서에 첨부되는 다음의 도면은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본원 발명의 일 실시양태에 따른 전고체 전지를 요소별로 구분하여 나타낸 분해도이다.
도 2a 및 도 2b는 각각 실시예 1과 비교예로 준비된 양극 활물질의 SEM 이미지이다.
도 3a는 비교예와 실시예 1로 제조된 양극 활물질을 적용한 전고체 전지의 0.05C에서의 초기 충방전 곡선을 나타낸 것이고, 도 3b는 실시예 1과 실시예 3의 양극 활물질을 적용한 전고체 전지의 0.05C에서의 초기 충방전 곡선을 나타낸 것 이다.
도 4a 및 도 4b는 각각 비교예와 실시예 1의 초기 충전 상태에서의 전고체 전지의 임피던스 저항을 나타낸 것이다.
도 5는 비교예와 실시예 1로 제조된 양극 활물질을 적용한 전고체 전지의 율특성(C-rate)에 따른 방전 용량을 나타낸 것이다.
도 6은 비교예와 실시예 1의 양극 활물질을 적용한 전고체 전지를 초기 충방전 후 전지를 해체하여 전극을 회수한 후 양극의 XPS(X선 광전자 분광법)를 측정 및 분석한 결과이다.
도 7은 비교예와 실시예 2로 제조된 양극 활물질을 적용한 전고체 전지의 0.05C 에서의 초기 충방전 곡선을 나타낸 것이다.
도 8은 초기 충전 상태에서의 전고체 전지의 임피던스 저항을 나타낸 것이다.
이하, 본 발명에 대하여 상세히 설명한다. 그러나, 본 발명은 하기 내용에 의해서만 한정되는 것은 아니며, 필요에 따라 각 구성요소가 다양하게 변형되거나 선택적으로 혼용될 수 있다. 따라서, 본 발명의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 [포함한다]고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
또한, 본원 명세서 전체에서 사용되는 용어 [약], [실질적으로] 등은 언급된 의미에 고유한 제조 및 물질 허용 오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해서 사용된다.
본원 명세서 전체에서 [A 및/또는 B]의 기재는 [A 또는 B 또는 이 둘 모두]를 의미한다.
본 명세서에 사용된 "입경(D50)"은 입경에 따른 입자 개수 누적 분포의 50% 지점에서의 입경을 의미하며, 상기 입경은 레이저 회절법(laser diffraction method)을 이용하여 측정된 것일 수 있다. 구체적으로, 측정 대상 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac S3500)에 도입하여 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출한다. 측정 장치에 있어서의 입경에 따른 입자 개수 누적 분포의 50%가 되는 지점에서의 입자 직경을 산출함으로써, D50 입경을 측정할 수 있다.
본 발명의 제1 측면은 리튬 전이금속 복합 산화물을 양극 활물질로 포함하는 전고체 전지용 양극에 대한 것이다.
본 발명에 있어서, 상기 양극은 양극 활물질 및 고체 전해질을 포함한다. 본 발명의 일 실시양태에 있어서, 상기 양극은 집전체 및 상기 집전체의 일측 표면 또는 양측 표면에 배치된 양극 활물질층을 포함할 수 있다. 상기 양극 활물질층은 양극 활물질 및 고체 전해질이 포함된 혼합물이 층상 구조로 집적되어 형성된 모양을 가질 수 있다. 본 발명의 일 실시양태에 있어서, 상기 양극 활물질은 양극 활물질층 100중량% 대비 60wt% 이상 포함될 수 있다. 한편, 상기 고체 전해질은 양극 활물질층 100중량% 대비 40wt% 이상 포함될 수 있다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 양극 활물질과 상기 고체 전해질은 중량비를 기준으로 60:40 내지 99.99:0.01의 비율로 포함될 수 있다.
본 발명에 있어서, 상기 양극 활물질은 리튬 전이금속 복합 산화물을 포함하며, 상기 리튬 전이금속 복합 산화물은 리튬을 제외한 금속 성분 중 니켈(Ni)이 원자 분율 기준 70몰% 이상 포함된 니켈 고함량(Ni-rich) 리튬 전이금속 복합 산화물을 포함한다. 상기 니켈 고함량(Ni-rich) 리튬 전이금속 복합 산화물은 니켈 이외에 Mn, Co, Al 및 Mg 중에서 선택된 1종 또는 2종 이상을 포함할 수 있다. 또한, 상기 니켈 고함량(Ni-rich) 리튬 전이금속 복합 산화물은 잔류 리튬의 함량이 2,000ppm 초과인 것을 구성적 특징으로 한다.
본 발명의 일 실시양태에 있어서, 상기 양극 활물질은 잔류 리튬이 2,000ppm 초과인 니켈 고함량(Ni-rich) 리튬 전이금속 복합 산화물이 양극 활물질 100중량% 대비 50wt% 이상, 70wt% 이상 또는 80wt% 이상 포함될 수 있다. 예를 들어, 상기 양극 활물질은 잔류 리튬이 2,000ppm 초과인 니켈 고함량(Ni-rich) 리튬 전이금속 복합 산화물만으로 이루어질 수 있다.
본 발명의 일 실시양태에 있어서, 상기 양극 활물질은 양극 활물질 총 중량 중 상기 니켈 고함량(Ni-rich) 리튬 전이금속 복합 산화물을 80wt% 이상 포함할 수 있다.
본 발명의 일 실시양태에 있어서, 상기 니켈 고함량(Ni-rich) 리튬 전이금속 복합 산화물은 아래 화학식 1로 표시되는 화합물 중 1종 이상을 포함할 수 있다.
[화학식 1]
Li1+a(NixCoyMnzM1 w)1-aO2-bM2 b
상기 화학식 1에서 -0.1≤a≤0.3 이고, x+y+z+w는 1인 범위에서 0.7 ≤ x < 1.0 이고, y 및 Z는 각각 독립적으로 0 이상 0.3 이하이고, 0 ≤ w ≤ 0.1이고, 0 ≤ b ≤ 0.05이며, M1은 Al, Mg, Ge, Mo, Nb, Si, Ti, Zr, Cr, W, V 및 Fe로 이루어진 군에서 선택된 1종 이상을 포함하는 것이고, M2는 인(P) 및 불소(F), 붕소 (B)로 이루어진 군에서 선택된 1종 이상을 포함하는 것이다. 상기 M1 은 바람직하게는 Al을 포함할 수 있다. 한편, 본 발명의 구체적인 실시양태에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 a및 b가 0인 것 중에서 선택되는 1종 이상을 포함할 수 있다.
본 발명에 있어서, 상기 니켈 고함량(Ni-rich) 리튬 전이금속 복합 산화물은 리튬을 제외한 금속 원소의 총량을 기준으로 하여 니켈의 함량(원자 분율)이 70몰% 이상인 것이다. 본원 발명의 리튬 전이금속 복합 산화물에서 니켈의 원자 분율이 상기 범위를 만족할 때, 리튬 복합 금속 산화물의 용량 특성을 저해하지 않으면서 전지의 고용량화 및 고에너지 밀도화의 구현이 가능하다.
본 발명의 일 실시양태에 있어서, 상기 니켈 고함량(Ni-rich) 리튬 전이금속 복합 산화물은 예를 들어 LiNi0.7Co0.15Mn0.15O2, LiNi0.8Co0.1Mn0.1O2, LiNi0.88Co0.1Al0.02O2 및 LiNi0.84Co0.15Al0.01O2 로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
본원 발명에 있어서, 상기 니켈 고함량(Ni-rich) 리튬 전이금속 복합 산화물은 잔류 리튬의 함량이 2,000ppm 초과인 것이다. 본원 발명의 일 실시양태에 있어서, 상기 니켈 고함량(Ni-rich) 리튬 전이금속 복합 산화물에서 잔류 리튬은 5,000ppm 이상일 수 있다.
통상적으로 양극 활물질층은 양극 활물질 등 전극 재료를 용매에 분산시켜 양극 슬러리를 제조한 후 이를 집전체에 코팅하는 방식으로 제조된다. 상기 잔류 리튬은 양극 제조 공정시 양극 슬러리의 겔화를 초래하여 전극 제조를 어렵게 하는 문제가 있다. 또한, 비수계 전해액을 전해질로 사용하는 전지에서 상기 잔류 리튬은 전해액과의 부반응으로 가스 발생을 일으키거나 전지의 전기화학적 성능 저하의 원인이 되고 있다. 이에 종래에는 니켈 고함량(Ni-rich) 리튬 전이금속 복합 산화물의 제조시 이러한 잔류 리튬을 제거하기 위한 수세 공정이 도입하고 있다.
그러나 본 발명의 발명자들은 고체 전해질을 사용하는 전고체 전지에 있어서, 특히 황화물계 고체 전해질 재료를 전해질 재료로 사용하는 경우 양극 활물질 표면에 존재하는 잔류 리튬이 양극 활물질/고체 전해질 계면에서의 저항 형성을 억제하는 역할을 한다는 점에 착안하였다.
이에, 본 발명은 소정 범위 이상 잔류 리튬을 포함하는 양극 활물질과 황화물계 고체 전해질을 포함하는 전고체 전지용 양극을 제안하기에 이르렀다.
상기 잔류 리튬은 수산화 리튬(LiOH), 탄산 리튬(Li2CO3), 황산리튬(Li2SO4) 및 질산 리튬(LiNO3) 중 1종 이상을 포함할 수 있으며, 예를 들어 상기 잔류 리튬은 수산화 리튬(LiOH), 탄산 리튬(Li2CO3) 중 선택된 1종 이상을 포함할 수 있다.
통상적으로 니켈 고함량(Ni-rich) 리튬 전이금속 복합 산화물은 구성 성분인 각 금속에 대한 금속 수산화물과 리튬 소스를 혼합한 후 수득된 혼합물을 고온에서 소성하는 방법으로 수득될 수 있다. 이때, 상기 리튬 소스로는 수산화 리튬(LiOH), 탄산 리튬(Li2CO3), 황산리튬(Li2SO4) 및 질산 리튬(LiNO3) 중 1종 이상의 리튬 화합물을 포함할 수 있다. 니켈 고함량(Ni-rich) 리튬 전이금속 복합 산화물의 제조시 고온 소성 과정에서 Ni산화수 형성과 휘발된 리튬의 양을 보충하기 위해서 이러한 리튬 화합물이 과량 투입되고 그 결과 제조된 니켈 고함량(Ni-rich) 리튬 전이금속 복합 산화물은 상기 리튬 화합물에서 유리된 부산물인 잔류 리튬을 포함한다. 이와 같이, 상기 잔류 리튬은 니켈 고함량(Ni-rich) 리튬 전이금속 복합 산화물의 제조시 리튬 소스로 투입된 화합물에서 유래된 제조 반응 부산물 및/또는 미반응 산물일 수 있다. 본원 발명의 또 다른 일 실시양태에 따르면, 상기 잔류 리튬은 니켈 고함량(Ni-rich) 리튬 전이금속 복합 산화물 제조 후 제조 산물을 대기 분위에서 상온에 소정 시간 방치함으로써 추가적으로 생성될 수 있다. 예컨대 본 발명에 따른 Ni-rich 리튬 전이금속 복합 산화물은 대기에 노출되었을 때 대기 중의 이산화 탄소(CO2)와 반응하여 Li2CO3를 형성할 수 있다. 본 발명의 일 실시양태에 있어서, 잔류 리튬의 함량을 높이기 위하여 제조된 양극 활물질을 대기 중에 방치하여 둘 수 있다. 예를 들어, 상기 양극 활물질을 약 25℃의 온도인 상온의 대기 중에서 1일 내지 2달 이하의 기간, 또는 1일 내지 5주 이하의 기간동안 방치하여 둘 수 있다. 당업자는 상기 양극 활물질을 대기 중에 방치할 때, 온도 및 시간 등을 적절하게 조절할 수 있으며 그 구체적인 범위는 본 발명에서 한정하지 않는다.
한편, 본원 발명에 있어서, 상기 잔류 리튬은 전부 또는 적어도 일부가 상기 니켈 고함량(Ni-rich) 리튬 전이금속 복합 산화물 입자의 표면에 결합되어 있을 수 있다. 본 발명의 일 실시양태에 따르면 상기 잔류 리튬은 Ni-rich 리튬 전이금속 복합 산화물 입자의 표면의 전부 또는 적어도 일부 피복하는 피복층(코팅층)의 형태로 도입된 것일 수 있다. 아래 첨부된 도 2a를 참조하면 Ni-rich 리튬 전이금속 복합 산화물 입자 표면에 잔류 리튬에 의한 피복층이 형성된 것이 확인된다. 한편, 본 발명의 일 실시양태에 있어서, 상기 Ni-rich 리튬 전이금속 복합 산화물 등 양극 활물질 입자는 1차 입자의 형태를 가질 수 있으며, 이와 함께 또는 이와는 독립적으로 상기 1차 입자 복수개가 응집된 2차 입자를 포함할 수 있다. 상기 양극 활물질 입자가 2차 입자의 형태를 갖는 경우에는 일차 입자의 표면에 잔류 리튬이 결합되어 있을 수 있으며, 그 결과 2차 입자 내부에도 어느 정도 잔류 리튬이 존재할 수 있으며, 또한, 상기 2차 입자의 표면도 상기 잔류 리튬으로 표면의 전부 또는 일부가 피복된 형태를 갖는다. 상기 결합은 화학적 결합 및 물리적 결합 중 적어도 어느 하나일 수 있다. 예를 들어, 상기 잔류 리튬은 니켈 고함량(Ni-rich) 리튬 전이금속 복합 산화물 입자의 표면에 이온 결합 및/또는 반 데르 발스 결합 및/또는 수소 결합의 방법으로 표면에 결합되어 있을 수 있다.
본 발명의 일 실시양태에 있어서, 상기 잔류 리튬의 함량(ppm)은 예를 들어 전위차법을 이용한 산화환원 적정에 의해서 측정될 수 있다. 상기 방법은 예를 들어 양극 활물질이 소정량 분산된 수분산 용액을 준비하고 HCl수용액 등 적정 용액을 이용해서 pH 및 전압 변화를 측정하여 적정 용액의 부피 변화 대비 전압의 변화 값(dE/dV [mV/mL])이 최대치가 되는 구간의 완료점(End point)을 확인하는 방법으로 수행될 수 있다.
한편, 본 발명의 구체적인 일 실시양태에 있어서, 상기 니켈 고함량(Ni-rich) 리튬 전이금속 복합 산화물에 있어서, 상기 수분산 용액의 pH가 10 이상인 것이 바람직하다. 예를 들어 상기pH는 상기 수분산 용액에 0.1N의 HCl 적정 용액을 이용하여 측정된 것일 수 있다.
본 발명의 일 실시양태에 있어서 상기 니켈 고함량(Ni-rich) 리튬 전이금속 복합 산화물 입자는 입경(D50)이 0.3㎛ 내지 10㎛일 수 있다. 그러나 이에 한정되는 것은 아니다.
한편, 본 발명의 일 실시양태에 있어서, 상기 양극 활물질은 상기 니켈 고함량(Ni-rich) 리튬 전이금속 복합 산화물 이외에, 필요에 따라, 다른 양극 활물질을 추가적으로 더 포함할 수 있다. 이와 같이 추가 가능한 양극 활물질로는 이차 전지 분야에서 양극재료로 사용되는 것이면 특별히 한정되는 것은 아니며, 이의 비제한적인 예로는 Li1+xMn2-xO4(여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiV3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; LiNixM1-xO2 (여기서, M은 Co, Mn, Fe, Cr, Zn, Al, Mg 및 Ta 중 선택된 1종 이상이며, x는 0.7 미만)인 리튬 니켈 복합 산화물; LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; LiNixMn2-xO4로 표현되는 스피넬 구조의 리튬 망간 복합 산화물(x 가 0.7 미만); 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 을 들 수 있으며, 이 중 선택된 1종 또는 2종 이상을 포함할 수 있다.
본 발명에 있어서, 상기 고체 전해질은 고분자계 고체 전해질 및/또는 무기계 고체 전해질을 포함할 수 있으며, 바람직하게는 무기계 고체 전해질, 더욱 바람직하게는 황화물계 고체 전해질을 포함한다. 본 발명의 일 실시양태에 있어서, 상기 양극은 고체 전해질로 황화물계 고체 전해질을 포함하며, 상기 황화물계 고체 전해질은 고체 전해질 총 중량 대비 70wt% 이상, 또는 80wt% 이상 일 수 있다.
황화물계 고체 전해질은 10-3 S/cm 이상의 높은 리튬 이온 전도도를 나타내며, 황화물 입자(분말)의 무른 기계적 특성에 기인한 원활한 계면 접촉 형성으로 시트화 및 대면적화에 유리하여 고에너지 밀도를 갖는 전고체 전지 제조에 적합하다. 앞서 설명한 바와 같이, 황화물계 고체 전해질은 양극 활물질과의 계면에서 발생하는 높은 계면 저항에 의해 용량이 제대로 발현되지 않는 문제점이 있었으나, 잔류 리튬의 함량이 높은 양극 활물질과 조합됨으로써 계면저항 특성이 개선될 수 있다.
상기 황화물계 고체 전해질은 전해질 성분 중 황원자를 포함하는 것으로서 특별히 구체적인 성분으로 한정되는 것은 아니며, 결정성 고체 전해질, 비결정성 고체 전해질(유리질 고체 전해질), 유리 세라믹 고체 전해질 중 하나 이상을 포함할 수 있다. 상기 황화물계 고체 전해질의 구체적인 예로는 황과 인을 포함하는 LPS형 황화물, LixPSyMez(Me는 Cl, Br 또는 I, x, y, z는 각각 0초과), Li4-xGe1-xPxS4(x 는 0.1 내지 2, 구체적으로는 x는 3/4, 2/3), Li10±1MP2X12(M=Ge, Si, Sn, Al, X=S, Se), Li3.833Sn0.833As0.166S4, Li4SnS4, Li3.25Ge0.25P0.75S4, Li2S-P2S5, B2S3-Li2S, xLi2S-(100-x)P2S5 (x는 70 내지 80), Li2S-SiS2-Li3N, Li2S-P2S5-LiI, Li2S-SiS2-LiI, Li2S-B2S3-LiI, Li7-xPS6-xClx(0≤x≤2), Li3.25Ge0.25P0.75S4등을 들 수 있다. 구체적으로는 Li6PS5Cl, Li6PS5Br 및 Li6PS5I 중에서 선택된 하나 이상을 포함하는 아지로다이트 타입을 포함할 수 있다. 그러나, 여기에 한정되는 것은 아니다.
한편, 상기 고체 전해질은 필요에 따라서 산화물계 고체 전해질 및/또는 고분자계 고체 전해질을 추가적으로 더 포함할 수 있다. 상기 산화물계 고체 전해질은 LLTO 계 화합물 (La,Li)TiO3), Li6La2CaTa2O12, Li6La2ANb2O12(A=Ca, Sr), Li2Nd3TeSbO12, Li3BO2.5N0.5, Li9SiAlO8, LAGP계 화합물(Li1+xAlxGe2-x(PO4)3, 여기에서 0≤x≤1, 0≤y≤1), Li2O-Al2O3-TiO2-P2O5와 같은 LATP계 화합물(Li1+xAlxTi2-x(PO4)3, 여기에서 0≤x≤1, 0≤y≤1), Li1+xTi2-xAlxSiy(PO4)3-y(여기에서, 0≤x≤1, 0≤y≤1), LiAlxZr2-x(PO4)3(여기에서, 0≤x≤1, 0≤y≤1), LiTixZr2-x(PO4)3(여기에서, 0≤x≤1, 0≤y≤1), Li3N, LISICON, LIPON계 화합물(Li3+yPO4-xNx, 여기에서 0≤x≤1, 0≤y≤1), 페롭스카이트계 화합물((La, Li)TiO3), LiTi2(PO4)3과 같은 나시콘계 화합물, 구성 성분으로 리튬, 란타늄, 지르코늄 및 산소를 포함하는 LLZO계 화합물 등을 들 수 있으며, 이 중 1종 이상을 포함할 수 있다.
상기 고분자계 고체 전해질은 고분자 수지와 리튬염을 포함하는 것으로서, 용매화된 리튬염과 고분자 수지의 혼합물의 형태를 갖는 고체 고분자 전해질이거나, 유기 용매와 리튬염을 함유한 유기 전해액을 고분자 수지에 함유시킨 고분자 겔 전해질일 수 있다.
한편, 상기 양극은 도전재를 더 포함할 수 있다. 상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; VGCF(Vapor grown carbon fiber)와 같은 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재에서 선택된 1종 또는 2종 이상의 혼합물을 포함할 수 있다.
한편, 본 발명의 제2 측면은 전술한 구성적 특징을 갖는 본원 발명에 따른 양극을 포함하는 전고체 전지에 대한 것이다. 상기 전고체 전지는 양극, 음극 및 상기 양극과 음극 사이에 개재되는 고체 전해질막을 포함한다.
상기 음극은 음극 활물질 및 고체 전해질을 포함할 수 있으며, 필요에 따라 도전재 더 포함할 수 있다. 상기 음극은 이러한 전극 재료를 포함하는 음극 활물질층을 포함한다. 상기 음극은 집전체를 포함하며, 상기 집전체의 일측 표면 또는 양극 표면에 상기와 같은 음극 활물질층이 적층되어 있는 구조를 가질 수 있다.
상기 음극 활물질은 리튬이온 이차 전지의 음극 활물질로 사용 가능한 물질이면 어느 것이나 사용할 수 있다. 예를 들어 상기 음극 활물질은 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz(Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 리튬-인듐 합금; 규소계 합금; 주석계 합금; 인듐; 인듐계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, 및 Bi2O5등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물; 리튬 티타늄 산화물; 등에서 선택된 1종 또는 2종 이상을 사용할 수 있다.
음극 성분 중 도전재 및 고체 전해질에 대한 내용은 양극에 대한 내용을 참조할 수 있다.
상기 고체 전해질층은 이온 전도성 물질을 포함하는 것으로서, 이러한 이온 전도성 물질로는 고분자계 고체 전해질 및/또는 무기계 고체 전해질 성분이 포함될 수 있으며 전고체 전지용 고체 전해질로 사용되는 것으로는 제한 없이 사용될 수 있다. 본 발명에 있어서, 상기 고체 전해질층에 포함되는 이온 전도성 물질로는 전술한 고분자계 고체 전해질 및 무기계 고체 전해질에 대한 내용을 참조할 수 있다.
또한, 본 발명은, 상기 이차전지를 단위전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩, 및 상기 전지팩을 전원으로 포함하는 디바이스를 제공한다.
이 때, 상기 디바이스의 구체적인 예로는, 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이하, 실시예를 통해 본 발명을 더욱 상술하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다.
[실시예]
실시예 1)
니켈염, 코발트염, 망간염을 70:10:20의 비율로 혼합하고, 착제를 첨가하여 공침법으로 니켈-코발트-망간 복합수산화물을 제조하였다. 여기에 리튬 화합물로 LiOH를 혼합한 후, 약 850℃ 조건에서 열처리 하여 Ni-rich 리튬 전이금속 복합 산화물(LiNi0.7Co0.1NMn0.2O2)을 수득하였다. 수득된 Ni-rich 리튬 전이금속 복합 산화물에서 잔류 리튬은 약 5000ppm이었으며, 상기 잔류 리튬은 LiOH 및 Li2CO3 인 것으로 확인되었다.
비교예) 실시예 1에서 수득된 복합 산화물을 수세 처리하여 LiOH, Li2CO3로 구성된 표면 잔류 리튬 함량을 2,000 ppm으로 감소시킨 양극 활물질을 제조하였다.
실시예 2)
비교예의 양극 활물질을 상온(약 25℃)의 대기중에 7일간 방치하여 LiOH, Li2CO3로 구성된 잔류 리튬의 생성을 유도하여 표면 리튬 화합물의 함량이 4,500ppm인 양극 활물질을 제조하였다.
실시예 3)
실시예 1에서 수득된 복합 산화물을 상온(약 25℃)의 대기중에 5주 동안 방치하여LiOH, Li2CO3로 구성된 잔류 리튬의 생성을 유도하여 표면 리튬 화합물의 함량이 13,200ppm인 양극 활물질을 제조하였다.
(잔류 리튬의 측정)
전위차법을 이용한 산화환원 적정에 의해서 잔류 리튬의 농도(ppm)를 확인하였다. 각 실시예 및 비교예에서 수득된 양극 활물질 0.1g을 증류수에 투입하고 10분간 교반하여 용액 시료를 제조하였다. 이후 상기 용액 시료에 0.1 N의 HCl용액을 소량씩 첨가하며 적정하여 pH 및 전압 변화를 측정하여 표면의 잔류 리튬의 양을 측정하였다. 상기 HCl의 부피 변화 대비 전압의 변화 값(dE/dV [mV/mL])이 최대치가 되는 구간의 완료점(End point)이 총 2개가 나타나면 적정을 완료하였다. 이 후 하기 계산식을 적용하여 적정된 함량을 결정하였으며 그 결과를 아래 [표 1]에 정리하여 나타내었다. 아래 계산식에서 EP1은 최초 End point, EP2는 두번째로 나타난 end point를 의미한다. 또한, 상기 교반 결과물로 얻어진 용액의 시료의 pH를 측정하였다.
[계산식]
Figure PCTKR2023004408-appb-img-000001
총 잔류 리튬의
함량(ppm)
(LiOH 및
Li2CO3 포함)
pH
비교예 2,000 10.0
실시예 1 5,000 11.0
실시예 2 4,500 10.8
실시예 3 13,200 12.0
[전고체 전지 제조 및 전기화학적 특성 평가]
전고체 전지 제조에는 상기 비교예 및 실시예의 양극 활물질을 사용하였으며 고체 전해질은 Li6PS5Cl, 음극은 Li-In, 도전재는 Super C를 사용하였다. 10mm 몰드타입 압력셀을 사용해서 전고체 전지를 구성하였다. 먼저 고체 전해질 100mg을 250MPa의 압력으로 압축하여 고체 전해질층을 형성하였다. 양극은 양극 활물질/고체 전해질/super C가 70:30:3의 무게비로 혼합된 양극 복합체를 사용하였고, Al mesh와 foil을 집전체로 사용하였다. 상대 전극으로는 리튬과 인듐 합금을 Cu mesh 와 Cu foil을 함께 적층하여 투입하였다. 전극을 모두 투입한 후 최종적으로 440MPa의 압력으로 가압한 후 셀을 조립하였다. 본 연구에 사용한 전기화학 셀의 구조 및 전극 구성을 도 1과 같다.
도 2a 및 도 2b는 각각 실시예 1과 비교예로 준비된 양극 활물질의 SEM 이미지이다. 양극 활물질의 실시예 1의 표면에 잔류 리튬에서 기인하는 표면 부산물을 확인할 수 있다. 이에 비교하여 잔류 리튬 제거를 위하여 수세 처리한 비교예의 표면은 상대적으로 깨끗한 표면을 노출하고 있는 것을 확인할 수 있었다.
도 3a는 비교예와 실시예 1로 제조된 양극 활물질을 적용한 전고체 전지의 0.05C에서의 초기 충방전 곡선을 나타낸 것이다. 비교예 대비 실시예 1이 높은 충방전 용량을 나타내는 것을 확인하였다. 이는 실시예 1의 양극을 포함하는 전지가 충방전시 과전압이 개선되는 것을 확인할 수 있으며 이는 양극의 저항이 개선되는 것에 기인하는 것으로 이해할 수 있다.
도 3b는 잔류 리튬 함량에 따른 충방전 특성을 비교하기 위한 것으로, 잔류 리튬의 함량이 상이한 실시예 1과 실시예 3의 양극 활물질을 적용한 전고체 전지의 0.05C에서의 초기 충방전 곡선을 나타낸 것이다. 실시예 1과 실시예 3이 유사한 충방전 용량을 나타내는 것을 확인할 수 있다. 따라서 잔류 리튬의 함량이 2, 000ppm 초과인 경우 양극의 저항 개선에 효과적임을 확인하였다.
도 4a와 도 4b는 각각 비교예와 실시예 1의 초기 충전 상태에서의 전고체 전지의 임피던스 저항을 나타낸 것이다. 실제 전지의 저항을 확인하기 위하여 AC-impedance 법을 이용하여 전지의 저항을 측정하였다. 충전 상태에서의 임피던스 측정을 진행하였으며, 비교예의 전체 임피던스 저항을 확인은 5,000ohm 인 것에 비교하여 실시예 1의 저항은 480ohm으로 현저히 줄어든 것을 확인할 수 있었다. 따라서, 표면에 잔류 리튬이 상당량 존재하는 양극 활물질이 계면 저항 저감에 효과적인 것을 확인하였으며, 이에 기인하여 충방전 용량이 개선된 것임을 확인할 수 있었다.
도 5는 비교예와 실시예 1로 제조된 양극 활물질을 적용한 전고체 전지의 율특성(C-rate)에 따른 방전 용량을 나타낸 것이다. 비교예에 대비하여 실시예 1은 전 C-rate 영역에서 현저히 높은 방전 용량을 발현하는 것을 확인할 수 있다. 이는 앞서 임피던스 결과에서 확인한 바와 같이 계면 저항이 현저히 개선되어 율 특성이 개선되는 효과이다.
도 6은 비교예와 실시예 1의 양극 활물질을 적용한 전고체 전지를 초기 충방전후 전지를 해체하여 전극을 회수 후 양극의 XPS를 측정 및 분석한 결과이다. 비교예의 경우 531eV 영역에서 P-O 결합에 기인하는 피크의 강도가 높게 나타났으며 이는 양극 활물질과 고체 전해질의 부반응으로 인한 인산화물을 형성한 것에서 기인하는 것이다. 이에 반하여 실시예 1은 해당 영역에서의 피크가 거의 나타나지 않으며, 이는 양극 표면에 존재하는 잔류 리튬이 양극 활물질과 고체 전해질의 부반응을 억제하는 효과가 있음을 의미한다. 따라서 본 발명에서 제안하는 양극 활물질 표면의 잔류 리튬은 양극 활물질과 고체 전해질의 부반응을 억제하며, 계면 저항을 낮추는데 탁월한 효과가 있음을 확인하였다.
본 발명의 효과를 검증하기 위하여 비교예와 실시예 2와의 비교 평가를 진행하였다. 도 7은 비교예와 실시예 2로 제조된 양극 활물질을 적용한 전고체 전지의 0.05C 에서의 초기 충방전 곡선을 나타낸 것이다. 비교예 대비 실시예 2가 과전압이 개선되면서 충방전 용량이 일부 회복되는 것을 확인하였다. 이는 실시예 2의 양극 활물질 표면에 잔류 리튬이 재생성 되면서 계면 저항의 저감에 유리한 양극 활물질 표면을 형성한 것임은 자명하다.
도 8은 초기 충전 상태에서의 전고체 전지의 임피던스 저항을 나타낸 것이다. 실제 전지의 저항을 확인하기 위해서 AC-impedance 법을 이용하여 전지의 저항을 측정하였다. 충전 상태에서의 임피던스 측정을 진행하였으며, 비교예의 전체 임피던스 저항은 5000 ohm 인 것에 비교하여 실시예 2의 저항은 3200ohm으로 임피던스 저항이 감소하는 것으로 확인할 수 있었다. 따라서 표면에 재생성된 잔류 리튬이 양극 활물질이 계면 저항 저감에 효과적인 것을 확인하였으며, 이에 기인하여 충방전 용량이 개선된 것임을 확인할 수 있다. 따라서 실시예 2의 용량 회복은 이에 의한 효과로써 전고체 전지에서 잔류 리튬이 양극 활물질의 성능 개선에 기여하는 효과를 확인하였다.
이상 본 발명의 실시예 및 도면을 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.

Claims (10)

  1. 양극 활물질 및 고체 전해질을 포함하며,
    상기 양극 활물질은 잔류 리튬의 함량이 2,000ppm 초과인 리튬 전이 금속 복합 산화물을 포함하며,
    상기 리튬 전이 금속 복합 산화물은 리튬을 제외한 금속 성분 중 니켈(Ni)이 원자 분율 기준 70% 이상인 니켈 고함량 리튬 전이금속 복합 산화물이며,
    상기 잔류 리튬은 수산화 리튬(LiOH), 탄산 리튬(Li2CO3), 황산리튬(Li2SO4) 및 질산 리튬(LiNO3) 중 1종 이상을 포함하는 것인 전고체 전지용 양극.
  2. 제1항에 있어서,
    상기 고체 전해질은 황화물계 고체 전해질을 포함하는 것인 전고체 전지용 양극.
  3. 제1항에 있어서,
    상기 니켈 고함량 리튬 전이 금속 복합 산화물은 양극 활물질 총 중량 대비 80wt% 이상 포함되는 것인 전고체 전지용 양극.
  4. 제1항에 있어서,
    상기 리튬 전이 금속 복합 산화물은 아래 화학식 1로 표시되는 화합물 중 하나 이상을 포함하는 것인 전고체 전지용 양극:
    [화학식 1]
    Li1+a(NixCoyMnzM1 w)1-aO2-bM2 b
    상기 화학식 1에서 -0.1≤a≤0.3 이고, x+y+z+w는 1인 범위에서 0.7 ≤ x < 1.0 이고, y 및 Z는 각각 독립적으로 0 이상 0.3 이하이고, 0 ≤ w ≤ 0.1이고, 0 ≤ b ≤ 0.05이며, M1은 Al, Mg, Ge, Mo, Nb, Si, Ti, Zr, Cr, W, V 및 Fe로 이루어진 군에서 선택된 1종 이상을 포함하고, M2는 붕소 (B), 인(P) 및 불소(F)로 이루어진 군에서 선택된 1종 이상을 포함한다.
  5. 제1항에 있어서,
    상기 리튬 전이 금속 복합 산화물은 LiNi0.7Co0.15Mn0.15O2, LiNi0.8Co0.1Mn0.1O2, LiNi0.88Co0.1Al0.02O2, LiNi0.84Co0.15Al0.01O2 및 LiNi0.8Co0.1Mn0.1O2로 구성된 그룹에서 1종 이상을 포함하는 것인 전고체 전지용 양극.
  6. 제2항에 있어서,
    상기 황화물계 고체 전해질은 고체 전해질 총 중량 대비 70wt% 이상 포함되는 것인 전고체 전지용 양극.
  7. 제1항에 있어서,
    상기 양극 활물질은 잔류 리튬이 2,000ppm을 초과하는 니켈 고함량 리튬 전이금속 복합 산화물을 양극 활물질 100wt% 대비 70wt% 이상이고, 상기 고체 전해질은 고체 전해질 100wt% 대비 황화물계 고체 전해질이 70wt% 이상인 것인 전고체 전지용 양극.
  8. 양극, 음극 및 상기 양극과 음극 사이에 고체 전해질막이 개재된 것이며, 상기 양극은 제1항 내지 제7항 중 어느 한 항에 따른 것인 전고체 전지.
  9. 제8항에 있어서,
    상기 음극은 리튬 금속 및 리튬 합금으로 이루어진 군에서 선택된 중 1종 이상을 포함하며, 상기 리튬 합금은 리튬 인듐 합금을 포함하는 것인 전고체 전지.
  10. 제9항에 있어서,
    상기 고체 전해질막은 황화물계 고체 전해질을 포함하는 것인 전고체 전지.
PCT/KR2023/004408 2022-03-31 2023-03-31 전고체 전지용 양극 및 이를 포함하는 전고체 전지 WO2023191598A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202380013057.2A CN117751471A (zh) 2022-03-31 2023-03-31 全固态电池用正极以及包含其的全固态电池
EP23781447.0A EP4376127A1 (en) 2022-03-31 2023-03-31 Cathode for all-solid-state battery, and all-solid-state battery comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0040830 2022-03-31
KR20220040830 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023191598A1 true WO2023191598A1 (ko) 2023-10-05

Family

ID=88203126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/004408 WO2023191598A1 (ko) 2022-03-31 2023-03-31 전고체 전지용 양극 및 이를 포함하는 전고체 전지

Country Status (4)

Country Link
EP (1) EP4376127A1 (ko)
KR (1) KR20230141651A (ko)
CN (1) CN117751471A (ko)
WO (1) WO2023191598A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117977044A (zh) * 2024-04-01 2024-05-03 四川新能源汽车创新中心有限公司 一种硫化物基全固态电池物料的回收方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150062989A (ko) * 2013-11-29 2015-06-08 한양대학교 산학협력단 전고체 리튬 이차전지용 활물질, 그 제조방법 및 이를 포함하는 전고체 리튬 이차전지
KR20180081309A (ko) 2017-01-06 2018-07-16 서범신 보조개 수술 도구
KR20220040830A (ko) 2020-09-24 2022-03-31 현대제철 주식회사 소결광 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150062989A (ko) * 2013-11-29 2015-06-08 한양대학교 산학협력단 전고체 리튬 이차전지용 활물질, 그 제조방법 및 이를 포함하는 전고체 리튬 이차전지
KR20180081309A (ko) 2017-01-06 2018-07-16 서범신 보조개 수술 도구
KR20220040830A (ko) 2020-09-24 2022-03-31 현대제철 주식회사 소결광 제조 방법

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BOARETTO NICOLA; GARBAYO IñIGO; VALIYAVEETTIL-SOBHANRAJ SONA; QUINTELA AMAIA; LI CHUNMEI; CASAS-CABANAS MONTSE; AGUESSE FREDE: "Lithium solid-state batteries: State-of-the-art and challenges for materials, interfaces and processing", JOURNAL OF POWER SOURCES, ELSEVIER, AMSTERDAM, NL, vol. 502, 11 May 2021 (2021-05-11), AMSTERDAM, NL, XP086586019, ISSN: 0378-7753, DOI: 10.1016/j.jpowsour.2021.229919 *
KANG SORA, KIM HYUN-SEUNG, JUNG JAE YUP, PARK KERN-HO, KIM KYUNGSU, SONG JUN HO, YU JI-SANG, KIM YOUNG-JUN, CHO WOOSUK: "Beneficial Role of Inherently Formed Residual Lithium Compounds on the Surface of Ni-Rich Cathode Materials for All-Solid-State Batteries", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 15, no. 8, 1 March 2023 (2023-03-01), US , pages 10744 - 10751, XP093097413, ISSN: 1944-8244, DOI: 10.1021/acsami.2c22406 *
N. OHTA, K. TAKADA, I. SAKAGUCHI, L. ZHANG, R. MA, K. FUKUDA, M. OSADA & T.SASAKI, ELECTROCHEMISTRY COMMUNICATION, vol. 9, 2007, pages 1486 - 1490
N. OHTAK. TAKADAL. ZHANGR. MAM. OSADAT. SASAKI, ADVANCED MATERIAL, vol. 18, 2006, pages 2226 - 2229
PENG LINFENG, REN HAOTIAN, ZHANG JUNZHAO, CHEN SHAOQING, YU CHUANG, MIAO XUEFEI, ZHANG ZIQI, HE ZHENYUAN, YU MING, ZHANG LONG, CHE: "LiNbO3-coated LiNi0.7Co0.1Mn0.2O2 and chlorine-rich argyrodite enabling high-performance solid-state batteries under different temperatures", ENERGY STORAGE MATERIALS, vol. 43, 1 December 2021 (2021-12-01), pages 53 - 61, XP093097405, ISSN: 2405-8297, DOI: 10.1016/j.ensm.2021.08.028 *
TAKADA, K. ; OHTA, N. ; ZHANG, L. ; FUKUDA, K. ; SAKAGUCHI, I. ; MA, R. ; OSADA, M. ; SASAKI, T.: "Interfacial modification for high-power solid-state lithium batteries", SOLID STATE IONICS, NORTH HOLLAND PUB. COMPANY. AMSTERDAM; NL, NL, vol. 179, no. 27-32, 30 September 2008 (2008-09-30), NL , pages 1333 - 1337, XP023521286, ISSN: 0167-2738, DOI: 10.1016/j.ssi.2008.02.017 *
ZHANG YUBIN, SUN XIAO, CAO DAXIAN, GAO GUANHUI, YANG ZHENZHEN, ZHU HONGLI, WANG YAN: "Self-Stabilized LiNi0.8Mn0.1Co0.1O2 in thiophosphate-based all-solid-state batteries through extra LiOH", ENERGY STORAGE MATERIALS, vol. 41, 1 October 2021 (2021-10-01), pages 505 - 514, XP093097402, ISSN: 2405-8297, DOI: 10.1016/j.ensm.2021.06.024 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117977044A (zh) * 2024-04-01 2024-05-03 四川新能源汽车创新中心有限公司 一种硫化物基全固态电池物料的回收方法

Also Published As

Publication number Publication date
KR20230141651A (ko) 2023-10-10
CN117751471A (zh) 2024-03-22
EP4376127A1 (en) 2024-05-29

Similar Documents

Publication Publication Date Title
WO2018056650A1 (ko) 리튬 리치 안티페로브스카이트 코팅 lco계 리튬 복합체, 이의 제조방법, 이를 포함하는 양극 활물질 및 리튬 이차 전지
WO2019147017A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019164313A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019226020A1 (ko) 음극 활물질용 복합 입자 및 이를 포함하는 전고체 전지용 음극
WO2019050282A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019168301A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019074306A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2018062770A1 (ko) 리튬 리치 안티페로브스카이트 화합물, 이를 포함하는 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2015053580A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2021187961A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2020214009A1 (ko) 고체 전해질 복합체 및 이를 포함하는 전고체 전지용 전극
WO2019212321A1 (ko) 양극 활물질의 세정 방법, 이를 포함하는 양극 활물질의 제조 방법 및 이에 의해 제조된 양극 활물질
WO2019098541A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2023191598A1 (ko) 전고체 전지용 양극 및 이를 포함하는 전고체 전지
WO2020111545A1 (ko) 양극 활물질, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2020080800A1 (ko) 리튬 이차전지용 양극 첨가제의 제조방법 및 이로부터 제조된 리튬 이차전지용 양극 첨가제
WO2020214008A1 (ko) 전고체 전지용 전해질막 및 이를 포함하는 전고체 전지
WO2019078688A2 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2019078685A2 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019078506A2 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 이에 의해 제조된 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020145638A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조방법에 의해 제조된 양극 활물질
WO2022231396A1 (ko) 전고체 전지용 고체 전해질 및 그 제조 방법
WO2018124781A1 (ko) 이차전지용 양극 활물질, 그 제조 방법, 이를 포함하는 이차전지용 양극 및 이차전지
WO2021096265A1 (ko) 리튬 이차전지용 양극 활물질 및 상기 양극 활물질의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23781447

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202380013057.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023781447

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023781447

Country of ref document: EP

Effective date: 20240220