WO2017171335A1 - 전극 슬러리의 제조방법 - Google Patents

전극 슬러리의 제조방법 Download PDF

Info

Publication number
WO2017171335A1
WO2017171335A1 PCT/KR2017/003287 KR2017003287W WO2017171335A1 WO 2017171335 A1 WO2017171335 A1 WO 2017171335A1 KR 2017003287 W KR2017003287 W KR 2017003287W WO 2017171335 A1 WO2017171335 A1 WO 2017171335A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode slurry
active material
producing
binder
solvent
Prior art date
Application number
PCT/KR2017/003287
Other languages
English (en)
French (fr)
Inventor
김영재
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17775759.8A priority Critical patent/EP3319155B1/en
Priority to US15/749,841 priority patent/US10693122B2/en
Priority to PL17775759T priority patent/PL3319155T3/pl
Priority to CN201780002846.0A priority patent/CN107925091B/zh
Publication of WO2017171335A1 publication Critical patent/WO2017171335A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method for producing an electrode slurry.
  • a representative example of an electrochemical device using such electrochemical energy is a secondary battery, and its use area is gradually increasing.
  • a high molecular weight binder or a high substitution binder is used to have the same electrode adhesion and phase stability even at a low binder ratio.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2005-327642
  • the first technical problem to be solved by the present invention is to provide a method for producing a high viscosity electrode slurry that enables easy dispersion of particles such as active material particles, conductive material, etc., and enables a thick coating in the electrode manufacturing process.
  • the second technical problem to be solved by the present invention is to provide a method for producing an electrode slurry for producing an electrode having a high capacity and excellent performance.
  • the present invention comprises the steps of preparing a mixed solution by mixing a binder, a conductive material and an active material in a solvent (step 1); Separating the layers of the mixed solution of step 1 (step 2); And removing at least a portion of the solvent from the layered mixed solution of step 2 (step 3).
  • the electrode slurry production method of the present invention even if a high molecular weight or a high degree of substitution of binders and thickeners are used, since the electrode slurry has an excellent dispersion state and a high solids electrode slurry can be produced, the electrode performance can be excellent. . In addition, since the dispersion is performed in a low viscosity solution, no additional equipment such as a planetary mixer is required, and the sedimentation speed of solids is high, thereby reducing the process cost and time.
  • FIG. 1 is a schematic view showing an embodiment of a method for producing a positive electrode slurry of the conventional method for producing an electrode slurry.
  • Figure 2 is a schematic diagram showing an embodiment of a method for producing a negative electrode slurry of the conventional method of producing an electrode slurry.
  • Figure 3 is a schematic diagram showing an embodiment of a method for producing a cathode slurry of the electrode slurry production method according to the present invention.
  • Figure 4 is a schematic diagram showing an embodiment of the method for producing a negative electrode slurry of the electrode slurry production method according to the present invention.
  • 5 and 6 are graphs showing discharge capacities of Examples and Comparative Examples of the present invention, respectively.
  • the terms “comprise”, “comprise” or “have” are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
  • step 1 the step of preparing a mixed solution by mixing a binder, a conductive material and an active material in a solvent (step 1); Separating the layers of the mixed solution of step 1 (step 2); And removing at least a portion of the solvent from the layered mixed solution of step 2 (step 3).
  • 3 and 4 illustrate an embodiment of a method of manufacturing an electrode slurry according to the present invention, and a method of manufacturing an electrode slurry according to the present invention will be described in detail for each step. 3 and 4 are merely examples, and the invention described herein is not limited to the inventions shown in FIGS. 3 and 4.
  • step 1 is a step of preparing a mixed solution by mixing a binder, a conductive material and an active material in a solvent.
  • a low-viscosity mixed solution is prepared by mixing a binder, a conductive material, and an active material using a larger amount of solvent than before, so as to prepare an electrode slurry having an excellent dispersion state.
  • the viscosity of the mixed solution of step 1 may be 100 cP to 500 cp. If the viscosity of the mixed solution of step 1 is less than 100 cP, the dispersion force formed in the dispersing equipment is not easily transmitted to the mixed solution, thereby causing a problem that solids are not sufficiently dispersed. When the viscosity of the mixed solution of step 1 is greater than 500 cP, the sedimentation rate of solids is slowed down, so that the time for supplying the settled and dispersed slurry is increased, resulting in a long time for the entire slurry production process. As a result, process efficiency is lowered and manufacturing costs are increased.
  • the viscosity of the mixed solution may be measured at a fixed RPM 12 after mounting the spindle No. 63 for measuring the low viscosity on the Brookfield viscometer DV2T equipment.
  • the present invention is not necessarily limited thereto, and in general, if the RPM value is the same and the viscosity region of the sample (for example, a solution) to be measured is about 10 to 1000 cps, the viscosity may be measured by other measuring equipment.
  • the solid content means a solute or solid in a solution, and in the present invention, it may mean a material such as a binder, a thickener, an active material, and a conductive material.
  • step 1 may be performed using at least one selected from the group consisting of a homo disper mixer, an ultrasonic disperser, and a homogenizer. Since the mixed solution prepared in step 1 according to the present invention has a low viscosity, even a small dispersion device such as a homo mixer can be used to sufficiently disperse the solids. Therefore, even if a device having a high dispersion force, such as a planetary mixer, is not additionally used, the dispersion degree of the same or better solids can be exhibited, and thus, the process advantage can be exhibited in terms of cost and time.
  • a homo disper mixer an ultrasonic disperser, and a homogenizer.
  • the step 1 includes the steps of mixing a binder and a solvent (step a); And it may include a step (step b) of mixing the conductive material, the active material to the solution prepared in step a.
  • the binder of high molecular weight or high substitution degree is mixed with a solvent to disperse to a certain concentration, and then the preparation of the mixed solution may be further performed in order to add the conductive material and the active material to facilitate the dispersion of the binder.
  • the viscosity of the mixed solution may be adjusted by further adding a solvent.
  • a thickener may be further added in addition to the binder, the conductive material, and the active material in step 1, and the step 1 may include mixing a thickener and a solvent (step 1-1); And a step (step 1-2) of mixing the conductive material, the active material and the binder by adding the mixed solution prepared in step 1-1.
  • a thickener having a high weight average molecular weight is mixed with a solvent to be dispersed at a predetermined concentration, and then the preparation of the mixed solution is carried out in the order of adding the conductive material, the active material and the binder to facilitate dispersion of the thickener and the binder.
  • a thickener having a high weight average molecular weight is mixed with a solvent to be dispersed at a predetermined concentration, and then the preparation of the mixed solution is carried out in the order of adding the conductive material, the active material and the binder to facilitate dispersion of the thickener and the binder.
  • a thickener having a high weight average molecular weight may be used together with a thickener having a low weight average molecular weight.
  • the viscosity of the mixed solution may be adjusted by further adding a solvent.
  • the weight ratio of the active material, the conductive material and the binder may be 94 to 99: 0.5 to 2.0: 0.5 to 4.0, specifically 97: 1: 2.
  • the weight ratio of the binder, the thickener, the conductive material, and the active material may be 93 to 97: 0.5 to 1.5: 0.5 to 1.5: 2.0 to 4.0, specifically 96: 0.5: 1: 2.5 have.
  • the weight average molecular weight of the binder in the case of the positive electrode slurry is 600,000 to 1,000,000
  • the thickener in the case of the negative electrode slurry And binders or thickeners having a high weight average molecular weight of 700,000 to 1,500,000 and 200,000 to 500,000, respectively.
  • the binder is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (polyvinylidene fluoride (PVDF)), polyacrylonitrile, polymethylmethacrylate (polymethylmethacrylate) , Polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluororubber, poly acrylic acid ) And various kinds of binder polymers such as polymers in which hydrogen is substituted with Li, Na, or Ca, or various copolymers.
  • PVDF-co-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
  • PVDF polyvinylidene fluoride
  • PVDF polyvinylid
  • the thickener includes carboxymethyl cellulose (CMC), carboxyethyl cellulose, starch, regenerated cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, Or one selected from polyvinyl alcohol.
  • CMC carboxymethyl cellulose
  • carboxyethyl cellulose starch
  • regenerated cellulose ethyl cellulose
  • hydroxymethyl cellulose hydroxyethyl cellulose
  • hydroxypropyl cellulose hydroxypropyl cellulose
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the electrode slurry when the electrode slurry is a positive electrode slurry, a positive electrode active material, a binder may use PVDF, and a solvent may use N-methyl-2 pyrrolidone.
  • a negative electrode active material and a thickener are CMC.
  • the binder may be SBR, the solvent may be water, and the SBR may be added in the form of a dispersed SBR solution.
  • the active material may be divided into a positive electrode active material used for the positive electrode and a negative electrode active material used for the negative electrode.
  • the average particle diameter (D 50 ) of the active material of step 1 may be 5 ⁇ m to 35 ⁇ m, specifically, the average particle diameter (D 50 ) for the positive electrode active material is 5 ⁇ m to 25 ⁇ m, average particle diameter (D for the negative electrode active material 50 ) may be between 15 ⁇ m and 35 ⁇ m.
  • the average particle size of the particles can be defined as the particle size at 50% of the particle size distribution of the particles.
  • the average particle diameter (D 50 ) of the particles according to an embodiment of the present invention can be measured using, for example, a laser diffraction method.
  • the laser diffraction method can measure the particle diameter of several mm from the submicron region, and high reproducibility and high resolution can be obtained.
  • the precursor particles are dispersed in a dispersion medium, and then introduced into a commercially available laser diffraction particle size measuring apparatus (for example, Microtrac MT 3000), irradiated with an ultrasonic wave of about 28 kHz at an output of 60 W, and the particle diameter in the measuring apparatus.
  • a commercially available laser diffraction particle size measuring apparatus for example, Microtrac MT 3000
  • the average particle diameter (D 50 ) at 50% of the distribution can be calculated.
  • the negative electrode active material is a reversible intercalation and deintercalation of lithium
  • Possible compounds can be used. Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon; Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; Metal oxides capable of doping and undoping lithium, such as SiO x (0 ⁇ x ⁇ 2), SnO 2, vanadium oxide, lithium vanadium oxide; Or a composite including the metallic compound and the carbonaceous material, such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon
  • Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or
  • a metal lithium thin film may be used as the anode active material.
  • the carbon material both low crystalline carbon and high crystalline carbon can be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish) graphite, pyrolytic carbon, mesophase pitch based carbon fiber, mesocarbon microbeads, mesophase pitches and petroleum or coal tar pitch derived cokes High-temperature calcined carbon such as) is typical.
  • step 2 is a step of separating the layers of the mixed solution of step 1.
  • the mixed solution is separated into an upper layer and a lower layer to remove a part of the solvent from the low viscosity mixed solution prepared in step 1.
  • the layer separation of step 2 may be performed by leaving the mixed solution to settle solids in the mixed solution.
  • the mixed solution is mixed with the solvent in a state where the solid content is dispersed, and by allowing the mixed solution to stand, the solid content is settled by gravity. Accordingly, the mixed solution may be separated into a lower layer mainly containing solid content and an upper layer mainly containing solvent.
  • the active material having the largest size precipitates the fastest, and the conductive material adsorbed to the active material and the binder adsorbed to the active material or conductive material precipitate in the form of particles.
  • the solid content included in the upper layer after layer separation may include an excess of a conductive material that is not adsorbed to the active material and a thickener or binder adsorbed to the non-adsorbed conductive material.
  • the mixed solution may be left for 30 to 120 minutes. If the mixed solution is left for less than 30 minutes, since the complete layer separation does not proceed and most of the solids are present in the upper layer, the electrode of the correct composition is difficult to manufacture and the material lost is increased. When the leaving time of the mixed solution exceeds 120 minutes, the overall process time is excessively increased, which may cause a problem of decreasing process efficiency and increasing manufacturing cost.
  • the settling rate of the solid particles may be 0.04 cm / hr to 4.67 cm / hr.
  • the non-cohesive particles without cohesive force are stopped in a dispersed state in a single solvent, the non-cohesive particles are settled according to the gravitational acceleration.
  • the sedimentation rate follows the Stoke's Law, and the equation is as follows.
  • V is the sedimentation velocity
  • g is the acceleration of gravity (9.8 m / s 2 )
  • ⁇ s is the density of the solvent
  • ⁇ p is the density of the active material, conductive material and binder or particles aggregated with the active material, conductive material, binder and thickener
  • d is the average particle diameter (D 50 ) of the active material
  • means the viscosity of the mixed solution.
  • d may be calculated only from the active material in the solid content.
  • the sedimentation form of the prepared positive or negative electrode slurry is precisely settled because the solid content of the slurry is higher than a certain level, and forms a consolidation sedimentation form in which the solvent is separated into the upper portion while the solid content is settled, while the solid content of the lowered precipitate is pressed.
  • the distance between the active material particles is infinitely larger than the distance at which the active material particles in the solid content exert cohesive force. Therefore, it is possible to cope with the form of sedimentation of the non-aggregated particles, whereby the Stokes law is applicable.
  • step 3 is a step of removing at least a part of the solvent from the layered mixed solution of step 2.
  • the high-viscosity mixed solution is prepared by removing a part of the solvent in the upper layer mainly containing the solvent.
  • Partial removal of the solvent of step 3 may be performed using a pump.
  • a pump As described above, when the solvent is removed using a pump, deformation due to heat such as an active material, a conductive material, a binder, a thickener, and the like can be prevented as compared with the case where the solvent is evaporated by heating, and the amount of removal of the solvent can be accurately measured. Since there is an advantage that the adjustment of the viscosity is easier.
  • the existing solvent is recycled by a centrifugation process that can completely settle the particles or a filtering process that removes fine particles. Since this can be done, there is an advantage that the manufacturing cost is reduced.
  • the viscosity of the mixed solution in which the solvent is partially removed may be 15,000 cp to 30,000 cP. If the viscosity of the mixed solution in which the solvent is partially removed is less than 15,000 cP, it is difficult to manufacture a high capacity electrode because it is difficult to increase the loading level indicating the amount of active material present on the current collector by flowing the electrode slurry during coating. A problem occurs. When the viscosity is more than 30,000 cP, a high injection pressure is generated in the process of applying the slurry onto the current collector, and thus the process is not easy, and the solid property of the slurry is high, which may increase the uniformity of the coating during coating. .
  • An electrode slurry according to an embodiment of the present invention includes a binder, a conductive material, and an active material, and the viscosity of the electrode slurry may be 15,000 cP to 30,000 cP, and specifically 20,000 to 25,000 cP.
  • the electrode slurry produced according to the electrode slurry production method is well dispersed in the electrode slurry even if the weight average molecular weight of the binder or thickener is high, and has a high viscosity.
  • the weight average molecular weight of the binder is 600,000 to 1,000,000, and in the case of the negative electrode slurry, the weight average molecular weight of the thickener and the binder may be 700,000 to 1,500,000 and 200,000 to 500,000, respectively. .
  • the weight ratio of the active material, the conductive material, and the binder may be 94 to 99: 0.5 to 2.0: 0.5 to 4.0, and specifically 97: 1: 2.
  • the weight ratio of the active material, the conductive material, the thickener and the binder may be 93 to 97: 0.5 to 1.5: 0.5 to 1.5: 2.0 to 4.0, specifically 96: 0.5: 1: 2.5 have.
  • the composition of the active material may be relatively high and the ratio of the binder and the thickener may be lowered.
  • the absolute value of the zeta potential of the electrode slurry may be 20mV to 30mV.
  • the dispersion stability of the colloidal particles can be determined through the magnitude of the absolute value of the zeta potential.
  • the "Zeta potential” is an index indicating the surface charge amount of the colloid particles suspended in the liquid, and when the external field is applied to the colloid, the colloid particles are in the opposite direction to the sign of the surface potential. This is calculated by considering the strength of the electric field applied to the particle moving speed and the hydrodynamic effect (solvent viscosity, dielectric constant, etc.).
  • the absolute value of the zeta potential increases, the repulsive force between particles increases, so that the dispersion and dispersion retention increase, and conversely, when the zeta potential approaches zero, the particles tend to aggregate.
  • the absolute value of the zeta potential of the electrode slurry is less than 20 mV, dispersion is not performed properly, and thus polymers used as binders or thickeners are not sufficiently adsorbed on the surface of the active material. Problems with increased resistance can occur. If the absolute value of the zeta potential of the electrode slurry is more than 30mV, due to excessive dispersion, polymers used as binders or thickeners are excessively adsorbed on the surface of the active material and the viscosity of the slurry is excessively reduced, making it impossible to manufacture thick electrodes. .
  • step 4 the step of applying an electrode slurry prepared according to the electrode slurry manufacturing method to a current collector (step 4); And drying and rolling the electrode slurry coated on the current collector of step 1 (step 5).
  • step 4 is a step of applying the electrode slurry prepared according to the electrode slurry manufacturing method to the current collector.
  • the electrode slurry prepared according to the electrode slurry production method has an excellent dispersion state and a solid content also has a high advantage even when using a binder or a thickener having a high weight average molecular weight. Therefore, since the viscosity of the electrode slurry is high, the thickness of the electrode slurry can be made thick, and since the degree of dispersion of the binder and the thickener in the electrode slurry is high, the performance of the electrode can also be excellent.
  • the current collector is not particularly limited as long as it is conductive without causing chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface treated with carbon, nickel, titanium, silver, or the like can be used.
  • the thickness of the electrode slurry applied to the current collector may be 130 ⁇ m to 180 ⁇ m. Since the viscosity of the electrode slurry prepared according to one embodiment of the present invention is 15,000 to 30,000 cP, it is possible to increase the thickness of the electrode slurry compared to the conventional.
  • step 5 is a step of drying and rolling the electrode slurry applied on the current collector of step 4.
  • the drying process is a process of removing the solvent in the slurry to dry the electrode slurry coated on the current collector. As a specific embodiment, it may be to dry within 1 day in a vacuum oven of 50 °C to 200 °C.
  • the rolling process can be compressed to a desired thickness by passing the electrode between two hot heated rolls to increase the capacity density of the electrode and increase the adhesion between the current collector and the active materials.
  • it may be to roll at a pressure of 10 MPa to 20 MPa between the rolls heated to 60 °C to 90 °C.
  • the weight ratio of the active material, the conductive material, and the binder may be 94 to 99: 0.5 to 2.0: 0.5 to 4.0, and specifically 97: 1: 2.
  • the weight ratio of the active material, the conductive material, the thickener and the binder may be 93 to 97: 0.5 to 1.5: 0.5 to 1.5: 2.0 to 4.0, specifically 96: 0.5: 1: 2.5 have.
  • the electrode manufactured according to the electrode manufacturing method is manufactured by using the electrode slurry prepared according to the electrode slurry manufacturing method, even if the weight average molecular weight of the binder or the thickener is high, it is well dispersed in the electrode slurry. There may be.
  • the weight average molecular weight of the binder is 600,000 to 1,000,000, and in the case of the negative electrode slurry, the weight average molecular weight of the thickener and the binder may be 700,000 to 1,500,000 and 200,000 to 500,000, respectively. .
  • the electrode may have a thickness of 150 ⁇ m to 200 ⁇ m, and the adhesive force of the electrode may be 15 gf to 60 gf. Electrode according to an embodiment of the present invention, because of the high thickness of the binder in the electrode while having a thick thickness may also exhibit excellent adhesion. In this case, the adhesive force of the electrode may be a result of performing a 180 ° peeling test at 50 mm at a speed of 300 mm / min.
  • the secondary battery according to an embodiment of the present invention includes a negative electrode, a positive electrode, a separator and an electrolyte interposed between the negative electrode and the positive electrode, and at least one of the negative electrode and the positive electrode may be the electrode.
  • the secondary battery since the secondary battery includes the electrode, the secondary battery may exhibit excellent lifetime characteristics and charge / discharge characteristics while having a high capacity.
  • the separator is to separate the negative electrode and the positive electrode and to provide a passage for the movement of lithium ions, and can be used without particular limitation as long as the separator is used as a separator in a secondary battery. It is preferable.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used.
  • porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • a coated separator including a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
  • the electrolyte may include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery, but are not limited thereto.
  • the electrolyte may include a non-aqueous organic solvent and a metal salt.
  • non-aqueous organic solvent for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylo lactone, 1,2-dime Methoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxoron, acetonitrile, nitromethane, methyl formate, Methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, pyrion
  • An aprotic organic solvent such as methyl acid or ethyl
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, may be preferably used as high-viscosity organic solvents because they have high dielectric constants to dissociate lithium salts well, such as dimethyl carbonate and diethyl carbonate.
  • high-viscosity organic solvents because they have high dielectric constants to dissociate lithium salts well, such as dimethyl carbonate and diethyl carbonate.
  • an electrolyte having a high electrical conductivity can be made, and thus it can be more preferably used.
  • the metal salt may be a lithium salt
  • the lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, is in the lithium salt anion F -, Cl -, I - , NO 3 -, N (CN ) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF - , (CF 3) 6 P - , CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2 ) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, reducing battery capacity, and improving discharge capacity of the battery.
  • haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc.
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included.
  • the secondary battery is useful for portable devices such as mobile phones, notebook computers, digital cameras, and electric vehicle fields such as hybrid electric vehicles (HEVs).
  • portable devices such as mobile phones, notebook computers, digital cameras, and electric vehicle fields such as hybrid electric vehicles (HEVs).
  • HEVs hybrid electric vehicles
  • a battery module including the secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or the battery pack is a power tool (Power Tool); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • Power Tool Power Tool
  • Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs)
  • PHEVs plug-in hybrid electric vehicles
  • PVDF powder having a weight average molecular weight of 900,000 was added to 133.333 g of N-methyl-2 pyrrolidone and mixed for 90 minutes at 70 ° C. and 2500 rpm using a homo mixer to prepare a 6 wt% dispersion in which PVdF was dispersed.
  • Step 2 Layer Separation Step
  • Step 3 remove some of the solvent
  • an electrode slurry having a solid content ratio of 73.5% was prepared by removing 183.44 g of the mixed solution by using a pump in the upper layer mainly containing the solvent.
  • the viscosity of the electrode slurry measured by a viscosity meter was 25,500 cP, zeta potential value was 22.1 mV.
  • the electrode slurry prepared in step 3 was applied to the aluminum thin film of the positive electrode current collector having a thickness of 20 ⁇ m to a thickness of 180 ⁇ m, dried for 10 hours in a vacuum oven at 120 ° C., and then 15 MPa between rolls heated to 80 ° C. By rolling under a pressure of, a positive electrode having a final thickness (current collector + active material layer) of 200 ⁇ m was prepared.
  • the viscosity of the mixed solution measured by Brookfield measuring equipment was 300 cP. (Measure viscosity at fixed RPM 12 after installing Spindle 63 for low viscosity measurement on the Brookfield Viscometer DV2T instrument.)
  • Step 2 Layer Separation Step
  • Step 3 remove some of the solvent
  • an electrode slurry (solid content of 62.2 wt%) was prepared by removing 96.5 g of the mixed solution using a pump to the upper layer mainly containing the solvent.
  • the viscosity of the electrode slurry measured by a viscosity meter was 22100 cP
  • the absolute value of the zeta potential was 25.2mV.
  • the electrode slurry prepared in Step 3 was applied to a copper thin film of a negative electrode current collector having a thickness of 20 ⁇ m at a thickness of 130 ⁇ m, dried for 10 hours in a vacuum oven at 100 ° C., and then 15 MPa between rolls heated to 60 ° C. Rolling was carried out at a pressure of to prepare a negative electrode having a final thickness of 150 ⁇ m.
  • Floro phosphate (LiPF 6 1 mol) was injected to prepare a lithium secondary battery.
  • PVDF powder having a weight average molecular weight of 600,000 was added to 150.0 g of N-methyl-2 pyrrolidone and mixed for 90 minutes at 50 ° C and 2500 rpm using a homo mixer to prepare an 8 wt% dispersion in which PVDF was dispersed.
  • a positive electrode active material LCO having an average diameter (D 50 ) of 15 ⁇ m was added to the prepared conductive material / PVDF dispersion, and the mixture was mixed at 45 rpm for 40 minutes using a planetary mixer to prepare a slurry.
  • 118.467 g of the remaining dispersion of PVDF was added thereto to prepare a mixed solution (solid content ratio 59.17%) in which a cathode active material, a conductive material, and PVDF were mixed in a 92: 2: 6 weight ratio.
  • the viscosity of the mixed solution measured by Brookfield Viscosity Measuring Equipment was 7200 cP. (Measure viscosity at fixed RPM 12 after installing Spindle 63 for low viscosity measurement on the Brookfield Viscometer DV2T instrument.)
  • the electrode slurry prepared in step 1 was applied to the aluminum thin film of the positive electrode current collector having a thickness of 20 ⁇ m to a thickness of 180 ⁇ m, dried for 10 hours in a vacuum oven at 120 ° C., and then 15 MPa between rolls heated to 80 ° C. By rolling at a pressure of, a positive electrode having a final thickness (current collector + active material layer) of 200 ⁇ m was prepared.
  • the viscosity of the mixed solution measured by a Brookfield viscosity measuring instrument was 5800 cP. (Measure viscosity at fixed RPM 12 after installing Spindle 63 for low viscosity measurement on the Brookfield Viscometer DV2T instrument.)
  • the electrode slurry prepared in Step 1 was applied to a copper thin film of a negative electrode current collector having a thickness of 20 ⁇ m to a thickness of 130 ⁇ m, dried for 10 hours in a vacuum oven at 100 ° C., and then 15 MPa between rolls heated to 60 ° C. Rolling was carried out at a pressure of to prepare a negative electrode having a final thickness of 150 ⁇ m.
  • Floro phosphate (LiPF 6 1 mol) was injected to prepare a lithium secondary battery.
  • Example 1 In order to determine the adhesive strength of the positive electrode and the negative electrode prepared in Example 1 and Comparative Example 1, the specimen was subjected to a 180 ° peeling test at 50 mm at a speed of 300 mm / min, the results are shown in Table 1.
  • Table 1 In the case of the comparative example, a high molecular weight binder was used, and since the solid surface and the viscosity of the slurry were high, the phenomenon that the surface of the binder increased when drying the electrode was significantly reduced, and thus the adhesion between the coating layer formed by the slurry and the current collector was very high. can confirm.
  • the secondary batteries manufactured in Example 1 and Comparative Example 1 were charged with a constant current (CC) of 1.0493 mAh under constant current / constant voltage (CC / CV) conditions, and then charged up to 4.35 V with a constant voltage (CV), thereby charging current was 0.05246. Charge was performed until it became mAh. Thereafter, it was left for 20 minutes and then discharged until it became 3.0V with a constant current of 0.1C.
  • the battery was charged with a constant current (CC) of 1.068 mAh under constant current / constant voltage (CC / CV) conditions, and then charged to 0.05 V with a constant voltage (CV) until the charging current became 0.05034 mAh. .
  • Discharge Rate (anode) 0.1C capacity [mAh / g] 0.2C capacity / 0.1C capacity [%] 0.5C capacity / 0.1C capacity [%] 1.0C capacity / 0.1C capacity [%]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 전극 슬러리의 제조방법에 관한 것으로, 상세하게는 용매에 바인더, 도전재 및 활물질을 혼합하여 혼합 용액을 제조하는 단계(단계 1); 상기 단계 1의 혼합 용액의 층을 분리하는 단계(단계 2); 및 상기 단계 2의 층 분리된 혼합 용액에서 용매의 적어도 일부를 제거하는 단계(단계 3)를 포함하는 전극 슬러리의 제조방법을 제공한다.

Description

전극 슬러리의 제조방법
관련출원과의 상호인용
본 출원은 2016년 03월 29일자 출원된 한국 특허 출원 제10-2016-0037488호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 전극 슬러리의 제조방법에 관한 것이다.
화석연료 사용의 급격한 증가로 인하여 대체 에너지나 청정에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학 반응을 이용한 발전, 축전 분야이다.
현재 이러한 전기화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차 전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다. 최근에는 휴대용 컴퓨터, 휴대용 전화기, 카메라 등의 휴대용 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차 전지 중 높은 에너지 밀도와 작동 전위를 나타내고 사이클 수명이 길며 자기 방전율이 낮은 리튬 이차전지에 대해 많은 연구가 행해져 왔고, 또한 상용화되어 널리 사용되고 있다.
종래 이차 전지는 다양한 용도로의 사용으로 인해 고용량, 고출력, 장수명, 고속 충전 등의 다양한 능력을 보유한 배터리를 제조하려는 노력이 시도되었다. 그 중에서도 고용량의 배터리를 제조하기 위해서는 전지 내에 활물질을 얼마나 많이 채워 넣을 수 있는지가 가장 중요한 점이다.
이에 고용량, 고출력을 위해서 활물질의 조성비를 높이고 바인더의 비율을 낮추는 방법이 있으며, 낮은 바인더 비율에도 동일한 전극 접착력 및 상안정성을 가지기 위해 고분자량의 바인더 또는 고치환도의 바인더를 사용한다.
그러나, 고분자량의 바인더 또는 고치환도의 바인더가 용해된 용액의 경우, 동일한 고형분 바인더를 사용한 용액에 비해 점도와 탄성이 증가한다. 따라서, 동일한 분산 방법으로는 활물질 입자, 도전재 등이 용매 내에서 쉽게 분산되지 않는 문제가 있다. 이를 해결하기 위해, 용매를 추가하여 바인더 고형분의 비율을 낮추게 되면 수득되는 전극 슬러리의 고형분의 비율이 낮아지게 되어, 배터리의 용량이 저하되고, 건조 조건이 까다로워져서 비용적으로 열위를 나타내게 된다.
이에, 활물질 입자, 도전재 등의 입자의 분산이 용이하면서도, 전극 제조 공정 시 두꺼운 코팅을 가능하게 하는 높은 점도의 전극 슬러리 개발이 요구된다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 일본 공개특허 제2005-327642호
본 발명이 해결하고자 하는 제1 기술적 과제는, 활물질 입자, 도전재 등의 입자의 분산이 용이하면서도, 전극 제조 공정 시 두꺼운 코팅을 가능하게 하는 높은 점도의 전극 슬러리의 제조방법을 제공하는 것이다.
본 발명이 해결하고자 하는 제2 기술적 과제는, 고용량이면서도 성능이 우수한 전극을 제조하기 위한 전극 슬러리의 제조방법을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 용매에 바인더, 도전재 및 활물질을 혼합하여 혼합 용액을 제조하는 단계(단계 1); 상기 단계 1의 혼합 용액의 층을 분리하는 단계(단계 2); 및 상기 단계 2의 층 분리된 혼합 용액에서 용매의 적어도 일부를 제거하는 단계(단계 3);를 포함하는 전극 슬러리의 제조방법을 제공한다.
본 발명의 전극 슬러리의 제조방법에 따르면, 고분자량 또는 고치환도의 바인더 및 증점제를 사용하더라도 우수한 분산 상태를 가지며, 고형분이 높은 전극 슬러리의 제조가 가능하기 때문에, 전극의 성능이 우수하게 나타날 수 있다. 또한, 저점도의 용액 내에서 분산이 이루어지기 때문에 플라네터리 믹서와 같은 추가의 장비가 요구되지 않고, 고형분의 침강 속도가 빨라 공정상 비용 및 시간을 절감하는 이점이 있다.
도 1은 종래 전극 슬러리의 제조방법 중, 양극 슬러리의 제조방법의 일 실시예를 나타낸 모식도이다.
도 2는 종래 전극 슬러리의 제조방법 중, 음극 슬러리의 제조방법의 일 실시예를 나타낸 모식도이다.
도 3은 본 발명에 따른 전극 슬러리의 제조방법 중, 양극 슬러리의 제조방법의 일 실시예를 나타낸 모식도이다.
도 4는 본 발명에 따른 전극 슬러리의 제조방법 중, 음극 슬러리의 제조방법의 일 실시예를 나타낸 모식도이다.
도 5 및 도 6은 각각 본 발명의 실시예 및 비교예의 방전 용량을 나타낸 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명의 일 실시예에 따르는 전극 슬러리의 제조방법은, 용매에 바인더, 도전재 및 활물질을 혼합하여 혼합 용액을 제조하는 단계(단계 1); 상기 단계 1의 혼합 용액의 층을 분리하는 단계(단계 2); 및 상기 단계 2의 층 분리된 혼합 용액에서 용매의 적어도 일부를 제거하는 단계(단계 3)를 포함한다.
이하, 도 3 및 4에 본 발명에 따른 전극 슬러리의 제조방법의 일 실시예를 도시하였으며, 본 발명에 따른 전극 슬러리의 제조방법을 각 단계별로 상세히 설명한다. 도 3 및 4는 일 예에 해당할 뿐, 본 명세서가 설명하는 발명이 도 3 및 4가 나타내는 발명에만 국한되는 것은 아니다.
본 발명에 따른 전극 슬러리의 제조방법에 있어서, 단계 1는 용매에 바인더, 도전재 및 활물질을 혼합하여 혼합 용액을 제조하는 단계이다. 상기 단계에서는 우수한 분산상태를 갖는 전극 슬러리를 제조할 수 있도록, 바인더와 도전재, 및 활물질을 종래보다 많은 양의 용매를 사용하여 혼합함으로써 저점도의 혼합 용액을 제조하는 단계이다.
상기 단계 1의 혼합 용액의 점도는 100 cP 내지 500 cp일 수 있다. 만약, 상기 단계 1의 혼합 용액의 점도가 100 cP 미만인 경우에는 분산 장비에서 형성된 분산력이 혼합 용액에 용이하게 전달되지 않아서, 고형분이 충분히 분산되지 못하는 문제가 발생한다. 상기 단계 1의 혼합 용액의 점도가 500 cP 초과인 경우에는 고형분의 침강속도가 느려져서 침강 분산된 슬러리를 수급하기 위한 시간이 증가하므로 전체 슬러리 제조 공정 시간이 길어지는 문제가 발생한다. 이에 따라 공정 효율이 저하되고 제조 비용이 상승하게 된다.
한편, 상기 혼합 용액의 점도는 Brookfield 점도계인 DV2T 장비에 저점도 측정용인 Spindle 63번을 장착한 후 고정 RPM 12에서 점도를 측정될 수 있다. 그러나 이에 반드시 한정되는 것은 아니며, 일반적으로 RPM 값이 동일하고 측정되는 시료(예를 들어, 용액)의 점도 영역이 10 내지 1000cp 정도 수준이라면 그 외의 측정 장비로 점도를 측정할 수도 있다.
본 발명에 있어서, 상기 고형분(Solid Content)이란, 용액 내의 용질 또는 고형물을 의미하며, 본 발명에서는 바인더, 증점제, 활물질, 도전재와 같은 물질을 의미하는 것일 수 있다.
상기 단계 1의 혼합은, 호모 믹서(homo disper mixer), 초음파 분산기(Ultrasonic), 균질기(Homogeniger)로 이루어진 군으로부터 선택된 1종 이상을 사용하여 수행되는 것일 수 있다. 본 발명에 따른 단계 1에서 제조된 혼합 용액은, 저점도이기 때문에 호모 믹서와 같이 분산력이 작은 장비를 사용하더라도 고형분의 분산이 충분히 이루어질 수 있다. 따라서, 플라네터리 믹서(planetry mixer)와 같이 분산력이 높은 장비를 추가로 사용하지 않더라도, 동일하거나 더욱 우수한 고형분의 분산도를 나타낼 수 있으므로, 비용 및 시간적으로 공정상의 우위를 나타낼 수 있다.
본 발명에 따른 전극 슬러리의 제조방법에 있어서, 상기 전극 슬러리가 양극 슬러리인 경우, 상기 단계 1은, 바인더와 용매를 혼합하는 단계(단계 a); 및 상기 단계 a에서 제조된 용액에 도전재, 활물질을 투입하여 혼합하는 단계(단계 b)를 포함할 수 있다. 구체적으로, 먼저 고분자량 또는 고치환도의 바인더를 용매와 혼합하여 일정 농도로 분산시킨 후, 도전재와 활물질을 투입하는 순서로 혼합 용액의 제조를 진행하여 바인더의 분산을 더욱 용이하게 할 수 있다. 또한, 상기 단계 b의 수행 후에, 용매를 더욱 첨가하는 단계를 포함함으로써 혼합 용액의 점도를 조절할 수 있다.
한편, 상기 전극 슬러리가 음극 슬러리인 경우, 상기 단계 1에서 바인더, 도전재 및 활물질 이외에 증점제를 더욱 첨가할 수 있고, 상기 단계 1은, 증점제와 용매를 혼합하는 단계(단계 1-1); 및 상기 단계 1-1에서 제조된 혼합 용액에 도전재, 활물질 및 바인더를 투입하여 혼합하는 단계(단계 1-2)를 포함할 수 있다. 구체적으로, 먼저 높은 중량 평균 분자량을 갖는 증점제를 용매와 혼합하여 일정 농도로 분산시킨 후, 도전재, 활물질 및 바인더를 투입하는 순서로 혼합 용액의 제조를 진행하여 증점제 및 바인더의 분산을 용이하게 할 수 있다. 필요에 따라 높은 중량 평균 분자량을 갖는 증점제와 함께 낮은 중량 평균 분자량의 증점제를 함께 혼합하여 사용할 수 있다. 또한 상기 단계 1-2 수행 후에, 용매를 더욱 첨가하는 단계를 포함함으로써 혼합 용액의 점도를 조절할 수 있다.
상기 전극 슬러리가 양극 슬러리인 경우, 상기 활물질, 도전재 및 바인더의 중량비는 94 내지 99 : 0.5 내지 2.0 : 0.5 내지 4.0 일 수 있고, 구체적으로 97:1:2일 수 있다. 상기 전극 슬러리가 음극 슬러리인 경우 상기 바인더, 증점제, 도전재 및 활물질의 중량비는 93 내지 97 : 0.5 내지 1.5 : 0.5 내지 1.5 : 2.0 내지 4.0일 수 있으며, 구체적으로 96:0.5:1:2.5일 수 있다. 이와 같이, 고용량 고출력의 이차 전지 제조를 위해, 활물질의 조성이 상대적으로 높고 전지 내 저항으로 작용할 수 있는 바인더 및 증점제의 비율은 낮출 필요가 있다.
상기 전극 슬러리 내 고형분들의 중량비를 나타낸 바와 같이, 바인더의 비율이 낮아짐에도 전극의 접착력 특성 및 안정성을 유지하기 위하여, 양극 슬러리인 경우 상기 바인더의 중량 평균 분자량은 600,000 내지 1,000,000, 음극 슬러리인 경우 상기 증점제 및 바인더의 중량 평균 분자량은 각각 700,000 내지 1,500,000과 200,000 내지 500,000으로 높은 중량 평균 분자량을 갖는 바인더나 증점제를 사용할 수 있다.
상기 바인더는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 고분자, 또는 다양한 공중합체 등의 다양한 종류의 바인더 고분자가 사용될 수 있다.
상기 증점제로는 카르복시메틸 셀룰로우즈(CMC), 카르복시에틸 셀룰로우즈, 전분, 재생 셀룰로오스, 에틸 세룰로우즈, 히드록시메틸 셀룰로우즈, 히드록시에틸 셀룰로우즈, 히드록시프로필 셀룰로우즈, 또는 폴리비닐알코올 중에서 선택된 1종을 사용할 수 있다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
예를 들어, 상기 전극 슬러리가 양극 슬러리인 경우에는 양극 활물질, 바인더는 PVDF, 용매는 N-메틸-2 피롤리돈을 사용할 수 있고, 상기 전극 슬러리가 음극 슬러리인 경우에는 음극 활물질, 증점제는 CMC, 바인더는 SBR, 용매는 물을 사용할 수 있고, 상기 SBR은 분산된 SBR 용액의 형태로 투입되는 것일 수 있다.
상기 활물질은, 양극에 사용되는 양극 활물질, 음극에 사용되는 음극 활물질로 나뉠 수 있다. 상기 단계 1의 활물질의 평균 입경(D50)은 5 ㎛ 내지 35 ㎛일 수 있고, 구체적으로는 양극 활물질의 경우 평균 입경(D50)이 5 ㎛ 내지 25 ㎛, 음극 활물질의 경우 평균 입경(D50)이 15 ㎛ 내지 35 ㎛일 수 있다.
본 발명에 있어서, 입자의 평균 입경은 입자의 입경 분포의 50% 기준에서의 입경으로 정의할 수 있다. 본 발명의 일 실시예에 따른 상기 입자의 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.
보다 구체적으로는 전구체 입자를 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60 W로 조사하고, 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균 입자 직경(D50)을 산출할 수 있다.
상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+y1Mn2-y1O4 (여기서, y1 는 0 내지 0.33임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1 - y2My2O2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, y2 는 0.01 내지 0.3임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2 - y3My3O2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, y3 는 0.01 내지 0.1임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이
가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOx(0 < x <2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (mesocarbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스(petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
본 발명에 따른 전극 슬러리의 제조방법에 있어서, 단계 2는 상기 단계 1의 혼합 용액의 층을 분리하는 단계이다. 상기 단계에서는 단계 1에서 제조된 저점도의 혼합 용액으로부터 용매의 일부를 제거할 수 있도록 혼합 용액을 상부 층 및 하부 층으로 분리하는 단계이다.
상기 단계 2의 층 분리는, 혼합 용액을 방치시켜 혼합 용액 내의 고형분이 침강함으로써 수행될 수 있다. 상기 혼합 용액은 고형분이 분산된 상태로 용매와 혼합되어 있는데, 혼합 용액을 방치시킴으로써, 중력에 의해 고형분이 침강하게 된다. 이에 따라, 고형분이 주로 포함된 하부 층, 용매가 주로 포함된 상부 층으로 상기 혼합 용액이 층 분리될 수 있다. 고형분 중 크기가 가장 큰 활물질이 가장 빠르게 침강하며, 활물질에 흡착된 도전재 및 활물질 또는 도전재에 흡착된 바인더가 입자형태로 침강한다. 즉, 층 분리 후 상부 층에 포함된 고형분은 활물질에 흡착되지 못한 도전재와 상기 흡착되지 못한 도전재에 흡착된 증점제 혹은 바인더의 여분을 포함할 수 있다. 상기 혼합 용액은 30분 내지 120분동안 방치될 수 있다. 상기 혼합 용액의 방치 시간이 30분 미만인 경우, 완전한 층 분리가 진행되지 않고 대부분의 고형분이 상부 층에 존재하기 때문에 정확한 조성의 전극이 제조되기 어려우며 손실되는 재료가 증가하게 된다. 상기 혼합 용액의 방치 시간이 120분을 초과하는 경우, 전체 공정 시간이 지나치게 증가하기 때문에 공정 효율이 감소하고 제조 비용이 증가하는 문제가 발생할 수 있다.
이때, 상기 단계 2에서 고형분, 구체적으로 활물질, 도전재 및 바인더 또는 활물질, 도전재, 바인더 및 증점제가 응집된 입자의 침강 속도는 0.04 cm/hr 내지 4.67 cm/hr일 수 있다. 응집력이 없는 비 응집성 입자가, 단일한 용매에 분산된 상태에서 정지시키게 되면 중력 가속도에 따라서 침강하게 되는데, 이때 침강 속도는 스토크 법칙(Stoke's Law)을 따르며, 계산식은 하기와 같다.
[수학식 1]
Figure PCTKR2017003287-appb-I000001
(상기 V는 침강 속도, g는 중력 가속도(9.8 m/s2), ρs는 용매의 밀도, ρp는 활물질, 도전재 및 바인더 또는 활물질, 도전재, 바인더 및 증점제가 응집된 입자의 밀도, d는 활물질의 평균 입경(D50), η는 혼합 용액의 점도를 의미한다.)
활물질의 크기에 비해 도전재, 바인더, 증점제의 크기는 무시할 정도로 작으므로, 상기 식에서 d는 고형분 중 활물질 만으로 계산되어도 무방하다.
일반적으로 제조된 양극 또는 음극 슬러리의 침강 형태는, 슬러리의 고형분이 일정 이상으로 높아, 고형분이 침강하면서 이미 침강되어 있는 하부의 고형분을 누르면서, 용매를 상부로 분리시키는 압밀 침강 형태를 이루기 때문에 정확한 침강 속도를 계산할 수 없다.
그러나, 본 발명에 따른 전극 슬러리의 경우에는, 전극 슬러리가 저점도인 상태에서 고형분이 침강하기 때문에, 고형분 내 활물질 입자가 응집력을 발휘하는 거리에 비해 활물질 입자간의 거리가 무한대로 크다. 따라서, 비응집성 입자의 침강 형태로 대응 가능하며, 이에 따라 상기 스토크 법칙의 적용이 가능하다.
본 발명에 따른 전극 슬러리의 제조방법에 있어서, 단계 3은 상기 단계 2의 층 분리된 혼합 용액에서 용매의 적어도 일부를 제거하는 단계이다. 상기 단계에서는 저점도의 혼합 용액에서 분산된 고형분을 가라앉힌 상태에서, 용매가 주로 포함된 상부 층의 용매를 일부 제거함으로써 다시 고점도의 혼합 용액을 제조하는 단계이다. 결과적으로, 고형분이 잘 분산되어 있으면서도 고점도인 전극 슬러리의 제조가 가능하고, 이를 사용함으로써 성능이 우수하고 고용량인 전극을 제조할 수 있다.
상기 단계 3의 용매의 일부 제거는 펌프를 사용하여 수행되는 것일 수 있다. 이와 같이 펌프를 사용하여 용매의 제거가 이루어지는 경우에는 가열에 의해 용매를 증발시키는 경우에 비해 활물질, 도전재, 바인더, 증점제 등의 열에 의한 변형을 방지할 수 있고, 용매의 제거량을 정확히 측정할 수 있기 때문에 점도의 조절이 보다 용이한 장점이 있다. 또한, 분리된 상부 층의 경우, 미량의 바인더 혹은 도전재 입자가 소량 분산된 상태로 유지되기 때문에 입자를 완벽하게 침강시킬 수 있는 원심분리 공정 또는 미립자를 제거하는 필터링 공정을 진행하여 기존 용매를 재활용할 수 있으므로, 제조 비용이 감소되는 이점이 있다.
이때, 상기 단계 3의 수행 후, 용매가 일부 제거된 혼합 용액의 점도는 15,000 cp 내지 30,000 cP일 수 있다. 만약, 상기 용매가 일부 제거된 혼합 용액의 점도가 15,000 cP 미만인 경우에는 전극 슬러리가 코팅시에 흘러내려 집전체 상에 존재하는 활물질의 양을 나타내는 로딩 수준을 높이기 어려우므로 고용량의 전극을 제조하기 어려운 문제점이 발생한다. 상기 점도가 30,000 cP 초과인 경우에는 슬러리를 집전체 상에 도포하는 과정에서 높은 사출 압력이 생성되어 공정이 용이하지 않으며, 슬러리의 고체 특성이 강하여 코팅 시에 코팅의 균일성이 감소될 가능성이 높아진다.
본 발명의 일 실시예에 따르는 전극 슬러리는, 바인더, 도전재 및 활물질을 포함하고, 상기 전극 슬러리의 점도는 15,000 cP 내지 30,000 cP일 수 있으며, 구체적으로 20,000 내지 25,000 cP 일 수 있다.
상기 전극 슬러리의 제조방법에 따라 제조되는 전극 슬러리는, 바인더 또는 증점제의 중량 평균 분자량이 높더라도 전극 슬러리 내에서 분산이 잘 되어 있고, 점도 또한 높은 특징이 있다.
양극 슬러리인 경우 상기 바인더의 중량 평균 분자량은 600,000 내지 1,000,000, 음극 슬러리인 경우 상기 증점제 및 바인더의 중량 평균 분자량은 각각 700,000 내지 1,500,000과 200,000 내지 500,000으로 높은 중량 평균 분자량을 갖는 바인더나 증점제를 사용할 수 있다.
상기 전극 슬러리가 양극 슬러리인 경우 상기 활물질, 도전재 및 바인더의 중량비는 94 내지 99: 0.5 내지 2.0: 0.5 내지 4.0 일 수 있으며, 구체적으로 97: 1: 2일 수 있다. 상기 전극 슬러리가 음극 슬러리인 경우 상기 활물질, 도전재, 증점제 및 바인더의 중량비는 93 내지 97 : 0.5 내지 1.5: 0.5 내지 1.5: 2.0 내지 4.0일 수 있으며, 구체적으로 96 : 0.5 : 1: 2.5일 수 있다. 이와 같이, 고용량 고출력의 이차 전지 제조를 위해, 활물질의 조성이 상대적으로 높고 바인더 및 증점제의 비율은 낮출 수 있다.
한편, 상기 전극 슬러리의 제타 전위의 절대 값은 20mV 내지 30mV일 수 있다. 콜로이드 입자의 분산 안정성은 제타 전위의 절대값의 크기를 통해 판단할 수 있다. 여기서, "제타 전위(Zeta potential)"라 함은 액체 속에 부유하는 콜로이드 입자들의 표면 대전량 정도를 나타내는 지표로서, 콜로이드에 외부에서 전장을 가하는 경우, 콜로이드 입자가 그 표면전위의 부호와 반대방향으로 영동(이동)하게 되는 바, 이때 입자 이동 속도를 가해준 전장의 세기와 유체역학적인 효과(용매의 점도, 유전율 등)를 고려하여 계산된 수치이다. 즉, 제타 전위의 절대값이 커질수록 입자간의 척력이 강해져 분산도와 분산 유지도가 높아지고, 반대로 제타 전위가 0에 가까워지면 입자가 응집하기 쉬워짐을 판단할 수 있다.
만약, 상기 전극 슬러리의 제타 전위의 절대 값이 20mV 미만인 경우에는 분산이 제대로 이루어지지 않아 바인더나 증점제로 사용된 고분자가 활물질 표면에 충분히 흡착되지 못하므로 도전재의 분산 정도와 전극 접착력이 감소하여 전기적인 저항이 증가하는 문제가 발생할 수 있다. 상기 전극 슬러리의 제타 전위의 절대 값이 30mV 초과인 경우에는 과도한 분산으로 인해 바인더나 증점제로 사용된 고분자가 활물질 표면에 과도하게 흡착되고 슬러리의 점도가 지나치게 감소되어 두꺼운 전극의 제조가 불가능한 문제점이 있다.
본 발명의 일 실시예에 따르는 전극의 제조방법은, 상기 전극 슬러리의 제조방법에 따라 제조된 전극 슬러리를 집전체에 도포하는 단계(단계 4); 및 상기 단계 1의 집전체 상에 도포된 전극 슬러리를 건조 및 압연하는 단계(단계 5)를 포함한다.
이하, 본 발명에 따른 전극의 제조방법을 각 단계별로 상세히 설명한다.
본 발명의 일 실시예에 따르는 전극의 제조방법에 있어서, 단계 4는 상기 전극 슬러리의 제조방법에 따라 제조된 전극 슬러리를 집전체에 도포하는 단계이다. 상기 전극 슬러리의 제조방법에 따라 제조된 전극 슬러리는 높은 중량 평균 분자량을 갖는 바인더나 증점제를 사용하더라도 우수한 분산 상태를 가지며 고형분이 또한 높은 장점을 가지고 있다. 따라서, 전극 슬러리의 점도가 높아 전극 슬러리의 두께를 두껍게 하여 제조 가능하며, 상기 전극 슬러리 내의 바인더나 증점제의 분산도가 높기 때문에, 전극의 성능 또한 우수하게 나타날 수 있다.
상기 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
이때, 상기 집전체에 도포된 전극 슬러리의 두께는 130 ㎛ 내지 180 ㎛일 수 있다. 본 발명의 일 실시예에 따라 제조된 전극 슬러리의 점도는 15,000 내지 30,000 cP이기 때문에, 종래에 비해 전극 슬러리의 두께를 두껍게 할 수 있다.
본 발명의 일 실시예에 따르는 전극의 제조방법에 있어서, 단계 5는 상기 단계 4의 집전체 상에 도포된 전극 슬러리를 건조 및 압연하는 단계이다.
상기 건조 공정은, 집전체에 코팅된 전극 슬러리를 건조하기 위하여 슬러리 내의 용매를 제거하는 과정이다. 구체적인 일 실시예로는, 50 ℃ 내지 200 ℃의 진공 오븐에서 1 일 이내로 건조하는 것일 수 있다.
상기 압연 공정은, 전극의 용량 밀도를 높이고 집전체와 활물질들 간의 접착성을 증가시키기 위해서, 고온 가열된 2개의 롤 사이로 전극을 통과시켜 원하는 두께로 압축할 수 있다. 구체적인 일 실시예로는, 60 ℃ 내지 90 ℃로 가열된 롤 사이로, 10 MPa 내지 20 MPa의 압력으로 압연하는 것일 수 있다.
상기 전극 슬러리가 양극 슬러리인 경우 상기 활물질, 도전재 및 바인더의 중량비는 94 내지 99: 0.5 내지 2.0: 0.5 내지 4.0 일 수 있으며, 구체적으로 97: 1: 2일 수 있다. 상기 전극 슬러리가 음극 슬러리인 경우 상기 활물질, 도전재, 증점제 및 바인더의 중량비는 93 내지 97 : 0.5 내지 1.5: 0.5 내지 1.5: 2.0 내지 4.0일 수 있으며, 구체적으로 96 : 0.5 : 1: 2.5일 수 있다.
상기 전극의 제조방법에 따라 제조되는 전극은, 상기 전극 슬러리의 제조방법에 따라 제조된 전극 슬러리를 이용하여 제조된 것이기 때문에, 바인더 또는 증점제의 중량 평균 분자량이 높더라도 전극 슬러리 내에서 분산이 잘 되어 있을 수 있다.
양극 슬러리인 경우 상기 바인더의 중량 평균 분자량은 600,000 내지 1,000,000, 음극 슬러리인 경우 상기 증점제 및 바인더의 중량 평균 분자량은 각각 700,000 내지 1,500,000과 200,000 내지 500,000으로 높은 중량 평균 분자량을 갖는 바인더나 증점제를 사용할 수 있다.
상기 전극의 두께는 150㎛ 내지 200 ㎛일 수 있고, 상기 전극의 접착력은 15gf 내지 60gf일 수 있다. 본 발명의 일 실시예에 따른 전극은, 두꺼운 두께를 가지면서도 전극 내 바인더의 분산도가 높기 때문에 접착력 또한 우수하게 나타날 수 있다. 이때, 상기 전극의 접착력은 전극을 300 mm/min의 속도로 50 mm로 180 °필링 테스트 수행한 결과값일 수 있다.
본 발명의 일 실시예에 따른 이차 전지는, 음극, 양극, 상기 음극 및 양극 사이에 개재된 분리막 및 전해질을 포함하며, 상기 음극, 양극 중 적어도 1 이상이 상기 전극일 수 있다.
상기 이차 전지는, 상기 전극을 포함하기 때문에 고용량이면서도 우수한 수명 특성, 충방전 특성을 나타낼 수 있다.
상기 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
상기 전해질은 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 비수계 유기용매와 금속염을 포함할 수 있다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해질을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
상기 금속염은 리튬염을 사용할 수 있고, 상기 리튬염은 상기 비수 전해액에 용해되기 좋은 물질로서, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 1종을 사용할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다.
상기 이차 전지는 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
본 발명의 다른 일 실시예에 따르면, 상기 이차 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지 팩이 제공된다. 상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
<실시예 1>
양극의 제조
단계 1: 혼합 용액의 제조
중량 평균 분자량이 900,000인 PVDF 파우더 8.511g를 N-메틸-2 피롤리돈 133.333g에 넣고, 호모 믹서로 70℃, 2500 rpm 조건에서 90분간 혼합하여, PVdF가 분산된 6wt% 분산액을 제조하였다.
상기 PVDF가 분산된 분산액 일부(38.780g)에 도전재로 카본 블랙 4.255g을 첨가하고, 호모 믹서로 2500 rpm 조건에서 20분간 혼합하여 도전재/PVdF 분산액을 제조하였다.
제조된 도전재/PVdF 분산액에 평균 직경(D50) 15㎛인 양극 활물질 LCO를 200g 첨가하여 Planetary 믹서를 이용하여 45 rpm, 40분간 혼합하여 슬러리를 제조하였다. 혼합된 슬러리에 앞서 제조한 상기 PVDF가 분산된 분산액 나머지(103.064g)와 N-메틸-2 피롤리돈 126.7g을 투입하여 최종적으로 양극 활물질, 도전재, PVDF가 94:2:4 중량비로 혼합되었고, 고형분 비율이 45%인 혼합 용액을 제조하였다. 이 때, Brookfield 점도 측정 장비로 측정한 상기 혼합 용액의 점도는 500 cP 였다. (Brookfield 점도계인 DV2T 장비에 저점도 측정용인 Spindle 63번을 장착한 후 고정 RPM 12에서 점도를 측정)
단계 2: 층 분리 단계
상기 단계 1에서 제조된 혼합 용액을 120분 동안 방치함으로써, 고형분이 주로 포함된 하부 층과, 용매가 주로 포함된 상부 층으로 혼합 용액의 층을 분리하였다. 이 때, 계산된 상기 고형분의 침강 속도는 0.313 cm/hr이었다(상기 수학식 1로 계산 가능하며, g= 9.8 m/s2, ρp= 4.60 × 103 kg/m3, ρs= 1.05 × 103 kg/m3, D= 15×106 m, = 0.5 Pas(=500cP)이다).
단계 3: 용매의 일부 제거
상기 단계 2의 층 분리된 혼합 용액에서, 용매가 주로 포함된 상부 층에 펌프를 이용하여 183.44g의 혼합 용액을 제거함으로써, 고형분 비율이 73.5%인 전극 슬러리를 제조하였다. 이때, 점도 측정기로 측정한 상기 전극 슬러리의 점도는 25,500 cP이고, 제타 전위 값은 22.1 mV였다.
단계 4: 양극의 제조
상기 단계 3에서 제조된 전극 슬러리를 두께가 20 ㎛인 양극 집전체의 알루미늄 박막에 180 ㎛의 두께로 도포하고, 120 ℃의 진공 오븐에서 10시간 동안 건조한 후, 80℃로 가열된 롤 사이로 15 MPa의 압력으로 압연하여, 최종 두께(집전체+활물질 층) 200㎛인 양극을 제조하였다.
<실시예 2>
음극의 제조
단계 1: 혼합 용액의 제조
중량 평균 분자량이 1,200,000인 CMC 파우더 1.571g를 물 130.890g에 넣고, 호모 믹서로 70℃, 2500 rpm 조건에서 120분간 혼합하여, CMC가 분산된 분산액을 제조하였다.
상기 CMC가 분산된 분산액의 일부인 91.623g에 도전재로 카본 블랙 2.356g를 투입하고 호모 믹서로 2500rpm 조건에서 20분간 혼합하여 도전재/CMC 분산액을 제조하였다.
상기 제조된 도전재/CMC 분산액에 평균 직경(D50) 20 ㎛인 인조흑연(음극 활물질)을 150g과 여분의 CMC 39.267g을 투입하고 Planetary 믹서를 이용하여 45rpm에서 40분간 혼합하여 슬러리를 제조하였다. 상기 슬러리에 SBR 용액(농도 40중량%)을 7.853g 투입하고, 101.6g의 물을 투입한 뒤, 호모 믹서로 800rpm에서 20분간 혼합하여, 음극 활물질, 도전재, CMC, SBR이 95.5:1.5:1.0:2.0의 중량비로 혼합된 혼합 용액(고형분 40wt%)을 제조하였다. 이 때, Brookfield 측정 장비로 측정한 상기 혼합 용액의 점도는 300 cP였다. (Brookfield 점도계인 DV2T 장비에 저점도 측정용인 Spindle 63번을 장착한 후 고정 RPM 12에서 점도를 측정)
단계 2: 층 분리 단계
상기 단계 1에서 제조된 혼합 용액을 90분 동안 방치함으로써, 고형분이 주로 포함된 하부 층과, 용매가 주로 포함된 상부 층으로 혼합 용액의 층을 분리하였다. 이때, 계산된 상기 고형분의 침강 속도는 0.30 cm/hr이었다(상기 수학식 1로 계산 가능하며, g= 9.8 m/s2, ρp= 2.14 × 103 kg/m3, ρs= 1.0 × 103 kg/m3, D= 15×106 m, = 0.3 Pas(=300cP)이다).
단계 3: 용매의 일부 제거
상기 단계 2의 층 분리된 혼합 용액에서, 용매가 주로 포함된 상부 층에 펌프를 이용하여 96.5g의 혼합 용액을 제거함으로써, 전극 슬러리(고형분 62.2wt%)를 제조하였다. 이때, 점도 측정기로 측정한 상기 전극 슬러리의 점도는 22100 cP였고, 제타 전위의 절대 값은 25.2mV이었다.
단계 4: 음극의 제조
상기 단계 3에서 제조된 전극 슬러리를 두께가 20 ㎛인 음극 집전체의 구리 박막에 130 ㎛의 두께로 도포하고, 100℃의 진공 오븐에서 10시간 동안 건조한 후, 60℃로 가열된 롤 사이로 15 MPa의 압력으로 압연하여, 최종 두께(집전체+활물질 층) 150 ㎛인 음극을 제조하였다.
이차 전지의 제조
상기 제조된 양극, 음극 및 다공성 폴리에틸렌 분리막을 스태킹(stacking) 방식을 이용하여 조립하였으며, 조립된 전지에 전해액 (에틸렌카보네이트(EC)/에틸메틸카보네이트(EMC) = 1 / 2 (부피비), 리튬 헥사 플로로 포스페이트 (LiPF6 1몰)을 주입하여 리튬 이차 전지를 제조하였다.
<비교예 1>
양극의 제조
단계 1: 전극 슬러리의 제조
중량 평균 분자량이 600,000인 PVDF 파우더 13.043g를 N-메틸-2 피롤리돈 150.0g에 넣고, 호모 믹서로 50℃, 2500rpm 조건에서 90분간 혼합하여, PVDF가 분산된 8wt% 분산액을 제조하였다.
상기 PVDF가 분산된 분산액 일부인 44.576g에 카본 블랙 계열의 도전재 4.348g을 첨가하고, 호모 믹서로 2500rpm에서 20분간 혼합하여, 도전재/PVDF 분산액을 제조하였다.
제조된 도전재/PVDF 분산액에 평균 직경(D50) 15 ㎛인 양극 활물질 LCO를 200g 첨가하고, Planetary 믹서를 이용하여 45 rpm에서 40분간 혼합하여 슬러리를 제조하였고, 혼합된 슬러리에 앞서 제조된 상기 PVDF가 분산된 분산액 나머지인 118.467g을 투입하여 양극활물질, 도전재, PVDF가 92:2:6 중량비로 혼합된 혼합 용액(고형분 비율 59.17%)을 제조하였다. Brookfield 점도 측정 장비로 측정한 상기 혼합 용액의 점도는 7200 cP 였다. (Brookfield 점도계인 DV2T 장비에 저점도 측정용인 Spindle 63번을 장착한 후 고정 RPM 12에서 점도를 측정)
단계 2: 양극의 제조
상기 단계 1에서 제조된 전극 슬러리를 두께가 20 ㎛인 양극 집전체의 알루미늄 박막에 180 ㎛의 두께로 도포하고, 120 ℃의 진공 오븐에서 10시간 동안 건조한 후, 80℃로 가열된 롤 사이로 15 MPa의 압력으로 압연하여, 최종 두께(집전체+활물질 층) 200 ㎛인 양극을 제조하였다.
<비교예 2>
음극의 제조
단계 1: 전극 슬러리의 제조
중량 평균 분자량이 700,000인 CMC 파우더 1.899g를 물 94.937g에 넣고, 호모 믹서로 60℃, 2500rpm 조건에서 120분간 혼합하여, CMC가 분산된 2.0wt% 분산액을 제조하였다.
상기 CMC가 분산된 분산액의 일부인 66.456g에 카본 블랙 계열의 도전재 2.373g를 넣고, 호모 믹서로 2500rpm에서 20분간 혼합하여, 도전재/CMC 분산액을 제조하였다.
상기 제조된 도전재/CMC 분산액에 평균 직경(D50) 20 ㎛인 인조흑연(음극 활물질) 150g, 여분의 CMC 28.481g을 넣고 Planetary 믹서를 이용하여 45rpm에서 40분간 혼합하여 슬러리를 제조하였다. 상기 슬러리에 SBR(바인더) 용액(농도 40중량%) 7.853g, 물 53g을 넣고 호모 믹서로 800rpm에서 20분간 혼합하여, 음극 활물질, 도전재, CMC, SBR이 94.8:1.5:1.2:2.5 의 중량비로 혼합된 혼합 용액(고형분 51.00wt%)을 제조하였다. 이 때, Brookfield 점도 측정 장비로 측정한 상기 혼합 용액의 점도는 5800 cP 였다. (Brookfield 점도계인 DV2T 장비에 저점도 측정용인 Spindle 63번을 장착한 후 고정 RPM 12에서 점도를 측정)
단계 2: 음극의 제조
상기 단계 1에서 제조된 전극 슬러리를 두께가 20 ㎛인 음극 집전체의 구리 박막에 130 ㎛의 두께로 도포하고, 100℃의 진공 오븐에서 10시간 동안 건조한 후, 60℃로 가열된 롤 사이로 15 MPa의 압력으로 압연하여, 최종 두께(집전체+활물질 층) 150 ㎛인 음극을 제조하였다.
이차 전지의 제조
상기 제조된 양극, 음극 및 다공성 폴리에틸렌 분리막을 스태킹(stacking) 방식을 이용하여 조립하였으며, 조립된 전지에 전해액 (에틸렌카보네이트(EC)/에틸메틸카보네이트(EMC) = 1 / 2 (부피비), 리튬 헥사 플로로 포스페이트 (LiPF6 1몰)을 주입하여 리튬 이차 전지를 제조하였다.
<실험예 1> 접착력 측정
상기 실시예 1 및 비교예 1에서 제조된 양극 및 음극의 접착강도를 알아보기 위해 상기 시편을 300 mm/min의 속도로 50 mm로 180 °필링 테스트 수행하고, 그 결과를 표 1에 나타내었다. 비교예 대비 실시예의 경우, 고분자량 바인더를 사용하였고, 고형분과 슬러리 점도가 높기 때문에 전극 건조 시 바인더 표면이 상승하는 현상이 현저히 줄어들기 때문에, 슬러리에 의해 형성된 코팅층과 집전체 간의 접착력이 매우 높아졌음을 확인할 수 있다.
접착력(gf)
실시예 1 양극 59.14
실시예 2 음극 53.83
비교예 1 양극 12.6
비교예 2 음극 19.76
<실험예 2> 방전 특성
상기 실시예 1 및 비교예 1에서 제조된 이차전지를 정전류/정전압(CC/CV) 조건에서 1.0493mAh의 정전류(CC)로 충전하고, 이후 정전압(CV)으로 4.35V까지 충전하여 충전전류가 0.05246 mAh가 될 때까지 충전을 행하였다. 이후 20분간 방치한 다음 0.1C의 정전류로 3.0V가 될 때까지 방전하였다. 음극의 경우, 정전류/정전압(CC/CV) 조건에서 1.068 mAh 의 정전류(CC)로 충전하고, 이 후 정전압(CV)으로 0.05V 까지 충전하여 충전 전류가 0.05034 mAh가 될 때까지 충전을 행하였다. 이 후 20분간 방치한 다음 0.1C의 정전류로 1.5V가 될 때까지 방전하였다. 이 후, 각 C-rate에 맞게 전류 값을 상승시키면서 방전 rate에 따른 성능 평가를 진행하였고, 표 2 및 3에 그 결과(도 5 및 도 6 참조)를 나타내었다. 실시예의 경우, 고분자량 바인더를 사용함으로써 전극 조성 중 바인더의 비율을 줄이고 활물질의 비율을 늘리면서 전지 용량의 상한을 증가시키고 rate 특성을 향상시킬 수 있었다.
방전 Rate(양극) 0.1C 용량[mAh/g] 0.2C 용량/0.1C 용량[%] 0.5C 용량/0.1C 용량[%] 1.0C 용량/0.1C 용량[%]
실시예 1 161.2 99.0 94.1 71.6
비교예 1 167.6 98.3 74.3 42.9
방전 Rate(음극) 0.1C 용량[mAh/g] 0.33C 용량/0.1C 용량[%] 0.67C 용량/0.1C 용량[%] 1.0C 용량/0.1C 용량[%]
실시예 2 348.4 94.5 74.1 50.5
비교예 2 350.1 93.7 51.8 30.6
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니며, 이하의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.

Claims (23)

  1. 용매에 바인더, 도전재 및 활물질을 혼합하여 혼합 용액을 제조하는 단계(단계 1);
    상기 단계 1의 혼합 용액의 층을 분리하는 단계(단계 2); 및
    상기 단계 2의 층 분리된 혼합 용액에서 용매의 적어도 일부를 제거하는 단계(단계 3);를 포함하는 전극 슬러리의 제조방법.
  2. 제1항에 있어서,
    상기 단계 1의 혼합은 호모 믹서를 사용하여 수행되는 것을 특징으로 하는 전극 슬러리의 제조방법.
  3. 제1항에 있어서,
    상기 단계 1의 활물질의 평균 입경(D50)은 5 ㎛ 내지 35 ㎛인 것을 특징으로 하는 전극 슬러리의 제조방법.
  4. 제1항에 있어서
    상기 단계 1의 혼합 용액의 점도는 100 cP 내지 500 cp인 것을 특징으로 하는 전극 슬러리의 제조방법.
  5. 제1항에 있어서,
    상기 단계 2의 층 분리는, 혼합 용액을 방치시켜 혼합 용액 내의 고형분이 침강함으로써 수행되는 것을 특징으로 하는 전극 슬러리의 제조방법.
  6. 제5항에 있어서,
    상기 단계 2의 고형분 중 활물질의 침강 속도는 0.04 cm/hr 내지 4.67 cm/hr인 것을 특징으로 하는 전극 슬러리의 제조방법.
  7. 제5항에 있어서,
    상기 혼합 용액을 30분 내지 120분 동안 방치시키는 것을 특징으로 하는 전극 슬러리의 제조방법.
  8. 제1항에 있어서,
    상기 단계 3의 용매의 일부 제거는 펌프를 사용하여 수행되는 것을 특징으로 하는 전극 슬러리의 제조방법.
  9. 제1항에 있어서,
    상기 단계 3의 수행 후, 용매가 일부 제거된 혼합 용액의 점도는 15,000 cP 내지 30,000 cP인 것을 특징으로 하는 전극 슬러리의 제조방법.
  10. 제1항에 있어서,
    상기 단계 1은,
    바인더와 용매를 혼합하는 단계(단계 a); 및
    상기 단계 a에서 제조된 용액에 도전재, 활물질을 투입하여 혼합하는 단계(단계 b)를 포함하는 것을 특징으로 하는 전극 슬러리의 제조방법.
  11. 제10항에 있어서,
    상기 단계 1은,
    상기 단계 b의 수행 후, 용매를 더욱 첨가하는 단계를 더 포함하는 것을 특징으로 하는 전극 슬러리의 제조방법.
  12. 제10항에 있어서,
    상기 활물질은 양극 활물질, 바인더는 폴리비닐리덴플루오라이드, 용매는 N-메틸-2 피롤리돈인 것을 특징으로 하는 전극 슬러리의 제조방법.
  13. 제1항에 있어서,
    상기 단계 1에서 바인더, 도전재 및 활물질 이외에 증점제를 더욱 첨가하는 것을 특징으로 하는 전극 슬러리의 제조방법.
  14. 제13항에 있어서,
    상기 단계 1은,
    증점제와 용매를 혼합하는 단계(단계 1-1); 및
    상기 단계 1-1에서 제조된 혼합 용액에 도전재, 활물질 및 바인더를 투입하여 혼합하는 단계(단계 1-2)를 포함하는 것을 특징으로 하는 전극 슬러리의 제조방법.
  15. 제14항에 있어서,
    상기 단계 1은,
    상기 단계 1-2의 수행 후, 용매를 더욱 첨가하는 단계를 더 포함하는 것을 특징으로 하는 전극 슬러리의 제조방법.
  16. 제14항에 있어서,
    상기 활물질은 음극 활물질, 증점제는 카르복시메틸 셀룰로우즈, 바인더는 스티렌 부타디엔 고무, 용매는 물인 것을 특징으로 하는 전극 슬러리의 제조방법.
  17. 제16항에 있어서,
    상기 SBR은 분산된 SBR 용액의 형태로 투입되는 것을 특징으로 하는 전극 슬러리의 제조방법.
  18. 제10항에 있어서,
    상기 바인더의 중량 평균 분자량은 600,000 내지 1,000,000인 것을 특징으로 하는 전극 슬러리의 제조방법.
  19. 제10항에 있어서,
    상기 활물질, 도전재 및 바인더의 중량비는 94 내지 99 : 0.5 내지 2.0 : 0.5 내지 4.0인 것을 특징으로 하는 전극 슬러리의 제조방법.
  20. 제14항에 있어서,
    상기 증점제의 중량 평균 분자량은 700,000 내지 1,500,000, 상기 바인더의 중량 평균 분자량은 200,000 내지 500,000인 것을 특징으로 하는 전극 슬러리의 제조방법.
  21. 제14항에 있어서,
    상기 바인더, 증점제, 도전재 및 활물질의 중량비는 93 내지 97 : 0.5 내지 1.0 : 0.5 내지 1.5 : 2.0 내지 4.0인 것을 특징으로 하는 전극 슬러리의 제조방법.
  22. 제1항의 제조방법에 따라 제조된 전극 슬러리이며,
    상기 전극 슬러리는 바인더, 도전재 및 활물질을 포함하고,
    상기 전극 슬러리의 점도는 100 cP 내지 500 cP인 전극 슬러리.
  23. 제22항에 있어서,
    상기 전극 슬러리의 제타 전위의 절대값은 20mV 내지 30mV인 것을 특징으로 하는 전극 슬러리.
PCT/KR2017/003287 2016-03-29 2017-03-28 전극 슬러리의 제조방법 WO2017171335A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17775759.8A EP3319155B1 (en) 2016-03-29 2017-03-28 Method for preparing electrode slurry
US15/749,841 US10693122B2 (en) 2016-03-29 2017-03-28 Method for preparing electrode slurry
PL17775759T PL3319155T3 (pl) 2016-03-29 2017-03-28 Sposób wytwarzania zawiesiny elektrod
CN201780002846.0A CN107925091B (zh) 2016-03-29 2017-03-28 制备电极浆料的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0037488 2016-03-29
KR1020160037488A KR102002405B1 (ko) 2016-03-29 2016-03-29 전극 슬러리의 제조방법

Publications (1)

Publication Number Publication Date
WO2017171335A1 true WO2017171335A1 (ko) 2017-10-05

Family

ID=59964891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003287 WO2017171335A1 (ko) 2016-03-29 2017-03-28 전극 슬러리의 제조방법

Country Status (6)

Country Link
US (1) US10693122B2 (ko)
EP (1) EP3319155B1 (ko)
KR (1) KR102002405B1 (ko)
CN (1) CN107925091B (ko)
PL (1) PL3319155T3 (ko)
WO (1) WO2017171335A1 (ko)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9819053B1 (en) 2012-04-11 2017-11-14 Ionic Materials, Inc. Solid electrolyte high energy battery
US11152657B2 (en) 2012-04-11 2021-10-19 Ionic Materials, Inc. Alkaline metal-air battery cathode
US10559827B2 (en) 2013-12-03 2020-02-11 Ionic Materials, Inc. Electrochemical cell having solid ionically conducting polymer material
US11319411B2 (en) 2012-04-11 2022-05-03 Ionic Materials, Inc. Solid ionically conducting polymer material
US11251455B2 (en) 2012-04-11 2022-02-15 Ionic Materials, Inc. Solid ionically conducting polymer material
CN106489217B (zh) 2014-04-01 2021-07-30 离子材料公司 高容量聚合物阴极和包括该阴极的高能量密度可充电电池
WO2016196873A1 (en) 2015-06-04 2016-12-08 Ionic Materials, Inc. Lithium metal battery with solid polymer electrolyte
EP3304620A4 (en) 2015-06-04 2018-11-07 Ionic Materials, Inc. Solid state bipolar battery
JP6991861B2 (ja) 2015-06-08 2022-02-03 イオニツク・マテリアルズ・インコーポレーテツド アルミニウム負極および固体ポリマー電解質を有するバッテリー
US11342559B2 (en) 2015-06-08 2022-05-24 Ionic Materials, Inc. Battery with polyvalent metal anode
JP7198762B2 (ja) 2017-01-26 2023-01-04 イオニツク・マテリアルズ・インコーポレーテツド 固体高分子の電解質を含むアルカリ電池のカソード
JP7071695B2 (ja) * 2018-05-01 2022-05-19 トヨタ自動車株式会社 電池組立体および非水電解液二次電池の製造方法
US11878916B2 (en) 2018-06-25 2024-01-23 Ionic Materials, Inc. Manganese oxide composition of matter, and synthesis and use thereof
CN109461901A (zh) * 2018-09-28 2019-03-12 桑顿新能源科技有限公司 一种锂离子电池浆料及其稳定性的评估方法
US11616218B2 (en) * 2019-06-04 2023-03-28 Licap Technologies, Inc. Dry electrode manufacture by temperature activation method
US11510269B2 (en) * 2019-07-01 2022-11-22 Qualcomm Incorporated Signaling for multi-link communication in a wireless local area network (WLAN)
KR20220027174A (ko) * 2019-07-01 2022-03-07 아이오닉 머터리얼스, 인코퍼레이션 복합 솔리드 스테이트 배터리 셀
CN112382757B (zh) * 2020-08-11 2022-03-18 万向一二三股份公司 一种负极复合增稠剂、负极极片及制备方法
CN113937292B (zh) * 2021-09-02 2024-03-08 深圳市拓邦锂电池有限公司 电极抑制剂及其应用、电池极片的制备方法
US20230261194A1 (en) * 2022-02-17 2023-08-17 GM Global Technology Operations LLC Battery including a thick cathode and a method for forming the thick cathode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120104854A (ko) * 2011-03-14 2012-09-24 공주대학교 산학협력단 표면처리된 스피넬 리튬 티타늄 옥사이드의 제조방법 및 상기 스피넬 리튬 티타늄 옥사이드를 음극재로 이용하여 제조된 리튬이차전지
KR20140134541A (ko) * 2013-05-14 2014-11-24 주식회사 엘지화학 전극 전도도가 향상된 전극 및 이의 제조방법
KR101506364B1 (ko) * 2011-06-20 2015-03-26 주식회사 엘지화학 전극 활물질의 제조방법, 이에 사용되는 전극 슬러리 교반기, 및 전극 활물질을 포함하는 이차전지
KR20150071452A (ko) * 2013-12-18 2015-06-26 주식회사 엘지화학 이차 전지용 음극 슬러리 제조 방법
KR20150124928A (ko) * 2014-04-29 2015-11-06 주식회사 엘지화학 음극 활물질 슬러리, 이의 제조방법 및 이를 포함하는 음극

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3009979A (en) * 1959-02-09 1961-11-21 Sidney A Corren Positive electrode
KR960015981A (ko) * 1994-10-01 1996-05-22 전형구 리튬전지의 양극 제조방법
JP2005327642A (ja) 2004-05-17 2005-11-24 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池用負極板の製造方法
JP2007059264A (ja) * 2005-08-25 2007-03-08 Hitachi Ltd 電気化学デバイス
CN101521271B (zh) * 2008-02-26 2011-10-12 比亚迪股份有限公司 一种锂离子电池负极浆料和负极的制备方法
CN103155233B (zh) * 2010-10-05 2015-05-13 丰田自动车株式会社 电池的制造方法
CN102142563A (zh) * 2011-03-01 2011-08-03 新源动力股份有限公司 一种质子交换膜燃料电池催化剂涂层膜电极浆料制备方法
JP2013004215A (ja) 2011-06-14 2013-01-07 Hitachi Ltd リチウムイオン二次電池
JP2013149416A (ja) * 2012-01-18 2013-08-01 Tokushiki:Kk リチウムイオン二次電池の電極形成用の活物質分散液、電極およびリチウムイオン二次電池
US9088037B2 (en) 2012-05-25 2015-07-21 Bathium Canada Inc. Electrode material for lithium electrochemical cells
JP6321404B2 (ja) * 2014-02-26 2018-05-09 株式会社ジェイテクト 蓄電材料の製造装置および製造方法
CN103985837B (zh) * 2014-05-30 2016-06-15 合肥国轩高科动力能源有限公司 锂离子电池电极浆料的制备工艺
JP2016009647A (ja) * 2014-06-26 2016-01-18 三菱レイヨン株式会社 二次電池電極用バインダ樹脂、スラリー、二次電池用電極、及び非水二次電池
JP6115790B2 (ja) * 2014-09-18 2017-04-19 トヨタ自動車株式会社 電極ペーストの検査方法ならびに電極の製造方法
JP6187829B2 (ja) * 2015-03-31 2017-08-30 トヨタ自動車株式会社 リチウム二次電池および該電池の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120104854A (ko) * 2011-03-14 2012-09-24 공주대학교 산학협력단 표면처리된 스피넬 리튬 티타늄 옥사이드의 제조방법 및 상기 스피넬 리튬 티타늄 옥사이드를 음극재로 이용하여 제조된 리튬이차전지
KR101506364B1 (ko) * 2011-06-20 2015-03-26 주식회사 엘지화학 전극 활물질의 제조방법, 이에 사용되는 전극 슬러리 교반기, 및 전극 활물질을 포함하는 이차전지
KR20140134541A (ko) * 2013-05-14 2014-11-24 주식회사 엘지화학 전극 전도도가 향상된 전극 및 이의 제조방법
KR20150071452A (ko) * 2013-12-18 2015-06-26 주식회사 엘지화학 이차 전지용 음극 슬러리 제조 방법
KR20150124928A (ko) * 2014-04-29 2015-11-06 주식회사 엘지화학 음극 활물질 슬러리, 이의 제조방법 및 이를 포함하는 음극

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3319155A4 *

Also Published As

Publication number Publication date
EP3319155A1 (en) 2018-05-09
US20180219210A1 (en) 2018-08-02
CN107925091A (zh) 2018-04-17
KR20170111637A (ko) 2017-10-12
KR102002405B1 (ko) 2019-07-23
EP3319155A4 (en) 2018-07-04
PL3319155T3 (pl) 2019-11-29
CN107925091B (zh) 2021-06-01
US10693122B2 (en) 2020-06-23
EP3319155B1 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
WO2017171335A1 (ko) 전극 슬러리의 제조방법
WO2019151834A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2019164313A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2018088735A1 (ko) 음극 및 상기 음극의 제조방법
WO2019225969A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019168308A1 (ko) 양극 및 상기 양극을 포함하는 이차 전지
WO2021107586A1 (ko) 인편상 흑연을 포함하는 이차전지용 양극 및 이를 포함하는 이차전지
WO2022164281A1 (ko) 양극 및 이를 포함하는 리튬 이차전지
WO2020101301A1 (ko) 음극 활물질 및 이의 제조 방법
WO2018174619A1 (ko) 이차전지 양극용 슬러리 조성물의 제조방법, 이를 이용하여 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2022055308A1 (ko) 음극재, 이를 포함하는 음극 및 이차전지
WO2022055309A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2018226070A1 (ko) 음극, 상기 음극을 포함하는 이차 전지, 및 상기 음극의 제조 방법
WO2018174616A1 (ko) 양극 활물질 선분산체 조성물, 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2022060138A1 (ko) 음극 및 이를 포함하는 이차전지
WO2022045852A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2020149618A1 (ko) 음극 활물질의 제조 방법
WO2019066585A1 (ko) 이차전지용 양극 활물질의 제조방법, 이와 같이 제조된 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2018008954A1 (ko) 양극 및 상기 양극을 포함하는 이차 전지
WO2021075830A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 방법에 의해 제조된 리튬 이차전지용 양극 활물질
WO2022139348A1 (ko) 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2020159310A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021086132A1 (ko) 음극의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017775759

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15749841

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE