WO2020226219A1 - 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 방법 및 장치 그리고 그 방법에 의해 제조되는 고분자 복합 압전소재 - Google Patents

질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 방법 및 장치 그리고 그 방법에 의해 제조되는 고분자 복합 압전소재 Download PDF

Info

Publication number
WO2020226219A1
WO2020226219A1 PCT/KR2019/005766 KR2019005766W WO2020226219A1 WO 2020226219 A1 WO2020226219 A1 WO 2020226219A1 KR 2019005766 W KR2019005766 W KR 2019005766W WO 2020226219 A1 WO2020226219 A1 WO 2020226219A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
polymer
nitride nanotubes
solution
dispersed
Prior art date
Application number
PCT/KR2019/005766
Other languages
English (en)
French (fr)
Inventor
김재우
서덕봉
김병훈
정정환
강인필
서영수
허훈
Original Assignee
내일테크놀로지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 내일테크놀로지 주식회사 filed Critical 내일테크놀로지 주식회사
Priority to CN201980016278.9A priority Critical patent/CN112585774A/zh
Priority to JP2020545769A priority patent/JP7250363B2/ja
Publication of WO2020226219A1 publication Critical patent/WO2020226219A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/092Forming composite materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/212Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase and solid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/077Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a method and apparatus for manufacturing a polymer composite piezoelectric material in which boron nitride nanotubes are dispersed, and to a polymer composite piezoelectric material manufactured by the method, and more particularly, to a boron nitride nanotube without a separate polarization alignment process.
  • a method and apparatus for manufacturing a polymer composite piezoelectric material in which boron nitride nanotubes are dispersed that can improve polarization effect and piezoelectric properties because it can be arranged in the same direction as the fibers by the electrospinning method, and a polymer composite piezoelectric manufactured by the method It is about the subject matter.
  • BNNTs Boron Nitride Nanotubes
  • CNTs carbon nanotubes
  • carbon nanotubes are electrically mixed with conductors and semiconductors and are oxidized in air above 400°C
  • boron nitride nanotubes have electrical insulation properties and are not oxidized even in air atmospheres at high temperatures above 800°C. It has the advantage of having thermal and chemical stability.
  • a polymer composite in which boron nitride nanotubes are dispersed has a characteristic of simultaneously possessing electrical insulation and thermal conductivity, so that it can be used as a high-efficiency electrical insulation heat dissipation material.
  • boron nitride nanotubes have excellent thermal neutron absorption ability and are highly applicable to nuclear/space industries.
  • aluminum composite in which boron nitride nanotubes are dispersed mechanically, it has the same strength as stainless steel and only half the density, so it is valuable as a lightweight high-strength metal alloy having both radiation shielding and mechanical strength.
  • boron nitride nanotubes are known to have piezoelectricity due to the presence of a potential difference due to asymmetry of the crystal structure due to external pressure or vibration, or due to intrinsic defects, and thus, it is attracting attention as a new piezoelectric material.
  • Ceramic PZT Lead Zirconate Titanate, Pb(Zr, Ti)O 3
  • Pb(Zr, Ti)O 3 a piezoelectric material that is widely used in the past, has high piezoelectricity and reliability, but it has high density, lead toxicity, inflexibility, and weak impact.
  • the polymer composite piezoelectric material in which boron nitride nanotubes are dispersed and aligned is non-cytotoxic, has a large area, is flexible, and can be used as a new eco-friendly piezoelectric material that is resistant to moisture and impact.
  • arc discharge, laser plasma, CVD, and ball mill-heat treatment have been developed so far as the synthesis/growth method of boron nitride nanotubes, but currently, laser-plasma, ball mill-heat treatment methods are mainly used.
  • This manufacturing method has been improved and developed in various ways depending on the type and atmosphere of the reaction gas, the type and shape of the precursor, and the characteristics of the synthesis and manufacturing apparatus.
  • carbon nanotubes synthesized at about 800°C boron nitride nanotubes are synthesized at a high temperature of at least 1200°C and higher than 5000°C depending on the method. Due to the difficulty of the process, mass production technology is currently immature.
  • impurities due to precursors and reaction gases are generated simultaneously with BNNTs, so the purity is relatively low.
  • the alignment polarization process to improve the piezoelectricity of the polymer composite in which the boron nitride nanotubes are dispersed is a process of physically aligning the boron nitride nanotubes inside the composite, and through this process, the piezoelectric performance can be greatly improved.
  • Korean Patent Registration 10-1867905 name of the invention: boron nitride nanotube manufacturing apparatus and boron nitride nanotube manufacturing method using the same, registration date: June 8, 2018).
  • the boron nitride nanotubes can be arranged in the same direction as the polymer fibers by the electrospinning method without a separate polarization process, the boron nitride nanotubes that can maximize the polarization effect through alignment are dispersed.
  • a method and apparatus for manufacturing a polymer composite piezoelectric material, and a polymer composite piezoelectric material manufactured by the method are provided.
  • the fiber is produced through an electromagnetic field generated by applying a voltage by the electrospinning method
  • the boron nitride nanotubes can be arranged in the same direction as the fiber at the same time as the spinning. Therefore, since the polarization of the polymer itself can be achieved additionally, a method and apparatus for manufacturing a polymer composite piezoelectric material in which boron nitride nanotubes are dispersed that can maximize the polarization effect of the polymer composite material, and a polymer composite piezoelectric material manufactured by the method are provided. do.
  • an embodiment of the present invention provides a method and apparatus for manufacturing a polymer composite piezoelectric material in which boron nitride nanotubes are dispersed, and a polymer composite piezoelectric material manufactured by the method, capable of implementing improved piezoelectric properties.
  • an embodiment of the present invention is a polymer composite piezoelectric material in which boron nitride nanotubes can be aligned in a certain direction inside the polymer fiber, and in addition, boron nitride nanotubes that maximize the piezoelectric effect according to the polarization effect of the elements of the polymer itself are dispersed. It provides a manufacturing method and apparatus, and a polymer composite piezoelectric material manufactured by the method.
  • an embodiment of the present invention ultimately provides a polymer composite piezoelectric material capable of having a high piezoelectric coefficient while being flexible by dispersing and arranging boron nitride nanotubes in a polymer composite material.
  • the method of manufacturing a composite piezoelectric material in which boron nitride nanotubes are dispersed includes a step of preparing a solution for preparing a polymer solution, a step for dispersing boron nitride nanotubes (BNNT) in the polymer solution, and electric Electrospinning the polymer solution in which the boron nitride nanotubes are dispersed using a spinning method may include an electrospinning step of producing a nanofibrous composite piezoelectric material.
  • the concentration of the boron nitride nanotubes may be dispersed in the range of 0.01 to 20 wt% in the polymer solution.
  • the concentration of the boron nitride nanotubes may be dispersed in 2 wt% in the polymer solution.
  • an applied voltage applied to the polymer solution may be 5 to 30 kV.
  • the polymer solution prepared in the step of preparing the solution according to an embodiment of the present invention may be a solution obtained by dissolving vinyl isofluoride (PVDF) as the polymer in a DMA acetone solution in an amount of 10-30 wt% compared to the solution.
  • PVDF vinyl isofluoride
  • the boron nitride nanotubes may be homogeneously dispersed in the polymer solution by using a surfactant effect through ultrasonic excitation.
  • the boron nitride nanotubes may be homogeneously dispersed in the polymer solution using a stirrer.
  • the boron nitride nanotubes may be surface-treated to homogeneously disperse the boron nitride nanotubes in the polymer solution, and at the same time, the bonding strength with the polymer may be improved.
  • the polymer solution is sprayed by the electrospinning method, so that the boron nitride nanotubes are arranged in the same direction as the polymer solution, thereby forming a nanofibrous polymer film. have.
  • the injection speed of the polymer solution according to an embodiment of the present invention may be 15 to 70 ⁇ L/min, and a distance between the collector in which the polymer film is formed and the discharge part through which the polymer solution is electrospun may be 5 to 20 cm.
  • the composite piezoelectric material manufacturing apparatus includes a solution supply unit for storing and supplying a polymer solution in which boron nitride nanotubes (BNNTs) are dispersed, and a solution discharge unit for discharging the polymer solution from the solution supply unit.
  • the concentration of the boron nitride nanotubes may be dispersed in 2wt% in the polymer solution according to an embodiment of the present invention.
  • solution supply unit may be provided in a syringe type
  • solution discharge unit may be provided in a needle type coupled to a tip end of the solution supply unit
  • collection unit may be provided in a rotatable roller type.
  • the polymer solution discharged from the solution discharge part forms a hemispherical shape at the end of the solution discharge part by surface tension, and then between surface charges.
  • a Taylor cone is formed by the mutual electrostatic repulsion and an external electric field of and when an electric field equal to or greater than the set electric field is applied, the polymer solution is electrospun in the direction of the collection unit, thereby forming a nanofibrous piezoelectric composite material on the collection unit.
  • the applied voltage applied to the polymer solution by the high voltage application unit is 5 to 30 kV
  • the injection rate of the polymer solution is 15 to 70 ⁇ L/min
  • the collector and the polymer film formed The distance between the discharge portions to which the polymer solution is electrospun is 5 to 20 cm, and the shape of the nanofiber may be selectively determined by adjusting the applied voltage, the injection speed, or the distance.
  • the boron nitride nanotubes are dispersed in a polymer solution in which the polymer is dissolved, and then the polymer solution in which the boron nitride nanotubes are dispersed is electrospinned by an electrospinning method. It is manufactured in a nanofibrous form, and the boron nitride nanotubes may be aligned in the longitudinal direction of the nanofibrous form.
  • the boron nitride nanotubes can be arranged in the same direction as the fibers by the electrospinning method without a separate polarization alignment process, the polarization effect can be maximized, thereby implementing improved piezoelectric properties. I can.
  • the boron nitride nanotubes can be arranged in the same direction as the fibers at the same time as the spinning, and the type of polymer As a result, the polarization effect of the polymer composite material can be maximized because the polarization of the polymer itself can be achieved.
  • improved piezoelectric properties can be implemented.
  • the piezoelectric effect can be maximized according to the polarization effect of the elements constituting the polymer itself.
  • the elastic modulus of the polymer composite can be increased, and as a result, the stress is increased by the applied pressure to increase the local deformation, thereby increasing the boron nitride nanotube polymer composite material.
  • the piezoelectric properties of can be improved.
  • the polarization characteristics of the pure polymer can be further improved, and thus the polarization characteristics due to the alignment complex can be maximized to further improve the piezoelectric characteristics.
  • the boron nitride nanotubes are ultimately prepared by dispersing and aligning them in a polymer composite material.
  • FIG. 1 is a flowchart of a method of manufacturing a composite piezoelectric material in which boron nitride nanotubes are dispersed using an electrospinning method according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of an apparatus for manufacturing a composite piezoelectric material in which boron nitride nanotubes are dispersed using an electrospinning method according to an embodiment of the present invention.
  • FIG. 3 is an image diagram of a composite piezoelectric material manufactured by the manufacturing method of FIG. 1 confirmed by an electron microscope (TEM).
  • FIG. 4 is an image view of a composite piezoelectric material manufactured by the manufacturing method of FIG. 1 confirmed by an electron microscope (SEM).
  • FIG. 5 is a diagram showing components used for manufacturing a sensor for evaluating a composite piezoelectric material manufactured by the manufacturing method of FIG. 1.
  • FIG. 6 is a diagram illustrating an example of a voltage signal generated by an oscilloscope after fabricating the composite piezoelectric material manufactured by the manufacturing method of FIG. 1 with the sensor of FIG. 5.
  • FIG. 7A is a diagram showing structural images of ⁇ -phase, ⁇ -phase and ⁇ -phase according to the arrangement of constituent elements of PVDF used as a composite piezoelectric material.
  • 7B is a diagram showing an FTIR spectrum of a composite piezoelectric material film manufactured by electrospinning.
  • 7C is a view showing an FTIR spectrum of a vinyl isofluoride composite piezoelectric material manufactured by a casting method that attempts alignment polarization of boron nitride nanotubes using a general mechanical shear force.
  • 7D is a diagram showing the calculated composition ratios of ⁇ -phase and ⁇ -phase of composite piezoelectric materials manufactured respectively using peaks of the FTIR spectrum.
  • 100 a device for manufacturing a composite piezoelectric material in which boron nitride nanotubes are dispersed
  • FIG. 1 is a flowchart of a method of manufacturing a boron nitride nanotube-based composite piezoelectric material using an electrospinning method according to an embodiment of the present invention
  • FIG. 2 is a boron nitride nanotube using an electrospinning method according to an embodiment of the present invention.
  • It is a schematic configuration diagram of the base composite piezoelectric material manufacturing apparatus
  • FIG. 3 is an image diagram of the composite piezoelectric material manufactured by the manufacturing method of FIG. 1 confirmed by an electron microscope (TEM)
  • FIG. 4 is This is an image diagram confirming the manufactured composite piezoelectric material with an electron microscope (SEM).
  • a method for manufacturing a composite piezoelectric material in which boron nitride nanotubes are dispersed includes a solution preparation step (S100) of preparing a polymer solution containing a polymer, and nitriding the polymer solution.
  • a step S300 and a characteristic evaluation step S400 of evaluating the piezoelectric properties of the composite piezoelectric material may be included.
  • the boron nitride nanotubes can be arranged in the same direction as the fiber by the electrospinning method without a separate polarization and alignment process of the boron nitride nanotubes, a composite piezoelectric material with improved piezoelectric properties can be manufactured. have.
  • the polarization effect can be maximized by uniformly aligning the elements constituting the polymer.
  • the boron nitride nanotubes can be arranged in an orderly manner in the polymer contained in the polymer solution, the transfer and transfer efficiency of electric charges can be improved compared to the case where the boron nitride nanotubes are distributed in a disorderly manner.
  • the polarization of boron nitride nanotubes dispersed throughout the polymer can be maximized, piezoelectric properties can be improved.
  • the fibers or nanofibers generated are stretched, and thus boron nitride nanotubes included in the fibers may be disposed with a certain tendency.
  • boron nitride nanotubes may be aligned along the length direction of the nanofibers inside the nanofibers formed of polymers.
  • the solution preparation step (S100) of the present embodiment is a step of preparing a polymer solution by dissolving a polymer in a previously prepared solution.
  • the polymer used in the solution preparation step (S100) may be polyvinylidene fluoride (PVDF).
  • the solution may be a mixed solution of DMA and acetone.
  • a polymer, that is, vinyl isofluoride is dissolved in 10-30 wt%, more preferably 14-20 wt%, compared to 100 wt% of the solution to prepare a polymer solution.
  • the type of the polymer, the type of the solution, and the content ratio of the polymer solution are not limited thereto, and it is natural that other types of polymers and solutions may be used, as well as the polymer may be mixed in a different content ratio in the solution.
  • the dispersing step (S200) of the present embodiment is a step of dispersing boron nitride nanotubes in the polymer solution prepared by the above-described solution preparation step (S100). That is, boron nitride nanotubes are evenly dispersed in the polymer solution.
  • a surfactant effect through ultrasonic excitation may be used.
  • vibration is applied through ultrasonic waves, so that the boron nitride nanotubes can be evenly dispersed in the polymer solution.
  • boron nitride nanotubes can be evenly dispersed in the polymer solution using a stirrer.
  • the boron nitride nanotubes can be evenly dispersed in the polymer solution and at the same time, the bonding strength between the polymer and the boron nitride nanotubes can be improved.
  • the polymer solution in which boron nitride nanotubes are evenly dispersed by the dispersion step (S200) may be electrospun by the electrospinning step (S300) to make a nanofibrous composite piezoelectric material.
  • a polymer solution is sprayed by an electrospinning method so that the boron nitride nanotubes are arranged in the same direction as the vinyl isofluoride, thereby forming a nanofibrous polymer film.
  • the apparatus 100 for manufacturing a composite piezoelectric material in which boron nitride nanotubes are dispersed in the present embodiment includes a solution supply unit 110 for storing and supplying a polymer solution 111 in which boron nitride nanotubes are dispersed, A solution discharge unit 120 for discharging a polymer solution from the solution supply unit 110 and a collection unit 140 for collecting the polymer solution 111 discharged from the solution discharge unit 120 as a composite piezoelectric material of the nanofibrous 150 ), and a high voltage applying unit 130 for applying a high voltage to the solution discharge unit 120 and the collection unit 140 so that the polymer solution 111 is collected on the collection unit 140 by an electrospinning method.
  • the polymer solution is electrospun from the solution discharge unit 120 to the collection unit 140 by the electrospinning method, so that the boron nitride nanotubes may be arranged in the same direction on the polymer of the polymer solution.
  • the solution supply unit 110 may be provided in a syringe type. Accordingly, the polymer solution may be discharged through the solution discharge unit 120 by pushing the pusher portion of the solution supply unit 110.
  • the solution discharge unit 120 may be provided as a needle type coupled to the tip of the solution supply unit 110, and the collection unit 140 may be provided as a rotatable roller type.
  • the configuration of the collection unit 140 is not limited thereto, and two rods may be installed and used in parallel.
  • the polymer solution 111 discharged from the solution discharge unit 120 is caused by the surface tension.
  • a Taylor cone can be formed by mutual electrostatic repulsion between surface charges and an external electric field.
  • the polymer solution 111 is electrospun in the direction of the collecting unit 140 to form a nanofibrous composite piezoelectric material 150 on the collecting unit.
  • an applied voltage applied to the polymer solution 111 may be 5 to 30 kV.
  • the injection rate of the polymer solution 111 is 15 to 70 ⁇ L/min, and the distance between the collection unit 140 on which the polymer film is formed and the solution discharge unit 120 to which the polymer solution 111 is electrospinned is between 5 and 20 cm.
  • the shape of the composite piezoelectric material 150 according to various characteristics of the nanofibrous material 150 may be selectively determined by adjusting the applied voltage, the injection speed, or the distance.
  • the inner boron nitride nanotubes can be well aligned in the direction of the fiber as shown in FIG. 3.
  • the alignment structure of the polymers of vinyl isofluoride (PVDF) and boron nitride nanotubes (BNNT) in the nanofibrous composite piezoelectric material formed by applying the electrospinning method of this embodiment is an electron microscope TEM (transmission electron microscopy). You can check the observation result.
  • boron nitride nanotubes are evenly arranged along the longitudinal direction of vinyl disofluoride (PVDF), and thus boron nitride nanotubes (BNNT) are randomly distributed in vinyl isofluoride (PVDF). It is possible to improve the polarization efficiency of electric charges compared to the case where there is. In addition, since the polarization through alignment of boron nitride nanotubes (BNNTs) distributed throughout the polymer can be maximized, piezoelectric properties can be improved.
  • a composite piezoelectric material having the same orientation can be manufactured.
  • 4 is an electron microscope SEM (scanning electron microscopy) observation of the image of the polymer, through which it can be seen that it has the same orientation. Therefore, the polarization of the boron nitride nanotubes can be performed without a separate process, and the boron nitride nanotubes are well aligned inside the polymer to maximize the polarization of electric charges, thereby improving piezoelectric efficiency.
  • the piezoelectric properties of the composite piezoelectric material in which boron nitride nanotubes are arranged in the same direction by the electrospinning step (S300) described above using a piezoelectric constant meter (Piezometer) can be evaluated. I can.
  • a piezoelectric coefficient of the d33 mode indicating the piezoelectric effect in the vertical direction of the piezoelectric material is checked using a piezoelectric constant meter.
  • Piezoelectric property evaluation can be performed according to the concentration of boron nitride nanotubes. For example, in the case of a piezoelectric material in which a pure vinyl isofluoride polymer to which boron nitride nanotubes are not applied was electrospun, it was found to be 50 pC/N, and 250 pC/N at a concentration of 2 wt% of boron nitride nanotubes. Therefore, it can be seen that the piezoelectric properties are improved by up to 5 times or more in the vinyl isofluoride polymer to which boron nitride nanotubes are applied.
  • the piezoelectric coefficient of d33 mode was improved by about 5 times or more from 50 pC/N to 250 pC/N in the case of electrospinning by mixing boron nitride nanotubes than when produced by electrospinning only vinyl disofluoride. I can. It can be seen that the piezoelectric properties are improved because the boron nitride nanotubes are well aligned inside the composite piezoelectric material in which the boron nitride nanotubes manufactured by the electrospinning method are dispersed.
  • FIG. 5 is a diagram showing components used for manufacturing a sensor for evaluating a composite piezoelectric material manufactured by the manufacturing method of FIG. 1.
  • the piezoelectric sensor 200 includes a plurality of polyimide films 210a, 210b, 210c) is stacked and formed, and a platinum (Pt) electrode 221 and an aluminum (Al) electrode 225 are provided therein, and the composite piezoelectric material 150 of the present embodiment may be provided therebetween.
  • the piezoelectric sensor 200 may be manufactured by placing the copper (Cu) tape 230 between the upper polyimide film 210a and the lower polyimide film 210b.
  • the piezoelectric sensor 200 is designed to maximize piezoelectric characteristics by applying a composite piezoelectric material 150 having a constant direction.
  • a plurality of polyimide films 210a, 210b, and 210c may be used to cover the front and rear surfaces.
  • a platinum electrode 221 and an aluminum electrode 225 are used as upper and lower electrodes to measure a signal from the composite piezoelectric material 150, and a copper tape 230 may be used as an electric wire.
  • FIG. 6 is a diagram illustrating an example of a voltage signal generated by an oscilloscope after fabricating the composite piezoelectric material manufactured by the manufacturing method of FIG. 1 with the sensor of FIG. 5.
  • FIG. 7 is a (a) structure image of ⁇ -phase, ⁇ -phase and ⁇ -phase according to the arrangement of constituent elements of vinyl isofluoride (PVDF) used as a composite piezoelectric material, (b) composite piezoelectric manufactured by electrospinning FTIR spectrum of the material, (c) FTIR spectrum of a vinyl isofluoride composite piezoelectric material manufactured by a casting method that attempted alignment polarization of boron nitride nanotubes using a general mechanical shear force, and (d) each manufactured using peaks of the FTIR spectrum.
  • PVDF vinyl isofluoride
  • Figure 7 (a) shows the ⁇ -phase, ⁇ -phase, and ⁇ -phase structures of vinyl isofluoride.
  • the ⁇ -phase vinyl isofluoride has less piezoelectricity
  • ⁇ -phase isofluoride Vinyl is known to have excellent piezoelectricity. Therefore, piezoelectricity can be improved when the general ⁇ -phase vinyl isofluoride is converted to ⁇ -phase vinyl isofluoride by adding a polarization process.
  • FTIR Fastier Transform Infrared spectroscopy
  • the ⁇ -phase content of the vinyl disofluoride/boron nitride nanotubes manufactured by the electrospinning method increases to about 75%. This can be expected that, in the case of manufacturing by electrospinning, boron nitride nanotubes are distributed in the same direction inside the polymer, and thus the polymer structure is also converted into ⁇ -phase at the same time.
  • Comparative Example 1 Comparative Example 2 Comparative Example 3
  • the boron nitride nanotubes can be arranged in the same direction as the fibers by the electrospinning method without a separate polarization alignment process, the polarization effect can be maximized, through which piezoelectric properties This improved high-efficiency polymer composite piezoelectric material can be implemented.
  • the boron nitride nanotubes can be arranged in an orderly manner in the polymer contained in the polymer solution, the polarization efficiency can be improved compared to the case where the boron nitride nanotubes are distributed in an orderly manner.
  • the boron nitride nanotubes can be arranged in the same direction as the fibers at the same time as the spinning, and additionally polarization of the polymer itself depending on the type of polymer. Since it can also be achieved, the polarization effect of the polymer composite material can be maximized, and through this, improved piezoelectric properties can be realized.
  • the piezoelectric effect can be maximized according to the polarization effect of the elements constituting the polymer itself.
  • boron nitride nanotubes are distributed and aligned in a polymer composite material, they can have a flexible and high piezoelectric coefficient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

본 발명의 일 실시예에 따른 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 방법은, 고분자 용액을 마련하는 용액 마련 단계와, 상기 고분자 용액에 질화붕소나노튜브(BNNT)를 분산시키는 분산 단계와, 전기방사 방법을 이용하여 상기 질화붕소나노튜브가 분산된 상기 고분자 용액을 전기방사함으로써 나노섬유상의 고분자 복합 압전소재를 만드는 전기방사 단계를 포함할 수 있다.

Description

질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 방법 및 장치 그리고 그 방법에 의해 제조되는 고분자 복합 압전소재
본 발명은 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 방법 및 장치 그리고 그 방법에 의해 제조되는 고분자 복합 압전소재에 관한 것으로, 더욱 상세하게는, 별도의 분극 정렬 과정 없이도, 질화붕소나노튜브를 전기방사 방법에 의해 섬유와 같은 방향으로 배열할 수 있기 때문에 분극 효과 및 압전 특성을 향상시킬 수 있는 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 방법 및 장치 그리고 그 방법에 의해 제조되는 고분자 복합 압전소재에 관한 것이다.
질화붕소나노튜브(BNNTs: Boron Nitride Nanotubes)는 일반적으로 알려져 있는 탄소나노튜브(CNT: Carbon Nanotubes)와 기계적 특성 및 열전도 특성은 유사하다. 그러나 탄소나노튜브가 전기적으로 전도체와 반도체가 혼합되어 있고, 400℃ 이상 공기 중에서 산화되는 특성을 가진 반면에 질화붕소나노튜브는 전기절연성을 갖고 있음을 물론 800℃ 이상의 고온의 공기 분위기에서도 산화되지 않는 열적, 화학적 안정성을 가지고 있는 장점이 있다.
이러한 높은 열전도성과 전기절연성으로 인해 질화붕소나노튜브가 분산된 고분자복합재의 경우, 전기절연성과 열전도성을 동시 보유하는 특징이 있어 고효율 전기절연 방열소재로 활용이 가능하다.
아울러, 질화붕소나노튜브는 열중성자 흡수능이 매우 뛰어나 원자력/우주산업에도 활용성이 높다. 특히, 질화붕소나노튜브가 분산된 알루미늄 복합재의 경우 기계적으로는 스테인리스와 같은 강도를 가지면서 밀도는 반밖에 되지 않아 방사선 차폐와 기계적 강도를 동시에 갖는 경량 고강도 금속합금으로 활용가치가 있다.
또 다른 특징으로, 질화붕소나노튜브는 외부 압력 또는 진동으로부터, 또는 내재적인 결함에 의한 결정구조의 비대칭으로 인해 전위차가 존재하여 압전성을 지니고 있는 것으로 알려져 있으며, 이에 새로운 압전 소재로 주목 받고 있다. 기존에 널리 이용되고 있는 압전체인 세라믹 PZT (Lead Zirconate Titanate, Pb(Zr,Ti)O3)는 높은 압전성과 신뢰성을 지니고 있지만, 높은 밀도와 납의 독성, 유연하지 못하고 충격에 약한 단점을 가지고 있어서 다양한 산업, 특히 웨어러블센서/로봇, 의료 및 환경분야의 적용에는 제한이 있다. 또한, 양질의 분극 특성을 확보하기 위하여 별도의 분극 (폴링, Poling) 과정을 거쳐야하는 단점을 가지고 있다. 따라서 질화붕소나노튜브가 분산 정렬된 고분자복합 압전소재는 생물학적 독성이 없고 (non-cytotoxic), 대면적이면서도 유연하고, 습기 및 충격에도 강한 새로운 친환경 압전 소재로의 활용이 가능하다.
한편 질화붕소나노튜브의 합성/성장 방법은 지금까지 아크방전, 레이저 플라즈마, CVD, 및 볼밀-열처리 등이 개발되었으나, 현재는 상용으로 레이저-플라즈마, 볼밀-열처리 방법이 주로 사용되고 있다. 이러한 제조 방법은 반응가스 종류 및 분위기, 전구체의 종류 및 형태, 합성 및 제조장치 특성 등에 따라 다양한 방법으로 개선, 발전되어 왔다. 그러나, 탄소나노튜브가 800℃ 정도에서 합성되는 것과는 달리, 질화붕소나노튜브는 방법에 따라 최소 1200℃에서 높게는 5000℃ 이상의 고온에서 합성되는 등 공정의 어려움으로 인해 현재 대량생산 기술이 미성숙한 상태이며, 또한 공정의 종류에 따라 전구체 및 반응가스에 의한 불순물이 BNNT와 동시에 생성되어 순도가 상대적으로 낮은 단점이 있다.
따라서, 전술한 종래기술의 공정상의 단점을 극복하고 고순도의 질화붕소나노튜브를 대량으로 생산할 수 있는 기술과 공정 및 제조 시스템이 요구되는 실정이고, 아울러 고순도 질화붕소나노튜브의 산업적 응용에 대한 연구가 요구된다.
최근의 연구 결과에 따르면 질화붕소나노튜브가 분산된 고분자 복합소재의 압전 특성을 향상시키기 위해 전기적인 또는 기계적인 분극 과정을 수행한다고 알려져 있다. 그러나 질화붕소나노튜브는 전기절연성이 있어 전기적인 분극 과정에 있어서 효율성이 떨어지고, 특히 매우 높은 전압을 적용해야 하는 단점이 있다. 또한 고분자 분산 시 기계적인 전단력을 이용하여 질화붕소를 정렬하는 물리적인 분극방법을 이용하는 캐스팅 공정은 효율성이 매우 낮아 복합재의 압전성을 향상하는데 그리 효과적이 못한 실정이다. 결과적으로 이러한 정렬을 통한 분극 과정은 매우 높은 고전압 하에서 이루어지거나, 반복적인 기계적인 공정에 많은 시간과 비용이 소요된다는 한계가 있다.
질화붕소나노튜브가 분산된 고분자복합재의 압전성을 향상하기 위한 정렬 분극 과정은 질화붕소나노튜브를 복합재 내부에 물리적으로 정렬시키는 과정으로서 이 과정을 통하여 압전 성능을 크게 향상시킬 수 있다.
따라서, 별도의 분극 과정을 수행하지 않고도 질화붕소나노튜브가 정렬 분극되어 복합소재의 압전 특성을 극대화시킬 수 있는 새로운 구성의 질화붕소나노튜브가 분산된 고분자 복합 압전소재의 제조 방법의 개발이 요구되는 실정이다.
관련 선행기술로는 대한민국 등록특허 10-1867905(발명의 명칭: 질화붕소 나노튜브 제조 장치 및 이를 이용한 질화붕소 나노튜브 제조 방법, 등록일자: 2018년 6월 8일)가 있다.
본 발명의 실시예는, 별도의 분극 과정 없이도, 질화붕소나노튜브를 전기방사 방법에 의해 고분자 섬유와 같은 방향으로 배열할 수 있기 때문에 정렬을 통한 분극 효과를 극대화할 수 있는 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 방법 및 장치 그리고 그 방법에 의해 제조되는 고분자 복합 압전소재를 제공한다.
또한, 본 발명의 실시예는, 전기방사 방법에 의해서 전압을 인가하여 생성된 전자기장을 통해 섬유를 제조하기 때문에 방사와 동시에 질화붕소나노튜브를 섬유와 같은 방향으로 배열할 수 있고, 고분자의 종류에 따라서 추가적으로 고분자 자체의 분극도 이룰 수 있기 때문에 고분자 복합소재의 분극 효과를 극대화할 수 있는 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 방법 및 장치 그리고 그 방법에 의해 제조되는 고분자 복합 압전소재를 제공한다.
또한 본 발명의 실시예는, 향상된 압전 특성을 구현할 수 있는 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 방법 및 장치 그리고 그 방법에 의해 제조되는 고분자 복합 압전소재를 제공한다.
또한 본 발명의 실시예는, 고분자 섬유상 내부에 일정한 방향으로 질화붕소나노튜브의 정렬이 가능하고 추가적으로 고분자 자체 구성 원소의 분극 효과에 따라 압전 효과를 극대화시킨 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 방법 및 장치 그리고 그 방법에 의해 제조되는 고분자 복합 압전소재를 제공한다.
아울러, 본 발명의 실시예는, 궁극적으로 질화붕소나노튜브를 고분자 복합소재에 분산 정렬하여 제조함에 따라 유연하면서도 높은 압전계수를 가질 수 있는 고분자 복합 압전소재를 제공한다.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제(들)로 제한되지 않으며, 언급되지 않은 또 다른 과제(들)은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시예에 따른 질화붕소나노튜브가 분산된 복합 압전소재 제조 방법은, 고분자 용액을 마련하는 용액 마련 단계와, 상기 고분자 용액에 질화붕소나노튜브(BNNT)를 분산시키는 분산 단계와, 전기방사 방법을 이용하여 상기 질화붕소나노튜브가 분산된 상기 고분자 용액을 전기방사함으로써 나노섬유상의 복합 압전소재를 만드는 전기방사 단계를 포함할 수 있다.
또한 본 발명의 실시예에 따른 상기 전기방사 단계 시, 상기 고분자 용액에 상기 질화붕소나노튜브의 농도가 0.01 내지 20wt%로 분산될 수 있다.
또한 본 발명의 실시예에 따른 상기 전기방사 단계 시, 상기 고분자 용액에 상기 질화붕소나노튜브의 농도가 2wt%로 분산될 수 있다.
또한 본 발명의 실시예에 따른 상기 전기방사 단계 시, 상기 고분자 용액에 인가되는 인가전압은 5 내지 30kV일 수 있다.
또한 본 발명의 실시예에 따른 상기 용액 마련 단계 시 마련되는 상기 고분자 용액은 상기 고분자로서 이소불화비닐(PVDF)을 DMA 아세톤 용액에 상기 용액 대비 10-30wt%로 용해시킨 용액일 수 있다.
또한 본 발명의 실시예에 따른 상기 분산 단계 시, 초음파 가진을 통한 계면활성 효과를 이용하여 상기 고분자 용액에 상기 질화붕소나노튜브를 균질 분산시킬 수 있다.
또한 본 발명의 실시예에 따른 상기 분산 단계 시, 교반기를 이용하여 상기 고분자 용액에 상기 질화붕소나노튜브를 균질 분산시킬 수 있다.
또한 본 발명의 실시예에 따른 상기 분산 단계 시, 상기 질화붕소나노튜브를 표면처리하여 상기 고분자 용액에 상기 질화붕소나노튜브를 균질 분산시킬 수 있으며 동시에 고분자와의 결합력을 향상시킬 수 있다.
또한 본 발명의 실시예에 따른 상기 전기방사 단계 시, 상기 전기방사 방법에 의해 상기 고분자 용액이 분사되어 상기 질화붕소나노튜브가 상기 고분자 용액과 동일한 방향으로 배열되어 나노섬유상의 고분자 필름이 형성될 수 있다.
또한 본 발명의 실시예에 따른 상기 고분자 용액의 사출 속도는 15 내지 70μL/min이며, 상기 고분자 막이 형성되는 수집기와 상기 고분자 용액이 전기방사되는 토출부 사이의 거리는 5 내지 20cm인 일 수 있다.
한편, 본 발명의 실시예에 따른 복합 압전소재 제조 장치는 질화붕소나노튜브(BNNT)가 분산된 고분자 용액을 저장하고 공급하는 용액 공급부와, 상기 용액 공급부로부터 상기 고분자 용액을 토출시키는 용액 토출부와, 상기 용액 토출부로부터 토출된 상기 고분자 용액이 나노섬유상의 복합 압전소재로 수집되는 수집부와, 상기 용액 토출부와 상기 수집부에 고전압을 인가하여 전기방사 방법에 의해 상기 고분자 용액이 상기 수집부 상에 수집되도록 하는 고전압 인가부를 포함하며, 상기 전기방사 방법에 의해 상기 용액 토출부로부터 상기 수집부로 상기 고분자 용액이 전기방사되어 상기 질화붕소나노튜브가 동일 방향으로 배열될 수 있다.
또한 본 발명의 실시예에 따른 상기 고분자 용액에 상기 질화붕소나노튜브의 농도가 2wt%로 분산될 수 있다.
또한 본 발명의 실시예에 따른 상기 용액 공급부는 주사기 타입으로 마련되고, 상기 용액 토출부는 상기 용액 공급부의 선단에 결합된 니들 타입으로 마련되며, 상기 수집부는 회전 가능한 롤러 타입으로 마련될 수 있다.
또한 본 발명의 실시예에 따른 상기 고전압 인가부를 통해 상기 용액 토출부에 고전압이 인가되면 상기 용액 토출부로부터 토출된 상기 고분자 용액이 표면장력에 의해서 상기 용액 토출부의 끝단에서 반구형으로 이룬 후 표면전하 사이의 상호 정전기적 반발력과 외부 전기장에 의해 테일러 콘이 형성되고 설정된 전기장 이상의 전기장이 인가되면 상기 고분자 용액이 상기 수집부 방향으로 전기방사되어 상기 수집부 상에 나노섬유상의 압전 복합소재가 형성될 수 있다.
또한 본 발명의 실시예에 따른 상기 고전압 인가부에 의해서 상기 고분자 용액에 인가되는 인가전압은 5 내지 30kV이고, 상기 고분자 용액의 사출 속도는 15 내지 70μL/min이며, 상기 고분자 막이 형성되는 수집기와 상기 고분자 용액이 전기방사되는 토출부 사이의 거리는 5 내지 20cm이며, 상기 인가전압, 상기 사출 속도 또는 상기 거리를 조절하여 상기 나노섬유상의 형태가 선택적으로 결정될 수 있다.
한편, 본 발명의 실시예에 따른 복합 압전소재는, 고분자가 용해된 고분자 용액에 질화붕소나노튜브를 분산시킨 다음, 전기방사 방법에 의해서 상기 질화붕소나노튜브가 분산된 상기 고분자 용액을 전기 방사하여 나노섬유상으로 제조되며, 상기 나노섬유상 내에 상기 질화붕소나노튜브가 상기 나노섬유상의 길이 방향으로 정렬될 수 있다.
본 발명의 실시예에 따르면, 별도의 분극 정렬 과정 없이도, 질화붕소나노튜브를 전기방사 방법에 의해 섬유와 같은 방향으로 배열할 수 있기 때문에 분극 효과를 극대화할 수 있고, 이를 통해 향상된 압전 특성을 구현할 수 있다.
또한, 본 발명의 실시예에 따르면, 전기방사 방법에 의해서 전압을 인가하여 생성된 전자기장을 통해 섬유를 제조하기 때문에 방사와 동시에 질화붕소나노튜브를 섬유와 같은 방향으로 배열할 수 있고, 고분자의 종류에 따라서 추가적으로 고분자 자체의 분극도 이룰 수 있기 때문에 고분자 복합소재의 분극 효과를 극대화할 수 있다.
또한 본 발명의 실시예에 따르면, 향상된 압전 특성을 구현할 수 있다.
또한 본 발명의 실시예에 따르면, 고분자 섬유상 내부에 일정한 방향으로 질화붕소나노튜브의 정렬이 가능하고 추가적으로 고분자 자체 구성 원소의 분극 효과에 따라 압전 효과를 극대화시킬 수 있다.
질화붕소나노튜브가 고분자 섬유의 내부에 같은 방향으로 복합화되는 경우, 고분자 복합재의 탄성률을 증가시킬 수 있으며, 결과적으로 가해지는 압력에 의해 스트레스를 증가시켜 국소적인 변형을 증가시켜 질화붕소나노튜브 고분자 복합재의 압전특성을 향상할 수 있다. 또한 전기방사 과정에서 가해지는 전기장에 의해 질화붕소나노튜브가 정렬된 고분자 복합재의 경우, 순수한 고분자의 분극특성을 더욱 향상시킬 수 있어 정렬 복합화에 의한 분극특성을 극대화하여 압전특성을 더욱 향상시킬 수 있는 장점이 있다.
궁극적으로, 본 발명의 실시예에 따르면, 궁극적으로 질화붕소나노튜브를 고분자 복합소재에 분산 정렬하여 제조함에 따라 유연하면서도 높은 압전계수를 가질 수 있다.
도 1은 본 발명의 일 실시예에 따른 전기방사 방법을 이용한 질화붕소나노튜브가 분산된 복합 압전소재 제조 방법의 순서도이다.
도 2는 본 발명의 일 실시예에 따른 전기방사 방법을 이용한 질화붕소나노튜브가 분산된 복합 압전소재 제조 장치의 개략적인 구성 도면이다.
도 3은 도 1의 제조 방법에 의해 제조된 복합 압전소재를 전자현미경(TEM)으로 확인한 이미지 도면이다.
도 4는 도 1의 제조 방법에 의해 제조된 복합 압전소재를 전자현미경(SEM)으로 확인한 이미지 도면이다.
도 5는 도 1의 제조 방법에 의해 제조된 복합 압전소재를 평가하기 위한 센서의 제작을 위해 사용된 각 구성들을 보여주는 도면이다.
도 6은 도 1의 제조 방법에 의해 제조된 복합 압전소재를 도 5의 센서로 제작한 후 오실로스코프에서 생성된 전압신호의 예를 나타낸 도면이다.
도 7a는 복합 압전소재로 사용된 PVDF의 구성원소의 배열에 따른 α-phase, β-phase 및 γ-phase의 구조이미지를 보여주는 도면이다.
도 7b는 전기방사로 제조된 복합 압전소재 필름의 FTIR 스펙트럼을 보여주는 도면이다.
도 7c는 일반적인 기계적 전단력을 이용하여 질화붕소나노튜브 정렬 분극을 시도한 캐스팅 방법으로 제조된 이소불화비닐 복합 압전소재의 FTIR스펙트럼을 보여주는 도면이다.
도 7d는 FTIR 스펙트럼의 피크를 이용하여 각기 제조된 복합 압전소재의 α-phase 및 β-phase의 계산된 구성비율을 보여주는 도면이다.
*도면 중 주요 부호에 대한 설명
100: 질화붕소나노튜브가 분산된 복합 압전소재 제조 장치
110: 용액 공급부
111: 고분자 용액
120: 용액 토출부
130: 고전압 인가부
140: 수집부
150: 나노섬유상의 복합 압전소재
S100: 용액 마련 단계
S200: 분산 단계
S300: 전기방사 단계
S400: 특성 평가 단계
본 발명의 이점 및/또는 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 전기방사 방법을 이용한 질화붕소나노튜브 기반 복합 압전소재 제조 방법의 순서도이고, 도 2는 본 발명의 일 실시예에 따른 전기방사 방법을 이용한 질화붕소나노튜브 기반 복합 압전소재 제조 장치의 개략적인 구성 도면이고, 도 3은 도 1의 제조 방법에 의해 제조된 복합 압전소재를 전자현미경(TEM)으로 확인한 이미지 도면이며, 도 4는 도 1의 제조 방법에 의해 제조된 복합 압전소재를 전자현미경(SEM)으로 확인한 이미지 도면이다.
먼저 도 1을 참조하면, 본 발명의 일 실시예에 따른 질화붕소나노튜브가 분산된 복합 압전소재 제조 방법은, 고분자가 포함된 고분자 용액을 마련하는 용액 마련 단계(S100)와, 고분자 용액에 질화붕소나노튜브(BNNTs: Boron Nitride Nanotubes)를 분산시키는 분산 단계(S200)와, 전기방사 방법을 이용하여 질화붕소나노튜브가 분산된 고분자 용액을 전기방사함으로써 나노섬유상의 복합 압전소재를 제조하는 전기방사 단계(S300)와, 복합 압전소재의 압전 특성을 평가하는 특성 평가 단계(S400)를 포함할 수 있다.
이러한 단계적 구성에 의해서, 질화붕소나노튜브를 별도의 분극 정렬 과정 없이도, 전기방사 방법에 의해 섬유와 같은 방향으로 질화붕소나노튜브를 배열할 수 있기 때문에 압전 특성이 개선된 복합 압전소재를 제조할 수 있다. 추가적으로 고분자를 구성하고 있는 원소들을 일정하게 정렬하여 분극 효과를 극대화할 수 있다.
부연하면, 고분자 용액에 포함된 고분자에 질화붕소나노튜브를 질서 있게 정렬시킬 수 있기 때문에 질화붕소나노튜브가 무질서하게 분포되어 있는 경우보다 전하의 이동 및 전달 효율을 향상시킬 수 있다. 특히 고분자 전체에 분산되어 있는 질화붕소나노튜브의 분극을 극대화시킬 수 있기 때문에 압전 특성을 향상시킬 수 있는 것이다.
구체적으로는, 전기방사 중 젯(jet)이 분사됨에 따라 생성되는 섬유 또는 나노섬유가 스트레칭되고, 이에 따라 섬유 내에 포함된 질화붕소나노튜브가 일정한 경향성을 가지며 배치될 수 있다.
아울러, 나노섬유의 복합 압전소재는 고분자로 형성된 나노섬유상 내부에 질화붕소나노튜브가 나노섬유상의 길이 방향을 따라 정렬될 수 있다.
각각의 단계에 대해 설명하면, 먼저 본 실시예의 용액 마련 단계(S100)는, 미리 준비된 용액에 고분자를 용해시켜 고분자 용액을 마련하는 단계이다. 용액 마련 단계(S100) 시 사용되는 고분자로는 이소불화비닐(PVDF, Polyvinylidene fluoride)일 수 있다. 그리고 용액으로는 DMA와 아세톤이 혼합된 용액일 수 있다. 이러한 용액에 고분자 즉 이소불화비닐이 용액 100wt%와 대비하여 10-30wt%, 보다 바람직하게는 14-20wt%로 용해되어 고분자 용액을 제조할 수 있다.
다만, 고분자 용액의 고분자 종류 및 용액의 종류 그리고 함유 비율이 이에 한정되는 것은 아니며, 다른 종류의 고분자 및 용액이 사용될 수 있음은 물론 용액에 고분자가 다른 함유 비율로 혼합될 수 있음은 당연하다.
한편, 본 실시예의 분산 단계(S200)는, 전술한 용액 마련 단계(S100)에 의해 마련된 고분자 용액에 질화붕소나노튜브를 분산시켜주는 단계이다. 즉, 고분자 용액에 질화붕소나노튜브를 고르게 분산시키는 것이다.
분산 단계(S200) 시, 고분자 용액에 질화붕소나노튜브를 고르게 분산시키기 위해 초음파 가진을 통한 계면활성 효과를 이용할 수 있다. 고분자 용액에 질화붕소나노튜브를 분산시킬 때 초음파를 통한 진동을 가함으로써 고분자 용액에 질화붕소나노튜브가 고르게 분산될 수 있는 것이다.
다만, 이에 한정되는 것이 아니라 교반기를 이용하여 고분자 용액에 질화붕소나노튜브를 고르게 분산시킬 수 있음은 당연하다.
또한, 이에 한정되는 것이 아니라 질화붕소나노튜브의 표면처리를 이용하여 고분자 용액에 질화붕소나노튜브를 고르게 분산시키며 동시에 고분자와 질화붕소나노튜브의 결합력을 향상시킬 수 있음은 당연하다.
한편, 분산 단계(S200)에 의해서 질화붕소나노튜브가 고르게 분산된 고분자 용액은, 전기방사 단계(S300)에 의해서 전기방사되어 나노섬유상의 복합 압전소재를 만들 수 있다.
본 실시예의 전기방사 단계(S300) 시, 전기방사 방법에 의해 고분자 용액이 분사되어 질화붕소나노튜브가 이소불화비닐과 동일한 방향으로 배열되어 나노섬유상의 고분자 필름이 형성될 수 있다.
이에 대해서는 도 2의 제조 장치(100)를 통하여 설명하기로 한다.
도 2를 참조하면, 본 실시예의 질화붕소나노튜브가 분산된 복합 압전소재 제조 장치(100)는, 질화붕소나노튜브가 분산된 고분자 용액(111)을 저장하고 공급하는 용액 공급부(110)와, 용액 공급부(110)로부터 고분자 용액을 토출시키는 용액 토출부(120)와, 용액 토출부(120)로부터 토출된 고분자 용액(111)이 나노섬유상(150)의 복합 압전소재로 수집되는 수집부(140)와, 용액 토출부(120)와 수집부(140)에 고전압을 인가하여 전기방사 방법에 의해 고분자 용액(111)이 수집부(140) 상에 수집되도록 하는 고전압 인가부(130)를 포함할 수 있다.
이러한 구성에 의해서, 전기방사 방법에 의해 용액 토출부(120)로부터 수집부(140)로 고분자 용액이 전기방사되어 질화붕소나노튜브가 고분자 용액의 고분자 상에 동일 방향으로 배열될 수 있다.
도 2에 도시된 것처럼, 용액 공급부(110)는 주사기 타입으로 마련될 수 있다. 따라서 용액 공급부(110)의 밀대 부분을 밀어서 고분자 용액을 용액 토출부(120)를 통해 토출시킬 수 있다.
용액 토출부(120)는 용액 공급부(110)의 선단에 결합된 니들 타입으로 마련될 수 있고, 수집부(140)는 회전 가능한 롤러 타입으로 마련될 수 있다. 다만, 수집부(140)의 구성이 이에 한정되는 것은 아니며, 두 개의 로드를 평행하게 설치하여 이용할 수도 있다.
여기서, 고전압 인가부(130)를 통해 용액 토출부(120) 및 수집부(140)에 고전압이 인가되면 용액 토출부(120)로부터 토출된 고분자 용액(111)이 표면장력에 의해서 용액 토출부(120)의 끝단에서 반구형으로 이룬 후 표면전하 사이의 상호 정전기적 반발력과 외부 전기장에 의해 테일러 콘이 형성될 수 있다.
그리고, 미리 설정된 전기장 이상의 전기장이 인가되면 고분자 용액(111)이 수집부(140) 방향으로 전기방사되어 수집부 상에 나노섬유상의 복합 압전소재(150)가 형성될 수 있다.
전기방사 단계(S300) 시, 고분자 용액(111)에 인가되는 인가전압은 5 내지 30kV일 수 있다. 그리고, 고분자 용액(111)의 사출 속도는 15 내지 70μL/min이며, 고분자 막이 형성되는 수집부(140)와 고분자 용액(111)이 전기방사되는 용액 토출부(120) 사이의 거리는 5 내지 20cm 사이에서 조절될 수 있다. 즉, 인가전압, 사출 속도 또는 거리를 조절하여 나노섬유상(150)의 다양한 특성에 따른 복합 압전소재(150)의 형태가 선택적으로 결정될 수 있는 것이다.
한편, 전기방사 단계(S300) 시 용액 토출부(120)를 통해 고분자 용액이 전기방사됨에 따라 섬유 또는 나노섬유가 스트레칭되는 효과를 발생시킬 수 있다. 따라서, 내부의 질화붕소나노튜브(BNNT)가 도 3에 도시된 것처럼 섬유의 방향으로 잘 정렬될 수 있다.
도 3을 통해, 본 실시예의 전기방사 방법이 적용되어 형성된 나노섬유상의 복합 압전소재에서 고분자인 이소불화비닐(PVDF)과 질화붕소나노튜브(BNNT)의 정렬 구조를 전자 현미경TEM(transmission electron microscopy)으로 관찰한 결과를 확인할 수 있다.
이를 통해 알 수 있듯이, 이소불화비닐(PVDF)의 길이 방향을 따라 질화붕소나노튜브(BNNT)가 고르게 배열되어 있으며, 따라서 이소불화비닐(PVDF)에 질화붕소나노튜브(BNNT)가 무질서하게 분포되어 있는 경우보다 전하의 분극 효율을 향상시킬 수 있다. 또한, 고분자 전체에 분포되어 있는 질화붕소나노튜브(BNNT)의 정렬을 통한 분극을 극대화시킬 수 있기 때문에 압전 특성을 향상시킬 수 있다.
이처럼, 전기방사 방법을 통해 고분자 용액을 전기방사함으로써 동일한 방향성(경향성)을 갖는 복합 압전소재를 제조할 수 있다. 도 4는 전자 현미경 SEM(scanning electron microscopy)을 통해 고분자의 이미지를 관찰한 것인데, 이를 통해서 동일한 방향성을 가졌음을 알 수 있다. 따라서, 질화붕소나노튜브의 분극화를 별도의 과정 없이 할 수 있음은 물론 고분자 내부에 질화붕소나노튜브가 잘 정렬되어 전하의 분극을 극대화할 수 있고, 이를 통해 압전 효율을 향상시킬 수 있다.
한편, 본 실시예의 특성 평가 단계(S400) 시, 압전상수측정기(Piezometer)를 이용하여 전술한 전기방사 단계(S300)에 의해 질화붕소나노튜브가 동일 방향으로 배열된 복합 압전소재의 압전 특성을 평가할 수 있다.
본 실시예의 특성 평가 단계(S400) 시, 압전상수측정기를 이용하여 압전소재의 수직 방향의 압전효과를 나타내주는 d33 모드의 압전 계수를 확인한다. 질화붕소나노튜브의 농도에 따라 압전 특성 평가를 실시할 수 있다. 예를 들면, 질화붕소나노튜브가 적용되지 않는 순수 이소불화비닐 고분자가 전기방사된 압전소재인 경우 50 pC/N이고, 질화붕소나노튜브의 농도가 2 wt%에서는 250 pC/N으로 확인되었다. 따라서 질화붕소나노튜브가 적용된 이소불화비닐 고분자에서 압전 특성이 최대 5배 이상 향상되는 것을 알 수 있다.
이러한 결과를 통해, 이소불화비닐만을 전기방사하여 제조할 때보다 질화붕소나노튜브를 혼합시켜 전기방사하는 경우 d33 모드의 압전계수가 50 pC/N에서 250 pC/N으로 대략 5배 이상 향상된 것을 알 수 있다. 이는 전기방사 방법으로 제조된 질화붕소나노튜브가 분산된 복합 압전소재의 내부에 질화붕소나노튜브가 잘 정렬되어 압전 특성이 향상된 것으로 파악할 수 있다.
한편, 이하에서는 도면을 참고하여 본 실시예에 따른 복합 압전소재를 사용한 압전센서에 대해서 설명하기로 한다.
도 5는 도 1의 제조 방법에 의해 제조된 복합 압전소재를 평가하기 위한 센서의 제작을 위해 사용된 각 구성들을 보여주는 도면이다.
도 5를 참조하면 전술한 방법으로 제조된 복합 압전소재(150)를 사용하여 제작된 압전센서(200)의 구성을 알 수 있는데, 압전센서(200)는 복수 개의 폴리이미드 필름(210a, 210b, 210c)이 적층되어 형성되고, 그 내부에는 백금(Pt) 전극(221) 및 알루미늄(Al) 전극(225)이 구비되며, 그 사이에 본 실시예의 복합 압전소재(150)가 구비될 수 있다. 그리고, 구리(Cu) 테이프(230)가 상단 폴리이미드 필름(210a) 및 하단 폴리이미드 필름(210b) 사이에 배치됨으로써 압전센서(200)가 제조될 수 있다.
이러한 압전센서(200)는 일정한 방향성을 가지는 복합 압전소재(150)를 적용함으로써 압전 특성이 극대화될 수 있도록 설계되었다. 아울러, 압전센서(200)의 내구성을 향상시키고 유연함을 유지시키기 위해 복수 개의 폴리이미드 필름(210a, 210b, 210c)을 사용하여 앞면과 뒷면을 덮을 수 있다.
아울러 복합 압전소재(150)에서 나오는 신호를 측정하기 위해 상하부 전극으로써 백금 전극(221) 및 알루미늄 전극(225)을 사용하며, 전선으로 구리 테이프(230)를 사용할 수 있다.
한편, 도 6은 도 1의 제조 방법에 의해 제조된 복합 압전소재를 도 5의 센서로 제작한 후 오실로스코프에서 생성된 전압신호의 예를 나타낸 도면이다.
다시 말해, 압전센서의 출력 전압(output voltage를 측정한 결과이다.
전술한 압전센서(200)에 수직 방향으로 일정한 힘을 가했을 때, 압전효과로 인해 나오는 신호로써 최대 28 Vpp(peak-to-peak)까지 나오는 것을 확인할 수 있다. 이는 본 실시예의 복합 압전소재의 높은 성능을 나타내는 것이며, 이러한 압전 특성은 전기방사 방법에 의해 제조된 복합 압전소재의 내부에 질화붕소나노튜브가 이소불화비닐 고분자와 함께 유연한 소자로써 적용되기 때문에 발생되는 것이다.
이러한 압전특성의 향상된 결과들은 전기방사 방법으로 제조한 시료에서 압전특성에 큰 영향을 미치는 이소불화비닐(PVDF)의 β-phase contents의 증가와 이에 따른 질화붕소나노튜브의 영향의 결과라고 할 수 있는데, 이는 도 7을 통해서 파악할 수 있다.
도 7은 복합 압전소재로 사용된 이소불화비닐(PVDF)의 (a) 구성원소의 배열에 따른 α-phase, β-phase 및 γ-phase의 구조이미지, (b) 전기방사로 제조된 복합 압전소재의 FTIR 스펙트럼, (c) 일반적인 기계적 전단력을 이용하여 질화붕소나노튜브 정렬 분극을 시도한 캐스팅 방법으로 제조된 이소불화비닐 복합 압전소재의 FTIR스펙트럼, (d) FTIR 스펙트럼의 피크를 이용하여 각기 제조된 복합 압전소재의 α-phase 및 β-phase의 계산된 구성비율을 보여주는 도면들이다.
도 7의 (a)에서는, 이소불화비닐의 α-phase, β-phase 및 γ-phase구조를 보여주고 있는데, 일반적으로 α-phase의 이소불화비닐은 압전성이 적으며, β-phase의 이소불화비닐은 압전성이 우수한 것으로 알려져 있다. 따라서, 일반적인 α-phase의 이소불화비닐을 분극 과정을 추가하여 β-phase의 이소불화비닐로 변환시켜야 압전성을 향상할 수 있다.
도 7의 (b)와 (c)를 통해, 본 실시예의 전기방사 방법이 적용되어 형성된 나노섬유상의 복합 압전소재와 기존 캐스팅 방법으로 제조된 복합 압전소재의 FTIR(Fourier Transform Infrared spectroscopy) 스펙트럼 결과를 확인할 수 있다.
이를 통해서, 도 7의 (d)에 도시된 것처럼, 이소불화비닐 고분자의 β-phase 함량이 캐스팅 방법으로 제조했을 경우에는 40%, 전기방사 방법으로 제조했을 경우에는 55%로 증가하는 것을 확인 할 수 있다. 특히, 캐스팅 방법으로 제조된 이소불화비닐/질화붕소나노튜브(PVDF/BNNT)(20wt%)의 경우 순수 이소불화비닐 고분자보다 β-phase contents가 30% 정도로 낮아지는 것을 볼 수 있는데, 이것은 고분자 내부에 질화붕소나노튜브가 무질서하게 분포되어 있기 때문임을 파악할 수 있다.
이와 반대로 전기방사 방법으로 제조된 이소불화비닐/질화붕소나노튜브는 β-phase 함량이 75% 정도로 증가하는 것을 확인 할 수 있다. 이는 전기방사 방법으로 제조하는 경우, 고분자 내부에 질화붕소나노튜브가 동일한 방향성으로 분포되어 고분자 구조 또한 동시에 β-phase 로 변환하는데 도움을 준 것으로 예상할 수 있다.
캐스팅 방법으로 제조된 복합 압전소재의 d 33 모드의 압전 계수를 평가해본 결과, 순수 이소불화비닐 고분자의 경우 5 pC/N이며, 20 wt% 이소불화비닐/질화붕소나노튜브의 경우 40 pC/N으로 확인할 수 있다.
이는 전기방사 방법으로 제조한 이소불화비닐/질화붕소나노튜브(2wt%) 복합 압전소재의 압전계수(250pC/N)와 비교해 볼 때, 6배 이상 차이가 나는 것을 확인 할 수 있으며, 이는 앞서 보여준 이소불화비닐의 β phase 함량에 따른 압전성 향상과 더불어 질화붕소나노튜브의 정렬에 따른 분극효과의 극대화의 결과로 볼 수 있다.
따라서 전기방사 방법으로 제조된 경우 순수 이소불화비닐의 β phase함량을 증가시키는 동시에 내부의 질화붕소나노튜브를 정렬 분극시킴으로써 전하 이동 효과를 극대화 시킬 수 있으며, 이 영향으로 압전 특성이 증가한 것으로 파악할 수 있다. 이는 다음의 표를 통해서 파악할 수 있다.
비교예1 비교예2 비교예3 실시예
시편종류 순수 PVDF PVDF/BNNT20wt% 순수 PVDF PVDF/BNNT2wt%
제조방법 캐스팅 캐스팅 전기방사 전기방사
압전상수(d33) 5 40 50 250
이와 같이, 본 발명의 실시예에 따르면, 별도의 분극 정렬 과정 없이도, 질화붕소나노튜브를 전기방사 방법에 의해 섬유와 같은 방향으로 배열할 수 있기 때문에 분극 효과를 극대화할 수 있고, 이를 통해 압전 특성이 향상된 고효율의 고분자 복합 압전소재를 구현할 수 있다. 아울러, 고분자 용액에 포함된 고분자에 질화붕소나노튜브를 질서 있게 정렬시킬 수 있기 때문에 질화붕소나노튜브가 무질서하게 분포되어 있는 경우보다 분극 효율을 향상시킬 수 있다.
부연하면, 전기방사 방법에 의해서 전압을 인가하여 생성된 전자기장을 통해 섬유를 제조하기 때문에 방사와 동시에 질화붕소나노튜브를 섬유와 같은 방향으로 배열할 수 있고, 고분자의 종류에 따라서 추가적으로 고분자 자체의 분극도 이룰 수 있기 때문에 고분자 복합소재의 분극 효과를 극대화할 수 있으며, 이를 통해 향상된 압전 특성을 구현할 수 있다.
또한, 고분자 섬유상 내부에 일정한 방향으로 질화붕소나노튜브의 정렬이 가능하고 추가적으로 고분자 자체 구성 원소의 분극 효과에 따라 압전 효과를 극대화시킬 수 있다.
궁극적으로 질화붕소나노튜브를 고분자 복합소재에 분산 정렬하여 제조함에 따라 유연하면서도 높은 압전계수를 가질 수 있다.
지금까지 본 발명에 따른 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능함은 물론이다. 그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허 청구의 범위뿐 아니라 이 특허 청구의 범위와 균등한 것들에 의해 정해져야 한다.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 이는 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명 사상은 아래에 기재된 특허청구범위에 의해서만 파악되어야 하고, 이의 균등 또는 등가적 변형 모두는 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (16)

  1. 고분자 용액을 마련하는 용액 마련 단계;
    상기 고분자 용액에 질화붕소나노튜브(BNNT)를 분산시키는 분산 단계; 및
    전기방사 방법을 이용하여 상기 질화붕소나노튜브가 분산된 상기 고분자 용액을 전기방사함으로써 나노섬유상의 복합 압전소재를 만드는 전기방사 단계;
    를 포함하는 것을 특징으로 하는 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 방법.
  2. 제1항에 있어서,
    상기 전기방사 단계 시, 상기 고분자 용액에 상기 질화붕소나노튜브의 농도가 0.01 내지 20wt%로 분산되는 것을 특징으로 하는 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 방법.
  3. 제2항에 있어서,
    상기 전기방사 단계 시, 상기 고분자 용액에 상기 질화붕소나노튜브의 농도가 2wt%로 분산되는 것을 특징으로 하는 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 방법.
  4. 제1항에 있어서,
    상기 전기방사 단계 시, 상기 고분자 용액에 인가되는 인가전압은 5 내지 30kV인 것을 특징으로 하는 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 방법.
  5. 제1항에 있어서,
    상기 용액 마련 단계 시 마련되는 상기 고분자 용액은 상기 고분자로서 이소불화비닐(PVDF)을 DMA 아세톤 용액에 상기 용액 대비 10-30wt%로 용해시킨 용액인 것을 특징으로 하는 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 방법.
  6. 제1항에 있어서,
    상기 분산 단계 시, 초음파 가진을 통한 계면활성 효과를 이용하여 상기 고분자 용액에 상기 질화붕소나노튜브를 균질 분산시키는 것을 특징으로 하는 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 방법.
  7. 제1항에 있어서,
    상기 분산 단계 시, 교반기를 이용하여 상기 고분자 용액에 상기 질화붕소나노튜브를 균질 분산시키는 것을 특징으로 하는 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 방법.
  8. 제1항에 있어서,
    상기 분산 단계 시, 상기 질화붕소나노튜브를 표면처리하여 상기 고분자 용액에 상기 질화붕소나노튜브를 균질 분산시키는 것을 특징으로 하는 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 방법.
  9. 제1항에 있어서,
    상기 전기방사 단계 시, 상기 전기방사 방법에 의해 상기 고분자 용액이 분사되어 상기 질화붕소나노튜브가 상기 고분자 용액과 동일한 방향으로 배열되어 나노섬유상의 고분자 필름이 형성되는 것을 특징으로 하는 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 방법.
  10. 제1항에 있어서,
    상기 고분자 용액의 사출 속도는 15 내지 70μL/min이며, 상기 고분자 막이 형성되는 수집기와 상기 고분자 용액이 전기방사되는 토출부 사이의 거리는 5 내지 20cm인 것을 특징으로 하는 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 방법.
  11. 질화붕소나노튜브(BNNT)가 분산된 고분자 용액을 저장하고 공급하는 용액 공급부;
    상기 용액 공급부로부터 상기 고분자 용액을 토출시키는 용액 토출부;
    상기 용액 토출부로부터 토출된 상기 고분자 용액이 나노섬유상의 복합 압전소재로 수집되는 수집부; 및
    상기 용액 토출부와 상기 수집부에 고전압을 인가하여 전기방사 방법에 의해 상기 고분자 용액이 상기 수집부 상에 수집되도록 하는 고전압 인가부;
    를 포함하며,
    상기 전기방사 방법에 의해 상기 용액 토출부로부터 상기 수집부로 상기 고분자 용액이 전기방사되어 상기 질화붕소나노튜브가 동일 방향으로 배열되는 것을 특징으로 하는 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 장치.
  12. 제11항에 있어서,
    상기 고분자 용액에 상기 질화붕소나노튜브의 농도가 0.01 내지 20wt%로 분산되는 것을 특징으로 하는 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 장치.
  13. 제11항에 있어서,
    상기 용액 공급부는 주사기 타입으로 마련되고, 상기 용액 토출부는 상기 용액 공급부의 선단에 결합된 니들 타입으로 마련되며, 상기 수집부는 회전 가능한 롤러 타입으로 마련되는 것을 특징으로 하는 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 장치.
  14. 제11항에 있어서,
    상기 고전압 인가부를 통해 상기 용액 토출부에 고전압이 인가되면 상기 용액 토출부로부터 토출된 상기 고분자 용액이 표면장력에 의해서 상기 용액 토출부의 끝단에서 반구형으로 이룬 후 표면전하 사이의 상호 정전기적 반발력과 외부 전기장에 의해 테일러 콘이 형성되고 설정된 전기장 이상의 전기장이 인가되면 상기 고분자 용액이 상기 수집부 방향으로 전기방사되어 상기 수집부 상에 나노섬유상의 압전 복합소재가 형성되는 것을 특징으로 하는 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 장치.
  15. 제14항에 있어서,
    상기 고전압 인가부에 의해서 상기 고분자 용액에 인가되는 인가전압은 10 내지 30kV이고,
    상기 고분자 용액의 사출 속도는 15 내지 70μL/min이며, 상기 고분자 막이 형성되는 수집기와 상기 고분자 용액이 전기방사되는 토출부 사이의 거리는 5 내지 20cm이며,
    상기 인가전압, 상기 사출 속도 또는 상기 거리를 조절하여 상기 나노섬유상의 형태가 선택적으로 결정되는 것을 특징으로 하는 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 장치.
  16. 고분자가 용해된 고분자 용액에 질화붕소나노튜브를 분산시킨 다음, 전기방사 방법에 의해서 상기 질화붕소나노튜브가 분산된 상기 고분자 용액을 전기 방사하여 나노섬유상으로 제조되며,
    상기 나노섬유상 내에 상기 질화붕소나노튜브가 상기 나노섬유상의 길이 방향으로 정렬되어 있는 것을 특징으로 하는 질화붕소나노튜브가 분산된 고분자 복합 압전소재.
PCT/KR2019/005766 2019-05-09 2019-05-14 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 방법 및 장치 그리고 그 방법에 의해 제조되는 고분자 복합 압전소재 WO2020226219A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980016278.9A CN112585774A (zh) 2019-05-09 2019-05-14 分散有氮化硼纳米管的高分子复合压电材料的制备方法及装置、借由该方法制备的高分子复合压电材料
JP2020545769A JP7250363B2 (ja) 2019-05-09 2019-05-14 窒化ホウ素ナノチューブが分散された高分子複合圧電材料の製造方法及び装置、並びにその方法により製造される高分子複合圧電材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190054469A KR102285932B1 (ko) 2019-05-09 2019-05-09 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 방법 및 장치 그리고 그 방법에 의해 제조되는 고분자 복합 압전소재
KR10-2019-0054469 2019-05-09

Publications (1)

Publication Number Publication Date
WO2020226219A1 true WO2020226219A1 (ko) 2020-11-12

Family

ID=73046857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005766 WO2020226219A1 (ko) 2019-05-09 2019-05-14 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 방법 및 장치 그리고 그 방법에 의해 제조되는 고분자 복합 압전소재

Country Status (5)

Country Link
US (1) US11765976B2 (ko)
JP (1) JP7250363B2 (ko)
KR (1) KR102285932B1 (ko)
CN (1) CN112585774A (ko)
WO (1) WO2020226219A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11994635B2 (en) * 2020-04-17 2024-05-28 The Government Of The United States Of America, As Represented By The Secretary Of The Navy MEMS nanotube based thermal neutron detector
US20220305719A1 (en) * 2021-03-23 2022-09-29 Xerox Corporation Piezoelectric composite filaments and use thereof in additive manufacturing
US11987677B2 (en) * 2021-04-30 2024-05-21 Meta Platforms Technologies, Llc PVDF thin film having a bimodal molecular weight and high piezoelectric response
CN113802206A (zh) * 2021-09-03 2021-12-17 南通强生石墨烯科技有限公司 一种白石墨烯荧光纤维及其制备方法
CN114427145B (zh) * 2022-01-24 2023-10-27 江苏斯迪克新材料科技股份有限公司 导热高分子复合材料及其制备方法
CN115074855B (zh) * 2022-07-11 2023-07-21 桂林电子科技大学 一种基于静电纺丝的疏水性高导热复合相变材料及其制备方法和应用
CN115651409A (zh) * 2022-11-07 2023-01-31 沈阳工业大学 一种基于氮化硼纳米管的复合材料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120095889A (ko) * 2009-10-13 2012-08-29 유나이티드 스테이츠 오프 아메리카 에즈 리프리젠티드 바이 더 애드미니스트레이터 오프 더 내셔널 에어로너틱스 앤드 스페이스 애드미니스트레이션 보론 니트라이드 나노튜브(bnnt) 및 bnnt 중합체 복합재로 제작된 에너지 전환 물질
KR20140004619A (ko) * 2010-07-26 2014-01-13 내셔날 인스티튜트 오프 에어로스페이스 어소시에이츠 붕소 질화물 나노튜브를 이용하여 제조된 높은 운동 에너지 관통자 차폐 물질
KR101848057B1 (ko) * 2017-09-06 2018-04-11 (주)티오엠에스 질화붕소나노튜브를 이용한 방사능 차폐재

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6783702B2 (en) 2001-07-11 2004-08-31 Hyperion Catalysis International, Inc. Polyvinylidene fluoride composites and methods for preparing same
US9130789B2 (en) 2008-10-15 2015-09-08 Stmicroelectronics Asia Pacific Pte. Ltd. Recovering data from a secondary one of simultaneous signals, such as orthogonal-frequency-division-multiplexed (OFDM) signals, that include a same frequency
JP2010275675A (ja) * 2009-06-01 2010-12-09 Shinshu Univ エラストマーウェブ、及びそれを用いた可撓性部材
KR20120083261A (ko) * 2012-06-18 2012-07-25 정기삼 압전 직물, 및 그를 이용한 마이크로 동력 에너지 수확 시스템
WO2015111755A1 (ja) 2014-01-27 2015-07-30 国立大学法人 福井大学 導電性ナノファイバーの製造方法
US9242456B2 (en) * 2014-03-31 2016-01-26 Xerox Corporation Aqueous ink jet blanket
KR20160083326A (ko) * 2014-12-30 2016-07-12 경희대학교 산학협력단 폴리락트산을 전기방사하여 얻은 나노섬유 웹 형태의 압전소재, 이 압전소재를 포함하여 이루어지는 압전센서 및 이들의 제조방법
CN105908490B (zh) * 2016-05-13 2018-03-27 哈尔滨工业大学 一种多功能纳米纸/静电纺丝纤维柔性复合膜结构的制备方法
WO2018085936A1 (en) * 2016-11-10 2018-05-17 Polyvalor, Limited Partnership Piezoelectric composite, ink and ink cartridge for 3d printing, bifunctional material comprising the piezoelectric composite, manufacture and uses thereof
KR101867905B1 (ko) 2016-11-14 2018-06-18 한국과학기술연구원 질화붕소 나노튜브 제조 장치 및 이를 이용한 질화붕소 나노튜브 제조 방법
KR101899103B1 (ko) * 2017-02-02 2018-09-14 내일테크놀로지 주식회사 공기 제트를 이용하여 제조된 붕소 전구체의 열처리를 통한 질화붕소나노튜브의 제조방법 및 장치
JP2018181508A (ja) 2017-04-07 2018-11-15 パナソニックIpマネジメント株式会社 電気化学デバイス用電極触媒層、膜/電極接合体、および電気化学デバイス
JP2018199220A (ja) 2017-05-25 2018-12-20 日本製紙パピリア株式会社 水溶性のナノ繊維層を有する積層シート
JP2021500160A (ja) 2017-10-24 2021-01-07 エムボディ インコーポレイテッド 生体高分子足場移植片およびその生成のための方法
CN107901523B (zh) * 2017-10-27 2021-07-13 上海交通大学 高介电、高储能纳米复合材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120095889A (ko) * 2009-10-13 2012-08-29 유나이티드 스테이츠 오프 아메리카 에즈 리프리젠티드 바이 더 애드미니스트레이터 오프 더 내셔널 에어로너틱스 앤드 스페이스 애드미니스트레이션 보론 니트라이드 나노튜브(bnnt) 및 bnnt 중합체 복합재로 제작된 에너지 전환 물질
KR20140004619A (ko) * 2010-07-26 2014-01-13 내셔날 인스티튜트 오프 에어로스페이스 어소시에이츠 붕소 질화물 나노튜브를 이용하여 제조된 높은 운동 에너지 관통자 차폐 물질
KR101848057B1 (ko) * 2017-09-06 2018-04-11 (주)티오엠에스 질화붕소나노튜브를 이용한 방사능 차폐재

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FU CHENJIE, LI QIANG, LU JIBAO, MATETI SRIKANTH, CAI QIRAN, ZENG XIAOLIANG, DU GUOPING, SUN RONG, CHEN YING, XU JIANBIN, WONG CHIN: "Improving thermal conductivity of polymer composites by reducing interfacial thermal resistance between boron nitride nanotubes", COMPOSITES SCIENCE AND TECHNOLOGY, vol. 165, 11 July 2018 (2018-07-11), pages 322 - 330, XP055760211, Retrieved from the Internet <URL:https://doi.org/10.1016/j.compscitech.2018.07.010> *
SEN, OZLEM ET AL.: "Boron nitride nanoiubes included thermally cross-linked gelatin-glucose scaffolds show improved properties", COLLOIDS AND SURFACES B: BIOINTERFACES, vol. 138, 23 November 2015 (2015-11-23), pages 41 - 49, XP029367112, DOI: https://doi.org/10.1016/j.colsurfb. 2015.1 1 .036 *

Also Published As

Publication number Publication date
US11765976B2 (en) 2023-09-19
JP2021526595A (ja) 2021-10-07
KR102285932B1 (ko) 2021-08-06
JP7250363B2 (ja) 2023-04-03
CN112585774A (zh) 2021-03-30
US20200357979A1 (en) 2020-11-12
KR20200129687A (ko) 2020-11-18

Similar Documents

Publication Publication Date Title
WO2020226219A1 (ko) 질화붕소나노튜브가 분산된 고분자 복합 압전소재 제조 방법 및 장치 그리고 그 방법에 의해 제조되는 고분자 복합 압전소재
Chamankar et al. A flexible piezoelectric pressure sensor based on PVDF nanocomposite fibers doped with PZT particles for energy harvesting applications
Miyazawa et al. C60 nanowhiskers in a mixture of lead zirconate titanate sol–C60 toluene solution
WO2017191887A1 (ko) 습식 방사공정을 이용한 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/그래핀/탄소나노튜브 복합섬유의 제조 방법
CN108442038B (zh) 一种具有高输出的柔性压电纤维薄膜及其制备方法
WO2022131841A1 (ko) Batio3 씨드층을 포함한 다결정 bisco3-pbtio3 압전 소재 및 이의 제조 방법
WO2016053020A1 (ko) 신축성 섬유 전극, 이를 이용한 마이크로-슈퍼커패시터 및 이의 제조방법
WO2019182362A1 (ko) 그래핀 산화물이 염색된 섬유 및 이의 제조방법
WO2016175453A1 (ko) 그라파이트 시트 및 이의 제조방법
WO2018131896A1 (ko) 액정복합탄소섬유 및 이의 제조방법
KR20130048934A (ko) 고분율 베타상, 압전성 및 강유전성 특성을 가지는 pvdf 나노섬유막 및 그 제조방법
CN103526337A (zh) 一种合成钛酸锶钡纳米管的方法
WO2021075635A1 (ko) 표면 작용기 제어를 통한 맥신의 극성 조절 방법
WO2018008830A1 (ko) 3차원 인쇄 가능한 유연전극용 복합소재
WO2021025531A1 (ko) 3d 프린팅 또는 적층 제조용 알루미늄 합금, 이를 이용한 3d 프린팅 또는 적층 제조 방법 및 3d 프린팅 또는 적층 제조된, 알루미늄 합금의 제품 또는 부품
CN113005644B (zh) 一种可拉伸自愈合热电复合薄膜的制备方法
Amith et al. Design and synthesis of PVDF-cloisite-30B nanocomposite fibers for energy harvesting applications
WO2016080801A1 (ko) 질화규소 나노섬유의 제조방법
JP7460955B2 (ja) チタン酸バリウム繊維、およびそれを含む樹脂組成物並びに高分子複合圧電体、およびチタン酸バリウム繊維の製造方法
WO2022075565A1 (ko) 직물소재를 이용한 리튬-황 전지 양극, 이를 포함하는 리튬-황 전지 및 그 제조방법
WO2020009367A1 (ko) 탄소나노튜브를 이용한 강성 강화 제품의 제조방법 및 이에 의해 제조된 강성 강화 제품
WO2022102881A1 (ko) 압전물질 복합체, 이의 필름과 제조방법, 및 이 필름을 이용한 센서
WO2022050571A1 (ko) 자기전기 기반의 미세먼지필터 및 이의 제조방법
WO2020213835A1 (ko) 탄화규소-질화규소 복합소재의 제조방법 및 이에 따른 탄화규소-질화규소 복합소재
WO2022154208A1 (en) Carbon nanotube fiber having improved physical properties and method for manufacturing same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020545769

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927714

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.04.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19927714

Country of ref document: EP

Kind code of ref document: A1