WO2023217260A1 - 一种硫化物固态电解质及其制备方法和应用 - Google Patents

一种硫化物固态电解质及其制备方法和应用 Download PDF

Info

Publication number
WO2023217260A1
WO2023217260A1 PCT/CN2023/093799 CN2023093799W WO2023217260A1 WO 2023217260 A1 WO2023217260 A1 WO 2023217260A1 CN 2023093799 W CN2023093799 W CN 2023093799W WO 2023217260 A1 WO2023217260 A1 WO 2023217260A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
solid electrolyte
sulfide solid
battery
sulfide
Prior art date
Application number
PCT/CN2023/093799
Other languages
English (en)
French (fr)
Inventor
张希
朱金辉
陈振营
Original Assignee
上海屹锂新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海屹锂新能源科技有限公司 filed Critical 上海屹锂新能源科技有限公司
Publication of WO2023217260A1 publication Critical patent/WO2023217260A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/006Compounds containing, besides vanadium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • C01G35/006Compounds containing, besides tantalum, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the field of energy technology, and specifically relates to a sulfide solid electrolyte and its preparation method and application. In particular, it relates to a preparation method of a VB group element and halogen-doped sulfide solid electrolyte and its application in a full battery.
  • Lithium-ion batteries have been widely used in portable electronics and are attracting increasing attention in applications such as energy storage systems and electric vehicles. All-solid-state batteries based on solid electrolytes are candidates for developing next-generation batteries with high energy density and safety. In addition, solid electrolytes significantly improve safety by replacing the flammable and volatile liquid electrolytes in traditional lithium-ion batteries.
  • solid electrolytes significantly improve safety by replacing the flammable and volatile liquid electrolytes in traditional lithium-ion batteries.
  • sulfide solid electrolytes have been widely studied due to their high ionic conductivity. Due to their good mechanical properties, sulfide solid electrolytes also offer great advantages in processing.
  • LPSC-type sulfide solid-state electrolytes have been considered as one of the promising sulfide electrolytes due to their high ionic conductivity and air stability.
  • LPSC-type sulfide solid electrolytes have many problems such as poor compatibility with negative electrode materials and poor cycle stability. These problems have become a major challenge on the road to future practical applications.
  • the main purpose of the present invention is to overcome the shortcomings of the existing technology and provide a sulfide solid electrolyte and its preparation method and application.
  • the sulfide solid electrolyte material provided by the present invention partially replaces P elements with VB group elements.
  • the invention provides a sulfide solid electrolyte.
  • the composition of the sulfide solid electrolyte is Li 6 P 1-a (M) a S 5 X; M is one or more of V, Nb, and Ta elements, X is one or more of F, Cl, and Br.
  • the doping of VB group M elements can produce a layer of M 2 O 5 on the surface of the sulfide electrolyte, which improves the cycle stability of the electrolyte and has good compatibility with lithium anodes.
  • the proportion of lithium element in the crystal lattice increases as the doping amount of M element increases.
  • the value range of a is 0 ⁇ a ⁇ 1.
  • the present invention also provides a method for preparing the sulfide solid electrolyte described in the previous solution, which includes the following steps:
  • the sheet-shaped solid is sintered at high temperature under vacuum to obtain the sulfide solid electrolyte.
  • the raw materials of the solid electrolyte in step S1 include the following components:
  • Li source one or more of LiH, Li 2 S 2 , and Li 2 S;
  • S source one or more of S, H 2 S, P 2 S 5 , P 4 S 9 , P 4 S 3 , Li 2 S 2 , and Li 2 S;
  • P source one or more of P, P 2 S 5 , P 4 S 9 , P 4 S 3 , P 4 S 6 , P 4 S 5 ;
  • X source one or more of LiCl, LiBr, LiI, LiF, VCl 5 , NbCl 5 , and TaCl 5 ;
  • M source one or more of VF 5 , NbCl 5 , and TaCl 5 .
  • step S1 the rotation speed of the ball milling process is 380-1500rpm, and the ball milling time is 7-48h. Before ball milling, grind manually and then mechanically. The manual grinding time is 15-30 minutes.
  • the mechanical ball mill uses a planetary ball mill.
  • the pressing pressure is 300-500MPa. Too much pressure can easily damage the mold, and too little pressure can easily lead to insufficient compaction, resulting in the inability to form effective crystal phases during the sintering process.
  • the thickness of the sheet solid is 200-1000 ⁇ m. Excessive thickness can easily lead to difficulty in demolding and insufficient sintering during the sintering process. Excessive thickness can easily cause the electrolyte sheet to break.
  • the screening uses a sieve with a size of 300-1200 mesh to screen the precursor. body powder.
  • a grinding step is also included before screening. Specifically, use an agate mortar to grind.
  • step S3 specifically includes: sealing the sheet solid in a vacuum quartz tube, and then placing it in a muffle furnace for high-temperature sintering to obtain the sulfide solid electrolyte.
  • the high-temperature sintering temperature is 350-700°C and the time is 1-8 hours.
  • the heating rate is 0.5-5°C/min. If the temperature is too high or too low, it will affect the formation of the effective crystal phase of the target electrolyte, and if the temperature rise rate is too fast or too slow, it will also affect the formation of the crystal phase.
  • step S3 after the high-temperature sintering is completed, the temperature is lowered to room temperature at a cooling rate of 0.5-5°C/min.
  • steps S1-S3 the weighing, uniform mixing, ball milling, screening, pressing and high-temperature sintering are all performed under the protection of an inert atmosphere.
  • the present invention also provides the application of the sulfide solid electrolyte described in the previous scheme or the sulfide solid electrolyte prepared by the preparation method described in the previous scheme in the preparation of full batteries.
  • the present invention also provides a solid-state battery.
  • the solid-state battery includes a battery positive electrode part, a battery negative electrode part, and a battery electrolyte part; at least one of the battery positive electrode part, the battery negative electrode part, and the battery electrolyte part includes the sulfide as described in the previous solution. solid electrolyte.
  • the weight percentage of the solid electrolyte in the positive electrode part of the battery to the total weight is 0-40 wt%.
  • the positive active materials in the positive electrode part of the battery are LiCoO 2 , LiFePO 4 , LiNix Co y Mn 1-xy O 2 , LiN -x One or a mixture of two or more PO 4 .
  • the negative electrode part is composed of a mixture of a negative electrode active material and the above-mentioned sulfide solid electrolyte, and the negative electrode active material is a lithium series alloy negative electrode material.
  • the present invention introduces halogen elements and VB elements into the sulfide solid electrolyte to obtain a sulfide electrolyte.
  • the process required for the preparation of the electrolyte is simple.
  • the ionic conductivity reaches the same level as or even better than electrolytes in the same field.
  • the present invention prepares a sulfide solid electrolyte doped with a small amount of halogen elements and VB elements, which has good room temperature ion conductivity, cycle stability and good processability.
  • the present invention has the following beneficial effects:
  • Figure 1 is a cycle efficiency diagram of Example 1, Example 2 and Comparative Example 1;
  • Figure 2 is an impedance diagram of Example 1 and Comparative Example 1.
  • This embodiment provides a Li 6 P 0.8 V 0.2 S 5 F solid electrolyte.
  • the specific steps of its preparation method are as follows:
  • the temperature was raised to 550°C at a rate of 0.5/min, maintained for 7 hours, and after cooling, Li 6 P 0.8 V 0.2 S 5 F solid electrolyte powder was obtained. From XRD, it can be found that the solid electrolyte powder prepared by this method is a sulfide-germanite cubic phase with good crystal form and high purity. Press the solid electrolyte powder under a pressure of 580Mpa and keep the pressure for 3 minutes to obtain a solid electrolyte tablet. All the aforementioned preparation processes were carried out under an argon protective atmosphere.
  • the lithium conductivity of the solid electrolyte sheet at room temperature is 5 ⁇ 10 -3 S/cm.
  • AC impedance of sulfide electrolytes was measured using a multi-channel electrochemical workstation at temperatures of 298-375K and frequencies from 1MHz to 10Hz).
  • the cycle efficiency diagram is shown in Figure 1. It can be seen from Figure 1 that in 50 cycles, the full power The pool has excellent stability.
  • the impedance diagram is shown in Figure 2. It can be seen from Figure 2 that the solid electrolyte sheet prepared in Example 1 has high ionic conductivity.
  • This embodiment provides a Li 6 P 0.8 Ta 0.2 S 5 F solid electrolyte.
  • the specific steps of its preparation method are as follows:
  • the temperature was raised to 550°C at a rate of 0.5/min, maintained for 7 hours, and after cooling, Li 6 P 0.8 Ta 0.2 S 5 F solid electrolyte powder was obtained. From XRD, it can be found that the solid electrolyte powder prepared by this method is a sulfide-germanite cubic phase with good crystal form and high purity. Press the solid electrolyte powder under a pressure of 580Mpa and keep the pressure for 3 minutes to obtain a solid electrolyte tablet. All the aforementioned processes were carried out under an argon protective atmosphere. The lithium conductivity of the solid electrolyte sheet at room temperature is 5.3 ⁇ 10 -3 S/cm. (Measurement of AC impedance of sulfide electrolytes using a multi-channel electrochemical workstation at temperatures of 298-375K and frequencies from 1MHz to 10Hz)
  • a Li 6 PS 5 F solid electrolyte the specific steps of its preparation method are as follows:
  • the temperature was raised to 550°C at a rate of 0.5/min, maintained for 7 hours, and after cooling, Li 6 PS 5 F solid electrolyte powder was obtained. Press the solid electrolyte powder under a pressure of 580Mpa and keep the pressure for 3 minutes to obtain a solid electrolyte tablet. All the aforementioned processes were carried out under an argon protective atmosphere.
  • the lithium conductivity of the solid electrolyte sheet provided in Comparative Example 1 is 1.5 ⁇ 10 -3 S/cm at room temperature.
  • the lithium conductivity of the solid electrolyte sheet provided in Comparative Example 2 is 1.1 ⁇ 10 -3 S/cm at room temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

本发明具体涉及一种硫化物固体电解质及其制备方法和应用。本发明的电解质材料Li6P1-a(M)aS5X(M为钒,铌,钽元素中的一种或多种组合物,X=F,Cl,Br中一种或多种)。本发明提供的硫化物固体电解质材料用VB族元素部分替代P元素,在保证硫化物电解质材料具有良好硫银锗矿晶相的情况下对钒,铌,钽等元素的可控掺杂提高了与锂系列负极的相容性,具有更好的电化学稳定性,进而提高了硫化物全固态电池的循环稳定性。

Description

一种硫化物固态电解质及其制备方法和应用
本申请要求于2022年05月13日提交中国专利局、申请号为CN202210519948.2、发明名称为“一种硫化物固态电解质及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于能源技术领域,具体涉及一种硫化物固态电解质及其制备方法和应用,尤其涉及一种VB族元素以及卤素掺杂的硫化物固态电解质的制备方法及其在全电池中的应用。
背景技术
锂离子电池已广泛用于便携式电子产品,并在储能系统和电动汽车等应用中引起越来越多的关注。基于固态电解质的全固态电池是开发高能量密度和安全性的下一代电池的候选者。此外,固态电解质通过替代传统锂离子电池中易燃易挥发的液态电解质,明显提高了安全性。在各种类型的固态电解质中,硫化物固态电解质由于其高离子电导率而被广泛研究。由于其良好的机械性能,硫化物固态电解质在加工方面也具有很大的优势。
最近,LPSC型硫化物固态电解质因其高离子电导率和空气稳定性而被认为是有前途的硫化物电解质之一。然而LPSC型硫化物固态电解质存在与负极材料相容性不佳,循环稳定性差等诸多问题。这些问题成为未来实际应用道路上的一大挑战。
发明内容
本发明的主要目的在于克服现有技术的不足,提供一种硫化物固态电解质及其制备方法和应用。本发明的VB族元素以及卤素掺杂的硫化物固态电解质,其组成为Li6P1-a(M)aS5X(M为钒,铌,钽元素中的一种或多种组合物,X=F,Cl,Br中一种或多种)。本发明提供的硫化物固体电解质材料用VB族元素部分替代P元素,在保证硫化物电解质材料具有良好硫银锗矿晶相的情况下,钒、铌、钽等元素的可控掺杂提高了与锂系列负极的相容性,更好的电化学稳定性。进而提高了硫化物全固态电池的循环稳定性。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种硫化物固态电解质,所述硫化物固态电解质的组成为Li6P1-a(M)aS5X;M为V、Nb、Ta元素中的一种或多种,X为F、Cl、Br中一种或多种。
相较于其它金属元素,通过VB族M元素的掺杂可以在硫化物电解质表面产生一层M2O5,提高了电解质的循环稳定性能,而且与锂负极有着良好的相容性。晶格中锂元素的占比随着M元素的掺杂量增大而增大。
优选的,a的取值范围为0<a<1。
本发明还提供了前述方案所述的硫化物固态电解质的制备方法,包括如下步骤:
S1、按Li6P1-a(M)aS5X化学计量比称取原料:Li源、P源、S源、M源以及X源,混合均匀后,进行球磨处理,得到硫化物固态电解质前驱体粉末;
S2、将前驱体粉末筛分,然后将粉末压制成片状固体;
S3、所述片状固体真空高温烧结,得到所述硫化物固态电解质。
优选的,步骤S1中所述固态电解质的原料包括以下成分:
Li源:LiH、Li2S2、Li2S中的一种或多种;
S源:S、H2S、P2S5、P4S9、P4S3、Li2S2、Li2S中的一种或多种;
P源:P、P2S5、P4S9、P4S3、P4S6、P4S5中的一种或多种;
X源:LiCl、LiBr、LiI、LiF、VCl5、NbCl5、TaCl5中的一种或多种;
M源:VF5、NbCl5、TaCl5中的一种或多种。
作为本发明的一个实施方案,步骤S1中,所述球磨处理的转速为380-1500rpm,球磨时间为7-48h。球磨前先手工研磨后机械球磨,手工研磨时间15-30min。机械球磨采用行星式球磨机。
优选的,步骤S2中,所述压制的压力为300-500MPa。压力过大容易损坏模具,压力过小容易导致压结不充分,造成烧结过程中不能形成有效晶相。
优选的,步骤S2中,所述片状固体的厚度为200-1000μm。厚度过大容易导致脱模困难以及容易导致烧结过程中烧结不充分,厚度过小容易导致电解质片破碎断裂。
优选的,步骤S2中,所述筛分采用尺寸为300-1200目的筛子筛分前驱 体粉末。
优选的,筛分前还包括研磨步骤。具体为采用玛瑙研钵研磨。
优选的,步骤S3具体为:将所述片状固体封于真空石英管中,然后置于马弗炉中高温烧结,得到所述硫化物固态电解质。
优选的,步骤S3中,所述高温烧结的温度为350-700℃,时间为1-8h。升温速率为0.5-5℃/min。温度过高或过低都会影响目标电解质有效晶相的形成,升温速率过快或过慢也会影响晶相的形成。
优选的,步骤S3中,所述高温烧结完成后以0.5-5℃/min的降温速率将温度降至室温。
优选的,步骤S1-S3中,所述称取、混合均匀、球磨处理、筛分、压制和高温烧结均在惰性气氛保护的条件下进行。
本发明还提供前述方案所述的硫化物固态电解质或前述方案所述的制备方法制备得到的硫化物固态电解质在全电池制备中的应用。
本发明还提供一种固态电池,所述固态电池包括电池正极部分、电池负极部分和电池电解质部分;所述电池正极部分、电池负极部分、电池电解质部分中至少有一项包括前述方案所述的硫化物固态电解质。
优选的,所述电池正极部分中的固态电解质的重量占总重量的百分比为0-40wt%。所述电池正极部分中的正极活性物质为LiCoO2、LiFePO4、LiNixCoyMn1-x-yO2、LiNixCoyAl1-x-yO2、LiNi0.5Mn1.5O4、LiFexMn1-xPO4中的一种或两种以上的混合物。
优选的,所述负极部分由负极活性物质和上述硫化物固态电解质混合构建,负极活性物质为锂系列合金负极材料。
本发明将卤族元素以及VB族元素引入到硫化物固态电解质获得的硫化物电解质。该电解质制备所需工艺流程简单。离子电导率达到同领域电解质相同水平甚至更优。通过掺卤族元素以及VB族元素引入提高了电池工作时的循环稳定性和电解质片延展性。总而言之,本发明制备了一种少量卤族元素以及VB族元素掺杂硫化物固态电解质具有良好的室温离子电导率和循环稳定性能以及良好的可加工性。
与现有技术相比,本发明具有如下有益效果:
1)通过掺杂VB族元素,提高了目标硫化物固态电解质的空气稳定性和循环稳定性。
2)所制备的硫化物固态电解质材料在掺杂卤素后在全固态电池中循环稳定性得到进一步提高。
3)制备正极时引入硫化物固态电解质,提高了电池整体电化学性能。
附图说明
图1为实施例1、实施例2与对比例1的循环效率图;
图2为实施例1与对比例1的阻抗图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。以下实例在本发明技术方案的前提下进行实施,提供了详细的实施方式和具体的操作过程,将有助于本领域的技术人员进一步理解本发明。需要指出的是,本发明的保护范围不限于下述实施例,在本发明的构思前提下做出的若干调整和改进,都属于本发明的保护范围。
实施例1
本实施例提供了一种Li6P0.8V0.2S5F固态电解质,其制备方法具体步骤如下:
按化学计量比Li2S:P2S5:VF5=3:0.4:0.2称取纯试剂Li2S、P2S5和VF5混合后手工研磨15分钟。放入氧化锆球磨罐,按质量比1:50加入氧化锆球球磨,球磨机转速设置为550rpm,球磨时间17个小时,随后刮下附着在罐壁上的样品,再用研钵手动研磨15min,经400目的筛子筛分后,可得到混合均匀的前驱体。然后用350MPa的压力压片(直径12mm)。装入石英管封管。以0.5/min的速率升温至550℃,保温7h,冷却后得到Li6P0.8V0.2S5F固态电解质粉末。从XRD可以发现,该方法制得的固态电解质粉末为硫银锗矿型立方相,晶型好,纯度高。将固态电解质粉末在580Mpa压力下压制,保压3min,可得固态电解质片。前述全部制备过程均在氩气保护气氛下进行。
室温下该固态电解质片的锂电电导率为5×10-3S/cm。(使用多通道电化学工作站在298-375K的温度下在1MHz至10Hz的频率下测量硫化物电解质的交流阻抗)。循环效率图如图1所示,由图1可以看出,在50个循环中,全电 池具有优异的稳定性。阻抗图如图2所示,由图2可以看出实施例1制备得到的固态电解质片具有高离子电导率。
实施例2
本实施例提供了一种Li6P0.8Ta0.2S5F固态电解质,其制备方法具体步骤如下:
按化学计量比Li2S:P2S5:TaF5=3:0.4:0.2称取纯试剂Li2S、P2S5和VF5混合后手工研磨15分钟。放入氧化锆球磨罐,按质量比1:50加入氧化锆球球磨,球磨机转速设置为550rpm,球磨时间17个小时,随后刮下附着在罐壁上的样品,再用研钵手动研磨15min,经400目的筛子筛分后,可得到混合均匀的前驱体。然后用350MPa的压力压片(直径12mm)。装入石英管封管。以0.5/min的速率升温至550℃,保温7h,冷却后得到Li6P0.8Ta0.2S5F固态电解质粉末。从XRD可以发现,该方法制得的固态电解质粉末为硫银锗矿型立方相,晶型好,纯度高。将固态电解质粉末在580Mpa压力下压制,保压3min,可得固态电解质片。前述全部过程均在氩气保护气氛下进行。室温下该固态电解质片的锂电电导率为5.3×10-3S/cm。(使用多通道电化学工作站在298-375K的温度下在1MHz至10Hz的频率下测量硫化物电解质的交流阻抗)
对比例1
一种Li6PS5F固态电解质,其制备方法具体步骤如下:
按所需化学计量比称取纯试剂Li2S、P2S5、LiF混合后手工研磨15分钟。放入氧化锆球磨罐,按质量比1:50加入氧化锆球球磨,球磨机转速设置为550rpm,球磨时间17个小时,随后刮下附着在罐壁上的样品,再用研钵手动研磨15min,经400目的筛子筛分后,可得到混合均匀的前驱体。然后用350MPa的压力压片(直径12mm)。装入石英管封管。以0.5/min的速率升温至550℃,保温7h,冷却后得到Li6PS5F固态电解质粉末。将固态电解质粉末在580Mpa压力下压制,保压3min,可得固态电解质片。前述全部过程均在氩气保护气氛下进行。室温下对比例1所提供的固态电解质片的锂电电导率为1.5×10-3S/cm。
对比例2
一种Li6P0.8Sb0.2S5F硫化物固态电解质,其制备方法与实施例1相同,原料区别仅在于对比例2中原料为Li2S:P2S5:SbF5=3:0.4:0.2。
室温下对比例2所提供的固态电解质片的锂电电导率为1.1×10-3S/cm。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (21)

  1. 一种硫化物固态电解质,所述硫化物固态电解质的组成为Li6P1-a(M)aS5X;M为V、Nb、Ta元素中的一种或多种,X为F、Cl、Br中一种或多种。
  2. 根据权利要求1所述的硫化物固态电解质,其特征在于,a的取值范围为0<a<1。
  3. 根据权利要求2所述的硫化物固态电解质,其特征在于,a的取值范围为0<a≤0.2。
  4. 权利要求1~3任一项所述的硫化物固态电解质的制备方法,其特征在于,包括如下步骤:
    S1、按Li6P1-a(M)aS5X化学计量比称取原料:Li源、P源、S源、M源以及X源,混合均匀后,进行球磨处理,得到硫化物固态电解质前驱体粉末;0<a<1;
    S2、将所述前驱体粉末筛分,然后将粉末压制成片状固体;
    S3、将所述片状固体真空高温烧结,得到所述硫化物固态电解质。
  5. 根据权利要求4所述的制备方法,其特征在于,步骤S1中所述原料包括以下成分:
    Li源:LiH、Li2S2、Li2S中的一种或多种;
    S源:S、H2S、P2S5、P4S9、P4S3、Li2S2、Li2S中的一种或多种;
    P源:P、P2S5、P4S9、P4S3、P4S6、P4S5中的一种或多种;
    X源:LiCl、LiBr、LiI、LiF、VCl5、NbCl5、TaCl5中的一种或多种;
    M源:VF5、NbCl5、TaCl5中的一种或多种。
  6. 根据权利要求4所述的制备方法,其特征在于,步骤S1中,所述球磨处理的转速为380-1500rpm,时间为7-48h。
  7. 根据权利要求4所述的制备方法,其特征在于,步骤S1中,所述球磨处理前还包括手工研磨,所述手工研磨的时间为15~30min,所述手工研磨采用玛瑙研钵。
  8. 根据权利要求4或6所述的制备方法,其特征在于,步骤S1中,所述球磨采用行星式球磨机。
  9. 根据权利要求4所述的制备方法,其特征在于,步骤S2中,所述筛 分采用300~1200目的筛子。
  10. 根据权利要求4所述的制备方法,其特征在于,步骤S2中,所述压制的压力为300-500MPa。
  11. 根据权利要求4所述的制备方法,其特征在于,步骤S2中,所述片状固体的厚度为200-1000μm。
  12. 根据权利要求4所述的制备方法,其特征在于,步骤S3中,所述真空高温烧结的温度为350-700℃,时间为1-8h。
  13. 根据权利要求4或12所述的制备方法,其特征在于,步骤S3为:将所述片状固体封于真空石英管中,然后置于马弗炉中高温烧结,得到所述硫化物固态电解质。
  14. 根据权利要求12所述的制备方法,其特征在于,所述真空高温烧结的升温速率为0.5-5℃/min。
  15. 根据权利要求4所述的制备方法,其特征在于,步骤S3中,所述真空高温烧结后还包括以0.5-5℃/min的降温速率将温度降至室温。
  16. 根据权利要求4所述的制备方法,其特征在于,步骤S1~S3中,所述称取、混合均匀、球磨、筛分、压制和真空高温烧结均在惰性气氛保护的条件下进行。
  17. 一种根据权利要求1~3任一项所述的硫化物固态电解质或根据权利要求4~16任一项所述的制备方法制备得到的硫化物固态电解质在全电池制备中的应用。
  18. 一种固态电池,其特征在于,所述固态电池包括电池正极部分、电池负极部分和电池电解质部分;所述电池正极部分、电池负极部分、电池电解质部分中至少有一部分包括如权利要求1~3任一项所述的硫化物固态电解质或权利要求4~16任一项所述的制备方法制备得到的硫化物固态电解质。
  19. 根据权利要求18所述的固态电池,其特征在于,所述电池正极部分中所述固态电解质的重量占总重量的百分比为0~40wt%。
  20. 根据权利要求18所述的固态电池,其特征在于,所述电池正极部分中的正极活性物质为LiCoO2、LiFePO4、LiNixCoyMn1-x-yO2、 LiNixCoyAl1-x-yO2、LiNi0.5Mn1.5O4、LiFexMn1-xPO4中的一种或两种以上的混合物。
  21. 根据权利要求18所述的固态电池,其特征在于,所述电池负极部分由负极活性物质和权利要求1~3任一项所述硫化物固态电解质混合构建,所述负极活性物质为锂合金负极材料。
PCT/CN2023/093799 2022-05-13 2023-05-12 一种硫化物固态电解质及其制备方法和应用 WO2023217260A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210519948.2A CN114933331B (zh) 2022-05-13 2022-05-13 一种硫化物固态电解质及其制备方法
CN202210519948.2 2022-05-13

Publications (1)

Publication Number Publication Date
WO2023217260A1 true WO2023217260A1 (zh) 2023-11-16

Family

ID=82865059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093799 WO2023217260A1 (zh) 2022-05-13 2023-05-12 一种硫化物固态电解质及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114933331B (zh)
WO (1) WO2023217260A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114933331B (zh) * 2022-05-13 2023-02-17 上海屹锂新能源科技有限公司 一种硫化物固态电解质及其制备方法
CN117613371A (zh) * 2024-01-18 2024-02-27 中国第一汽车股份有限公司 固态电解质的制备方法、固态电解质及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085908A (zh) * 2019-04-30 2019-08-02 国联汽车动力电池研究院有限责任公司 高空气稳定性无机硫化物固体电解质及其制备方法与应用
JP2020031027A (ja) * 2018-08-24 2020-02-27 時空化学株式会社 Li2S−P2S5−SeS2系ガラスセラミックからなる全固体リチウム硫黄電池用固体電解質、前記固体電解質に適した正極材料及びこれらの製造方法、並びにこれらを含む全固体リチウム硫黄電池
US20200373609A1 (en) * 2019-05-21 2020-11-26 Samsung Electronics Co., Ltd. All-solid lithium secondary battery and method of charging the same
WO2021008360A1 (zh) * 2019-07-16 2021-01-21 宁德时代新能源科技股份有限公司 硫化物固态电解质片及其制备方法、含有该固态电解质片的电池及装置
CN113506911A (zh) * 2021-07-15 2021-10-15 山东威固新能源科技有限公司 一种硫化物固体电解质材料及其制备方法和应用、全固态锂电池
CN114933331A (zh) * 2022-05-13 2022-08-23 上海屹锂新能源科技有限公司 一种硫化物固态电解质及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560267B (zh) * 2013-11-01 2016-05-11 国家电网公司 全固态锂二次电池电解质材料、其制备方法及全固态锂二次电池
CN108604705B (zh) * 2015-12-04 2022-03-01 昆腾斯科普电池公司 含锂、磷、硫、碘的电解质和阴极电解液组成,用于电化学装置的电解质膜,及制备这些电解质和阴极电解液的退火方法
CN108155413A (zh) * 2018-01-12 2018-06-12 北京科技大学 二价碱土金属和钽共掺杂的Li7La3Zr2O12固体电解质材料及制备方法
CN109193026A (zh) * 2018-10-17 2019-01-11 浙江工业大学 一种硫银锗矿型硫化物固态电解质的制备方法
CN110459798B (zh) * 2019-07-17 2022-09-20 浙江锋锂新能源科技有限公司 核壳结构的硫化物固体电解质及制备方法和固态电池
NL2024177B1 (en) * 2019-11-07 2021-07-20 Univ Delft Tech Solid ionic conductive additive in electrodes for lithium-ion batteries using liquid electrolyte
CN111092262B (zh) * 2019-12-28 2021-04-20 横店集团东磁股份有限公司 一种掺杂型磷硫碘化物固态电解质及其制备方法和用途
CN111244535B (zh) * 2020-02-27 2022-07-08 浙江大学 对锂稳定性高的硫化物固体电解质材料及其制备方法和应用
CN111430688A (zh) * 2020-03-18 2020-07-17 蜂巢能源科技有限公司 固态电池及其制备方法和应用
CN111430808B (zh) * 2020-03-23 2022-07-29 广东东邦科技有限公司 一种具有掺杂物的含锂硫银锗矿固态电解质及其制备方法
CN113871702A (zh) * 2021-09-01 2021-12-31 上海屹锂新能源科技有限公司 一种硫银锗矿型固态电解质的制备及其全固态电池应用
CN113937351B (zh) * 2021-10-08 2023-09-22 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种硫银锗矿型硫化物锂离子固态电解质及其制备方法和应用
CN114361579B (zh) * 2021-12-30 2022-09-13 北京科技大学 一种低成本高效制备硫化物固态电解质的方法
CN114361580A (zh) * 2022-01-29 2022-04-15 华中科技大学 一种硫化物固态电解质、其制备和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020031027A (ja) * 2018-08-24 2020-02-27 時空化学株式会社 Li2S−P2S5−SeS2系ガラスセラミックからなる全固体リチウム硫黄電池用固体電解質、前記固体電解質に適した正極材料及びこれらの製造方法、並びにこれらを含む全固体リチウム硫黄電池
CN110085908A (zh) * 2019-04-30 2019-08-02 国联汽车动力电池研究院有限责任公司 高空气稳定性无机硫化物固体电解质及其制备方法与应用
US20200373609A1 (en) * 2019-05-21 2020-11-26 Samsung Electronics Co., Ltd. All-solid lithium secondary battery and method of charging the same
WO2021008360A1 (zh) * 2019-07-16 2021-01-21 宁德时代新能源科技股份有限公司 硫化物固态电解质片及其制备方法、含有该固态电解质片的电池及装置
CN113506911A (zh) * 2021-07-15 2021-10-15 山东威固新能源科技有限公司 一种硫化物固体电解质材料及其制备方法和应用、全固态锂电池
CN114933331A (zh) * 2022-05-13 2022-08-23 上海屹锂新能源科技有限公司 一种硫化物固态电解质及其制备方法

Also Published As

Publication number Publication date
CN114933331B (zh) 2023-02-17
CN114933331A (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
WO2023217260A1 (zh) 一种硫化物固态电解质及其制备方法和应用
CN107394155B (zh) 一种锂离子电池钴酸锂正极材料的掺杂改性方法
CN112397776B (zh) 一种Ga、Al共掺杂LLZO固态电解质、多元固态电池及其制备方法
CN104659412B (zh) 含平面三角形基团的锂碳硼氧化物固态电解质材料和电池
CN114789993B (zh) 一种改性硫银锗矿型化物固态电解质及其制备方法和应用
CN101800305B (zh) 一种在锂离子电池钛酸锂负极表面沉积硅薄膜的方法
Yang et al. Rapid preparation and performances of garnet electrolyte with sintering aids for solid-state Li–S battery
WO2023030025A1 (zh) 一种硫银锗矿型固态电解质的制备及其全固态电池应用
CN112838264A (zh) 一种固体电解质材料及其制备方法和固态锂电池
CN113097559B (zh) 一种卤化物固态电解质及其制备方法和应用、一种全固态锂离子电池
CN102760876A (zh) 铌酸盐及其复合材料与其在二次锂电池中的应用
CN114361580A (zh) 一种硫化物固态电解质、其制备和应用
CN110311100A (zh) 一种全固态锂电池及其制备方法
CN110931730B (zh) 一种铌酸钛负极材料及其制备方法和应用
CN110911733A (zh) 一种对锂稳定的硫化物固体电解质及其制备方法和带有该固体电解质的固态电池
CN113690434A (zh) 一种电子、碱金属离子混合传导的硫化物材料及其应用
CN114649562B (zh) 一种iia族元素以及双卤素掺杂的硫化物固态电解质的制备及其应用
CN109088057B (zh) 一种煅烧有机锡化合物制备锂电池负极添加剂的方法
CN113937277B (zh) 一种Na和Br共掺杂锂离子负极材料及其制备方法
CN115732751A (zh) 卤化物固态电解质材料、其制备方法及锂离子电池
CN114725494A (zh) 一种硫银锗矿型硫化物电解质及其制备方法
CN114744287A (zh) 一种硫化物固态电解质的制备方法及其应用
CN111864256B (zh) 硫化物固态电解质及全固态锂二次电池
CN113964390A (zh) 卤素离子掺杂llzo固体电解质及制备方法
KR102613606B1 (ko) 황화물계 고체 전해질, 이의 제조방법 및 이로부터 제조된 전고체 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803028

Country of ref document: EP

Kind code of ref document: A1