WO2012115340A1 - 이차 전지용 음극재 및 이의 제조방법 - Google Patents

이차 전지용 음극재 및 이의 제조방법 Download PDF

Info

Publication number
WO2012115340A1
WO2012115340A1 PCT/KR2011/009655 KR2011009655W WO2012115340A1 WO 2012115340 A1 WO2012115340 A1 WO 2012115340A1 KR 2011009655 W KR2011009655 W KR 2011009655W WO 2012115340 A1 WO2012115340 A1 WO 2012115340A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
negative electrode
sno
electrode material
secondary battery
Prior art date
Application number
PCT/KR2011/009655
Other languages
English (en)
French (fr)
Inventor
김원배
김종국
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to US14/001,436 priority Critical patent/US20130337335A1/en
Publication of WO2012115340A1 publication Critical patent/WO2012115340A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/536Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite based on expanded graphite or complexed graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62889Coating the powders or the macroscopic reinforcing agents with a discontinuous coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode material for a secondary battery and a method for manufacturing the same, and more particularly, to show improved coulombic efficiency and high-speed charge / discharge performance including tin oxide nanorods formed on a graphite matrix.
  • the present invention relates to a manufacturing method capable of easily and easily controlling the diameter and length of tin oxide nanorods grown on a graphite matrix through a carbon-based negative electrode material and a catalyst-assisted hydrothermal process.
  • Lithium Ion Battery Lithium Ion Battery
  • SnO 2 -based materials have a theoretical capacity of about twice that of conventional graphite lithium storage capacity (about 372mAhg -1 ) (about 781mAhg -1 ), and due to advantages such as low cost and stability, the currently commercially available graphite anode ( It has attracted considerable attention as a promising alternative to replace the anode.
  • SnO 2 The system electrode material is manufactured into a nanostructure.
  • the SnO 2 Nanostructures It may be a one-dimensional structure such as nanowires, nanotubes, nanorods.
  • 1D SnO as above 2 1134mAhg during initial cycle through the synthesis of nanowires -One A technique that achieves higher lithium storage capacity and lower capacity fading of 1.45% per cycle is known [Park, M.-S. et al. Angew. Chem. Int. Ed. 2007, 119,764-767].
  • stable capacity retention of relatively low potential window and about 1100 mAhg -One One-dimensional SnO with high initial capacity 2 Techniques for nanorods are known [Wang, Y .; Lee, J. Y. J. Phys. Chem. B 2004, 108,17832-17837.
  • the amount of SnO 2 loaded has a problem that is greatly influenced by the area of graphite surface or the degree of dispersion of nanoparticles.
  • a first object of the present invention is to provide a negative electrode material for a secondary battery having a large storage capacity, high coulombic efficiency, cycle stability, and fast charge / discharge performance, including a plurality of tin oxide nanorods formed on a graphite matrix. .
  • a second object of the present invention is to provide a method of manufacturing a negative electrode material for a secondary battery capable of controlling the diameter and length of tin oxide nanorods grown on a graphite matrix simply and easily according to a use through a hydrothermal process.
  • the present invention for achieving the first object is characterized in that it comprises a graphite matrix and a plurality of tin oxide nanorods formed on the graphite matrix.
  • the present invention for achieving the second object, the step of activating the surface of the graphite, coating (tin) tin oxide nanoparticles on the activated graphite surface to produce a tin oxide seed type graphite and And heating the tin oxide seed-type graphite by thermal equation to grow a plurality of tin oxide nanorods.
  • the negative electrode material for a secondary battery according to the present invention has an effect having improved coulombic efficiency, excellent fast charge / discharge performance, and cycle stability.
  • the method of manufacturing a negative electrode material for a secondary battery according to the present invention has an effect of controlling the diameter or length of tin oxide nanorods grown on a graphite matrix simply and easily by a catalyst-assisted hydrothermal process.
  • 1 to 3 are process diagrams illustrating a method of manufacturing a negative electrode material for a secondary battery of the present invention.
  • FIG. 5 is an HRTEM image of tin oxide seed graphite prepared through one embodiment of the present invention.
  • FIG. 6 is an SEM image of a negative electrode material for a secondary battery manufactured through one embodiment of the present invention.
  • FIG. 7 is an SEM image of tin oxide nanorods grown on graphite with concentrations of [Sn (OH) 6 ] 2 ⁇ and reaction time.
  • FIG. 8 is a graph showing XRD patterns of a negative electrode material for a secondary battery manufactured through one embodiment of the present invention.
  • 9 and 10 are TEM and HRTEM images of tin oxide nanorods prepared through one embodiment of the present invention.
  • FIG. 11 is a TGA curve of a negative electrode material for a secondary battery manufactured through one embodiment of the present invention.
  • FIG. 12 is a graph showing a current according to a potential of tin oxide nanowires as a comparative example.
  • FIG 13 is a graph showing the current according to the potential of the negative electrode material for a secondary battery manufactured through one embodiment of the present invention.
  • FIG. 14 is a voltage profile of a negative electrode material for a secondary battery manufactured through one embodiment of the present invention.
  • 15 is a graph showing capacity according to the number of cycles of a negative electrode material for a secondary battery manufactured according to an embodiment of the present invention.
  • 16 is a view showing capacity attenuation rate and coulombic efficiency according to the length of the nanorods of the negative electrode material for a secondary battery manufactured through one embodiment of the present invention.
  • FIG. 17 is a diagram illustrating a relationship between tin content and first cycle discharge capacity according to a nanorod length of a negative electrode material for a secondary battery manufactured through one embodiment of the present invention.
  • FIG. 18 is a graph showing the capacity of the tin oxide nanowires and nanoparticles according to the number of cycles at various current densities as a comparative example.
  • 19 is a graph showing the capacity according to the number of cycles at various current densities of a plurality of secondary battery negative electrode materials manufactured through one embodiment of the present invention.
  • 20 is a graph showing Nyquist plots of tin oxide nanowires and nanoparticles as a comparative example.
  • 21 is a graph showing a Nyquist plot of a plurality of secondary battery negative electrode materials manufactured through one embodiment of the present invention.
  • 1 to 3 are process diagrams illustrating a method of manufacturing a negative electrode material for a secondary battery of the present invention.
  • the surface of graphite powder mainly used is inactive, SnO described later.
  • the surface of graphite is first activated.
  • HNO nitric acid
  • H 2 SO 4 sulfuric acid
  • HNO nitric acid
  • HCl hydrochloric acid
  • tin oxide seed particles are prepared by coating tin oxide nanoparticles on an activated graphite surface. This is followed by a process of dispersing the activated graphite powder in a solution containing a hydrate of a tin-containing material, adding a solution containing hydroxide ions to the dispersion, followed by stirring.
  • the hydrate of the tin-containing material is stantin chloride pentahydrate (SnCl 4 ⁇ 5H 2 O)
  • the solution containing hydroxide ions may be a sodium hydroxide (NaOH) aqueous solution.
  • Dispersed activated graphite powder was prepared in a solution containing stantin chloride pentahydrate, and the addition of aqueous sodium hydroxide solution produced precipitated SnO 2 nanoparticles. Subsequently, the SnO 2 nanoparticles are coated onto the graphite surface through stirring and heat treatment. As described above, SnO 2 nanoparticles can be seeded onto the activated graphite surface through hydrolysis of stantin chloride pentahydrate. At this time, it is preferable that the molar ratio of the sodium hydroxide (NaOH) and stantin chloride pentahydrate (SnCl 4 .5H 2 O) is 1: 10.5 to 1: 24.
  • NaOH sodium hydroxide
  • SnCl 4 .5H 2 O stantin chloride pentahydrate
  • a tin oxide seed graphite is heated by hydrothermal treatment to grow a plurality of SnO 2 nanorods.
  • Sn (OH) 4 prepared through the reaction of Formula (1) is decomposed by excessive OH ⁇ anion to form [Sn (OH) 6 ] 2 -complex of Formula (2).
  • the [Sn (OH) 6 ] 2 -composite is then converted to SnO 2 by a hydrothermal process according to Equation (3) above.
  • the SnO of the square pillar whose cross section is rectangular. 2 It is desirable to obtain nanorods, for which [Sn (OH) 6 ] 2- SnCl for Concentration and NaOH 4 ⁇ 5H 2 The molar ratio of O can be adjusted. SnO 2 [Sn (OH) for the growth of nanorods 6 ] 2- of It is preferable that the concentration exceeds 0.05M. Sn (OH) 6 ] 2- of SnO when the concentration is less than 0.1 M, for example 0.05 M 2 Nanorods are not produced only after 24 hours, but after a longer time (48 hours).
  • [Sn (OH) 6] through the hydrothermal process in aqueous solution 2, and can be vertically grown as a plurality of SnO 2 nanorods from the graphite surface, [Sn (OH) 6] 2-concentration in the aqueous solution and Each shape, diameter and length of SnO 2 nanorods can be easily controlled while varying the reaction time.
  • the negative electrode material for a secondary battery of the present invention includes a graphite matrix and a plurality of tin oxide nanorods formed on the graphite matrix.
  • the graphite matrix may be a plurality of graphite cores
  • the plurality of tin oxide nanorods may have a rectangular pillar shape
  • the cross section may be rectangular.
  • the plurality of tin oxide nanorods formed on the plurality of graphite cores may be disposed to surround the graphite core.
  • the tin oxide content of the graphite matrix is preferably 50% to 90% by weight relative to the total 100% by weight.
  • the average diameter of the plurality of tin oxide nanorods may be selected within the range of 28nm to 84nm, respectively, and the average length may be selected within the range of 123nm to 646nm, respectively.
  • Li + Ions easily migrate into the spaces between the grown nanorods, making each SnO 2 Penetrates through the nanorods, and because of their structural properties + of It provides a relatively short diffusion length.
  • the graphite matrix has high electrical conductivity, so that one-dimensional SnO 2 By facilitating electron movement through the nanorods, electrons can be delivered effectively.
  • Multiple SnO 2 Nanorods are spaced apart from each other at a distance and grow individually on the graphite matrix, resulting in faster Li + Movement of ions Can increase the electrolyte permeability.
  • a plurality of SnO 2 The nanorods are tightly implanted and bonded to the graphite surface, so SnO 2 Nanorods can be prevented from collapsing from graphite.
  • the high electrical conductivity of the graphite improves electron transfer and, due to its high ductility, it acts as a buffer zone to transfer mechanical stress during the charge / discharge process. Moreover, the coulombic efficiency can be increased compared to pure SnO 2 electrodes due to the reduction of unnecessary side reactions associated with electrolyte decomposition on the graphite surface. Therefore, the negative electrode material for secondary batteries of this invention has a big influence on the performance improvement of a lithium ion battery.
  • SnO 2 is seeded on the graphite surface activated by simple hydrolysis of SnCl 4 with NaOH.
  • 0.5 g of the activated graphite powder is first dispersed in 4.1 mL of 0.054 M water soluble SnCl 4 .5H 2 O (98%, Aldrich) solution.
  • 4.1 mL of 0.106 M NaOH (99.99%, Aldrich) aqueous solution is then added to the mixture under vigorous stirring.
  • the colloidal SnO 2 nanoparticles are precipitated through the above process.
  • the SnO 2 seed graphite powder was washed several times with distilled water and ethanol, and then dried in a convection oven at a temperature of 70 ° C., and the dried powder was 400 ° C. for 2 hours in an Ar atmosphere.
  • Tin precursor solution is injected into the Teflon inlet of the autoclave by mixing 0.075 mol NaOH (99.99%, Aldrich) in 50 mL of 0.1 M aqueous SnCl 4 .5H 2 O (98%, Aldrich) solution.
  • the tin precursor solution is magnetically stirred in the air for 20 minutes to produce a transparent and uniform precursor solution.
  • SnO 2 nanorods having various sizes were synthesized by changing the concentration of the solution to 50 mL of 0.2 M aqueous SnCl 4 .5H 2 O solution and 0.105 mol of NaOH.
  • the average diameter and length range of the SnO 2 nanorods (S1 to S3) formed on the graphite through the process of mixing the 0.075 mol NaOH in 50 mL of 0.1 M aqueous SnCl 4 ⁇ 5H 2 O solution were changed according to the growth time. 28 nm to 37 nm and 123 nm to 352 nm.
  • the range of average diameter and length of SnO 2 nanorods (S4 to S6) is 62nm, respectively To 84 nm and 409 nm to 646 nm.
  • SnO 2 nanowires and nanoparticles are also synthesized separately for comparison with other nanostructures.
  • SnO 2 nanowires were synthesized using Au catalysts in a gas-liquid-solid growth mechanism using chemical vapor deposition (CVD). At this time, the diameter of the synthesized SnO 2 nanowires was about 80nm, and has a length of micrometer ( ⁇ m).
  • SnO 2 nanoparticles having a diameter of about 100 nm were synthesized through a hydrothermal process of 50 mL of 0.01M aqueous solution of SnCl 4 5H 2 O containing 6.7 mol NaOH at 200 ° C. for 24 hours.
  • Measurements were performed using a JEOL JSM-7500F with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • Observations were performed using a transmission electron microscope (TEM) and a high resolution transmission electron microscope (HRTEM) (JEOL JEM-2100) operating at 200 kV.
  • SnO 2 content (wt.%) was investigated by thermogravimetric analysis at a heating rate of 10 ° C. mim ⁇ 1 in the atmosphere.
  • a slurry obtained by mixing SnO 2 nanorods grown with graphite, carbon black, carboxyl methyl cellulose, and styrene butadiene rubber in a weight ratio of 80: 10: 5: 5 was prepared on a pure copper foil using a doctor blade method.
  • the electrode was prepared by paste and then dried in a vacuum oven at a temperature of 145 ° C. for 3 hours. This was used as a working electrode.
  • 1M LiPF 6 in which ethylene carbonate and diethyl carbonate were mixed in a volume ratio of 1: 1 was used as an electrolyte, and pure lithium foil was used as a counter electrode.
  • Celgard 2400 was used as a separator. This was assembled in an Ar-filled glove box where the concentration of humidity and oxygen was kept below 1 ppm to complete the cell of the two-electrode system.
  • FIG. 5 is an HRTEM image of tin oxide seed graphite prepared through one embodiment of the present invention.
  • FIG. 6 is an SEM image of a negative electrode material for a secondary battery manufactured through one embodiment of the present invention.
  • FIG. 7 is an SEM image of tin oxide nanorods grown on graphite with concentrations of [Sn (OH) 6 ] 2 ⁇ and reaction time.
  • the SnO 2 nanorods are rectangular pillars having a rectangular cross section, and are densely distributed throughout the graphite surface.
  • Each sample (S1 to S6) was prepared under specific synthetic conditions, it can be seen that the average diameter of the prepared SnO 2 nanorods can be controlled to 28nm to 84nm, the length is 123nm to 646nm.
  • the diameter and length of each nanorod increases as [Sn (OH) 6 ] 2 concentration and reaction time increase.
  • FIG. 8 is a graph showing XRD patterns of a negative electrode material for a secondary battery manufactured through one embodiment of the present invention.
  • the size of SnO 2 nanorods increase (i.e., increasing from S1 to S6) bar to confirm that the peak intensity increases the ratio of SnO 2 to the graphite, which, because the diffraction intensity is proportional to the weight fraction of the composition, of SnO 2 It means that the weight fraction is increased.
  • the relative intensity of the (002) crystal plane of the SnO 2 is gradually increased from S1 to S6, and it can be seen that this, through the growth direction of the SnO 2 prefer the ⁇ 001> direction.
  • 9 and 10 are TEM and HRTEM images of tin oxide nanorods prepared through one embodiment of the present invention.
  • SnO 2 The high crystallinity of the nanorods can be confirmed.
  • SnO 2 The fast Fourier transform pattern found in some of the nanorods is SnO 2 Single crystal properties of nanorods. 3.35 Sn distance between adjacent faces is rutile SnO 2 Corresponds to the distance between two (110) planes of the phase. SnO 2 Nanorods Surrounded by (110) crystal facets, it can be seen that the (001) plane is perpendicular to the nanorod axis, indicating that the growth of the nanorods has accelerated in the [001] direction.
  • FIG. 11 is a TGA curve of a negative electrode material for a secondary battery manufactured through one embodiment of the present invention.
  • SnO 2 content (wt.%) In graphite in which a plurality of SnO 2 nanorods were grown was quantitatively measured by TGA in the air, and the temperature was changed from room temperature to 900 ° C. at a heating rate of 10 ° C. min ⁇ 1 .
  • SnO 2 and graphite were also measured in the same manner as described above.
  • the SnO 2 content (ie, S1 to S6) of graphite in which a plurality of SnO 2 nanorods were grown was 50.1 wt.%, 66.0 wt.%, 71.0 wt.%, 79.9 wt.%, 85.1 wt.%, As can be seen that it is measured at 88.3wt.%, It can be seen that the SnO 2 content increases as the length and diameter of the SnO 2 nanorods increase.
  • FIG. 12 is a graph showing a current according to a potential of tin oxide nanowires as a comparative example.
  • FIG 13 is a graph showing the current according to the potential of the negative electrode material for a secondary battery manufactured through one embodiment of the present invention.
  • the peaks at 0.2V and 0.5V in the andic graph are LiC, respectively.
  • 6 Separation of Li from Li x May occur due to the dealloyment of Li from Sn.
  • the results indicate that the charge / discharge of the composite is a stepwise process, that is, Li is first alloyed with Sn, and then Li is inserted into the graphite to perform the cathodic process, while LiC 6 Li insertions first occur from and then Li for the anodic reaction x It can be seen that de-alloying of Sn is followed.
  • the activation process is SnO 2 Nanorods may be involved in reconstruction of the internal crystal structure of grown graphite.
  • the activation characteristic is Li + Moving speed of or LiC 6 and Li 4.4 It is determined by the rate of Sn formation.
  • the degradation of the electrode is greater than the activation process, which leads to a serious performance degradation, while the graphite in which the plurality of SnO 2 nanorods manufactured according to an embodiment of the present invention is initially grown five times Since the activation process overwhelms deterioration during the cycle, it can be seen that the degradation is not severe compared to the case of SnO 2 nanowires.
  • FIG. 14 is a voltage profile of a negative electrode material for a secondary battery manufactured through one embodiment of the present invention.
  • a plurality of SnOs 2 Graphite with nanorods grown is about 1010mAg -One It can be seen that represents a very high initial discharge capacity of, the value is SnO 2 Is the value between and graphite . As above, higher capacity allows one-dimensional SnO to provide efficient electron transfer and wider interfacial area 2 Is influenced by + of There is an advantage to improve the mobility.
  • the Coulomb efficiency range of the plurality of SnO 2 nanorods of the present invention is higher than SnO 2 based materials, which are typically 40% to 50%.
  • the initial irreversible capacity loss is mainly due to electrolyte decomposition for electroactive materials, and since graphite inhibits irreversible side reactions compared to other materials such as Si, Fe 2 O 3 , Co 3 O 4, etc., SnO 2 nanorods
  • the grown graphite may exhibit higher coulombic efficiency.
  • the SEI film covering the surface of the grown graphite with a plurality of SnO 2 nanorods prevents further decomposition of the electrolyte.
  • the coulombic efficiency significantly increases to 94.2% in the second cycle.
  • the inserted SEM images of FIG. 14 show SnO 2 nanorod arrays retained on the graphite core after the 25th cycle, in spite of volume variation, it can be seen that the nanorod arrays maintain structural integrity. have. It can be seen that the electrical connection loss between the SnO 2 nanorods is reduced.
  • 15 is a graph showing capacity according to the number of cycles of a negative electrode material for a secondary battery manufactured according to an embodiment of the present invention.
  • a plurality of SnO 2 nanorods exhibit improved cycling performance through the constant current cycling profile of the grown graphite (S1) electrode and maintain a reversible capacity over the 25th cycle.
  • 16 is a view showing capacity attenuation rate and coulombic efficiency according to the length of the nanorods of the negative electrode material for a secondary battery manufactured through one embodiment of the present invention.
  • the average capacity attenuation of the graphite (S1) in which a plurality of SnO 2 nanorods is grown is 0.85% per cycle after the second cycle, it can be seen that shows excellent capacity retention. Since the elastic force of carbon is greater than SnO 2 , the elastic graphite in which the nanorods are separated from each other can effectively receive strain energy when the SnO 2 nanorods and the graphite react with Li + . Therefore, graphite in which a plurality of SnO 2 nanorods are grown shows excellent cyclability.
  • FIG. 17 is a diagram illustrating a relationship between tin content and first cycle discharge capacity according to a nanorod length of a negative electrode material for a secondary battery manufactured through one embodiment of the present invention.
  • the tin content and the first discharge capacity may increase as the length of the SnO 2 nanorods increases, which means that both SnO 2 nanorods and graphite contribute to the total capacity of the electrode. do.
  • FIG. 18 is a graph showing the capacity of the tin oxide nanowires and nanoparticles according to the number of cycles at various current densities as a comparative example.
  • 19 is a graph showing the capacity according to the number of cycles at various current densities of a plurality of secondary battery negative electrode materials manufactured through one embodiment of the present invention.
  • each cell is 72mAg -One 72mAg from current density of -One Thick Step by step up to 288 mAg -One Circulated until This allows 288mAg -One S1 is 257.7 mAg even at high current densities -One It can be seen that a significant amount of capacity can still be moved.
  • the moved capacity is 249.3mAg respectively.
  • -One And 248.2 mAg -One to be.
  • the current density is 288mAg -One from 72mAg -One If again decreases to 81.7% of the initial dose for S1 can be recovered again.
  • the synthesized SnO 2 nanowires With a diameter of about 80 nm and a length of micrometers, SnO 2 nanoparticles have a diameter of about 100 nm. It represents the discharge capacity and 192.9mAhg 242.5mAhg -1 -1 at a current density of 288mAg -1, respectively, that the recovery capacity ratio are respectively 58.8% and 34.4%.
  • the SnO 2 The normalized capacity of the nanowires, 81.8%, is 144 mAg. -One SnO at low current density 2 Nanorods are higher than the standard capacity of grown graphite (S1, 79.5%), but SnO 2 Capacity retention of graphite (S1, 46.2%) with nanorods grown is 288mAg -One SnO at high current density 2 It can be seen that a significant improvement compared to the capacity retention (34.5%) of the nanowires. Therefore, as the charge / discharge rate increases, SnO 2 The capacity attenuation of graphite with nanorods grown is SnO 2 The value is reduced compared to the capacity attenuation of the nanowires.
  • the nanorods grow graphite (S1, S3, S5) 2 Compared to nanoparticles and nanowires, it shows better charge / discharge performance, stable capacity retention, and higher recovery capacity ratio.
  • one-dimensional SnO combined with graphite 2 Is SnO 2 There is an advantage that can improve the fast charge / discharge performance of the system electrode.
  • 20 is a graph showing Nyquist plots of tin oxide nanowires and nanoparticles as a comparative example.
  • 21 is a graph showing a Nyquist plot of a plurality of secondary battery negative electrode materials manufactured through one embodiment of the present invention.
  • the Nyquist plots consist of straight lines of low frequency and partially overlapping semicircles of high and medium frequencies. It is composed.
  • High frequency semicircles are associated with the resistance of the SEI layer (R SEI ) resulting from the passivation reaction between the electrode surface and the electrolyte.
  • the medium frequency semicircle corresponds to the charge transfer resistance (R ct ) occurring at the interface between the electroactive materials and the electrolyte, and the low frequency straight line corresponds to the Warburg impedance (W d ) due to Li + diffusion in the electrode material. .
  • R SEI and R ct of Sum is SnO 2 2.38 ⁇ m for nanowires 2 g -One , SnO 2 1.19 ⁇ m for nanoparticles 2 g -One , SnO 2 0.26 ⁇ m for nanorod-grown graphite 2 g -One Decreases.
  • This is a one-dimensional SnO 2 Synthesis with nanorods and graphite indicates improved electrical conductivity.
  • the negative electrode material for a secondary battery of the present invention has a larger capacity than graphite by including a graphite matrix and a plurality of tin oxide nanorods formed on the graphite matrix, and has a higher coulombic efficiency and a faster charge / discharge performance than a SnO 2 based material. .
  • Such excellent performance may be based on the intrinsic structure of the negative electrode material. Poor circulation of the SnO 2 based material is due to large volume fluctuations during charge / discharge, resulting in pulverization of the electrodes.
  • the negative electrode material of the secondary battery of the present invention has the advantage of reducing the mechanical stress caused by rapid volume change through vertically grown one-dimensional SnO 2 nanorods and elastic graphite to mitigate electrode degradation.
  • the high affinity between SnO 2 nanorods and graphite creates a homogeneous electrical interconnection in the electrode films to prevent aggregation or separation of SnO 2 nanorods during charge / discharge and achieve good capacity retention.
  • the graphite matrix improves the conductivity of the electrode, which improves electron transfer and reduces resistance loss.
  • Theoretical coulombic efficiency of SnO 2 based materials is 52% due to irreversible Li 2 O formation in complete Li alloying / dealloying.
  • the coulombic efficiency of graphite grown with SnO 2 nanorods is due to stable SEI formation on graphite. It is higher than the coulombic efficiency of SnO 2 based materials, which corresponds to an increase in energy density. Therefore, there is an advantage that excellent high speed charge / discharge performance and stable circulation force are ensured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Electrochemistry (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

이차 전지용 음극재 및 이의 제조방법이 개시된다. 본 발명에 의한 이차 전지용 음극재는 흑연 매트릭스 및 상기 흑연 매트릭스 상에 형성되는 복수개의 산화주석 나노로드를 포함함으로써 이차 전지의 음극재로서 사용하는 경우, 높은 초기 용량(1010mAhg-1) 및 쿨롱 효율(59.2%), 우수한 고속 충/방전 성능(rate capability) 및 향상된 전기 화학적 성질을 나타낸다. 또한, 본 발명에 의한 이차 전지용 음극재는 흑연의 표면을 활성화하는 단계, 상기 활성화된 흑연 표면 상에 산화주석 나노입자들을 코팅하여 산화주석 시드형 흑연을 제조하는 단계 및 상기 산화주석 시드형 흑연을 열수식으로 가열하여 복수개의 산화주석 나노로드를 성장시키는 단계를 포함함으로써 간단한 촉매 열수 공정에 의해 합성 용액 농도 및 반응 시간을 조절함으로써 SnO2 나노로드의 직경 및 길이를 효율적으로 제어할 수 있다.

Description

이차 전지용 음극재 및 이의 제조방법
본 발명은 이차 전지용 음극재 및 이의 제조방법에 관한 것으로, 보다 상세하게는 흑연 매트릭스 상에 형성된 산화주석 나노로드들(nanorods)을 포함하여 향상된 쿨롱 효율과 고속 충/방전 성능(rate capability)을 나타내는 탄소계 음극재 및 촉매 보조 열수 공정을 통해 흑연 매트릭스 상에 성장되는 산화주석 나노로드들의 직경 및 길이를 간단하고 용이하게 제어할 수 있는 제조방법에 관한 것이다.
Co3O4, CuO, NiO, Fe3O4, SnO2 등과 같은 다양한 종류의 금속 산화물은 높은 에너지 밀도와 상대적으로 저렴한 비용으로 인해 리튬-이온 전지(Lithium Ion Battery, LIB)의 대체 전극 재료로서 광범위하게 개발되어왔다. 특히 SnO2계 재료들은 종래 흑연의 리튬 저장 이론용량(약 372mAhg-1)에 비해 약 2배의 이론용량(약781mAhg-1)을 가지며, 저비용 및 안정성 등의 이점으로 인하여 현재 상용화된 흑연 애노드(anode)를 대체하는 유망한 대체 재료로서 상당한 관심을 끌었다.
그러나, SnO2 재료를 사용하여 전극을 실제로 구현하는 것은 여전히 난관을 겪고 있는 바, 이는 충/방전 과정 중에 발생하는 약 250% 이상의 큰 부피 팽창으로 인한 순환력(cyclability)의 문제에 기인한다.
이를 해결하기 위한 방안 중 하나는 SnO2계 전극 재료를 나노구조로 제조하는 것이다. 구체적으로, 상기 SnO2 나노구조는 나노와이어, 나노튜브, 나노로드와 같은 1차원 구조일 수 있다. 상기와 같이 1차원 SnO2 나노와이어의 합성을 통해 최초 사이클 동안 약 1134mAhg-1의 보다 높은 리튬 저장 용량과 사이클당 1.45%의 보다 낮은 용량감쇠(capacity fading)를 얻은 기술이 공지되어 있다[Park, M.-S. et al. Angew.Chem.Int.Ed.2007,119,764-767]. 또한, 비교적 낮은 전위 윈도우(potential window)의 안정적인 용량 리텐션(retention)과 약 1100mAhg-1의 높은 초기 용량을 가지는 1차원 SnO2 나노로드에 대한 기술이 공지되어 있다[Wang,Y.; Lee,J.Y.J.Phys.Chem.B2004,108,17832-17837].
그러나 상기의 기술들은, 이를 전극으로서 이용하는 경우 나노재료들 간에 응집이 발생하는 문제점이 있었다. 또한 나노재료들의 큰 표면적으로부터 발생하는 많은 비가역적인 부반응들(side-reactions)이 쿨롱 효율과 에너지 밀도를 감소시키는 문제점이 있었다.
이를 해결하기 위하여 SnO2 나노입자들을 버퍼링 매트릭스 내에 균일하게 분산하도록 복합물을 합성하는 기술이 개발되었다. 상기 버퍼링 매트릭스로 사용되는 탄소계 재료들은 높은 전기 전도성, 우수한 기계적 성질 및 가역 용량 리텐션(reversible capacity retention)을 가지므로, 이를 구비하는 SnO2 복합물들은 많은 이점을 가진다. 이러한 관점에서, SnO2 나노입자들이 흑연 표면 상에 고정되어 순수한 SnO2 나노재료보다 용량 리텐션이 우수한 SnO2-흑연 복합물이 발표되었다[Wang,Y.; Lee,J.Y.J.Power Sources 2005,144,220-225].
그러나, 상기의 복합물은 응집 현상을 방지할 수 있는 이점이 있는 반면, 로딩되는 SnO2의 양은 흑연 표면의 면적이나 나노입자의 분산도에 크게 영향을 받는 문제점이 있었다.
이에 본 발명의 제 1 목적은 흑연 매트릭스 상에 형성되는 복수개의 산화주석 나노로드를 포함하여 큰 저장 용량, 높은 쿨롱 효율과 사이클 안정성, 고속 충/방전 성능을 가지는 이차 전지용 음극재를 제공하는 데 있다.
이에 본 발명의 제 2 목적은 열수 공정을 통하여 용도에 따라 간단하고 용이하게 흑연 매트릭스 상에 성장되는 산화주석 나노로드들의 직경과 길이를 제어할 수 있는 이차 전지용 음극재의 제조방법을 제공하는 데 있다.
상기의 제 1 목적을 달성하기 위한 본 발명은, 흑연 매트릭스 및 상기 흑연 매트릭스 상에 형성되는 복수개의 산화주석 나노로드를 포함하는 것을 특징으로 한다.
또한, 상기의 제 2 목적을 달성하기 위한 본 발명은, 흑연의 표면을 활성화하는 단계, 상기 활성화된 흑연 표면 상에 산화주석 나노입자들을 코팅(coating)하여 산화주석 시드형 흑연을 제조하는 단계 및 상기 산화주석 시드형 흑연을 열수식으로 가열하여 복수개의 산화주석 나노로드를 성장시키는 단계를 포함하는 것을 특징으로 한다.
본 발명에 의한 이차 전지용 음극재는 향상된 쿨롱 효율, 우수한 고속 충/방전 성능 및 사이클 안정성을 가지는 효과가 있다.
또한 본 발명에 의한 이차 전지용 음극재의 제조방법은 촉매 보조 열수 공정에 의하여 간단하고 용이하게 흑연 매트릭스 상에 성장되는 산화주석 나노로드들의 직경 또는 길이를 제어할 수 있는 효과가 있다.
도 1 내지 도 3은 본 발명의 이차 전지용 음극재의 제조방법을 나타내는 공정도들이다.
도 4는 본 발명의 일 실시예를 통해 제조된 순수한 흑연의 SEM 이미지이다.
도 5는 본 발명의 일 실시예를 통해 제조된 산화주석 시드형 흑연의 HRTEM 이미지이다.
도 6은 본 발명의 일 실시예를 통해 제조된 이차 전지용 음극재의 SEM 이미지이다.
도 7은 [Sn(OH)6]2- 농도와 반응시간에 따른 흑연 상에 성장된 산화주석 나노로드들의 SEM 이미지이다.
도 8은 본 발명의 일 실시예를 통해 제조된 이차 전지용 음극재의 XRD 패턴들을 나타내는 그래프이다.
도 9 및 도 10은 본 발명의 일 실시예를 통해 제조된 산화주석 나노로드들의 TEM 및 HRTEM 이미지이다.
도 11 은 본 발명의 일 실시예를 통해 제조된 이차 전지용 음극재의 TGA 곡선이다.
도 12는 비교예로서, 산화주석 나노와이어의 전위에 따른 전류를 나타내는 그래프이다.
도 13은 본 발명의 일 실시예를 통해 제조된 이차 전지용 음극재의 전위에 따른 전류를 나타내는 그래프이다.
도 14는 본 발명의 일 실시예를 통해 제조된 이차 전지용 음극재의 전압 프로파일이다.
도 15는 본 발명의 일 실시예를 통해 제조된 이차 전지용 음극재의 사이클 횟수에 따른 용량을 나타내는 그래프이다.
도 16은 본 발명의 일 실시예를 통해 제조된 이차 전지용 음극재의 나노로드 길이에 따른 용량 감쇠율 및 쿨롱 효율을 나타내는 도면이다.
도 17은 본 발명의 일 실시예를 통해 제조된 이차 전지용 음극재의 나노로드 길이에 따른 주석 함유량 및 제 1회 사이클 방전 용량과의 관계를 나타내는 도면이다.
도 18은 비교예로서, 산화주석 나노와이어 및 나노입자의 다양한 전류 밀도에서의 사이클 횟수에 따른 용량을 나타내는 그래프이다.
도 19는 본 발명의 일 실시예를 통해 제조된 복수개의 이차 전지용 음극재의 다양한 전류 밀도에서의 사이클 횟수에 따른 용량을 나타내는 그래프이다.
도 20은 비교예로서, 산화주석 나노와이어 및 나노입자의 나이퀴스트 플롯(nyquist plots)을 나타내는 그래프이다.
도 21은 본 발명의 일 실시예를 통해 제조된 복수개의 이차 전지용 음극재의 나이퀴스트 플롯을 나타내는 그래프이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다.
도 1 내지 도 3은 본 발명의 이차 전지용 음극재의 제조방법을 나타내는 공정도들이다.
도 1을 참조하면, 주로 사용되는 흑연 분말의 표면은 비활성화 상태이므로, 후술하는 SnO2 시드층의 코팅 및 나노로드로의 성장을 위해서는 먼저 흑연의 표면을 활성화화는 단계를 거친다. 흑연의 표면을 활성화하기 위하여, 질산(HNO3)과 황산(H2SO4) 또는 질산(HNO3)과 염산(HCl)을 포함하는 혼합산 내에 환류(reflux)시키는 방법을 이용할 수 있다. 상기 활성화 처리 후에는 흑연 분말 중에 잔류할 수 있는 불순물을 제거하기 위하여 다량의 증류수로 충분히 세척하는 단계를 거치는 것이 바람직하다.
도 2를 참조하면, 활성화된 흑연 표면 상에 산화주석 나노입자들을 코팅하여 산화주석 시드형 흑연을 제조한다. 이는, 활성화된 흑연 분말을 주석이 함유된 물질의 수화물이 포함된 용액에서 분산시키고, 상기 분산액에 수산화 이온이 함유된 용액을 첨가한 후, 교반하는 과정을 거친다. 일례로, 상기 주석이 함유된 물질의 수화물은 염화 제이주석 5수화물(SnCl5H2O)이며, 수산화 이온이 함유된 용액은 수산화나트륨(NaOH) 수용액일 수 있다. 상기 염화 제이주석 5수화물이 포함된 용액에 활성화된 흑연 분말을 분산시켜 분산액을 제조하고, 이에 수산화나트륨 수용액을 첨가하면 침전된 SnO2 나노입자들이 생성된다. 이후, 교반 및 열처리 과정을 거치면 흑연 표면상으로 상기 SnO2 나노입자들이 코팅된다. 상기와 같이, 염화 제이주석 5수화물의 가수분해를 통해 SnO2 나노입자들을 활성화된 흑연 표면 상에 시드(seed) 처리할 수 있다. 이 때, 상기 수산화나트륨(NaOH)과 염화 제이주석 5수화물(SnCl5H2O)의 몰비는 1 : 10.5 내지 1: 24인 것이 바람직하다.
도 3을 참조하면, 산화주석 시드형 흑연을 열수식으로 가열하여 복수개의 SnO2 나노로드를 성장시킨다.
SnO2 나노로드들의 성장은 하기의 반응에 따라 발생한다.
Sn4+ + 4OH- → Sn(OH)4 ‥‥‥‥‥‥‥‥(1)
Sn(OH)4 + 2OH- → [Sn(OH)6]2- ‥‥‥‥‥‥‥‥(2)
[Sn(OH)6]2- → SnO2 + 2H2O + 2OH- ‥‥‥‥‥‥‥‥(3)
상기 (1)식의 반응을 통하여 제조된 Sn(OH)4 는 과도한 OH- 음이온에 의하여 분해되어 상기 (2)식의 [Sn(OH)6]2- 합성물을 형성한다. 상기의 [Sn(OH)6]2- 합성물은 이후 상기 (3)식에 따르는 열수 공정에 의하여 SnO2로 변환된다.
이 때, 단면이 직사각형을 가지는 사각기둥의 SnO2 나노로드들을 획득하는 것이 바람직한 바, 이를 위해 [Sn(OH)6]2-의 농도 및 NaOH에 대한 SnCl5H2O의 몰비를 조절할 수 있다. SnO2 나노로드들의 성장을 위한 [Sn(OH)6]2- 농도는 0.05M를 초과하는 것이 바람직하다. [Sn(OH)6]2- 농도가 0.1M미만인 경우, 예컨대 0.05M인 경우 SnO2 나노로드들은 24시간 경과만으로는 생성되지 않으며, 보다 긴 시간(48시간)이 경과된 후에 비로소 생성된다.
상기와 같이, [Sn(OH)6]2-수용액에서의 열수 공정을 통하여 흑연 표면으로부터 복수개의 SnO2 나노로드를 수직으로 성장시킬 수 있으며, [Sn(OH)6]2-수용액의 농도와 반응 시간을 변화시키면서 SnO2 나노로드들의 각 형태, 직경 및 길이를 용이하게 제어할 수 있다.
한편, 본 발명의 이차 전지용 음극재는 흑연 매트릭스 및 상기 흑연 매트릭스 상에 형성되는 복수개의 산화주석 나노로드를 포함한다. 상기 흑연 매트릭스는 복수개의 흑연 코어일 수 있으며, 상기 복수개의 산화주석 나노로드는 각각 사각기둥의 형태를 가지며, 그 단면은 직사각형일 수 있다. 이 때, 상기 복수개의 흑연 코어 상에 형성되는 복수개의 산화주석 나노로드는 상기 흑연 코어를 둘러싸도록 배치될 수 있다. 상기 흑연 매트릭스에 대한 산화주석 함유량은 전체 100중량% 대비 50 중량% 내지 90 중량%인 것이 바람직하다.
또한, 복수개의 산화주석 나노로드의 평균 직경은 각각 28nm 내지 84nm의 범위 내에서 선택될 수 있으며, 평균 길이는 각각 123nm 내지 646nm의 범위 내에서 선택될 수 있다.
일례로, 리튬 이온 전지에 상기 이차 전지용 음극재를 적용하는 경우, 충전 즉, Li+ 이온이 삽입되는 과정에서, Li+ 이온은 성장된 나노로드들 간의 이격 공간들 내로 용이하게 이동하여 각 SnO2 나노로드들을 관통하며, 상기 나노로드들은 그 구조적 특성으로 인하여 Li+ 비교적 짧은 확산 길이를 제공한다.
또한, 흑연 매트릭스는 높은 전기 전도성을 가지므로, 1차원 SnO2 나노로드들을 통해 전자 이동을 용이하게 함으로써 전자들이 효과적으로 전달될 수 있다. 복수개의 SnO2 나노로드들은 서로 소정 거리를 두고 이격되어 흑연 매트릭스 상에 개별적으로 성장함으로써 보다 빠른 Li+ 이온의 이동을 위한 전해질 투과성을 증가시킬 수 있다. 또한 복수개의 SnO2 나노로드는 흑연 표면에 단단히 이식되어 결합하므로, SnO2 나노로드들이 흑연으로부터 붕괴되는 것을 방지할 수 있다.
흑연의 높은 전기 전도성으로 인하여 전자 이동이 향상되며, 높은 연성으로 인하여 충/방전 과정 동안 기계적 응력을 이동시키는 버퍼 구역으로서의 역할을 수행한다. 더욱이, 흑연 표면 상에서의 전해질 분해에 관련된 불필요한 부반응의 감소로 인하여 순수한 SnO2 전극에 비하여 쿨롱 효율을 증가시킬 수 있다. 따라서, 본 발명의 이차 전지용 음극재는 리튬 이온 전지의 성능 개선에 큰 영향을 미친다.
이하, 본 발명의 이해를 돕기 위해 바람직한 실험예(example)를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.
[실험예]
1. 흑연 표면 활성화
HNO3(70%, Aldrich)과 HCl(30%, Aldrich)을 1:3 v/v의 비율로 혼합한 산성 용액에서 평균 직경 20μm의 흑연 분말을 12시간 동안 교반하여 흑연 표면을 활성화한다. 이어서 흑연 분말을 18.2MΩcm의 증류수로 세척하고 진공 동결 건조법으로 건조시킨다.
2. SnO 2 시드형 흑연 제조
NaOH를 이용한 SnCl4의 간단한 가수분해에 의하여 활성화된 흑연 표면상에 SnO2를 시드(seed) 처리한다. 이를 위해 먼저, 활성화된 흑연 분말 0.5g을 4.1mL의 0.054M 수용성 SnCl5H2O(98%, Aldrich) 용액에서 분산한다. 이어서 0.106M NaOH(99.99%, Aldrich) 수용액 4.1mL를 강력한 교반 하에 상기 혼합물에 첨가한다. 상기의 과정을 통하여 침전된 콜로이드 SnO2 나노입자들이 생성된다. 이어 12시간의 자기적 교반 후, SnO2 시드형 흑연 분말을 증류수와 에탄올로 여러번 세척하고, 이후 70℃의 온도로 대류식 오븐에서 건조시키고, 상기 건조된 분말을 Ar 분위기에서 2 시간동안 400℃로 열처리한다.
3. SnO 2 시드형 흑연 상의 SnO 2 나노로드 성장
0.075mol NaOH(99.99%, Aldrich)를 50mL의 0.1M 수용성 SnCl5H2O(98%, Aldrich) 용액 내에 혼합하여 오토클레이브(autoclave)의 테프론 주입구에 주석 전구체 용액을 주입한다. 상기 주석 전구체 용액을 대기 상태에서 20분 동안 자기적으로 교반시켜 투명하고 균일한 전구체 용액을 제조한다.
한편, 상기에서 제조된 SnO2 시드형 흑연 0.1g을 상기 전구체 용액에 첨가한 후, 혼합물을 200℃ 열수식으로 가열하고, 상기 온도를 24시간 내지 72시간 유지한다. 상기의 공정을 통하여 얻은 물질을 증류수와 에탄올로 세척하고, 70℃의 온도가 유지되는 대류식 오븐에서 건조시킨다.
또한, 용액의 농도를 50mL의 0.2M 수용성 SnCl5H2O 용액 및 0.105mol의 NaOH로 변경함으로써 다양한 크기를 가지는 SnO2 나노로드들을 합성한다.
표 1 [Sn(OH)6]2- 농도와 반응시간에 따른 나노로드들의 평균 직경과 길이
샘플(S) 1 샘플(S) 2 샘플(S) 3 샘플(S) 4 샘플(S) 5 샘플(S) 6
직경(d)(nm) 28 34 37 62 80 84
길이(L)(nm) 123 271 352 409 571 646
상기 0.075mol NaOH을 50mL의 0.1M 수용성 SnCl5H2O 용액 내에 혼합하는 공정을 통하여 흑연 상에 생성된 SnO2 나노로드들(S1 내지 S3)의 평균 직경과 길이 범위는 성장 시간에 따라 각각 28nm 내지 37nm 및 123nm 내지 352nm이다. 한편, 상기 0.105mol NaOH를 50mL의 0.2M 수용성 SnCl5H2O(98%, Aldrich) 용액 내에 혼합하는 경우, SnO2 나노로드들(S4 내지 S6)의 평균 직경과 길이의 범위는 각각 62nm 내지 84nm 및 409nm 내지 646nm이다.
또한, 다른 나노구조들과의 비교를 위하여 SnO2 나노와이어 및 나노입자도 별도로 합성한다. 화학적 기상 증착 공정(CVD)을 이용한 기체-액체-고체 성장 메커니즘에서 Au 촉매를 이용하여 SnO2 나노와이어를 합성하였다. 이 때, 상기 합성된 SnO2 나노와이어의 직경은 약 80nm이었으며, 마이크로미터(μm)의 길이를 가진다. 또한, 24시간 동안 200℃에서 6.7mol NaOH를 함유하는 50mL의 0.01M 수용액 SnCl5H2O의 열수 공정을 통하여 직경이 약 100nm인 SnO2 나노입자들을 합성한다.
주사 전자 현미경(SEM)으로 JEOL JSM-7500F를 이용하여 측정을 수행하였다. 40kV, 40mA 및 0.02°s-1 의 주사 속도로 Ni 필터를 가지는 Cu Kα(λ=1.5418 Å)소스를 사용하는 회절계(Rigaku Rotalflex RU-200B)를 이용하여 분말 샘플에 X-ray 회절(XRD) 패턴들을 기록하였다. 200kV에서 동작하는 투과 전자 현미경(TEM) 및 고해상도 투과 전자 현미경(HRTEM)(JEOL JEM-2100)을 이용하여 관측을 실시하였다. 대기에서 10℃mim-1 의 가열 속도로 열중량 분석에 의하여 SnO2 함유량(wt.%)을 조사하였다.
또한, SnO2 나노로드들이 성장된 흑연, 카본블랙, 카르복실 메틸 셀룰로오스 및 스티렌 부타디엔 고무를 80:10:5:5의 중량비로 혼합하여 획득한 슬러리를 닥터 블레이드법을 이용하여 순수한 구리 포일 상에 페이스트(paste)함으로써 전극을 제조하고, 이어서 3시간 동안 145℃의 온도로 진공 오븐에서 건조시켰다. 이를 동작 전극(working electrode)으로 사용하였다. 한편, 전해질로는 에틸렌 카르보네이트 및 디에틸 카르보네이트가 1:1의 부피비로 혼합된 1M LiPF6 을 사용하였으며, 순수 리튬 포일을 상대 전극으로 사용하였다. 또한, 셀가드 2400을 분리막으로 사용하였다. 이를 습도와 산소의 농도가 1ppm 미만으로 유지되는 Ar 충진 글로브 박스에서 조립하여 2-전극 시스템의 셀을 완성하였다.
이후, AMETEK Solartron analytical 1400을 이용하여 2.5V 내지 0.01V 의 범위에서 0.05mVs-1의 주사 속도로 순환 전압 전류법(CVs)을 수행하였다. 또한, WBCS 3000 전지 테스터를 이용하여 제조된 셀들을 0.01V 내지 1.5V에서 72mAg-1 의 속도로 정전류 방식을 통하여 순환시켰다. 최초 사이클 후, 멀티 임피던스 테스트 시스템을 이용하여 전기 화학적 임피던스 분광(EIS)측정 결과를 기록하였다. 상기의 주파수 범위는 5mV의 AC 진폭에서 100kHz 내지 10mHz이다.
도 4는 본 발명의 일 실시예를 통해 제조된 순수한 흑연의 SEM 이미지이다.
도 5는 본 발명의 일 실시예를 통해 제조된 산화주석 시드형 흑연의 HRTEM 이미지이다.
도 6은 본 발명의 일 실시예를 통해 제조된 이차 전지용 음극재의 SEM 이미지이다.
도 4 및 도 6을 참조하면, 본 발명의 일 실시예를 통해 순수한 흑연의 표면상에 균일하게 분산된 SnO2 나노입자들을 확인할 수 있으며, 상기 입자들이 열처리에 의하여 흑연과 밀착되어 있는 것을 확인할 수 있다. 상기 흑연 표면 상에 코팅되는 SnO2 나노입자들이 시드 역할을 수행하여 SnO2 나노로드들이 성장되므로, SnO2 시드층의 코팅은 SnO2 나노로드의 성장에 있어서 결정적인 역할을 수행한다.
도 7은 [Sn(OH)6]2- 농도와 반응시간에 따른 흑연 상에 성장된 산화주석 나노로드들의 SEM 이미지이다.
도 7을 참조하면, SnO2 나노로드는 그 단면이 직사각형의 형태를 가지는 사각기둥인 것을 확인할 수 있으며, 흑연 표면 전체에 밀집 분포되어 있는 것을 확인할 수 있다. 각 샘플(S1 내지 S6)은 특정한 합성 조건 하에서 제조되었으며, 제조된 SnO2 나노로드들의 평균 직경은 28nm 내지 84nm로, 길이는 123nm 내지 646nm로 제어할 수 있음을 확인할 수 있다. 또한 이를 통하여 [Sn(OH)6]2- 농도 및 반응시간이 증가함에 따라 각 나노로드의 직경 및 길이가 증가함을 확인할 수 있다.
도 8은 본 발명의 일 실시예를 통해 제조된 이차 전지용 음극재의 XRD 패턴들을 나타내는 그래프이다.
도 8을 참조하면, XRD 패턴들은 SnO2 나노로드가 정방정계 루틸(tetragonal rutile)상(a=4.755Å, c=3.184Å)으로 이루어져 있음을 확인할 수 있으며, 이는 표준 값들(a=4.738Å, c=3.187Å)과의 비교에 의하여 알 수 있다. 흑연은 육방정(hexagonal)상(a=2.47Å,c=6.79Å)과 능면체정(rhombohedral)상(a=3.635Å)을 포함하며, 2차상 석출(secondary phases) 또는 불순물로 인하여 유도되는 주목할 만한 피크 편이나 강도의 변동은 발생하지 않은 것을 확인할 수 있다. SnO2 나노로드의 크기가 증가하면(즉, S1에서 S6으로 갈수록) 흑연에 대한 SnO2의 피크 강도 비가 증가함을 확인할 수 있는 바, 이는 회절 강도가 합성물의 중량 분율에 비례하므로, SnO2의 중량 분율이 증가함을 의미한다. 또한, SnO2의 (002) 결정면의 상대 강도는 S1에서 S6으로 갈수록 증가하며, 이를 통해 SnO2의 성장 방향이 <001> 방향을 선호한다는 것을 알 수 있다.
도 9 및 도 10은 본 발명의 일 실시예를 통해 제조된 산화주석 나노로드들의 TEM 및 HRTEM 이미지이다.
도 9 및 도 10을 참조하면 SnO2 나노로드의 고결정성을 확인할 수 있다. 또한, SnO2 나노로드의 일부에서 확인한 고속 푸리에 변환 패턴은 SnO2 나노로드의 단결정 특성을 나타낸다. 인접하는 면들 간의 3.35Å 거리는 루틸 SnO2상의 두 개의 (110)면 간의 거리에 상응한다. SnO2 나노로드는 (110) 결정면(crystal facets)에 의해 둘러싸이고, (001)면은 나노로드 축에 수직함을 확인할 수 있으며, 이는 나노로드의 성장이 [001] 방향으로 가속되었음을 나타낸다.
도 11 은 본 발명의 일 실시예를 통해 제조된 이차 전지용 음극재의 TGA 곡선이다. 복수개의 SnO2 나노로드가 성장된 흑연에서의 SnO2 함유량(wt.%)을 대기하에서 TGA에 의하여 정량 측정하였으며, 10℃min-1의 가열속도로 실온에서부터 900℃로 온도를 변경하였다. 이 때, 비교를 위하여 SnO2 및 흑연(Graphite)의 경우도 상기와 같은 방법으로 측정하였다.
도 11을 참조하면, SnO2 의 경우, 100%에서 중량의 변화가 발생하지 않았으며, 흑연(Graphite)의 경우, 600℃ 내지 900℃에서 약 98.8%의 중량 변화를 관찰할 수 있다. 또한, 복수개의 SnO2 나노로드가 성장된 흑연의 SnO2 함유량(즉, S1 내지 S6)은 각각 50.1wt.%, 66.0wt.%, 71.0wt.%, 79.9wt.%, 85.1wt.%, 88.3wt.%로 측정됨을 확인할 수 있는 바, SnO2 나노로드의 길이 및 직경이 증가할수록 SnO2 함유량도 증가함을 알 수 있다.
도 12는 비교예로서, 산화주석 나노와이어의 전위에 따른 전류를 나타내는 그래프이다.
도 13은 본 발명의 일 실시예를 통해 제조된 이차 전지용 음극재의 전위에 따른 전류를 나타내는 그래프이다.
도 12 및 도 13을 참조하면, CVs, 갈바노스테틱 충/방전 및 EIS 측정에 의하여 복수개의 SnO2 나노로드가 성장된 흑연의 전기 화학적 특성을 조사하였다.
2.5V 내지 0.01V의 전위 범위에서 0.05mVs-1 주사 속도로 S1의 CVs를 도시하였다. CVs의 거동은 충/방전 사이클링 동안 흑연 및 SnO2로부터 야기되는 전기화학적 반응을 나타낸다. 하기의 반응식들은 리튬 이온 전지에서 SnO2와 흑연에 대한 Li+ 이온들과의 전기 화학적 반응을 나타낸다.
4Li+ + 4e- + SnO2 → 2Li2O + Sn ‥‥‥‥‥‥‥‥(4)
xLi+ + xe- + Sn ↔ LixSn (0≤x≤4.4) ‥‥‥‥‥‥‥‥(5)
Li+ + e- + C6 ↔ LiC6 ‥‥‥‥‥‥‥‥(6)
CV는 최초 방전 사이클 동안 고체 전해질 계면(SEI)의 형성 및 SnO2 Sn과 Li2O로 환원하면서 발생하는 약 0.75V에서 캐소딕 피크(cathodic peak)를 나타낸다(상기 (4)식). 또한, 약 0.7V 와 0.2V 사이에서 상대적으로 약한 피크들이 관찰되며, 이는 LixSn의 형성과 관계된다(상기 (5)식). 0V 근처의 피크들은 흑연 내로 Li가 삽입되어 LiC6을 형성함에 기인한다(상기(6)식).
애노딕(anodic) 그래프에서 0.2V와 0.5V에서의 피크들은 각각 LiC6로부터 Li의 분리 및 LixSn로부터 Li의 탈합금화로 인해 발생할 수 있다. 상기의 결과를 통하여 합성물의 충/방전이 단계적 과정이라는 것, 즉, 우선 Li가 Sn과 합금화된 후, Li가 캐소딕 공정을 수행하기 위하여 흑연 내로 삽입되는 한편, LiC6으로부터 Li 반삽입이 먼저 발생한 후, 애노딕 반응을 위한 LixSn의 탈합금화가 이어진다는 것을 확인할 수 있다.
또한, 사이클이 증가할수록 CV-루프(CV-loop)에서의 전류 밀도가 증가함을 확인할 수 있으며, 이는 초기 충/방전 사이클 동안 활성화 과정이 존재할 수 있음을 의미한다. 리튬화(lithiation)/반리튬화(delithiation) 과정은 전기 활성 물질들의 구조적 변화를 일으키므로, 상기 활성화 과정은 SnO2 나노로드들이 성장된 흑연의 내부 결정 구조를 재구축(reconstruction)하는 것과 관련될 수 있다. 그 결과, 활성화 특성은 Li+ 의 이동 속도 또는 LiC6 Li4.4Sn 형성 속도에 의하여 결정된다.따라서, 운동 장벽이 결국 각 사이클 동안 점진적 활성화로 이어지며, 전극의 열화(degradation)가 활성화보다 커지기 전까지는 전류 밀도가 지속적으로 증가한다.
한편, SnO2 나노와이어의 경우, 전극의 열화가 활성화 과정보다 크기 때문에 심각한 성능 저하를 가져오는 반면, 본 발명의 일 실시예를 통해 제조된 복수개의 SnO2 나노로드가 성장된 흑연은 초기 5회 사이클 동안 활성화 과정이 열화를 압도하므로, SnO2 나노와이어의 경우에 비하여 성능 저하가 심각하지 않음을 알 수 있다.
도 14는 본 발명의 일 실시예를 통해 제조된 이차 전지용 음극재의 전압 프로파일이다.
도 14를 참조하면, 복수개의 SnO2 나노로드가 성장된 흑연은 약 1010mAg-1의 매우 높은 초기 방전 용량을 나타냄을 확인할 수 있으며, 상기 값은 SnO2와 흑연 사이의 값이다. 상기와 같이, 보다 높은 용량은 효율적인 전자 이동 및 넓은 계면 영역을 제공하는 1차원 SnO2의 영향이며, 이를 통하여 Li 운동성을 개선할 수 있는 이점이 있다.
또한, 최초 사이클 후의 안정적인 용량 리텐션은 전극 막에서 전기 활성 합성물들이 응집 없이 균일하게 분산되었음을 나타낸다. 복수개의 SnO2 나노로드가 성장된 흑연 전극은 완전하게 Li 합금화/탈합금화가 발생하며, SnO2 전극에 대한 이론값(52%)보다 높은 초기 쿨롱 효율(59.2%)을 나타낸다.
이를 통하여, 본 발명의 복수개의 SnO2 나노로드가 성장된 흑연의 쿨롱 효율 범위가 통상적으로 40% 내지 50%인 SnO2계 물질들보다 높음을 알 수 있다. 초기 비가역 용량 손실은 주로 전기 활성 물질들에 대한 전해질 분해로 인해 발생하는 바, 흑연은 Si, Fe2O3, Co3O4 등과 같은 타물질들에 비해 비가역 부반응을 억제하므로, SnO2 나노로드들이 성장된 흑연은 보다 높은 쿨롱 효율을 나타낼 수 있다.
제 1 방전 과정 후 복수개의 SnO2 나노로드가 성장된 흑연의 표면을 덮는 SEI 막은 전해질이 더 분해되는 것을 방지한다. 그 결과, 쿨롱 효율은 제 2회 사이클에서 94.2%로 현저히 증가한다.
또한, 도 14의 삽입 SEM 이미지들은 제 25회 사이클 후, 흑연 코어 상에서 유지되는 SnO2 나노로드 어레이들을 나타내는 바, 부피 변동에도 불구하고, 나노로드 어레이들은 구조적으로 완전성(integrity)을 유지함을 확인할 수 있다. 이를 통해 SnO2 나노로드들간의 전기적 접속 손실이 감소함을 알 수 있다.
도 15는 본 발명의 일 실시예를 통해 제조된 이차 전지용 음극재의 사이클 횟수에 따른 용량을 나타내는 그래프이다.
도 15를 참조하면, 복수개의 SnO2 나노로드가 성장된 흑연(S1) 전극의 정전류 사이클링 프로파일을 통해 향상된 사이클링 성능을 나타내며, 제 25회 사이클에 걸쳐 가역 용량을 유지함을 확인할 수 있다.
도 16은 본 발명의 일 실시예를 통해 제조된 이차 전지용 음극재의 나노로드 길이에 따른 용량 감쇠율 및 쿨롱 효율을 나타내는 도면이다.
복수개의 SnO2 나노로드가 성장된 흑연(S1)의 평균 용량 감쇠는 제 2회 사이클 후 사이클당 0.85%이며, 우수한 용량 리텐션을 나타냄을 확인할 수 있다. 탄소의 탄성력은 SnO2보다 크므로, 나노로드들이 서로 이격되어 있는 탄성 흑연은 SnO2 나노로드와 흑연이 Li+와 반응할 때의 변형 에너지(strain energy)를 효과적으로 수용할 수 있다. 따라서, 복수개의 SnO2 나노로드가 성장된 흑연은 우수한 순환력(cyclability)을 나타낸다.
도 17은 본 발명의 일 실시예를 통해 제조된 이차 전지용 음극재의 나노로드 길이에 따른 주석 함유량 및 제 1회 사이클 방전 용량과의 관계를 나타내는 도면이다.
도 17을 참조하면, SnO2 나노로드의 길이가 증가할수록 주석의 함유량 및 제 1회 방전 용량이 증가함을 수 있는바, 이는 SnO2 나노로드 및 흑연 양자 모두 전극의 총 용량에 기여함을 의미한다.
도 18은 비교예로서, 산화주석 나노와이어 및 나노입자의 다양한 전류 밀도에서의 사이클 횟수에 따른 용량을 나타내는 그래프이다.
도 19는 본 발명의 일 실시예를 통해 제조된 복수개의 이차 전지용 음극재의 다양한 전류 밀도에서의 사이클 횟수에 따른 용량을 나타내는 그래프이다.
도 18 및 도 19를 참조하면, S1, S3 및 S5의 속도 성능을 조사한 결과, 각셀은 72mAg-1의 전류 밀도로부터 72mAg-1 단계적으로 증가하여 최대 288mAg-1까지 순환된다. 이를 통하여 288mAg-1의 높은 전류 밀도에서도 S1은 257.7mAg-1 상당의 용량이 여전히 이동할 수 있음을 알 수 있다. 또한 S3 및 S5의 경우, 이동되는 용량이 각각 249.3mAg-1 248.2mAg-1 이다. 한편, 전류 밀도가 288mAg-1로부터 72mAg-1로 다시 감소하는 경우, S1에 대해 초기 용량의 81.7%를 다시 회복할 수 있다.
SnO2 나노로드가 성장된 흑연의 개선된 성능의 원인을 규명하기 위하여, 동일한 테스트 조건에서 SnO2 나노와이어 및 SnO2 나노입자들의 고속 충/방전 성능을 비교하는 경우, 합성된 SnO2 나노와이어는 약 80nm의 직경과 마이크로미터의 길이를 가지고, SnO2 나노입자는 약 100nm의 직경을 가진다. 이들은 288mAg-1의 전류 밀도에서 242.5mAhg-1 및 192.9mAhg-1의 방전 용량을 각각 나타내며, 회복되는 용량비는 각각 58.8% 및 34.4% 이다.
또한, 도 18 및 도 19의 삽입도를 참조하면, SnO2 나노와이어의 표준 용량(normalized capacity)인 81.8%은 144mAg-1의 낮은 전류 밀도에서 SnO2 나노로드들이 성장된 흑연(S1, 79.5%)의 표준 용량보다 높지만, SnO2 나노로드들이 성장된 흑연(S1, 46.2%)의 용량 리텐션은 288mAg-1 의 높은 전류 밀도에서 SnO2 나노와이어의 용량 리텐션(34.5%)에 비하여 크게 개선됨을 확인할 수 있다. 따라서, 충/방전율이 증가할수록 SnO2 나노로드들이 성장된 흑연의 용량 감쇠는 SnO2 나노와이어의 용량 감쇠에 비하여 그 값이 감소한다. 이를 통해 나노로드가 성장된 흑연(S1, S3, S5)이SnO2 나노입자와 나노와이어에 비하여 보다 우수한 충/방전 성능, 안정적인 용량 리텐션과 보다 높은 회복 용량비를 나타냄을 알 수 있다. 따라서, 흑연과 결합된 1차원 SnO2 SnO2계 전극의 고속 충/방전 성능을 개선할 수 있는 이점이 있다.
도 20은 비교예로서, 산화주석 나노와이어 및 나노입자의 나이퀴스트 플롯(nyquist plots)을 나타내는 그래프이다.
도 21은 본 발명의 일 실시예를 통해 제조된 복수개의 이차 전지용 음극재의 나이퀴스트 플롯을 나타내는 그래프이다.
도 20 및 도 21을 참조하면, S1, S3 및 S5 에 대한 나이퀴스트 플롯(Nyquist plots)을 도시하고 있는 바, 나이퀴스트 플롯은 저주파수의 직선과 고주파 및 중주파의 부분적으로 중첩된 반원들로 구성된다. 고주파수 반원은 전극 표면과 전해질 간의 패시베이션 반응으로 발생하는 SEI 층(RSEI)의 저항과 관련된다. 중주파수 반원은 전기 활성 물질들과 전해질 간의 계면에서 발생하는 전하 이동 저항(Rct)에 상응하고, 저주파수 직선은 전극 물질에서 Li+ 확산으로 인한 와버그 임피던스(Warburg impedance, Wd)에 상응한다.
상기 나이퀴스트 플롯에서 SnO2 나노로드의 크기가 증가할수록(즉, S1에서 S5로 갈수록) 반원의 직경이 증가하는 것을 확인할 수 있다. 이는 전해질 분해량이 전해질의 접촉 영역에 비례하므로 표면 영역과 관련된다. 또한, SnO2 나노로드들이 성장된 흑연의 제 1 반원(RSEI) 및 제 2 반원(Rct)이 SnO2 나노와이어와 나노입자의 반원보다 매우 작음을 확인할 수 있다. 상기 RSEI Rct 합은 SnO2 나노와이어의 경우 2.38Ωm2g-1, SnO2 나노입자의 경우 1.19Ωm2g-1, 복수개의 SnO2 나노로드가 성장된 흑연의 경우 0.26Ωm2g-1로 감소한다. 이는 1차원 SnO2 나노로드 및 흑연과의 합성으로부터 전기 전도성이 향상되었음을 나타낸다. 또한, 복수개의 SnO2 나노로드가 성장된 흑연이 SnO2 나노와이어와 나노입자의 이동 속도에 비교하는 경우, 보다 얇은 SEI 막을 통해 보다 빠른 Li+ 이동 속도를 가짐을 알 수 있다. 이를 통하여, 복수개의 SnO2 나노로드가 성장된 흑연은 다소 높은 전류 속도에서 SnO2 나노와이어 및 나노입자에 비해 향상된 고속 충/방전 성능 및 사이클 안정성을 나타낸다.
본 발명의 이차 전지용 음극재는 흑연 매트릭스 및 상기 흑연 매트릭스 상에 형성되는 복수개의 산화주석 나노로드를 포함함으로써 흑연보다 큰 용량을 가지고, SnO2계 물질에 비해 높은 쿨롱 효율과 고속 충/방전 성능을 가진다. 상기와 같이 뛰어난 성능은 상기 음극재의 고유 구조에 기초할 수 있다. SnO2계 물질의 불량한 순환력은 충/방전 동안의 큰 부피 변동으로 인한 것이며, 이에 따라 전극들의 미분쇄(pulverization)가 발생한다. 그러나, 본 발명의 이차 전지용 음극재는 수직으로 성장한 1차원 SnO2 나노로드 및 탄성 흑연을 통해 급속한 부피 변화로 인해 야기되는 기계적 응력을 감소시켜 전극 열화를 완화하는 이점이 있다.
또한, SnO2 나노로드와 흑연 간의 높은 친화력은 전극 막들에서 균질한 전기적 상호 접속을 생성하여 충/방전 동안 SnO2 나노로드의 응집이나 분리를 방지하며, 우수한 용량 리텐션을 획득할 수 있다.
또한, 흑연 매트릭스는 전극의 도전성을 개선하며, 이는 전자 이동을 향상시키고 저항 손실을 감소시킨다. SnO2계 물질들의 이론적 쿨롱 효율은 완전한 Li 합금화/탈합금화에서의 비가역 Li2O 형성으로 인해 52%를 나타내는 바, SnO2 나노로드가 성장된 흑연의 쿨롱 효율은 흑연 상에서의 안정적인 SEI 형성에 의해 SnO2계 물질들의 쿨롱 효율보다 높으며, 이는 에너지 밀도의 증가에 상응한다. 따라서, 우수한 고속 충/방전 성능 및 안정적인 순환력이 보장되는 이점이 있다.

Claims (10)

  1. 흑연 매트릭스; 및
    상기 흑연 매트릭스 상에 형성되는 복수개의 산화주석 나노로드를 포함하는 이차 전지용 음극재.
  2. 제1항에 있어서,
    상기 흑연 매트릭스는 복수개의 흑연 코어인 것을 특징으로 하는 이차 전지용 음극재.
  3. 제2항에 있어서,
    상기 복수개의 산화주석 나노로드는 사각기둥이며, 균일한 크기를 가지고 상기 흑연 코어를 둘러싸도록 배치되는 것을 특징으로 하는 이차 전지용 음극재.
  4. 제1항에 있어서,
    상기 흑연 매트릭스에 대한 산화주석 함유량은 전체 100중량% 대비 50 중량% 내지 90 중량%인 것을 특징으로 하는 이차 전지용 음극재.
  5. 제1항에 있어서,
    상기 복수개의 산화주석 나노로드의 직경은 각각 28nm 내지 84nm의 범위 내에서 선택되는 값을 가지는 것을 특징으로 하는 이차 전지용 음극재.
  6. 제1항에 있어서,
    상기 복수개의 산화주석 나노로드의 길이는 각각 123nm 내지 646nm의 범위 내에서 선택되는 값을 가지는 것을 특징으로 하는 이차 전지용 음극재.
  7. 흑연의 표면을 활성화하는 단계;
    상기 활성화된 흑연 표면 상에 산화주석 나노입자들을 코팅하여 산화주석 시드형 흑연을 제조하는 단계; 및
    상기 산화주석 시드형 흑연을 열수식으로 가열하여 복수개의 산화주석 나노로드를 성장시키는 단계를 포함하는 이차 전지용 음극재의 제조방법.
  8. 제7항에 있어서,
    상기 활성화된 흑연 표면 상에 산화주석 나노입자들을 코팅하여 산화주석 시드형 흑연을 제조하는 단계는,
    활성화된 흑연 분말을 주석이 함유된 물질의 수화물이 포함된 용액에서 분산시키고, 수산화 이온이 함유된 용액을 첨가한 후 교반하여 흑연 표면 상에 산화주석 나노입자들을 코팅시키는 것을 특징으로 하는 이차 전지용 음극재의 제조방법.
  9. 제8항에 있어서,
    상기 주석이 함유된 물질의 수화물은 염화 제이주석 5수화물(SnCl5H2O)이며, 수산화 이온이 함유된 용액은 수산화나트륨(NaOH) 수용액인 것을 특징으로 하는 이차 전지용 음극재의 제조방법.
  10. 제9항에 있어서,
    상기 수산화나트륨(NaOH)과 염화 제이주석 5수화물(SnCl5H2O)의 몰비는 1 : 10.5 내지 1: 24인 것을 특징으로 하는 이차 전지용 음극재의 제조방법.
PCT/KR2011/009655 2011-02-25 2011-12-15 이차 전지용 음극재 및 이의 제조방법 WO2012115340A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/001,436 US20130337335A1 (en) 2011-02-25 2011-12-15 Negative electrode material for a secondary battery and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20110017452 2011-02-25
KR10-2011-0017452 2011-02-25

Publications (1)

Publication Number Publication Date
WO2012115340A1 true WO2012115340A1 (ko) 2012-08-30

Family

ID=46721082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009655 WO2012115340A1 (ko) 2011-02-25 2011-12-15 이차 전지용 음극재 및 이의 제조방법

Country Status (2)

Country Link
US (1) US20130337335A1 (ko)
WO (1) WO2012115340A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2884566A1 (en) * 2013-12-10 2015-06-17 Samsung SDI Co., Ltd. Negative active material, lithium battery including the material, and method of manufacturing the material
CN107910522A (zh) * 2017-11-13 2018-04-13 桑顿新能源科技有限公司 一种膨胀石墨‑氧化锡复合材料的合成及其在锂离子电池中的应用
CN114275821A (zh) * 2021-12-30 2022-04-05 河南城建学院 NC-SnO2-Fe2O3复合材料及其制备方法与应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10707526B2 (en) 2015-03-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN105742597B (zh) * 2016-03-11 2018-10-19 山西大学 一种锂离子电池负极材料的制备方法
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN106602036B (zh) * 2017-01-19 2023-11-21 华南理工大学 一种用于锂离子电池的碳芯/氧化铜外壳复合电极及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080057615A (ko) * 2006-12-20 2008-06-25 주식회사 포스코 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
KR20080098261A (ko) * 2007-05-04 2008-11-07 한국과학기술연구원 나노파이버 네트워크 구조의 음극 활물질을 구비한이차전지용 음극 및 이를 이용한 이차전지와, 이차전지용음극 활물질의 제조방법
KR20100090068A (ko) * 2009-02-05 2010-08-13 삼성에스디아이 주식회사 전극조립체 및 이를 구비하는 이차전지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080057615A (ko) * 2006-12-20 2008-06-25 주식회사 포스코 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
KR20080098261A (ko) * 2007-05-04 2008-11-07 한국과학기술연구원 나노파이버 네트워크 구조의 음극 활물질을 구비한이차전지용 음극 및 이를 이용한 이차전지와, 이차전지용음극 활물질의 제조방법
KR20100090068A (ko) * 2009-02-05 2010-08-13 삼성에스디아이 주식회사 전극조립체 및 이를 구비하는 이차전지

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHI, SONG-LIN ET AL.: "Electrochemical properties of Sn02 nanorods as anode materials in lithium-ion battery", CHINESE PHYSICS B, vol. 18, no. 10, 31 October 2009 (2009-10-31) *
WANG, ZHIYONG ET AL.: "Laterally Confined Graphene Nanosheets and Graphene/Sn02", COMPOSITES AS HIGH-RATE ANODE MATERIALS FOR LITHIUM-ION BATTERIES, vol. 3, no. 10, 31 October 2010 (2010-10-31) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2884566A1 (en) * 2013-12-10 2015-06-17 Samsung SDI Co., Ltd. Negative active material, lithium battery including the material, and method of manufacturing the material
US10062901B2 (en) 2013-12-10 2018-08-28 Samsung Sdi Co., Ltd. Negative active material, lithium battery including the material, and method of manufacturing the material
CN107910522A (zh) * 2017-11-13 2018-04-13 桑顿新能源科技有限公司 一种膨胀石墨‑氧化锡复合材料的合成及其在锂离子电池中的应用
CN107910522B (zh) * 2017-11-13 2021-10-22 桑顿新能源科技(长沙)有限公司 一种膨胀石墨-氧化锡复合材料的合成及其在锂离子电池中的应用
CN114275821A (zh) * 2021-12-30 2022-04-05 河南城建学院 NC-SnO2-Fe2O3复合材料及其制备方法与应用

Also Published As

Publication number Publication date
US20130337335A1 (en) 2013-12-19

Similar Documents

Publication Publication Date Title
Fernando et al. ZnO quantum dots anchored in multilayered and flexible amorphous carbon sheets for high performance and stable lithium ion batteries
WO2012115340A1 (ko) 이차 전지용 음극재 및 이의 제조방법
Chen et al. Branched CNT@ SnO 2 nanorods@ carbon hierarchical heterostructures for lithium ion batteries with high reversibility and rate capability
Rahman et al. Spray pyrolyzed NiO–C nanocomposite as an anode material for the lithium-ion battery with enhanced capacity retention
Ning et al. Branched carbon-encapsulated MnS core/shell nanochains prepared via oriented attachment for lithium-ion storage
Ren et al. SnO2 nanocrystals deposited on multiwalled carbon nanotubes with superior stability as anode material for Li-ion batteries
Li et al. Constructing a novel strategy for carbon-doped TiO 2 multiple-phase nanocomposites toward superior electrochemical performance for lithium ion batteries and the hydrogen evolution reaction
US20110163274A1 (en) Electrode composite, battery electrode formed from said composite, and lithium battery comprising such an electrode
WO2010058990A2 (ko) 이차 전지용 전극활물질 및 그 제조방법
Seo et al. Direct assembly of tin–MWCNT 3D-networked anode for rechargeable lithium ion batteries
EP3226257A1 (en) Method for manufacturing electroconductive paste, and electroconductive paste
Wang et al. α-Fe 2 O 3-mediated growth and carbon nanocoating of ultrafine SnO 2 nanorods as anode materials for Li-ion batteries
Li et al. Novel solvent-thermal preparation of a SnO2 nanoparticles/expanded graphite multiscale composite with extremely enhanced electrical performances for Li-ion batteries
Lim et al. Biomineralized Sn-based multiphasic nanostructures for Li-ion battery electrodes
KR101810386B1 (ko) 환원된 그래핀 옥사이드 및 코어쉘 나노입자를 포함하는 나노 복합체 및 그를 포함하는 하이브리드 커패시터
WO2011025276A2 (ko) 금속 산화물-탄소 나노복합재료의 제조방법
WO2015199251A1 (ko) 내부에 그래핀 네트워크가 형성된 나노입자-그래핀-탄소 복합체, 이의 제조방법 및 이의 응용
Liu et al. Facile preparation of a V 2 O 3/carbon fiber composite and its application for long-term performance lithium-ion batteries
Kim et al. Effect of N-doped carbon layer on Co3O4 nanowire-graphene composites as anode materials for lithium ion batteries
Kim et al. Electrochemical performance of Mn3O4 nanorods by N‐doped reduced graphene oxide using ultrasonic spray pyrolysis for lithium storage
CN116705988A (zh) 负极极片及其制备方法、电池、及负极材料的制备方法
Hu et al. A double core-shell structure silicon carbon composite anode material for a lithium ion battery
Wei et al. SnO2/Sn particles anchored in moderately exfoliated graphite as the anode of lithium-ion battery
CN109904436B (zh) 一种钛酸钴二氧化钛复合物纳米线及其制备方法
KR102300157B1 (ko) 리튬이온 배터리용 CNT-SiOx 복합재의 제조방법 및 그를 이용한 리튬이온 배터리용 음극재

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859038

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14001436

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859038

Country of ref document: EP

Kind code of ref document: A1