WO2020220676A1 - 高空气稳定性无机硫化物固体电解质及其制备方法与应用 - Google Patents

高空气稳定性无机硫化物固体电解质及其制备方法与应用 Download PDF

Info

Publication number
WO2020220676A1
WO2020220676A1 PCT/CN2019/123481 CN2019123481W WO2020220676A1 WO 2020220676 A1 WO2020220676 A1 WO 2020220676A1 CN 2019123481 W CN2019123481 W CN 2019123481W WO 2020220676 A1 WO2020220676 A1 WO 2020220676A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte material
solid electrolyte
sulfide
solid
inorganic sulfide
Prior art date
Application number
PCT/CN2019/123481
Other languages
English (en)
French (fr)
Inventor
孙学良
梁剑文
李晓娜
黄欢
卢世刚
张立
赵尚骞
Original Assignee
国联汽车动力电池研究院有限责任公司
西安大略大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国联汽车动力电池研究院有限责任公司, 西安大略大学 filed Critical 国联汽车动力电池研究院有限责任公司
Priority to EP19927347.5A priority Critical patent/EP3893308B1/en
Priority to JP2021542254A priority patent/JP7129075B2/ja
Priority to US17/422,789 priority patent/US20220131182A1/en
Priority to CN201980093980.5A priority patent/CN113614971A/zh
Priority to KR1020217036060A priority patent/KR20210148306A/ko
Priority to ES19927347T priority patent/ES2943111T3/es
Publication of WO2020220676A1 publication Critical patent/WO2020220676A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G17/00Compounds of germanium
    • C01G17/006Compounds containing, besides germanium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/006Compounds containing, besides tin, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • C01G30/002Compounds containing, besides antimony, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • C01G30/002Compounds containing, besides antimony, two or more other elements, with the exception of oxygen or hydrogen
    • C01G30/003Compounds containing, besides antimony, two or more other elements, with the exception of oxygen or hydrogen containing halogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure belongs to the technical field of lithium ion batteries, and in particular relates to a method for improving the air stability of an inorganic sulfide solid electrolyte, the obtained material and its application field in an all-solid lithium secondary battery.
  • lithium ion secondary batteries Since its commercialization in the early 1990s, lithium ion secondary batteries have developed rapidly due to their advantages such as high energy density and long service life.
  • currently commonly used lithium-ion batteries are liquid-phase batteries, which contain flammable organic electrolytes, so there are serious safety hazards.
  • the frequent occurrence of safety accidents on liquid-phase lithium-ion power batteries has greatly restricted the further use of this system.
  • the use of non-flammable inorganic solid materials as the electrolyte of lithium-ion batteries can not only eliminate the leakage of organic electrolyte during battery use and the safety hazards caused by thermal runaway inside the battery, but also under extreme conditions such as high temperature and low temperature use. Further enhance the value of lithium secondary batteries and expand their application areas. Therefore, the development of an inorganic solid electrolyte with high stability and high lithium ion conductivity is the key content of the development of a lithium secondary battery with high safety.
  • oxide solid electrolyte and sulfide solid electrolyte are oxide solid electrolyte and sulfide solid electrolyte (Kerman K, Luntz A, Viswanathan V, et al. practical challenges hindering the development of solid state Li ion batteries[J].Journal of The Electrochemical Society,2017,164(7):A1731-A1744.).
  • the oxide solid electrolyte is mainly based on Li 2 O-LaO-ZrO 2 , Li 2 OB 2 O 3 , Li 2 O-LiCl and other systems (Thangadurai V, Narayanan S, Pinzaru D.
  • Garnet-type solid-state fast Li ion conductors for Li batteries critical review[J].Chemical Society Reviews,2014,43(13):4714-4727), but generally the ion conductance is low.
  • the electronegativity of sulfide ions in the sulfide electrolyte is smaller, and the binding force to cations is lower; at the same time, the radius of sulfide ions is larger, which is beneficial to the migration of lithium ions. Therefore, the ion conductance of sulfide electrolyte is higher than that of oxide.
  • the Li 10 GeP 2 S 12 material discovered in 2010 (the room temperature ion conductance is as high as 12mS cm -1 , Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor[J].Nature materials,2011,10(9 ):682) and Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3 discovered in 15 years (room temperature ion conductance is as high as 25mS cm -1 , Kato Y, Hori S, Saito T et al.
  • the structure of the solid solution phase can adjust the lithium ion migration channel in the sulfide electrolyte material and the binding force of sulfide ions to cations, etc., to control the ionic conductivity of the material, thereby obtaining a higher ion conductivity Inorganic sulfide electrolyte material. Furthermore, the structure of the solid solution phase can also change its electronic structure to improve its chemical properties, thereby achieving better stability in the air, and the possibility of mass use in an air environment/dry room.
  • the purpose of the present disclosure is to provide a method for improving the air stability of an inorganic sulfide electrolyte and the application of the material obtained by the method in an all-solid lithium secondary battery.
  • the method is simple and effective, the obtained material is simple to prepare, the production cost is low, and at the same time it has good air stability and high lithium ion conductivity. It is expected to solve the practical application of inorganic sulfide electrolyte as high-performance all-solid-state lithium secondary battery electrolyte problem.
  • the research of the present disclosure found that using Sb to replace part or all of the P elements in the sulfide electrolyte can form an inorganic sulfide solid electrolyte material with a solid solution phase structure, thereby obtaining higher air stability and higher ion mobility.
  • the obtained material has better air stability and can be used in all-solid lithium secondary batteries.
  • the present disclosure provides an inorganic sulfide electrolyte material represented by the following formula (I),
  • M is one or more of Ge, Si, Sn, 0.01 ⁇ a ⁇ 1; preferably, 0.01 ⁇ a ⁇ 0.2.
  • a may be selected from 0.01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.3, 0.4, or 1.
  • the inorganic sulfide electrolyte material represented by formula (I) is Li 10 Ge (P 0.99 Sb 0.01 ) 2 S 12 , Li 10 Ge (P 0.975 Sb 0.025 ) 2 S 12 , Li 10 Ge (P 0.925 Sb 0.075 ) 2 S 12 , Li 10 Ge (P 0.9 Sb 0.1 ) 2 S 12 , Li 10 Ge (P 0.875 Sb 0.125 ) 2 S 12 , Li 10 Sn (P 0.95 Sb 0.05 ) 2 S 12 or Li 10 Si (P 0.95 Sb 0.05 ) 2 S 12 .
  • the present disclosure also provides an inorganic sulfide electrolyte material represented by the following formula (II),
  • X is one or more of F, Cl, Br, and I, 0.01 ⁇ a ⁇ 1; preferably, 0.025 ⁇ a ⁇ 0.2.
  • a may be selected from 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.5, or 1.
  • the inorganic sulfide electrolyte material represented by the formula (II) is Li 6 (P 0.975 Sb 0.025 )S 5 Cl or Li 6 (P 0.95 Sb 0.05 )S 5 Cl.
  • the present disclosure also provides an inorganic sulfide electrolyte material represented by the following formula (III),
  • a is selected from 0.05, 0.1, 0.2 or 0.3.
  • inorganic sulfide electrolyte materials of the present disclosure can be prepared according to conventional techniques in the art.
  • the required raw materials can be mixed according to the ratio and then ground, and then heat-treated to obtain the sulfide electrolyte material represented by the above formula (I), (II) (III).
  • the grinding time is preferably greater than 3 hours; and/or the heat treatment temperature is preferably greater than 300°C and less than 600°C; and/or the heat treatment temperature is preferably greater than 230°C and less than 600°C.
  • the present disclosure is a solid solution phase type sulfide solid electrolyte material.
  • the obtained inorganic sulfide solid electrolyte material has better air stability. Furthermore, by adjusting the ratio of P and Sb elements in the solid solution, the lithium ion conductivity of the material can be further adjusted. And can exceed the conductivity of other existing solid electrolytes and organic liquid electrolytes.
  • any one of the above-mentioned sulfide solid electrolyte materials is a crystalline type, an amorphous type, and a crystal-amorphous composite type.
  • the working temperature of any of the above-mentioned sulfide solid electrolyte materials is -100 to 300°C.
  • the present disclosure also provides the application of any of the above-mentioned sulfide solid electrolyte materials in the preparation of all-solid lithium secondary batteries.
  • the present disclosure provides an all-solid-state lithium secondary battery, including a positive electrode, an electrolyte material, and a negative electrode.
  • the electrolyte material is the sulfide electrolyte material described in the above solution or the sulfide electrolyte material prepared by the above solution.
  • the present disclosure uses Sb to replace part or all of the P elements in the sulfide electrolyte to form an inorganic sulfide solid electrolyte material with a solid solution phase structure, thereby achieving higher air stability and higher ion mobility.
  • the present disclosure provides a novel method for improving the air stability of sulfide based on element substitution. The method is simple and effective. The obtained sulfide electrolyte can be protected without any coating or additives. Stable storage under air conditions.
  • This type of material is simple to prepare and has low production cost; at the same time, the obtained inorganic sulfide solid electrolyte material has controllable ion conductivity and has excellent performance when used as an inorganic electrolyte and electrode material additive in an all-solid lithium battery.
  • the obtained inorganic sulfide solid electrolyte material has better air stability, which can further realize the use of sulfide solid electrolyte material in the drying room, simplify the production process of solid battery and reduce production costs .
  • the inorganic sulfide solid electrolyte material By adjusting the ratio of P and Sb in the inorganic sulfide solid electrolyte material, it is easy to adjust the crystal structure and electronic structure of the material, thereby further improving the electrical conductivity of the material.
  • the inorganic sulfide solid electrolyte materials of this type of solid solution phase structure a part of the electrolyte material reaches or exceeds the conductivity of the existing sulfide solid electrolyte.
  • Figure 2 is a partial x-ray diffraction pattern obtained by the system in Example 1;
  • Figure 4 is a graph of the relationship between the ion conductivity of the material obtained in Example 1 and the a value
  • Figure 6 is a partial x-ray diffraction pattern obtained by the system in Example 2.
  • Example 8 is a diagram of the relationship between the ion conductivity of the material obtained in Example 2 and the a value
  • Fig. 14 is an XRD comparison chart of Li 6 (P 0.975 Sb 0.025 )S 5 Cl material in Application Example 1 before and after air exposure;
  • Fig. 15 is an XRD comparison diagram of Li 6 (P 0.9 Sb 0.1 )S 5 Cl material in Application Example 1 before and after exposure to air;
  • Figure 18 is a graph of the ion conductance of Li 6 (P 0.975 Sb 0.025 )S 5 Cl and Li 6 (P 0.9 Sb 0.1 )S 5 Cl materials with temperature changes in application example 1 and the current at a constant external voltage of 0.3V- Time diagram
  • Figure 19 is an XRD comparison diagram of Li 10 Ge(P 0.875 Sb 0.125 ) 2 S 12 material before and after exposure to air in Application Example 2;
  • Figure 20 shows the Li 10 Ge (P 0.975 Sb 0.025 ) 2 S 12 , Li 10 Ge (P 0.925 Sb 0.075 ) 2 S 12 , Li 10 Ge (P 0.9 Sb 0.1 ) 2 S 12 and Li 10 Ge( P 0.875 Sb 0.125 ) 2 S 12 solid electrolyte material before and after exposure to air ion conductance changes;
  • FIG. 21 is a charge and discharge curve diagram of a solid solution phase Li 10 Ge (P 0.99 Sb 0.01 ) 2 S 12 solid electrolyte material obtained in Application Example 3 applied to an all-solid Li-LiCoO 2 secondary battery.
  • Figure 2 is the X-ray diffraction pattern obtained under the system with different a values, where a from top to bottom is 0.01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.3, 0.4 and 1.
  • Figure 4 is a graph showing the relationship between the ion conductance and a value of the solid solution phase sulfide electrolyte material obtained under this system.
  • Figure 6 shows the X-ray diffraction patterns obtained with different values of a under the system, where a is 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.5 and 1 from top to bottom.
  • FIG. 7 It can be obtained from Fig. 7 that the ion conductance of this material is 2.5 millisiemens per centimeter at 25 degrees Celsius, and the activation energy is 18.4 kilojoules per mole.
  • Figure 8 is a graph showing the relationship between the ion conductance and a value of the solid solution phase sulfide electrolyte material obtained under this system. It is found from Fig. 8 that when the value of a is 0.05 (ie Li 6 (P 0.95 Sb 0.05 )S 5 Cl solid electrolyte material), the system material has the highest room temperature ion conductance, which is 2.9 millisiemens per centimeter, which is higher than that under the same conditions. The room temperature ion conductance (1.3 millisiemens per centimeter) of the non-solid phase Li 6 PS 5 Cl material obtained below is higher.
  • the calcination temperature is controlled by program temperature rise, from room temperature to 550 degrees Celsius in 4 hours, and keep it at this temperature for 4 hours, then control the temperature to 50 degrees Celsius for 4 hours to obtain Li 10 Sn(P 0.95 Sb 0.05 ) 2 S 12 Solid electrolyte material.
  • Fig. 9 is an X-ray diffraction pattern of Li 10 Sn(P 0.95 Sb 0.05 ) 2 S 12 solid electrolyte material;
  • Fig. 10 is a graph of electrochemical impedance of the solid electrolyte material at different temperatures and a curve of ion conduction change with temperature. It can be obtained from Figure 10 that the ion conductance of this material at 25 degrees Celsius is 5.6 millisiemens per centimeter, and the activation energy is 11.6 kJ per mole.
  • the Li 10 Sn (P 0.95 Sb 0.05 ) 2 S 12 solid electrolyte material has a higher room temperature ion conductance, which is comparable to the room temperature ion conductance of the Li 10 SnP 2 S 12 material reported in the literature (6.3 millisiemens per Cm) closer.
  • Fig. 11 is an X-ray diffraction pattern of Li 10 Si(P 0.95 Sb 0.05 ) 2 S 12 solid electrolyte material
  • Fig. 12 is a graph of electrochemical impedance of the solid electrolyte material at different temperatures and a curve of ion conductance with temperature. It can be obtained from Figure 12 that the ion conductance of this material is 2.5 millisiemens per centimeter at 25 degrees Celsius, and the activation energy is 11.6 kJ per mole.
  • Li 10 Si (P 0.95 Sb 0.05 ) 2 S 12 solid electrolyte material has higher room temperature ion conductance, which is comparable to the room temperature ion conductance of Li 10 SiP 2 S 12 reported in the literature (2 millisiemens per Cm) even higher.
  • system material ie Li 3 (P 0.9 Sb 0.1 ) S 4 solid electrolyte material
  • the glove box respectively take 100 mg of Li 6 (P 0.975 Sb 0.025 )S 5 Cl and Li 6 (P 0.9 Sb 0.1 )S 5 Cl solid electrolyte materials obtained in Example 2 into a 1 ml open glass bottle Then put the glass bottle in a reaction box with a flow of dry air, let it stand at room temperature for 24 hours, the flow of dry air is 100 milliliters per minute, after the end of standing, take out the sample to perform XRD, ion conduction and electron conduction test.
  • Figure 14 is the XRD comparison diagram of Li 6 (P 0.975 Sb 0.025 )S 5 Cl material before and after air exposure
  • Figure 15 is the XRD comparison diagram of Li 6 (P 0.9 Sb 0.1 )S 5 Cl material before and after air exposure
  • Figure 16 Is the electrochemical impedance spectroscopy of Li 6 (P 0.975 Sb 0.025 )S 5 Cl material before and after air exposure and the calculated ion conductance comparison chart
  • Figure 17 shows the Li 6 (P 0.9 Sb 0.1 )S 5 Cl material exposed to air The electrochemical impedance spectroscopy before and after and the calculated ion conductance comparison chart
  • the air stability of the obtained Li 6 (P 0.9 Sb 0.1 )S 5 Cl solid electrolyte material becomes higher.
  • the XRD pattern did not change much, and the ion conductance decreased from 1.9 ⁇ 10 -3 S cm -1 to 2.3 ⁇ 10 -4 S cm -1 .
  • the ion conductance of the material is 0.12 times that before the effect of air.
  • the electron conductance of the above two materials does not change much.
  • a 0.025, 0.075, 0.1, 0.125.
  • the glove box respectively take the Li 10 Ge (P 0.975 Sb 0.025 ) 2 S 12 , Li 10 Ge (P 0.925 Sb 0.075 ) 2 S 12 , Li 10 Ge (P 0.9 Sb 0.1 ) 2 S obtained in Example 1 12 and Li 10 Ge(P 0.875 Sb 0.125 ) 2 S 12 solid electrolyte material 200 milligrams was put into a 1 ml open glass bottle, then the glass bottle was placed in a reaction box with a flow of dry air, and left at room temperature 24 For hours, the airflow of dry air is 100 milliliters per minute.
  • Fig. 19 is an XRD comparison diagram of Li 10 Ge(P 0.875 Sb 0.125 ) 2 S 12 before and after air exposure
  • Fig. 20 is a comparison diagram of ion conductance changes of these four materials before and after air exposure. It can be found from the above figures that the XRD of the Li 10 Ge(P 0.875 Sb 0.125 ) 2 S 12 material does not change much after being exposed to air for 24 hours. Similarly, the ion conductance of the four materials obtained above did not change much before and after air exposure. After 24 hours of air exposure, the ion conductance of the above four materials can still reach more than 10mS cm -2 . It shows that the material has good air stability and can be used directly in a dry air atmosphere. Has greater application value.
  • the Li 10 Ge (P 0.99 Sb 0.01 ) 2 S 12 electrolyte material obtained in Example 1 is used in an all-solid Li-LiCoO 2 secondary battery.
  • the LiCoO 2 cathode material used is first coated with LiNbO 2 on the surface through atomic layer deposition (ALD), and the coating layer is about 10 nanometers.
  • ALD atomic layer deposition
  • the specific process is to use a mortar to grind for 20 minutes.
  • the ground material is used as a positive electrode powder.
  • a thin metal indium sheet is used as the negative electrode, and the Li 10 Ge (P 0.99 Sb 0.01 ) 2 S 12 electrolyte material obtained in Example 1 is also used as the electrolyte.
  • 10 mg of positive electrode powder was added to one side of the electrolyte layer, and after spreading, a second compression was performed at a pressure of 350 MPa to laminate the positive electrode layer and the electrolyte layer together.
  • the discharge capacity of the first lap is 0.707 mAh. Based on the mass of lithium cobalt oxide (6 mg), the specific capacity is 117.8 mAh per gram.
  • the charge specific capacity and discharge specific capacity of the second circle are 121.1 and 116.2 mAh per gram, respectively. The reversibility of the battery cycle is better.
  • the inorganic sulfide electrolyte material provided in the present disclosure has good air stability, simple preparation method, low production cost, good air stability, high lithium ion conductivity, and is expected to solve inorganic sulfide electrolyte As a practical application of high-performance all-solid-state lithium secondary battery electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Silicon Compounds (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

一种高空气稳定性无机硫化物固体电解质及其制备方法与应用。采用Sb元素取代硫化物电解质中部分或者全部的P元素,从而获得具有更高的空气稳定性以及更高离子迁移率的电解质,可以应用于全固态锂二次电池中。所获得的该类型无机硫化物电解质材料有Li 10M(P 1-aSb a) 2S 12、Li 6(P 1-aSb a)S 5X和Li 3(P 1-aSb a)S 4,其中M为Ge、Si、Sn中的一种或者多种;X为F、Cl、Br、I中的一种或者多种;0.01≤a≤1。

Description

高空气稳定性无机硫化物固体电解质及其制备方法与应用
相关申请的交叉引用
本申请要求于2019年4月30日提交的申请号为201910358953.8,名称为“高空气稳定性无机硫化物固体电解质及其制备方法与应用”的中国专利申请的优先权,其通过引用方式全部并入本公开。
技术领域
本公开属于锂离子电池技术领域,具体涉及一种提高无机硫化物固体电解质空气稳定性的方法,所获得的材料及其在全固态锂二次电池中的应用领域。
背景技术
锂离子二次电池自上个世纪90年代初商业化以来,因其能量密度大、使用寿命长等优势得到了迅速的发展。但是,目前普遍使用的锂离子电池为液相电池,含有可燃性的有机电解液,因此存在严重的安全隐患。近几年来,在液相锂离子动力电池上频繁的安全事故的发生使得该体系的进一步使用受到很大的限制。使用非可燃的无机固体材料作为锂离子电池的电解质不仅能排除在电池的使用过程中出现的有机电解液的泄露及电池内部的热失控导致的安全隐患,而且可以在高温、低温等极端条件下使用。进一步提升锂二次电池的价值以及扩展其应用领域。因此,研发具有高稳定性以及高锂离子传导率的无机固体电解质是发展具有高安全性的锂二次电池的关键内容。
根据无机固体电解质材料中负离子的种类进行分类,目前研究较多以及应用潜力较大的分别是氧化物固体电解质和硫化物固体电解质(Kerman K,Luntz A,Viswanathan V,et al.practical challenges hindering the development of solid state Li ion batteries[J].Journal of The Electrochemical Society,2017,164(7):A1731-A1744.)。氧化物固体电解质以Li 2O-LaO-ZrO 2、Li 2O-B 2O 3、Li 2O-LiCl等体系为主(Thangadurai V,Narayanan S,Pinzaru D.Garnet-type solid-state fast Li ion conductors for Li batteries:critical  review[J].Chemical Society Reviews,2014,43(13):4714-4727),但普遍离子导较低。相对于氧化物电解质,由于硫化物电解质中硫离子的电负性较小,对阳离子的束缚力较低;同时硫离子的半径较大,有利于锂离子的迁移。因此,硫化物电解质的离子导较氧化物高。如2010年发现的Li 10GeP 2S 12材料(室温离子导高达12mS cm -1,Kamaya N,Homma K,Yamakawa Y,et al.A lithium superionic conductor[J].Nature materials,2011,10(9):682)及15年发现的Li 9.54Si 1.74P 1.44S 11.7Cl 0.3(室温离子导高达25mS cm -1,Kato Y,Hori S,Saito T et al.High-power all-solid-state batteries using sulfide superionic conductors[J].Nature Energy,2016,1(4):16030)材料,它们的锂离子传导率比有机电解质的还高。目前在无机硫化物电解质的研究上,主要集中在Li 2S-P 2S 5、Li 2S-MS x-P 2S 5以及Li 2S-P 2S 5-LiX等体系上(Sun C,Liu J,Gong Y,et al.Recent advances in all-solid-state rechargeable lithium batteries[J].Nano Energy,2017,33:363-386)。
然而,目前所报道的含有P元素的无机硫化物电解质在空气条件下均不稳定。该类型硫化物电解质与空气气氛中的氧气、水蒸气、二氧化碳等发生不可逆化学反应从而导致结构的变化以及离子传导率的降低,严重制约其在全固态锂电池中的应用。针对该方面的问题,大量的研究集中于通过添加剂以及表面保护层的引入进行改善。如一种复合的固体电解质材料,内层为硫化物电解质材料,外壳为硼酸锂等保护层(杨容等,中国专利CN106887638A)。另外的,在硫化物电解质的体系中掺杂少量的低价态金属元素或者少量的氧化物LMO(M=Si,P,Ge,B,Al,Ga,In)可以提高材料的热/空气稳定性(许晓雄,邱志军,黄祯,陈万超,陈晓添,中国专利,CN10353184A;Bachman J C,Muy S,Grimaud A,et al.Inorganic solid-state electrolytes for lithium batteries:mechanisms and properties governing ion conduction[J].Chemical reviews,2015,116(1):140-162.)。从理论上分析,通过固溶相的结构调节硫化物电解质材料中的锂离子迁移通道以及硫离子对阳离子的束缚力等因素,可以调控材料的离子传导率,从而获得具有更高离子传导率的无机硫化物电解质材料。进一步的,固溶相的结构还可以改变其电子结构以改善其化学性质,从而达到在空气中具有较好的稳定,可以实现在空气环境/干燥室内大量使用的可能。
发明内容
本公开的目的在于提供一种提高无机硫化物电解质空气稳定性的方法及该方法所获得的材料在全固态锂二次电池中的应用。该方法简单有效,所获得的材料制备简单,生产成本低,同时具有较好的空气稳定性,锂离子传导率高,有望解决无机硫化物电解质作为高性能全固态锂二次电池电解质的实际应用问题。
本公开研究发现,采用Sb取代硫化物电解质中部分或者全部的P元素能够形成具有固溶相结构的无机硫化物固体电解质材料,从而获得具有更高的空气稳定性以及更高离子迁移率。特别地,随着无机硫化物固体电解质中Sb取代量的增加,所获得材料具有更好的空气稳定性,可应用于全固态锂二次电池中。
具体而言,本公开提供一种如下式(I)所示的无机硫化物电解质材料,
Li 10M(P 1-aSb a) 2S 12,      (I);
其中,M为Ge、Si、Sn中的一种或者多种,0.01≤a≤1;优选地,0.01≤a≤0.2。例如具体地,a可选自0.01、0.025、0.05、0.075、0.1、0.125、0.15、0.2、0.3、0.4或1。
具体地,式(I)所示的无机硫化物电解质材料为Li 10Ge(P 0.99Sb 0.01) 2S 12、Li 10Ge(P 0.975Sb 0.025) 2S 12、Li 10Ge(P 0.925Sb 0.075) 2S 12、Li 10Ge(P 0.9Sb 0.1) 2S 12、Li 10Ge(P 0.875Sb 0.125) 2S 12、Li 10Sn(P 0.95Sb 0.05) 2S 12或Li 10Si(P 0.95Sb 0.05) 2S 12
本公开还提供一种如下式(II)所示的无机硫化物电解质材料,
Li 6(P 1-aSb a)S 5X,    (II);
其中,X为F、Cl、Br、I中的一种或者多种,0.01≤a≤1;优选地,0.025≤a≤0.2。例如具体地,a可选自0.025、0.05、0.075、0.1、0.15、0.2、0.5或1。
具体地,式(II)所示的无机硫化物电解质材料为Li 6(P 0.975Sb 0.025)S 5Cl或Li 6(P 0.95Sb 0.05)S 5Cl。
本公开还提供一种如下式(III)所示的无机硫化物电解质材料,
Li 3(P 1-aSb a)S 4,    (III);
其中,0.01≤a≤1;优选地,0.05≤a≤0.3。进一步优选地,a选自0.05、0.1、0.2或0.3。
本公开上述无机硫化物电解质材料均可按本领域常规技术制备。
例如可将所需原料按配比混合后研磨,然后进行热处理,得到上式(I)、(II)(III)所示的硫化物电解质材料。其中研磨时间优选大于3小时;和/或热处理温度优选大于300℃而小于600℃;和/或热处理温度优选大于230℃而小于600℃。本公开为固溶相型硫化物固体电解质材料。
进一步研究发现,上述任一种硫化物固体电解质材料,随着固溶相中Sb量的增加,所获得无机硫化物固体电解质材料具有更好的空气稳定性。进一步地,通过调节固溶体中P和Sb元素的比例,可以进一步调节该材料的锂离子传导率。并可以超过其它现有固体电解质以及有机液体电解质的电导率。
进一步地,上述任一种硫化物固体电解质材料为晶体型、非晶型、晶体-非晶复合型。
进一步地,上述任一种硫化物固体电解质材料的工作温度在-100~300℃。
本公开还提供上述任一种硫化物固体电解质材料在制备全固态锂二次电池中的应用。
具体地说,本公开提供一种全固态锂二次电池,包括正极、电解质材料和负极,所述电解质材料为上述方案中所述硫化物电解质材料或上述方案所制备的硫化物电解质材料。
本公开采用Sb取代硫化物电解质中部分或者全部的P元素形成具有固溶相结构的无机硫化物固体电解质材料,从而获得具有更高的空气稳定性以及更高离子迁移率。与现有技术相比,本公开提供了一种新型的基于元素取代提高硫化物空气稳定性的方法,该方法简单有效,所获得的硫化物电解质在没有任何包覆层或者添加剂保护的情况下在空气条件下稳定保存。该类型材料制备简单,生产成本低;同时所获得的无机硫化物固体电解质材料具有可控的离子传导率以及在全固态锂电池中作为无机电解质以及电极材料添加剂使用均具有优异的性能。
本公开具有以下优点:
1)通过调节无机硫化物固体电解质材料中的P和Sb的比例获得多种不同类型的固溶相结构的硫化物固体电解质。随着Sb取代量的增加,所 获得无机硫化物固体电解质材料具有更好的空气稳定性,可进一步的实现硫化物固态电解质材料在干燥间中的使用,简化固态电池的生产工艺和降低生产成本。
2)在固溶相结构的硫化物固体电解质中,采用Sb元素部分替代P,可以调节该材料的化学性质,从而获得与电极材料具有高的化学稳定性和化学相容性。降低电解质与锂金属及常见的锂离子正负极材料之间的反应活性。
3)通过调节无机硫化物固体电解质材料中的P和Sb的比例,易于调节材料的晶体结构和电子结构,从而进一步提升材料的电导率。在该类型固溶相结构的无机硫化物固体电解质材料中,有部分比例的电解质材料达到甚至超过现有硫化物固体电解质的电导率。
4)固溶相结构的硫化物固体电解质的提出以及获得,在理论研究方面有利于进一步了解电解质的化学稳定性问题以及锂离子在固体电解质中的迁移问题,进一步指导高电导率硫化物电解质的开发研究;在实际应用上可以获得多种不同类型的高电导率高空气稳定性的电解质材料。
附图说明
图1是实施例1中a=0.01时得到的x射线衍射图;
图2是实施例1中该体系所得到的部分x射线衍射图;
图3是实施例1中a=0.01时得到的不同温度下的电化学阻抗图以及离子传导率图;
图4是实施例1得到的材料离子传导率与a值之间的关系图;
图5是实施例2中a=0.025时得到的x射线衍射图;
图6是实施例2中该体系所得到的部分x射线衍射图;
图7是实施例2中a=0.025时得到的不同温度下的电化学阻抗图以及离子传导率图;
图8是实施例2得到的材料离子传导率与a值之间的关系图;
图9是实施例3中a=0.05时得到的x射线衍射图;
图10是实施例3中a=0.05时得到的不同温度下的电化学阻抗图以及离子传导率图;
图11是实施例4中a=0.05时得到的x射线衍射图;
图12是实施例4中a=0.05时得到的不同温度下的电化学阻抗图以及离子传导率图;
图13是实施例5中a=0.1时得到的不同温度下的电化学阻抗图以及离子传导率图;
图14是应用例1中Li 6(P 0.975Sb 0.025)S 5Cl材料在暴露空气前后的XRD对比图;
图15是应用例1中Li 6(P 0.9Sb 0.1)S 5Cl材料在暴露空气前后的XRD对比图;
图16是应用例1中Li 6(P 0.975Sb 0.025)S 5Cl材料在暴露空气前后的电化学阻抗谱以及所计算得到的离子导对比图;
图17是应用例1中Li 6(P 0.9Sb 0.1)S 5Cl材料在暴露空气前后的电化学阻抗谱以及所计算得到的离子导对比图;
图18是应用例1中Li 6(P 0.975Sb 0.025)S 5Cl和Li 6(P 0.9Sb 0.1)S 5Cl材料的离子导随温度变化图以及在恒定外电压为0.3V时的电流-时间关系图;
图19是应用例2中Li 10Ge(P 0.875Sb 0.125) 2S 12材料在暴露空气前后的XRD对比图;
图20是应用例2中Li 10Ge(P 0.975Sb 0.025) 2S 12、Li 10Ge(P 0.925Sb 0.075) 2S 12、Li 10Ge(P 0.9Sb 0.1) 2S 12和Li 10Ge(P 0.875Sb 0.125) 2S 12固体电解质材料在暴露空气前后的离子导变化对比图;
图21是应用例3得到固溶相型Li 10Ge(P 0.99Sb 0.01) 2S 12固体电解质材料应用于全固态Li-LiCoO 2二次电池的充放电曲线图。
具体实施方式
以下实施例用于说明本公开,但不用来限制本公开的范围。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件,或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可通过正规渠道商购买得到的常规产品。
实施例1 制备Li 10Ge(P 1-aSb a) 2S 12固体电解质材料(0.01≤a≤1)
把15毫摩尔的Li 2S(0.69克)、3毫摩尔的GeS 2(0.411克)、(3-3a)毫摩尔的P 2S 5、3a毫摩尔的Sb 2S 5粉体在研钵内研磨混合,其中0.01≤a≤1。如a=0.01时,各原料的配料如下:Li 2S为0.69克、GeS 2为0.411克、P 2S 5 为0.66克、Sb 2S 5为0.012克;如a=0.1时,各原料的配料如下:Li 2S为0.69克、GeS 2为0.411克、P 2S 5为0.599克、Sb 2S 5为0.121克。依次类推。研磨混合后放入50毫升氧化锆球磨罐内进行球磨,球磨转速为400转每分钟,球磨时间为12小时。球磨后的样品采用粉末压片机以100兆帕的压片压成圆片,随后密封于真空石英管内进行煅烧。煅烧温度采用程序升温控制,从室温经4小时升温至550摄氏度,并在该温度下保持4小时,随后控制4小时降温至50摄氏度,即可获得Li 10Ge(P 1-aSb a) 2S 12固体电解质材料(0.01≤a≤1)。
图1为a=0.01时该体系材料(即Li 10Ge(P 0.99Sb 0.01) 2S 12固体电解质材料)以及Li 10GeP 2S 12标准卡片(JPCDF:04-020-5216)的X射线衍射图;图2为该体系下不同a值所获得的X射线衍射图,其中a从上往下分别为0.01、0.025、0.05、0.075、0.1、0.125、0.15、0.2、0.3、0.4和1。图3为a=0.01时该体系材料(即Li 10Ge(P 0.99Sb 0.01) 2S 12固体电解质材料)在不同温度下的电化学阻抗图以及离子导随温度变化曲线。从图3中可以得到,该材料在25摄氏度下离子导为11.4毫西门子每厘米,活化能为11.0千焦每摩尔。图4为该体系下所获得的固溶相硫化物电解质材料的离子导与a值之间的关系曲线图。从图4中发现,当a值在0.075时(即Li 10Ge(P 0.925Sb 0.075) 2S 12固体电解质材料),该体系材料具有最高的室温离子导,为17.5毫西门子每厘米,比文献报道的Li 10GeP 2S 12材料的室温离子导(12毫西门子每厘米)还要高。
实施例2 制备Li 6(P 1-aSb a)S 5Cl固体电解质材料(0.01≤a≤1)
把20毫摩尔的Li 2S(0.92克)、8毫摩尔的LiCl(0.336克)、(4-4a)毫摩尔的P 2S 5和4a毫摩尔的Sb 2S 5粉体在研钵内研磨混合,其中0.01≤a≤1。如a=0.025时,各原料的配料如下:Li 2S为0.92克、LiCl为0.336克、P 2S 5为0.866克、Sb 2S 5为0.03克;如a=0.1时,各原料的配料如下:Li 2S为0.92克、LiCl为0.336克、P 2S 5为0.799克、Sb 2S 5为0.121克。依次类推。研磨混合后放入50毫升氧化锆球磨罐内进行球磨,球磨转速为400转每分钟,球磨时间为12小时。球磨后的样品采用粉末压片机以100兆帕的压片压成圆片,随后密封于真空石英管内进行煅烧。煅烧温度采用程序升温控制,从室温经4小时升温至550摄氏度,并在该温度下保持5小时, 随后自然冷却至50摄氏度,即可获得Li 6(P 1-aSb a)S 5Cl固体电解质材料(0.01≤a≤1)。
图5为a=0.025时该体系材料(即Li 6(P 0.975Sb 0.025)S 5Cl固体电解质材料)以及Li 6PS 5Cl标准卡片(JPCDF:04-018-1429)的X射线衍射图;图6为该体系下不同a值所获得的X射线衍射图,其中a从上往下分别为0.025、0.05、0.075、0.1、0.15、0.2、0.5和1。图7为a=0.025时该体系材料(即Li 6(P 0.975Sb 0.025)S 5Cl固体电解质材料)在不同温度下的电化学阻抗图以及离子导随温度变化曲线。从图7中可以得到,该材料在25摄氏度下离子导为2.5毫西门子每厘米,活化能为18.4千焦每摩尔。图8为该体系下所获得的固溶相硫化物电解质材料的离子导与a值之间的关系曲线图。从图8中发现,当a值在0.05时(即Li 6(P 0.95Sb 0.05)S 5Cl固体电解质材料),该体系材料具有最高的室温离子导,为2.9毫西门子每厘米,比相同条件下获得的非固溶相的Li 6PS 5Cl材料的室温离子导(1.3毫西门子每厘米)要高。
实施例3 制备Li 10Sn(P 0.95Sb 0.05) 2S 12固体电解质材料
把15毫摩尔的Li 2S(0.69克)、3毫摩尔的SnS 2(0.549克)、2.85毫摩尔的P 2S 5(0.633克)、0.15毫摩尔的Sb 2S 5(0.061克)粉体在研钵内研磨混合。研磨混合后放入50毫升氧化锆球磨罐内进行球磨,球磨转速为400转每分钟,球磨时间为12小时。球磨后的样品采用粉末压片机以100兆帕的压片压成圆片,随后密封于真空石英管内进行煅烧。煅烧温度采用程序升温控制,从室温经4小时升温至550摄氏度,并在该温度下保持4小时,随后控制4小时降温至50摄氏度,即可获得Li 10Sn(P 0.95Sb 0.05) 2S 12固体电解质材料。
图9为Li 10Sn(P 0.95Sb 0.05) 2S 12固体电解质材料的X射线衍射图;图10为该固体电解质材料在不同温度下的电化学阻抗图以及离子导随温度变化曲线。从图10中可以得到,该材料在25摄氏度下离子导为5.6毫西门子每厘米,活化能为11.6千焦每摩尔。从图10中发现,该Li 10Sn(P 0.95Sb 0.05) 2S 12固体电解质材料具有较高的室温离子导,与文献报道的Li 10SnP 2S 12材料的室温离子导(6.3毫西门子每厘米)较近。
实施例4 制备Li 10Si(P 0.95Sb 0.05) 2S 12固体电解质材料
把15毫摩尔的Li 2S(0.69克)、3毫摩尔的SiS 2(0.276克)、2.85毫摩尔的P 2S 5(0.633克)、0.15毫摩尔的Sb 2S 5(0.061克)粉体在研钵内研磨混合。研磨混合后放入50毫升氧化锆球磨罐内进行球磨,球磨转速为400转每分钟,球磨时间为12小时。球磨后的样品采用粉末压片机以100兆帕的压片压成圆片,随后密封于真空石英管内进行煅烧。煅烧温度采用程序升温控制,从室温经4小时升温至550摄氏度,并在该温度下保持4小时,随后控制4小时降温至50摄氏度,即可获得Li 10Si(P 0.95Sb 0.05) 2S 12固体电解质材料。
图11为Li 10Si(P 0.95Sb 0.05) 2S 12固体电解质材料的X射线衍射图;图12为该固体电解质材料在不同温度下的电化学阻抗图以及离子导随温度变化曲线。从图12中可以得到,该材料在25摄氏度下离子导为2.5毫西门子每厘米,活化能为11.6千焦每摩尔。从图12中发现,该Li 10Si(P 0.95Sb 0.05) 2S 12固体电解质材料具有较高的室温离子导,与文献报道的Li 10SiP 2S 12材料的室温离子导(2毫西门子每厘米)还要高。
实施例5 制备Li 3(P 1-aSb a)S 4固体电解质材料(0.01≤a≤1)
把9毫摩尔的Li 2S(0.414克)、(3-3a)毫摩尔的P 2S 5、3a毫摩尔的Sb 2S 5粉体在研钵内研磨混合,其中0.01≤a≤1。如a=0.05时,各原料的配料如下:Li 2S为0.414克、P 2S 5为0.633克、Sb 2S 5为0.061克;如a=0.1时,各原料的配料如下:Li 2S为0.414克、P 2S 5为0.599克、Sb 2S 5为0.121克。依次类推。研磨混合后放入50毫升氧化锆球磨罐内进行球磨,球磨转速为400转每分钟,球磨时间为12小时。球磨后的样品采用粉末压片机以100兆帕的压片压成圆片,随后密封于真空石英管内进行煅烧。煅烧温度采用程序升温控制,从室温经3小时升温至260摄氏度,并在该温度下保持4小时,随后控制4小时降温至50摄氏度,即可获得Li 3(P 1-aSb a)S 4固体电解质材料(0.01≤a≤1)。
图13为a=0.1时该体系材料(即Li 3(P 0.9Sb 0.1)S 4固体电解质材料)在不同温度下的电化学阻抗图以及离子导随温度变化曲线。从图13中可以得到,该材料在25摄氏度下离子导为0.06毫西门子每厘米,活化能为16.0千焦每摩尔。
应用例1 Li 6(P 1-aSb a)S 5Cl固体电解质材料空气稳定性测试与应用
采用实施例2所获得的Li 6(P 1-aSb a)S 5Cl固体电解质材料进行干空气稳定性测试(a=0.025,0.1)。在手套箱内,分别取实施例2所获得的Li 6(P 0.975Sb 0.025)S 5Cl和Li 6(P 0.9Sb 0.1)S 5Cl固体电解质材料100豪克放入1毫升开口玻璃瓶中,随后把该玻璃瓶置于通有干燥空气气流的反应箱中,室温静置24小时,干燥空气的气流为100毫升每分钟,静置结束后取出样品分别进行XRD、离子导以及电子导的测试。
图14为Li 6(P 0.975Sb 0.025)S 5Cl材料在暴露空气前后的XRD对比图;图15为Li 6(P 0.9Sb 0.1)S 5Cl材料在暴露空气前后的XRD对比图;图16为Li 6(P 0.975Sb 0.025)S 5Cl材料在暴露空气前后的电化学阻抗谱以及所计算得到的离子导对比图;图17为Li 6(P 0.9Sb 0.1)S 5Cl材料在暴露空气前后的电化学阻抗谱以及所计算得到的离子导对比图;图18为该两材料的离子导随温度变化图以及在恒定外电压为0.3V时的电流-时间关系图。从以上各图可以发现,Li 6(P 0.975Sb 0.025)S 5Cl材料在暴露空气后,XRD变化不大但是离子导降低比较厉害,经24小时的空气气氛作用,该材料的离子导从2.5×10 -3S cm -1降到1.0×10 -5S cm -1。经空气气氛作用后,该材料的离子导仅有没有空气作用前的0.004倍。随着固溶相结构中Sb含量的增加至10%(a=0.1),所获得的Li 6(P 0.9Sb 0.1)S 5Cl固体电解质材料的空气稳定性变高。同样的,该材料经过24小时的空气气氛作用后,XRD图谱变化不大,离子导从1.9×10 -3S cm -1降到2.3×10 -4S cm -1。经空气气氛作用后,该材料的离子导为没有空气作用前的0.12倍。另外,以上两个材料的电子导变化不大。
应用例2 Li 10Ge(P 1-aSb a) 2S 12固体电解质材料空气稳定性测试与应用
采用实施例1所获得的Li 10Ge(P 1-aSb a) 2S 12固体电解质材料进行干空气稳定性测试(a=0.025、0.075、0.1、0.125)。在手套箱内,分别取实施例1所获得的Li 10Ge(P 0.975Sb 0.025) 2S 12、Li 10Ge(P 0.925Sb 0.075) 2S 12、Li 10Ge(P 0.9Sb 0.1) 2S 12和Li 10Ge(P 0.875Sb 0.125) 2S 12固体电解质材料200豪克放入1毫升开口玻璃瓶中,随后把该玻璃瓶置于通有干燥空气气流的反应箱中,室温静置24小时,干燥空气的气流为100毫升每分钟,静置结束后取出样品分别进行XRD、离子导以及电子导的测试。图19为 Li 10Ge(P 0.875Sb 0.125) 2S 12材料在暴露空气前后的XRD对比图;图20为这四个材料在暴露空气前后的离子导变化对比图。从以上各图可以发现,Li 10Ge(P 0.875Sb 0.125) 2S 12材料在暴露空气24小时后,XRD变化不大。同样的,以上所获得的四个材料的离子导在空气暴露前后变化不大。经过24小时空气暴露后,以上四个材料的离子导仍旧能达到10mS cm -2以上。表明该材料的空气稳定性较好,可以直接在在干燥空气气氛中使用。具有较大的应用价值。
应用例3 Li 10Ge(P 0.99Sb 0.01) 2S 12电解质材料在全固态Li-LiCoO 2二次电池中的应用
采用实施例1中所获得的Li 10Ge(P 0.99Sb 0.01) 2S 12电解质材料应用于全固态Li-LiCoO 2二次电池中。所采用的LiCoO 2正极材料首先经过原子层沉积技术(ALD)在表面进行LiNbO 2的包覆,包覆层约为10纳米。包覆完后,以LiCoO 2正极材料:Li 10Ge(P 0.99Sb 0.01) 2S 12电解质材料:乙炔碳为60:30:10(质量比)的配比进行混合,混合过程在手套箱内进行,具体的过程是采用研钵研磨20分钟。研磨后的材料作为正极粉体。以金属薄铟片作为负极,电解质同样采用实施例1中所获得的Li 10Ge(P 0.99Sb 0.01) 2S 12电解质材料。取100毫克Li 10Ge(P 0.99Sb 0.01) 2S 12电解质材料放入横截面面积为0.785平方厘米的模具电池内胆中,以200兆帕的压强进行压片获得电解质层。随后,在电解质层一边加入10毫克的正极粉体,铺匀后以350兆帕的压强进行第二次压片,把正极层压与电解质层压到一块。随后在另一边放入铟片作为负极层。整个过程完成后,把内胆放入模具电池中,压紧并拧紧螺丝进行密封。密封后即可获得全固态的Li-LiCoO 2二次电池。电池采用32微安的电流密度进行充放电测试,截止电压为2.0-3.6伏。图21为该电池前两圈的充放电曲线图。图21中可以发现该电池充放电过程的可逆性较好,电池容量保持在0.8毫安时以上。首圈容量为0.870毫安时,以钴酸锂的质量(6毫克)计算,比容量为145.0毫安时每克。首圈放电容量为0.707毫安时,以钴酸锂的质量(6毫克)计算,比容量为117.8毫安时每克。第二圈的充电比容量和放电比容量分别是121.1和116.2毫安时每克。电池循环的可逆性较好。
以上实验结果表明,本公开提供的无机硫化物电解质材料空气稳定性 好,该材料制备方法简单,生产成本低,同时具有较好的空气稳定性,锂离子传导率高,有望解决无机硫化物电解质作为高性能全固态锂二次电池电解质的实际应用问题。
虽然,上文中已经用一般性说明及具体实施方案对本公开作了详尽的描述,但在本公开基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本公开精神的基础上所做的这些修改或改进,均属于本公开要求保护的范围。

Claims (11)

  1. 一种如下式(I)所示的无机硫化物电解质材料,
    Li 10M(P 1-aSb a) 2S 12, (I);
    其中,M为Ge、Si、Sn中的一种或者多种,0.01≤a≤1;
    优选地,0.01≤a≤0.2。
  2. 根据权利要求1所述的无机硫化物电解质材料,a选自0.01、0.025、0.05、0.075、0.1、0.125、0.15、0.2、0.3、0.4或1;
    优选地,式(I)所示的无机硫化物电解质材料为Li 10Ge(P 0.99Sb 0.01) 2S 12、Li 10Ge(P 0.975Sb 0.025) 2S 12、Li 10Ge(P 0.925Sb 0.075) 2S 12、Li 10Ge(P 0.9Sb 0.1) 2S 12、Li 10Ge(P 0.875Sb 0.125) 2S 12、Li 10Sn(P 0.95Sb 0.05) 2S 12或Li 10Si(P 0.95Sb 0.05) 2S 12
  3. 一种如下式(II)所示的无机硫化物电解质材料,
    Li 6(P 1-aSb a)S 5X, (II);
    其中,X为F、Cl、Br、I中的一种或者多种,0.01≤a≤1;
    优选地,0.025≤a≤0.2。
  4. 根据权利要求3所述的无机硫化物电解质材料,其特征在于,a选自0.025、0.05、0.075、0.1、0.15、0.2、0.5或1;
    优选地,式(II)所示的无机硫化物电解质材料为Li 6(P 0.975Sb 0.025)S 5Cl或Li 6(P 0.95Sb 0.05)S 5Cl。
  5. 一种如下式(III)所示的无机硫化物电解质材料,
    Li 3(P 1-aSb a)S 4, (III);
    其中,0.01≤a≤1;
    优选地,0.05≤a≤0.3。
  6. 根据权利要求5所述的无机硫化物电解质材料,其特征在于,a选自0.05、0.1、0.2或0.3。
  7. 根据权利要求1-6任一项所述无机硫化物电解质材料,其特征在于,其为晶体型、非晶型或晶体-非晶复合型;和/或,
    所述硫化物固体电解质材料的工作温度在-100~300℃。
  8. 权利要求1-7任一项所述无机硫化物电解质材料的制备方法,其特征在于,将所需原料按配比混合后研磨,然后进行热处理,分别得到式(I)、式(II)、式(III)所示的硫化物电解质材料。
  9. 根据权利要求8所述的制备方法,其特征在于,所述研磨时间大于3小时;和/或热处理温度大于300℃而小于600℃。
  10. 根据权利要求8所述的制备方法,其特征在于,所述研磨时间大于3小时;和/或热处理温度大于230℃而小于600℃。
  11. 权利要求1-7任一项所述硫化物固体电解质材料或权利要求8或9或10所述方法制备的硫化物固体电解质材料在制备全固态锂二次电池中的应用。
PCT/CN2019/123481 2019-04-30 2019-12-06 高空气稳定性无机硫化物固体电解质及其制备方法与应用 WO2020220676A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP19927347.5A EP3893308B1 (en) 2019-04-30 2019-12-06 Inorganic sulfide solid electrolyte having high air stability, and preparation method and use thereof
JP2021542254A JP7129075B2 (ja) 2019-04-30 2019-12-06 大気安定性の高い無機硫化物固体電解質、及びその製造方法並びにその応用
US17/422,789 US20220131182A1 (en) 2019-04-30 2019-12-06 Inorganic sulfide solid electrolyte having high air stability, and preparation method and use thereof
CN201980093980.5A CN113614971A (zh) 2019-04-30 2019-12-06 高空气稳定性无机硫化物固体电解质及其制备方法与应用
KR1020217036060A KR20210148306A (ko) 2019-04-30 2019-12-06 공기 안정성이 높은 무기 황화물 고체 전해질 및 이의 제조 방법과 응용
ES19927347T ES2943111T3 (es) 2019-04-30 2019-12-06 Electrolito sólido de sulfuro inorgánico con alta estabilidad al aire, y método de preparación y uso de este

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910358953.8 2019-04-30
CN201910358953.8A CN110085908B (zh) 2019-04-30 2019-04-30 高空气稳定性无机硫化物固体电解质及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2020220676A1 true WO2020220676A1 (zh) 2020-11-05

Family

ID=67417976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123481 WO2020220676A1 (zh) 2019-04-30 2019-12-06 高空气稳定性无机硫化物固体电解质及其制备方法与应用

Country Status (7)

Country Link
US (1) US20220131182A1 (zh)
EP (1) EP3893308B1 (zh)
JP (1) JP7129075B2 (zh)
KR (1) KR20210148306A (zh)
CN (2) CN110085908B (zh)
ES (1) ES2943111T3 (zh)
WO (1) WO2020220676A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116706212A (zh) * 2023-05-09 2023-09-05 高能时代(珠海)新能源科技有限公司 一种固态电解质的制备方法及制备装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085908B (zh) * 2019-04-30 2021-09-17 国联汽车动力电池研究院有限责任公司 高空气稳定性无机硫化物固体电解质及其制备方法与应用
CN114402402A (zh) * 2019-09-06 2022-04-26 罗地亚经营管理公司 用于制备li-p-s产物和相应产物的新方法
CN111710902B (zh) * 2020-06-01 2021-11-09 国联汽车动力电池研究院有限责任公司 玻璃-陶瓷型硫化物电解质及其制备方法和应用
CA3193530A1 (en) * 2020-09-23 2022-03-31 Solid Power Operating, Inc. Solid electrolyte material and solid-state battery made therewith
CN112777632B (zh) * 2021-01-25 2022-05-03 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种硫化物锂离子固态电解质及其制备方法和应用
CN113097560A (zh) * 2021-04-09 2021-07-09 浙江大学山东工业技术研究院 一种高空气稳定性纳米晶硫化物固体电解质和固态电池及其制备方法
CN113471521B (zh) * 2021-06-30 2022-08-19 国联汽车动力电池研究院有限责任公司 一种无机硫化物固体电解质及其制备方法
CN113363569B (zh) * 2021-06-30 2023-05-05 国联汽车动力电池研究院有限责任公司 一种高稳定性无机硫化物固体电解质及其制备方法
CN114933331B (zh) * 2022-05-13 2023-02-17 上海屹锂新能源科技有限公司 一种硫化物固态电解质及其制备方法
US12009478B1 (en) * 2023-07-25 2024-06-11 Rivian Ip Holdings, Llc Solid state electrolyte
CN117936882B (zh) * 2024-03-25 2024-06-04 四川新能源汽车创新中心有限公司 一种硫化物电解质的改性方法、硫化物电解质及其应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101821199A (zh) * 2007-10-08 2010-09-01 锡根大学 锂-硫银锗矿
CN101861673A (zh) * 2009-01-21 2010-10-13 丰田自动车株式会社 硫化物固体电解质材料
CN103531841A (zh) * 2013-11-01 2014-01-22 中国科学院宁波材料技术与工程研究所 硫化物固体电解质及其制备方法与全固态锂二次电池
CN103531840A (zh) 2013-11-01 2014-01-22 中国科学院上海硅酸盐研究所 一种双电解质体系锂硫电池及其制备方法
US20140370398A1 (en) * 2013-06-17 2014-12-18 Electronics And Telecommunications Research Institute Lithium battery and method of preparing the same
CN105009332A (zh) * 2013-02-28 2015-10-28 I-Ten公司 制造单片全固态电池的方法
CN106887638A (zh) 2015-12-15 2017-06-23 国联汽车动力电池研究院有限责任公司 一种复合固体电解质材料、其制备方法及包含该电解质材料的全固态锂离子二次电池
CN108258303A (zh) * 2018-01-18 2018-07-06 中国科学院宁波材料技术与工程研究所 一种硫化物固体电解质、其制备方法及全固态锂二次电池
CN108269964A (zh) * 2017-12-27 2018-07-10 国联汽车动力电池研究院有限责任公司 一种复合固态电极及其制备方法
CN108352567A (zh) * 2016-01-12 2018-07-31 株式会社Lg化学 硫化物型固体电解质和应用其的全固态电池
CN109690696A (zh) * 2016-09-12 2019-04-26 出光兴产株式会社 硫化物固体电解质
JP2019102355A (ja) * 2017-12-06 2019-06-24 国立大学法人豊橋技術科学大学 固体電解質用イオン伝導体の製造方法
CN110085908A (zh) * 2019-04-30 2019-08-02 国联汽车动力电池研究院有限责任公司 高空气稳定性无机硫化物固体电解质及其制备方法与应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5120272B2 (ja) * 2008-09-11 2013-01-16 トヨタ自動車株式会社 硫化物系固体電解質
CN104081577B (zh) * 2012-02-06 2017-06-27 丰田自动车株式会社 硫化物固体电解质材料、电池和硫化物固体电解质材料的制造方法
JP6037444B2 (ja) * 2013-01-17 2016-12-07 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
CN103531849B (zh) * 2013-11-01 2016-08-17 国家电网公司 硫化物电解质材料及其制备方法与全固态锂二次电池
CN108475817B (zh) 2016-02-19 2021-01-29 富士胶片株式会社 固体电解质组合物及全固态二次电池的制造方法
US11264642B2 (en) * 2016-08-10 2022-03-01 Idemitsu Kosan Co., Ltd. Sulfide solid electrolyte
KR20190001798A (ko) * 2017-06-28 2019-01-07 한국전기연구원 황화물계 고체전해질 재료 및 그 제조방법

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101821199A (zh) * 2007-10-08 2010-09-01 锡根大学 锂-硫银锗矿
CN101861673A (zh) * 2009-01-21 2010-10-13 丰田自动车株式会社 硫化物固体电解质材料
CN105009332A (zh) * 2013-02-28 2015-10-28 I-Ten公司 制造单片全固态电池的方法
US20140370398A1 (en) * 2013-06-17 2014-12-18 Electronics And Telecommunications Research Institute Lithium battery and method of preparing the same
CN103531841A (zh) * 2013-11-01 2014-01-22 中国科学院宁波材料技术与工程研究所 硫化物固体电解质及其制备方法与全固态锂二次电池
CN103531840A (zh) 2013-11-01 2014-01-22 中国科学院上海硅酸盐研究所 一种双电解质体系锂硫电池及其制备方法
CN106887638A (zh) 2015-12-15 2017-06-23 国联汽车动力电池研究院有限责任公司 一种复合固体电解质材料、其制备方法及包含该电解质材料的全固态锂离子二次电池
CN108352567A (zh) * 2016-01-12 2018-07-31 株式会社Lg化学 硫化物型固体电解质和应用其的全固态电池
CN109690696A (zh) * 2016-09-12 2019-04-26 出光兴产株式会社 硫化物固体电解质
JP2019102355A (ja) * 2017-12-06 2019-06-24 国立大学法人豊橋技術科学大学 固体電解質用イオン伝導体の製造方法
CN108269964A (zh) * 2017-12-27 2018-07-10 国联汽车动力电池研究院有限责任公司 一种复合固态电极及其制备方法
CN108258303A (zh) * 2018-01-18 2018-07-06 中国科学院宁波材料技术与工程研究所 一种硫化物固体电解质、其制备方法及全固态锂二次电池
CN110085908A (zh) * 2019-04-30 2019-08-02 国联汽车动力电池研究院有限责任公司 高空气稳定性无机硫化物固体电解质及其制备方法与应用

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BACHMAN J CMUY SGRIMAUD A ET AL.: "Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction", CHEMICAL REVIEWS, vol. 116, no. 1, 2015, pages 140 - 162, XP055297581, DOI: 10.1021/acs.chemrev.5b00563
KAMAYA NHOMMA KYAMAKAWA Y ET AL.: "A lithium superionic conductor", NATURE MATERIALS, vol. 10, no. 9, 2011, pages 682, XP055386603, DOI: 10.1038/nmat3066
KATO YHORI SSAITO T ET AL.: "High-power all-solid-state batteries using sulfide superionic conductors", NATURE ENERGY, vol. 1, no. 4, 2016, pages 16030, XP055615412, DOI: 10.1038/nenergy.2016.30
KERMAN KLUNTZ AVISWANATHAN V ET AL.: "practical challenges hindering the development of solid state Li ion batteries", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 164, no. 7, 2017, pages A1731 - A1744
See also references of EP3893308A4
SUN CLIU JGONG Y ET AL.: "Recent advances in all-solid-state rechargeable lithium batteries", NANO ENERGY, vol. 33, 2017, pages 363 - 386, XP055659452, DOI: 10.1016/j.nanoen.2017.01.028
THANGADURAI VNARAYANAN SPINZARU D: "Garnet-type solid-state fast Li ion conductors for Li batteries: critical review", CHEMICAL SOCIETY REVIEWS, vol. 43, no. 13, 2014, pages 4714 - 4727, XP055330242, DOI: 10.1039/c4cs00020j

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116706212A (zh) * 2023-05-09 2023-09-05 高能时代(珠海)新能源科技有限公司 一种固态电解质的制备方法及制备装置
CN116706212B (zh) * 2023-05-09 2024-02-02 高能时代(珠海)新能源科技有限公司 一种固态电解质的制备方法及制备装置

Also Published As

Publication number Publication date
JP7129075B2 (ja) 2022-09-01
EP3893308A4 (en) 2022-03-16
US20220131182A1 (en) 2022-04-28
CN110085908A (zh) 2019-08-02
CN110085908B (zh) 2021-09-17
CN113614971A (zh) 2021-11-05
EP3893308A1 (en) 2021-10-13
JP2022502341A (ja) 2022-01-11
EP3893308B1 (en) 2023-02-08
KR20210148306A (ko) 2021-12-07
ES2943111T3 (es) 2023-06-09

Similar Documents

Publication Publication Date Title
WO2020220676A1 (zh) 高空气稳定性无机硫化物固体电解质及其制备方法与应用
Hayashi et al. High sodium ion conductivity of glass–ceramic electrolytes with cubic Na3PS4
CN110265709B (zh) 表面包覆改性的锂镧锆氧基固体电解质材料及其制备方法和应用
WO2021196732A1 (zh) 正极材料及其制备方法、锂离子电池和电动汽车
CN113471521B (zh) 一种无机硫化物固体电解质及其制备方法
JP7390692B2 (ja) リチウム二次電池固体電解質材料、電極及び電池
CN104953175A (zh) 一种锂离子电池固体电解质及其制备方法和锂离子电池
US20160260963A1 (en) Method for producing electrode body
CN101800305B (zh) 一种在锂离子电池钛酸锂负极表面沉积硅薄膜的方法
WO2023030025A1 (zh) 一种硫银锗矿型固态电解质的制备及其全固态电池应用
WO2016202162A1 (zh) 一种锂离子负极材料Li4Ti5O12/C的合成方法
CN115000388B (zh) 一种钠离子正极材料及其制备方法和用途
WO2020108132A1 (zh) 一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用
CN109841898A (zh) 固态电解质及其制法与包含其的电化学装置及电子装置
CN110112412A (zh) 一种硒硫固溶体正极材料及其制备方法和应用
WO2024016662A1 (zh) 一种正极材料用复合包覆剂、一种高镍单晶正极材料和电池
CN110311169B (zh) 一种具有硫空位结构的固体电解质及其制备方法和应用
WO2019096012A1 (zh) 一种钛酸锂复合材料及其制备方法、负极片及锂离子电池
CN113363569B (zh) 一种高稳定性无机硫化物固体电解质及其制备方法
WO2019095530A1 (zh) 一种富锂氧化物正极材料及其制备方法以及一种锂离子电池
Ma et al. Al2O3 coated single-crystalline hexagonal nanosheets of LiNi0. 6Co0. 2Mn0. 2O2 cathode materials for the high-performance lithium-ion batteries
Meng et al. Synthesis and electrochemical properties of LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathodes in lithium-ion and all-solid-state lithium batteries
CN108539136B (zh) 一种硫化亚锡/氮掺杂碳复合花球的制备方法及在锂离子电池负极中的应用
CN114005982A (zh) 一种原位功能性包覆的正极材料及其制备方法和全固态锂电池
Gao et al. Influencing factors of low-and high-temperature behavior of Co-doped Zn2SnO4–graphene–carbon nanocomposite as anode material for lithium-ion batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542254

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019927347

Country of ref document: EP

Effective date: 20210705

ENP Entry into the national phase

Ref document number: 20217036060

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE