WO2023030025A1 - 一种硫银锗矿型固态电解质的制备及其全固态电池应用 - Google Patents

一种硫银锗矿型固态电解质的制备及其全固态电池应用 Download PDF

Info

Publication number
WO2023030025A1
WO2023030025A1 PCT/CN2022/113369 CN2022113369W WO2023030025A1 WO 2023030025 A1 WO2023030025 A1 WO 2023030025A1 CN 2022113369 W CN2022113369 W CN 2022113369W WO 2023030025 A1 WO2023030025 A1 WO 2023030025A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
solid
positive electrode
electrolyte
state battery
Prior art date
Application number
PCT/CN2022/113369
Other languages
English (en)
French (fr)
Inventor
朱金辉
陈振营
张希
Original Assignee
上海屹锂新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海屹锂新能源科技有限公司 filed Critical 上海屹锂新能源科技有限公司
Publication of WO2023030025A1 publication Critical patent/WO2023030025A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of energy materials, and relates to a method for preparing a solid-state electrolyte applied in the field of solid-state batteries, in particular to a sulfur-argentite-type solid-state electrolyte Li a MQ 6-x (BH 4 ) x (wherein M is Sn , one or more of In, P, Si, Ge, As, Q is one or more of O, S, Se, Te, and 1 ⁇ a ⁇ 9, 0 ⁇ x ⁇ 6) preparation method and its application in all-solid-state batteries.
  • Lithium-ion batteries as an efficient energy storage system, have been widely used in consumer electronics and electric transportation.
  • traditional lithium-ion batteries are difficult to meet people's increasing demand for battery energy density, and the frequent fires and explosions of lithium-ion battery-powered vehicles have caused people's concerns about their safety.
  • the preparation of all-solid-state batteries by replacing the organic liquid electrolytes in traditional lithium-ion batteries with inorganic solid-state electrolytes has attracted great attention. Due to some properties of inorganic solid-state electrolytes, such as wide electrochemical stability window, suitable lithium ion conductivity, high thermal stability, high mechanical properties, etc., all-solid-state batteries based on it have higher energy density and ultra-high safety. performance.
  • the Chinese patent "Sulphide solid electrolyte with core-shell structure and its preparation method and solid-state battery” with the announcement number CN201910646574 discloses a sulfide solid electrolyte with a core-shell structure and its preparation method, and its technical solution is a core-shell structure Sulfide solid electrolyte, including core-shell particles with a particle size of 0.5-10 ⁇ m, core-shell particles including a core and a shell covering the core, the core is a sulfide solid electrolyte material, the shell thickness is less than 100nm, and the shell is a sulfide solid electrolyte material After external oxide oxidation, part or all of the P-S bonds are oxidized and replaced by P-O bonds, which ensures the advantages of high ionic conductivity of sulfide solid electrolytes and further improves the electrochemical stability of sulfide solid electrolytes for highly oxidizing positive electrode active materials sex.
  • the object of the present invention is to provide a kind of argentite-type solid electrolyte Li a MQ 6-x (BH 4 ) x (wherein M is one or more of Sn, In, P, Si, Ge, As, Q One or more of O, S, Se, Te, and 1 ⁇ a ⁇ 9, 0 ⁇ x ⁇ 6) and its application in all-solid-state batteries.
  • the all-solid-state battery based on this solid-state electrolyte has high safety, high energy density, and excellent cycle stability.
  • the present invention relates to a kind of argentite-type solid electrolyte, whose chemical structural formula is: Li a MQ 6-x (BH 4 ) x , wherein M is one of Sn, In, P, Si, Ge, As Or more than one, Q is one or more of O, S, Se, Te, and 1 ⁇ a ⁇ 9, 0 ⁇ x ⁇ 6.
  • the raw material of the solid electrolyte comprises the following components:
  • Li source one or more of LiH, Li 2 O, Li 2 O 2 , Li 2 S 2 , Li 2 S, Li 2 Se, Li 2 Se 2 , Li 2 Te, Li 2 Te 2 , LiBH 4 combination;
  • Q source one or more combinations of Q, H 2 Q, P 2 Q 5 , P 4 Q 9 , P 4 Q 3 , Li 2 Q 2 , Li 2 Q;
  • M sources are: P, P 2 Q 5 , P 4 Q 9 , P 4 Q 3 , P 4 Q 6 , P 4 Q 5 , In 2 Q 3 , SnQ 2 , GeQ 2 , SiQ 2 , As 2 Q 3 one or more compositions.
  • the mass ratio of the Q source to the M source in the solid electrolyte is 1:1 ⁇ 8:1.
  • the thickness of the solid electrolyte is 200-800 ⁇ m.
  • the present invention also relates to a method for preparing a solid electrolyte, the method comprising the following steps:
  • step S2 Compressing the initial solid electrolyte powder obtained in step S1 under 300-800 MPa to obtain an initial solid electrolyte sheet;
  • step S3 Seal the initial solid electrolyte sheet obtained in step S2 in a quartz tube or glass tube, and vacuum seal the tube ( ⁇ 10-4 Pa); then perform heat treatment at a temperature of 550°C-650°C for 12-48h, After cooling, the sulfur-argentite-type solid electrolyte is obtained.
  • step S1 the rotational speed of the ball mill is 550-650 rpm, and the milling time is 24-48 hours.
  • the ball mill is a high-energy planetary ball mill.
  • the invention also relates to the application of a solid electrolyte in an all-solid battery.
  • the present invention also relates to an all-solid-state battery, comprising a positive electrode part, a negative electrode part, and an electrolyte part, at least one of the positive electrode part, the negative electrode part, and the electrolyte part includes the solid electrolyte.
  • the positive electrode part is constructed by mixing the positive electrode active material and the solid electrolyte, and the positive electrode active material is a spinel-type transition metal oxide, a layered lithium transition metal oxide, olivine one or a mixture of several.
  • the preparation method of the all-solid-state battery provided by the present invention first prepares the positive electrode, mixes the electrode material, conductive carbon black and solid electrolyte according to a certain ratio, and grinds and mixes them evenly. The reason why the electrode material is combined with a solid electrolyte is to reduce the internal resistance of the all-solid-state battery. Secondly, the solid electrolyte powder is placed in a tablet mold and pressed into a solid electrolyte sheet, then the positive electrode sheet is placed on one side of the solid electrolyte, and pressed with pressure, and finally the lithium foil is attached on the other side of the solid electrolyte, pressed An all-solid-state battery in a sandwich structure.
  • the solid-state battery is prepared by a method comprising the following steps:
  • A1 Mix the positive electrode active material, conductive carbon black and solid electrolyte, and grind them evenly to obtain the positive electrode powder; disperse the positive electrode powder in 4% polyvinylidene fluoride-N-methylpyrrolidone solution, stir evenly with magnetic force, and then apply covered in aluminum foil;
  • the weight percentage of the solid electrolyte in the positive electrode part to the total weight is 0-40 wt%. In some embodiments, it is 1-40 wt%.
  • the positive electrode active material is LiCoO 2 , LiFePO 4 , LiNix Co y Mn 1-xy O 2 , LiNi x Co y Al 1-xy O 2 , LiFex Mn 1-x PO 4 , LiNi 0.5 Mn 1.5 O 4 or a mixture of two or more; wherein, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1 and x+y ⁇ 1.
  • the negative electrode part is constructed by mixing the negative electrode active material and the solid electrolyte, and the negative electrode active material is a carbon series material, a Si-containing carbon material or an olivine structure transition metal material; the carbon series The material is artificial graphite, natural graphite, hard carbon or graphene; the olivine structure transition metal material is Li 4 Ti 5 O 12 or LiNbTi 2 O 7 .
  • the novel argentite-type solid electrolyte prepared in the invention has high ion conductivity and chemical stability.
  • the all-solid-state battery prepared based on it has high cycle stability, high energy density, and high safety.
  • Fig. 1 is the XRD pattern of Li 6.4 P 0.6 Sn 0.2 In 0.2 S 5 (BH 4 ) solid electrolyte prepared according to Example 1;
  • Fig. 2 is the first charge and discharge curve of Li 6.4 P 0.6 Sn 0.2 In 0.2 S 5 (BH 4 ) solid electrolyte prepared according to Example 1;
  • Fig. 3 is the cycle curve of the all-solid-state battery prepared according to Example 1;
  • Fig. 4 is according to the charging and discharging curve of the capacity voltage of embodiment 1 and comparative example 1-7;
  • Example 5 is the conductivity curve according to Example 1 and Comparative Examples 1-7; wherein, A is an impedance diagram of ionic conductivity; B is a line diagram of ionic conductivity.
  • This embodiment relates to Li 6.4 P 0.6 Sn 0.2 In 0.2 S 5 (BH 4 ) argentite-type solid electrolyte and its preparation; including the following steps:
  • step (2) Place 40 mg of the powder obtained in step (1) in a tableting mold with a diameter of 12 mm, and press at 600 MPa to form a solid electrolyte tablet.
  • step (3) Put 500 mg of the sheet electrolyte obtained in step (2) into a quartz tube under an argon atmosphere, and seal the tube after vacuuming ( ⁇ 10 ⁇ 4 Pa).
  • step (3) heat-treating the solid electrolyte sheet obtained in step (3) at 550° C. for 12 hours to obtain argentite-type solid electrolyte material.
  • step (4) Mix the solid electrolyte material obtained in step (4), LiNi 0.8 Mn 0.1 Co 0.1 O 2 and graphite at a ratio of 1:8:1, and grind them evenly to obtain positive electrode powder.
  • the positive electrode powder was dissolved in 4% polyvinylidene fluoride-N-methylpyrrolidone solution, stirred evenly by magnetic force, and then coated on aluminum foil.
  • the raw material does not contain P 2 S 5 , In 2 S 3 , and the rest is the same as in Example 1.
  • the raw material does not contain P 2 S 5 , SnS 2 , and the rest is the same as in Example 1.
  • the raw material does not contain SnS 2 , In 2 S 3 , and the rest is the same as in Example 1.
  • the raw material does not contain SnS 2 , and the rest are the same as in Example 1.
  • the raw material does not contain In 2 S 3 , and the rest are the same as in Example 1.
  • the raw material does not contain P 2 S 5 , and the rest are the same as in Example 1.
  • the all-solid-state batteries made in the above-mentioned Example 1 and Comparative Examples 1-6 were installed in a special battery testing device in a glove box to test the battery performance, and at the same time, the assembled battery was subjected to a 0.5C constant current charge and discharge test, and the charge and discharge The range is 2–4.2V, and the test temperature is at room temperature in an environment of 25°C.
  • Example 1 An XRD test was performed on the solid electrolyte prepared in Example 1, and the test results are shown in FIG. 1 .
  • the all-solid-state battery made in Example 1 is a 2032-type button battery.
  • the battery is subjected to a constant current charge-discharge test at 0.5C.
  • the charge-discharge voltage range is 2–4.2V, and the test temperature is 25°C.
  • Comparative Example 7 the conductivity and stability of Comparative Example 7 are much lower than that of Example 1, and the reason may be that Cl, Br, and I in the electrolyte of Comparative Example 7 will affect the battery system.
  • the borohydride ion proposed in the present invention can controllably replace sulfur, and the substitution ratio can be controlled by changing the ratio of raw materials, and in the raw materials, all Cl, Br, and I elements that are easy to affect the battery life are replaced, so that the electrolyte can be used at the same time. With high conductivity and high stability.
  • Example 1 5.93 Comparative example 1 0.97 Comparative example 2 0.39 Comparative example 3 0.31 Comparative example 4 0.23 Comparative example 5 0.27 Comparative example 6 0.26 Comparative example 7 0.22
  • the present invention has the following beneficial effects:
  • the prepared solid electrolyte material has better chemical stability after doping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种硫银锗矿型固态电解质的制备及其全固态电池应用。电解质通式为LiaMQ6-x(BH4)x,其中M为Sn、In、P、Si、Ge、As中的一种或者多种,Q为O、S、Se、Te中的一种或者多种,且1≤a≤9,0<x≤6。该电解质的制备方法包括:将Li2Q、P2Q5、MQ2、LiBH4混合球磨,得到初始固态电解质;进一步将初始固态电解质在真空石英管中热处理得到硫银锗矿型固态电解质。所制备电解质中硼氢离子的存在有助于提高其电导率及稳定性。

Description

一种硫银锗矿型固态电解质的制备及其全固态电池应用 技术领域
本发明属于能源材料技术领域,涉及一种应用于固态电池领域中固态电解质的制备方法,尤其涉及一种硫银锗矿型固态电解质Li aMQ 6-x(BH 4) x(其中M为Sn、In、P、Si、Ge、As中的一种或者多种,Q为O、S、Se、Te中的一种或者多种,且1≤a≤9,0<x≤6)的制备方法及其在全固态电池应用。
背景技术
锂离子电池作为一种高效的储能系统,已经被大规模应用于消费电子和电力运输。然而,传统的锂离子电池难以满足人们对电池能量密度的日益增长的需求,以及,锂离子电池动力汽车的频繁起火爆炸引起的人们对其安全性的担忧。鉴于此,以无机固态电解质取代传统锂离子电池中的有机液体电解质,从而制备全固态电池,引起了人们极大的关注。由于无机固态电解质具有的一些性能,例如广阔的电化学稳定窗口,合适的锂离子电导率,高热稳定性,高机械性能等使得基于它的全固态电池具有更高的能量密度和超高的安全性能。
在无机固态电解质中,人们对硫银锗矿型固态电解质研究较多,由于其具有可媲美液态电解质的锂离子电导率,以及相对较好的氧化还原稳定性。然而目前报道的硫银锗矿型固态电解质还是存在锂离子电导率偏低,以及与金属锂易反应等问题。因此,开发新型的硫银锗矿型固态电解质显得尤为重要。诸多文献报道,硼氢化锂类化合物具有高离子电导率以及氧化还原稳定性,因此,将硼氢离子引入到硫银锗矿型固态电解质可显著提高它的锂离子电导率以及氧化还原稳定性。
同时公告号为CN201910646574的中国专利“核壳结构的硫化物固体电解质及制备方法和固态电池”公开了一种核壳结构的硫化物固体电解质及制备方法,其技术方案为一种核壳结构的硫化物固体电解质,包括核壳颗粒粒度为0.5~10μm,核壳颗粒包括内核和包覆内核的壳层,内核为硫化物固体电解质材料,壳层厚度小于100nm,壳层为硫化物固体电解质材料经外部氧化物氧化,其部分P-S键部分或者全部被氧化替代为P-O键,保证硫化物固体电解质高离子电导率优势,并进一步提高硫化物固体电解质对高氧化性的正极活性材料的电化学稳定性。但其不足之处在于硫化物固体电解质的P-S键通 过外部氧化物氧化过程非常难以控制,过少的P-S键氧化难以起到保护的效果,而过多的P-S键氧化又会导致电解质的电导率急剧下降。
发明内容
本发明的目的在于提供一种硫银锗矿型固态电解质Li aMQ 6-x(BH 4) x(其中M为Sn、In、P、Si、Ge、As中的一种或者多种,Q为O、S、Se、Te中的一种或者多种,且1≤a≤9,0<x≤6)的制备方法及其全固态电池应用。基于该固态电解质的全固态电池,具有高安全性,高能量密度,优异的循环稳定性。
本发明的目的是通过以下技术方案来实现的:
2、本发明涉及一种硫银锗矿型固态电解质,其化学结构式为:Li aMQ 6-x(BH 4) x,其中M为Sn、In、P、Si、Ge、As中的一种或者多种,Q为O、S、Se、Te中的一种或者多种,且1≤a≤9,0<x≤6。
作为本发明的一个实施方案,所述固态电解质的原料包含以下成分:
Li源:LiH、Li 2O、Li 2O 2、Li 2S 2、Li 2S、Li 2Se、Li 2Se 2、Li 2Te、Li 2Te 2、LiBH 4中的一种或多种组合物;
Q源:Q、H 2Q、P 2Q 5、P 4Q 9、P 4Q 3、Li 2Q 2、Li 2Q中的一种或多种组合物;
M源为:P、P 2Q 5、P 4Q 9、P 4Q 3、P 4Q 6、P 4Q 5、In 2Q 3、SnQ 2、GeQ 2、SiQ 2、As 2Q 3中的一种或多种组合物。
作为本发明的一个实施方案,所述固态电解质中的Q源与M源的质量比为1:1~8:1。
作为本发明的一个实施方案,所述的固态电解质的厚度为200–800μm。
本发明还涉及一种固态电解质的制备方法,所述方法包括如下步骤:
S1、将Li 2Q、P 2Q 5、MQ 2、LiBH 4混合后球磨,得到初始固态电解质粉末;
S2、将步骤S1得到的初始固态电解质粉末,在300–800MPa下压片,得到初始固态电解质片;
S3、将步骤S2得到的初始固态电解质片密封在石英管或玻璃管中,并真空封管(~10 –4Pa);然后进行热处理,处理温度为550℃–650℃,时间12–48h,冷却后得到硫银锗矿型固态电解质。
作为本发明的一个实施方案,步骤S1中,所述的球磨的转速为550–650rpm,球磨时间为24–48h。在一些实施例中,所述的球磨为高能行星球磨。
本发明还涉及一种固态电解质在全固态电池中的应用。
本发明还涉及一种全固态电池,包括正极部分、负极部分和电解质部分,所述正极 部分、负极部分、电解质部分中至少一者包括所述的固态电解质。
作为本发明的一个实施方案,所述正极部分由正极活性物质和所述的固态电解质混合构建,正极活性物质为尖晶石型过渡金属氧化物、层状结构的锂过渡金属氧化物、橄榄石中的一种或几种的混合物。
本发明提供的全固态电池制备方法首先制备正极,将电极材料,导电炭黑以及固态电解质按照一定的比例混合,并将其研磨混合均匀。电极材料复合固态电解质的原因是为了降低全固态电池内阻。其次,将固态电解质粉末放置在压片模具中,压制成固态电解质片,之后将正极片放在固态电解质的一侧,并加压力压制,最后在固态电解质的另一侧附上锂箔,压制成三明治结构的全固态电池。
作为本发明的一个实施方案,所述固态电池是通过包括如下步骤的方法制备而得:
A1、将正极活性物质、导电炭黑以及固态电解质混合,将其研磨均匀后得到正极粉末;将正极粉末分散于4%的聚偏氟乙烯-N-甲基吡咯烷酮溶液中,磁力搅拌均匀后涂覆在铝箔上;
A2、将固态电解质的粉末放置在压片模具中,压制成固态电解质片,之后将正极片放在固态电解质的一侧,并加压力压制,最后在固态电解质的另一侧附上负极,压制成全固态电池。
作为本发明的一个实施方案,所述正极部分中的固态电解质的重量占总重量的百分比为0~40wt%。在一些实施例中为1~40wt%。
作为本发明的一个实施方案,所述正极活性物质为LiCoO 2、LiFePO 4、LiNi xCo yMn 1-x-yO 2、LiNi xCo yAl 1-x-yO 2、LiFe xMn 1-xPO 4、LiNi 0.5Mn 1.5O 4中的一种或两种以上的混合物;其中,0<x<1,0<y<1且x+y<1。
作为本发明的一个实施方案,所述负极部分由负极活性物质和所述的固态电解质混合构建,负极活性物质为碳系列材料、含Si碳系材料或橄榄石结构过渡金属材料;所述碳系列材料为人造石墨、天然石墨、硬碳或石墨烯;所述橄榄石结构过渡金属材料为Li 4Ti 5O 12或LiNbTi 2O 7
本发明中制备的新型硫银锗矿型固态电解质,具有高的离子电导率和化学稳定性。基于其制备的全固态电池,具有高循环稳定性、高能量密度、高安全性。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为根据实施例1所制备的Li 6.4P 0.6Sn 0.2In 0.2S 5(BH 4)固态电解质的XRD图;
图2为根据实施例1所制备的Li 6.4P 0.6Sn 0.2In 0.2S 5(BH 4)固态电解质的首次充放电曲线图;
图3为根据实施例1所制备的全固态电池循环曲线;
图4为根据实施例1与对比例1-7的容量电压的充放电曲线;
图5为根据实施例1与对比例1-7的电导率曲线;其中,A为离子电导率阻抗图;B为离子电导率折线图。
具体实施方式
下面结合实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干调整和改进。这些都属于本发明的保护范围。
实施例1
本实施例涉及Li 6.4P 0.6Sn 0.2In 0.2S 5(BH 4)硫银锗矿型固态电解质及其制备;包括如下步骤:
(1)确定a的值为6.4,将适量摩尔比的Li 2S、P 2S 5、SnS 2、In 2S 3、LiBH 4混合并高能行星球磨,高能行星球磨的转速和时间是550rpm和24h,从而得到初始固态电解质材料。
(2)将步骤(1)得到的粉末40mg放置于12mm直径的压片模具中,在600MPa压制成固态电解质片。
(3)将步骤(2)得到的片状电解质500mg在氩气的氛围下放入石英管中,抽真空后(~10 –4Pa)封管。
(4)将步骤(3)所得的固态电解质片在550℃下热处理12h,得到硫银锗矿型固态电解质材料。
(5)将步骤(4)所得的固态电解质材料、LiNi 0.8Mn 0.1Co 0.1O 2和石墨以1:8:1的比例混合,将其研磨均匀后得到正极粉末。将正极粉末溶解于4%的聚偏氟乙烯-N-甲基吡咯烷酮溶液中,磁力搅拌均匀后涂覆在铝箔上。
(6)将硫化物固态电解质材料的粉末放置在压片模具中,压制成固态电解质片,之后将正极片放在固态电解质的一侧,并加压力压制,最后在固态电解质的另一侧附上锂箔,压制成全固态电池。
对比例1
原料不含有P 2S 5、In 2S 3,其余同实施例1。
对比例2
原料不含有P 2S 5、SnS 2,其余同实施例1。
对比例3
原料不含有SnS 2、In 2S 3,其余同实施例1。
对比例4
原料不含有SnS 2,其余同实施例1。
对比例5
原料不含有In 2S 3,其余同实施例1。
对比例6
原料不含有P 2S 5,其余同实施例1。
对比例7
原料中用InCl 3替换In 2S 3,其余同实施例1。
性能测试
将上述实施例1以及对比例1~6制成的全固态电池在手套箱中装置于专门的电池测试装置中测试电池性能,同时将组装好的电池进行0.5C恒流充放电测试,充放电区间为2–4.2V,测试温度为25℃环境的室温中。
对实施例1中制备得到的固态电解质进行XRD测试,测试结果如图1。实施例1中制成的全固态电池为2032型号的纽扣电池,将电池在0.5C下进行恒电流充放电测试,充放电电压区间为2–4.2V,测试温度为25℃,首次充放电曲线如图2,充放电循环如图3。比较实施例1与对比例1-7的电导率和稳定性;如图4和图5和表1所示,由表1可知,实施例1的电导率远高于各对比例,且实施例1达到了5.93mS/cm 2。由图4可知,实施例的放电容量达到0.22mAh,远高于对比例中最高的0.19mAh。进一步的,对比例7的电导率和稳定性远低于实施例1,其原因可能在于对比例7电解质中的Cl、Br、I会影响电池系统。本发明提出的硼氢离子可控的取代硫,且取代的比例可以通过改变原料配比来控制,且在原材料中将易影响电池寿命的Cl、Br、I元素全部代替,从而使得电解质可以兼具高电导率以及高稳定性。
表1
电解质 电导率mS/cm 2
实施例1 5.93
对比例1 0.97
对比例2 0.39
对比例3 0.31
对比例4 0.23
对比例5 0.27
对比例6 0.26
对比例7 0.22
与现有技术相比,本发明具有如下有益效果:
(1)通过掺杂,在电解质的体系中产生更多的空位,增加了锂离子的传输通道,从而提高了固态电解质的离子电导率;
(2)所制备的固态电解质材料在掺杂后具有较好的化学稳定性;
(3)将所制的固态电解质应用于全固态电池,提高了电池的循环稳定性;
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (10)

  1. 一种硫银锗矿型固态电解质,其特征在于,其化学结构式为:Li aMQ 6-x(BH 4) x,其中M为Sn、In、P、Si、Ge、As中的一种或者多种,Q为O、S、Se、Te中的一种或者多种,且1≤a≤9,0<x≤6。
  2. 根据权利要求1所述的固态电解质,其特征在于,所述固态电解质的原料包含以下成分:
    Li源:LiH、Li 2O、Li 2O 2、Li 2S 2、Li 2S、Li 2Se、Li 2Se 2、Li 2Te、Li 2Te 2、LiBH 4中的一种或多种组合物;
    Q源:Q、H 2Q、P 2Q 5、P 4Q 9、P 4Q 3、Li 2Q 2、Li 2Q中的一种或多种组合物;
    M源为:P、P 2Q 5、P 4Q 9、P 4Q 3、P 4Q 6、P 4Q 5、In 2Q 3、SnQ 2、GeQ 2、SiQ 2、As 2Q 3中的一种或多种组合物。
  3. 根据权利要求1所述的固态电解质,其特征在于,所述固态电解质中的Q源与M源的质量比为1:1~8:1。
  4. 根据权利要求1所述的固态电解质,其特征在于,所述的固态电解质的厚度为200–800μm。
  5. 一种根据权利要求1~4中任一项所述的固态电解质的制备方法,其特征在于,所述方法包括如下步骤:
    S1、将Li 2Q、P 2Q 5、MQ 2、LiBH 4混合后球磨,得到初始固态电解质粉末;
    S2、将步骤S1得到的初始固态电解质粉末,在300–800MPa下压片,得到初始固态电解质片;
    S3、将步骤S2得到的初始固态电解质片密封在石英管或玻璃管中,并真空封管,封管压力小于10 –4Pa;然后进行热处理,处理温度为550℃–650℃,时间12–48h,冷却后得到硫银锗矿型固态电解质。
  6. 根据权利要求5所述的制备方法,其特征在于,步骤S1中,所述的球磨的转速为550–650rpm,球磨时间为24–48h。
  7. 一种根据权利要求1~4中任一项所述的固态电解质在全固态电池中的应用。
  8. 一种全固态电池,包括正极部分、负极部分和电解质部分,其特征在于,所述正极部分、负极部分、电解质部分中至少一者包括有权利要求1~4中任一项所述的固态电解质。
  9. 根据权利要求8所述的全固态电池,其特征在于,所述正极部分由正极活性物质和所述固态电解质混合构建,正极活性物质为尖晶石型过渡金属氧化物、层状结构的锂过渡金属氧化物、橄榄石中的一种或几种的混合物。
  10. 根据权利要求9所述的全固态电池,其特征在于,所述正极活性物质为LiCoO 2、LiFePO 4、LiNi xCo yMn 1-x-yO 2、LiNi xCo yAl 1-x-yO 2、LiFe xMn 1-xPO 4、LiNi 0.5Mn 1.5O 4中的一种或两种以上的混合物;其中,0<x<1,0<y<1且x+y<1。
PCT/CN2022/113369 2021-09-01 2022-08-18 一种硫银锗矿型固态电解质的制备及其全固态电池应用 WO2023030025A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111022905.5A CN113871702A (zh) 2021-09-01 2021-09-01 一种硫银锗矿型固态电解质的制备及其全固态电池应用
CN202111022905.5 2021-09-01

Publications (1)

Publication Number Publication Date
WO2023030025A1 true WO2023030025A1 (zh) 2023-03-09

Family

ID=78989129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113369 WO2023030025A1 (zh) 2021-09-01 2022-08-18 一种硫银锗矿型固态电解质的制备及其全固态电池应用

Country Status (2)

Country Link
CN (1) CN113871702A (zh)
WO (1) WO2023030025A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113871702A (zh) * 2021-09-01 2021-12-31 上海屹锂新能源科技有限公司 一种硫银锗矿型固态电解质的制备及其全固态电池应用
CN114709474B (zh) * 2022-04-28 2023-07-11 上海屹锂新能源科技有限公司 一种铋掺杂硫银锗矿型硫化物固态电解质及其制备方法
CN114789993B (zh) * 2022-05-05 2024-01-30 上海屹锂新能源科技有限公司 一种改性硫银锗矿型化物固态电解质及其制备方法和应用
CN114933331B (zh) * 2022-05-13 2023-02-17 上海屹锂新能源科技有限公司 一种硫化物固态电解质及其制备方法
CN115051027A (zh) * 2022-07-27 2022-09-13 燕山大学 一种含卤化锂原位析出相的锂硫银锗矿型固态电解质及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110081580A1 (en) * 2009-10-02 2011-04-07 Sanyo Electric Co., Ltd. Solid-state lithium secondary battery and method for producing the same
CN108598252A (zh) * 2018-06-07 2018-09-28 上海大学 硫银锗矿型热电材料及其制备方法
CN113104813A (zh) * 2021-04-08 2021-07-13 上海大学 一种硫化物固态电解质及其制备方法、全固态电池
CN113871702A (zh) * 2021-09-01 2021-12-31 上海屹锂新能源科技有限公司 一种硫银锗矿型固态电解质的制备及其全固态电池应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107112065B (zh) * 2014-12-22 2019-07-23 三菱瓦斯化学株式会社 离子导体及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110081580A1 (en) * 2009-10-02 2011-04-07 Sanyo Electric Co., Ltd. Solid-state lithium secondary battery and method for producing the same
CN108598252A (zh) * 2018-06-07 2018-09-28 上海大学 硫银锗矿型热电材料及其制备方法
CN113104813A (zh) * 2021-04-08 2021-07-13 上海大学 一种硫化物固态电解质及其制备方法、全固态电池
CN113871702A (zh) * 2021-09-01 2021-12-31 上海屹锂新能源科技有限公司 一种硫银锗矿型固态电解质的制备及其全固态电池应用

Also Published As

Publication number Publication date
CN113871702A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
WO2023030025A1 (zh) 一种硫银锗矿型固态电解质的制备及其全固态电池应用
CN110504432B (zh) 镍钴锰酸锂复合材料及其制备方法、锂电池正极及其制备方法、锂电池和供电装置
CN107452954B (zh) 一种固态电池用的富锂锰基复合正极材料及其制备方法
EP2630686B1 (en) Cathode material and lithium ion battery therefrom
WO2023030026A1 (zh) 一种硫化物固态电解质材料制备方法和应用
CN107017388A (zh) 一种用于固态锂离子电池的复合正极材料的制备方法
CN113097559B (zh) 一种卤化物固态电解质及其制备方法和应用、一种全固态锂离子电池
CN114789993B (zh) 一种改性硫银锗矿型化物固态电解质及其制备方法和应用
CN109841898B (zh) 固态电解质及其制法与包含其的电化学装置及电子装置
CN114649562B (zh) 一种iia族元素以及双卤素掺杂的硫化物固态电解质的制备及其应用
CN104659412A (zh) 含平面三角形基团的锂碳硼氧化物固态电解质材料和电池
CN102244232A (zh) 高容量、高压实密度复合钴酸锂正极材料的制备方法
WO2023217260A1 (zh) 一种硫化物固态电解质及其制备方法和应用
CN115207340A (zh) 一种钠离子电池层状氧化物正极材料及其制备方法和应用
CN103050698A (zh) 一种磷酸钒铁锂正极材料及其制备方法
CN102709548A (zh) 一种锂离子电池多元正极材料及其制备方法
CN112701276A (zh) 一种四元多晶正极材料及其制备方法和应用
CN102491410A (zh) 一种锂离子电池负极材料氧缺位钛酸锂的合成方法
CN111313010A (zh) 一种高容量锂离子电池正极材料磷酸铁锂的制备方法
JP7223367B2 (ja) 全固体二次電池用電解質
Chang et al. Study on synthesis of spinel LiNi0. 5Mn1. 5O4 cathode material and its electrochemical properties by two‐stage roasting
JP6576033B2 (ja) リチウムイオン二次電池、およびリチウムイオン二次電池用正極活物質の製造方法
CN114005982A (zh) 一种原位功能性包覆的正极材料及其制备方法和全固态锂电池
CN116741983A (zh) 一种正极材料及其制备方法和应用
CN116565302A (zh) 一种改性固态电解质及其制备方法和锂二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22863165

Country of ref document: EP

Kind code of ref document: A1