CN108442038B - 一种具有高输出的柔性压电纤维薄膜及其制备方法 - Google Patents

一种具有高输出的柔性压电纤维薄膜及其制备方法 Download PDF

Info

Publication number
CN108442038B
CN108442038B CN201810039739.1A CN201810039739A CN108442038B CN 108442038 B CN108442038 B CN 108442038B CN 201810039739 A CN201810039739 A CN 201810039739A CN 108442038 B CN108442038 B CN 108442038B
Authority
CN
China
Prior art keywords
film
piezoelectric
fiber
flexible piezoelectric
polymer matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810039739.1A
Other languages
English (en)
Other versions
CN108442038A (zh
Inventor
胡澎浩
赵朝贤
郑得昌
牛津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201810039739.1A priority Critical patent/CN108442038B/zh
Publication of CN108442038A publication Critical patent/CN108442038A/zh
Application granted granted Critical
Publication of CN108442038B publication Critical patent/CN108442038B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0092Electro-spinning characterised by the electro-spinning apparatus characterised by the electrical field, e.g. combined with a magnetic fields, using biased or alternating fields
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4318Fluorine series

Abstract

一种具有高输出的柔性压电纤维薄膜及其制备方法,属于电子复合材料及微纳米功能材料技术领域。采用静电纺丝的工艺,使用陶瓷纤维、导电纤维等一维无机材料作为填料制备套管结构、定向排列的聚合物基复合薄膜。套管结构纤维复合薄膜的填料核心为钛酸钡、钛酸锶钡、锆钛酸铅等压电陶瓷纤维,或银纳米纤维、多壁碳纳米管等一维导电填料,无机填料被包裹在聚合物基体纤维中。所述聚合物基体可为聚偏氟乙烯、聚偏氟乙烯‑三氟乙烯、聚偏氟乙烯‑三氟乙烯‑六氟丙烯等材料。通过调节填料含量和类型,压电输出电压可达20V,输出电流可达250nA。该复合材料具有柔性好、压电输出高、灵敏度高、重量轻的特点。可以作为可穿戴设备的电源、作为柔性传感器检测人体的活动等。

Description

一种具有高输出的柔性压电纤维薄膜及其制备方法
技术领域
本发明属于电子复合材料及微纳米功能材料技术领域,涉及采用静电纺丝的工艺,使用压电陶瓷纤维、导电纤维等一维无机材料作为填料的聚合物基套管结构、定向排列复合薄膜及其制备方法。该复合材料具有柔性好、压电输出高、灵敏度高、重量轻的特点。
背景技术
压电材料是指受到外力的作用时在两端出现电压的晶体材料,能够实现机械能和电能之间的相互转化。利用压电材料的特性,可以将其用于制作各种传感器元件、微纳米能源器件。
钛酸钡(BT)、锆钛酸铅(PZT)都是典型的压电陶瓷材料,具有价格低、易合成、压电系数高等优点,目前都已经得到大量的应用。但是由于其成型温度较高、不易制得复杂形状、脆性高等不足限制了其特别是在快速发展的柔性电子器件领域的应用。聚偏氟乙烯(PVDF)作为一种聚合物压电材料,因其材质柔韧、密度低、响应灵敏等优点备受关注。PVDF是一种半结晶聚合物,具有α、β、γ、δ、ε五种晶相,其中β晶相具有较高的偶极矩,表现出明显的压电效应,α晶相是PVDF最稳定的晶相但没有压电性能,通过极化可转变为β晶相。PVDF的二元、三元共聚物如聚偏氟乙烯-三氟乙烯(P(VDF-TrFE))、聚偏氟乙烯-三氟乙烯-六氟丙烯(P(VDF-TrFE-HFP))等在室温下更容易表现为β晶相。PVDF基压电材料克服了陶瓷压电材料硬而脆、难于加工等困难,具有广阔的应用前景。不过纯PVDF基聚合物的压电效应远低于传统的陶瓷材料,机电转化效率不高,限制了其应用。
为综合解决陶瓷压电材料的脆性问题和聚合物压电材料的效率问题,普遍的做法是将陶瓷材料与聚合物进行复合,结合二者的优点(Nano Energy,15(2015)177-185.)。在之前的报道中,研究者将压电陶瓷与压电聚合物复合从而得到同时具有柔性和较高压电效应的材料,取得了一定进展(Composites Part B:Engineering,72(2015)130-136;SmartMaterials and Structures,26(2017)095060.)。但压电输出功率还有很大的提升空间,并且需要对材料进行极化获得压电性能。
静电纺丝技术是目前公认的简单、低成本制备微米、纳米纤维材料的方法。通过静电纺丝技术制备得到的PVDF复合纤维薄膜,具有柔韧性好、压电相含量高(80%以上)、密度低、具有透气性的优点,并且省去了传统制备压电PVDF薄膜的极化步骤,简化的制备工艺更利于工业生产(Semiconductor Science and Technology,32(2017)064004.)。为改善目前的问题,提升压电复合材料的机电转换能力,我们利用静电纺丝工艺,将压电陶瓷材料与压电聚合物复合得到具有套管结构的取向纤维薄膜。可以作为可穿戴设备的电源、作为柔性传感器检测人体的活动等。
发明内容
本发明的目的是提供一种有高压电输出、柔性的取向套管结构纤维薄膜及其制备方法。
一种具有高输出的柔性压电纤维薄膜,其特征在于柔性压电纤维薄膜由无机纤维填料和聚合物基体组成,纤维结构为取向套管结构。
进一步地,所述的聚合物基体由聚偏氟乙烯(PVDF)、聚偏氟-三氟乙烯(P(VDF-TrFE))、聚偏氟乙烯-三氟乙烯-六氟丙烯(P(VDF-TrFE-HFP))中的一种或两种材料组成。
进一步地,所述的无机纤维填料核心为锆钛酸铅PZT、钛酸钡BT、钛酸锶钡BST或银纳米纤维、多壁碳纳米管MWCNT中的一种或两种材料构成。
进一步地,所述的取向套管结构纤维的直径为100~3000nm;所述柔性压电纤维薄膜的总厚度为10~500μm。
如上所述一种具有高输出的柔性压电纤维薄膜的制备方法,其特征在于纺丝液的配制和柔性压电纤维薄膜的制备工艺;柔性压电纤维薄膜中的无机纤维填料可通过静电纺丝或水热法获得。
1)纺丝液的配制:称取适量改性后的无机纤维填料,置于DMF和丙酮的混合溶剂有机溶剂中,超声波振荡分散至在溶剂中均匀分散为悬浊液;加入适量的聚合物基体,搅拌至其完全溶解,得到纺丝液;
2)柔性压电纤维薄膜的制备工艺:将纺丝液放入注射器中,在针头和接收滚轮分别加正电压和负电压,接收距离10~20cm,纺丝电压8~20kV,滚轮直径为10cm时,接收滚轮转速调整为900~2000rpm,推液速度为0.01~0.05ml/min。纺丝结束后将薄膜放在真空烘箱中40~60℃干燥9~24h。
薄膜的性能测试:将薄膜两侧贴上铝箔、铜箔或直接在薄膜两侧镀铜作为电极,夹在两层PET板中间封装,用导线从电极上引出后进行压电性能测试。压电输出测试时,沿薄膜中套管纤维的取向方向进行。
本发明的有益效果是:静电纺丝的制备工艺可以省去电场极化的步骤,制备过程更简单,并且可以使填料均匀地在膜内分散,使用高速旋转的接收滚轮在静电纺丝的过程中使纤维得到充分拉伸来提高压电相含量,同时可以得到取向排列的纤维,使偶极取向一致,在取向方向弯曲时获得更大的形变量,复合材料中的压电陶瓷纤维可以提高复合材料整体的压电性能,具有高长径比压电陶瓷,受力更容易集中,从而提升其压电输出。
附图说明
图1:套管结构取向纤维薄膜的静电纺丝工艺示意图。
图2:取向排列的BT/P(VDF-TrFE)套管纤维的扫描电镜图片。图(a)为图(b)的放大图。
图3:接收滚轮转速分布为0rpm和900rpm得到的5vol%含量BT/P(VDF-TrFE)纤维膜红外光谱图。转速为0rpm时β相含量为80.4%,转速为900rpm时β相含量为86.9%。
图4:纯P(VDF-TrFE)和5vol%含量PZT/P(VDF-TrFE)纤维膜的红外光谱图。纯P(VDF-TrFE)的β相含量为86.9%,添加5vol%PZT纤维以后β相含量提升为91.3%。
图5:组装得到的压电器件示意图。
图6:接收滚轮转速为0rpm和900rpm得到的5vol%含量BT/P(VDF-TrFE)纤维膜的压电输出(a)电压和(b)电流的测试结果。
图7:1500rpm接收的纯P(VDF-TrFE)和5vol%含量PZT/P(VDF-TrFE)纤维膜的压电输出(a)电压和(b)电流的测试结果。
具体实施方式
一种具有高输出的柔性压电纤维薄膜的制备方法,以一种填料核心为PZT纤维,PVDF聚合物为基体为例,取向套管结构纤维薄膜的制备流程为:
1)纺丝液的配制:称取适量改性后的PZT纤维,置于有机溶剂(如DMF和丙酮的混合溶剂)中,超声波振荡分散至PZT纤维在溶剂中均匀分散为悬浊液;加入适量的聚合物(如PVDF),搅拌至其完全溶解,得到纺丝液;
2)取向套管结构纤维的静电纺丝工艺:将纺丝液放入注射器中,在针头和接收滚轮分别加正电压和负电压,接收距离10~20cm,纺丝电压8~20kV,接收滚轮转速调整为900~2000rpm,推液速度为0.01~0.05ml/min。纺丝结束后将薄膜放在真空烘箱中40℃干燥10h。
实施例1
称取0.159g的表面改性后的BT纤维于烧杯中,加入3.20g的DMF和2.13g的丙酮,超声分散1h成为均匀的悬浊液,缓慢加入0.94g的干燥过的P(VDF-TrFE),在30℃下加热搅拌10h至完全溶解。将得到的纺丝液置于5mL注射器中进行静电纺丝,静电纺丝装置如图1所示,设置纺丝电压为15kV,纺丝距离为15cm,滚轮转速为1000rpm,推液速度为0.015ml/min,使用6#针头。连续电纺4h将得到的薄膜置于真空烘箱中40℃烘干10h,得到含量为5vol%的BT/P(VDF-TrFE)纤维膜,扫描电镜照片如图2所示。可以看出电纺得到的纤维均匀无串珠存在,无机纤维被完整包裹在聚合物基体当中,形成了套管结构。纤维之间平行排列,具有明显的取向结构。
实施例2
称取0.318g的表面改性后的BT纤维于烧杯中,加入6.40g的DMF和4.26g的丙酮,超声分散1h成为均匀的悬浊液,缓慢加入1.88g的干燥过的P(VDF-TrFE),在30℃下加热搅拌10h至完全溶解。将得到的纺丝液置于10mL注射器中进行静电纺丝,静电纺丝装置如图1所示,设置纺丝电压为15kV,纺丝距离为15cm,滚轮转速分别为0和900rpm,推液速度为0.20ml/min,使用7#针头。连续电纺5h将得到的薄膜置于真空烘箱中40℃烘干20h,得到BT/P(VDF-TrFE)纤维膜。图3为滚轮转速为分别为0和900rpm时,BT/P(VDF-TrFE)纤维膜的红外吸收光谱,β相含量分别为80.4%和86.9%。接收滚轮的高转速起到了机械拉伸的作用,有利于β相形成。将薄膜两侧贴上铝箔作为电极并连接导线,再用玻璃纸将薄膜封装起来,使用聚酰亚胺胶带固定好,制作成图5所示的器件以后沿纤维取向方向进行压电性能测试。图6压电测试结果表明滚轮转速900rpm时纤维取向薄膜的压电输出得到了提高。
实施例3
称取0.191g多巴胺表面改性后的PZT纳米纤维于烧杯中,加入3.20g的DMF和2.13g的丙酮,超声分散1h成为均匀的悬浊液,加入0.94g干燥过的P(VDF-TrFE),在30℃下加热搅拌10h至完全溶解。将得到的纺丝液置于5mL注射器中进行静电纺丝,静电纺丝装置如图1所示,设置纺丝电压为12.5kV,纺丝距离为15cm,滚轮转速为1500rpm,推液速度为0.12ml/min,使用6#针头。连续电纺4h得到的薄膜置于真空烘箱中40℃烘干10h,得到5vol%PZT/P(VDF-TrFE)纤维膜。对得到的薄膜进行红外测试,结果如图4所示,纯P(VDF-TrFE)与PZT/P(VDF-TrFE)纤维膜的β相含量分别为86.9%和91.3%。加入PZT的成核剂作用能促进P(VDF-TrFE)中β相的结晶。将薄膜两侧贴上铝箔作为电极并连接导线,再用玻璃纸将薄膜封装起来,使用聚酰亚胺胶带固定好,制作成图5所示的器件以后进行压电性能测试,图7的压电测试结果表明加入5%的PZT以后薄膜的压电输出得到了明显提升。

Claims (4)

1.一种具有高输出的柔性压电纤维薄膜,其特征在于柔性压电纤维薄膜由无机纤维填料和聚合物基体组成,并通过静电纺丝工艺制备得到,电纺得到的纤维结构为取向套管结构,无机纤维被完整包裹在聚合物基体;
所述的取向套管结构纤维的直径为100~3000 nm;所述柔性压电纤维薄膜的总厚度为10~500 μm;
所述的聚合物基体由聚偏氟乙烯PVDF、聚偏氟-三氟乙烯P(VDF-TrFE)、聚偏氟乙烯-三氟乙烯-六氟丙烯P(VDF-TrFE-HFP)中的一种或两种材料组成;
所述的无机纤维填料核心为锆钛酸铅PZT、钛酸钡BT、钛酸锶钡BST中的一种或两种材料构成。
2.根据权利要求1所述的柔性压电纤维薄膜的制造方法,其特征在于包括纺丝液的配制和柔性压电纤维薄膜的制备工艺,其中柔性压电纤维薄膜中的无机纤维填料通过静电纺丝或水热法获得;
1)纺丝液的配制:称取适量改性后的无机纤维填料,置于有机溶剂中,超声波振荡分散成均匀分散的悬浊液;加入适量的聚合物基体,搅拌至其完全溶解,得到纺丝液;
2)柔性压电纤维薄膜的制备工艺:将纺丝液放入注射器中,在针头和接收滚轮分别加正电压和负电压,接收距离10~20 cm,纺丝电压8~20 kV,滚轮直径为10 cm时,接收滚轮转速调整为900~2000 rpm,推液速度为0.01~0.05 ml/min;纺丝结束后将薄膜放在真空烘箱中40~60 °C干燥9~24h。
3.根据权利要求2所述的柔性压电纤维薄膜的制造方法,其特征在于通过在薄膜两侧贴上铝箔、铜箔或直接在薄膜两侧镀铜作为电极,夹在两层PET板中间封装,用导线从电极上引出后则可作为压电传感器或压电发电机。
4.根据权利要求2所述的柔性压电纤维薄膜的制造方法,其特征在于压电输出测试时,沿薄膜中套管纤维的取向方向进行。
CN201810039739.1A 2018-01-16 2018-01-16 一种具有高输出的柔性压电纤维薄膜及其制备方法 Active CN108442038B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810039739.1A CN108442038B (zh) 2018-01-16 2018-01-16 一种具有高输出的柔性压电纤维薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810039739.1A CN108442038B (zh) 2018-01-16 2018-01-16 一种具有高输出的柔性压电纤维薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN108442038A CN108442038A (zh) 2018-08-24
CN108442038B true CN108442038B (zh) 2021-02-26

Family

ID=63190900

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810039739.1A Active CN108442038B (zh) 2018-01-16 2018-01-16 一种具有高输出的柔性压电纤维薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN108442038B (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109053027A (zh) * 2018-09-18 2018-12-21 常州大学 一种用于生物传感器的纳米多孔材料层的制备方法
CN109211443A (zh) * 2018-09-18 2019-01-15 常州大学 一种弯曲不敏感压力传感器
CN109385743A (zh) * 2018-09-21 2019-02-26 华中科技大学 一种无机纳米纤维网络的柔性化复合结构及制备方法
CN109667067A (zh) * 2018-12-18 2019-04-23 中国科学院过程工程研究所 一种锆钛酸钡钙基柔性压电复合纤维薄膜及其制备方法和含该薄膜的柔性压电纳米发电机
CN109722754B (zh) * 2019-03-11 2021-09-07 嘉兴学院 一种Cu/PVDF-TrFE/CNTY复合压电纱的制备方法
CN112067176A (zh) * 2019-05-22 2020-12-11 西安交通大学 一种压电式柔性三维力传感器
CN110512354B (zh) * 2019-08-15 2021-07-27 东华大学 一种柔性钛酸钡陶瓷纳米纤维膜的制备方法
CN110965136B (zh) * 2019-11-08 2022-01-28 北京科技大学 一种基于钙钛矿聚合物复合材料的柔性压电纳米发电机制备方法
CN111270414A (zh) * 2020-03-23 2020-06-12 清华大学深圳国际研究生院 一种柔性压电纤维膜及其制备方法和应用
CN111850837A (zh) * 2020-07-24 2020-10-30 吉林农业大学 玉米醇溶蛋白基单轴静电纺丝取向纤维膜及其制备方法
KR102417447B1 (ko) * 2020-08-27 2022-07-06 주식회사 아모그린텍 압전형 나노섬유 얀 및 이의 제조방법
CN112281222A (zh) * 2020-10-28 2021-01-29 中科传感技术(青岛)研究院 一种静电纺丝法制备压电陶瓷粉的工艺
CN112538182A (zh) * 2020-12-03 2021-03-23 江西欧迈斯微电子有限公司 压电膜、其制备方法、指纹识别模组及电子设备
CN112481832B (zh) * 2020-12-18 2022-07-19 四川大学 一种P(VDF-TrFE)树状微纳纤维压电薄膜的制备方法
CN112899806B (zh) * 2021-02-03 2022-07-22 北京石油化工学院 一种多功能压电纳米纤维材料、柔性传感器及其制备方法
CN113106628A (zh) * 2021-03-23 2021-07-13 浙江大学 一种基于锆钛酸铅/pvdf复合纤维的柔性压电能量转化器件
CN113074624B (zh) * 2021-04-02 2022-08-16 电子科技大学 一种基于双张纸的柔性防水弯曲应变传感器及其制备方法
TWI786808B (zh) * 2021-09-06 2022-12-11 長庚大學 一種具有不同吸光波長的壓電複合材料及其形成方法
CN114381866B (zh) * 2021-11-25 2023-04-21 北京科技大学 PZT/Ti3C2Tx/PVDF复合柔性纤维膜、柔性纤维膜器件及其制备方法和应用
CN114812620B (zh) * 2022-04-13 2023-05-12 北京科技大学 一种基于离子传输的自驱动触觉感知器的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160027594A (ko) * 2014-09-01 2016-03-10 한국세라믹기술원 전기방사법을 이용한 나노섬유 복합체 제조 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3656732B2 (ja) * 2000-04-21 2005-06-08 日産自動車株式会社 エネルギー変換繊維体および吸音材
CN102719927B (zh) * 2012-07-04 2014-01-08 青岛大学 一种聚偏氟乙烯/碳纳米管复合纳米纤维的制备方法
CN105696110A (zh) * 2016-02-26 2016-06-22 哈尔滨工业大学深圳研究生院 一种导电纳米纤维及其制备方法与应用
CN106930004B (zh) * 2017-03-08 2018-11-09 西北工业大学 静电纺丝制备柔性碳化硅/碳纳米管复合纤维膜的方法
CN107192485B (zh) * 2017-05-11 2019-04-26 中原工学院 一种柔性可拉伸的多功能纳米纤维传感器及其制备方法
CN107354588A (zh) * 2017-08-15 2017-11-17 东华大学 一种增强静电纺聚合物基摩擦纳米发电机输出电压的方法
CN108221175A (zh) * 2017-12-25 2018-06-29 天津理工大学 一种高压电聚偏氟乙烯复合材料的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160027594A (ko) * 2014-09-01 2016-03-10 한국세라믹기술원 전기방사법을 이용한 나노섬유 복합체 제조 방법

Also Published As

Publication number Publication date
CN108442038A (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
CN108442038B (zh) 一种具有高输出的柔性压电纤维薄膜及其制备方法
Chamankar et al. A flexible piezoelectric pressure sensor based on PVDF nanocomposite fibers doped with PZT particles for energy harvesting applications
Zhao et al. Coaxially aligned MWCNTs improve performance of electrospun P (VDF-TrFE)-based fibrous membrane applied in wearable piezoelectric nanogenerator
Li et al. Boosting piezoelectric and triboelectric effects of PVDF nanofiber through carbon-coated piezoelectric nanoparticles for highly sensitive wearable sensors
Li et al. Multilayer assembly of electrospun/electrosprayed PVDF-based nanofibers and beads with enhanced piezoelectricity and high sensitivity
Sorayani Bafqi et al. Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency
Yuan et al. A poling-free PVDF nanocomposite via mechanically directional stress field for self-powered pressure sensor application
Choi et al. Microstructures and piezoelectric performance of eco-friendly composite films based on nanocellulose and barium titanate nanoparticle
CN111270414A (zh) 一种柔性压电纤维膜及其制备方法和应用
Kim et al. Piezoelectric properties of three types of PVDF and ZnO nanofibrous composites
US11765976B2 (en) Method and apparatus for producing polymeric piezoelectric composite including boron nitride nanotubes dispersed therein, and polymeric piezoelectric composites produced using the method
Gui et al. Enhanced output-performance of piezoelectric poly (vinylidene fluoride trifluoroethylene) fibers-based nanogenerator with interdigital electrodes and well-ordered cylindrical cavities
CN103367629B (zh) 纳米发电机及其制备方法和纤维阵列制备方法
Song et al. Forward polarization enhanced all-polymer based sustainable triboelectric nanogenerator from oriented electrospinning PVDF/cellulose nanofibers for energy harvesting
US11895921B2 (en) Manufacturing process for piezoelectric fiber having swiss-roll structure
CN115295714B (zh) 一种柔性压电纳米纤维网膜及其制备方法和应用
Zhu et al. High output power density nanogenerator based on lead-free 0.96 (K 0.48 Na 0.52)(Nb 0.95 Sb 0.05) O 3–0.04 Bi 0.5 (Na 0.82 K 0.18) 0.5 ZrO 3 piezoelectric nanofibers
KR20090087280A (ko) 압전 종이 및 그 제조방법
KR20110120250A (ko) 셀룰로오스-ZnO 압전 종이 및 이의 제조 방법
Fu et al. Electroactive and photoluminescence of electrospun P (VDF-HFP) composite nanofibers with Eu3+ complex and BaTiO3 nanoparticles
CN111063794A (zh) 一种复合压电膜及其制备方法和应用
Sultana et al. Toward high-performance green piezoelectric generators based on electrochemically poled nanocellulose
Tao et al. A review: Polyacrylonitrile as high-performance piezoelectric materials
Li et al. A piezoelectric generator based on PVDF/GO nanofiber membrane
Wang et al. Flexible triboelectric and piezoelectric coupling nanogenerator based on electrospinning P (VDF-TRFE) nanowires

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant