WO2022075565A1 - 직물소재를 이용한 리튬-황 전지 양극, 이를 포함하는 리튬-황 전지 및 그 제조방법 - Google Patents

직물소재를 이용한 리튬-황 전지 양극, 이를 포함하는 리튬-황 전지 및 그 제조방법 Download PDF

Info

Publication number
WO2022075565A1
WO2022075565A1 PCT/KR2021/010203 KR2021010203W WO2022075565A1 WO 2022075565 A1 WO2022075565 A1 WO 2022075565A1 KR 2021010203 W KR2021010203 W KR 2021010203W WO 2022075565 A1 WO2022075565 A1 WO 2022075565A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
carbon
sulfur battery
sulfur
positive electrode
Prior art date
Application number
PCT/KR2021/010203
Other languages
English (en)
French (fr)
Inventor
조진한
신동엽
송용권
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to US18/030,656 priority Critical patent/US20240021779A1/en
Priority to CN202180069290.3A priority patent/CN116368645A/zh
Publication of WO2022075565A1 publication Critical patent/WO2022075565A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1399Processes of manufacture of electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium-sulfur battery positive electrode using a textile material, a lithium-sulfur battery including the same, and a method for manufacturing the same, and more particularly, a lithium-sulfur battery using a textile material having a large amount of sulfur loading and excellent electrical properties It relates to a positive electrode, a lithium-sulfur battery including the same, and a method for manufacturing the same.
  • Electrodes, catalysts, adsorbents, sensors, and the like all have a configuration in which a conductive material such as a metal is included as an active material on a support. In this case, excellent electrical conductivity of the support, high specific surface area of the support and the conductive active material, easy processability, and the like are required.
  • an electrode directly using a carbon support such as carbon nanotube, graphene, etc. as a support and a method for manufacturing the same are used.
  • Korean Patent Laid-Open No. 10-2009-0041637 discloses a polyimide carbon nanofiber electrode capable of reducing the diameter of carbon fibers
  • Korean Patent Laid-Open No. 10-2017-0080159 discloses a carbon fiber fabric for energy storage devices.
  • a metal oxide-based nanowire-based electrode and a method for manufacturing the same are disclosed.
  • the textile material when used as an electrode, the textile material can increase the amount of loading of the active material based on high porosity and internal surface area, and becomes an effective structure for smooth ion movement. Therefore, research has been reported on fabricating a porous electrode by imparting conductivity to an insulating textile material and applying it as a high-performance energy storage device.
  • the lithium-sulfur battery As an energy storage device, a lithium-sulfur battery is being actively studied as a next-generation energy storage device due to its high theoretical energy density value.
  • the lithium-sulfur battery has a disadvantage in that the driving stability is low due to the low electrical conductivity of sulfur, which is a positive electrode material, volume expansion during operation, and a shuttle effect due to an irreversible reaction.
  • the fabric material can increase the loading amount of the active material based on high porosity and internal surface area, and is an effective structure for smooth ion movement, but has insulating properties. Therefore, research has been reported on fabricating a porous electrode by imparting conductivity to an insulating textile material and applying it as a high-performance energy storage device.
  • the problem to be solved by the present invention is to produce a porous current collector capable of maintaining excellent network properties of the textile material while having excellent conductivity, mechanical safety, and high specific surface area from the textile material, and based on this, the amount of sulfur loading
  • a method for manufacturing a lithium-sulfur battery positive electrode capable of improving the low electrical conductivity and utilization efficiency, which are chronic problems of the lithium-sulfur battery positive electrode by coating the electrode with a conductive capping layer (protective layer) while increasing the lithium-sulfur battery.
  • the present invention comprises the steps of carbonizing a fabric material by heat treatment to prepare a conductive support;
  • Lithium-sulfur battery positive electrode using a fabric material characterized in that it comprises the step of forming a capping layer by loading a second carbon material modified with a second functional group that can be assembled with the first carbon material on the conductive support A manufacturing method is provided.
  • the carbon material is a carbon nanotube
  • the first functional group is an amine group and the second functional group is a carboxyl group.
  • the heat treatment is performed within the range of 600 degrees Celsius to 2000 degrees Celsius, and the carbon support prepared according to the heat treatment is characterized in that it maintains the network structure of the textile material as it is.
  • the conductive material includes at least one selected from the group consisting of Ni, Cu, and Al.
  • the fabric material is characterized in that the fabric containing carbon atoms in the main chain.
  • the present invention is a lithium-sulfur battery positive electrode, a carbon support having a network structure of a fabric material; and a conductive metal material coated on the carbon support; a sulfur polymer loaded on the conductive metal material; a first carbon material modified with a first functional group coupled to the sulfur polymer; and a second carbon material combining with the first carbon material to form a capping layer.
  • the lithium-sulfur battery positive electrode is characterized in that manufactured by the above method.
  • the carbon material is a carbon nanotube
  • the first functional group is an amine group and the second functional group is a carboxyl group.
  • the conductive material includes at least one selected from the group consisting of Ni, Cu, and Al.
  • the present invention provides a lithium-sulfur battery including the lithium-sulfur battery positive electrode.
  • a carbon support having a network structure having excellent conductivity and high porosity is manufactured by heat-treating a textile material at a low temperature of 600 degrees Celsius, and then coating a metal active material with a simple electroplating method to provide excellent electrical/mechanical strength. And it is possible to manufacture a porous conductive structure excellent in processability.
  • the electrode body manufactured through the present invention can realize high energy density and fast charging/discharging speed per unit area according to the increase in sulfur loading through the high surface area and excellent electron transport characteristics of the porous metal current collector. Energy density and driving stability can be improved.
  • MWCNTs with amine groups were prepared through surface modification of multi-walled carbon nanotubes (MWCNTs), and mixed slurry (HS) without a sulfur polymer (S-poly) and an insulating polymer binder. ) and loaded inside the current collector.
  • MWCNTs multi-walled carbon nanotubes
  • HS mixed slurry
  • S-poly sulfur polymer
  • insulating polymer binder an insulating polymer binder
  • MWCNTs with carboxyl groups are made, and the surface of the mixed slurry loaded on the electrode is coated in multiple layers using a layered self-assembly method based on mutual hydrogen bonding with NH 2 -MWCNTs to form a conductive capping layer (CL). ) to prevent the shuttle effect of S-poly during driving, further improving driving stability.
  • COOH carboxyl groups
  • the present invention increases the loading amount of the active material and secures smooth ion mobility based on the high porosity and large surface area due to the support having the network structure of the textile material as it is, so that the conductive structure according to the invention is not only an energy storage device It can be applied to various electrical devices (eg, sensors) or catalysts that require a light porous structure, and the present invention for manufacturing a conductive structure by simple electroplating also has the advantage that there is no restriction on the size or shape of the structure to be manufactured.
  • FIG. 1 is a step diagram of a method for manufacturing a fabric-based porous conductive structure (EP-CT) according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating the preparation of the porous conductive current collector according to the above-described embodiment of the present invention and applying the same as a lithium-sulfur battery positive electrode.
  • FIG. 3 is a scanning electron microscope (SEM) image (FIG. 3b) of the sheet resistance value (FIG. 3a) of the carbon support (C-CT) formed according to the heat treatment temperature and the carbon support in which the porous structure is maintained after heat treatment at 700 degrees (FIG. 3B).
  • SEM scanning electron microscope
  • FIG. 4 is an SEM image (FIG. 4a) of the electroplating apparatus used in this embodiment and the metal-coated support according to the plating time, and pictures before and after plating (FIG. 4b).
  • FIG. 5 is an XRD result of a porous conductive structure and a commercially available porous nickel support according to an embodiment of the present invention.
  • FIG. 7 and 8 are, respectively, an SEM and elemental mapping image of the electroplated porous conductive structure according to the present invention (FIG. 7), and an SEM and elemental mapping image of a conductive structure in which a fabric support is electrolessly plated (FIG. 8). )am.
  • FIG. 9 and 10 are SEM images (FIG. 9) of the porous conductive structure according to the present invention, and SEM images (FIG. 10) of a commercially available porous nickel support.
  • EP-CT electroplated porous conductive structure
  • FIG. 12 is a schematic diagram of EP-CT/HS/CL formed by coating a conductive carbon capping layer on the EP-CT/HS of FIG. 11 in an interlayer self-assembly method and a view showing the combination thereof in detail.
  • FIG. 14 to 15 are graphs comparing the charge/discharge graphs and speed characteristics of C-CT / HS, EP-CT / HS, and EP-CT / HS / CL positive electrodes at an S-poly loading amount of 3 mg / cm 2
  • FIG. 16 is a table comparing capacitance characteristics.
  • the EP-CT which is the porous conductive structure of the present invention, has excellent charge transfer characteristics and reaction efficiency compared to the carbon support (C-CT) according to the present invention, and furthermore, the EP-CT It can be seen that the performance and stability of the electrode material according to the present invention are further improved by introducing a conductive capping layer (CL) on the CT structure.
  • C-CT carbon support
  • CL conductive capping layer
  • 19 is a graph analyzing the capacity and performance stability per unit area/mass as the S-poly loading amount of the EP-CT/HS/CL positive electrode is increased to 3, 5, and 8 mg/cm 2 .
  • the present invention shows that a porous conductive structure with excellent workability can be manufactured by performing simple electroplating based on a fabric material, which is an insulator, and can be used as an electrode, a catalyst, etc. Applicability to energy storage device was confirmed.
  • the heat treatment of the textile material is carried out at 600 to 900 degrees Celsius, and according to this heat treatment, the textile material having a hexagonal structure of sp2 bonds (cellulose, silk, polyacrolonitrile, Kevlar, etc.) is carbonized and the textile material A network structure with its own high porosity can be maintained, and after heat treatment, as the material is carbonized into a hexagonal structure of sp2 bond, it has excellent conductivity. Furthermore, during subsequent electroplating, the coating of the metal active material on the support with high porosity is applied to the surface of the support as a whole without a problem that occurs when plating the fabric material itself, overcharge occurs only on the surface, and is not coated to the inside. It can be coated uniformly.
  • FIG. 1 is a step diagram of a method for manufacturing a fabric-based porous conductive structure (EP-CT) according to an embodiment of the present invention.
  • the textile material is heat-treated and carbonized to prepare a carbon support.
  • the heat treatment temperature is important in determining the sheet resistance that can be followed by electroplating.
  • the sheet resistance that can be electroplated is obtained at the sheet resistance (361 ohm/sq) level of the textile material obtained at 700 degrees Celsius. Therefore, it is preferable to heat treatment at 700 degrees Celsius or more.
  • the heat treatment temperature is raised to 2000 degrees or more, but in this patent, since it is enough to secure the minimum conductivity for subsequent electroplating, 700 degrees Celsius or more, preferably 700 to 2000 degrees Celsius It is preferable to heat-treat at a level of less than, more preferably 700 to 1500 degrees Celsius, and very preferably 700 to 900 degrees Celsius.
  • electroplating is performed on the carbon support.
  • the electroplating was carried out in a manner of plating nickel, and in particular, by performing electroplating on a carbon support having a hexagonal structure of sp2 while maintaining a high porosity while lowering the sheet resistance to a level capable of electroplating.
  • the conductive structure according to the present invention has a high porosity (which means a high specific surface area and an active area), thereby increasing the amount of sulfur loading.
  • the conductive material is Ni, but all conductive materials capable of electroplating such as Cu and Al fall within the scope of the present invention.
  • a mixed slurry HS of a sulfur polymer and a first carbon material modified with a first functional group is loaded onto the porous conductive structure EP-CT.
  • the present invention provides 1) NH 2 -carbon material (eg, carbon nanotube) that improves conductivity and provides bonding with capping layer (CL) without a separate binder 2) porous with sulfur material It has an advantage that it can be loaded directly into the conductive structure in which the structure is formed.
  • carbon nanotubes are used, but any and all organic materials, graphene, and the like may all be included in the scope of the present invention.
  • a capping layer which is a protective layer, is formed of a second carbon material modified with a second functional group (eg, a carboxyl group) capable of layered self-assembly by hydrogen bonding with the functional group of the first carbon nanotube.
  • a second functional group eg, a carboxyl group
  • the positive electrode provided in the above method the lithium-sulfur battery positive electrode, a carbon support having a network structure of a textile material; a conductive material electroplated on the carbon support; a sulfur polymer loaded onto the conductive material; a first carbon material modified with a first functional group mixed with the sulfur polymer; and a second carbon material combined with the first carbon material to form a capping layer, and a large amount of sulfur is loaded without a separate binder to have excellent conductivity and reaction efficiency.
  • FIG. 2 is a diagram for explaining a schematic diagram of a capping layer formed by the method for manufacturing a porous conductive structure and an interlayer self-assembly method according to an embodiment of the present invention described above, and a view for explaining the combination thereof.
  • the carbon nanotubes may be bonded layer by layer according to hydrogen bonding between the first functional group and the second functional group, which is the electrode according to the present invention. suggest that it can be introduced.
  • the manufacturing method and measuring method can be summarized as follows.
  • MWCNTs Pure multi-walled carbon nanotubes
  • H 2 SO 4 /HNO 3 mixed solution 70° C. for 3 hours to prepare COOH-MWCNTs.
  • the COOH-MWCNT suspension was stirred with ethylenediamine (8.0 mL) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide methiodide (800 mg) for 6 hours to prepare NH 2 -MWCNTs.
  • the suspension was purified over the next 3 days (MWCO: 12,000-14,000) to remove impurities and residues.
  • EP-CT Ni-electroplated porous conductive structure
  • An electroplated porous conductive structure was prepared by carbonizing a fabric material (Cotton) and then electroplating. For this purpose, the fabric was first washed and dried. Thereafter, the temperature was raised to 700 degrees Celsius at a rate of 2 degrees Celsius per minute and heated for 3 hours. Then, after cooling to room temperature, it was immersed in a watt bath, and electroplating was performed using nickel (Ni) as the negative electrode and the fabric as the positive electrode. The current density during electroplating was 216 mA/cm 2 for 20 minutes. It was then washed at room temperature and dried.
  • Ni nickel
  • the S-poly 65% by weight of the S-poly, 25% by weight of carbon black and 10% by weight of the NH 2 -MWCNT were mixed in N-methyl-2-pyrrolidone (NMP), which was then mixed for 1 hour. Sonication was performed under high output conditions. Thereafter, the prepared porous conductive structure (EP-CT) was immersed in the sulfur slurry (HS) to load it (EP-CT/HS).
  • the present invention has the advantage that the loading amount of sulfur can be controlled by the viscosity of the sulfur slurry, which can be controlled according to the amount of NMP in the solvent.
  • the prepared COOH-MWCNT and NH 2 -MWCNT solutions were sequentially coated on the EP-CT/HS loaded with the sulfur slurry using a vacuum pump to form a capping layer (EP-CT/HS/CL).
  • Figure 3a is sheet resistance data of the carbon support according to the heat treatment temperature.
  • FIGS. 3A and 3B it can be seen that at 700 degrees Celsius, a sheet resistance of 361.2 ⁇ /sq capable of electroplating appears. Therefore, it can be seen that when heat treatment is performed at a temperature of 700 degrees Celsius or higher, it is possible to manufacture the support body of the structure according to the present invention.
  • 4A and 4B are photographs of the electroplating apparatus used in the present embodiment and the coating photograph of the support according to the plating time, and photographs before and after plating, respectively.
  • FIGS. 4A and 4B it can be seen that as nickel is electroplated in the plating apparatus of FIG. 4A , nickel is coated on the support to form a conductive structure. In particular, it can be seen that a raised structure is formed on the surface according to the plating time.
  • FIG 5 is an XRD result of a porous conductive structure and a commercially available porous nickel support according to an embodiment of the present invention.
  • the commercially available porous nickel support was nickel foam (Ni foam, Goodfellow, Index number: 028-002-00-7, CAS number: 7440-02-0.).
  • the loading resistance decreases with the electroplating time.
  • such a linear decrease in resistance is different from the phenomenon in which excessive charging occurs only on the outer surface of the fabric material and is not coated to the inside, that is, the phenomenon in which the resistance does not decrease rapidly after the initial stage. In this case, it proves that plating occurs uniformly even to the inside of the fabric material without excessive charging.
  • FIG. 7 and 8 are SEM and elemental mapping images of the conductive structure (EP-CT) according to the present invention, respectively, and the SEM of the conductive structure (EL-CT) electroless plating without carbonizing the fabric material support itself. It is an element mapping image.
  • the surface of the coated metal material includes a structure in which nano-sized protrusions are raised (protuberant structure), and is uniformly coated. It can be seen that there is On the other hand, in the case of electroless plating, it can be seen that the uniformity of the coated conductive material is significantly lowered, and there are problems such as aggregation and clogging of pores.
  • FIGS. 9 and 10 are SEM images of a porous conductive structure (EP-CT) according to the present invention, and SEM images of a commercially available porous nickel support.
  • the porous conductive structure according to the present invention has significantly higher porosity and active area than a commercially available nickel support.
  • S-poly sulfur polymer
  • EP-CT porous conductive structure
  • the sulfur polymer loading amount of 3 mg or more and up to 8 mg / cm 2 can be achieved. That is, in the case of coating the mixed slurry (S-poly, NH 2 -MWCNT, carbon black) containing S-poly in the example (EP-CT) according to the present invention, 3, 5 based on the S-poly loading amount , it can be confirmed that even a large amount of 8 mg / cm 2 is loaded without blocking the pores, and this is that the conductive structure prepared according to the present invention maintains the pores and network structure of the initial fabric material as it is, so that a larger amount of active material can be loaded prove that
  • FIG. 12 is a schematic diagram of a method for manufacturing EP-CT/HS/CL by loading a carbon material modified with a second functional group and a carbon material modified with a first functional group into EP-CT/HS to form a capping layer; It is a figure explaining the coupling mechanism.
  • the carbon nanotubes may be bonded layer by layer according to hydrogen bonding between the first functional group and the second functional group.
  • the capping layer formed based on the mutual bonding force between the functional groups can improve the performance stability as well as the conductivity of the EP-CT/HS electrode, and this is because the electrode according to the present invention stably introduces the desired functional group into the electrode support in the manner described above. due to being able to
  • FIG. 13 is a cyclic voltametry (CV) measurement result of an EP-CT/HS/CL anode (S-poly loading: 3 mg/cm 2 ) in which a capping layer is formed on the EP-CT/HS.
  • CV cyclic voltametry
  • the CV was scanned at a rate of 0.03 mVs ⁇ 1 , and the voltage range was Li/Li+ vs 1.7 to 2.8 V.
  • the CV scan results in the steady state show two reduction peaks centered at 2.28 and 1.98 V, which are (1) shorter S-poly oligosulfur units and lithium polysulfide (Li 2 S x 4 ⁇ attributable to the reduction of x ⁇ 8) to organoDIB (organoDIB) and (2) conversion of S-poly to fully discharged organosulfur-DIB product and insoluble lithium sulfide (Li 2 S 2 and Li 2 S), respectively did it
  • the oxidation peaks show 2.31 V and 2.42 V, which is due to the conversion of fully discharged short-chain organosulfur-DIB to long-chain S-poly.
  • GCD galvanostatic charge/discharge
  • C-CT/HS loaded with sulfur slurry on a non-electroplated carbon support, EP-CT/HS without a capping layer, and EP-CT/HS/CL with a capping layer formed were two Discharge plateaus were seen, which is consistent with the CV results of FIG. 13 .
  • EP-CT/HS secondary discharge plateau: 1.9 mAh/cm 2 and ⁇ E: 165 mV
  • EP-CT/ HS/CL 2.1 mAh/cm 2 and 156 mV
  • the electrode reaction efficiency of the porous conductive structure (EP-CT) according to the present invention is higher than that of the carbonized support (C-CT) and the interfacial reaction with the active material is excellent.
  • FIG. 15 is a graph comparing the speed characteristics of a lithium-sulfur battery at a loading amount of 3 mg/cm 2
  • FIG. 16 is a table comparing the capacity characteristics.
  • the EP-CT/HS anode showed a lower charge transfer resistance (Rct) value than that of C-CT/HS, which was lower than that of C-CT (164 ⁇ ).
  • Rct charge transfer resistance
  • suggest a fast charge transfer characteristic.
  • the EP-CT/HS/CL positive electrode with the capping layer exhibited a lower Rct value (81 ⁇ ), which is a lithium-sulfur battery positive electrode according to the present invention by introducing a conductive capping layer on the EP-CT structure. It can be seen that the rapid redox kinetics of
  • the electrode loaded with the conductive capping layer according to the present invention has higher safety and maintains a high areal capacity.
  • 19 is a graph analyzing the performance of a lithium-sulfur battery positive electrode at loading amounts of 3, 5, and 8 mg / cm 2 .
  • a biologically active material eg, an enzyme material or a probe
  • a liquid sample A large amount of silver can be absorbed and contacted by the porous support, and thus, in the present invention, it is possible to develop a sensor electrode with high sensitivity even with a small amount of sample compared to a biosensor using a substrate structure such as glass.
  • the present invention further improved the performance efficiency and stability of the anode by using a separate capping layer, suggesting that any functional group capable of binding to the sensor probe material can be introduced into the conductive support having metallic properties. .
  • the conductive structure according to the present invention described above can be used not only as an electrode of an energy storage device, but also as a conductive material requiring a high specific surface area and high pores, for example, a catalyst and a sensor, all of which fall within the scope of the present invention.
  • the present invention relates to an electrode material and its industrial applicability is recognized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

직물소재를 열처리로 탄화시켜 전도성 지지체를 제조하는 단계; 상기 전도성 지지체 상에 전도성 금속물질을 전기도금 하는 단계; 황 고분자 및 상기 황 고분자과 수소결합할 수 있는 제 1 기능기로 개질된 제 1 탄소물질을 포함하는 슬러리를 상기 전기도금된 전도성 지지체에 로딩하는 단계; 상기 제 1 탄소물질과 층상 자기조립할 수 있는 제 2 기능기로 개질된 제 2 탄소물질을 상기 전도성 지지체에 로딩하여 캡핑층을 형성하는 단계를 포함하는 것을 특징으로 하는 직물소재를 이용한 리튬-황 전지 양극 제조방법이 제공된다.

Description

직물소재를 이용한 리튬-황 전지 양극, 이를 포함하는 리튬-황 전지 및 그 제조방법
본 발명은 직물소재를 이용한 리튬-황 전지 양극, 이를 포함하는 리튬-황 전지 및 그 제조방법에 관한 것으로, 보다 상세하게는 많은 황 로딩양, 우수한 전기적 특성을 갖는 직물소재를 이용한 리튬-황 전지 양극, 이를 포함하는 리튬-황 전지 및 그 제조방법에 관한 것이다.
전극, 촉매, 흡착제, 센서 등은 모두 지지체 상에서 금속과 같은 전도성 물질을 활물질로 함유한 구성을 갖는다. 이 경우, 지지체의 우수한 전기전도성, 지지체 및 전도성 활물질의 높은 비표면적, 용이한 가공성 등이 필요하다.
이를 위하여 지지체로서 탄소나노튜브, 그래핀 등과 같은 탄소 지지체를 직접 사용한 전극 및 그 제조방법이 활용되고 있다.
예를 들어 대한민국 공개특허 10-2009-0041637호는 탄소섬유의 직경을 작게 할 수 있는 폴리이미드 탄소나노섬유 전극을 개시하고 있으며, 대한민국 공개특허 10-2017-0080159호는 에너지 저장 장치용 탄소섬유직물/금속산화물계 나노와이어 기반 전극 및 그의 제조방법을 개시하고 있다.
하지만, 이와 같은 탄소 지지체의 직접 사용은, 탄소 기반 지지체의 제조를 필요로하며, 이를 위하여 별도의 탄소 기반 소재의 제조가 요구된다는 문제가 있다.
이를 대체하고자 직물소재를 지지체로 사용하는 연구가 활발하다. 예를 들어 전극으로 사용하는 경우, 직물소재는 높은 기공률과 내부 표면적을 바탕으로 활물질의 로딩(loading) 양을 증가시킬 수 있을 뿐만 아니라, 원활한 이온 이동을 위한 효과적인 구조체가 된다. 따라서, 절연성의 직물소재에 전도성을 부여하여 다공성 전극을 제작하고, 이를 고성능 에너지 저장 소자로 적용하는 연구가 보고되고 있다.
에너지 저장 소자로서 리튬-황 배터리는, 높은 이론적 에너지 밀도 값으로 인해 차세대 에너지 저장 소자로 활발하게 연구가 진행되고 있다. 하지만, 리튬-황 배터리는 양극 물질인 황의 낮은 전기전도성, 구동 중 부피 팽창, 그리고 비가역적인 반응으로 인한 황의 손실(shuttle effect)로 인해 구동 안정성이 낮다는 단점이 있다.
이를 극복하기 위해서 황과 물리적/화학적 결합력을 갖고 전도성을 갖는 재료를 황과 혼합하여 전극화 하는 연구가 활발히 진행되고 있지만, 평판에서 이루어진 연구들로 황의 로딩양 한계를 보인다.
이러한 점에서 집전체의 활물질 로딩 양 증가에 따른 전기전도성 및 이온전도도 한계를 극복하고 단위 부피/면적당 고밀도 에너지 용량 및 출력 특성을 구현하기 위해서는 우수한 전기전도성과 높은 표면적을 갖는 다공성 전극에 대한 개발이 필수적으로 이루어져야 한다.
다공성 집전체를 제작하는데 있어 직물소재는 높은 기공률과 내부 표면적을 바탕으로 활물질의 로딩 양을 증가시킬 수 있을 뿐만 아니라 원활한 이온 이동을 위해 효과적인 구조체이지만, 절연 특성을 지니고 있다. 따라서, 절연성의 직물소재에 전도성을 부여하여 다공성 전극을 제작하고, 이를 고성능 에너지 저장 소자로 적용하는 연구가 보고되고 있다.
하지만, 이러한 다양한 사례들은 아래와 같은 이유로 고성능 에너지 저장 소자를 위한 효과적인 다공성 집전체 제작에 어려움이 있는데, 그 이유는 우선 기존 상용화된 다공성 금속 집전체는 높은 전기전도성을 갖지만, 소자의 경량화에 있어 무거울 뿐만 아니라 기공률과 내부 표면적이 제한된다. 또한, 강산을 이용한 에칭 과정과 비싼 가격으로 대량의 전극을 제작하는데 제약이 있으며, CNT 또는 그래핀과 같이 전도성 탄소재료를 직물소재에 코팅한 탄소 기반의 다공성 전극의 경우는 금속재료를 사용한 경우보다 전도성이 낮을 뿐만 아니라 전기화학적으로 안정성이 떨어진다는 단점이 있다.
한편 무전해 전기도금(electroless deposition)법을 이용해 직물소재를 코팅하는 경우, 직물소재의 내부 피브릴 구조를 균일하게 코팅하기 어려울 뿐 아니라 뭉침현상으로 인해 다공성 구조의 표면적을 효과적으로 활용하기 어렵다. 또한, 표면처리 및 환원과정에서 불순물이 포함되어 최종 전극의 전기전도성 및 기계적 안정성에 한계를 가져온다.
더 나아가, 추가적으로 금속 나노입자를 코팅하는 경우, 입자 간 계면 처리에 대한 지식의 부족과 입자 간 계면 저항으로 인해 벌크 금속과 같은 전기전도성 부여가 어려우며, 이를 극복하기 위한 추가 표면처리 공정은 전체 전극 제작을 위한 공정 시간의 장기화를 가져온다는 단점이 있다.
따라서, 본 발명이 해결하고자 하는 과제는 직물소재로부터 우수한 전도성, 기계적 안전성 및 높은 비표면적을 가지면서도 직물소재가 가지는 우수한 네트워크 특성을 그대로 유지할 수 있는 다공성 집전체를 제작하고, 이를 바탕으로 황의 로딩양을 증가시킴과 동시에 전도성 캡핑층(보호층)으로 전극을 코팅함으로서 리튬-황 전지 양극의 고질적인 문제인 낮은 전기전도성과 이용 효율을 향상시킬 수 있는 리튬-황 전지 양극 제조방법을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 직물소재를 열처리로 탄화시켜 전도성 지지체를 제조하는 단계;
상기 전도성 지지체 상에 전도성 금속물질을 전기도금하는 단계;
상기 황 고분자 및 상기 황 고분자과 수소결합할 수 있는 제 1 기능기로 개질된 제 1 탄소물질을 포함하는 슬러리를 상기 코팅된 전도성 지지체에 로딩하는 단계;
상기 제 1 탄소물질과 층상자기조립할 수 있는 제 2 기능기로 개질된 제 2 탄소물질을 상기 전도성 지지체에 로딩하여 캡핑층을 형성하는 단계를 포함하는 것을 특징으로 하는 직물소재를 이용한 리튬-황 전지 양극 제조방법을 제공한다.
본 발명의 일 구현예로서, 상기 탄소물질은 탄소나노튜브이며, 상기 제 1 기능기는 아민기 상기 제 2 기능기는 카르복실기인 것을 특징으로 한다.
본 발명의 다른 구현예로서, 상기 열처리는 섭씨 600 도 내지 2000도 범위 내에서 진행되며, 상기 열처리에 따라 제조된 상기 탄소 지지체는 상기 직물소재의 네트워크 구조를 그대로 유지하는 것을 특징으로 한다.
본 발명의 또다른 구현예로서, 상기 전도성 물질은 Ni, Cu, Al으로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함하는 것을 특징으로 한다.
본 발명의 또다른 구현예로서, 상기 직물소재는 탄소원자를 주쇄에 함유하는 직물인 것을 특징으로 한다.
또한, 본 발명은 리튬-황 전지 양극은, 직물소재의 네트워크 구조를 갖는 탄소 지지체; 및 상기 탄소 지지체 상에 코팅된 전도성 금속물질;상기 전도성 금속물질에 로딩된 황 고분자;상기 황 고분자와 결합하는 제 1 기능기로 개질된 제 1 탄소물질; 및 상기 제 1 탄소물질과 결합하여 캡핑층을 형성하는 제 2 탄소물질을 포함하는 리튬-황 전지 양극을 제공한다.
본 발명의 일구현예로서, 상기 리튬-황 전지 양극은 상기 방법에 의하여 제조된 것을 특징으로 한다.
본 발명의 다른 구현예로서, 상기 탄소물질은 탄소나노튜브이며, 상기 제 1 기능기는 아민기 상기 제 2 기능기는 카르복실기인 것을 특징으로 한다.
본 발명의 또다른 구현예로서, 상기 전도성 물질은 Ni, Cu, Al으로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함하는 것을 특징으로 한다.
아울러, 본 발명은 상기 리튬-황 전지 양극을 포함하는 리튬-황 전지를 제공한다.
본 발명에 따르면, 직물소재를 섭씨 600도 수준의 저온에서 열처리하여 우수한 전도성과 높은 다공성을 갖는 네트워크 구조의 탄소 지지체를 제조한 후, 간단한 전기도금 방법으로 금속 활물질을 코팅함으로써 전기적/기계적 강도가 우수하고 가공성이 뛰어난 다공성 전도성 구조체를 제조할 수 있다. 특히 본 발명을 통해 제작된 전극체는 다공성 금속 집전체의 높은 표면적과 우수한 전자전달특성을 통해 황의 로딩양 증가에 따른 단위 면적당 높은 에너지 밀도와 빠른 충방전 속도를 구현할 수 있으며, 리튬-황 배터리의 에너지 밀도와 구동 안정성을 향상시킬 수 있다.
또한, 다중벽(multi-walled) 탄소나노튜브(MWCNT)의 표면 개질을 통해 아민기(NH2)가 달린 MWCNT를 제작하고, 이를 황 고분자(S-poly)와 절연성 고분자 바인더 없이 혼합 슬러리(HS)를 만들어 집전체 내부에 로딩했다. NH2-MWCNT는 S-poly 층의 전도성을 향상시켜주며, -NH2 기는 구동 중 비가역적으로 이동하는 lithium polysulfide와의 결합력으로 S-poly의 이용 효율을 향상시켜 에너지 밀도를 향상시켰다. 이후 카르복실기(COOH)기가 달린 MWCNT를 만들어, NH2-MWCNT와의 상호 수소 결합력을 기반으로 하는 층상자기조립법을 이용해 전극에 로딩된 혼합 슬러리의 표면을 다층으로 코팅하여 전도성 캡핑층(capping layer (CL))을 형성함으로써 구동 중 S-poly의 셔틀 효과(shuttle effect)를 막아 구동 안정성을 더욱 향상시켰다.
또한 본 발명은 직물소재의 네트워크 구조를 그대로 가지는 지지체로 인한 높은 기공률과 넓은 표면적으을 바탕으로 활물질의 로딩 양을 증가시킴과 동시에 원활한 이온 이동도를 확보함으로 발명에 따른 전도성 구조체는 에너지 저장 소자뿐만 아니라 가벼운 다공성 구조가 요구되는 다양한 전기소자(예를 들어 센서) 또는 촉매 등에 적용될 수 있으며, 간단한 전기도금으로 전도성 구조체를 제조하는 본 발명은 제작하고자 하는 구조체의 크기나 모양에 제약이 없다는 장점 또한 있다.
도 1은 본 발명의 실시예에 따른 직물소재 기반 다공성 전도성 구조체(EP-CT) 제조방법의 단계도이다.
도 2는 상술한 본 발명의 실시에에 따른 다공성 전도성 집전체 제조 및 이를 리튬-황 전지 양극으로 적용한 모식도이다.
도 3은 열처리 온도에 따라 형성된 탄소 지지체(C-CT)의 면저항 값(도 3a)과 700도 열처리 후 다공성 구조가 유지되는 탄소 지지체의 주사전자현미경(SEM) 이미지(도 3b)이다.
도 4는 본 실시예에서 사용된 전기도금 장치와 도금시간에 따라 금속으로 코팅된 지지체의 SEM 이미지 (도 4a), 도금 전/후의 사진(도 4b)이다.
도 5는 본 발명의 실시예에 따른 다공성 전도성 구조체와 상용화된 다공성 니켈 지지체의 XRD 결과이다.
도 6은 탄소 지지체에 전기도금 시간에 따른 전기적 특성의 변화를 측정한 결과이다.
도 7 및 8은 각각 본 발명에 따른 전기도금된 다공성 전도성 구조체의 SEM과 원소 맵핑(elemental mapping) 이미지(도 7), 직물소재 지지체를 무전해 도금한 전도성 구조체의 SEM과 원소 맵핑 이미지(도 8)이다.
도 9 및 10은 각각 본 발명에 따른 다공성 전도성 구조체의 SEM 이미지(도 9), 상용화되어 있는 다공성 니켈 지지체의 SEM 이미지(도 10)이다.
도 11은 전기도금된 다공성 전도성 구조체(EP-CT)에 슬러리 담지법을 통해 황 고분자(S-poly)을 3, 5, 8 mg/cm2 로딩한 EP-CT/HS의 SEM과 원소 맵핑 이미지이다.
도 12는 도 11의 EP-CT/HS에 층간자기조립 방식으로 전도성 탄소 캡핑층을 코팅하여 EP-CT/HS/CL이 형성되는 모식도와 그 결합을 자세히 나타내는 도면이다.
도 13은 EP-CT/HS/CL 양극 (S-poly 로딩 양: 3 mg/cm2)의 CV(cyclic voltametry) 측정결과이다.
도 14 내지 15는 S-poly 로딩 양 3 mg/cm2에서의 C-CT/HS, EP-CT/HS, 그리고 EP-CT/HS/CL 양극의 충방전 그래프와 속도 특성을 비교한 그래프이고, 도 16은 용량 특성을 비교한 표이다.
도 17은 C-CT/HS, EP-CT/HS, 그리고 EP-CT/HS/CL 양극 (S-poly 로딩 양: 3 mg /cm2)의 Nyquist plots 분석결과이다.
도 18은 C-CT/HS, EP-CT/HS, EP-CT/HS/CL 양극 (S-poly 로딩 양: 3 mg/cm2)의 싸이클링 테스트 결과이다.
도 14, 15, 16, 17, 18을 참조하면, 본 발명에 따라 탄소 지지체(C-CT) 대비 본 발명의 다공성 전도성 구조체인 EP-CT의 전하전달 특성과 반응 효율이 우수하며, 나아가 EP-CT 구조상에 전도성의 캡핑층(CL)을 도입함으로써 본 발명에 따른 전극물질의 성능과 안정성이 더욱 향상됨을 알 수 있다.
도 19는 EP-CT/HS/CL 양극의 S-poly 로딩 양을 3, 5, 8 mg/cm2 로 증가시킴에 따른 단위 면적/질량당 용량과 성능 안정성을 분석한 그래프이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 이하 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 발명은 상술한 문제를 해결하기 위하여 절연체인 직물소재 기반으로 간단한 전기도금을 실시하여 가공성이 우수한 다공성의 전도성 구조체를 제작하여 전극, 촉매 등에 활용할 수 있음을 보이고 나아가 전극으로 활용하는 경우 고성능 배터리인 에너지 저장 소자로의 적용 가능성을 확인하였다.
특히 본 발명은 직물소재의 열처리를 섭씨 600 내지 900도에서 진행하며, 이러한 열처리에 따라 sp2 결합의 육각 구조를 갖는 직물소재(셀룰로오스, 실크, 폴리아크롤로나이트릴, 케블라 등)는 탄화되어 직물소재 자체의 높은 기공률을 갖는 네트워크 구조를 유지할 수 있으며, 열처리 후 소재가 sp2 결합의 육각 구조로 탄화됨에 따라 우수한 전도성을 가지게 된다. 더 나아가, 후속하는 전기도금 시 이러한 높은 기공률의 지지체 상에 금속 활물질의 코팅은 직물소재 자체에 도금을 하는 경우 발생하는 문제, 표면에만 과도금이 일어나고, 내부까지 코팅되지 않는 문제 없이 전체적으로 지지체 표면에 균일하게 코팅될 수 있다.
도 1은 본 발명의 일 실시예에 따른 직물소재 기반 다공성 전도성 구조체(EP-CT) 제조방법의 단계도이다.
도 1을 참조하면 본 발명의 일 실시예에 따른 직물소재 기반 전도성 구조체 제조방법은, 먼저 직물소재를 열처리하여 탄화시켜 탄소 지지체를 제조한다.
본 발명의 일 실시예에서 상기 열처리 온도는 후속하는 전기도금이 가능한 면저항을 결정짓는데 중요한데, 본 발명에서는 섭씨 700도에서 얻어지는 직물소재의 면저항(361 옴/sq) 수준에서 전기도금이 가능한 면저항이 얻어지게 되며, 따라서 섭씨 700도 이상으로 열처리하는 것이 바람직하다. 일반적으로 직물소재 자체의 전도성을 높이기 위해서 열처리 온도를 2000도 이상으로 높이나, 본 특허에서는 후속하는 전기도금을 위한 최소한의 전도성을 확보하면 되기 때문에 섭씨 700도 이상, 바람직하게는 섭씨 700도 내지 2000도 미만, 보다 바람직하게는 섭씨 700도 내지 1500도, 매우 바람직하게는 섭씨 700도 내지 900도 수준으로 열처리히는 것이 바람직하다.
이후 상기 탄소 지지체 상에 전기도금을 실시한다. 본 발명의 일 실시예에서 상기 전기도금은 니켈을 도금하는 방식으로 진행되었으며, 특히 전기도금이 가능한 수준으로 면저항을 낮추면서도 높은 기공률을 유지하며 sp2의 육각구조를 갖는 탄소 지지체에 전기도금을 실시함으로써 단시간에 높은 전기전도성을 부여함으로써 직물소재 기반 다공성 전도성 구조체를 제조할 수 있다. 본 발명에 따른 전도성 구조체는 높은 기공률(이것은 높은 비표면적 및 활성 면적을 의미함)을 가지며, 이로써, 황의 로딩 양을 증가시킬 수 있다.
본 발명의 일 실시예에서 상기 전도성 물질은 Ni이었느나, Cu, Al 등과 같이 전기도금이 가능한 모든 전도성 물질이 다 본 발명의 범위에 해당한다.
이후 황 고분자와 제 1 기능기(예를 들어 아민기)로 개질된 제 1 탄소물질의 혼합 슬러리(HS)를 상기 다공성 전도성 구조체(EP-CT)에 로딩한다. 즉, 본 발명은 별도의 바인더 없이 1) 전도성을 향상시키며 캡핑층(capping Layer, CL)과의 결합력을 제공하는 NH2-탄소물질(예를 들어 탄소나노튜브)을 2) 황 물질과 함께 다공 구조가 형성된 전도성 구조체에 그대로 로딩할 수 있는 장점을 갖는다. 본 발명의 일 실시예에서는 탄소나노튜브를 사용하였으나 임의의 모든 유기물, 그래핀 등이 모두 본 발명의 범위에 포함될 수 있다.
그 다음 상기 제 1 탄소나노튜브의 기능기와 수소결합하여 층상자기조립이 가능한 제 2 기능기(예를들어 카르복실기)로 개질된 제 2 탄소물질로 보호층인 캡핑층를 형성한다.
이상의 방법으로 제공된 양극은, 리튬-황 전지 양극은, 직물소재의 네트워크 구조를 갖는 탄소 지지체; 상기 탄소 지지체 상에 전기도금된 전도성 물질; 상기 전도성 물질에 로딩된 황 고분자; 상기 황 고분자와 혼합된 제 1 기능기로 개질된 제 1 탄소물질; 및 상기 제 1 탄소물질과 결합하여 캡핑층을 형성하는 제 2 탄소물질을 포함하며, 별도의 바인더 없이 많은 양의 황이 로딩되어 우수한 전도성과 반응 효율을 갖게 된다.
도 2는 상술한 본 발명의 일 실시에에 따른 다공성 전도성 구조체 제조방법과 층간자기조립 방식으로 캡핑층이 형성되는 모식도와 그 결합을 설명하는 도면이다.
보다 상세하게는 도 12를 참조하면, 제 1 기능기와 제 2 기능기간 수소결합에 따라 탄소나노튜브가 층별로 결합할 수 있으며, 이것은 본 발명에 따른 전극은 상술한 방식으로 원하는 기능기를 전극 지지체에 도입할 수 있음을 시사한다.
제조방법과 측정방법은 다음으로 정리될 수 있다.
1) 직물소재를 열처리하여 전도성이 부여된 탄소 지지체 형성
2) 탄소 지지체에 전기도금을 실시하여 우수한 전기전도도를 갖는 다공성 전도성 구조체 제작
3) 제작된 전극의 전기적 특성을 4-probe를 이용해 측정
4) 황을 고분자 중합하여 황 고분자(S-poly)를 합성
5) MWCNT의 표면을 -NH2 기로 개질하여 S-poly와 혼합 슬러리를 제조
6) 담지법을 통해 다공성 금속집전체 내부에 혼합 슬러리를 로딩
7) NH2-MWCNT와 COOH-MNWCNT를 층간자기조립을 이용해 상호 수소결합력을 형성시키며 다층으로 코팅
8) 제작된 리튬-황 전지 양극의 전기화학적 특성 평가를 통해 전극의 에너지 저장 특성을 분석
이하 보다 구체적인 실시예를 통하여 본 발명은 보다 상세히 설명한다.
실시예
황 고분자 (S-poly) 제조
황 파우더(4.50g, 17.6 mmol)을 섭씨 185도까지 오일 배쓰에서 가열하고, 녹색의 녹은 황에 1,3-다이이소프로페닐벤젠(0.5g, 3.16 mmol)을 추가하였고, 이후 10분간 교반하고 상온에서 냉각하였다.
COOH-MWCNT 및 NH 2 -MWCNT 제조
순수 다중벽(multi-walled) 탄소나노튜브(MWCNT)를 H2SO4/HNO3 혼합용액에서 섭씨 70도로 3시간 산화시켜 COOH-MWCNT를 제조하였다. 다음 COOH-MWCNT 현탁액을 에틸렌디아민(8.0 mL)와 1-(3-디메틸아미노프로필)-3-에틸카보디이미드 메티오다이드(800mg)으로 6시간 동안 교반하여 NH2-MWCNT를 제조하였다. 현탁액은 다음 3일간 정제 (MWCO: 12,000-14,000)하여 불순물과 잔류물을 제거하였다.
Ni-전기도금된 다공성 전도성 구조체(EP-CT) 제조
전기도금된 다공성 전도성 구조체(EP-CT)를 직물소재(Cotton)를 탄화시킨 후 전기도금함으로써 제조하였다. 이를 위하여 우선 직물을 세척하고 건조하였다. 이후 분당 섭씨 2도의 속도로 섭씨 700도까지 온도를 상승시켜 3시간 동안 가열하였다. 다음 상온에서 냉각시킨 후 와트 배쓰에 침지한 후 니켈(Ni)을 음극, 직물을 양극으로 하여 전기도금을 진행하였다. 전기도금 시 전류밀도는 20분간 216 mA /cm2이었다. 이후 상온에서 세척된 후 건조하였다.
슬러리 코팅된 EP-CT 전극의 전도성 캡핑 (EP-CT/HS/CL)
황 로딩을 위하여 65 중량%의 상기 S-poly, 25 중량%의 카본 블랙 그리고 10 중량%의 상기 NH2-MWCNT를 N-메틸-2-피롤리돈(NMP)에 혼합하고, 이를 1시간동안 높은 출력 조건으로 초음파처리 하였다. 이후 상기 제조된 다공성 전도성 구조체(EP-CT)를 상기 황 슬러리(HS)에 침지시켜 이를 로딩하였다 (EP-CT/HS). 특히 본 발명은 황의 로딩 양을 상기 황 슬러리의 점도로 제어할 수 있는 장점이 있는데, 이것은 용매의 NMP의 양에 따라 제어될 수 있다. 다음으로, 황 슬러리가 로딩된 EP-CT/HS에 상기 제작된 COOH-MWCNT와 NH2-MWCNT 용액을 순차적으로 진공펌프를 이용해 코팅하여 캡핑층을 형성하였다 (EP-CT/HS/CL).
실험예
도 3a는 열처리 온도에 따른 탄소 지지체의 면저항 데이터이다.
도 3a와 3b를 참조하면, 섭씨 700도에서는 전기도금이 가능한 361.2 Ω/sq의 면저항이 나타나는 것을 알 수 있다. 따라서 섭씨 700도 온도 이상에서 열처리하는 경우 본 발명에 따른 구조체의 지지체 제조가 가능하다는 것을 알 수 있다.
도 4a 및 4b는 각각 본 실시예에서 사용된 전기도금 장치와 도금시간에 따른 지지체의 코팅 사진, 그리고 도금 전/후의 사진이다.
도 4a 및 4b를 참조하면, 니켈을 도 4a의 도금 장치에서 전기도금함에 따라 지지체에 니켈이 코팅되어 전도성 구조체가 형성된 것을 알 수 있다. 특히 도금 시간에 따라 표면에 융기 구조가 형성되는 것을 알 수 있다.
도 5는 본 발명의 일 실시예에 따른 다공성 전도성 구조체와 상용화된 다공성 니켈 지지체의 XRD 결과이다. 여기에서 상용화된 다공성 니켈 지지체는 니켈 폼(Ni foam, Goodfellow사, Index number: 028-002-00-7, CAS number: 7440-02-0.)이었다.
도 5를 참조하면, 본 발명에 따른 직물소재 기반 지지체에 니켈이 코팅되는 경우 상이한 결정성을 갖는 것을 알 수 있다. 즉, 도 5의 결과로부터 본 발명에 따라 탄화-전기도금시킨 전도성 구조체(EP-CT)에는 기존의 상용화된 다공성 니켈 구조체와 같이 양질의 니켈이 형성될 수 있음을 알 수 있다.
도 6은 탄소 지지체에 전기도금 시간에 따른 밀도와 전기적 특성의 변화를 측정한 결과이다.
도 6을 참조하면, 전기도금 시간에 따라 로딩되는 저항이 감소하는 것을 알 수 있다. 특히 이러한 선형적인 저항의 감소는, 직물소재 외부 표면에서만 과도금이 일어나고 내부까지 코팅되지 않는 경우의 현상, 즉, 초기 이후 저항이 급속하게 감소하지 않는 현상과는 상이한 것으로, 이상의 결과는 본 발명의 경우 과도금 없이 직물 소재 내부까지도 도금이 균일하게 일어나는 것을 증명한다.
도 7 및 8은 각각 본 발명에 따른 전도성 구조체(EP-CT)의 SEM과 원소 맵핑 (elemental mapping) 이미지, 직물소재 지지체 자체를 탄화하지 않고 무전해 도금한 전도성 구조체(EL-CT)의 SEM과 원소 맵핑 이미지이다.
도 7 및 8을 참조하면, 본 발명의 경우 균일한 니켈의 분포를 확인할 수 있으며, 특히 코팅된 금속물질의 표면이 나노 사이즈의 돌기들이 융기(protuberant structure)된 구조를 포함하며, 균일하게 코팅되어 있음을 알 수 있다. 한편 무전해 도금의 경우 코팅된 전도성 물질의 균일성이 현저히 떨어지며, 응집 현상, 기공 막힘 등의 문제가 있음을 알 수 있다.
도 9 및 10은 각각 본 발명에 따른 다공성 전도성 구조체(EP-CT)의 SEM 이미지, 상용화되어 있는 다공성 니켈 지지체의 SEM 이미지이다.
도 9 및 10을 참조하면, 본 발명에 따른 다공성 전도성 구조체는 상용화된 니켈 지지체에 비해 현저히 높은 기공도와 활성면적을 갖는 것을 알 수 있다.
도 11은 본 발명에 따른 다공성 전도성 구조체(EP-CT)에 황 고분자(S-poly)를 로딩한 결과이다.
도 11을 참조하면, 본 발명의 경우 황 고분자 로딩 양을 3 mg 이상 8 mg /cm2 까지 달성할 수 있음을 알 수 있다. 즉, 본 발명에 따른 실시예(EP-CT)에 S-poly를 포함한 혼합 슬러리(S-poly, NH2-MWCNT, 카본 블랙)를 코팅하는 경우, S-poly 로딩 양을 기준으로 3, 5, 8 mg /cm2 의 많은 양까지도 기공을 막지 않고 로딩됨을 확인할 수 있으며, 이것은 본 발명에 따라 제조된 전도성 구조체는 초기 직물소재의 기공과 네트워크 구조를 그대로 유지함으로써 보다 많은 양의 활물질 로딩이 가능하다는 것을 증명한다.
도 12는 EP-CT/HS에 제 2 기능기로 개질된 탄소물질과 제 1 기능기로 개질된 탄소물질을 로딩하여 캡핑층을 형성시킴으로써 EP-CT/HS/CL를 제조하는 방법에 대한 모식도와 그 결합 메커니즘을 설명하는 도면이다.
도 12를 참조하면, 제 1 기능기와 제 2 기능기간 수소결합에 따라 탄소나노튜브가 층별로 결합할 수 있다. 이렇게 기능기간 상호 결합력을 기반으로 형성된 캡핑층은 EP-CT/HS 전극의 전도성뿐만 아니라 성능 안정성을 향상시킬 수 있으며, 이것은 본 발명에 따른 전극은 상술한 방식으로 원하는 기능기를 전극 지지체에 안정적으로 도입할 수 있음에 기인한다.
도 13은 EP-CT/HS에 캡핑층을 형성한 EP-CT/HS/CL 양극 (S-poly 로딩양 : 3 mg/cm2)의 CV(cyclic voltametry) 측정결과이다.
도 13을 참조하면, CV를 0.03 mVs-1의 속도로 스캔하였으며, 이때 전압 범위는 Li/Li+ vs 1.7 내지 2.8 V였다. 그 결과를 보면, 정상상태의 CV 스캔 결과는 2.28 및 1.98 V에 중심을 두는 2개의 환원 피크를 나타내는데 이것은 (1) S-poly가 보다 짧아진 올리고황 유닛과 lithium polysulfide (Li2Sx 4≤x≤8)의 유기황-DIB(organoDIB)로의 환원과 (2) S-poly가 완전히 방전된 유기황-DIB 생성물과 비용해성 lithium sulfide(Li2S2 및 Li2S)로의 전환에 각각 기인한 것이다.
반면 산화 피크는 2.31 V와 2.42 V를 나타내는데, 이것은 완전히 방전된 짧은 사슬 길이의 유기황-DIB가 긴 사슬길이의 S-poly로의 전환되는 것에 기인한 것이다.
도 14는 EP-CT/HS/CL양극 (S-poly 로딩 양 : 3 mg/cm2)의 GCD (galvanostatic charge/discharge)를 측정결과이다.
도 14를 참조하면, 전기도금 되지 않은 탄소 지지체 상에 황 슬러리가 로딩된 C-CT/HS, 캡핑층이 없는 EP-CT/HS, 그리고 캡핑층이 형성된 EP-CT/HS/CL은 2개의 방전 플래토우(discharge plateaus)를 보였으며, 이것은 도 13의 CV 결과와 일치한다.
즉, 도 14에서 3 mg/cm2으로 S-poly 양을 고정했을 했을 때, EP-CT/HS(2차 방전 플래토우 : 1.9 mAh /cm2 및 △E : 165 mV)와 EP-CT/HS/CL(2.1 mAh /cm2 및 156 mV)는 C-CT/HS(1 mAh /cm2과 210 mV)보다 상당히 긴 2차 방전 플래토우와 보다 작은 전압갭(△E)를 보여준다. 이는, 본 발명에 따른 다공성 전도성 구조체(EP-CT)가 탄화시킨 지지체(C-CT) 보다 전극 반응 효율이 높고 활물질과의 계면 반응이 우수함을 의미한다.
도 15는 로딩 양 3 mg/cm2에서의 리튬-황 전지의 속도 특성을 비교한 그래프이고, 도 16은 용량 특성을 비교한 표이다.
도 15 내지 16을 참조하면, 본 발명에 따른 다공성 전도성 구조체(EP-CT)를 전극으로 사용하고 캡핑층을 층상자기조립 방식으로 도입한 경우는 빠른 계면 반응, 뛰어난 속도 특성, 그리고 높은 용량을 갖는 것을 알 수 있다. 즉, 활물질인 S-poly의 로딩 양 3 mg/cm2을 기준으로 캡핑층이 없고 EP-CT/HS(본 발명)의 성능값이 C-CT/HS(비교예) 대비 더 높음을 알 수 있다. 이는 EP-CT가 C-CT 대비 충방전 시에 황의 빠른 산화환원 반응을 가능하게 함으로써 성능이 더 높음을 보여준다. 또한, 도 15의 경우 C-rate를 증가시킴에 따라 EP-CT의 성능 값이 C-CT 대비 높을 것을 통해 빠른 충방전이 가능함을 보여주며, 도 16를 통하여 정량적으로 그 차이를 알 수 있으며, 특히 캡핑층을 형성함에 따라 보다 충방전 특성이 높아지는 것을 알 수 있다.
도 17은 각 전극에 대한 Nyquist plots을 분석결과이다.
도 17을 참조하면, 본 발명에 따라 EP-CT/HS 양극이 C-CT/HS 보다 전하전달저항(Rct) 값이 낮아짐을 보였는데, 이것은 C-CT (164 Ω) 보다 EP-CT (123 Ω)의 빠른 전하전달 특성을 시사한다. 또한, 캡핑층이 형성된 EP-CT/HS/CL 양극이 보다 낮아진 Rct 값(81 Ω)을 보였는데, 이것은 EP-CT 구조 상에 전도성의 캡핑층을 도입함으로써 본 발명에 따른 리튬-황 전지 양극의 빠른 산화환원 동역학 특성을 보이는 것을 알 수 있다.
도 18은 본 발명에 따른 전극은 탁월히 높은 싸이클링 안전성을 갖는 것을 나타내는 싸이클 테스트 결과이다.
도 18을 참조하면, 본 발명에 따라 전도성의 캡핑층이 로딩된 전극은 보다 높은 안전성을 가지며 높은 면적 용량을 유지하는 것을 알 수 있다.
도 19는 로딩양 3, 5, 8 mg /cm2에서의 리튬-황 전지 양극 성능을 분석한 그래프이다.
도 19을 참조하면, 본 발명에 따른 전도성 구조체를 전극을 사용한 경우, 면적/질량 당 높은 에너지 용량을 달성할 수 있음을 알 수 있다.
도 19를 통하여 S-poly의 로딩 양을 8 mg /cm2 까지 증가시킴으로써 면적당 성능과 질량당 성능이 우수하다는 것을 알 수 있으며, 이러한 결과는 결국 금속인 EP-CT의 전하전달특성이 우수하며 다공성 구조로 높은 로딩 양 및 그에 따른 우수한 면적당 성능이 발현됨을 증명한다.
즉, 본 발명에 따른 전극 구조체는 이러한 에너지 저장 소자뿐만 아니라 그 자체가 가지는 전도성과 높은 로딩 양 등에 기초하여 생물학적 활물질(예를 들어 효소물질이나 프로브)가 고정화될 수 있으며, 이 경우 액체 형태의 샘플은 다공성 지지체로 많은 양이 흡수되어 접촉할 수 있고, 따라서 본 발명은 유리 등의 기판 구조를 사용하는 바이오 센서에 비하여 적은 양의 샘플로도 높은 민감도의 센서 전극개발이 가능하다.
본 발명은 더 나아가 별도의 캡핑층을 사용하여 양극의 성능 효율과 안정성을 향상시켰으며, 이는 센서 프로브 물질과 결합할 수 있는 임의의 기능기를 금속 특성을 갖는 전도성 지지체에 도입할 수 있음을 시사한다.
이상 설명한 본 발명에 따른 전도성 구조체는 에너지 저장 소자의 전극 뿐만 아니라, 높은 비표면적, 높은 기공을 요구하는 전도성 소재, 예를 들어 촉매와 센서 등에도 활용가능하며, 이는 모두 본 발명의 범위에 속한다.
본 발명은 전극소재에 관한 것으로 그 산업상 이용가능성이 인정된다.

Claims (10)

  1. 직물소재를 열처리로 탄화시켜 전도성 지지체를 제조하는 단계;
    상기 전도성 지지체 상에 전도성 금속물질을 전기도금하는 단계;
    상기 황 고분자 및 상기 황 고분자과 수소결합할 수 있는 제 1 기능기로 개질된 제 1 탄소물질을 포함하는 슬러리를 상기 코팅된 전도성 지지체에 로딩하는 단계;
    상기 제 1 탄소물질과 층상자기조립할 수 있는 제 2 기능기로 개질된 제 2 탄소물질을 상기 전도성 지지체에 로딩하여 캡핑층을 형성하는 단계를 포함하는 것을 특징으로 하는 직물소재를 이용한 리튬-황 전지 양극 제조방법.
  2. 제 1항에 있어서,
    상기 탄소물질은 탄소나노튜브이며, 상기 제 1 기능기는 아민기 상기 제 2 기능기는 카르복실기인 것을 특징으로 하는 직물소재를 이용한 리튬-황 전지 양극 제조방법.
  3. 제 1항에 있어서,
    상기 열처리는 섭씨 600 도 내지 2000도 범위 내에서 진행되며, 상기 열처리에 따라 제조된 상기 탄소 지지체는 상기 직물소재의 네트워크 구조를 그대로 유지하는 것을 특징으로 하는 리튬-황 전지 양극 제조방법.
  4. 제 1항에 있어서,
    상기 전도성 물질은 Ni, Cu, Al으로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함하는 것을 특징으로 하는 리튬-황 전지 양극 제조방법.
  5. 제 1항에 있어서,
    상기 직물소재는 탄소원자를 주쇄에 함유하는 직물인 것을 특징으로 하는 리튬-황 전지 양극 제조방법.
  6. 리튬-황 전지 양극은,
    직물소재의 네트워크 구조를 갖는 탄소 지지체; 및
    상기 탄소지지체 상에 코팅된 전도성 금속물질;
    상기 전도성 금속물질에 로딩된 황 고분자;
    상기 황 폴리머와 결합하는 제 1 기능기로 개질된 제 1 탄소물질; 및
    상기 제 1 탄소물질과 결합하여 캡핑층을 형성하는 제 2 탄소물질을 포함하는 리튬-황 전지 양극.
  7. 제 6항에 있어서,
    상기 리튬-황 전지 양극은 제 1항 내지 제 5항 중 어느 한 항에 따른 방법에 의하여 제조된 것을 특징으로 하는 리튬-황 전지 양극.
  8. 제 6항에 있어서,
    상기 탄소물질은 탄소나노튜브이며, 상기 제 1 기능기는 아민기 상기 제 2 기능기는 카르복실기인 것을 특징으로 하는 직물소재를 이용한리튬-황 전지 양극.
  9. 제 6항에 있어서,
    상기 전도성 물질은 Ni, Cu, Al으로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함하는 것을 특징으로 하는 리튬-황 전지 양극.
  10. 제 6항에 따른 리튬-황 전지 양극을 포함하는 리튬-황 전지.
PCT/KR2021/010203 2020-10-08 2021-08-04 직물소재를 이용한 리튬-황 전지 양극, 이를 포함하는 리튬-황 전지 및 그 제조방법 WO2022075565A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/030,656 US20240021779A1 (en) 2020-10-08 2021-08-04 Lithium-sulfur battery cathode using fabric material, lithium-sulfur battery comprising same, and manufacturing method therefor
CN202180069290.3A CN116368645A (zh) 2020-10-08 2021-08-04 利用织物材料的锂硫电池正极、包含其的锂硫电池及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0130553 2020-10-08
KR1020200130553A KR102448549B1 (ko) 2020-10-08 2020-10-08 직물소재를 이용한 리튬-황 전지 양극, 이를 포함하는 리튬-황 전지 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2022075565A1 true WO2022075565A1 (ko) 2022-04-14

Family

ID=81126132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/010203 WO2022075565A1 (ko) 2020-10-08 2021-08-04 직물소재를 이용한 리튬-황 전지 양극, 이를 포함하는 리튬-황 전지 및 그 제조방법

Country Status (4)

Country Link
US (1) US20240021779A1 (ko)
KR (1) KR102448549B1 (ko)
CN (1) CN116368645A (ko)
WO (1) WO2022075565A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240020226A (ko) * 2022-08-04 2024-02-14 한국기계연구원 전지 활성 물질 지지체, 전극 및 이를 포함하는 이차 전지
WO2024123156A1 (ko) * 2022-12-09 2024-06-13 고려대학교 산학협력단 고용량 및 고안정성 직물 기반 음극집전체, 이의 제조방법 및 이를 포함하는 이차전지

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180017796A (ko) * 2016-08-11 2018-02-21 주식회사 엘지화학 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬-황 전지
KR20190118733A (ko) * 2018-04-11 2019-10-21 울산과학기술원 기능성 종이 분리막을 포함한 리튬-황 전지용 종이 전극
KR20200095606A (ko) * 2019-01-31 2020-08-11 전남대학교산학협력단 카본-카본 나이트라이드 복합체의 제조방법 및 이에 의해 제조된 카본-카본 나이트라이드 복합체

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219519B (zh) * 2013-04-28 2015-06-17 中国科学院苏州纳米技术与纳米仿生研究所 一种硫-石墨烯复合结构锂硫电池正极材料制备方法
KR20170024918A (ko) * 2015-08-26 2017-03-08 울산과학기술원 양극 활물질, 이의 제조 방법, 및 이를 포함하는 전기 화학 소자
CN108565386B (zh) * 2018-04-08 2021-06-25 珠海鹏辉能源有限公司 锂硫电池隔膜及其制备方法、锂硫电池及其制备方法
CN111244433B (zh) * 2020-01-15 2021-05-11 华南师范大学 多元胺复合材料、浆料、电极片、锂硫电池及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180017796A (ko) * 2016-08-11 2018-02-21 주식회사 엘지화학 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬-황 전지
KR20190118733A (ko) * 2018-04-11 2019-10-21 울산과학기술원 기능성 종이 분리막을 포함한 리튬-황 전지용 종이 전극
KR20200095606A (ko) * 2019-01-31 2020-08-11 전남대학교산학협력단 카본-카본 나이트라이드 복합체의 제조방법 및 이에 의해 제조된 카본-카본 나이트라이드 복합체

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHUNG SHENG-HENG, CHANG CHI-HAO, MANTHIRAM ARUMUGAM: "A Carbon-Cotton Cathode with Ultrahigh-Loading Capability for Statically and Dynamically Stable Lithium–Sulfur Batteries", ACS NANO, vol. 10, no. 11, 22 November 2016 (2016-11-22), US , pages 10462 - 10470, XP055919114, ISSN: 1936-0851, DOI: 10.1021/acsnano.6b06369 *
ZHANG XUQING, ZHONG YU, XIA XINHUI, XIA YANG, WANG DONGHUANG, ZHOU CHENG’AO, TANG WANGJIA, WANG XIULI, WU J. B., TU JIANGPING: "Metal-Embedded Porous Graphitic Carbon Fibers Fabricated from Bamboo Sticks as a Novel Cathode for Lithium–Sulfur Batteries", APPLIED MATERIALS & INTERFACES, vol. 10, no. 16, 25 April 2018 (2018-04-25), US , pages 13598 - 13605, XP055919112, ISSN: 1944-8244, DOI: 10.1021/acsami.8b02504 *

Also Published As

Publication number Publication date
KR20220047070A (ko) 2022-04-15
US20240021779A1 (en) 2024-01-18
KR102448549B1 (ko) 2022-09-28
CN116368645A (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
WO2022075565A1 (ko) 직물소재를 이용한 리튬-황 전지 양극, 이를 포함하는 리튬-황 전지 및 그 제조방법
WO2017171335A1 (ko) 전극 슬러리의 제조방법
WO2017213325A1 (ko) 카본 나이트라이드와 그래핀 옥사이드의 자기조립 복합체 및 그 제조방법, 이를 적용한 양극 및 이를 포함하는 리튬-황 전지
WO2019108039A2 (ko) 음극 및 이를 포함하는 이차전지
WO2013005887A1 (ko) 실리콘-탄소 코어쉘을 이용한 리튬이차전지용 음극활물질 및 이의 제조방법
WO2014042485A1 (ko) 개선된 전기화학 특성을 갖는 리튬이차전지 및 이의 제조방법
WO2015152499A1 (ko) 유연한 리튬 이차전지 및 제조방법
WO2022107907A1 (ko) 황 담지 탄소나노튜브 전극의 제조 방법, 이로부터 제조되는 황 담지 탄소나노튜브 전극 및 이를 포함하는 리튬-황 전지
WO2018105767A1 (ko) 종이 집전체, 이의 제조방법 및 이를 포함하는 전기화학소자
WO2012165884A2 (ko) 카본-황 복합체의 제조 방법, 이에 의하여 제조된 카본-황 복합체 및 이를 포함하는 리튬-황 전지
WO2014148819A1 (ko) 저저항 전기화학소자용 전극, 그의 제조방법 및 상기 전극을 포함하는 전기화학소자
WO2020091345A1 (ko) 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2018226063A1 (ko) 분산성이 우수한 복합 도전재, 이를 사용한 리튬 이차전지의 전극 형성용 슬러리 및 리튬 이차전지
WO2014030853A1 (ko) 리튬이차전지의 음극 활물질용 실리콘 산화물-탄소 복합체의 제조방법
CN110112405B (zh) 一种核壳结构硅/碳纤维柔性复合电极材料及其制备方法与应用
CN112467200B (zh) 一种氟化锂/钛酸镧锂纳米纤维固体电解质界面材料及其制备方法和应用
WO2022108132A1 (ko) 비탄소 나노입자/고분자 복합나노입자, 이를 포함하는 리튬이차전지용 음극 및 상기 비탄소 나노입자/고분자 복합나노입자의 제조방법
WO2012115340A1 (ko) 이차 전지용 음극재 및 이의 제조방법
WO2016013724A1 (ko) 전극, 전지 및 전극의 제조방법
WO2017209383A1 (ko) 탄소계 섬유 시트 및 이를 포함하는 리튬-황 전지
WO2020105975A1 (ko) 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2016129774A1 (ko) 수직배향 탄소 나노 튜브 집합체의 제조방법
WO2022191666A1 (ko) 소듐/황 전지용 전극 및 이의 제조방법
KR20220001596A (ko) 직물소재 기반 전도성 구조체 제조방법 및 그 응용
CN109346651B (zh) 柔性陶瓷纳米纤维膜及制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877820

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18030656

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877820

Country of ref document: EP

Kind code of ref document: A1