WO2015152499A1 - 유연한 리튬 이차전지 및 제조방법 - Google Patents

유연한 리튬 이차전지 및 제조방법 Download PDF

Info

Publication number
WO2015152499A1
WO2015152499A1 PCT/KR2014/012827 KR2014012827W WO2015152499A1 WO 2015152499 A1 WO2015152499 A1 WO 2015152499A1 KR 2014012827 W KR2014012827 W KR 2014012827W WO 2015152499 A1 WO2015152499 A1 WO 2015152499A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium secondary
carbon nanotube
negative electrode
solid electrolyte
Prior art date
Application number
PCT/KR2014/012827
Other languages
English (en)
French (fr)
Inventor
정영진
Original Assignee
숭실대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교산학협력단 filed Critical 숭실대학교산학협력단
Publication of WO2015152499A1 publication Critical patent/WO2015152499A1/ko
Priority to US15/281,625 priority Critical patent/US20170018799A1/en
Priority to US16/351,719 priority patent/US20190214676A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a flexible lithium secondary battery and a manufacturing method.
  • Lithium secondary batteries have high voltage, high energy density, and can be reused by repeated charging and discharging. Therefore, the demand is increasing and widely used from small electronic devices such as mobile phones, notebooks, camcorders, to electric vehicles. In addition, the flexibility of the device is required due to the integration of clothing, body attachment, and implantation of small electronic devices. However, in order to make a flexible lithium secondary battery, a flexible electrode and a flexible solid electrolyte are essential.
  • Carbon nanotubes which have high electrical conductivity, large capacity, and low density, have attracted attention as a material for lithium secondary batteries, and research on them has been actively conducted.
  • a lithium secondary battery using carbon nanotubes is a mixture of a negative electrode active material, a polymer adhesive, and conductive carbon black to form a slurry and coated on a copper thin film to form a negative electrode.
  • the positive electrode is also formed by mixing a positive electrode active material, a polymer adhesive, and conductive carbon black on a thin film of aluminum. Thereafter, a separator and an electrolyte are put between the positive electrode and the negative electrode and sealed to manufacture a lithium secondary battery.
  • Korean Unexamined Patent Publication No. 10-2014-0019054 name of the invention: a slurry for a secondary battery including carbon nanotubes and a secondary battery comprising the same).
  • the present invention is to solve the above problems of the prior art, the purpose of using a carbon nanotube film, to manufacture a flexible lithium secondary battery that can be used in various electronic devices such as mobile phones, smart cards, RFID tags, wireless sensors To provide a way to.
  • a lithium secondary battery includes a positive electrode material, a solid electrolyte laminated on the positive electrode material and a negative electrode material laminated on the solid electrolyte.
  • the positive electrode material is produced by including the positive electrode active material in the carbon nanotube film
  • the negative electrode material is produced by including the negative electrode active material in the carbon nanotube film or carbon nanotube film.
  • a fibrous lithium secondary battery includes a negative electrode material, a solid electrolyte surrounding the negative electrode material, and a positive electrode material surrounding the solid electrolyte.
  • the positive electrode material is produced by including the positive electrode active material in the carbon nanotube film
  • the negative electrode material is produced in the form of fibers by twisting the carbon nanotube film containing the carbon nanotube film or the negative electrode active material.
  • a method of manufacturing a lithium secondary battery including: forming a cathode material including a cathode active material on a carbon nanotube film; Stacking a solid electrolyte on the cathode material; And laminating a negative electrode material on the solid electrolyte. At this time, the step of laminating the negative electrode material is laminated by including a negative electrode active material in the carbon nanotube film or carbon nanotube film.
  • the method for manufacturing a fibrous lithium secondary battery comprises the steps of forming a negative electrode material in the form of fiber; Wrapping the negative electrode material with a solid electrolyte; And wrapping the solid electrolyte with a carbon nanotube film including a cathode active material.
  • any one of the problem solving means of the present invention described above by manufacturing a lithium secondary battery, by not using a metal current collector and a polymer adhesive, it is possible to reduce the high capacity of the lithium secondary battery and the weight of electronic devices.
  • FIG. 1 illustrates a structure of a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a lithium secondary battery according to an embodiment of the present invention in detail.
  • FIG. 3 is a schematic diagram showing a manufacturing process of a carbon nanotube film according to an embodiment of the present invention.
  • Figure 4 is an electron micrograph of the carbon nanotube film produced according to an embodiment of the present invention.
  • FIG. 5 is an electron micrograph including silicon nanoparticles in a carbon nanotube film according to an embodiment of the present invention.
  • Figure 6 is a photograph showing the flexibility of the carbon nanotube film according to an embodiment of the present invention.
  • FIG. 7 is a view showing the flexibility of the solid electrolyte according to an embodiment of the present invention.
  • FIG. 8 is a graph showing charge and discharge characteristics according to post-treatment of a carbon nanotube film according to an embodiment of the present invention.
  • FIG. 9 illustrates the shape of a protective film for protecting a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 10 is a photograph of a lithium secondary battery completed using a method of manufacturing a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 11 illustrates the structure of a fibrous secondary battery according to an embodiment of the present invention.
  • FIG. 12 is a flowchart illustrating a method of manufacturing a fibrous lithium secondary battery using fibrous carbon nanotubes according to an embodiment of the present invention.
  • FIG 13 is an electron micrograph of carbon nanotube fibers according to an embodiment of the present invention.
  • FIG. 14 is a photograph of a fibrous lithium secondary battery manufactured using the method for manufacturing a fibrous lithium secondary battery according to one embodiment of the present invention.
  • FIG. 1 illustrates a structure of a lithium secondary battery according to an embodiment of the present invention.
  • a lithium secondary battery 10 according to an embodiment of the present invention is laminated on a cathode material 101, a solid electrolyte 102 stacked on a cathode material 101, and a solid electrolyte 102. And a protective film 104 surrounding the negative electrode material 103 and the lithium secondary battery.
  • the cathode material 101 is a film having a complex structure in which a cathode active material is included in a carbon nanotube film, and does not require a polymer adhesive and a current collector.
  • a cathode active material for example, LiMnO 2 or LiCoO 2 may be used as the cathode active material.
  • the solid electrolyte 102 is formed of an electrolyte or a polymer electrolyte in the form of a composite of a polymer, a lithium salt, and a fibrous web, and is preferably thin in order to improve ion conductivity.
  • the nanoweb may be made of another polymer such as polyester or nylon, and the average diameter of the fibers constituting the web may be 300 nm or less.
  • the negative electrode material 103 may be formed of a carbon nanotube film, but may be generated by including a negative electrode active material between the carbon nanotube films as necessary. In addition, in order to improve the electrode capacity of the carbon nanotube film, it can be produced by applying the silicon nanoparticles.
  • the negative electrode material 103 made of a carbon nanotube film can maintain flexibility even in liquid nitrogen at minus 196 °.
  • the protective film 104 is a polymer material, and the polymer may be, for example, polydimethylsiloxane (PDMS).
  • PDMS polymers are hydrophobic, not only preventing the penetration of moisture, but also very flexible like rubber.
  • PDMS can be cured by UV or heat.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a lithium secondary battery according to an embodiment of the present invention in detail.
  • Method of manufacturing a lithium secondary battery 10 the step of forming a cathode material 101 including a cathode active material on a carbon nanotube film (s101); Stacking the solid electrolyte 102 on the cathode material 101 (s102); And laminating the negative electrode material 103 on the solid electrolyte 102.
  • the cathode material 101 having a composite structure may be manufactured by applying the cathode active material to the carbon nanotube film. have.
  • FIG. 3 is a schematic diagram showing a manufacturing process of a carbon nanotube film according to an embodiment of the present invention.
  • Figure 4 is an electron micrograph of the carbon nanotube film produced according to an embodiment of the present invention.
  • the production of the carbon nanotube film according to the embodiment of the present invention heats the quartz tube lying in the vertical direction. Subsequently, high purity hydrogen gas is flowed into the quartz tube, and a small amount of the carbon nanotube synthesis solution is fed into the vertical synthesis furnace. At this time, the carbon nanotube synthesis solution is acetone (Acetone) used as a carbon source, ferrocene (Cerrocene) as a catalyst precursor. Active agent thiophene (Thiophene), polysorbate (Polysorbate_20) for preventing the aggregation of the catalyst is mixed.
  • Carbon nanotube film prepared according to an embodiment of the present invention can be used as the negative electrode material 103 of the lithium secondary battery (10).
  • the negative electrode active material or the positive electrode active material is directly coated by the spinning method, and can be used as the negative electrode material 103 or the positive electrode material 101 of the secondary battery 10.
  • FIG. 5 is an electron micrograph showing a carbon nanotube film including silicon nanoparticles in an embodiment of the present invention.
  • a composite film in which a variety of active material is injected between the film electrode can also be used as
  • Figure 6 is a photograph showing the flexibility of the carbon nanotube film according to an embodiment of the present invention.
  • the carbon nanotube film according to the exemplary embodiment of the present invention is flexible enough to bend or fold and maintain flexibility even in liquid nitrogen at minus 196 °.
  • an electrolyte or a polymer electrolyte in the form of a composite of a polymer, a lithium salt, and a fibrous web may be stacked on the cathode material.
  • the solid electrolyte 102 is prepared by preparing a mixture of ethoxylated trimethylolpropane triacrylate (ETPTA) polymer and lithium salt which can be crosslinked by ultraviolet (Ultraviloet, UV), and then the mixture is It can be formed by coating on urethane nanoweb or polyvinylidene fluoride (PVDF) nanoweb and crosslinking with ultraviolet light.
  • the nanoweb may use a material such as polyester, nylon, or the like.
  • the average diameter of the fibers constituting the web is 300 nm or less.
  • the thickness of the solid electrolyte 102 may be thin.
  • FIG. 7 is a view showing the flexibility of the solid electrolyte according to an embodiment of the present invention.
  • the solid electrolyte 102 using the nanoweb according to the embodiment of the present invention has a very thin thickness and is very flexible.
  • the thickness of the solid electrolyte 102 may vary depending on the amount of nanoweb used.
  • the solid electrolyte of about 10 ⁇ m prepared according to an embodiment of the present invention may maintain its shape even after repeated 500 times of folding and unfolding.
  • the ion conductivity may be changed according to the type of lithium salt and the thickness of the electrolyte. For example, at room temperature, 10 ⁇ 3 S / cm or more of ionic conductivity may be expressed. Further, the thickness of the nanoweb may vary depending on the molecular weight of the polymer used and the web manufacturing process technology, but the thinner the solid electrolyte 102 is in a range that is not damaged by repeated bending.
  • lithium hexafluorophosphate LiPF 6
  • EC ethylene carbonate
  • PC propylene carbonate
  • LiTFSI lithium bis-trifluoromethanesulphonimide
  • NC-CH 2 -CH 2 -CN reactive additive
  • the objective of the technology to be achieved in the present invention is not limited depending on the type of lithium salt.
  • the carbon nanotube film or the carbon nanotube film including the negative electrode active material is laminated on the solid electrolyte 102.
  • FIG. 8 is a graph showing charge and discharge characteristics according to post-treatment of a carbon nanotube film according to an embodiment of the present invention.
  • the negative electrode material 103 of the lithium secondary battery 10 may vary in performance by a post-treatment process of a carbon nanotube film.
  • the post-treatment process may affect the crystallinity, structural integrity, and impurity content of the carbon nanotubes, thereby changing the performance of the lithium secondary battery 10.
  • the characteristics of the negative electrode material 103 are as follows: When the carbon nanotube film was acid treated in a 60 ° aqua regia for 2 hours, or when heat treated in air at 200 ° C., or under a nitrogen atmosphere of 1000 ° C. When heat treated for 1 hour, the charge and discharge characteristics may be different. According to one embodiment of the present invention, it can be seen that the charge and discharge capacity characteristics are improved when the carbon nanotube film is heat-treated under nitrogen atmosphere for 1 hour.
  • the manufacturing method of the lithium secondary battery 10 may include the step of curing it.
  • the lithium secondary battery 10 may be packaged using a polymer to form a protective film 104.
  • the polymer may be, for example, polydimethylsiloxane (PDMS).
  • PDMS polymer is hydrophobic to prevent moisture penetration and is very flexible like rubber.
  • curing is possible by ultraviolet rays or heat.
  • FIG. 9 illustrates the shape of a protective film for protecting a lithium secondary battery according to an embodiment of the present invention.
  • Lithium secondary battery 10 protective film 104 by pouring an appropriate amount of PDMS polymer into a rectangular frame, the upper plate 30 and the lower plate 40 may be formed into a square, and heat treated to cure. . At this time, the size of the upper plate 30 and the lower plate 40 is determined by the amount of the electrode, the amount of the electrode depends on the amount of energy required.
  • FIG. 10 is a photograph of a lithium secondary battery completed using a method of manufacturing a lithium secondary battery according to an embodiment of the present invention.
  • the lithium secondary battery 10 manufactured according to an embodiment of the present invention is flexible enough to be folded or bent as shown in FIG. 10.
  • it is possible to use a high capacity and light weight without using a current collector and a polymer adhesive. It can be used for smart cards, RFID tags, wireless sensors, etc., as well as wearing electronic devices.
  • FIG. 11 illustrates the structure of a fibrous secondary battery according to an embodiment of the present invention.
  • FIG. 12 is a flowchart illustrating a method of manufacturing a fibrous lithium secondary battery using fibrous carbon nanotubes according to an embodiment of the present invention.
  • the fibrous lithium secondary battery 20 has a concentric circle structure and includes a negative electrode material 201, a solid electrolyte 202 surrounding the negative electrode material 201, and a positive electrode surrounding the solid electrolyte 202. It comprises a ash 203 and a protective film 204 surrounding it.
  • the positions of the anode and the cathode may be interchanged.
  • the method of manufacturing a fibrous lithium secondary battery may include forming a negative electrode material having a fiber shape (S201); Wrapping the negative electrode material with a solid electrolyte (s202); And wrapping the solid electrolyte with the carbon nanotube film including the cathode active material (s203).
  • the step of forming a negative electrode material in the form of fibers (s201), by producing a carbon nanotube film or a carbon nanotube film containing a carbon nanotube film or a negative electrode active material by the method shown in FIG.
  • After forming the carbon nanotubes of the coil can be wound around the wire to form a negative electrode material.
  • a copper wire can be used.
  • FIG 13 is an electron micrograph of carbon nanotube fibers according to an embodiment of the present invention.
  • the negative electrode material is coated with a mixture of ETPTA and lithium salt, and then cured with ultraviolet rays to form a solid electrolyte 202 on the surface of the negative electrode material 201.
  • the solid electrolyte 202 also serves as a separator to prevent contact between the positive electrode and the negative electrode.
  • the solid electrolyte 202 is wrapped with a carbon nanotube film containing a cathode active material (s203).
  • the fibrous lithium secondary battery 20 may be packaged using a polymer to form a protective film 204.
  • the polymer may be, for example, polydimethylsiloxane (PDMS).
  • PDMS polymer is hydrophobic to prevent moisture penetration and is very flexible like rubber.
  • curing is possible by ultraviolet rays or heat.
  • a composite film in which various active materials are interposed between the film may be used as an electrode.
  • the positive electrode film and the negative electrode film may be immersed in an ETPTA and a lithium salt solution, and then cured and used as an electrode.
  • FIG. 14 is a photograph of a fibrous lithium secondary battery manufactured using the method for manufacturing a fibrous lithium secondary battery according to one embodiment of the present invention.
  • the fibrous lithium secondary battery 20 is flexible enough to make a knot.
  • the electrodes remain flexible even in liquid nitrogen below minus 196 °, while the PDMS protective film can remain flexible at minus 100 °.
  • Carbon nanotube films used for the negative electrode and the positive electrode were prepared using the method shown in FIG. At this time, the carbon nanotube synthesis solution was used by the composition of acetone 98.0%, ferrocene 0.2%, thiophene 0.8%, polysorbate_20 1.0%. This synthesis solution was injected into a vertical electric furnace heated to a temperature of 1200 ° at a rate of 10 ml / h. A high purity hydrogen was injected at a rate of 100 sccm together with the synthetic solution to prepare a carbon nanotube film. As the negative electrode material of the lithium secondary battery, only a carbon nanotube film can be used, and the carbon nanotube film was dried at 200 ° for 6 hours.
  • the carbon nanotube film was immersed in the electrolyte for 1 hour, one sheet of carbon nanotube film to serve as a current collector was attached to the lower surface of the electrode. Subsequently, the negative electrode material was cured by irradiating with a UV irradiator having a wavelength of 365 nm for 30 seconds. The produced negative electrode material has a thickness of about 100 ⁇ m.
  • the solid electrolyte was formed by mixing 85% of an ETPTA polymer and 15% of a lithium salt solution which is UV crosslinked.
  • Lithium salt is prepared by dissociating lithium hexafluorophosphate (Lithium Hexafluorophosphate, LiPF 6 ) at a concentration of 1M in a solution of ethylene carbonate and propylene carbonate in a volume ratio of 1: 1.
  • HMPP hydroxy-2-methyl-1-phenyl-1-propanon
  • Polyurethane nanoweb (average fiber diameter 300 nm, thickness 5 m) was immersed in this electrolyte, and excess electrolyte was squeezed out. It is cured by irradiating with UV lamp having a wavelength of 365 nm for 30 seconds and used as electrolyte and separator between cathode and anode. After curing, the composite electrolyte had a thickness of about 10 ⁇ m.
  • a cathode material was prepared by coating a cathode active material between films in synthesizing a carbon nanotube film, and after drying for 6 hours in a 200 ° dryer, it was used by immersion in an electrolyte. Like the negative electrode material, a carbon nanotube film was attached to one side to serve as a current collector.
  • the positive electrode was cured by irradiation with a UV irradiator having a wavelength of 365 nm, and the thickness of the positive electrode material was about 100 ⁇ m.
  • the cathode active material used to prepare the cathode material was lithium manganese dioxide (LiMnO 2 ), and the active material was prepared at a concentration of 40 g / l in a NMP (N-Methylpyrrolidone) solvent.
  • the solution was applied between carbon nanotube films using a nitrogen spray to prepare a carbon nanotube composite film electrode.
  • Polydimethylsiloxane (PDMS) film for encapsulating the electrode material and the electrolyte was prepared using SYLGARD 184 silicone elastomer kit (Dow Corning).
  • SYLGARD 184 silicone elastomer kit Dow Corning
  • a 200 ⁇ m thick acrylic sheet was placed and cured.
  • a copper thin film for use as a lead wire was attached to the bottom of the acrylic plate.
  • the length of the lead wire was made long enough to come out of the lower plate.
  • a 300 ⁇ m thick PDMS top film was prepared.
  • the negative electrode material is first placed in the center of the lower plate, and then the solid electrolyte is placed. Subsequently, a cathode material is placed on the solid electrolyte and an aluminum thin film for use as a lead wire is placed thereon. At this time, the thin film was allowed to come out of the top plate. Next, the top plate was coated with a PDMS solution, and then placed on the cathode material, and cured by heating at 60 degrees for 2 hours to prepare a lithium secondary battery.
  • Example 1 Only preparing a composite anode material is different from Example 1, and the rest of the process is the same. Silicon is coated between the carbon nanotube films to prepare a composite cathode film. To this end, the concentration of silicon in the acetone solution is prepared to be 0.25 g / L. Subsequently, the silicon solution mixed with acetone is treated strongly with an ultrasonic wave for 1 hour, and the solution is applied to the carbon nanotube film with a nitrogen spray. The silicon used had an average diameter of 25 nm and 32 ml of the injected silicone solution to make the negative electrode material 100 ⁇ m thick. About 0.82 ml of silicone solution was applied to one film. This was used as a negative electrode material after drying for 6 hours in a dryer of 200 °, the rest of the process is the same as in Example 1.
  • Lithium titanate Lithium Titanate Oxide, LTO
  • NMP N-Methylpyrrolidone
  • the sprayed solution was 32 ml so that the thickness of the negative electrode material was 100 ⁇ m, and about 0.82 ml of the solution was applied to the first layer of the film. This was used as a negative electrode material after drying for 6 hours in a 200 ° dryer.
  • Lithium bisamide LiTFSI
  • SN succinonitrile
  • ETPTA and 15 Mix in a weight ratio of 85.
  • This polymer electrolyte was used in place of the electrolyte used in Example 1, and poly-vinylidenedifluoride (PVDF) nanoweb (average diameter) was used instead of the polyurethane nanoweb to express a greater modulus of the solid electrolyte. 250 nm, thickness 5 ⁇ m).
  • PVDF poly-vinylidenedifluoride
  • Example 2 Same as Example 1, except that only the pretreatment of the negative electrode film.
  • the carbon nanotube film was placed in an electric furnace in a nitrogen atmosphere, raised to 1000 ° at a rate of 10 ° per minute, and then heat-treated for 1 hour.
  • the heat-treated carbon nanotube film reduced about 20% in weight, but the crystal quality was reduced. This improves and the characteristic to a negative electrode material improves.
  • the heat treated negative electrode film had a two-fold increase in the ratio between the G peak and the D peak. This heat treated film was used as the negative electrode material.
  • the negative electrode material, the positive electrode material and the electrolyte used in Example 1 are used as they are, but there is a difference in that the fiber type is manufactured. Giving 200 twists to the carbon nanotube film prepared in Example 1 is converted into a fiber form. This fiber is wound in a coil form while wrapping a copper metal wire to be used as a lead wire.
  • the coiled fibrous carbon nanotube negative electrode material was wound into the same solid electrolyte and polyurethane composite as in Example 1, and then irradiated with UV for 30 seconds to cure.
  • the cathode material was wrapped with one sheet of carbon nanotube film to serve as a current collector.
  • a metal lead wire was connected to the positive electrode current collector, and the outermost part of the fibrous secondary battery was coated and cured with PDMS to complete a fibrous lithium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 유연한 리튬 이차전지 및 제조방법에 관한 것으로, 양극재, 양극재 상에 적층된 고체 전해질 및 고체 전해질 상에 적층된 음극재를 포함한다. 이때, 양극재는 탄소나노튜브 필름에 양극활물질을 포함하여 생성된 것이고, 음극재는 탄소나노튜브 필름 또는 탄소나노튜브 필름에 음극활물질을 포함하여 생성된 것이다.

Description

유연한 리튬 이차전지 및 제조방법
본 발명은 유연한 리튬 이차전지 및 제조방법에 관한 것이다.
리튬 이차전지는 전압이 높고, 에너지 밀도가 크고 충전과 방전의 반복으로 재사용이 가능하다. 따라서, 휴대전화 노트북, 캠코더 등의 소형 전자 기기에서부터 전기 자동차에 이르기까지 널리 사용되며 수요가 증가하고 있다. 또한, 현재 소형 전자 기기의 의류 일체화, 신체 부착화 생체 이식화 등으로 소자의 유연성이 요구된다. 그러나, 유연한 리튬 이차전지를 만들기 위해서는 유연한 전극과 유연한 고체 전해질이 필수적으로 요구된다.
높은 전기전도도와 큰 용량, 저밀도의 특성을 가지는 탄소나노튜브가 리튬 이차전지의 재료로써 주목 받고 있으며, 이에 대한 연구가 활발히 진행되고 있다.
종래의 기술에서 탄소나노튜브를 이용한 리튬 이차전지는 음극활물질, 고분자접착제, 전도성 카본블랙을 혼합하여 슬러리로 만들고 이를 구리박막에 코팅하여 음극을 형성한다. 양극 역시, 양극활물질, 고분자접착제, 전도성 카본블랙을 혼합하여 알루미늄 박막에 코팅하여 형성한다. 이후, 양극과 음극 사이에 분리막과 전해질을 넣고 이를 봉합하여 리튬 이차전지를 제조하고 있다.
앞서 전술한 예는, 대한민국 공개 특허 제 10-2014-0019054호(발명의 명칭: 탄소나노튜브를 포함하는 이차전지용 슬러리 및 이를 포함하는 이차전지)에 개시되어 있다.
본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 그 목적은 탄소나노튜브 필름을 이용하여, 휴대전화, 스마트카드, RFID 태그, 무선 센서 등 각종 전자 기기에서 사용 가능한 유연한 리튬 이차전지를 제조하는 방법을 제공하고자 한다.
다만, 본 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.
상술한 같은 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 일 측면에 따른 리튬 이차전지는, 양극재, 양극재 상에 적층된 고체 전해질 및 고체 전해질 상에 적층된 음극재를 포함한다. 이때, 양극재는 탄소나노튜브 필름에 양극활물질을 포함시켜 생성된 것이고, 음극재는 탄소나노튜브 필름 또는 탄소나노튜브 필름에 음극활물질을 포함시켜 생성된 것이다.
본 발명의 다른 측면에 따른 섬유형 리튬 이차전지는, 음극재, 음극재를 감싸는 고체 전해질 및 고체 전해질을 감싸는 양극재를 포함한다. 이때, 양극재는 탄소나노튜브 필름에 양극활물질을 포함시켜 생성된 것이고, 음극재는 탄소나노튜브 필름 또는 음극활물질이 포함된 탄소나노튜브 필름에 꼬임을 주어 섬유형태로 생성된 것이다.
본 발명의 또 다른 측면에 따른 리튬 이차전지의 제조방법은, 탄소나노튜브 필름에 양극 활물질을 포함한 양극재를 형성하는 단계; 양극재 상에 고체 전해질을 적층하는 단계; 및 고체 전해질 상에 음극재를 적층하는 단계를 포함한다. 이때, 음극재를 적층하는 단계는 탄소나노튜브 필름 또는 탄소나노튜브 필름에 음극활물질을 포함시켜 적층한다.
또한, 본 발명의 또 다른 측면에 따른 섬유형 리튬 이차전지의 제조방법은 섬유 형태의 음극재를 형성하는 단계; 음극재를 고체 전해질로 감싸는 단계; 및 고체 전해질을 양극활물질이 포함된 탄소나노튜브 필름으로 감싸는 단계를 포함한다. 이때, 섬유 형태의 음극재를 형성하는 단계는, 탄소나노튜브 필름 또는 음극활물질이 포함된 탄소나노튜브 필름을 꼬아서 탄소나노튜브 섬유를 제작하는 단계 및 탄소나노튜브 섬유를 도선에 코일 형태로 감아 음극재를 제작하는 단계를 포함한다.
전술한 본 발명의 과제 해결 수단 중 어느 하나에 의하면, 리튬 이차전지를 제작함에 있어서, 금속 집전체와 고분자 접착제를 사용하지 않음으로써, 리튬 이차전지의 고용량 및 전자 기기의 경량화가 가능하다.
또한 본 발명의 과제 해결 수단 중 어느 하나에 의하면, 접거나 매듭이 가능한 유연한 리튬 이차전지의 제조가 가능하다.
도 1은 본 발명의 일 실시예에 따른 리튬 이차전지의 구조를 도시하고 있다.
도 2는 본 발명의 일 실시예에 따른 리튬 이차전지의 제조방법을 상세히 설명하기 위한 순서도이다.
도 3은 본 발명의 일 실시예에 따른 탄소나노튜브 필름의 제조공정을 도시한 모식도이다.
도 4는 본 발명의 일 실시예에 따른 제작된 탄소나노튜브 필름의 전자 현미경 사진이다.
도 5는 본 발명의 일 실시예에 따른 탄소나노튜브 필름에 실리콘 나노 입자가 포함된 전자현미경 사진이다.
도 6은 본 발명의 일 실시예에 따른 탄소나노튜브 필름의 유연성을 보여주는 사진이다.
도 7은 본 발명의 일 실시예에 따른 고체 전해질의 유연성을 보여주는 도면이다.
도 8은 본 발명의 일 실시예에 따른 탄소나노튜브 필름의 후처리에 따른 충방전 특성을 보여주는 그래프이다.
도 9는 본 발명의 일 실시예에 따른 리튬 이차전지를 보호하기 위한 보호막의 형상을 도시하고 있다.
도 10은 본 발명의 일 실시예에 따른 리튬 이차전지의 제조 방법을 이용하여 완성된 리튬 이차전지의 사진이다.
도 11은 본 발명의 일 실시예에 따른 섬유형 이차전지의 구조를 도시하고 있다.
도 12는 본 발명의 일 실시예에 따른 섬유형 탄소나노튜브를 이용한 섬유형 리튬 이차전지의 제조방법을 설명하기 위한 순서도 이다.
도 13은 본 발명의 일 실시예에 따른 탄소나노튜브 섬유의 전자현미경 사진이다.
도 14는 본 발명의 일 실시예에 따른 섬유형 리튬 이차전지의 제조방법을 이용하여 제조된 섬유형 리튬 이차전지의 사진이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
이하 도면을 참조하여 본 발명의 일 실시예에 따른 리튬 이차전지 및 제조방법에 대해서 상세히 설명하도록 한다.
도 1은 본 발명의 일 실시예에 따른 리튬 이차전지의 구조를 도시하고 있다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 리튬 이차전지(10)는 양극재(101), 양극재(101) 상에 적층된 고체 전해질(102), 고체 전해질(102) 상에 적층된 음극재(103) 및 리튬 이차전지를 에워싸는 보호막(104)를 포함한다.
양극재(101)는, 탄소나노튜브 필름에 양극활물질이 포함된 복합구조를 가지는 필름형태로써, 고분자 접착제와 집전체를 필요로 하지 않는다. 이때, 양극활물질로는 일례로, LiMnO2또는 LiCoO2 를 사용할 수 있다.
고체 전해질(102)은, 고분자와 리튬염 및 섬유웹의 복합체 형태의 전해질 또는 고분자 전해질로 생성된 것으로, 이온전도성을 향상시키기 위하여 두께가 얇은 것이 좋다. 이때 나노웹은 폴리에스터, 나일론 등과 같은 다른 고분자로 만들어진 것도 사용가능하며, 웹을 구성하는 섬유의 평균 직경이 300nm 이하인 경우가 좋다.
음극재(103)는, 탄소나노튜브 필름으로 구성될 수 있으나, 필요에 따라서는 탄소나노튜브 필름 사이에 음극활물질을 포함시켜 생성 가능하다. 또한, 탄소나노튜브 필름의 전극 용량을 향상시키기 위하여, 실리콘 나노입자를 도포하여 생성할 수 있다. 탄소나노튜브 필름으로 만들어진 음극재(103)는 영하196°의 액체 질소 안에서도 유연성을 유지할 수 있다.
보호막(104)은, 고분자 물질로써, 고분자는 일례로 피디엠에스 (Polydimethylsiloxane, PDMS) 일 수 있다. PDMS 고분자는 소수성으로, 수분의 침투를 방지할 뿐 아니라 고무와 같이 매우 유연하다. PDMS는 자외선 또는 열에 의하여 경화가 가능하다.
도 2는 본 발명의 일 실시예에 따른 리튬 이차전지의 제조방법을 상세히 설명하기 위한 순서도이다.
본 발명의 일 실시예에 따른 리튬 이차전지(10)의 제조방법은, 탄소나노튜브 필름에 양극활물질을 포함한 양극재(101)를 형성하는 단계(s101); 양극재(101) 상에 고체 전해질(102)을 적층하는 단계(s102); 고체 전해질(102) 상에 음극재(103)를 적층하는 단계(s103)를 포함한다.
먼저 탄소나노 튜브 필름에 양극활물질을 포함한 양극재(101)를 형성하는 단계(s101)에서, 탄소나노튜브필름에 양극활물질을 도포하여 복합구조를 가지는 필름 형태의 양극재(101)를 제조할 수 있다.
도 3은 본 발명의 일 실시예에 따른 탄소나노튜브 필름의 제조공정을 도시한 모식도이다.
도 4는 본 발명의 일 실시예에 따른 제작된 탄소나노튜브 필름의 전자 현미경 사진이다.
도 3과 도 4를 참조하면, 본 발명의 일 실시예에 따른 탄소나노튜브 필름의 제조는, 수직 방향으로 놓여 있는 석영 튜브를 가열시킨다. 이어서, 석영 튜브 안으로 고순도 수소 가스를 흘려 보내고, 탄소나노튜브 합성 용액 소량을 수직의 합성로 내로 공급한다. 이때, 탄소나노튜브 합성 용액은 탄소 공급원으로 사용하는 아세톤(Acetone), 촉매 전구체인 페로센(Ferrocene). 활성제인 싸이오펜(Thiophene), 촉매 응집 방지를 위한 폴리소르베이트(Polysorbate_20)가 혼합된 것이다.
합성 용액이 합성로에 공급되면, 열에너지에 의해 촉매전구체인 페로센에서 철이 분리되고, 활성제인 싸이오펜에서 황이 분리되어 액상의 황화철(Iron-sulfide)을 형성한다. 이후, 아세톤의 분해로 공급된 탄소들이 황화철로 확산되어 포화가 되면서 탄소나노튜브가 성장하기 시작한다. 이때, 합성 용액이 지속적으로 주입되면, 탄소나노튜브가 집합체를 이루고 이 집합체를 롤러에 감아 탄소나노튜브 필름을 제조 할 수 있다.
한편, 본 발명의 일 실시예에 따른 탄소나노튜브 필름의 제조 방법은 출원된 국내 특허 (10-2013-0044173)와 PCT(PCT/KR2013/ 010289)에 더욱 상세히 설명되어 있다.
본 발명의 일 실시예에 따라 제조된 탄소나노튜브 필름은 리튬 이차전지(10)의 음극재(103)로써 사용 가능하다.
구체적으로, 탄소나노튜브의 집합체를 롤러에 감을 때, 음극활물질 또는 양극활물질을 직접 방사법으로 도포하여, 이차전지(10)의 음극재(103) 또는 양극재(101)로써 사용 가능하다.
또한, 리튬 이차전지(10)의 음극재(103)의 전극 용량을 향상시키기 위해서 실리콘 나노입자를 도포하여 탄소나노튜브 필름을 생성하는 것이 가능하다
도 5는 본 발명의 일 실시예에 실리콘 나노 입자가 포함된 탄소나노튜브 필름을 보여주는 전자현미경 사진이다.
본 발명의 일 실시예에 따르면, 리튬 이차전지(10)에 요구되는 다양한 특성을 구현하기 위하여, 양극과 음극재에 사용되는 탄소나노튜브 필름 제조시, 다양한 활물질이 필름 사이에 투입된 복합 필름을 전극으로 사용할 수도 있다.
도 6은 본 발명의 일 실시예에 따른 탄소나노튜브 필름의 유연성을 보여주는 사진이다.
도 6에 도시된 바와 같이 본 발명의 일 실시예에 따른 탄소나노튜브 필름은 구부림 또는 접힘이 가능할 만큼 유연하며, 영하196°의 액체질소 안에서도 유연성을 유지할 수 있다.
다시 도 2를 참조하면, 양극재(101) 상에 고체 전해질(102)을 적층하는 단계(s102)에서, 고분자와 리튬염 및 섬유웹의 복합체 형태의 전해질 또는 고분자 전해질을 양극재 상에 적층할 수 있다.
일례로, 고체 전해질(102)은 자외선(Ultraviloet, UV)에 의해 가교가 가능한 에톡시레이티드 트리메틸올 프로판 트리아크릴레이트(Ethoxylated trimethylolpropane triacrylate, ETPTA) 고분자와 리튬염 혼합체를 준비한 후, 이들 혼합체를 폴리우레탄 나노웹 또는 폴리비닐리딘 플루오라이드(Polyvinylidene fluoride, PVDF) 나노웹에 코팅하고 자외선으로 가교시켜서 형성할 수 있다. 이때, 나노웹은 폴리에스터(Polyester), 나일론(Nylon) 등과 같은 물질을 사용가능하다. 이때, 웹을 구성하는 섬유의 평균 직경은 300nm 이하 이다. 또한, 고체 전해질(102)의 이온 전도성을 향상시키기 위해서는 고체 전해질(102)의 두께가 얇은 것이 좋다.
도 7은 본 발명의 일 실시예에 따른 고체 전해질의 유연성을 보여주는 도면이다.
도 7을 참조하면, 본 발명의 일 실시예에 따른 나노웹을 사용한 고체 전해질(102)은, 두께가 매우 얇으면서도 매우 유연함을 알 수 있다. 이때, 고체 전해질(102)의 두께는 사용하는 나노웹의 양에 따라 달라질 수 있다. 본 발명의 일 실시예에 따라 제조된 10 ㎛ 정도의 고체전해질은 접혔다 펼쳤다를 500회를 반복한 후에도 그 형상을 그대로 유지할 수 있다.
또한, 본 발명의 일 실시예에 따른 고체 전해질(102)은, 리튬염의 종류와 전해질의 두께에 따라 이온전도도가 변화될 수 있다. 일례로, 상온에서는 10-3 S/cm 이상의 이온전도도가 발현될 수 있다. 또한, 나노웹의 두께는 사용한 고분자의 분자량 및 웹제조 공정기술에 따라 달라지나, 고체전해질(102)이 반복적인 굽힘에 의해서 손상되지 않는 범위내에서 얇을수록 좋다.
리튬염은, 다양한 것들이 사용 가능하다. 일례로, 육불화인산리튬(LiPF6)을 에틸렌카보네이트(ethylene carbonate, EC)와 프로필렌카보네이트(propylene carbonate, PC)를 1:1의 부피 비율로 제조하여, 1M 농도로 해리시켜 사용할 수 있다. 또 다른 예로, 반응성첨가제(succinonitrile, NC-CH2-CH2-CN)에 리튬비스트리플루오메틸설폰이미드(lithium bis-trifluoromethanesulphonimide, LiTFSI)가 1M의 농도가 되도록 65°에서 가열하여 용해한 후 사용 할 수 있다. 그러나 리튬염의 종류에 따라 본 발명에서 이루고자 하는 기술의 목표가 제한되지는 않는다.
다시 도 2를 참조하면, 고체 전해질(102) 상에 음극재(103)를 적층하는 단계에서, 탄소나노튜브 필름 또는 음극활물질이 포함된 탄소나노튜브 필름을 고체 전해질(102)상에 적층한다.
도 8은 본 발명의 일 실시예에 따른 탄소나노튜브 필름의 후처리에 따른 충방전 특성을 보여주는 그래프이다.
본 발명의 일 실시예에 따른 리튬 이차전지(10)의 음극재(103)는 탄소 나노튜브 필름의 후처리 공정에 의해서 성능이 달라질 수 있다. 후처리 공정은 탄소나노튜브의 결정성, 구조의 완벽성 및 불순물 함량 등에 영향을 줄 수 있어 리튬 이차전지(10)의 성능이 변화될 수 있다. 도 8에 도시된 바와 같이 음극재(103)의 특성은, 탄소나노튜브 필름을 60°의 왕수에서 2시간동안 산처리 하였을때, 또는200도의 공기중에서 열처리 하였을때, 또는1000°의 질소분위기 하에서 1시간 열처리 하였을때, 충방전 특성이 각각 달라질 수 있다. 본 발명의 일 실시예에 따르면, 탄소나노튜브 필름을 질소 분위기하에서 1시간 열처리 하였을때 충방전 용량 특성이 향상되는 것을 볼 수 있다.
한편, 본 발명의 일 실시예에 따른 리튬 이차전지(10)의 제조방법은, 고체 전해질(102)과 전극 사이의 리튬 이온 확산 속도를 향상시키기 위하여 음극재(103)와 양극재(101)를 ETPTA및 리튬염 혼합액에 담지 후, 이를 경화하는 단계를 포함 할 수 있다.
또한, 본 발명의 일 실시예에 따른 리튬 이차전지(10)는 고분자를 이용하여 패키징하여 보호막(104)을 형성할 수 있다. 이때, 고분자는 일례로 PDMS(Polydimethylsiloxane)일 수 있다. PDMS 고분자는 소수성으로 수분의 침투를 방지할 뿐 아니라 고무와 같이 매우 유연하다는 특징이 있다. 또한, 자외선 또는 열에 의하여 경화가 가능하다.
도 9는 본 발명의 일 실시예에 따른 리튬 이차전지를 보호하기 위한 보호막의 형상을 도시하고 있다.
본 발명의 일 실시예에 따른 리튬 이차전지(10) 보호막(104)은, PDMS 고분자 적당량을 사각형의 틀에 부어서 상판(30)과 하판(40)을 사각형으로 성형하고, 열처리하여 경화 시킬 수 있다. 이때, 상판(30)과 하판(40)의 크기는 전극의 양에 의해 결정되며, 전극의 양은 필요로하는 에너지양에 따라 달라진다.
도 10은 본 발명의 일 실시예에 따른 리튬 이차전지의 제조 방법을 이용하여 완성된 리튬 이차전지의 사진이다.
본 발명의 일 실시예에 따라 제조된 리튬 이차전지(10)는, 도10에 도시된 바와 같이 접거나 구부림이 가능한 정도로 유연하다. 또한 제조 과정에 있어서, 집전체와 고분자 접착제를 사용하지 않아 고용량 및 경량화를 가능하게 하다. 이는 착용하는 전자기기뿐만 아니라 스마트카드, RFID 태그, 무선 센서 등에도 사용될 수 있다.
도 11은 본 발명의 일 실시예에 따른 섬유형 이차전지의 구조를 도시하고 있다.
도 12는 본 발명의 일 실시예에 따른 섬유형 탄소나노튜브를 이용한 섬유형 리튬 이차전지의 제조방법을 설명하기 위한 순서도 이다.
도 11에 도시된 바와 같이, 섬유형 리튬 이차전지(20)는 동심원 구조를 가지고 있으며, 음극재(201), 음극재(201)를 감싸는 고체 전해질(202), 고체 전해질(202)을 감싸는 양극재(203) 및 이를 둘러싸는 보호막(204)을 포함하여 구성된다. 이때, 양극과 음극의 위치는 상호 바뀔 수 있다
도 12를 참조하면, 본 발명의 일 실시예에 따른 섬유형 리튬 이차전지의 제조방법은, 섬유 형태의 음극재를 형성하는 단계(s201); 음극재를 고체 전해질로 감싸는 단계(s202); 및 고체 전해질을 양극활물질이 포함된 탄소나노튜브 필름으로 감싸는 단계(s203)를 포함한다.
먼저, 섬유 형태의 음극재를 형성하는 단계(s201)는, 전술한 도 3에 도시된 방법으로 탄소나노튜브 필름 또는 음극활물질이 포함된 탄소나노튜브 필름을 제작한 뒤 여러 번 꼬임을 주어 섬유형태의 탄소나노튜브를 형성한 후 코일 형태로 도선을 감아 음극재를 형성 할 수 있다. 이때 도선은 일례로, 구리선을 사용할 수 있다.
도 13은 본 발명의 일 실시예에 따른 탄소나노튜브 섬유의 전자현미경 사진이다.
본 발명의 일 실시예에 따라 제조된 탄소나노튜브 필름을 여러 번 꼬아주면, 도 13에 도시된 바와 같은 섬유 형태의 유연한 탄소나노튜브 섬유를 제작할 수 있다.
다음으로, 음극재를 고체 전해질로 감싸는 단계(s202)에서, 음극재를 ETPTA 및 리튬염 혼합물로 코팅 후, 자외선으로 경화하여 음극재(201) 표면에 고체 전해질(202)을 형성한다. 이 고체 전해질(202)은 양극과 음극의 접촉을 방지하는 분리막 역할을 하기도 한다.
다음으로, 고체 전해질(202)을 양극활물질이 포함된 탄소나노튜브 필름으로 감싼다(s203).
마지막으로, 도시되지는 않았지만, 본 발명의 일 실시예에 따른 섬유형 리튬 이차전지(20)는 고분자를 이용하여 패키징하여 보호막(204)를 형성 할 수 있다. 고분자는 일례로 PDMS(Polydimethylsiloxane)일 수 있다. PDMS 고분자는 소수성으로 수분의 침투를 방지할 뿐 아니라 고무와 같이 매우 유연하다는 특징이 있다. 또한, 자외선 또는 열에 의하여 경화가 가능하다.
또한, 섬유형 리튬 이차전지(20)에 요구되는 특성을 구현하기 위하여, 양극과 음극 탄소나노튜브 필름 제조시, 다양한 활물질을 필름사이에 투입한 복합필름을 전극으로 사용할 수도 있다.
또한, 전극과 전해질의 접착력 및 이온전도도를 향상 시키기 위하여 양극필름과 음극필름을 ETPTA 및 리륨염 용액에 침지한 후에 이를 경화하여 전극으로 사용할 수도 있다.
도 14는 본 발명의 일 실시예에 따른 섬유형 리튬 이차전지의 제조방법을 이용하여 제조된 섬유형 리튬 이차전지의 사진이다.
도시된 바와 같이, 본 발명의 일 실시예에 따른 섬유형 리튬 이차전지(20)는 매듭을 지을 수 있을 만큼 유연하다. 전극은 영하 196°의 액체질소 안에서도 유연성을 유지하며 보호막인 PDMS는 영하 100°에서도 유연성을 유지할 수 있다.
이하 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세히 설명하고자 한다. 그러나 본 발명에 따른 실시예들은 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기에서 상술하는 실시예들에 한정 되는 것은 아니다.
<실시예 1>
음극과 양극에 사용되는 탄소나노튜브 필름은 도 3에 도시된 방법을 이용하여 제조하였다. 이때, 탄소나노튜브 합성 용액은 중량기준으로 아세톤 98.0%, 페로쎈 0.2%, 싸이오펜 0.8%, 폴리소베이트_20 1.0%으로 조성하여 사용하였다. 이 합성 용액을 1200° 의 온도로 가열된 수직형 전기로에 10 ml/h의 속도로 주입하였다. 합성용액과 함께 고순도의 수소를 100 sccm의 속도로 주입하여 탄소나노튜브 필름을 제조하였다. 리튬 이차전지의 음극재로서는 탄소나노튜브 필름만으로도 사용 가능하기 때문에 탄소나노튜브 필름을 200° 에서 6시간 동안 건조하여 사용하였다. 건조된 탄소나노튜브 필름은 전해질에 1시간 침지한 후에 집전체 역할을 할 탄소나노튜브 필름 1장을 전극 아랫면에 부착하였다. 이어서, 음극재를 365nm의 파장을 가지는 UV 조사기로 30초동안 조사하여 경화하였다. 제작된 음극재의 두께는 약 100㎛이다.
고체 전해질은 UV가교가 되는 ETPTA 고분자 85% 및 리튬염 용액15%를 혼합하여 형성하였다. 리튬염은 육불화인산리튬(Lithium Hexafluorophosphate, LiPF6)을 에틸렌카보네이트와 프로필렌카보네이트가 1:1의 부피 비율로 제조된 용액에 1M 농도로 해리하여 제조한다. 전해질 용액에 광 개시제인 HMPP(2-hydroxy-2-methyl-1-phenyl-1-propanon)를 ETPTA 중량대비 0.2%를 첨가한다.
이 전해질에 폴리우레탄 나노웹(섬유 평균직경 300 nm, 두께 5 ㎛)을 침지하고 잉여의 전해질은 짜낸다. 이를 365 nm 파장을 가지는 UV 램프로 30초 동안 조사하여 경화시킨 후 음극과 양극사이의 전해질 및 분리막으로 사용한다. 경화 후 복합전해질의 두께는 약 10 ㎛ 이다.
양극재는 탄소나노튜브 필름 합성시에, 양극활물질을 필름사이에 도포하여서 제조하고, 이를 200°의 건조기에서 6시간 건조 한 후에 전해질에 침지하여 사용하였다. 음극재처럼 한 면에는 탄소나노튜브 필름을 부착하여 집전체의 역할을 하도록 하였다. 이 양극제를 365nm의 파장을 가지는 UV 조사기로 조사하여 경화하였으며 양극재의 두께는 약 100㎛가 되도록 하였다. 양극재를 제조하기 위해서 사용한 양극활물질은 망간산리튬(Lithium Manganese Dioxide, LiMnO2)이며, 이 활물질을 NMP(N-Methylpyrrolidone) 용매에 40 g/l의 농도로 제조하였다. 이 용액을 탄소나노튜브 필름 사이에 질소 스프레이를 이용하여 도포하여서 탄소나노튜브 복합 필름 전극을 제조하였다.
전극재와 전해질을 봉입하기 위한 폴리디메틸실록산(Polydimethylsiloxane, PDMS) 필름은 SYLGARD 184 silicone elastomer 키트(다우코닝 사)를 사용하여 제조하였다. 두께가 300 ㎛인 하판 가운데에, 200 ㎛ 두께의 직육면체 형태의 아크릴판을 놓고 경화하였다. 이때, 아크릴판 하단에는 리드선으로 사용하기 위한 구리박막을 부착하였다. 이때, 리드선의 길이는 하판 밖으로 나올 수 있을 정도로 길게 하였다다. 이와 별도로 300 ㎛ 두께의 PDMS 상판 필름을 제조하였다.
이어서, 하판의 중앙에 음극재를 먼저 위치시키고, 그 다음 고체전해질을 놓는다. 계속해서, 고체전해질 위에 양극재를 올려놓고 그 위에 리드선으로 사용하기 위한 알루미늄 박막을 놓는다. 이때, 박막은 상판 밖으로 나올 수 있도록 하였다. 다음으로, 상판을 PDMS 용액으로 박막코팅을 한 후에 이를 양극재 위에 올려놓고 60도에서 2시간 가열하여 경화시킴으로써, 리튬 이차전지를 제조하였다.
<실시예 2>
복합 음극재료를 준비하는 것만 실시예1과 다르며 나머지 공정은 동일하다. 탄소나노튜브필름 사이에 실리콘을 도포하여 복합음극필름을 제조한다. 이를 위하여 아세톤 용액에 실리콘의 농도가 0.25 g/L이 되도록 제조한다. 이어서, 아세톤과 혼합된 실리콘 용액을 초음파기로 1시간동안 강하게 처리하고, 이 용액을 질소 스프레이로 탄소나노튜브 필름에 도포한다. 사용된 실리콘은 평균 직경이 25 nm이며, 음극재의 두께를 100 ㎛으로 하기 위하여 분사한 실리콘 용액은 32 ml 이다. 필름 1층에 약 0.82 ml의 실리콘 용액이 도포되었다. 이를 200°의 건조기에서 6시간 건조 후에 음극재로 사용하였으며, 그 외의 과정은 실시예1과 동일하다.
<실시예 3>
급속 충방전에 유리한 전지를 구성하기 위하여 복합 음극재료를 준비하는 것만 실시예1과 다르며, 나머지 공정은 동일하다. 탄소나노튜브필름 사이에 티탄산리튬(Lithium Titanate Oxide, LTO)을 도포하여 복합 음극 필름을 제조한다. 이를 위하여 NMP(N-Methylpyrrolidone) 용액에 티탄산리튬(LTO)의 농도가 40 g/l 가 되도록 제조한다. 이어서, NMP와 혼합된 LTO 용액을 초음파기로 1시간동안 강하게 처리하고, 이를 질소 스프레이로 탄소나노튜브 필름 사이에 도포한다. 음극재의 두께가 100 ㎛이 되도록 하기위하여 분사한 용액은 32 ml 이며 필름 1층에 약 0.82 ml의 용액이 도포되었다. 이를 200°의 건조기에서 6시간 건조 후에 음극재로 사용하였다.
<실시예 4>
전해질 조성만 실시예1과 다르며 나머지 공정은 동일하다. 리튬염으로서 석시노나이트릴(Succinonitrile, SN(NC-CH2-CH2-CN))에 리튬비스마이드(LiTFSI)가 1몰의 농도가 되도록 65°에서 가열하여 용해하였으며, 이를 ETPTA와 15:85의 중량 비율로 혼합하였다. 이 고분자 전해질을 실시예1에서 사용한 전해질 대신에 사용하였으며, 고체전해질이 좀 더 큰 모듈러스가 발현되도록 하기위하여 폴리우레탄 나노웹 대신에 폴리피닐덴디플루오리드 (Poly-vinylidenedifluoride, PVDF) 나노웹(평균직경 250 nm, 두께 5 ㎛)을 사용하였다.
<실시예 5>
실시예1과 동일하며, 음극필름의 전처리만을 달리한다. 탄소나노튜브 필름을 질소 분위기의 전기로안에 놓고, 분당 10°의 속도로 1000°까지 올린 후에, 1시간 동안 열처리하였다.. 이렇게 열처리된 탄소나노튜브필름은 무게가 약 20% 정도 감소하나, 결정 품질이 향상되어 음극재로의 특성이 향상된다. 라만 분석에서 열처리된 음극필름은 미처리에 비해 G 피크와 D 피크의 비가 2배 정도 증가하였다. 이 열처리된 필름을 음극재로 사용하였다.
<실시예 6>
섬유형 리튬 이차전지를 제조한 실시예로서, 실시예1에서 사용한 음극재, 양극재 및 전해질을 그대로 사용하나, 섬유형태로 제조하는 점에서 차이가 있다. 실시예1에서 제조한 탄소나노튜브 필름 1m에 200회의 꼬임을 주어서 섬유형태로 변환한다. 이 섬유에 리드선으로 사용할 구리금속선을 감싸면서 코일형태로 감는다. 이 코일형태의 섬유형 탄소노튜브 음극재를 실시예1과 동일한 고체전해질 및 폴리우레탄 복합체로 감은 후에 UV를 30초동안 조사하여 경화한다. 다음, 경화된 양극 복합 필름으로 고체전해질 외부를 감싼 후에 탄소나노튜브 필름 한 장으로 양극재를 감싸서 집전체 역할을 하도록 하였다. 금속 리드선을 양극집전체에 연결하고, 섬유형 이차전지의 최외곽을 PDMS로 코팅 및 경화하여 섬유형 리튬 이차전지를 완성하였다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (22)

  1. 리튬 이차전지에 있어서,
    양극재,
    상기 양극재 상에 적층된 고체 전해질 및
    상기 고체 전해질 상에 적층된 음극재를 포함하되,
    상기 양극재는 탄소나노튜브 필름에 양극활물질을 포함시켜 생성된 것이고,
    상기 음극재는 탄소나노튜브 필름 또는 탄소나노튜브 필름에 음극활물질을 포함시켜 생성된 것인 리튬 이차전지.
  2. 제 1 항에 있어서,
    상기 고체 전해질은,
    고분자와 리튬염 및 섬유웹의 복합체 형태의 전해질 또는 고분자 전해질로 구성된 것인 리튬 이차전지.
  3. 제 2 항에 있어서,
    상기 섬유웹의 복합체 형태의 전해질은,
    UV 가교가 가능한 Ethoxylated trimethylolpropane triacrylate (ETPTA) 고분자와 리튬염 혼합체로 구성된 것인 리튬 이차전지.
  4. 제 1 항에 있어서,
    상기 양극 활물질은, LiMnO2 또는 LiCoO2인 리튬 이차전지.
  5. 제 1 항에 있어서,
    상기 리튬 이차전지는,
    상기 양극재와 고체 전해질 및 음극재를 에워싸는 보호막을 더 포함하는 리튬 이차전지.
  6. 섬유형 리튬 이차전지에 있어서,
    음극재,
    상기 음극재를 감싸는 고체 전해질 및
    상기 고체 전해질을 감싸는 양극재를 포함하되,
    상기 양극재는 탄소나노튜브 필름에 양극활물질을 포함시켜 생성된 것이고,
    상기 음극재는 탄소나노튜브 필름 또는 음극활물질이 포함된 탄소나노튜브 필름에 꼬임을 주어 섬유형태로 생성된 것인 리튬 이차전지.
  7. 제 6 항에 있어서,
    상기 고체 전해질은,
    고분자 전해질 또는 고분자와 리튬염 및 섬유웹의 복합체 형태의 전해질로 구성된 것인 리튬 이차전지.
  8. 제 6 항에 있어서,
    상기 섬유웹의 복합체 형태의 전해질은,
    UV 가교가 가능한 Ethoxylated trimethylolpropane triacrylate (ETPTA) 고분자와 리튬염 혼합체로 구성된 것인 리튬 이차전지.
  9. 제 6 항에 있어서, 상기 양극 활물질은, LiMnO2 또는 LiCoO2인 리튬 이차전지.
  10. 제 6 항에 있어서,
    상기 섬유형 리튬 이차전지는,
    양극재와 고체 전해질 및 음극재를 에워싸는 보호막을 더 포함하는 리튬 이차전지.
  11. 리튬 이차전지의 제조 방법에 있어서,
    탄소나노튜브 필름에 양극활물질을 포함한 양극재를 형성하는 단계;
    상기 양극재 상에 고체 전해질을 적층하는 단계;
    상기 고체 전해질 상에 음극재를 적층하는 단계를 포함하되,
    상기 음극재를 적층하는 단계는
    탄소나노튜브 필름 또는 탄소나노튜브 필름에 음극활물질을 포함하여 적층하는 것인 리튬 이차전지 제조 방법.
  12. 제 11 항에 있어서,
    상기 음극재를 적층하는 단계는,
    상기 음극재의 탄소나노튜브 필름을 리튬염 혼합액에 담지한 후 경화시키는 단계를 더 포함하는 것인 리튬 이차전지 제조 방법.
  13. 제 12 항에 있어서,
    상기 탄소나노튜브 필름은, 리튬 이차 전지의 전극 용량을 향상시키기 위해서 실리콘 나노 입자를 도포하여 형성한 것인 리튬 이차전지 제조 방법.
  14. 제 11 항에 있어서,
    상기 양극재를 적층하는 단계는,
    상기 양극재의 탄소나노튜브 필름을 리튬염 혼합액에 담지한 후 경화시키는 단계를 더 포함하는 것인 리튬 이차전지 제조 방법.
  15. 제 11 항에 있어서,
    양극재와 고체 전해질 및 음극재를 에워싸는 보호막을 형성하는 단계를 더 포함하는 리튬 이차전지 제조 방법.
  16. 제 11 항에 있어서,
    상기 고체 전해질은,
    고분자와 리튬염의 혼합체를 나노웹에 코팅하고,
    상기 나노웹을 자외선으로 가교시켜 생성된 것인 리튬 이차전지 제조 방법.
  17. 섬유형 리튬 이차전지의 제조 방법에 있어서,
    섬유 형태의 음극재를 형성하는 단계;
    상기 음극재를 고체 전해질로 감싸는 단계; 및
    상기 고체 전해질을 양극활물질이 포함된 탄소나노튜브 필름으로 감싸는 단계를 포함하되,
    상기 섬유 형태의 음극재를 형성하는 단계는,
    탄소나노튜브 필름 또는 음극활물질이 포함된 탄소나노튜브 필름을 꼬아서 탄소나노튜브 섬유를 제작하는 단계 및
    상기 탄소나노튜브 섬유를 도선에 코일 형태로 감아 음극재를 제작하는 단계를 포함하는 리튬 이차전지 제조 방법.
  18. 제 17 항에 있어서,
    상기 음극재를 형성하는 단계는,
    상기 음극재의 탄소나노튜브 섬유를 리튬염 혼합액에 담지한 후 경화시키는 단계를 더 포함하는 것인 리튬 이차전지 제조 방법.
  19. 제 18 항에 있어서,
    상기 탄소나노튜브 섬유는, 리튬 이차 전지의 전극 용량을 향상시키기 위해서 실리콘 나노 입자를 포함하여 형성한 것인 리튬 이차전지 제조 방법.
  20. 제 17 항에 있어서,
    상기 양극재를 형성하는 단계는,
    상기 양극재의 탄소나노튜브 섬유를 리튬염 혼합액에 담지한 후 경화시키는 단계를 더 포함하는 것인 리튬 이차전지 제조 방법.
  21. 제 17 항에 있어서,
    상기 고체 전해질은,
    고분자와 리튬염의 혼합체를 나노웹에 코팅하고,
    상기 나노웹을 자외선으로 가교시켜 생성된 것인 리튬 이차전지 제조 방법.
  22. 제 17 항에 있어서,
    양극재와 고체 전해질 및 음극재를 에워싸는 보호막을 형성하는 단계를 더 포함하는 리튬 이차전지 제조 방법.
PCT/KR2014/012827 2014-04-03 2014-12-24 유연한 리튬 이차전지 및 제조방법 WO2015152499A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/281,625 US20170018799A1 (en) 2014-04-03 2016-09-30 Flexible lithium secondary battery and method for manufacturing the same
US16/351,719 US20190214676A1 (en) 2014-04-03 2019-03-13 Flexible lithium secondary battery and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0039982 2014-04-03
KR1020140039982A KR101606898B1 (ko) 2014-04-03 2014-04-03 유연한 리튬 이차전지 및 제조방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/281,625 Continuation US20170018799A1 (en) 2014-04-03 2016-09-30 Flexible lithium secondary battery and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2015152499A1 true WO2015152499A1 (ko) 2015-10-08

Family

ID=54240782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012827 WO2015152499A1 (ko) 2014-04-03 2014-12-24 유연한 리튬 이차전지 및 제조방법

Country Status (3)

Country Link
US (2) US20170018799A1 (ko)
KR (1) KR101606898B1 (ko)
WO (1) WO2015152499A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106450493A (zh) * 2016-11-07 2017-02-22 南昌大学 石墨化碳纳米管柔性膜可折叠电池的制备方法
US20170214083A1 (en) * 2016-01-22 2017-07-27 California Institute Of Technology Vertical carbon nanotube and lithium ion battery chemistries, articles, architectures and manufacture

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3040550B1 (fr) * 2015-08-25 2017-08-11 Commissariat Energie Atomique Batterie au lithium-ion gelifiee
US11171324B2 (en) 2016-03-15 2021-11-09 Honda Motor Co., Ltd. System and method of producing a composite product
US11383213B2 (en) 2016-03-15 2022-07-12 Honda Motor Co., Ltd. System and method of producing a composite product
US10734642B2 (en) 2016-03-30 2020-08-04 Global Graphene Group, Inc. Elastomer-encapsulated particles of high-capacity anode active materials for lithium batteries
DE102017201233A1 (de) * 2017-01-26 2018-07-26 Robert Bosch Gmbh Verfahren zur Herstellung eines Elektrodenlaminats für eine Festkörperbatterie
US11495792B2 (en) 2017-02-16 2022-11-08 Global Graphene Group, Inc. Method of manufacturing a lithium secondary battery having a protected high-capacity anode active material
US10840502B2 (en) 2017-02-24 2020-11-17 Global Graphene Group, Inc. Polymer binder for lithium battery and method of manufacturing
US11978904B2 (en) 2017-02-24 2024-05-07 Honeycomb Battery Company Polymer binder for lithium battery and method of manufacturing
US10985373B2 (en) * 2017-02-27 2021-04-20 Global Graphene Group, Inc. Lithium battery cathode and method of manufacturing
KR102148504B1 (ko) * 2017-03-03 2020-08-26 주식회사 엘지화학 리튬 이차전지
US11742475B2 (en) 2017-04-03 2023-08-29 Global Graphene Group, Inc. Encapsulated anode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10483533B2 (en) 2017-04-10 2019-11-19 Global Graphene Group, Inc. Encapsulated cathode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10916766B2 (en) 2017-04-10 2021-02-09 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a polymer-encapsulated sulfur cathode and manufacturing method
US10862129B2 (en) 2017-04-12 2020-12-08 Global Graphene Group, Inc. Lithium anode-protecting polymer layer for a lithium metal secondary battery and manufacturing method
KR102140127B1 (ko) * 2017-04-25 2020-07-31 주식회사 엘지화학 리튬 이차전지용 음극, 이의 제조방법 및 이것을 포함하는 리튬 이차전지
US11081684B2 (en) 2017-05-24 2021-08-03 Honda Motor Co., Ltd. Production of carbon nanotube modified battery electrode powders via single step dispersion
US20190036102A1 (en) 2017-07-31 2019-01-31 Honda Motor Co., Ltd. Continuous production of binder and collector-less self-standing electrodes for li-ion batteries by using carbon nanotubes as an additive
US10658651B2 (en) 2017-07-31 2020-05-19 Honda Motor Co., Ltd. Self standing electrodes and methods for making thereof
US10804537B2 (en) 2017-08-14 2020-10-13 Global Graphene Group, Inc. Protected particles of anode active materials, lithium secondary batteries containing same and method of manufacturing
US10964951B2 (en) 2017-08-14 2021-03-30 Global Graphene Group, Inc. Anode-protecting layer for a lithium metal secondary battery and manufacturing method
US11201318B2 (en) 2017-09-15 2021-12-14 Honda Motor Co., Ltd. Method for battery tab attachment to a self-standing electrode
US11121358B2 (en) 2017-09-15 2021-09-14 Honda Motor Co., Ltd. Method for embedding a battery tab attachment in a self-standing electrode without current collector or binder
CN107681193A (zh) * 2017-09-29 2018-02-09 清华大学 固体电解质及其制备方法、电池
WO2019109171A1 (en) * 2017-12-08 2019-06-13 Polyvalor, Limited Partnership Lithium-ion battery in the form of a flexible wire, process for manufacture and uses thereof
US10601034B2 (en) 2018-02-21 2020-03-24 Global Graphene Group, Inc. Method of producing protected particles of anode active materials for lithium batteries
US10573894B2 (en) 2018-02-21 2020-02-25 Global Graphene Group, Inc. Protected particles of anode active materials for lithium batteries
US11721832B2 (en) 2018-02-23 2023-08-08 Global Graphene Group, Inc. Elastomer composite-encapsulated particles of anode active materials for lithium batteries
US10964936B2 (en) 2018-03-02 2021-03-30 Global Graphene Group, Inc. Conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries
US10971722B2 (en) 2018-03-02 2021-04-06 Global Graphene Group, Inc. Method of manufacturing conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries
US11005094B2 (en) 2018-03-07 2021-05-11 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
US10818926B2 (en) 2018-03-07 2020-10-27 Global Graphene Group, Inc. Method of producing electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
JP6876648B2 (ja) * 2018-03-22 2021-05-26 株式会社東芝 二次電池、電池パック及び車両
US10971723B2 (en) 2018-04-16 2021-04-06 Global Graphene Group, Inc. Process for alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles
US11043694B2 (en) 2018-04-16 2021-06-22 Global Graphene Group, Inc. Alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles
US10978698B2 (en) 2018-06-15 2021-04-13 Global Graphene Group, Inc. Method of protecting sulfur cathode materials for alkali metal-sulfur secondary battery
US11121398B2 (en) 2018-06-15 2021-09-14 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing cathode material particulates
US10862157B2 (en) 2018-06-18 2020-12-08 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a conductive electrode-protecting layer
US10978744B2 (en) 2018-06-18 2021-04-13 Global Graphene Group, Inc. Method of protecting anode of a lithium-sulfur battery
US10957912B2 (en) 2018-06-18 2021-03-23 Global Graphene Group, Inc. Method of extending cycle-life of a lithium-sulfur battery
US10854927B2 (en) 2018-06-18 2020-12-01 Global Graphene Group, Inc. Method of improving cycle-life of alkali metal-sulfur secondary battery
US10777810B2 (en) 2018-06-21 2020-09-15 Global Graphene Group, Inc. Lithium metal secondary battery containing a protected lithium anode
US11276852B2 (en) 2018-06-21 2022-03-15 Global Graphene Group, Inc. Lithium metal secondary battery containing an elastic anode-protecting layer
US10873088B2 (en) 2018-06-25 2020-12-22 Global Graphene Group, Inc. Lithium-selenium battery containing an electrode-protecting layer and method of improving cycle-life
US11043662B2 (en) 2018-08-22 2021-06-22 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries
US11239460B2 (en) 2018-08-22 2022-02-01 Global Graphene Group, Inc. Method of producing electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries
US11223049B2 (en) 2018-08-24 2022-01-11 Global Graphene Group, Inc. Method of producing protected particles of cathode active materials for lithium batteries
US10886528B2 (en) 2018-08-24 2021-01-05 Global Graphene Group, Inc. Protected particles of cathode active materials for lithium batteries
US10629899B1 (en) 2018-10-15 2020-04-21 Global Graphene Group, Inc. Production method for electrochemically stable anode particulates for lithium secondary batteries
US10971724B2 (en) 2018-10-15 2021-04-06 Global Graphene Group, Inc. Method of producing electrochemically stable anode particulates for lithium secondary batteries
US10971725B2 (en) 2019-01-24 2021-04-06 Global Graphene Group, Inc. Lithium metal secondary battery containing elastic polymer foam as an anode-protecting layer
US11535517B2 (en) 2019-01-24 2022-12-27 Honda Motor Co., Ltd. Method of making self-standing electrodes supported by carbon nanostructured filaments
US11791450B2 (en) 2019-01-24 2023-10-17 Global Graphene Group, Inc. Method of improving cycle life of a rechargeable lithium metal battery
US11325833B2 (en) 2019-03-04 2022-05-10 Honda Motor Co., Ltd. Composite yarn and method of making a carbon nanotube composite yarn
US11352258B2 (en) 2019-03-04 2022-06-07 Honda Motor Co., Ltd. Multifunctional conductive wire and method of making
US11539042B2 (en) 2019-07-19 2022-12-27 Honda Motor Co., Ltd. Flexible packaging with embedded electrode and method of making
US11769879B2 (en) * 2021-07-12 2023-09-26 Toyota Motor Engineering & Manufacturing North America, Inc. Structural energy storage with carbon fiber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251077A (ja) * 2009-04-14 2010-11-04 Ulvac Japan Ltd 薄膜リチウムイオン二次電池、薄膜リチウムイオン二次電池用保護膜、薄膜リチウムイオン二次電池形成方法
JP5283138B2 (ja) * 2009-02-04 2013-09-04 独立行政法人産業技術総合研究所 リチウム二次電池用ファイバー正極の製造方法、リチウム二次電池用ファイバー負極及びその製造方法、並びにファイバー電極を備えたリチウム二次電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5283138B2 (ja) * 2009-02-04 2013-09-04 独立行政法人産業技術総合研究所 リチウム二次電池用ファイバー正極の製造方法、リチウム二次電池用ファイバー負極及びその製造方法、並びにファイバー電極を備えたリチウム二次電池
JP2010251077A (ja) * 2009-04-14 2010-11-04 Ulvac Japan Ltd 薄膜リチウムイオン二次電池、薄膜リチウムイオン二次電池用保護膜、薄膜リチウムイオン二次電池形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KE WANG ET AL.: "Super-Aligned Carbon Nanotube Films as Current Collectors for Lightweight and Flexible Lithium Ion Batteries.", ADVANCED FUNCTIONAL MATERIA LS, 19 October 2012 (2012-10-19), pages 846 - 847 , 852, XP001582388, ISSN: 1616-301x *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170214083A1 (en) * 2016-01-22 2017-07-27 California Institute Of Technology Vertical carbon nanotube and lithium ion battery chemistries, articles, architectures and manufacture
CN108475812A (zh) * 2016-01-22 2018-08-31 加州理工学院 垂直碳纳米管和锂离子电池化学
US11056712B2 (en) * 2016-01-22 2021-07-06 California Institute Of Technology Vertical carbon nanotube and lithium ion battery chemistries, articles, architectures and manufacture
CN106450493A (zh) * 2016-11-07 2017-02-22 南昌大学 石墨化碳纳米管柔性膜可折叠电池的制备方法

Also Published As

Publication number Publication date
US20190214676A1 (en) 2019-07-11
KR101606898B1 (ko) 2016-03-28
US20170018799A1 (en) 2017-01-19
KR20150116006A (ko) 2015-10-15

Similar Documents

Publication Publication Date Title
WO2015152499A1 (ko) 유연한 리튬 이차전지 및 제조방법
Yu et al. Flexible Zn‐ion batteries: recent progresses and challenges
Zhang et al. Super-stretchy lithium-ion battery based on carbon nanotube fiber
CN106898812B (zh) 一种固体聚合物电解质及其制备方法以及复合正极和固态锂离子电池
WO2016099038A1 (ko) Ptc 물질을 포함하는 이차전지용 전극을 제조하는 방법 및 이에 의해 제조되는 전극
WO2012099321A1 (ko) 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
JP2017152383A (ja) リチウムイオン二次電池用電極及びその製造方法
WO2017069410A1 (ko) 다층 구조의 리튬 금속 산화물들을 포함하는 리튬 이차전지용 양극 활물질 및 그것을 포함하는 양극
WO2016058542A1 (zh) 锂离子电池
WO2011145871A2 (ko) 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2012033321A2 (ko) 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
WO2013062313A1 (ko) 음극활물질의 제조방법, 그 음극활물질 및 이를 구비한 리튬이차전지
CN108028385A (zh) 粘附性改善的锂二次电池用电极及其制造方法
CN101817517B (zh) 纳米碳纤维的形成方法
WO2013066117A1 (ko) 케이블형 이차전지
CN104882588A (zh) 碳纤维/碳纳米管复合膜及其制备方法和应用
WO2018106093A1 (ko) 플렉서블 이차전지
Choi et al. Spider silk binder for Si-based anode in lithium-ion batteries
JPWO2017111131A1 (ja) 全固体二次電池、全固体二次電池用粒子、全固体二次電池用固体電解質組成物および全固体二次電池用電極シートならびにこれらの製造方法
CN105552381B (zh) 具有柔性的取向掺氮碳纳米管薄膜及其制备方法和应用
CN106147691B (zh) 电极粘结剂、正极材料以及锂离子电池
WO2022075565A1 (ko) 직물소재를 이용한 리튬-황 전지 양극, 이를 포함하는 리튬-황 전지 및 그 제조방법
CN109950611B (zh) 一种柔性/可拉伸电池器件的制作方法
WO2017061807A1 (ko) 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀
WO2017039149A1 (ko) 자성 물질을 포함하는 이차전지용 바인더

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 14888072

Country of ref document: EP

Kind code of ref document: A1