WO2020226029A1 - インバータ装置 - Google Patents

インバータ装置 Download PDF

Info

Publication number
WO2020226029A1
WO2020226029A1 PCT/JP2020/016358 JP2020016358W WO2020226029A1 WO 2020226029 A1 WO2020226029 A1 WO 2020226029A1 JP 2020016358 W JP2020016358 W JP 2020016358W WO 2020226029 A1 WO2020226029 A1 WO 2020226029A1
Authority
WO
WIPO (PCT)
Prior art keywords
warm
control device
temperature
voltage
electrolytic capacitor
Prior art date
Application number
PCT/JP2020/016358
Other languages
English (en)
French (fr)
Inventor
雄基 牧村
将宜 松田
翔吾 藤▲崎▼
真敏 斎藤
Original Assignee
サンデン・オートモーティブコンポーネント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブコンポーネント株式会社 filed Critical サンデン・オートモーティブコンポーネント株式会社
Priority to US17/600,770 priority Critical patent/US11750113B2/en
Priority to CN202080029541.0A priority patent/CN113711485A/zh
Priority to DE112020002241.2T priority patent/DE112020002241T5/de
Publication of WO2020226029A1 publication Critical patent/WO2020226029A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/62Controlling or determining the temperature of the motor or of the drive for raising the temperature of the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component

Definitions

  • the present invention relates to an inverter device that drives an electric motor by generating an AC voltage from a DC voltage smoothed by an electrolytic capacitor.
  • a conventional inverter device of this type three phases of U, V, and W are obtained from a DC voltage by selectively driving three switching elements on the upper phase side and three switching elements on the lower phase side of an inverter circuit. It generates a voltage to drive an electric motor, and is provided with an electrolytic capacitor that smoothes the power supply voltage of the inverter circuit.
  • an inverter device particularly an in-vehicle inverter device may be used in a low temperature environment, and when an electrolytic capacitor is used in such an environment, the internal resistance component (equivalent series) of the electrolytic capacitor is used. The resistance) rises and the ripple voltage increases, and there is a risk that the voltage applied to the electrolytic capacitor will exceed its withstand voltage or become a reverse voltage, leading to destruction.
  • the present invention has been made to solve the above-mentioned conventional technical problems, and is an inverter capable of raising the internal temperature of an electrolytic capacitor faster within an allowable range of ripple voltage and shortening the non-operating time.
  • the purpose is to provide the device.
  • the inverter device of the present invention uses an electrolytic capacitor that smoothes an input voltage to generate a DC voltage, an inverter circuit that generates an AC voltage from a DC voltage to drive an electric motor, and the temperature of the electrolytic capacitor or its ambient temperature. It is provided with a temperature sensor to detect and a control device to control the drive of a plurality of switching elements of the inverter circuit. When the temperature detected by the temperature sensor is lower than a predetermined temperature, this control device is used before the start of normal operation of the electric motor. By turning on a specific switching element selected from a plurality of switching elements, the current that can control the ripple voltage of the DC voltage within an allowable range while the electric motor is stopped is increased at a predetermined rate of increase. It is characterized by performing a warm-up operation.
  • the inverter device is characterized in that, in the above invention, the control device changes the rate of increase of the current flowing through the electric motor based on the input voltage and the temperature detected by the temperature sensor.
  • the inverter device is characterized in that, in the above invention, the control device is changed so that the higher the input voltage, the lower the rate of increase of the current flowing through the electric motor.
  • the inverter device is characterized in that, in the above invention, the control device is changed so that the higher the input voltage, the lower the value of the current flowing through the electric motor at the start of warm-up operation.
  • the inverter device is changed in the second to fourth aspects of the control device in a direction in which the lower the temperature detected by the temperature sensor, the lower the rate of increase in the current flowing through the electric motor. It is a feature.
  • the inverter device is characterized in that, in the above invention, the control device is changed so that the lower the temperature detected by the temperature sensor, the lower the value of the current flowing through the electric motor at the start of the warm-up operation. ..
  • the inverter device according to the invention of claim 7 is characterized in that, in each of the above inventions, the control device changes the rate of increase of the current flowing through the electric motor in multiple steps according to the passage of time in the warm-up operation.
  • the inverter device of the invention of claim 8 is characterized in that, in the above invention, the control device changes the rate of increase of the current flowing through the electric motor in the direction of increasing the time as time elapses from the start of the warm-up operation.
  • the inverter device of the invention of claim 9 is characterized in that, in each of the above inventions, the control device limits the value of the current flowing through the electric motor in the normal operation after the completion of the warm-up operation.
  • the inverter device of the present invention uses an electrolytic capacitor that smoothes an input voltage to generate a DC voltage, an inverter circuit that generates an AC voltage from a DC voltage to drive an electric motor, and the temperature of the electrolytic capacitor or its ambient temperature. It is equipped with a temperature sensor to detect and a control device to control the drive of a plurality of switching elements of the inverter circuit. When the temperature detected by the temperature sensor is lower than a predetermined temperature, the control device is before the start of normal operation of the electric motor. In addition, by driving on a specific switching element selected from a plurality of switching elements, the current that can control the ripple voltage of the DC voltage within an allowable range while the electric motor is stopped is increased at a predetermined rate. Since the warm-up operation to be passed through the electric motor is executed in, the internal temperature of the electrolytic capacitor can be raised more quickly while suppressing the ripple voltage of the DC voltage within the allowable range.
  • the control device is based on the input voltage and the temperature detected by the temperature sensor. By changing the rate of increase of the current flowing through the electric motor, it becomes possible to increase the internal temperature of the electrolytic capacitor more safely and effectively in the warm-up operation.
  • the higher the input voltage the lower the value of the current flowing through the electric motor at the start of warm-up operation, so that the electrolytic capacitor based on the ripple voltage of the DC voltage can be used. It is possible to avoid destruction more effectively.
  • the lower the temperature detected by the temperature sensor the lower the value of the current flowing through the electric motor at the start of warm-up operation, and the ripple voltage of the DC voltage. It is possible to effectively avoid the destruction of the electrolytic capacitor due to the above.
  • the control device changes the rate of increase of the current flowing through the electric motor in multiple steps according to the passage of time in the warm-up operation, for example, as in the invention of claim 8.
  • the internal temperature of the electrolytic capacitor can be raised more safely and quickly by changing the rate of increase of the current flowing through the electric motor in the direction of increasing it.
  • the control device limits the value of the current flowing through the electric motor in the normal operation after the completion of the warm-up operation as in the invention of claim 9, the electrolytic capacitor is further destroyed in the low temperature environment. You will be able to avoid it effectively.
  • FIG. 1 It is a schematic electric circuit diagram of the inverter device of one Example to which this invention was applied. It is a flowchart explaining the warm-up operation of the control device of the inverter device of FIG. It is a figure explaining the energization state of the inverter circuit in the warm-up operation of FIG. It is a figure explaining the warm-up operation condition used in the flowchart of FIG. It is a figure explaining an example of the warm-up operation executed by the flowchart of FIG. It is a figure explaining another example of the warm-up operation executed by the flowchart of FIG.
  • FIG. 1 is an electric circuit diagram showing a schematic configuration of an inverter device IV of an embodiment to which the present invention is applied.
  • the inverter device IV of the embodiment is an in-vehicle inverter device that is provided integrally with a compressor (not shown) that constitutes an air conditioner for a vehicle and is mounted on the vehicle.
  • the input voltage HV from the battery (DC power supply) BAT mounted on the vehicle is smoothed by the electrolytic capacitor 1, and an AC voltage is generated from the smoothed DC voltage to generate a motor as an electric motor.
  • 5 is driven, and is configured to include an electrolytic capacitor 1, an inverter circuit 2, a control device 3, and a temperature sensor 4.
  • the electrolytic capacitor 1 smoothes the input voltage HV to a DC voltage, and is composed of a large-capacity aluminum electrolytic capacitor.
  • Such an aluminum electrolytic capacitor is small and inexpensive, but generally has a large internal resistance component (equivalent series resistance) ESR because of the resistance of the electrolytic solution, the resistance of the electrolytic paper, and the like. Further, for example, when used in a low temperature environment, the lower the internal temperature of the electrolytic capacitor 1, the larger the internal resistance component ESR, and in particular, the lower the internal temperature, the sharper the internal resistance component ESR increases. It has the feature.
  • the inverter circuit 2 is provided so that the DC voltage smoothed by the electrolytic capacitor 1 as described above is supplied as the power supply voltage.
  • the inverter circuit 2 generates three-phase voltages Vu, Vv, and Vw from the DC voltage and supplies them to the motor (three-phase brushless motor) 5 as an electric motor.
  • the three switching elements on the upper phase side (three switching elements on the upper phase side). It is configured to include IGBTs) 6u, 6v, 6w and three switching elements (IGBTs) 7u, 7v, 7w on the lower phase side.
  • a control device 3 is provided by connecting to the inverter circuit 2.
  • the control device 3 is composed of a capacitor equipped with a processor, controls the on / off drive of the six switching elements 6u to 6w and 7u to 7w of the inverter circuit 2, and operates the motor 5 appropriately.
  • the switching elements 6u to 6w and 7u to 7w of the inverter circuit 2 are turned on / off before the normal operation of the motor 5 is started.
  • PWM pulse width modulation
  • the motor 5 limits the current (phase current) limited so that the ripple voltage of the DC voltage applied to the electrolytic capacitor 1 is within the allowable range.
  • the warm-up operation can be performed to raise the temperature of the electrolytic capacitor 1 by the Joule heat generated in the internal resistance component (equivalent series resistance) ESR of the electrolytic capacitor 1 while the motor 5 is stopped. It is configured in.
  • the control device 3 causes a current to flow through the motor 5 at a predetermined rate of increase, and in the embodiment, the rate of increase is based on the input voltage HV from the battery BAT and the ambient temperature of the electrolytic capacitor 1. change.
  • the temperature sensor 4 is provided in the vicinity of the electrolytic capacitor 1. The temperature sensor 4 detects the ambient temperature Tc (temperature around the electrolytic capacitor 1) of the electrolytic capacitor 1 and outputs the temperature sensor 4 to the control device 3, and is composed of, for example, a thermocouple or a positive characteristic thermistor.
  • the electrolytic capacitor 1 is mounted on the same substrate as the inverter circuit 2 and housed in the same space as the inverter circuit 2, and the temperature sensor 4 is also arranged on the substrate in the vicinity of the electrolytic capacitor 1.
  • the present invention is not limited to this, and the temperature of the electrolytic capacitor 1 itself may be detected by the temperature sensor 4.
  • the ambient temperature Tc of the electrolytic capacitor 1 is treated as the temperature of the electrolytic capacitor 1.
  • the warm-up operation conditions shown in FIG. 4 are preset in the control device 3.
  • the warm-up operation conditions of the embodiment are a data table set based on the ambient temperature Tc of the electrolytic capacitor 1 detected by the temperature sensor 4 and the input voltage HV from the battery BAT.
  • the portion shown only on 10/10 and 5/10 means that the warm-up operation is not executed. Note that 10/10 is the value of the normal starting current, and 5/10 means that it is half the value.
  • t1 to t7 indicate the energization time of the motor 5, and the part indicated by the number of minutes connected by the arrow basically indicates the current value at the start of warm-up operation of the motor 5 and the current value at the completion. It means that the warm-up operation is performed in the part where these are shown.
  • the fraction is also the magnitude of the current value with respect to the normal starting current (10/10), for example, 2/10 means that it is one fifth of the normal starting current (10/10).
  • the energization times t1 to t5 in FIG. 4 have a relationship of t1 ⁇ t2 ⁇ t3 ⁇ t4 ⁇ t5. It should be noted that the energization time t6 and t7 have a relationship of t7 ⁇ t6 in the embodiment. The longer the energization time and the smaller the difference between the current value at the start of warm-up operation and the current value at completion, the lower the rate of increase in current, and the shorter the energization time, the shorter the current value at the start of warm-up operation and completion. The larger the difference between the current values at times, the higher the rate of increase in current.
  • the rate of increase of the current determined from is the energization time, current value, and increase that can suppress the ripple voltage of the DC voltage in the electrolytic capacitor 1 within an allowable range under the condition of the combination of each ambient temperature Tc and the input voltage HV. It is a rate, and each shall be determined in advance by experiment.
  • the control device 3 selects one of the conditions from the ambient temperature Tc when the start instruction of the motor 5 is input and the input voltage HV, and executes the warm-up operation of the electrolytic capacitor 1. It will be.
  • the control device 3 determines whether or not the ambient temperature Tc of the electrolytic capacitor 1 detected by the temperature sensor 4 is lower than the predetermined temperature T1. ..
  • the predetermined temperature T1 differs depending on the input voltage HV. That is, the peak value of the ripple voltage of the DC voltage applied to the electrolytic capacitor 1 becomes larger as the input voltage HV is higher and the temperature of the electrolytic capacitor 1 (in the embodiment, the ambient temperature Tc is adopted) is lower.
  • the predetermined temperature T1 when the input voltage HV is lower than 200V, the predetermined temperature T1 is set to ⁇ 24 ° C., when the input voltage is 200V or higher and lower than 250V, the predetermined temperature T1 is set to -19 ° C. The temperature T1 is ⁇ 14 ° C. Similarly, when the input voltage HV is 300 V or more and lower than 350 V, the predetermined temperature T1 is set to ⁇ 9 ° C., and when the input voltage HV is 350 V or more and lower than 400 V, the predetermined temperature T1 is set to -4 ° C.
  • the predetermined temperature T1 is set to + 1 ° C.
  • the predetermined temperature T1 is set to + 6 ° C.
  • step S1 When the ambient temperature Tc of the electrolytic capacitor 1 detected by the temperature sensor 4 in step S1 is equal to or higher than the predetermined temperature T1, the control device 3 proceeds to step S7 to start the motor 5 with the above-mentioned normal starting current (10/10). Then start normal operation. That is, the electrolytic capacitor 1 is not warmed up before the normal operation of the motor 5 is started.
  • step S1 the process proceeds to the control device step S2 to determine whether or not the elapsed time tpass after the completion of the previous warm-up operation is shorter than the predetermined time tpass1. If a predetermined time tpass1 or more has elapsed since the completion of the previous warm-up operation, the control device 3 proceeds to step S6.
  • step S3 the control device 3 proceeds to step S3 to check the input voltage HV from the battery BAT.
  • step S4 the warm-up operation conditions in FIG. 4 are confirmed from the ambient temperature Tc and the input voltage HV, one of the warm-up operation conditions is selected and determined, and the warm-up operation of the electrolytic capacitor 1 is performed. Start.
  • the control device 3 calculates the duty ratio of the PWM signal based on the determined warm-up operation conditions. Then, the PWM signal of the calculated duty ratio drives on, for example, the switching elements 6u on the upper phase side of the inverter circuit 2, and turns on, for example, the switching elements 7v and 7w on the lower phase side. As a result, as shown by the thick solid line in FIG. 3, a current under the warm-up operating condition determined so that the ripple voltage of the DC voltage is within the allowable range flows through the inverter circuit 2 and the motor 5 to warm up. The operation is carried out.
  • the on-driven switching element of the inverter circuit 2 is fixed to, for example, the switching element 6u on the upper phase side and the switching elements 7v, 7w on the lower phase side, the motor 5 remains stopped. .. In this way, while the electric current is being applied to the motor 5, the electrolytic capacitor 1 is heated by the Joule heat generated in its internal resistance component ESR to raise the temperature.
  • the current value to be passed through the motor 5 is similarly set to 5/10.
  • the ambient temperature Tc is ⁇ 14 ° C. or higher and ⁇ 10 ° C. or lower and the input voltage HV is 300 V or higher and lower than 400 V
  • the current value to be passed through the motor 5 is similarly set to 5/10.
  • the ambient temperature Tc is ⁇ 9 ° C. or higher and ⁇ 5 ° C. or lower and the input voltage HV is 350 V or higher and lower than 450 V
  • the current value to be passed through the motor 5 is similarly set to 5/10.
  • the current value to be passed through the motor 5 is similarly set to 5/10.
  • the ambient temperature Tc is + 1 ° C. or higher and + 5 ° C. or lower and the input voltage HV is 450 V or higher and lower than 500 V
  • the current value to be passed through the motor 5 is similarly set to 5/10.
  • the electrolytic capacitor 1 is warmed up while controlling the ripple voltage of the DC voltage applied to the electrolytic capacitor 1 within an allowable range.
  • the control device 3 Performs a warm-up operation in which the current flowing through the motor 5 is increased at a predetermined rate of increase.
  • the current value at the start of warm-up operation is set to 3/10 (three tenths of the normal starting current).
  • the current value at the time of completion is 7/10 (7 tenths of the normal starting current), and the energizing time is t1.
  • a current flows through the motor 5 at a rate of increase from 3/10 to 7/10 during the time t1.
  • the ripple voltage of the DC voltage in the electrolytic capacitor 1 rises from the start of the warm-up operation, but the internal resistance component ESR decreases as the internal temperature of the electrolytic capacitor 1 rises, so that MAX (maximum) is reached at a certain point. Value), and thereafter it will gradually decrease even if the current increases. Further, by increasing the current flowing through the motor 5 at the rate of increase as shown in FIG. 5, the internal temperature of the electrolytic capacitor 1 can be increased earlier than when a constant current is applied.
  • the current value at the start of warm-up operation is 2/10 (sufficient of the normal starting current).
  • the current value at the time of completion is 6/10 (six tenths of the normal starting current), and the energizing time is t2.
  • the difference between the current value 2/10 at the start of warm-up operation and the current value 6/10 at the end is the difference when the ambient temperature Tc is -29 ° C or higher and -25 ° C or lower (3/10 and 7).
  • the energizing time t2 is longer than t1, so the rate of increase in current from the start to the end of warm-up operation is -29 ° C or higher at ambient temperature Tc and -25 ° C. It will be lower than the following. That is, even with the same input voltage HV, the lower the ambient temperature Tc, the lower the rate of increase of the current in the warm-up operation of the control device 3.
  • the current value flowing through the motor 5 at the start of warm-up operation is 2/10 when the ambient temperature is -39 ° C or higher and -35 ° C or lower, compared to 3/10 when the ambient temperature is Tc-29 ° C or higher and -25 ° C or lower. To reduce to. That is, even with the same input voltage HV, the lower the ambient temperature Tc, the lower the current value disclosed in the warm-up operation by the control device 3.
  • the current value at the start of warm-up operation is reduced to 1/10 (normal start-up).
  • the current value at the time of completion is 5/10 (five tenths of the normal starting current), and the energization time is t5.
  • the difference between the current value 1/10 at the start of warm-up operation and the current value 5/10 at the completion is the same as the difference when the input voltage HV is lower than 200V (difference between 3/10 and 7/10).
  • the rate of increase in the current from the start to the completion of the warm-up operation is lower than when the input voltage HV is lower than 200V. That is, even at the same ambient temperature Tc, the higher the input voltage HV, the lower the rate of increase of the current in the warm-up operation of the control device 3.
  • the value of the current flowing through the motor 5 at the start of the warm-up operation is also reduced to 1/10 when the input voltage HV is 450 V or more and 500 V or less than 3/10 when the input voltage HV is lower than 200 V. That is, even at the same ambient temperature Tc, as the input voltage HV becomes higher, the control device 3 changes to lower the current value disclosed in the warm-up operation.
  • step S5 of FIG. 2 the control device 3 proceeds to step S6 and starts the motor 5 with a starting current of 5/10, which is half of the normal starting current (10/10) described above. Then start normal operation. That is, after the warm-up operation is completed, the control device 3 limits the value of the current flowing through the motor 5 from the normal value (10/10) (5/10).
  • the control device 3 when the ambient temperature Tc detected by the temperature sensor 4 is lower than the predetermined temperature T1, the control device 3 has the plurality of switching elements 6u to 6w and 7u to 7w before starting the normal operation of the motor 5.
  • the specific switching elements 6u, 7v, 7w selected from the above By driving on the specific switching elements 6u, 7v, 7w selected from the above, the current that can control the ripple voltage of the DC voltage within the allowable range while the motor 5 is stopped is increased at a predetermined rate of increase. Since the warm-up operation of flowing to No. 5 is executed, the internal temperature of the electrolytic capacitor 1 can be raised more quickly while suppressing the ripple voltage of the DC voltage within an allowable range.
  • control device 3 since the control device 3 changes the rate of increase of the current flowing through the motor 5 based on the input voltage HV and the ambient temperature Tc detected by the temperature sensor 4, it is safer in warm-up operation. , It becomes possible to effectively raise the internal temperature of the electrolytic capacitor 1.
  • the control device 3 is changed so that the higher the input voltage HV is, the lower the rate of increase of the current flowing through the motor 5 is. Therefore, the electrolytic capacitor can be safely and quickly operated by warm-up operation. It becomes possible to raise the internal temperature of 1.
  • control device 3 is changed so that the higher the input voltage HV, the lower the value of the current flowing through the motor 5 at the start of warm-up operation. Therefore, the electrolytic capacitor 1 due to the ripple voltage of the DC voltage is used. It becomes possible to avoid the destruction of.
  • control device 3 is changed so that the lower the ambient temperature Tc detected by the temperature sensor 4 is, the lower the rate of increase of the current flowing through the motor 5 is, so that the warm-up operation is safer. Moreover, the internal temperature of the electrolytic capacitor 1 can be quickly raised.
  • control device 3 is changed so that the lower the ambient temperature Tc detected by the temperature sensor 4, the lower the value of the current flowing through the motor 5 at the start of the warm-up operation. It is possible to effectively avoid the destruction of the electrolytic capacitor 1 due to the ripple voltage of the voltage.
  • control device 3 limits the value of the current flowing through the motor 5 in the normal operation after the warm-up operation is completed, so that the electrolytic capacitor 1 is further destroyed in the low temperature environment. You will be able to avoid it effectively.
  • the control device 3 changes the rate of increase in the current during warm-up operation stepwise according to the passage of time.
  • This example is shown as a warm-up operating condition in the lower right corner of FIG. That is, when the ambient temperature Tc of the electrolytic capacitor 1 detected by the temperature sensor 4 is ⁇ 30 ° C. or lower and the input voltage HV from the battery BAT is 450 V or more and smaller than 500 V, the control device 3 has step S4 in FIG.
  • the current value at the start of the warm-up operation is set to 1/10 (one tenth of the normal starting current), and the current value when the time t6 elapses from the start is 2/10 (1/10).
  • Energization of the motor 5 is started as two tenths of the normal starting current).
  • the current value at the completion of the warm-up operation in which the time t7 has elapsed since the time t6 has elapsed is set to 5/10 (five tenths of the normal starting current), and the current is switched to the state of energizing.
  • a current flows through the motor 5 at a rate of increase from 1/10 to 2/10 during the energization time t6 from the start of the warm-up operation until the time t6 elapses. From the time when the time t6 elapses until the time 7 elapses, the current flows at a rate of increase from 2/10 to 5/10 during the energization time t7.
  • the energization time t6 is longer than t7, and the difference in current from the start to the elapse of time t6 is larger than the difference in current from the start to the elapse of time t7.
  • the rate of increase in the current from the start until the time t6 elapses is low, and then the rate of increase in the current until the time t7 elapses is high. If the gradual change in the rate of increase is ensured, the magnitude relationship between the energization time t6 and t7 is not limited to the embodiment.
  • the internal resistance component ESR of the electrolytic capacitor 1 is extremely large at a low temperature and tends to decrease sharply as the internal temperature rises. Therefore, the electrolytic capacitor 1 starts from the warm-up operation of FIG. Although the ripple voltage of the DC voltage in 1 rises, the rate of increase of the current until the time t6 elapses is small, and the internal resistance component ESR also drops sharply as the internal temperature of the electrolytic capacitor 1 rises, so that the ripple voltage MAX1 (maximum value 1) is relatively low within the permissible range.
  • the rate of increase in the current until the time t7 elapses and the warm-up operation is completed increases, but at that time, the internal resistance component ESR of the electrolytic capacitor 1 decreases remarkably. Therefore, the ripple voltage does not exceed another MAX2 (maximum value 2) within the allowable range, and thereafter, it gradually decreases even if the current increases.
  • the rate of increase of the current flowing through the motor 5 in the warm-up operation of the control device 3 is increased in multiple stages (two stages in the embodiment) according to the passage of time.
  • the rate of increase of the current flowing through the motor 5 is changed in the direction of increasing the temperature, so that the electrolytic capacitor 1 can be changed more safely and quickly.
  • the internal temperature can be raised.
  • time axis shown in FIG. 6 is not constant, and in order to exaggerate the image, the energization time t6 is reduced and the energization time t7 is expanded. In addition, the higher the current axis, the larger the actual size.
  • the warm-up operation condition is set based on the input voltage HV and the ambient temperature Tc (temperature of the electrolytic capacitor 1), but the warm-up operation condition is not limited to this, and may be set based only on the input voltage HV. On the contrary, it may be set based only on the ambient temperature Tc. However, by executing the warm-up operation based on both the input voltage HV and the ambient temperature Tc as in the embodiment, more accurate control can be performed.
  • the rate of increase in current was changed in two stages, but it may be changed more finely in multiple stages of three or more stages.
  • the present invention is not limited to this, and the inverter circuit 2 may have any number of phases such as four phases, and the motor 5 (electric motor) to be applied. It may be set appropriately according to the number of phases.
  • the inverter device IV is not limited to the in-vehicle inverter device of the embodiment, but can be applied to various electric devices such as ordinary air conditioners.
  • Electrolytic capacitor 2 Inverter circuit 3
  • Control device 4 Temperature sensor 5
  • Motor (motor) 6u-6w, 7u-7w Switching element
  • Battery ESR Internal resistance component

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)
  • Power Steering Mechanism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】リップル電圧の許容範囲内で電解コンデンサの内部温度をより早く上昇させ、未動作時間を短縮することができるインバータ装置を提供する。 【解決手段】電解コンデンサ1と、インバータ回路2と、温度センサ4と、制御装置3を備える。制御装置3は、温度センサ4が検出する電解コンデンサ1の周囲温度が所定温度より低い場合、モータ5の通常運転開始前に、インバータ回路2の特定のスイッチング素子をオン駆動し、モータ5を停止させたまま、直流電圧のリップル電圧を許容範囲内に制御し得る電流を、所定の上昇率でモータ5に流す暖機運転を実行する。

Description

インバータ装置
 本発明は、電解コンデンサにより平滑された直流電圧から交流電圧を生成して電動機を駆動するインバータ装置に関する。
 従来のこの種のインバータ装置は、インバータ回路の上相側の3つのスイッチング素子と下相側の3つのスイッチング素子とを選択的に駆動することにより、直流電圧からU、V、Wの三相電圧を生成して電動機を駆動するもので、インバータ回路の電源電圧を平滑する電解コンデンサが設けられている。
 また、このようなインバータ装置において、特に車載用インバータ装置は、低温環境下で使用される場合があり、このような環境下で電解コンデンサを使用するときには、当該電解コンデンサの内部抵抗成分(等価直列抵抗)が上昇してリップル電圧が大きくなり、当該電解コンデンサにかかる電圧がその耐圧を超え、或いは、逆電圧となって破壊に至る危険性があった。
 これを解決する方策として、電解コンデンサを増やし、内部抵抗成分を小さくしてリップル電圧を低減することが考えられるが、コストの高騰と大型化を引き起こす問題がある。そこで、内部抵抗成分を小さくする方法として、電動機を停止させたままで、電解コンデンサの内部温度を上昇させる暖機モードを実行するものが開発されている(例えば、特許文献1参照)。
特開2012-222925号公報
 ここで、電解コンデンサの内部抵抗成分を小さくしてリップル電圧を低下させるには、小さい電流で長時間かけて電解コンデンサの内部温度を上げていくことが理想的である。しかしながら、そのような従来の方法では暖機モードの時間、即ち、電動機の起動指示から当該電動機が回り出すまでの未動作時間が長くなってしまうという問題があった。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、リップル電圧の許容範囲内で電解コンデンサの内部温度をより早く上昇させ、未動作時間を短縮することができるインバータ装置を提供することを目的とする。
 本発明のインバータ装置は、入力電圧を平滑化して直流電圧を生成する電解コンデンサと、直流電圧から交流電圧を生成して電動機を駆動するインバータ回路と、電解コンデンサの温度、若しくは、その周囲温度を検出する温度センサと、インバータ回路が有する複数のスイッチング素子の駆動を制御する制御装置を備え、この制御装置は、温度センサが検出する温度が所定温度より低い場合、電動機の通常運転開始前に、複数のスイッチング素子のうちから選択された特定のスイッチング素子をオン駆動することにより、電動機を停止させたままで、直流電圧のリップル電圧を許容範囲内に制御し得る電流を、所定の上昇率で電動機に流す暖機運転を実行することを特徴とする。
 請求項2の発明のインバータ装置は、上記発明において制御装置は、入力電圧と温度センサが検出する温度に基づいて電動機に流す電流の上昇率を変更することを特徴とする。
 請求項3の発明のインバータ装置は、上記発明において制御装置は、入力電圧が高い程、電動機に流す電流の上昇率を低くする方向で変更することを特徴とする。
 請求項4の発明のインバータ装置は、上記発明において制御装置は、入力電圧が高い程、暖機運転開始時に電動機に流す電流の値を低くする方向で変更することを特徴とする。
 請求項5の発明のインバータ装置は、請求項2乃至請求項4の発明において制御装置は、温度センサが検出する温度が低い程、電動機に流す電流の上昇率を低くする方向で変更することを特徴とする。
 請求項6の発明のインバータ装置は、上記発明において制御装置は、温度センサが検出する温度が低い程、暖機運転開始時に電動機に流す電流の値を低くする方向で変更することを特徴とする。
 請求項7の発明のインバータ装置は、上記各発明において制御装置は、暖機運転において、電動機に流す電流の上昇率を、時間経過に応じて多段階で変更することを特徴とする。
 請求項8の発明のインバータ装置は、上記発明において制御装置は、暖機運転開始から時間が経過する程、高くする方向で電動機に流す電流の上昇率を変更することを特徴とする。
 請求項9の発明のインバータ装置は、上記各発明において制御装置は、暖機運転の完了後の通常運転において、電動機に流す電流の値を制限することを特徴とする。
 本発明のインバータ装置は、入力電圧を平滑化して直流電圧を生成する電解コンデンサと、直流電圧から交流電圧を生成して電動機を駆動するインバータ回路と、電解コンデンサの温度、若しくは、その周囲温度を検出する温度センサと、インバータ回路が有する複数のスイッチング素子の駆動を制御する制御装置を備えており、この制御装置が、温度センサが検出する温度が所定温度より低い場合、電動機の通常運転開始前に、複数のスイッチング素子のうちから選択された特定のスイッチング素子をオン駆動することにより、電動機を停止させたままで、直流電圧のリップル電圧を許容範囲内に制御し得る電流を、所定の上昇率で電動機に流す暖機運転を実行するようにしたので、直流電圧のリップル電圧を許容範囲内に抑制しながら、電解コンデンサの内部温度をより早く上昇させることができるようになる。
 これにより、低温環境下での電解コンデンサの破壊を回避しながら、起動指示から電動機が回り出すまでに要する暖機運転の時間(未動作時間)を短縮することができるようになる。
 この場合、リップル電圧のピーク値は入力電圧が高い程、電解コンデンサの温度が低い程、大きくなるので、請求項2の発明の如く制御装置が、入力電圧と温度センサが検出する温度に基づいて電動機に流す電流の上昇率を変更することで、暖機運転でより安全、且つ、効果的に電解コンデンサの内部温度の上昇を図ることができるようになる。
 例えば、請求項3の発明の如く制御装置が、入力電圧が高い程、電動機に流す電流の上昇率を低くする方向で変更することで、暖機運転により安全、且つ、迅速に電解コンデンサの内部温度を上昇させることができるようになる。
 この場合、請求項4の発明の如く制御装置が、入力電圧が高い程、暖機運転開始時に電動機に流す電流の値を低くする方向で変更することで、直流電圧のリップル電圧による電解コンデンサの破壊をより効果的に回避することが可能となる。
 また、例えば、請求項5の発明の如く制御装置が、温度センサが検出する温度が低い程、電動機に流す電流の上昇率を低くする方向で変更することでも、暖機運転により安全、且つ、迅速に電解コンデンサの内部温度を上昇させることができるようになる。
 この場合も、請求項6の発明の如く制御装置が、温度センサが検出する温度が低い程、暖機運転開始時に電動機に流す電流の値を低くする方向で変更すること、直流電圧のリップル電圧による電解コンデンサの破壊を効果的に回避することが可能となる。
 ここで、電解コンデンサの内部抵抗成分は、低温では極めて大きく、内部温度が上昇するに伴って急激に小さくなる傾向を有している。そこで、請求項7の発明の如く制御装置が、暖機運転において、電動機に流す電流の上昇率を、時間経過に応じて多段階で変更するようにし、例えば、請求項8の発明の如く暖機運転開始から時間が経過する程、高くする方向で電動機に流す電流の上昇率を変更することで、より安全、且つ、迅速に電解コンデンサの内部温度を上昇させることができるようになる。
 また、請求項9の発明の如く制御装置が、暖機運転の完了後の通常運転においては、電動機に流す電流の値を制限するようにすれば、低温環境下での電解コンデンサの破壊をより効果的に回避することができるようになる。
本発明を適用した一実施例のインバータ装置の概略電気回路図である。 図1のインバータ装置の制御装置の暖機運転を説明するフローチャートである。 図2の暖機運転におけるインバータ回路の通電状態を説明する図である。 図2のフローチャートで使用する暖機運転条件を説明する図である。 図2のフローチャートで実行する暖機運転の一例を説明する図である。 図2のフローチャートで実行する暖機運転の他の例を説明する図である。
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。図1は本発明を適用した一実施例のインバータ装置IVの概略構成を示す電気回路図である。実施例のインバータ装置IVは、車両用の空気調和装置を構成する図示しないコンプレッサと一体に設けられて車両に搭載される車載用インバータ装置である。実施例のインバータ装置IVは、車両に搭載されたバッテリ(直流電源)BATからの入力電圧HVを、電解コンデンサ1により平滑し、この平滑された直流電圧から交流電圧を生成して電動機としてのモータ5を駆動するものであり、電解コンデンサ1と、インバータ回路2と、制御装置3と、温度センサ4を備えて構成されている。
 電解コンデンサ1は、入力電圧HVを直流電圧に平滑するもので、大容量のアルミ電解コンデンサから構成されている。このようなアルミ電解コンデンサは、小型で、且つ、安価であるが、電解液の抵抗分、電解紙の抵抗分等があるため一般に内部抵抗成分(等価直列抵抗)ESRが大きいものである。また、例えば低温環境下で使用される場合の如く、電解コンデンサ1の内部温度が低い程、内部抵抗成分ESRは大きくなり、特に、内部温度が低くなる程、急激に内部抵抗成分ESRが大きくなるという特徴を有している。
 上記のような電解コンデンサ1により平滑された直流電圧が電源電圧として供給されるようにインバータ回路2が設けられている。このインバータ回路2は、直流電圧から三相電圧Vu、Vv、Vwを生成して電動機としてのモータ(三相ブラシレスモータ)5に供給するものであり、例えば、上相側の3つのスイッチング素子(IGBT)6u、6v、6wと、下相側の3つのスイッチング素子(IGBT)7u、7v、7wを備えた構成されている。
 そして、このインバータ回路2に接続して制御装置3が設けられている。この制御装置3は、プロセッサを備えたマイクロコンピュータにて構成されており、インバータ回路2の6つのスイッチング素子6u~6w、7u~7wのオン/オフ駆動を制御して、モータ5を適切に運転させるものであり、電解コンデンサ1の温度が予め定められた所定温度T1よりも低い場合、モータ5の通常運転開始前に、インバータ回路2の各スイッチング素子6u~6w、7u~7wをオン/オフ駆動するパルス幅変調(以下「PWM」という)信号のデューティー比を制御することにより、電解コンデンサ1にかかる直流電圧のリップル電圧が許容範囲内となるように制限した電流(相電流)をモータ5に流し、モータ5を停止させたままで、電解コンデンサ1の内部抵抗成分(等価直列抵抗)ESRに発生するジュール熱により、当該電解コンデンサ1の温度を上昇させる暖機運転を実施することができるように構成されている。
 この場合、制御装置3は暖機運転において、電流を所定の上昇率でモータ5に流すと共に、実施例ではこの上昇率をバッテリBATからの入力電圧HVと電解コンデンサ1の周囲の温度に基づいて変更する。実施例では電解コンデンサ1の近傍に温度センサ4が設けられている。この温度センサ4は、電解コンデンサ1の周囲温度Tc(電解コンデンサ1周辺の温度)を検出して制御装置3に出力するもので、例えば熱電対や正特性サーミスタ等から構成されている。
 尚、実施例では電解コンデンサ1をインバータ回路2と同一の基板上に実装し、インバータ回路2と同一の空間に収容しており、温度センサ4も電解コンデンサ1の近傍の基板上に配置しているが、それに限らず、温度センサ4により電解コンデンサ1自体の温度を検出するようにしてもよい。実施例では電解コンデンサ1の周囲温度Tcを電解コンデンサ1の温度として取り扱うものとする。
 また、制御装置3には図4に示す暖機運転条件が予め設定されている。実施例の暖機運転条件は、温度センサ4が検出する電解コンデンサ1の周囲温度Tcと、バッテリBATからの入力電圧HVに基づいて設定されたデータテーブルである。この場合、図4の暖機運転条件で、10/10、5/10のみで示す部分は暖機運転を実行しないことを意味している。尚、10/10とは通常の起動電流の値であり、5/10はその半分の値であることを意味している。
 また、図中t1~t7はモータ5への通電時間、矢印で繋いだ分数で示す部分は、基本的にはモータ5への暖機運転開始時の電流値及び完了時の電流値をそれぞれ示しており、これらが示された部分が暖機運転を行うことを意味している。分数は同じく通常の起動電流(10/10)に対する電流値の大きさであり、例えば2/10は通常の起動電流(10/10)の五分の一であることを意味している。
 また、図4中の通電時間t1~t5は、t1<t2<t3<t4<t5の関係とされている。尚、通電時間t6とt7については、実施例ではt7<t6の関係としている。そして、通電時間が長く、暖機運転開始時の電流値と完了時の電流値の差が小さい程、電流の上昇率が低くなり、通電時間が短く、暖機運転開始時の電流値と完了時の電流値の差が大きい程、電流の上昇率が高くなる。
 各通電時間t1~t7、暖機運転開始時の電流値及び完了時の電流値(1/10、2/10、3/10、5/10、6/10、7/10)、即ち、それらから決定される電流の上昇率は、各周囲温度Tcと入力電圧HVの組み合わせの条件のときに、電解コンデンサ1における直流電圧のリップル電圧を許容範囲内に抑制し得る通電時間、電流値、上昇率であり、それぞれ予め実験により決定しておくものとする。そして、暖機運転を行う場合、制御装置3はモータ5の起動指示が入力されたときの周囲温度Tcと入力電圧HVから何れかの条件を選択し、電解コンデンサ1の暖機運転を実行することになる。
 次に、図2のフローチャートを参照しながら、制御装置3が実行する暖機運転について具体的に説明する。制御装置3は、モータ5の起動指示があった場合、図2のフローチャートのステップS1で、先ず、温度センサ4が検出する電解コンデンサ1の周囲温度Tcが所定温度T1より低いか否か判断する。但し、実施例ではこの所定温度T1が入力電圧HVで異なる。即ち、電解コンデンサ1にかかる直流電圧のリップル電圧のピーク値は入力電圧HVが高い程、電解コンデンサ1の温度(実施例では周囲温度Tcを採用)が低い程、大きくなる。
 そこで、この実施例では入力電圧HVが200Vより低いときは所定温度T1を-24℃とし、200V以上で250Vより低いときは所定温度T1を-19℃とし、250V以上で300Vより低い時は所定温度T1を-14℃とする。同様に、入力電圧HVが300V以上で350Vより低いときは所定温度T1を-9℃とし、350V以上で400Vより低い時は所定温度T1を-4℃とする。また、入力電圧HVが400V以上で450Vより低いときは所定温度T1を+1℃とし、450V以上で500Vより低い時は所定温度T1を+6℃とする。
 ステップS1で温度センサ4が検出する電解コンデンサ1の周囲温度Tcが所定温度T1以上である場合、制御装置3はステップS7に進んで前述した通常の起動電流(10/10)でモータ5を起動し、通常運転を開始する。即ち、モータ5の通常運転を開始する前の電解コンデンサ1の暖機運転は行わない。
 一方、ステップS1で周囲温度Tcが所定温度T1より低い場合、制御装置ステップS2に進んで前回の暖機運転完了後の経過時間tpassが所定時間tpass1より短いか否か判断する。前回の暖機運転完了後、所定時間tpass1以上経過している場合には、制御装置3はステップS6に進む。
 前回の暖機運転完了後の経過時間tpassが所定時間tpass1より短い場合、制御装置3はステップS3に進んでバッテリBATからの入力電圧HVを確認する。次に、ステップS4に進み、周囲温度Tcと入力電圧HVから図4中の暖機運転条件を確認し、何れかの暖機運転条件を選択し、決定して電解コンデンサ1の暖機運転を開始する。
 暖機運転では、決定された暖機運転条件に基づいて制御装置3がPWM信号のデューティー比を計算する。そして、算出されたデューティー比のPWM信号によりインバータ回路2の上相側の例えばスイッチング素子6uをオン駆動し、下相側の例えばスイッチング素子7v、7wをオン駆動する。これにより、図3に太い実線で示されるように、インバータ回路2及びモータ5には、直流電圧のリップル電圧が許容範囲内となるように決定された暖機運転条件の電流が流れて暖機運転が実施される。
 この場合、インバータ回路2のオン駆動されるスイッチング素子は、上相側の例えばスイッチング素子6uと、下相側の例えばスイッチング素子7v、7wに固定されているため、モータ5は停止したままである。このようにして、電流がモータ5へ通電されている間、電解コンデンサ1はその内部抵抗成分ESRに発生するジュール熱により温められて昇温することになる。
 (1)暖機運転(その1)
 次に、図4中の各暖機運転条件による実際の暖機運転の一例について説明する。前述した如く電解コンデンサ1にかかる直流電圧のリップル電圧のピーク値は入力電圧HVが高い程、電解コンデンサ1の温度(実施例では周囲温度Tcを採用)が低い程、大きくなるので、制御装置3は、電解コンデンサ1の周囲温度Tcが-24℃以上、-20℃以下の状況で、入力電圧HVが200V以上、300Vより低いときは、モータ5に流す電流値を5/10(一定値)とする。これは通常の起動電流(10/10)の半分の電流値である。
 また、周囲温度Tcが-19℃以上、-15℃以下の状況で、入力電圧HVが250V以上、350Vより低いときも、同様にモータ5に流す電流値を5/10とする。また、周囲温度Tcが-14℃以上、-10℃以下の状況で、入力電圧HVが300V以上、400Vより低いときも、同様にモータ5に流す電流値を5/10とする。また、周囲温度Tcが-9℃以上、-5℃以下の状況で、入力電圧HVが350V以上、450Vより低いときも、同様にモータ5に流す電流値を5/10とする。また、周囲温度Tcが-4℃以上、0℃以下の状況で、入力電圧HVが400V以上、500Vより低いときも、同様にモータ5に流す電流値を5/10とする。また、周囲温度Tcが+1℃以上、+5℃以下の状況で、入力電圧HVが450V以上、500Vより低いときも、同様にモータ5に流す電流値を5/10とする。
 このようにして、比較的周囲温度Tcが高い状況では、入力電圧HVが低い程、低い周囲温度Tcで、また、入力電圧HVが高い程、高い周囲温度Tcで、通常の起動電流(10/10)の半分の値の一定の電流(5/10)をモータ5に流すことにより、電解コンデンサ1にかかる直流電圧のリップル電圧を許容範囲内に制御しながら電解コンデンサ1の暖機運転を実施する。
 (2)暖機運転(その2)
 次に、図4に示す如く周囲温度Tcが-25℃以下の状況で、入力電圧HVが300Vより低いとき、周囲温度Tcが-24℃以上、-20℃以下の状況で、入力電圧HVが300V以上、350Vより低いとき、周囲温度Tcが-19℃以上、-15℃以下の状況で、入力電圧HVが350V以上、400Vより低いとき、周囲温度Tcが-14℃以上、-10℃以下の状況で、入力電圧HVが400V以上、450Vより低いとき、及び、周囲温度Tcが-9℃以上、-5℃以下の状況で、入力電圧HVが450V以上、500Vより低いとき、制御装置3はモータ5に流す電流を、所定の上昇率で上昇させる暖機運転を実施する。
 例えば、周囲温度Tcが-29℃以上、-25℃以下の状況で、入力電圧HVが200Vより低いときには、暖機運転開始時の電流値を3/10(通常の起動電流の十分の三)、完了時の電流値を7/10(通常の起動電流の十分の七)とし、通電時間をt1とする。これにより、図5に示す如くモータ5には時間t1の間に3/10から7/10に上昇する上昇率で電流が流れることになる。この場合、暖機運転の開始時から電解コンデンサ1における直流電圧のリップル電圧は上昇するが、電解コンデンサ1の内部温度が上昇することで内部抵抗成分ESRが低下するため、ある時点でMAX(最大値)となり、以後は電流が増加しても徐々に低下していくことになる。また、モータ5に流す電流を図5に示す如き上昇率で上昇させることで、一定の電流を流す場合に比して、電解コンデンサ1の内部温度は早期に上昇できるようになる。
 一方、同じく入力電圧HVが200Vより低いときでも、周囲温度Tcが-39℃以上、-35℃以下の状況では、暖機運転開始時の電流値を2/10(通常の起動電流の十分の二)、完了時の電流値を6/10(通常の起動電流の十分の六)とし、通電時間をt2とする。この場合の暖機運転開始時の電流値2/10と完了時の電流値6/10の差は、周囲温度Tcが-29℃以上、-25℃以下のときの差(3/10と7/10の差)と同じであるが、前述した如く通電時間t2はt1より長いので、暖機運転開始時から完了時までの電流の上昇率は周囲温度Tcが-29℃以上、-25℃以下のときよりも低くなる。即ち、同じ入力電圧HVでも、周囲温度Tcが低くなる程、制御装置3は暖機運転での電流の上昇率を低くする方向に変更する。
 また、暖機運転開始時にモータ5に流す電流値も、周囲温度Tc-29℃以上、-25℃以下のときの3/10よりも、-39℃以上、-35℃以下のときには2/10に低下させる。即ち、同じ入力電圧HVでも、周囲温度Tcが低くなる程、制御装置3は暖機運転開示の電流値を低くする方向に変更する。
 更に、同じく周囲温度Tcが-29℃以上、-25℃以下の状況でも、例えば、入力電圧HVが450V以上、500Vより低いときには、暖機運転開始時の電流値を1/10(通常の起動電流の十分の一)、完了時の電流値を5/10(通常の起動電流の十分の五)とし、通電時間をt5とする。この場合の暖機運転開始時の電流値1/10と完了時の電流値5/10の差は、入力電圧HVが200Vより低いときの差(3/10と7/10の差)と同じであるが、前述した如く通電時間t5はt1より長いので、暖機運転開始時から完了時までの電流の上昇率は入力電圧HVが200Vより低いときよりも低くなる。即ち、同じ周囲温度Tcでも、入力電圧HVが高くなる程、制御装置3は暖機運転での電流の上昇率を低くする方向に変更する。
 また、暖機運転開始時にモータ5に流す電流値も、入力電圧HVが200Vより低いときの3/10よりも、450V以上、500Vより低いときには1/10に低下させる。即ち、同じ周囲温度Tcでも、入力電圧HVが高くなる程、制御装置3は暖機運転開示の電流値を低くする方向に変更する。
 図4中のその他の周囲温度Tc、入力電圧HVにおける暖機運転条件でも同様の傾向であり、制御装置3は同じ入力電圧HVでも、周囲温度Tcが低くなる程、暖機運転開示の電流値を低くする方向に変更し、同じ周囲温度Tcでも、入力電圧HVが高くなる程、暖機運転開示の電流値を低くする方向に変更することになる。
 制御装置3は、図2のステップS5で暖機運転が完了した場合、ステップS6に進んで前述した通常の起動電流(10/10)よりも半分の5/10の起動電流でモータ5を起動し、通常運転を開始する。即ち、制御装置3は、暖機運転の完了後には、モータ5に流す電流の値を、通常の値(10/10)より制限する(5/10)。
 このように、制御装置3は、温度センサ4が検出する周囲温度Tcが所定温度T1より低い場合、モータ5の通常運転を開始する前に、複数のスイッチング素子6u~6w、7u~7wのうちから選択された特定のスイッチング素子6u、7v、7wをオン駆動することにより、モータ5を停止させたままで、直流電圧のリップル電圧を許容範囲内に制御し得る電流を、所定の上昇率でモータ5に流す暖機運転を実行するので、直流電圧のリップル電圧を許容範囲内に抑制しながら、電解コンデンサ1の内部温度をより早く上昇させることができるようになる。
 これにより、低温環境下での電解コンデンサ1の破壊を回避しながら、起動指示からモータ5が回り出すまでに要する暖機運転の時間(未動作時間)を短縮することができるようになる。
 また、実施例では制御装置3が、入力電圧HVと温度センサ4が検出する周囲温度Tcに基づいてモータ5に流す電流の上昇率を変更するようにしたので、暖機運転でより安全、且つ、効果的に電解コンデンサ1の内部温度の上昇を図ることができるようになる。
 この場合、実施例では制御装置3が、入力電圧HVが高い程、モータ5に流す電流の上昇率を低くする方向で変更するようにしたので、暖機運転により安全、且つ、迅速に電解コンデンサ1の内部温度を上昇させることができるようになる。
 更に、実施例では制御装置3が、入力電圧HVが高い程、暖機運転開始時にモータ5に流す電流の値を低くする方向で変更するようにしたので、直流電圧のリップル電圧による電解コンデンサ1の破壊をより効果的に回避することが可能となる。
 また、実施例では制御装置3が、温度センサ4が検出する周囲温度Tcが低い程、モータ5に流す電流の上昇率を低くする方向で変更するようにもしているので、暖機運転により安全、且つ、迅速に電解コンデンサ1の内部温度を上昇させることができるようになる。
 この場合も、実施例では制御装置3が、温度センサ4が検出する周囲温度Tcが低い程、暖機運転開始時にモータ5に流す電流の値を低くする方向で変更するようにしたので、直流電圧のリップル電圧による電解コンデンサ1の破壊を効果的に回避することが可能となる。
 そして、実施例では制御装置3が、暖機運転の完了後の通常運転においては、モータ5に流す電流の値を制限するようにしているので、低温環境下での電解コンデンサ1の破壊をより効果的に回避することができるようになる。
 (3)暖機運転(その3)
 また、極めて厳しい環境、即ち、周囲温度Tcが極めて低く、入力電圧HVも極めて高い状況において、制御装置3は時間経過に応じて段階的に暖機運転時の電流の上昇率を変更する。この例は図4の右下隅の暖機運転条件として示されている。即ち、温度センサ4が検出する電解コンデンサ1の周囲温度Tcが-30℃以下であり、且つ、バッテリBATからの入力電圧HVが450V以上、500Vより小さい場合、制御装置3は図2のステップS4で開始する暖機運転において、先ず、暖機運転開始時の電流値を1/10(通常の起動電流の十分の一)とし、開始から時間t6が経過したときの電流値を2/10(通常の起動電流の十分の二)としてモータ5への通電を開始する。その後、この時間t6が経過したときから時間t7が経過した暖機運転完了時の電流値を5/10(通常の起動電流の十分の五)として通電を行う状態に切り換える。
 これにより、図6に示す如くモータ5には暖機運転の開始から時間t6が経過するまでは、この通電時間t6の間に1/10から2/10に上昇する上昇率で電流が流れ、時間t6が経過した時点から更に時間7が経過するまでは、この通電時間t7の間に2/10から5/10に上昇する上昇率で電流が流れることになる。ここで、前述した如く実施例では通電時間t6はt7より長く、開始から時間t6が経過するまでの電流の差より、時間t6が経過した後、時間t7が経過するまでの電流の差は大きいので、開始から時間t6が経過するまでの電流の上昇率は低く、その後、時間t7が経過するまでの電流の上昇率は高くなる。尚、係る段階的な上昇率の変化が確保されれば、通電時間t6とt7の大小関係は実施例に限らない。
 ここで、電解コンデンサ1の内部抵抗成分ESRは、低温では極めて大きく、内部温度が上昇するに伴って急激に小さくなる傾向を有しているので、図6の暖機運転の開始時から電解コンデンサ1における直流電圧のリップル電圧は上昇するものの、時間t6が経過するまでの電流の上昇率は小さく、電解コンデンサ1の内部温度が上昇することで内部抵抗成分ESRも急激に低下するため、リップル電圧のMAX1(最大値1)は許容範囲内で比較的低くなる。
 また、時間t6が経過した後、更に時間t7が経過して暖機運転が完了するまでの電流の上昇率は高くなるが、その時点では電解コンデンサ1の内部抵抗成分ESRは著しく低下しているので、リップル電圧は許容範囲内のもう一つのMAX2(最大値2)以上にならず、以後は電流が増加しても徐々に低下していくことになる。このように、周囲温度Tcや入力電圧HVが極めて厳しい環境では、制御装置3が暖機運転において、モータ5に流す電流の上昇率を、時間経過に応じて多段階(実施例では二段階)で変更するようにし、更に、暖機運転開始から時間が経過する程、高くする方向でモータ5に流す電流の上昇率を変更するようにしたので、より安全、且つ、迅速に電解コンデンサ1の内部温度を上昇させることができるようになる。
 尚、図6で示した時間軸は一定のものでは無く、イメージを誇張するために通電時間t6の部分では縮小し、通電時間t7の部分では拡張している。また、電流軸についても高くなる程、実際よりも拡大して示している。
 また、図4の実施例では入力電圧HVと周囲温度Tc(電解コンデンサ1の温度)に基づいて暖機運転条件を設定したが、それに限らず、入力電圧HVのみに基づいて設定してもよく、逆に周囲温度Tcのみに基づいて設定してもよい。但し、実施例の如く入力電圧HVと周囲温度Tcの両方に基づいて暖機運転を実行することで、より的確に制御を行うことができるようになる。
 更に、上記(3)の暖機運転では二段階で電流の上昇率を変更したが、三段階以上の多段階で、よりきめ細かく変更するようにしてもよい。
  更にまた、実施例では三相のインバータ回路2について説明したが、本発明はこれに限られず、インバータ回路2は、例えば四相等、何相であってもよく、適用するモータ5(電動機)の相数に応じて適宜設定するとよい。
 また、インバータ装置IVとしては実施例の車載用インバータ装置に限らず、通常のエアコン等の種々電気機器に適用可能であることは云うまでもない。
 1 電解コンデンサ
 2 インバータ回路
 3 制御装置
 4 温度センサ
 5 モータ(電動機)
 6u~6w、7u~7w スイッチング素子
 BAT バッテリ
 ESR 内部抵抗成分
 IV インバータ装置

Claims (9)

  1.  入力電圧を平滑化して直流電圧を生成する電解コンデンサと、
     前記直流電圧から交流電圧を生成して電動機を駆動するインバータ回路と、
     前記電解コンデンサの温度、若しくは、その周囲温度を検出する温度センサと、
     前記インバータ回路が有する複数のスイッチング素子の駆動を制御する制御装置を備え、
     該制御装置は、前記温度センサが検出する温度が所定温度より低い場合、前記電動機の通常運転開始前に、前記複数のスイッチング素子のうちから選択された特定のスイッチング素子をオン駆動することにより、前記電動機を停止させたままで、前記直流電圧のリップル電圧を許容範囲内に制御し得る電流を、所定の上昇率で前記電動機に流す暖機運転を実行することを特徴とするインバータ装置。
  2.  前記制御装置は、前記入力電圧と前記温度センサが検出する温度に基づいて前記電動機に流す電流の上昇率を変更することを特徴とする請求項1に記載のインバータ装置。
  3.  前記制御装置は、前記入力電圧が高い程、前記電動機に流す電流の上昇率を低くする方向で変更することを特徴とする請求項2に記載のインバータ装置。
  4.  前記制御装置は、前記入力電圧が高い程、前記暖機運転開始時に前記電動機に流す電流の値を低くする方向で変更することを特徴とする請求項3に記載のインバータ装置。
  5.  前記制御装置は、前記温度センサが検出する温度が低い程、前記電動機に流す電流の上昇率を低くする方向で変更することを特徴とする請求項2乃至請求項4のうちの何れかに記載のインバータ装置。
  6.  前記制御装置は、前記温度センサが検出する温度が低い程、前記暖機運転開始時に前記電動機に流す電流の値を低くする方向で変更することを特徴とする請求項5に記載のインバータ装置。
  7.  前記制御装置は、前記暖機運転において、前記電動機に流す電流の上昇率を、時間経過に応じて多段階で変更することを特徴とする請求項1乃至請求項6のうちの何れかに記載のインバータ装置。
  8.  前記制御装置は、前記暖機運転開始から時間が経過する程、高くする方向で前記電動機に流す電流の上昇率を変更することを特徴とする請求項7に記載のインバータ装置。
  9.  前記制御装置は、前記暖機運転の完了後の前記通常運転において、前記電動機に流す電流の値を制限することを特徴とする請求項1乃至請求項8のうちの何れかに記載のインバータ装置。
PCT/JP2020/016358 2019-05-07 2020-04-14 インバータ装置 WO2020226029A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/600,770 US11750113B2 (en) 2019-05-07 2020-04-14 Inverter device
CN202080029541.0A CN113711485A (zh) 2019-05-07 2020-04-14 逆变器装置
DE112020002241.2T DE112020002241T5 (de) 2019-05-07 2020-04-14 Wechselrichtervorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019087414A JP7300307B2 (ja) 2019-05-07 2019-05-07 インバータ装置
JP2019-087414 2019-05-07

Publications (1)

Publication Number Publication Date
WO2020226029A1 true WO2020226029A1 (ja) 2020-11-12

Family

ID=73045263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016358 WO2020226029A1 (ja) 2019-05-07 2020-04-14 インバータ装置

Country Status (5)

Country Link
US (1) US11750113B2 (ja)
JP (1) JP7300307B2 (ja)
CN (1) CN113711485A (ja)
DE (1) DE112020002241T5 (ja)
WO (1) WO2020226029A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4002664A1 (en) * 2020-11-11 2022-05-25 Valeo Siemens eAutomotive Germany GmbH Inverter, method for configuring an inverter, method for controlling an inverter and corresponding computer program
CN114204850A (zh) * 2021-12-08 2022-03-18 浙江吉利控股集团有限公司 一种电动压缩机低温预热方法和设备
DE102022202315A1 (de) 2022-03-08 2023-09-14 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Elektronikeinheit für eine Hochvolt-Komponente

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060776A (ja) * 2007-08-06 2009-03-19 Toyota Industries Corp 電動機の制御方法及び制御装置
JP2010075048A (ja) * 2009-12-25 2010-04-02 Toyota Motor Corp 負荷駆動装置およびそれを備える車両
KR101323921B1 (ko) * 2012-04-24 2013-10-31 엘에스산전 주식회사 전력 변환 장치 및 이의 동작 방법
JP2013242110A (ja) * 2012-05-22 2013-12-05 Toyota Industries Corp インバータの暖機制御装置
JP2014107897A (ja) * 2012-11-26 2014-06-09 Toyota Industries Corp インバータの暖機制御装置
JP2019009940A (ja) * 2017-06-27 2019-01-17 株式会社豊田自動織機 インバータ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165357A (ja) * 2000-11-27 2002-06-07 Canon Inc 電力変換装置およびその制御方法、および発電システム
US7859207B2 (en) * 2007-08-06 2010-12-28 Kabushiki Kaisha Toyota Jidoshokki Method and apparatus for controlling electric motor
JP5925425B2 (ja) 2011-04-07 2016-05-25 サンデンホールディングス株式会社 インバータ装置
JP5630474B2 (ja) * 2012-07-12 2014-11-26 株式会社豊田自動織機 インバータ
JP6024601B2 (ja) * 2012-11-26 2016-11-16 株式会社豊田自動織機 インバータの暖機制御装置
JP6217554B2 (ja) * 2014-07-30 2017-10-25 株式会社豊田自動織機 インバータ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060776A (ja) * 2007-08-06 2009-03-19 Toyota Industries Corp 電動機の制御方法及び制御装置
JP2010075048A (ja) * 2009-12-25 2010-04-02 Toyota Motor Corp 負荷駆動装置およびそれを備える車両
KR101323921B1 (ko) * 2012-04-24 2013-10-31 엘에스산전 주식회사 전력 변환 장치 및 이의 동작 방법
JP2013242110A (ja) * 2012-05-22 2013-12-05 Toyota Industries Corp インバータの暖機制御装置
JP2014107897A (ja) * 2012-11-26 2014-06-09 Toyota Industries Corp インバータの暖機制御装置
JP2019009940A (ja) * 2017-06-27 2019-01-17 株式会社豊田自動織機 インバータ

Also Published As

Publication number Publication date
JP7300307B2 (ja) 2023-06-29
DE112020002241T5 (de) 2022-01-27
US20220200482A1 (en) 2022-06-23
US11750113B2 (en) 2023-09-05
CN113711485A (zh) 2021-11-26
JP2020184819A (ja) 2020-11-12

Similar Documents

Publication Publication Date Title
WO2020226029A1 (ja) インバータ装置
JP5925425B2 (ja) インバータ装置
JP4989591B2 (ja) 永久磁石同期モータの駆動装置、空気調和装置、換気扇の駆動装置、洗濯機、自動車及び車両
US7113380B2 (en) Power supply device and control method thereof
EP2028759B1 (en) Method and apparatus for controlling electric motor
JP4654940B2 (ja) インバータ装置及びインバータ回路の駆動制御方法
JP4577227B2 (ja) 車両用発電制御装置
JP5750799B2 (ja) インバータ装置
JP4640152B2 (ja) 空気調和機用圧縮機の駆動制御装置
JP5817641B2 (ja) インバータの暖機制御装置
US20160359438A1 (en) Power conversion device
WO2017094718A1 (ja) インバータ装置
JP3865224B2 (ja) 電動パワーステアリング装置
JP3942378B2 (ja) 圧縮機の予熱制御装置
JP2019009940A (ja) インバータ
JP2006067668A (ja) 電動機制御装置
JP3885621B2 (ja) 電動パワーステアリング装置
JP2016077150A (ja) インバータ装置
JP5999141B2 (ja) 電力変換装置
JP7130568B2 (ja) 電源装置
JP3971653B2 (ja) 車両用冷凍装置
JP2009261196A (ja) 電動車両用電源装置
JP2005269723A (ja) 電動機駆動制御装置
JP2021145517A (ja) 電源装置およびモータ駆動装置
JP2009207330A (ja) 突入電流制限回路用リレー制御装置および突入電流制限回路用リレー制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802333

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20802333

Country of ref document: EP

Kind code of ref document: A1