WO2020203103A1 - 分散樹脂組成物 - Google Patents

分散樹脂組成物 Download PDF

Info

Publication number
WO2020203103A1
WO2020203103A1 PCT/JP2020/010407 JP2020010407W WO2020203103A1 WO 2020203103 A1 WO2020203103 A1 WO 2020203103A1 JP 2020010407 W JP2020010407 W JP 2020010407W WO 2020203103 A1 WO2020203103 A1 WO 2020203103A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin resin
modified polyolefin
ring
weight
aqueous dispersion
Prior art date
Application number
PCT/JP2020/010407
Other languages
English (en)
French (fr)
Inventor
関口 俊司
竜二 土井
史泰 榊原
貴夫 吉元
諒 小池
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to CA3134807A priority Critical patent/CA3134807A1/en
Priority to CN202080026299.1A priority patent/CN113614166B/zh
Priority to EP20783013.4A priority patent/EP3950820A4/en
Priority to KR1020217031205A priority patent/KR20210148145A/ko
Priority to JP2021511326A priority patent/JPWO2020203103A1/ja
Priority to US17/598,484 priority patent/US20220186014A1/en
Publication of WO2020203103A1 publication Critical patent/WO2020203103A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/06Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/46Reaction with unsaturated dicarboxylic acids or anhydrides thereof, e.g. maleinisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/50Aqueous dispersion, e.g. containing polymers with a glass transition temperature (Tg) above 20°C

Definitions

  • the present invention relates to a dispersed resin composition.
  • Polyolefin-based resins such as polypropylene and polyethylene are general-purpose thermoplastic resins. Polyolefin-based resins are inexpensive and have many excellent properties such as moldability, chemical resistance, weather resistance, water resistance, and electrical properties. Therefore, polyolefin-based resins have been conventionally used in a wide range of fields such as sheets, films, and molded products. However, unlike polar substrates such as polyurethane resins, polyamide resins, acrylic resins, polyester resins, and metals, non-polar resin molded products such as polyolefin resins have low polarity and crystallinity. Therefore, the non-polar resin molded product is known as a poorly adherent base material, and it is difficult to bond or paint the same type or dissimilar base material.
  • an acid-modified (modified with unsaturated carboxylic acid and / or its anhydride) propylene-based random copolymer as a coating pretreatment agent or an adhesive.
  • acid-modified propylene-based random copolymers have been shifting from conventional organic solvent-based paints to water-based paints.
  • the composition containing the emulsifier and the acid-modified propylene-based random copolymer has a problem that the emulsifier easily bleeds out to the surface of the coating film when it is made into a paint and applied to the substrate and dried, resulting in poor appearance. Have.
  • compositions containing an acid-modified propylene-based random copolymer and not containing an emulsifier have been proposed (see, for example, Patent Documents 1 to 4).
  • the aqueous resin composition described in Patent Document 1 uses a solvent having high solubility in water. As a result, an aqueous dispersion of polyolefin containing an unsaturated carboxylic acid structural unit is produced without substantially containing an aqueous aid having a boiling point of 185 ° C. or higher at normal pressure. Further, as for the aqueous resin composition described in Patent Document 2 and Patent Document 3, a solvent having solubility in water such as an ethylene glycol solvent or an alcohol solvent is used. As a result, an aqueous dispersion of modified polyolefin having a carboxyl group or unsaturated carboxylic acid introduced therein is produced substantially without using an emulsifier.
  • an acid-modified polyolefin resin When an acid-modified polyolefin resin is used to obtain an adhesive layer or coating film having excellent adhesiveness, water resistance, and chemical resistance, it is desirable to use an acid-modified polyolefin resin having a high molecular weight and a low degree of acid modification.
  • the highly soluble solvent in water used in the above patent documents is inferior in performance as an aqueous aid as compared with an emulsifier such as polyoxyalkylene alkyl ether. Therefore, it is difficult to obtain a good aqueous dispersion of an acid-modified polyolefin resin having a high molecular weight and a low acid modification degree.
  • the aqueous resin dispersion described in Patent Document 4 substantially contains an emulsifier even in a high molecular weight by binding a hydrophilic polymer such as a polyether resin to a propylene-based polymer to enhance dispersibility in water.
  • a hydrophilic polymer such as a polyether resin
  • a propylene-based polymer to enhance dispersibility in water.
  • An aqueous resin dispersion having a fine dispersed particle size and excellent stability has been obtained without adding it.
  • a highly hydrophilic structure is introduced into the molecule, the water resistance of the adhesive layer and the coating film is not always sufficient.
  • An object of the present invention is to provide a dispersed resin composition capable of maintaining dispersion stability even when the amount of emulsifier added is reduced.
  • the present inventors have found that the above problems can be solved by containing a modified polyolefin resin having a ring opening degree of 70 or more and an aqueous dispersion medium represented by a predetermined formula.
  • the present invention has been completed. That is, the present inventors provide the following [1] to [6].
  • [1] The following formula (1) of the modified polyolefin resin which contains at least a modified polyolefin resin in which a modifying component containing an ⁇ , ⁇ -unsaturated carboxylic acid derivative having a cyclic structure is introduced into the polyolefin resin and an aqueous dispersion medium.
  • the dispersed resin composition having a ring-opening degree of 70 or more.
  • Ring-opening degree modification degree K ⁇ ring-opening rate R
  • the degree of modification K represents the content (% by weight) of the ⁇ , ⁇ -unsaturated carboxylic acid derivative with respect to the polyolefin resin
  • the ring opening rate R is the ⁇ , ⁇ -. Represents the ring opening rate (%) of the cyclic structure in the unsaturated carboxylic acid derivative.)
  • [2] The dispersed resin composition according to the above [1], wherein the content of the emulsifier is less than 10% by weight.
  • the polyolefin resin contains at least one selected from the group consisting of an ethylene-propylene copolymer, a propylene-1-butene copolymer, and an ethylene-propylene-1-butene copolymer.
  • the dispersed resin composition according to any one of [5].
  • AA to BB indicates AA or more and BB or less.
  • the dispersed resin composition of the present invention contains at least a modified polyolefin resin in which a modifying component containing an ⁇ , ⁇ -unsaturated carboxylic acid derivative having a cyclic structure is introduced into the polyolefin resin, and an aqueous dispersion medium.
  • the modified polyolefin resin has a ring-opening degree of 70 or more represented by the formula (1).
  • Ring-opening degree modification degree K ⁇ ring-opening rate R (In the formula (1), the degree of modification K represents the content (% by weight) of the ⁇ , ⁇ -unsaturated carboxylic acid derivative with respect to the polyolefin resin, and the ring-opening rate R is the ⁇ , ⁇ -unsaturated carboxylic acid derivative. Represents the ring opening rate (%) of the annular structure.)
  • the degree of modification K is the amount of the ⁇ , ⁇ -unsaturated carboxylic acid derivative having a cyclic structure introduced into the polyolefin resin.
  • the ring-opening rate R is the ring-opening rate of the cyclic structure of the ⁇ , ⁇ -unsaturated carboxylic acid derivative.
  • the cyclic structure of the ⁇ , ⁇ -unsaturated carboxylic acid derivative is ring-opened by water molecules.
  • the ring-opening structure has a dicarboxy group. That is, in the modified polyolefin resin of the present invention, the degree of ring opening can be said to be a parameter related to the abundance of carboxy groups in the modified polyolefin resin.
  • the above-mentioned carboxy group exists as a carboxylic acid ion having a conjugate acid such as an organic amine as a counterion due to the presence of a neutralizing agent such as an organic amine.
  • the carboxylic acid ion has a negative charge.
  • the modified polyolefin resin of the present invention is dispersed and stabilized by the electrostatic repulsive force of each carboxylic acid ion. Therefore, it is presumed that the dispersed resin composition of the present invention can maintain the dispersion stability even if the amount of the emulsifier is reduced.
  • modified polyolefin resins are obtained by introducing an ⁇ , ⁇ -unsaturated carboxylic acid derivative having a cyclic structure such as maleic anhydride into a polyolefin resin.
  • conventionally known modified polyolefin resins can exert various effects by utilizing the cyclic structure of the ⁇ , ⁇ -unsaturated carboxylic acid derivative introduced into the polyolefin resin in a chemical reaction. Therefore, it is desirable that the cyclic structure of the ⁇ , ⁇ -unsaturated carboxylic acid derivative introduced into the polyolefin resin is not ring-opened, that is, the degree of ring-opening is low.
  • the modified polyolefin resin sets the ring-opening degree of the cyclic structure of the ⁇ , ⁇ -unsaturated carboxylic acid derivative to 70 or more, that is, increases the ring-opening degree.
  • the cyclic structure of the modified polyolefin resin obtained by introducing an ⁇ , ⁇ -unsaturated carboxylic acid derivative having a cyclic structure such as maleic anhydride into the polyolefin resin is opened by water molecules. Therefore, for example, by contacting with water molecules in the atmosphere, an increase in the ring-opening rate R is observed over time. However, the moisture in the atmosphere cannot reach the inside of the modified polyolefin resin. Therefore, the increase in the ring-opening rate R is leveled off within a certain range.
  • the level at which the increase in the ring-opening rate R is off depends on the environmental humidity and the specific surface area of the resin. In general, the higher the specific surface area, the higher the level at which the ring-opening rate R is leveled off. However, even in the pellet shape normally used, the ring-opening rate R does not exceed 50% when exposed to the atmosphere for a long period of time.
  • the present inventors considered that by increasing the ring-opening rate as much as possible, the dispersion stability can be effectively improved even while the degree of modification is kept relatively low, and as a result of diligent studies, under high humidity and high temperature conditions. It has been found that the ring-opening ratio R can be increased to more than 50% by storing the modified polyolefin resin for a certain period of time, which can greatly improve the dispersion stability of the dispersed resin composition.
  • the modified polyolefin resin is obtained by introducing a modifying component containing an ⁇ , ⁇ -unsaturated carboxylic acid derivative having a cyclic structure into the polyolefin resin.
  • the modified polyolefin resin has a ring-opening degree represented by the above mathematical formula (1) of 70 or more, preferably 100 or more.
  • the ring-opening degree is 70 or more
  • a dispersed resin composition is prepared using a modified polyolefin resin in which a modifying component containing an ⁇ , ⁇ -unsaturated carboxylic acid derivative having a cyclic structure is introduced into the polyolefin resin, the emulsifier is used.
  • the upper limit thereof is preferably 600 or less, more preferably 450 or less, and even more preferably 300 or less.
  • the ring-opening degree is defined as the product of the degree of modification K and the ring-opening rate R. Details of the degree of denaturation K and the ring-opening rate R are shown below.
  • the degree of modification K is the graft weight (% by weight) of the ⁇ , ⁇ -unsaturated carboxylic acid derivative. That is, the degree of modification K indicates the ratio of the ⁇ , ⁇ -unsaturated carboxylic acid derivative having a cyclic structure introduced into the polyolefin resin.
  • the degree of modification K can be set according to the degree of ring-opening of the modified polyolefin resin.
  • the degree of modification K is more preferably 1.2 to 6.0% by weight, further preferably 1.4 to 5.0% by weight.
  • the degree of modification K is the amount of the ⁇ , ⁇ -unsaturated carboxylic acid derivative having a cyclic structure and the radical generator used, and the reaction temperature when introducing the ⁇ , ⁇ -unsaturated carboxylic acid derivative having a cyclic structure into the polyolefin resin. , The reaction time can be adjusted.
  • the degree of denaturation K can be calculated as follows in accordance with JIS K-0070 (1992). About 0.5 g of the modified polyolefin resin and about 100 g of toluene were put into a 300 ml separable flask equipped with a cooling tube and a thermometer, and heated on a hot stirrer so that the internal temperature became 80 ° C. Stir and dissolve. After dissolving the resin, add 15 ml of methanol and hold for 5 minutes. Then, 5 to 6 drops of an indicator (1% phenolphthalein-methanol solution) is added, and titration is performed with a 0.1 mol / L potassium hydroxide-ethanol solution.
  • an indicator 1% phenolphthalein-methanol solution
  • the degree of modification K of the modified polyolefin resin can be calculated from the titration required for neutralization from the following equation.
  • the degree of modification K is measured using a sample purified by dissolving the modified polyolefin resin before the ring opening treatment in an organic solvent such as toluene and then dropping it in a large excess of methanol to precipitate it.
  • K ⁇ B ⁇ f ⁇ F / (S ⁇ 1000) ⁇ ⁇ 100
  • K represents the degree of denaturation (% by weight)
  • B represents the titration amount (ml) of the potassium hydroxide-ethanol solution
  • f represents the factor of the 0.1 mol / L potassium hydroxide-ethanol solution.
  • F represents the formula amount of the ⁇ , ⁇ -unsaturated carboxylic acid derivative ⁇ 1/10
  • S represents the weight (g) of the modified polyolefin resin.
  • the ring-opening rate R is the ring-opening rate (%) of the cyclic structure of the ⁇ , ⁇ -unsaturated carboxylic acid derivative. That is, the ring-opening rate R indicates the ring-opening rate of the ⁇ , ⁇ -unsaturated carboxylic acid derivative having a cyclic structure introduced into the polyolefin resin.
  • the ring-opening rate R can be set according to the degree of ring-opening of the modified polyolefin resin.
  • the ring-opening rate R is preferably 50 to 100%, more preferably 60 to 80%.
  • the details of the measurement of the ring-opening rate R are as follows. First, the modified polyolefin resin is dissolved in an organic solvent to obtain a solution. Next, the solution is applied to a KBr plate and dried to form a thin film, and infrared absorption of 400 to 4000 cm -1 is performed by FT-IR (eg, "FT / IR-4100", manufactured by JASCO Corporation). Observe the spectrum. The analysis is performed by the attached software (eg, "Spectro Manager", JASCO Corporation).
  • the peak appearing at wave number 1700 to 1750 cm -1 is assigned to the peak derived from the carbonyl group of the ring-opened ⁇ , ⁇ -unsaturated carboxylic acid derivative, and the peak height is defined as A.
  • the peak appearing at wave number 1750 to 1820 cm -1 is assigned to the peak derived from the carbonyl group of the unopened ⁇ , ⁇ -unsaturated carboxylic acid derivative, and the peak height is defined as B.
  • the ring-opening rate R (%) can be calculated from the formula (A / (A + B) ⁇ 100).
  • the ring-opening rate in the examples described later is a value calculated by this method.
  • the melting point of the modified polyolefin resin is preferably 50 to 120 ° C, more preferably 60 to 110 ° C, and even more preferably 60 ° C to 100 ° C.
  • the melting point can be adjusted, for example, by the type of the base resin of the polyolefin resin.
  • DSC melting point measuring device
  • a DSC measuring device eg, "DISCOVERY DSC2500", manufactured by TA Instruments Japan Co., Ltd.
  • the temperature is lowered at a rate of 10 ° C./min, and after reaching -50 ° C., the temperature is kept stable for 5 minutes.
  • the melting peak temperature at the time of melting by raising the temperature to 150 ° C. at 10 ° C./min is measured, and this temperature is taken as the melting point.
  • the weight average molecular weight of the modified polyolefin resin is preferably 10,000 to 200,000, more preferably 50,000 to 180,000, still more preferably 70,000 to 170,000.
  • the weight average molecular weight can be adjusted, for example, by adjusting the weight average molecular weight of the base resin of the polyolefin resin, the amount of the modifying component used, and the like.
  • the details of the measurement conditions of GPC are as follows.
  • the weight average molecular weight of the modified polyolefin resin in the examples described later is a value measured under these conditions.
  • Detector Differential refractometer (manufactured by Tosoh)
  • the average particle size of the modified polyolefin resin in the dispersed resin composition is preferably 50 nm or more, more preferably 60 nm or more, still more preferably 70 nm or more.
  • the upper limit thereof is preferably 250 nm or less, more preferably 230 nm or less, and even more preferably 210 nm or less.
  • the average particle size indicates the degree of dispersion, and the smaller the value, the better the dispersibility.
  • the average particle size is the Z average particle size measured by the dynamic light scattering method.
  • the measuring device include Zetasizer Nano ZS manufactured by Malvern.
  • the polyolefin resin is not particularly limited.
  • ⁇ -olefin is preferably used as the olefin constituting the polyolefin resin.
  • ⁇ -olefins include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene and 1-octene.
  • the polyolefin resin may be a single type olefin polymer or a copolymer of two or more types of olefin polymers. When the polyolefin resin is a copolymer, the polyolefin resin may be a random copolymer or a block copolymer.
  • the polyolefin resin is a polypropylene (propylene homopolymer), an ethylene-propylene copolymer, or a propylene-1-butene copolymer from the viewpoint of exhibiting sufficient adhesion to a non-polar resin substrate such as a polypropylene substrate.
  • Ethylene-propylene-1-butene copolymer is preferred.
  • polypropylene represents a polymer whose basic unit is a constituent unit derived from propylene.
  • the "ethylene-propylene copolymer” represents a copolymer whose basic unit is a constituent unit derived from ethylene and propylene.
  • the "propylene-1-butene copolymer” represents a copolymer whose basic unit is a constituent unit derived from propylene and butene.
  • the "ethylene-propylene-1-butene copolymer” represents a copolymer whose basic unit is a constituent unit derived from ethylene, propylene and butene.
  • these (co) polymers may contain a small amount of structural units derived from olefins other than the basic unit.
  • the polyolefin resin preferably contains 50 mol% or more of propylene-derived constituent units in 100 mol% of the constituent units.
  • the constituent unit derived from propylene is included in the above range, the adhesiveness to a non-polar resin base material such as propylene resin can be maintained.
  • the ethylene-propylene copolymer or the propylene-1-butene copolymer is a random copolymer, preferably, 5 to 50 mol of the ethylene-derived constituent unit or the butene-derived constituent unit is contained in 100 mol% of the constituent units. %, And the constituent unit derived from propylene is 50 to 95 mol%.
  • the lower limit of the melting point of the polyolefin resin is preferably 50 ° C. or higher, more preferably 60 ° C. or higher.
  • the upper limit thereof is preferably 120 ° C. or lower, more preferably 110 ° C. or lower, and even more preferably 100 ° C. or lower.
  • the coating film can exhibit appropriate flexibility.
  • the melting point of the polyolefin resin 50 to 120 ° C. is preferable, 60 to 110 ° C. is more preferable, and 60 to 100 ° C. is further preferable.
  • the modified component contains an ⁇ , ⁇ -unsaturated carboxylic acid derivative having a cyclic structure.
  • the ⁇ , ⁇ -unsaturated carboxylic acid derivative having a cyclic structure include ⁇ , ⁇ -unsaturated carboxylic acid derivatives having a cyclic structure such as maleic anhydride, citraconic anhydride, itaconic anhydride, and aconitic anhydride. Can be mentioned. Of these, maleic anhydride is preferred.
  • the modified component may contain a component other than the ⁇ , ⁇ -unsaturated carboxylic acid derivative having a cyclic structure.
  • ⁇ , ⁇ -unsaturated carboxylic acids such as maleic acid, fumaric acid, citraconic acid, mesaconic acid, itaconic acid, aconitic acid; methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, Cyclohexyl (meth) acrylate, hydroxyethyl (meth) acrylate, isobornyl (meth) acrylate, glycidyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, isodecyl (meth) acrylate, tridecyl (meth) acrylate, stearyl (Meta) acrylate, benzyl (meth) acrylate,
  • a known method may be used as a method for introducing a modified component containing an ⁇ , ⁇ -unsaturated carboxylic acid derivative having a cyclic structure into a polyolefin resin.
  • Examples of such a method include a method in which a polyolefin resin is melted or dissolved in a solvent, and a modifying component containing an ⁇ , ⁇ -unsaturated carboxylic acid derivative having a cyclic structure and a radical generator are added to modify the polyolefin resin. ..
  • the radical generator can be selected from, for example, known radical generators.
  • radical generators include peroxides (eg, di-tert-butyl peroxide, tert-butyl hydroperoxide, dicumyl peroxide, benzoyl peroxide, tert-butyl peroxide benzoate, methyl ethyl ketone peroxide, di- tert-Butyldiperphthalate) and azonitriles (eg, azobisisobutyronitrile).
  • peroxides eg, di-tert-butyl peroxide, tert-butyl hydroperoxide, dicumyl peroxide, benzoyl peroxide, tert-butyl peroxide benzoate, methyl ethyl ketone peroxide, di- tert-Butyldiperphthalate
  • azonitriles eg, azobisisobutyronitrile
  • reaction device for example, a reaction tank having a jacket that can be heated with hot water or steam, or a twin-screw extruder can be used.
  • the reaction may be carried out in a batch manner or in a continuous manner.
  • the polyolefin By introducing a modifying component containing an ⁇ , ⁇ -unsaturated carboxylic acid derivative having a cyclic structure into a polyolefin resin, the polyolefin is usually used as a main chain, and the ⁇ , ⁇ -unsaturated carboxylic acid derivative having a cyclic structure is contained.
  • a graft polymer having a side chain containing a structural unit derived from a modified component can be obtained.
  • the method for producing the modified polyolefin resin is not particularly limited. An example is shown below.
  • a polyolefin resin is prepared.
  • the polyolefin resin contains ethylene and ⁇ -olefins such as propylene, 1-butene, 1-pentene, 1-hexene, 1-hexene and 1-octene in the presence of a catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst. It can be prepared by polymerization.
  • a commercially available product may be used as the polyolefin resin.
  • a modified component containing an ⁇ , ⁇ -unsaturated carboxylic acid derivative having a cyclic structure is introduced into the polyolefin resin.
  • the modification method can be carried out by a known method, for example, a graft polymerization method.
  • a radical generator may be used in the graft polymerization reaction.
  • a solution method in which a modified component containing an ⁇ , ⁇ -unsaturated carboxylic acid derivative having a cyclic structure with a polyolefin resin is heated and dissolved in a solvent such as toluene, and a radical generator is added;
  • a radical generator examples thereof include a melt-kneading method in which a polyolefin resin, a modification component containing an ⁇ , ⁇ -unsaturated carboxylic acid derivative having a cyclic structure, and a radical generator are added to equipment such as a mixer, a kneader, and an extruder and kneaded.
  • the modified component containing the ⁇ , ⁇ -unsaturated carboxylic acid derivative having a cyclic structure may be added all at once or sequentially.
  • the modified component containing the ⁇ , ⁇ -unsaturated carboxylic acid derivative having a cyclic structure is 1.0 to 12.1 to 100 parts by mass of the polyolefin resin from the viewpoint of grafting in a preferable amount. It is preferably used in an amount of 0 parts by mass.
  • the preferable range of the addition amount of the radical generator with respect to the total 100% by mass of the modified component containing the ⁇ , ⁇ -unsaturated carboxylic acid derivative having a cyclic structure is as follows.
  • the lower limit of the addition amount is preferably 1% by mass or more, and more preferably 10% by mass or more.
  • the addition amount of the radical generator is 1% by mass or more, the graft efficiency can be maintained.
  • the upper limit of the addition amount is preferably 200% by mass or less, and more preferably 100% by mass or less. It is economical when the amount of the radical generator added is 200% by mass or less.
  • the unreacted product that is not graft-polymerized on the polyolefin resin may be removed by extracting it with, for example, a poor solvent. In this way, a graft polymer is obtained.
  • the modified polyolefin resin can be produced by reacting a graft polymer obtained so as to have a ring-opening degree of 70 or more with water molecules.
  • a ring-opening treatment such as immersing the modified polyolefin resin in water or placing the modified polyolefin resin under humidified conditions.
  • the ring-opening rate (%) and the degree of ring-opening can be adjusted by changing the temperature of water or humidifying conditions, the immersion time, or the time of placing under humidifying conditions.
  • the dispersion stability can be effectively improved even while the degree of modification is kept relatively low.
  • a method of increasing the ring-opening rate for example, water is filled in the bottom of the container, the pellet is placed on the bottom so that the pellets of the modified polyolefin resin do not come into direct contact with water, the container is sealed, and a dryer at 50 ° C.
  • the ring-opening rate can be increased to 60 to 70% by storing in 3 days or more.
  • the ring-opening rate can be increased by 65 to 80% by storing the pellets of the modified polyolefin resin for 2 days or more in a place where the humidity is 100% at 50 ° C.
  • the ring-opening rate can be increased as compared with the case of storing in a normal atmosphere or simply immersing in water at room temperature.
  • the dispersed resin composition of the present invention contains an aqueous dispersion medium.
  • the aqueous dispersion medium may be water alone, or a solvent soluble in water may be used in combination with water.
  • the solvent soluble in water include lower alcohols such as methanol, ethanol and isopropyl alcohol; and lower ketones such as dimethylformamide, tetrahydrofuran, acetone and methyl ethyl ketone.
  • the amount of the aqueous dispersion medium used is not particularly limited, and can be arbitrarily changed depending on the use of the dispersed resin composition.
  • the solid content concentration of the modified polyolefin resin is preferably 10 to 50% by weight, more preferably 20 to 40% by weight.
  • emulsifier a conventionally known emulsifier may be used, which is added for the purpose of stabilizing the dispersion when the modified polyolefin resin is dispersed in the aqueous dispersion medium.
  • emulsifier a conventionally known emulsifier may be used, which is added for the purpose of stabilizing the dispersion when the modified polyolefin resin is dispersed in the aqueous dispersion medium.
  • nonionic surfactants and anionic surfactants can be mentioned.
  • nonionic surfactant examples include polyoxyethylene polyhydric alcohol fatty acid esters such as polyoxyethylene alkyl ether, polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene derivative, polyoxyethylene fatty acid ester, and polyoxyethylene sorbitan fatty acid ester. , Polyoxyethylene polyoxypropylene polyol, sorbitan fatty acid ester, polyoxyethylene hydrogenated castor oil, polyoxyalkylene polycyclic phenyl ether, polyoxyethylene alkylamine, alkylalkanolamide, polyalkylene glycol (meth) acrylate and the like.
  • polyoxyethylene polyhydric alcohol fatty acid esters such as polyoxyethylene alkyl ether, polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene derivative, polyoxyethylene fatty acid ester, and polyoxyethylene sorbitan fatty acid ester.
  • Anionic surfactants include alkyl sulfate ester salts, polyoxyethylene alkyl ether sulfate salts, alkylbenzene sulfonates, ⁇ -olefin sulfonates, methyl taurilates, sulfosuccinates, ether sulfonates, ether carboxylates.
  • the content of the emulsifier is preferably less than 10% by weight, more preferably less than 5% by weight.
  • the lower limit is not particularly limited and does not have to contain an emulsifier.
  • the content of the emulsifier is less than 10% by weight, the decrease in adhesiveness due to the addition of the emulsifier can be suppressed.
  • the dispersed resin composition of the present invention is useful as an intermediate medium for a base material having low adhesiveness (adhesiveness) and difficult to apply such as a paint.
  • a base material having low adhesiveness (adhesiveness) and difficult to apply such as a paint.
  • polypropylene having poor adhesiveness (adhesiveness) can be used as an adhesive between polyolefin-based substrates such as polyethylene. At this time, it can be used regardless of whether or not the base material is surface-treated by plasma, corona, or the like.
  • the dispersed resin composition of the present invention can also exhibit excellent adhesiveness between a metal and a resin.
  • the metal include aluminum, aluminum alloy, nickel, and stainless steel.
  • the resin include non-polar resins such as polyolefin resins, polyurethane resins, polyamide resins, acrylic resins, polyester resins, and polyethylene terephthalate resins. Therefore, the dispersed resin composition of the present invention can be used as an adhesive, a primer, a binder for paints and a binder for inks, or as a component thereof.
  • the dispersed resin composition of the present invention may further contain at least one component selected from the group consisting of a solution, a curing agent, and an adhesive component, in addition to the modified polyolefin resin and the aqueous dispersion medium.
  • the solution examples include organic solvents.
  • the organic solvent include aromatic solvents such as toluene and xylene; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as methyl ethyl ketone, methyl butyl ketone and ethyl cyclohexanone; and fats such as cyclohexane, methylcyclohexane, nonane and decane.
  • Group or alicyclic hydrocarbon solvents can be mentioned. From the viewpoint of environmental problems, an organic solvent other than the aromatic solvent is preferable, and a mixed solvent of an alicyclic hydrocarbon solvent and an ester solvent or a ketone solvent is more preferable.
  • the organic solvent may be used alone or as a mixed solvent of two or more kinds.
  • alcohol eg, methanol, ethanol, propanol, isopropyl alcohol, butanol
  • propylene glycol ether eg, propylene glycol methyl ether
  • Propylene glycol ethyl ether, propylene glycol-t-butyl ether may be used alone or in admixture of two or more. In this case, it is preferable to add 1 to 20% by mass with respect to the organic solvent.
  • a compound represented by the following general formula (1) and having a molecular weight of less than 200 is preferable.
  • R is C n H 2n + 1 , and n is an integer of 10 or less. n is preferably an integer of 8 or less, more preferably an integer of 7 or less, further preferably an integer of 6 or less, even more preferably an integer of 5 or less, and 4 or less. It is especially preferred to be an integer.
  • l is an integer of 5 or less, preferably an integer of 4 or less, and more preferably an integer of 3 or less.
  • m is an integer of 5 or less, preferably an integer of 4 or less, more preferably an integer of 3 or less, and even more preferably an integer of 2 or less. Is even more preferable.
  • the compound represented by the general formula (1) and having a molecular weight of less than 200 is preferably a glycol ether-based compound.
  • Glycol ether-based compounds have a structure in which hydrogen atoms of glycols such as ethylene glycol, propylene glycol, and butylene glycol are substituted with alkyl groups.
  • the compound represented by the general formula (1) has a hydrophobic group and a hydrophilic group in one molecule.
  • the modified polyolefin resin can be easily dispersed and emulsified in water by adding the compound represented by the general formula (1). Therefore, the dispersed resin composition of the present invention can maintain good storage stability.
  • ethylene glycol monomethyl ether ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monoisobutyl ether.
  • Ethylene glycol mono-t-butyl ether ethylene glycol monohexyl ether, ethylene glycol monodecyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether and the like.
  • ethylene glycol monoethyl ether ethylene glycol monobutyl ether, ethylene glycol mono-t-butyl ether, propylene glycol monomethyl ether, and propylene glycol monopropyl ether are preferable.
  • the molecular weight of the compound represented by the general formula (1) is less than 200. This makes it possible to suppress an increase in the boiling point of the modified polyolefin resin aqueous dispersion composition (dispersed resin composition of the present invention). As a result, after applying the aqueous dispersion composition or a primer or the like containing the aqueous dispersion composition, it is possible to omit drying the coating film at a high temperature or for a long time.
  • the compound represented by the general formula (1) and having a molecular weight of less than 200 may be the compound represented by the general formula (1) alone, or may be represented by two or more kinds of the general formula (1). It may be a combination of compounds. In the latter case, the compounding ratio of each compound is not particularly limited.
  • Examples of the curing agent include polyisocyanate compounds, epoxy compounds, polyamine compounds, polyol compounds, and cross-linking agents in which their functional groups are blocked by protecting groups.
  • the curing agent may be used alone or in combination of two or more.
  • the amount of the curing agent to be blended can be appropriately selected depending on the degree of modification K in the modified polyolefin resin.
  • a catalyst such as an organic tin compound or a tertiary amine compound can be used in combination depending on the purpose.
  • Adhesive component As the adhesive component, a known adhesive component such as a polyester-based adhesive, a polyurethane-based adhesive, or an acrylic-based adhesive can be used as long as the desired effect is not impaired.
  • the dispersed resin composition is excellent in adhesion between non-polar resins such as polyolefin-based substrates and between non-polar resins and metals, it can be used as an adhesive, a primer, a binder for paints, and a binder for inks. It is useful as an adhesive in laminated films such as films.
  • the dispersed resin composition of the present invention can be used as a primer, a binder for paints, or a binder for inks.
  • the dispersed resin composition of the present invention has excellent solution stability, and is suitably used as a primer for topcoat coating on polyolefin substrates such as automobile bumpers, and as a binder for paints having excellent adhesion to topcoat paints and clears. obtain.
  • the present invention will be described in detail by way of examples.
  • the following examples are for the purpose of preferably explaining the present invention, and do not limit the present invention.
  • the method for measuring the physical property value or the like is the measurement method described above.
  • part means a mass part unless otherwise specified.
  • Degree of modification K was calculated as follows in accordance with JIS K-0070 (1992). First, about 0.5 g of the modified polyolefin resin and about 100 g of toluene, which have been precisely weighed, are put into a 300 ml separable flask equipped with a cooling tube and a thermometer, and heated on a hot stirrer so that the internal temperature becomes 80 ° C. While stirring and dissolving. After dissolving the resin, 15 ml of methanol was added and the mixture was retained for 5 minutes.
  • K ⁇ B x f x 9.806 / (S x 1000) ⁇ x
  • K represents the degree of denaturation (% by weight)
  • B represents the titration amount (ml) of the potassium hydroxide-ethanol solution
  • f represents the factor of the 0.1 mol / L potassium hydroxide-ethanol solution
  • 9 .806 is the formula amount of maleic anhydride ⁇ 1/10
  • S represents the weight (g) of the modified polyolefin resin.
  • the peak appearing at wave number 1750 to 1820 cm -1 was assigned to the peak derived from the carbonyl group of the unopened ⁇ , ⁇ -unsaturated carboxylic acid derivative, and the peak height was defined as B. Then, the ring-opening rate R (%) was calculated by substituting the peak heights A and B into (A / (A + B) ⁇ 100).
  • DISCOVERY DSC2500 manufactured by TA Instruments Japan Co., Ltd.
  • Weight average molecular weight (Mw) A value measured under the following measurement conditions. Measuring equipment: HLC-8320GPC (manufactured by Tosoh) Eluent: Tetrahydrofuran Column: TSKgel (manufactured by Tosoh) Standard substance: Polystyrene (manufactured by Tosoh, manufactured by GL Science) Detector: Differential refractometer (manufactured by Tosoh) Temperature: 40 ° C Flow velocity: 1.0 mL / min
  • Average particle size (nm) The average particle size of the dispersed resin composition immediately after production was measured using a particle size distribution measuring device (Zetasizer Nano ZS (manufactured by Malvern)) by a dynamic light scattering method. The following tests were performed only on the dispersed resin composition whose average particle size could be measured.
  • the modified polyolefin resin aqueous dispersion composition is spray-coated so that the film thickness (dry coating film) is 10 or more and 15 ⁇ m or less, and the resin has a melting point of + 15 ° C. Preheated for minutes.
  • Protouch Fine Metallic manufactured by Rock Paint
  • the viscosity is adjusted with a special thinner so that the dry film thickness becomes about 20 ⁇ m.
  • the dry film thickness becomes 25 to 30 ⁇ m. It was spray-painted and allowed to stand at room temperature for 10 minutes. Then, the resin was baked at a melting point of + 15 ° C. for 30 minutes to prepare a test piece.
  • ⁇ Adhesion evaluation> a cutter knife was used to make grid-shaped cuts (11 ⁇ 11 cuts to form a total of 100 grids) on the coating film at intervals of 2 mm. After repeating the operation of putting cellophane tape (manufactured by Nichiban Co., Ltd.) on the notch and peeling it off at an angle of 180 ° three times, the adhesiveness was evaluated by the number of grids that were not peeled out of 100 grids.
  • a test piece was prepared in the same manner as above except that a poorly adherent polypropylene plate (containing 70% of recycled material) was used as a base material, and the appearance and adhesion of the coating film were evaluated.
  • Pellets of the reaction were placed in a large excess of ethyl acetate and purified by stirring at 45 ° C. for 3 hours, with a weight average molecular weight of 78,000, a Tm of 70 ° C., and a graft weight of maleic anhydride and lauryl methacrylate. Obtained 2.6% by weight and 1.8% by weight of the reactants, respectively.
  • the purified reaction product was placed in a container with a raised bottom, and the bottom surface of the container was filled with water until the reaction product did not come into direct contact with water. Then, the container was sealed and stored in a blower dryer at 50 ° C. for 3 days (relative humidity 100%) to obtain a modified polyolefin resin having a ring-opening rate of 64%, that is, a ring-opening degree of 166.
  • the weight average molecular weight is 118,000, Tm is 70 ° C., and the graft weight of maleic anhydride is 1.
  • a 9.9 wt% reactant was obtained.
  • the purified reaction product was placed in a container with a raised bottom, and the bottom surface of the container was filled with water until the reaction product did not come into direct contact with water. Then, the container was sealed and stored in a blower dryer at 50 ° C. for 3 days (relative humidity 100%) to obtain a modified polyolefin resin having a ring-opening rate of 61%, that is, a ring-opening degree of 116.
  • the weight average molecular weight is 79,000, Tm is 80 ° C., the graft weights of maleic anhydride and octyl methacrylate are 1.9% by weight and 1.5% by weight, respectively, and the ring opening rate is 63%, that is, A modified polyolefin resin having a ring opening degree of 120 was obtained.
  • the weight average molecular weight is 75,000
  • the Tm is 95 ° C.
  • the graft weight of maleic anhydride is 2.0% by weight
  • the ring opening rate is 61%, that is, the ring opening is the same as in Production Example 1.
  • a modified polyolefin resin having a degree of 122 was obtained.
  • the pellet of the reaction product was put into a large excess of ethyl acetate and purified by stirring at 60 ° C. for 3 hours.
  • the weight average molecular weight was 98,000, Tm was 95 ° C., and the graft weight of maleic anhydride was 1.
  • a 7 wt% reactant was obtained.
  • a modified polyolefin resin having a ring opening rate of 72%, that is, a ring opening degree of 122 was obtained.
  • the reaction product was purified by putting it in a large excess of acetone, and the graft weights of maleic anhydride and lauryl methacrylate were measured and found to be 3.2% by weight and 3.0% by weight, respectively.
  • the purified reaction product was placed in a container with a raised bottom, and the bottom surface of the container was filled with water until the reaction product did not come into direct contact with water. Then, the container was sealed and stored in a blower dryer at 50 ° C. for 3 days (relative humidity 100%) to obtain a modified polyolefin resin having a ring-opening rate of 65%, that is, a ring-opening degree of 208.
  • a reaction product (purified, ring-opening treatment not performed) was obtained in the same manner as in Production Example 11.
  • the weight average molecular weight is 125,000
  • the Tm is 60 ° C.
  • the graft weight of maleic anhydride is 2.6 weight.
  • a modified polyolefin resin having a ring-opening rate of 28%, that is, a ring-opening degree of 73 was obtained.
  • Example 1 100 g of the modified polyolefin resin, 50 g of methylcyclohexane, and 50 g of propylene glycol monopropyl ether obtained in Production Example 1 were added to a four-necked flask equipped with a stirrer, a cooling tube, a thermometer, and a dropping funnel, and the inside of the flask was added. The temperature was set to 85 ° C. and the mixture was kneaded for 30 minutes. Next, 4 g of morpholine was added, the temperature inside the flask was set to 85 ° C., and the mixture was kneaded for 60 minutes. Then, 290 g of deionized water at 90 ° C. was added over 60 minutes.
  • a part of methylcyclohexane and propylene glycol monopropyl ether were removed under reduced pressure. Then, the mixture was cooled to room temperature with stirring to obtain a modified polyolefin resin aqueous dispersion composition (dispersed resin composition) adjusted to have a solid content of 30% by weight with deionized water.
  • a modified polyolefin resin aqueous dispersion composition adjusted to have a solid content of 30% by weight with deionized water.
  • Example 2 100 g of the modified polyolefin resin, 30 g of toluene, and 100 g of ethylene glycol monobutyl ether obtained in Production Example 2 were added to a four-necked flask equipped with a stirrer, a cooling tube, a thermometer, and a funnel, and the temperature inside the flask was 85. The temperature was adjusted to 30 minutes and kneaded. Next, 5 g of N, N-dimethylethanolamine was added, the temperature inside the flask was set to 85 ° C., and the mixture was kneaded for 60 minutes. Then, 290 g of deionized water at 90 ° C. was added over 60 minutes.
  • Example 3 A modified polyolefin resin aqueous dispersion composition (dispersed resin composition) was obtained in the same manner as in Example 1 except that the modified polyolefin resin obtained in Production Example 3 was used.
  • the contents of methylcyclohexane and propylene glycol monopropyl ether in the modified polyolefin resin aqueous dispersion composition were 0.02% by weight and 2.3% by weight, respectively, with respect to the modified polyolefin resin aqueous dispersion composition. ..
  • Example 4 A modified polyolefin resin aqueous dispersion composition was obtained in the same manner as in Example 2 except that the modified polyolefin resin obtained in Production Example 4 was used.
  • the contents of toluene and ethylene glycol monobutyl ether in the modified polyolefin resin aqueous dispersion composition were 0.02% by weight and 2.1% by weight, respectively, with respect to the modified polyolefin resin aqueous dispersion composition.
  • Example 5 In a four-necked flask equipped with a stirrer, a cooling tube, a thermometer, and a funnel, 100 g of the modified polyolefin resin obtained in Production Example 5, 5 g of Emargen 420 (made by Kao, polyoxyethylene alkyl ether), 30 g of toluene, and 100 g of ethylene glycol monobutyl ether was added, the temperature inside the flask was set to 85 ° C., and the mixture was kneaded for 30 minutes. Next, 5 g of N, N-dimethylethanolamine was added, the temperature inside the flask was set to 85 ° C., and the mixture was kneaded for 60 minutes.
  • Example 6 A modified polyolefin resin aqueous dispersion composition (dispersed resin composition) was obtained in the same manner as in Example 1 except that the modified polyolefin resin obtained in Production Example 6 was used.
  • the contents of methylcyclohexane and propylene glycol monopropyl ether in the modified polyolefin resin aqueous dispersion composition were 0.02% by weight and 2.0% by weight, respectively, with respect to the modified polyolefin resin aqueous dispersion composition. ..
  • Example 7 A modified polyolefin resin aqueous dispersion composition (dispersed resin composition) was obtained in the same manner as in Example 2 except that the modified polyolefin resin obtained in Production Example 7 was used.
  • the contents of toluene and ethylene glycol monobutyl ether in the modified polyolefin resin aqueous dispersion composition were 0.01% by weight and 1.3% by weight, respectively, with respect to the modified polyolefin resin aqueous dispersion composition.
  • Example 8 A modified polyolefin resin aqueous dispersion composition (dispersed resin composition) was obtained in the same manner as in Example 5 except that the modified polyolefin resin obtained in Production Example 8 was used.
  • the contents of toluene and ethylene glycol monobutyl ether in the modified polyolefin resin aqueous dispersion composition were 0.02% by weight and 2.5% by weight, respectively, with respect to the modified polyolefin resin aqueous dispersion composition.
  • Example 9 A modified polyolefin resin aqueous dispersion composition (dispersed resin composition) was obtained in the same manner as in Example 1 except that the modified polyolefin resin obtained in Production Example 9 was used.
  • the contents of methylcyclohexane and propylene glycol monopropyl ether in the modified polyolefin resin aqueous dispersion composition were 0.02% by weight and 2.0% by weight, respectively, with respect to the modified polyolefin resin aqueous dispersion composition. ..
  • Example 10 A modified polyolefin resin aqueous dispersion composition (dispersed resin composition) was obtained in the same manner as in Example 2 except that the modified polyolefin resin obtained in Production Example 10 was used.
  • the contents of toluene and ethylene glycol monobutyl ether in the modified polyolefin resin aqueous dispersion composition were 0.02% by weight and 1.9% by weight, respectively, with respect to the modified polyolefin resin aqueous dispersion composition.
  • Example 11 A modified polyolefin resin aqueous dispersion composition (dispersed resin composition) was obtained in the same manner as in Example 1 except that the modified polyolefin resin obtained in Production Example 11 was used.
  • the contents of methylcyclohexane and propylene glycol monopropyl ether in the modified polyolefin resin aqueous dispersion composition were 0.02% by weight and 2.6% by weight, respectively, with respect to the modified polyolefin resin aqueous dispersion composition. ..
  • Example 12 A modified polyolefin resin aqueous dispersion composition (dispersed resin composition) was obtained in the same manner as in Example 5 except that the modified polyolefin resin obtained in Production Example 12 was used.
  • the contents of toluene and ethylene glycol monobutyl ether in the modified polyolefin resin aqueous dispersion composition were 0.02% by weight and 2.1% by weight, respectively, with respect to the modified polyolefin resin aqueous dispersion composition.
  • Example 13 A modified polyolefin resin aqueous dispersion composition (dispersed resin composition) was obtained in the same manner as in Example 2 except that the modified polyolefin resin obtained in Production Example 13 was used.
  • the contents of toluene and ethylene glycol monobutyl ether in the modified polyolefin resin aqueous dispersion composition were 0.02% by weight and 2.8% by weight, respectively, with respect to the modified polyolefin resin aqueous dispersion composition.
  • Example 14 A modified polyolefin resin aqueous dispersion composition (dispersed resin composition) was obtained in the same manner as in Example 2 except that the modified polyolefin resin obtained in Production Example 14 was used.
  • the contents of toluene and ethylene glycol monobutyl ether in the modified polyolefin resin aqueous dispersion composition were 0.02% by weight and 2.5% by weight, respectively, with respect to the modified polyolefin resin aqueous dispersion composition.
  • Example 15 A modified polyolefin resin aqueous dispersion composition (dispersed resin composition) was obtained in the same manner as in Example 2 except that the modified polyolefin resin obtained in Production Example 20 was used.
  • the contents of toluene and ethylene glycol monobutyl ether in the modified polyolefin resin aqueous dispersion composition were 0.01% by weight and 1.4% by weight, respectively, with respect to the modified polyolefin resin aqueous dispersion composition.
  • Example 16 A modified polyolefin resin aqueous dispersion composition (dispersed resin composition) was obtained in the same manner as in Example 2 except that the modified polyolefin resin obtained in Production Example 21 was used.
  • the contents of toluene and ethylene glycol monobutyl ether in the modified polyolefin resin aqueous dispersion composition were 0.02% by weight and 2.4% by weight, respectively, with respect to the modified polyolefin resin aqueous dispersion composition.
  • Example 17 A modified polyolefin resin aqueous dispersion composition (dispersed resin composition) was obtained in the same manner as in Example 2 except that the modified polyolefin resin obtained in Production Example 22 was used.
  • the contents of toluene and ethylene glycol monobutyl ether in the modified polyolefin resin aqueous dispersion composition were 0.02% by weight and 2.7% by weight, respectively, with respect to the modified polyolefin resin aqueous dispersion composition.
  • Example 18 A modified polyolefin resin aqueous dispersion composition (dispersed resin composition) was obtained in the same manner as in Example 2 except that the modified polyolefin resin obtained in Production Example 23 was used.
  • the contents of toluene and ethylene glycol monobutyl ether in the modified polyolefin resin aqueous dispersion composition were 0.01% by weight and 1.8% by weight, respectively, with respect to the modified polyolefin resin aqueous dispersion composition.
  • Example 1 A modified polyolefin resin aqueous dispersion composition (dispersed resin composition) was obtained in the same manner as in Example 1 except that the modified polyolefin resin obtained in Production Example 15 was used.
  • the contents of methylcyclohexane and propylene glycol monopropyl ether in the modified polyolefin resin aqueous dispersion composition were 0.02% by weight and 2.4% by weight, respectively, with respect to the modified polyolefin resin aqueous dispersion composition. ..
  • Example 2 The procedure was the same as in Example 2 except that the modified polyolefin resin obtained in Production Example 16 was used. However, agglomerates of the modified polyolefin resin were generated during the preparation of the aqueous dispersion, and the modified polyolefin resin aqueous dispersion could not be obtained.
  • Example 3 The same procedure as in Example 1 was carried out except that the modified polyolefin resin obtained in Production Example 17 was used. However, agglomerates of the modified polyolefin resin were generated during the preparation of the aqueous dispersion, and the modified polyolefin resin aqueous dispersion could not be obtained.
  • Example 4 The procedure was the same as in Example 2 except that the modified polyolefin resin obtained in Production Example 18 was used. However, agglomerates of the modified polyolefin resin were generated during the preparation of the aqueous dispersion, and the modified polyolefin resin aqueous dispersion could not be obtained.
  • Example 5 The procedure was the same as in Example 1 except that the modified polyolefin resin obtained in Production Example 19 was used. However, agglomerates of the modified polyolefin resin were generated during the preparation of the aqueous dispersion, and the modified polyolefin resin aqueous dispersion could not be obtained.
  • the type of base resin, the melting point of the modified polyolefin resin, the weight average molecular weight, the degree of modification K (% by weight), and the ring-opening rate R ( %), Ring-opening degree, average particle size, amount of emulsifier used, and filterability (filtration rate, residual amount) are listed in Table 1.
  • the dispersed resin composition of the present invention can maintain dispersion stability even if the amount of the emulsifier added is reduced. Further, as can be seen by comparing the results of Example 7 and Example 14, the dispersed resin composition having a ring-opening rate of 60% or more is compared with the dispersed resin composition having a ring-opening rate of less than 60%. The average particle size is small and the filterability tends to be good. Therefore, a better dispersed resin composition can be obtained.
  • the dispersion resin composition of the present invention was evaluated for stability at the time of centrifugation as "A" or "B", and maintained the dispersion stability.
  • the evaluation of water resistance using a normal base material there is no abnormality in the appearance evaluation and the adhesiveness is also excellent.
  • the evaluation of water resistance using a poorly adherent base material there is no abnormality in the appearance evaluation, or even if blisters are generated, it is 2 mm or less, and a practical level of adhesiveness can be secured.
  • Comparative Example 1 the evaluation of the stability at the time of centrifugation was "C”, and the dispersion stability was inferior.

Abstract

乳化剤の添加量を低減しても、分散安定性を保持し得る分散樹脂組成物を提供することを課題とし、ポリオレフィン樹脂に環状構造を有するα,β-不飽和カルボン酸誘導体を含む変性成分を導入した変性ポリオレフィン樹脂と、水系分散媒と、を少なくとも含有し、変性ポリオレフィン樹脂の式(1)で表される開環度が70以上である、分散樹脂組成物である。 (1):開環度=変性度K×開環率R (式(1)中、変性度Kは、ポリオレフィン樹脂に対するα,β-不飽和カルボン酸誘導体の含有率(重量%)を表し、開環率Rは、α,β-不飽和カルボン酸誘導体における環状構造の開環率(%)を表す。)である。

Description

分散樹脂組成物
 本発明は、分散樹脂組成物に関する。
 ポリプロピレン、ポリエチレン等のポリオレフィン系樹脂は、熱可塑性の汎用樹脂である。ポリオレフィン系樹脂は、安価であり、且つ成形性、耐薬品性、耐候性、耐水性、電気特性等の多くの優れた性質を有する。そのため、ポリオレフィン系樹脂は、従来からシート、フィルム、成形物等として、幅広い分野で使用されている。しかしながら、ポリオレフィン系樹脂等の非極性樹脂成型品は、ポリウレタン系樹脂、ポリアミド樹脂、アクリル系樹脂、ポリエステル樹脂、金属等の極性基材とは異なり、極性が低く、且つ結晶性を有する。そのため、非極性樹脂成型品は、難付着性基材として知られており、同種及び異種基材同士の接着や塗装が困難であった。
 この問題に対して、酸変性(不飽和カルボン酸及び/又はその無水物等による変性)したプロピレン系ランダム共重合体を、塗装前処理剤又は接着剤とすることが提案されている。また、近年、環境問題の観点から、酸変性したプロピレン系ランダム共重合体は、従来の有機溶剤系塗料から水系塗料へと移行している。さらに、乳化剤と酸変性したプロピレン系ランダム共重合体を含む組成物は、塗料化して基材へ塗工乾燥したときに、乳化剤が塗膜表面にブリードアウトしやすく、外観不良が発生する問題を有している。また、上記組成物の塗装面に別の塗料をさらに塗装する場合、塗料間の接着力が乏しくなる問題を有している。そのため、酸変性したプロピレン系ランダム共重合体を含み、乳化剤を含まない組成物が提案されている(例えば、特許文献1~4参照)。
国際公開第2004/104090号 特開2007-031472号公報 特開2009-040920号公報 特開2007-039645号公報
 特許文献1に記載の水性樹脂組成物は、水に対する溶解性の高い溶剤を用いる。これにより、常圧時の沸点が185℃以上の水性化助剤を実質的に含有することなく、不飽和カルボン酸構造単位を含むポリオレフィンの水性分散体を製造している。また、特許文献2及び特許文献3に記載の水性樹脂組成についても、エチレングリコール系溶剤やアルコール系溶剤等の水への溶解性を有する溶剤を用いる。これにより、実質的に乳化剤を用いることなく、カルボキシル基や不飽和カルボン類を導入した変性ポリオレフィンの水性分散体を製造している。
 酸変性ポリオレフィン樹脂を使用して、優れた付着性や耐水性、耐薬品性を有する接着層や塗膜を得る場合、高分子量で酸変性度の低い酸変性ポリオレフィン樹脂を使用することが望ましい。しかしながら、これらの樹脂の水性分散体を調製することは難易度が高い。上記の特許文献において用いられている、水に対する溶解性の高い溶剤は、ポリオキシアルキレンアルキルエーテルといった乳化剤と比較して、水性化助剤としての性能に劣る。そのため、高分子量で低酸変性度の酸変性ポリオレフィン樹脂の良好な水性分散体を得ることは困難である。
 特許文献4に記載の水性樹脂分散体は、ポリエーテル樹脂等の親水性高分子を、プロピレン系重合体に結合させて水への分散性を高めることにより、高分子量であっても乳化剤を実質的に添加することなく、分散粒子径の細かい安定性に優れた水性樹脂分散体を得ている。しかしながら、親水性の高い構造を分子内に導入したため、接着層や塗膜の耐水性が必ずしも充分とはいえない。
 本発明の課題は、乳化剤の添加量を低減しても、分散安定性を保持し得る分散樹脂組成物を提供することである。
 本発明者らは、上記課題について鋭意検討した結果、所定の式で表される開環度が70以上の変性ポリオレフィン樹脂及び水系分散媒を含有することにより、上記の課題を解決できることを見出し、本発明を完成するに至った。
 即ち、本発明者らは、下記の〔1〕~〔6〕を提供する。
〔1〕ポリオレフィン樹脂に環状構造を有するα,β-不飽和カルボン酸誘導体を含む変性成分を導入した変性ポリオレフィン樹脂と、水系分散媒と、を少なくとも含有し、前記変性ポリオレフィン樹脂の下記式(1)で表される開環度が70以上である分散樹脂組成物。
(1):開環度=変性度K×開環率R
 (前記式(1)中、前記変性度Kは、前記ポリオレフィン樹脂に対する前記α,β-不飽和カルボン酸誘導体の含有率(重量%)を表し、前記開環率Rは、前記α,β-不飽和カルボン酸誘導体における環状構造の開環率(%)を表す。)
〔2〕乳化剤の含有量が、10重量%未満である、上記[1]に記載の分散樹脂組成物。
〔3〕前記開環率Rが、60%以上である、上記〔1〕又は〔2〕に記載の分散樹脂組成物。
〔4〕前記変性ポリオレフィン樹脂の融点が、50℃以上である、上記〔1〕~〔3〕のいずれかに記載の分散樹脂組成物。
〔5〕前記変性ポリオレフィン樹脂の重量平均分子量が、1万以上である、上記〔1〕~〔4〕のいずれかに記載の分散樹脂組成物。
〔6〕前記ポリオレフィン樹脂が、エチレン-プロピレン共重合体、プロピレン-1-ブテン共重合体、及びエチレン-プロピレン-1-ブテン共重合体からなる群から選択される少なくとも1種を含む、上記〔1〕~〔5〕のいずれかに記載の分散樹脂組成物。
 本発明によれば、乳化剤の添加量を低減しても、分散安定性を保持し得る分散樹脂組成物を提供することができる。
 以下、本発明をその好適な実施形態に即して詳細に説明する。なお、本明細書中、「AA~BB」との表記は、AA以上BB以下を示す。
[1.分散樹脂組成物]
 本発明の分散樹脂組成物は、ポリオレフィン樹脂に環状構造を有するα,β-不飽和カルボン酸誘導体を含む変性成分を導入した変性ポリオレフィン樹脂と、水系分散媒と、を少なくとも含有する。そして、変性ポリオレフィン樹脂は、式(1)で表される開環度が70以上である。
(1):開環度=変性度K×開環率R
 (式(1)中、変性度Kは、ポリオレフィン樹脂に対するα,β-不飽和カルボン酸誘導体の含有率(重量%)を表し、開環率Rは、α,β-不飽和カルボン酸誘導体における環状構造の開環率(%)を表す。)
 変性ポリオレフィン樹脂の式(1)で表される開環度が70以上であると、乳化剤の添加量を低減しても、分散安定性を保持し得る分散樹脂組成物を得ることが出来る。これは、次の理由によると推察される。
 変性度Kは、ポリオレフィン樹脂に導入した環状構造を有するα,β-不飽和カルボン酸誘導体の量である。開環率Rは、α,β-不飽和カルボン酸誘導体における環状構造の開環率である。なお、本発明において、α,β-不飽和カルボン酸誘導体の環状構造は、水分子により開環される。そのため、開環構造は、ジカルボキシ基を有する。即ち、本発明の変性ポリオレフィン樹脂において、開環度は、変性ポリオレフィン樹脂におけるカルボキシ基の存在量に関連するパラメータといえる。
 水系分散媒中、上記のカルボキシ基は、有機アミン類等の中和剤が存在することにより、有機アミン類等の共役酸を対イオンとするカルボン酸イオンとして存在する。当該カルボン酸イオンは、負電荷を有する。そのため、水系分散媒中、本発明の変性ポリオレフィン樹脂は、それぞれのカルボン酸イオンの静電反発力により分散安定化する。従って、本発明の分散樹脂組成物は、乳化剤の量を低減しても、分散安定性を保持し得ると推察される。
 ポリオレフィン樹脂に無水マレイン酸等の環状構造を有するα,β-不飽和カルボン酸誘導体を導入した変性ポリオレフィン樹脂は従来公知である。しかしながら、従来公知の変性ポリオレフィン樹脂は、ポリオレフィン樹脂に導入したα,β-不飽和カルボン酸誘導体の環状構造を化学反応に利用して、種々の効果を発揮し得るものである。そのため、ポリオレフィン樹脂に導入したα,β-不飽和カルボン酸誘導体の環状構造は、開環しない方が望ましい、即ち、開環度は低い方が望ましい。
 一方、本発明において、変性ポリオレフィン樹脂は、α,β-不飽和カルボン酸誘導体の環状構造の開環度を70以上に設定する、即ち、開環度を高くする。
 乳化剤の添加量を低減しつつ、分散安定性を保持するには、変性度を高くすることは有効である。しかしながら、変性度を高くし過ぎると耐水性が低下する傾向にある。そのため、特に塗膜や接着層の耐水性が求められる場合、乳化剤の添加量を低減しつつ、分散安定性を保持するために、変性度を高くしないことが好ましい。本発明者等は種々検討していたところ、変性度を高くする代わりに開環率を高くしても、乳化剤の添加量を低減しつつ、分散安定性を保持する上で有効になることを見出した。
 ポリオレフィン樹脂に無水マレイン酸等の環状構造を有するα,β-不飽和カルボン酸誘導体を導入した変性ポリオレフィン樹脂は、環状構造が水分子によって開環する。そのため、例えば大気中の水分子に触れることにより、時間が経つにつれて開環率Rの増大が認められる。しかしながら、大気中の水分は変性ポリオレフィン樹脂の内部まで到達することが出来ない。従って、開環率Rの増大は一定の範囲でレベルオフする。
 開環率Rの増大がレベルオフする水準は、環境湿度や樹脂の比表面積にも依存する。一般に、比表面積が高いほど、開環率Rがレベルオフする水準も高くなる。しかしながら、通常使用されるペレット形状であっても、大気に長期間曝した状態で開環率Rが50%を上回ることはない。
 本発明者らは、開環率を極力上げることにより、変性度を比較的低く抑えたままでも分散安定性を効果的に向上出来ると考え、鋭意検討した結果、高湿度かつ高温度の条件下で、変性ポリオレフィン樹脂を一定期間保管することにより、開環率Rを50%超とでき、それにより分散樹脂組成物の分散安定性を大きく向上し得ることを見出した。
[1-1.変性ポリオレフィン樹脂]
 変性ポリオレフィン樹脂は、ポリオレフィン樹脂に環状構造を有するα,β-不飽和カルボン酸誘導体を含む変性成分を導入して得られる。また、変性ポリオレフィン樹脂は、上記数式(1)で表される開環度が、70以上であり、100以上が好ましい。開環度が70以上であると、ポリオレフィン樹脂に環状構造を有するα,β-不飽和カルボン酸誘導体を含む変性成分を導入した変性ポリオレフィン樹脂を用いて分散樹脂組成物を調製した場合、乳化剤の量を低減しても、分散安定性を保持し得る。また、その上限は、600以下が好ましく、450以下がより好ましく、300以下がさらに好ましい。
 なお、開環度は、変性度Kと開環率Rの積として定義される。変性度Kと開環率Rの詳細を下記に示す。
 変性度Kは、α,β-不飽和カルボン酸誘導体のグラフト重量(重量%)である。即ち、変性度Kは、ポリオレフィン樹脂に導入した環状構造を有するα,β-不飽和カルボン酸誘導体の割合を示す。変性度Kは、変性ポリオレフィン樹脂の開環度に応じて設定し得る。変性度Kは、1.2~6.0重量%がより好ましく、1.4~5.0重量%が更に好ましい。
 変性度Kは、ポリオレフィン樹脂に環状構造を有するα,β-不飽和カルボン酸誘導体を導入する際の、環状構造を有するα,β-不飽和カルボン酸誘導体及びラジカル発生剤の使用量、反応温度、反応時間等によって調整し得る。
 変性度Kは、JIS K-0070(1992)に準拠して次の通り算出し得る。
 精秤した約0.5gの変性ポリオレフィン樹脂と約100gのトルエンを、冷却管及び温度計を取り付けた300mlセパラブルフラスコに投入し、ホットスターラー上で内温が80℃となるように加熱しながら撹拌溶解する。樹脂溶解後、15mlのメタノールを加え5分間保持する。その後、5~6滴の指示薬(1%フェノールフタレイン-メタノール溶液)を添加し、0.1mol/L水酸化カリウム-エタノール溶液で滴定する。この際、中和に要した滴定量から、次式より変性ポリオレフィン樹脂の変性度Kを算出し得る。なお、変性度Kの測定は、開環処理前の変性ポリオレフィン樹脂をトルエン等の有機溶剤に溶解した後、大過剰のメタノール中に滴下して析出させることによって精製した試料を用いて行う。
K={B×f×F/(S×1000)}×100
 ここで、Kは、変性度(重量%)を表し、Bは、水酸化カリウム-エタノール溶液の滴定量(ml)を表し、fは、0.1mol/L水酸化カリウム-エタノール溶液のファクターを表し、Fは、α,β-不飽和カルボン酸誘導体の式量×1/10であり、Sは、変性ポリオレフィン樹脂の重量(g)を表す。
 開環率Rは、α,β-不飽和カルボン酸誘導体における環状構造の開環率(%)である。即ち、開環率Rは、ポリオレフィン樹脂に導入した環状構造を有するα,β-不飽和カルボン酸誘導体の開環率を示す。開環率Rは、変性ポリオレフィン樹脂の開環度に応じて設定し得る。開環率Rは、50~100%が好ましく、60~80%がより好ましい。
 開環率Rの測定の詳細は、以下の通りである。
 先ず、変性ポリオレフィン樹脂を有機溶剤に溶解して溶液を得る。次に、KBr板に該溶液を塗布、乾燥して薄膜を形成し、FT-IR(例、「FT/IR-4100」、日本分光社製)にて、400~4000cm-1の赤外吸光スペクトルを観測する。解析は、付属ソフトウェア(例、「Spectro Manager」、日本分光社)によって行う。
 波数1700~1750cm-1に現れるピークを、開環したα,β-不飽和カルボン酸誘導体のカルボニル基由来のピークに帰属し、ピーク高さをAとする。波数1750~1820cm-1に現れるピークを、開環していないα,β-不飽和カルボン酸誘導体のカルボニル基由来のピークに帰属し、ピーク高さをBとする。そして、開環率R(%)は、(A/(A+B)×100)の式から算出し得る。後述の実施例における開環率は、この方法で算出した値である。
 変性ポリオレフィン樹脂の融点は、50~120℃が好ましく、60~110℃がより好ましく、60℃~100℃がさらに好ましい。融点が50℃以上であると、十分な付着性を発揮し得る。一方、融点が120℃以下であると、比較的低温で焼き付けを行っても優れた付着性を発揮し得る。
 融点は、例えば、ポリオレフィン樹脂のベース樹脂の種類により調整し得る。
 DSCによる融点の測定の詳細は、以下の通りである。
 JIS K7121(1987)に準拠し、DSC測定装置(例、「DISCOVERY DSC2500」、ティー・エイ・インスツルメント・ジャパン社製)を用い、約5mgの試料を150℃で10分間加熱融解状態を保持する。10℃/分の速度で降温し、-50℃まで至った後、5分間安定保持する。その後、10℃/分で150℃まで昇温して融解した時の融解ピーク温度を測定し、該温度を融点とする。
 変性ポリオレフィン樹脂の重量平均分子量は、10,000~200,000が好ましく、50,000~180,000がより好ましく、70,000~170,000がさらに好ましい。
 重量平均分子量は、例えば、ポリオレフィン樹脂のベース樹脂の重量平均分子量や変性成分の使用量等により調整し得る。
 GPCの測定条件の詳細は、以下の通りである。後述の実施例における変性ポリオレフィン樹脂の重量平均分子量は、この条件で測定した値である。
測定機器:HLC-8320GPC(東ソー社製)
溶離液:テトラヒドロフラン
カラム:TSKgel(東ソー社製)
標準物質:ポリスチレン(東ソー製、GLサイエンス製)
検出器:示差屈折計(東ソー製)
 分散樹脂組成物中の変性ポリオレフィン樹脂の平均粒子径は、50nm以上が好ましく、60nm以上がより好ましく、70nm以上がさらに好ましい。一方、その上限は、250nm以下が好ましく、230nm以下がより好ましく、210nm以下がさらに好ましい。平均粒子径は、分散の程度を表すものであり、数値が小さいほど分散性に優れることを示す。
 本明細書中、平均粒子径は、動的光散乱法で測定したZ平均粒子径である。測定機器としては、マルバーン社製のゼータサイザーナノ ZS等が挙げられる。
(ポリオレフィン樹脂)
 ポリオレフィン樹脂は、特に限定されるものではない。ポリオレフィン樹脂を構成するオレフィンとしては、α-オレフィンが好適に用いられる。α-オレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテンが挙げられる。
 ポリオレフィン樹脂は、1種単独のオレフィン重合体であってもよく、2種以上のオレフィン重合体の共重合体であってもよい。ポリオレフィン樹脂が共重合体である場合、ポリオレフィン樹脂はランダム共重合体であってもよく、ブロック共重合体であってもよい。
 ポリオレフィン樹脂は、ポリプロピレン基材等の非極性樹脂基材への十分な付着性を発現させるという観点から、ポリプロピレン(プロピレン単独重合体)、エチレン-プロピレン共重合体、プロピレン-1-ブテン共重合体、エチレン-プロピレン-1-ブテン共重合体が好ましい。
 ここで、「ポリプロピレン」とは、基本単位がプロピレン由来の構成単位である重合体を表す。「エチレン-プロピレン共重合体」とは、基本単位がエチレン及びプロピレン由来の構成単位である共重合体を表す。「プロピレン-1-ブテン共重合体」とは、基本単位がプロピレン及びブテン由来の構成単位である共重合体を表す。「エチレン-プロピレン-1-ブテン共重合体」とは、基本単位がエチレン、プロピレン及びブテン由来の構成単位である共重合体を表す。樹脂本来の性能を著しく損なわない量である限り、これらの(共)重合体は、基本単位以外の他のオレフィン由来の構成単位を少量含有していてもよい。
 ポリオレフィン樹脂は、構成単位100モル%中、プロピレン由来の構成単位を50モル%以上含むことが好ましい。プロピレン由来の構成単位を上記範囲で含むと、プロピレン樹脂等の非極性樹脂基材に対する付着性を保持し得る。
 エチレン-プロピレン共重合体又はプロピレン-1-ブテン共重合体がランダム共重合体である場合、好ましくは、構成単位100モル%中、エチレン由来の構成単位又はブテン由来の構成単位が5~50モル%であり、プロピレン由来の構成単位が50~95モル%である。
 ポリオレフィン樹脂の融点の下限は、50℃以上が好ましく、60℃以上がより好ましい。ポリオレフィン樹脂の融点が50℃以上であると、変性ポリオレフィン樹脂をインキ、塗料等の用途に用いる際、十分な塗膜強度を発現し得る。そのため、基材との付着性が十分に発揮され得る。また、インキとして用いる際、印刷中のブロッキングを抑制し得る。また、その上限は、120℃以下が好ましく、110℃以下がより好ましく、100℃以下がさらに好ましい。ポリオレフィン樹脂の融点が120℃以下であると、変性ポリオレフィン樹脂をインキ、塗料等の用途に用いる際、塗膜が固くなりすぎることを抑制し得る。そのため、塗膜が適度な柔軟性を発揮し得る。
 ポリオレフィン樹脂の融点の一実施形態としては、50~120℃が好ましく、60~110℃がより好ましく、60~100℃がさらに好ましい。
(変性成分)
 変性成分は、環状構造を有するα,β-不飽和カルボン酸誘導体を含む。環状構造を有するα,β-不飽和カルボン酸誘導体としては、例えば、無水マレイン酸、無水シトラコン酸、無水イタコン酸、及び無水アコニット酸等の環状構造を有するα,β-不飽和カルボン酸誘導体が挙げられる。中でも、無水マレイン酸が好ましい。
 変性成分は、環状構造を有するα,β-不飽和カルボン酸誘導体以外の成分を含んでもよい。例えば、マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸、アコニット酸等のα,β-不飽和カルボン酸;メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、グリシジル(メタ)アクリレート、オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、アセトアセトキシエチル(メタ)アクリレート等の(メタ)アクリル酸エステル;フマル酸モノメチル、フマル酸モノエチル、フマル酸モノプロピル、フマル酸モノブチル、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジプロピル、フマル酸ジブチル、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノプロピル、マレイン酸モノブチル、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジプロピル、マレイン酸ジブチル、マレイミド、N-フェニルマレイミドが挙げられる。
 環状構造を有するα,β-不飽和カルボン酸誘導体を含む変性成分をポリオレフィン樹脂に導入する方法としては、公知の方法であってよい。このような方法としては、例えば、ポリオレフィン樹脂を溶融又は溶媒に溶解し、環状構造を有するα,β-不飽和カルボン酸誘導体を含む変性成分及びラジカル発生剤を添加し、変性する方法が挙げられる。
 ラジカル発生剤としては、例えば、公知のラジカル発生剤の中から選択することができる。ラジカル発生剤としては、例えば、パーオキシド類(例、ジ-tert-ブチルパーオキシド、tert-ブチルヒドロパーオキシド、ジクミルパーオキシド、ベンゾイルパーオキシド、tert-ブチルパーオキシドベンゾエート、メチルエチルケトンパーオキシド、ジ-tert-ブチルジパーフタレート)及びアゾニトリル類(例、アゾビスイソブチロニトリル)が挙げられる。
 反応装置としては、例えば、温水や蒸気で加温可能なジャケットを有する反応タンクや、二軸押出機を用いることができる。
 反応は、回分式で行ってもよく、連続式で行ってもよい。
 ポリオレフィン樹脂に、環状構造を有するα,β-不飽和カルボン酸誘導体を含む変性成分を導入することにより、通常、ポリオレフィンを主鎖とし、環状構造を有するα,β-不飽和カルボン酸誘導体を含む変性成分に由来する構成単位を含む側鎖を有するグラフト重合体が得られる。
[製造方法]
 変性ポリオレフィン樹脂の製造方法は、特に限定されるものではない。一例を以下に示す。
 まず、ポリオレフィン樹脂を用意する。ポリオレフィン樹脂は、エチレンと、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等のα-オレフィンとを、チーグラー・ナッタ触媒又はメタロセン触媒等の触媒の存在下、重合することにより調製し得る。ポリオレフィン樹脂は、市販品を用いてもよい。
 つぎに、環状構造を有するα,β-不飽和カルボン酸誘導体を含む変性成分を、ポリオレフィン樹脂に導入する。変性方法は、公知の方法、例えば、グラフト重合方法で行うことができる。グラフト重合反応の際には、ラジカル発生剤を用いてもよい。変性ポリオレフィン樹脂を得る方法としては、トルエン等の溶剤に、ポリオレフィン樹脂と環状構造を有するα,β-不飽和カルボン酸誘導体を含む変性成分を加熱溶解し、ラジカル発生剤を添加する溶液法;バンバリーミキサー、ニーダー、押出機等の機器に、ポリオレフィン樹脂、環状構造を有するα,β-不飽和カルボン酸誘導体を含む変性成分、及びラジカル発生剤を添加し混練する溶融混練法が挙げられる。ここで、環状構造を有するα,β-不飽和カルボン酸誘導体を含む変性成分は、一括添加してもよく、逐次添加してもよい。
 グラフト重合反応の際には、環状構造を有するα,β-不飽和カルボン酸誘導体を含む変性成分は、好ましい量でグラフトする観点から、ポリオレフィン樹脂100質量部に対して、1.0~12.0質量部の量で用いることが好ましい。
 環状構造を有するα,β-不飽和カルボン酸誘導体を含む変性成分の合計100質量%に対する、ラジカル発生剤の添加量の好ましい範囲は次の通りである。添加量の下限は、好ましくは1質量%以上であり、より好ましくは10質量%以上である。ラジカル発生剤の添加量が1質量%以上であると、グラフト効率を保つことができる。一方、添加量の上限は、好ましくは200質量%以下であり、より好ましくは100質量%以下である。ラジカル発生剤の添加量が200質量%以下であると経済的である。
 ポリオレフィン樹脂にグラフト重合しない未反応物は、例えば貧溶媒で抽出して除去してもよい。このようにして、グラフト重合体が得られる。
 変性ポリオレフィン樹脂は、開環度が70以上となるように得られたグラフト重合体を水分子と反応させることで製造し得る。例えば、変性ポリオレフィン樹脂を水に浸漬する、変性ポリオレフィン樹脂を加湿条件下に置く、等の開環処理を行うことで製造し得る。この際、水や加湿条件の温度、浸漬時間や加湿条件下に置く時間を変更することで、開環率(%)と開環度を調整し得る。
 変性ポリオレフィン樹脂の開環率を極力上げることにより、変性度を比較的低く抑えたままでも分散安定性を効果的に向上させることが出来る。開環率を上げる方法としては、例えば、容器の底に水を張り、変性ポリオレフィン樹脂のペレットが直接水に触れない様に上げ底をしてペレットを置き、容器を密閉して50℃の乾燥機に3日間以上保管することにより、開環率を60~70%まで上げることが出来る。さらには、密閉した空間を継続的に水蒸気で充たすことによって、50℃で湿度100%とした場所に、変性ポリオレフィン樹脂のペレットを2日間以上保管することによっても、開環率を65~80%まで上げることが可能である。いずれの方法でも、保管温度を室温よりも上げることで環状構造と水分子との反応性を上げつつ、蒸気圧を上げることにより、ペレット内部に水分子が侵入しやすくすることができる。その結果、通常の大気中で保管する場合、或いは単に室温で水中に浸漬する場合と比較して開環率を上げることができる。
[1-2.水系分散媒]
 本発明の分散樹脂組成物は、水系分散媒を含有する。水系分散媒は、水単独でもよいし、水に溶解可能な溶剤を水と併用してもよい。水に溶解可能な溶剤としては、例えば、メタノール、エタノール、イソプロピルアルコール等の低級アルコール;ジメチルホルムアミド、テトラヒドロフラン、アセトン、メチルエチルケトン等の低級ケトン類が挙げられる。
 水系分散媒の使用量は、特に限定されるものではなく、分散樹脂組成物の用途に応じて任意に変更し得る。一例として、変性ポリオレフィン樹脂の固形分濃度が、10~50重量%となる量が好ましく、20~40重量%となる量がさらに好ましい。
[1-3.乳化剤]
 乳化剤は、変性ポリオレフィン樹脂を、水系分散媒に分散させる際、分散体の安定化を図る目的で添加する従来公知のものを使用し得る。例えば、ノニオン性界面活性剤、アニオン性界面活性剤が挙げられる。
 ノニオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレン誘導体、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル等のポリオキシエチレン多価アルコール脂肪酸エステル、ポリオキシエチレンポリオキシプロピレンポリオール、ソルビタン脂肪酸エステル、ポリオキシエチレン硬化ひまし油、ポリオキシアルキレン多環フェニルエーテル、ポリオキシエチレンアルキルアミン、アルキルアルカノールアミド、ポリアルキレングリコール(メタ)アクリレート等が挙げられる。
 アニオン性界面活性剤としては、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸塩、アルキルベンゼンスルホン酸塩、α-オレフィンスルホン酸塩、メチルタウリル酸塩、スルホコハク酸塩、エーテルスルホン酸塩、エーテルカルボン酸塩、脂肪酸塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンフェニルエーテルホスフェート、ポリオキシエチレンアルキルエーテルホスフェート、ジオクチルスルホコハク酸エステル塩、アルキルアミン塩、第四級アンモニウム塩、アルキルベタイン、アルキルアミンオキシド等が挙げられる。
 本発明の分散樹脂組成物において、乳化剤の含有量は、10重量%未満が好ましく、5重量%未満がより好ましい。下限は特に限定されず、乳化剤を含有しなくもてよい。乳化剤の含有量が10重量%未満であると、乳化剤の添加による付着性の低下を抑制し得る。
 本発明の分散樹脂組成物は、付着性(接着性)が低く、塗料等の塗工が困難な基材のための中間媒体として有用であり、例えば、付着性(接着性)の乏しいポリプロピレン、ポリエチレン等のポリオレフィン系基材同士の接着剤として使用し得る。この際、基材がプラズマ、コロナ等により表面処理されているか否かを問わず用いることができる。
 また、本発明の分散樹脂組成物は、金属と樹脂との優れた接着性をも発揮し得る。金属としては、例えば、アルミニウム、アルミニウム合金、ニッケル、ステンレスが挙げられる。樹脂としては、例えば、ポリオレフィン樹脂等の非極性樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリエチレンテレフタレート系樹脂が挙げられる。従って、本発明の分散樹脂組成物は、接着剤、プライマー、及び塗料用バインダー及びインキ用バインダーとして、又はこれらの成分として、用いることができる。
 本発明の分散樹脂組成物は、変性ポリオレフィン樹脂と水系分散媒の他に、溶液、硬化剤、及び接着成分からなる群より選択される少なくとも1種の成分をさらに含んでも良い。
(溶液)
 溶液としては、有機溶剤が挙げられる。有機溶剤としては、例えば、トルエン、キシレン等の芳香族溶剤;酢酸エチル、酢酸ブチル等のエステル溶剤;メチルエチルケトン、メチルブチルケトン、エチルシクロヘキサノン等のケトン溶剤;シクロヘキサン、メチルシクロヘキサン、ノナン、デカン等の脂肪族又は脂環式炭化水素溶剤が挙げられる。環境問題の観点から、芳香族溶剤以外の有機溶剤が好ましく、脂環式炭化水素溶剤とエステル溶剤又はケトン溶剤との混合溶剤がより好ましい。
 有機溶剤は、1種単独で用いてもよく、2種以上の混合溶剤として用いてもよい。
 また、変性ポリオレフィン樹脂と溶液を含む樹脂組成物の溶液の保存安定性を高めるために、アルコール(例、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール)、プロピレン系グリコールエーテル(例、プロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル、プロピレングリコール-t-ブチルエーテル)を、1種単独で、又は2種以上混合して用いてもよい。この場合、上記有機溶剤に対して、1~20質量%添加することが好ましい。
 また、溶液としては、例えば、下記一般式(1)で表され、且つその分子量が200未満である化合物が好ましい。
R-O-(C2lO)H・・・・・・式(1)
 一般式(1)中、Rは、C2n+1であり、nは、10以下の整数である。nは、8以下の整数であることが好ましく、7以下の整数であることがより好ましく、6以下の整数であることがさらに好ましく、5以下の整数であることがさらにより好ましく、4以下の整数であることがとりわけ好ましい。
 一般式(1)中、lは、5以下の整数であり、4以下の整数であることが好ましく、3以下の整数であることがより好ましい。
 一般式(1)中、mは、5以下の整数であり、4以下の整数であることが好ましく、3以下の整数であることがより好ましく、2以下の整数であることがさらに好ましく、1であることがさらにより好ましい。
 一般式(1)で表され、且つその分子量が200未満である化合物は、グリコールエーテル系の化合物であることが好ましい。グリコールエーテル系の化合物は、エチレングリコール、プロピレングリコール、ブチレングリコール等のグリコール類の水素原子が、アルキル基に置換された構造である。
 一般式(1)で表される化合物は、一分子中に疎水基と親水基を有する。これにより、一般式(1)で表される化合物を添加することにより、変性ポリオレフィン樹脂を容易に水中に分散、乳化させることができる。そのため、本発明の分散樹脂組成物が良好な保存安定性を保つことができるようになる。
 一般式(1)で表される化合物として、より詳細には、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノイソブチルエーテル、エチレングリコールモノ-t-ブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノデシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等が挙げられる。これらの中でも、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノ-t-ブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテルが好ましい。
 一般式(1)で表される化合物の分子量は、200未満である。これにより、変性ポリオレフィン樹脂水分散体組成物(本発明の分散樹脂組成物)の沸点の上昇を抑えることができる。その結果、該水分散体組成物、又は該水分散体組成物を含むプライマー等を塗工した後、塗膜の高温又は長時間乾燥を省略することができる。
 一般式(1)で表される化合物の分子量とは、IUPAC原子量委員会で承認された(12C=12とする)相対原子質量から求める分子量である。
 一般式(1)で表され、且つその分子量が200未満である化合物は、一般式(1)で表される化合物単独であってもよいし、2種以上の一般式(1)で表される化合物の組み合わせであってもよい。後者の場合、それぞれの化合物の配合比は特に限定されない。
(硬化剤)
 硬化剤としては、ポリイソシアネート化合物、エポキシ化合物、ポリアミン化合物、ポリオール化合物、或いはそれらの官能基が保護基でブロックされた架橋剤が例示される。
 硬化剤は1種単独であってもよく、複数種の組み合わせであってもよい。
 硬化剤の配合量は、変性ポリオレフィン樹脂中の変性度Kにより適宜選択できる。また、硬化剤を配合する場合は、目的に応じて有機スズ化合物、第三級アミン化合物等の触媒を併用することができる。
(接着成分)
 接着成分としては、所望の効果を阻害しない範囲でポリエステル系接着剤、ポリウレタン系接着剤、アクリル系接着剤等の公知の接着成分を用いることができる。
 分散樹脂組成物は、ポリオレフィン系基材等の非極性樹脂同士や非極性樹脂と金属の接着に優れるので、接着剤、プライマー、塗料用バインダー及びインキ用バインダーとして用いることができ、例えば、アルミラミネートフィルム等のラミネートフィルムにおける接着剤として有用である。
[プライマー、バインダー]
 本発明の分散樹脂組成物は、プライマー、塗料用バインダー又はインキ用バインダーとして利用し得る。本発明の分散樹脂組成物は、溶液安定性に優れており、自動車のバンパー等ポリオレフィン基材への上塗り塗装時のプライマー、上塗り塗料やクリアーとの付着性に優れる塗料用バインダーとして好適に利用し得る。
 以下、本発明を実施例により詳細に説明する。以下の実施例は、本発明を好適に説明するためのものであって、本発明を限定するものではない。なお、物性値等の測定方法は、別途記載がない限り、上記に記載した測定方法である。また、「部」とは、特に断りがない限り、質量部を示す。
 [変性度K(重量%)]:変性度Kは、JIS K-0070(1992)に準拠して次の通り算出した。まず、精秤した約0.5gの変性ポリオレフィン樹脂と約100gのトルエンを、冷却管及び温度計を取り付けた300mlセパラブルフラスコに投入し、ホットスターラー上で内温が80℃となるように加熱しながら撹拌溶解した。樹脂溶解後、15mlのメタノールを加え5分間保持した。その後、5~6滴の指示薬(1%フェノールフタレイン-メタノール溶液)を添加し、0.1mol/L水酸化カリウム-エタノール溶液で滴定した。そして、中和に要した滴定量から、次式より変性ポリオレフィン樹脂の変性度Kを算出した。
K={B×f×9.806/(S×1000)}×100
 Kは、変性度(重量%)を表し、Bは、水酸化カリウム-エタノール溶液の滴定量(ml)を表し、fは、0.1mol/L水酸化カリウム-エタノール溶液のファクターを表し、9.806は、無水マレイン酸の式量×1/10であり、Sは、変性ポリオレフィン樹脂の重量(g)を表す。
 [開環率R(%)]:変性ポリオレフィン樹脂を有機溶剤に溶解して溶液を得た。KBr板に溶液を塗布、乾燥して薄膜を形成し、FT-IR(「FT/IR-4100」、日本分光社製)にて、400~4000cm-1の赤外吸光スペクトルを観測した。なお、解析は、付属ソフトウェア(「Spectro Manager」、日本分光社)によって行った。
 波数1700~1750cm-1に現れるピークを、開環したα,β-不飽和カルボン酸誘導体のカルボニル基由来のピークに帰属し、そのピーク高さをAとした。波数1750~1820cm-1に現れるピークを、開環していないα,β-不飽和カルボン酸誘導体のカルボニル基由来のピークに帰属し、そのピーク高さをBとした。そして、開環率R(%)は、(A/(A+B)×100)に各ピーク高さA及びBを代入して算出した。
 [開環度]:変性度Kの値と開環率Rの積で算出した。
 [融点(℃)]:JIS K7121(1987)に準拠して測定した。より詳細には、DSC測定装置(「DISCOVERY DSC2500」、ティー・エイ・インスツルメント・ジャパン社製)を用い、約5mgの試料を150℃で10分間加熱融解状態を保持した。10℃/分の速度で降温し、-50℃まで至った後、5分間安定保持した。その後、10℃/分で150℃まで昇温して融解した時の融解ピーク温度を測定し、該温度を融点とした。
 [重量平均分子量(Mw)]:以下の測定条件で測定した値である。
測定機器:HLC-8320GPC(東ソー社製)
溶離液:テトラヒドロフラン
カラム:TSKgel(東ソー社製)
標準物質:ポリスチレン(東ソー製、GLサイエンス製)
検出器:示差屈折計(東ソー製)
温度:40℃
流速:1.0mL/分
 [平均粒子径(nm)]:製造直後の分散樹脂組成物について、動的光散乱法による粒度分布測定装置(ゼータサイザーナノ ZS(マルバーン社製))を用い、平均粒子径を測定した。なお、以下の試験は、平均粒子径が測定できた分散樹脂組成物についてのみ行った。
 [遠心分離時の安定性]:製造直後の分散樹脂組成物について、遠心分離機にて室温、4000rpmの条件で10分間処理を行い、分離や沈殿物発生の有無を目視で確認し、下記基準に従って評価した。
A:異常なし
B:少量の沈殿物が認められる
C:層分離やゲル状物、多量の沈殿物が認められる
 [濾過性の評価]:変性ポリオレフィン樹脂水性分散体(分散樹脂組成物)200mLを金属メッシュ(#400)で濾過した際の濾過速度と残渣量を、下記基準に従って評価した。
  濾過速度
A:1分未満に濾過完了
B:1分以上5分未満で濾過完了
C:5分以上10分未満で濾過完了
D:10分以上15分未満で濾過完了
E:15分以上経過しても濾過が完了しない
  残渣量
A:無し又はごく微量
B:少量存在
C:多量に存在
[耐水性(通常基材使用)]
<試験片の作製>
 超高剛性ポリプロピレン板の表面をイソプロピルアルコールで脱脂した後、膜厚(乾燥塗膜)が10以上15μm以下となるよう変性ポリオレフィン樹脂水分散体組成物をスプレー塗装し、樹脂の融点+15℃で5分間プレヒートを行った。次に、その塗膜の上に、ベースコートとしてプロタッチファインメタリック(ロックペイント製)を、所定の硬化剤を配合して専用シンナーで粘度調整を行った後に、乾燥膜厚が約20μmとなる様にスプレー塗装して、10分間室温で静置した。更にその塗膜の上に、クリアーコートとしてエコロックハイパークリヤーS(ロックペイント製)を、所定の硬化剤を配合して専用シンナーで粘度調整を行った後に、乾燥膜厚が25~30μmとなる様にスプレー塗装して、10分間室温で静置した。その後、樹脂の融点+15℃で30分間の焼付け処理を行い、試験片を作製した。
<塗膜外観評価>
 上記にて作製した試験片について、40℃の温水に10日間浸漬後、塗膜外観(ブリスター発生の有無等)を目視で観察し、下記基準に従って評価した。
  塗膜外観
A:異常なし
B:2mm以下のブリスターが発生するが、実用上問題無いレベル
C:2mm超のブリスター発生
<付着性評価>
 次に、カッターナイフを用いて塗膜上に2mm間隔で素地に達する碁盤目状の切込み(11本×11本の切込みで合計100個の碁盤目を形成)を入れた。切込み上にセロハンテープ(ニチバン製)を密着させて180°の角度で剥離する操作を3回繰り返した後、碁盤目数100のうち剥離されなかった碁盤目数にて付着性を評価した。
[耐水性(難付着性基材使用)]
 基材として難付着性ポリプロピレン板(リサイクル材を7割配合)を用いたこと以外は、上記と同様に試験片を作製し、塗膜外観と付着性の評価を行った。
 (製造例1)
 プロピレン-ブテンランダム共重合体〔P-B〕(プロピレン成分70モル%、ブテン成分30モル%、Tm=75℃)100.0部、無水マレイン酸4.0部、ラウリルメタクリレート2.6部、及び2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン1.5部を、220℃に設定した二軸押出機を用いて混練して反応を行った。押出機出口に設けたダイスより排出された反応物のストランドを、ペレタイザーでカッティングすることにより、反応物のペレットを得た。該反応物のペレットを大過剰の酢酸エチル中に投入し、45℃で3時間攪拌することによって精製し、重量平均分子量が78,000、Tmが70℃、無水マレイン酸及びラウリルメタクリレートのグラフト重量が各々2.6重量%、1.8重量%の反応物を得た。
 精製した反応物を、上げ底をした容器中に入れ、該反応物が直接水に触れない程度まで容器底面に水を張った。その後、容器を密閉して50℃の送風乾燥機に3日間保管(相対湿度100%)することにより、開環率が64%、すなわち開環度が166の変性ポリオレフィン樹脂を得た。
 (製造例2)
 攪拌機、冷却管、及び滴下漏斗を取り付けた四つ口フラスコ中で、プロピレン-ブテンランダム共重合体〔P-B〕(プロピレン成分70モル%、ブテン成分30モル%、Tm=75℃)100.0部をo-キシレン400g中に加熱溶解した。系内の温度を140℃に保持して撹拌しながら、無水マレイン酸3.2部を一括添加し、続いて、ジ-t-ブチルパーオキサイド1.2部を1時間かけて滴下した。その後、さらに3時間反応を行った。
 反応終了後、40℃以下まで冷却した後、該反応物を大過剰のメチルエチルケトン中に投入することで精製し、重量平均分子量が118,000、Tmが70℃、無水マレイン酸のグラフト重量が1.9重量%の反応物を得た。
 精製した反応物を、上げ底をした容器中に入れ、該反応物が直接水に触れない程度まで容器底面に水を張った。その後、容器を密閉して50℃の送風乾燥機に3日間保管(相対湿度100%)することにより、開環率が61%、すなわち開環度が116の変性ポリオレフィン樹脂を得た。
 (製造例3)
 プロピレン-ブテンランダム共重合体〔P-B〕(プロピレン成分80モル%、ブテン成分20モル%、Tm=85℃)100.0部、無水マレイン酸2.9部、オクチルメタクリレート2.3部、及びジラウリルパーオキサイド1.2部を、190℃に設定した二軸押出機を用いて混練して反応を行ったことと、精製操作時の温度を55℃に変更したこと以外は、製造例1と同様にして、重量平均分子量が79,000、Tmが80℃、無水マレイン酸及びオクチルメタクリレートのグラフト重量が各々1.9重量%及び1.5重量%、開環率が63%、すなわち開環度が120の変性ポリオレフィン樹脂を得た。
 (製造例4)
 プロピレン-ブテンランダム共重合体〔P-B〕(プロピレン成分80モル%、ブテン成分20モル%、Tm=85℃)100.0部、及び無水マレイン酸3.8部を用いたこと以外は、製造例2と同様にして、重量平均分子量が121,000、Tmが80℃、無水マレイン酸のグラフト重量が2.3重量%、開環率が61%、すなわち開環度が140の変性ポリオレフィン樹脂を得た。
 (製造例5)
 二軸押出機の温度を170℃に変更したこと以外は、製造例3と同様にして、重量平均分子量が150,000、Tmが80℃、無水マレイン酸及びオクチルメタクリレートのグラフト重量が各々1.7重量%及び1.3重量%、開環率が60%、すなわち開環度が102の変性ポリオレフィン樹脂を得た。
 (製造例6)
 プロピレン-ブテンランダム共重合体〔P-B〕(プロピレン成分90モル%、ブテン成分10モル%、Tm=100℃)100.0部、無水マレイン酸3.0部、及び2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン2.0部を、200℃に設定した二軸押出機を用いて混練して反応を行ったことと、精製操作時の温度を60℃に変更したこと以外は、製造例1と同様にして、重量平均分子量が75,000、Tmが95℃、無水マレイン酸のグラフト重量が2.0重量%、開環率が61%、すなわち開環度が122の変性ポリオレフィン樹脂を得た。
 (製造例7)
 プロピレン-ブテンランダム共重合体〔P-B〕(プロピレン成分90モル%、ブテン成分10モル%、Tm=100℃)100.0部、無水マレイン酸3.0部、及び2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン2.0部を、180℃に設定した二軸押出機を用いて混練して反応を行った。押出機出口に設けたダイスより排出された反応物のストランドを、ペレタイザーでカッティングすることにより、反応物のペレットを得た。該反応物のペレットを大過剰の酢酸エチル中に投入し、60℃で3時間攪拌することによって精製し、重量平均分子量が98,000、Tmが95℃、無水マレイン酸のグラフト重量が1.7重量%の反応物を得た。
 60~70℃となる様に継続的に飽和蒸気(蒸気圧0.3MPa)を供給することによって相対湿度100%とした密閉空間に、精製した反応物のペレットを2日間以上保管することによって、開環率が72%、すなわち開環度が122の変性ポリオレフィン樹脂を得た。
 (製造例8)
 二軸押出機の設定温度を165℃に変更したこと以外は、製造例6と同様にして、重量平均分子量が133,000、Tmが95℃、無水マレイン酸のグラフト重量が1.7重量%、開環率が62%、すなわち開環度が105の変性ポリオレフィン樹脂を得た。
 (製造例9)
 プロピレン-エチレンランダム共重合体〔P-E〕(プロピレン成分89モル%、エチレン成分11モル%、Tm=65℃)100.0部、無水マレイン酸4.0部、ラウリルメタクリレート4.0部、及びジ-t-ブチルパーオキサイド2.0部を、220℃に設定した二軸押出機を用いて混練して反応を行った。押出機内にて減圧脱気を行い、残留する未反応物を除去し、重量平均分子量が54,000、Tmが64℃の反応物を得た。反応物を大過剰のアセトン中に投入することで精製して、無水マレイン酸及びラウリルメタクリレートのグラフト重量を測定したところ、各々3.2重量%、3.0重量%であった。
 精製した反応物を、上げ底をした容器中に入れ、反応物が直接水に触れない程度まで容器底面に水を張った。その後、容器を密閉して50℃の送風乾燥機に3日間保管(相対湿度100%)することにより、開環率が65%、すなわち開環度が208の変性ポリオレフィン樹脂を得た。
 (製造例10)
 プロピレン-エチレンランダム共重合体〔P-E〕(プロピレン成分89モル%、エチレン成分11モル%、Tm=65℃)100.0部、及び無水マレイン酸3.8部を用いたこと以外は、製造例2と同様にして、重量平均分子量が149,000、Tmが64℃、無水マレイン酸のグラフト重量が2.8重量%、開環率が61%、すなわち開環度が171の変性ポリオレフィン樹脂を得た。
 (製造例11)
 プロピレン-エチレン-1-ブテンランダム共重合体〔P-E-B〕(プロピレン成分65モル%、エチレン成分24モル%、1-ブテン成分11モル%、Tm=65℃)100.0部、及び無水マレイン酸3.7部を用いたこと以外は、製造例2と同様にして、重量平均分子量が125,000、Tmが60℃、無水マレイン酸のグラフト重量が2.6重量%、開環率が63%、すなわち開環度が164の変性ポリオレフィン樹脂を得た。
 (製造例12)
 製造例9と同様にして得た反応物のペレット(開環処理は未実施)を、大過剰のメチルエチルケトン中に投入し、45℃で3時間攪拌することによって精製した。精製した反応物を、大気中(約25℃、約50RH%)に1日静置することにより、重量平均分子量が54,000、Tmが64℃、無水マレイン酸及びラウリルメタクリレートのグラフト重量が各々3.2重量%及び3.0重量%、開環率が24%、すなわち開環度が77の変性ポリオレフィン樹脂を得た。
 (製造例13)
 製造例11と同様にして反応物(精製済み、開環処理は未実施)を得た。精製した反応物を、大気中(約25℃、約50RH%)に1日静置することにより、重量平均分子量が125,000、Tmが60℃、無水マレイン酸のグラフト重量が2.6重量%、開環率が28%、すなわち開環度が73の変性ポリオレフィン樹脂を得た。
 (製造例14)
 製造例7と同様にして得た反応物のペレット(精製済み、開環処理は未実施)を、水を張った容器中に入れ、該反応物を水に浸漬させた状態で、容器を密閉して室温(約25℃)で3日間保管することにより、重量平均分子量が98,000、Tmが95℃、無水マレイン酸のグラフト重量が1.7重量%、開環率が48%、すなわち開環度が82の変性ポリオレフィン樹脂を得た。
 (製造例15)
 製造例1と同様にして得た反応物を精製した。精製した反応物の開環を促進する処置を特段施すことなく速やかに測定を実施したところ、重量平均分子量が78,000、Tmが70℃、無水マレイン酸及びラウリルメタクリレートのグラフト重量が各々2.6重量%、1.8重量%、開環率が17%、すなわち開環度が44の変性ポリオレフィン樹脂を得た。
 (製造例16)
 製造例2と同様にして得た反応物を精製した。精製した反応物を、上げ底をした容器中に入れ、反応物が直接水に触れない程度まで容器底面に水を張った。その後、容器を密閉して50℃の送風乾燥機に8時間保管(相対湿度100%)することにより、重量平均分子量が118,000、Tmが70℃、無水マレイン酸のグラフト重量が1.9重量%、開環率が32%、すなわち開環度が61の変性ポリオレフィン樹脂を得た。
 (製造例17)
 製造例4と同様にして得た反応物を精製した。精製した反応物を、大気中(約25℃、約50RH%)に1日静置することにより、重量平均分子量が121,000、Tmが80℃、無水マレイン酸のグラフト重量が2.3重量%、開環率が25%、すなわち開環度が58の変性ポリオレフィン樹脂を得た。
 (製造例18)
 製造例7と同様にして得た反応物を精製した。精製した反応物を、水を張った容器中に入れ、反応物を水に浸漬させた状態で、容器を密閉して室温(約25℃)で1日保管することにより、重量平均分子量が98,000、Tmが95℃、無水マレイン酸のグラフト重量が1.7重量%、開環率が38%、すなわち開環度が65の変性ポリオレフィン樹脂を得た。
 (製造例19)
 製造例10と同様にして得た反応物を精製した。精製した反応物の開環を促進する処置を特段施すことなく速やかに測定を実施したところ、重量平均分子量が149,000、Tmが64℃、無水マレイン酸のグラフト重量が2.8重量%、開環率が18%、すなわち開環度が50の変性ポリオレフィン樹脂を得た。
 (製造例20)
 二軸押出機の設定温度を170℃に変更したこと以外は製造例7と同様にして、重量平均分子量が103,000、Tmが95℃、無水マレイン酸のグラフト重量が1.6重量%、開環率が73%、すなわち開環度が117の変性ポリオレフィン樹脂を得た。
 (製造例21)
 プロピレン-ブテンランダム共重合体〔P-B〕(プロピレン成分80モル%、ブテン成分20モル%、Tm=85℃)100.0部、及び無水マレイン酸7.9部を用いたこと以外は、製造例2と同様にして、重量平均分子量が112,000、Tmが80℃、無水マレイン酸のグラフト重量が4.3重量%、開環率が70%、すなわち開環度が301の変性ポリオレフィン樹脂を得た。
 (製造例22)
 プロピレン-ブテンランダム共重合体〔P-B〕(プロピレン成分80モル%、ブテン成分20モル%、Tm=85℃)100.0部、及び無水マレイン酸10.7部を用いたこと以外は、製造例2と同様にして、重量平均分子量が105,000、Tmが80℃、無水マレイン酸のグラフト重量が6.0重量%、開環率が72%、すなわち開環度が432の変性ポリオレフィン樹脂を得た。
 (製造例23)
 プロピレン-エチレンランダム共重合体〔P-E〕(プロピレン成分91モル%、エチレン成分9モル%、Tm=75℃)100.0部、無水マレイン酸5.0部、ラウリルメタクリレート5.0部、及びジ-t-ブチルパーオキサイド2.5部を用いたこと以外は、製造例9と同様にして、重量平均分子量が133,000、Tmが78℃、無水マレイン酸及びラウリルメタクリレートのグラフト重量が各々3.8重量%、3.5重量%、開環率が70%、すなわち開環度が266の変性ポリオレフィン樹脂を得た。
 (実施例1)
 撹拌機、冷却管、温度計、及び滴下漏斗を取り付けた四つ口フラスコ中に、製造例1で得た変性ポリオレフィン樹脂100g、メチルシクロヘキサン50g、及びプロピレングリコールモノプロピルエーテル50gを添加し、フラスコ内温を85℃にして30分混練した。次に、モルホリン4gを添加し、フラスコ内温を85℃にして60分混練した。その後、90℃の脱イオン水290gを60分かけて添加した。引き続き、メチルシクロヘキサン及びプロピレングリコールモノプロピルエーテルの一部を減圧下にて除去した。その後、室温まで撹拌しつつ冷却し、脱イオン水にて固形分を30重量%となるよう調整した変性ポリオレフィン樹脂水分散体組成物(分散樹脂組成物)を得た。変性ポリオレフィン樹脂水分散体組成物中のメチルシクロヘキサン及びプロピレングリコールモノプロピルエーテルの含有率をガスクロマトグラフィーにより確認した結果、変性ポリオレフィン樹脂水分散体組成物に対して、各々0.02重量%、2.5重量%であった。
 (実施例2)
 撹拌機、冷却管、温度計、及びロートを取り付けた四つ口フラスコ中に、製造例2で得た変性ポリオレフィン樹脂100g、トルエン30g、及びエチレングリコールモノブチルエーテル100gを添加し、フラスコ内温を85℃にして30分混練した。次に、N,N-ジメチルエタノールアミン5gを添加し、フラスコ内温を85℃にして60分混練した。その後、90℃の脱イオン水290gを60分かけて添加した。引き続き、トルエン及びエチレングリコールモノブチルエーテルの一部を減圧下にて除去した。その後、室温まで撹拌しつつ冷却し、脱イオン水にて固形分を30重量%となるよう調整した変性ポリオレフィン樹脂水分散体組成物(分散樹脂組成物)を得た。変性ポリオレフィン樹脂水分散体組成物中のトルエン及びエチレングリコールモノブチルエーテルの含有率をガスクロマトグラフィーにより確認した結果、変性ポリオレフィン樹脂水分散体組成物に対して、各々0.02重量%、1.5重量%であった。
 (実施例3)
 製造例3で得た変性ポリオレフィン樹脂を用いたこと以外は、実施例1と同様に行い、変性ポリオレフィン樹脂水分散体組成物(分散樹脂組成物)を得た。変性ポリオレフィン樹脂水分散体組成物中のメチルシクロヘキサン及びプロピレングリコールモノプロピルエーテルの含有率は、変性ポリオレフィン樹脂水分散体組成物に対して、各々0.02重量%、2.3重量%であった。
 (実施例4)
 製造例4で得た変性ポリオレフィン樹脂を用いたこと以外は、実施例2と同様に行い、変性ポリオレフィン樹脂水分散体組成物を得た。変性ポリオレフィン樹脂水分散体組成物中のトルエン及びエチレングリコールモノブチルエーテルの含有率は、変性ポリオレフィン樹脂水分散体組成物に対して、各々0.02重量%、2.1重量%であった。
 (実施例5)
 撹拌機、冷却管、温度計、及びロートを取り付けた四つ口フラスコ中に、製造例5で得た変性ポリオレフィン樹脂100g、エマルゲン420(花王製、ポリオキシエチレンアルキルエーテル)5g、トルエン30g、及びエチレングリコールモノブチルエーテル100gを添加し、フラスコ内温を85℃にして30分混練した。次に、N,N-ジメチルエタノールアミン5gを添加し、フラスコ内温を85℃にして60分混練した。その後、90℃の脱イオン水290gを60分かけて添加した。引き続き、トルエン及びエチレングリコールモノブチルエーテルの一部を減圧下にて除去した。その後、室温まで撹拌しつつ冷却し、脱イオン水にて固形分を30重量%となるよう調整した変性ポリオレフィン樹脂水分散体組成物(分散樹脂組成物)を得た。変性ポリオレフィン樹脂水分散体組成物中のトルエン及びエチレングリコールモノブチルエーテルの含有率をガスクロマトグラフィーにより確認した結果、変性ポリオレフィン樹脂水分散体組成物に対して、各々0.02重量%、1.5重量%であった。
 (実施例6)
 製造例6で得た変性ポリオレフィン樹脂を用いたこと以外は、実施例1と同様に行い、変性ポリオレフィン樹脂水分散体組成物(分散樹脂組成物)を得た。変性ポリオレフィン樹脂水分散体組成物中のメチルシクロヘキサン及びプロピレングリコールモノプロピルエーテルの含有率は、変性ポリオレフィン樹脂水分散体組成物に対して、各々0.02重量%、2.0重量%であった。
 (実施例7)
 製造例7で得た変性ポリオレフィン樹脂を用いたこと以外は、実施例2と同様に行い、変性ポリオレフィン樹脂水分散体組成物(分散樹脂組成物)を得た。変性ポリオレフィン樹脂水分散体組成物中のトルエン及びエチレングリコールモノブチルエーテルの含有率は、変性ポリオレフィン樹脂水分散体組成物に対して、各々0.01重量%、1.3重量%であった。
 (実施例8)
 製造例8で得た変性ポリオレフィン樹脂を用いたこと以外は、実施例5と同様に行い、変性ポリオレフィン樹脂水分散体組成物(分散樹脂組成物)を得た。変性ポリオレフィン樹脂水分散体組成物中のトルエン及びエチレングリコールモノブチルエーテルの含有率は、変性ポリオレフィン樹脂水分散体組成物に対して、各々0.02重量%、2.5重量%であった。
 (実施例9)
 製造例9で得た変性ポリオレフィン樹脂を用いたこと以外は、実施例1と同様に行い、変性ポリオレフィン樹脂水分散体組成物(分散樹脂組成物)を得た。変性ポリオレフィン樹脂水分散体組成物中のメチルシクロヘキサン及びプロピレングリコールモノプロピルエーテルの含有率は、変性ポリオレフィン樹脂水分散体組成物に対して、各々0.02重量%、2.0重量%であった。
 (実施例10)
 製造例10で得た変性ポリオレフィン樹脂を用いたこと以外は、実施例2と同様に行い、変性ポリオレフィン樹脂水分散体組成物(分散樹脂組成物)を得た。変性ポリオレフィン樹脂水分散体組成物中のトルエン及びエチレングリコールモノブチルエーテルの含有率は、変性ポリオレフィン樹脂水分散体組成物に対して、各々0.02重量%、1.9重量%であった。
 (実施例11)
 製造例11で得た変性ポリオレフィン樹脂を用いたこと以外は、実施例1と同様に行い、変性ポリオレフィン樹脂水分散体組成物(分散樹脂組成物)を得た。変性ポリオレフィン樹脂水分散体組成物中のメチルシクロヘキサン及びプロピレングリコールモノプロピルエーテルの含有率は、変性ポリオレフィン樹脂水分散体組成物に対して、各々0.02重量%、2.6重量%であった。
 (実施例12)
 製造例12で得た変性ポリオレフィン樹脂を用いたこと以外は、実施例5と同様に行い、変性ポリオレフィン樹脂水分散体組成物(分散樹脂組成物)を得た。変性ポリオレフィン樹脂水分散体組成物中のトルエン及びエチレングリコールモノブチルエーテルの含有率は、変性ポリオレフィン樹脂水分散体組成物に対して、各々0.02重量%、2.1重量%であった。
 (実施例13)
 製造例13で得た変性ポリオレフィン樹脂を用いたこと以外は、実施例2と同様に行い、変性ポリオレフィン樹脂水分散体組成物(分散樹脂組成物)を得た。変性ポリオレフィン樹脂水分散体組成物中のトルエン及びエチレングリコールモノブチルエーテルの含有率は、変性ポリオレフィン樹脂水分散体組成物に対して、各々0.02重量%、2.8重量%であった。
 (実施例14)
 製造例14で得た変性ポリオレフィン樹脂を用いたこと以外は、実施例2と同様に行い、変性ポリオレフィン樹脂水分散体組成物(分散樹脂組成物)を得た。変性ポリオレフィン樹脂水分散体組成物中のトルエン及びエチレングリコールモノブチルエーテルの含有率は、変性ポリオレフィン樹脂水分散体組成物に対して、各々0.02重量%、2.5重量%であった。
 (実施例15)
 製造例20で得た変性ポリオレフィン樹脂を用いたこと以外は、実施例2と同様に行い、変性ポリオレフィン樹脂水分散体組成物(分散樹脂組成物)を得た。変性ポリオレフィン樹脂水分散体組成物中のトルエン及びエチレングリコールモノブチルエーテルの含有率は、変性ポリオレフィン樹脂水分散体組成物に対して、各々0.01重量%、1.4重量%であった。
 (実施例16)
 製造例21で得た変性ポリオレフィン樹脂を用いたこと以外は、実施例2と同様に行い、変性ポリオレフィン樹脂水分散体組成物(分散樹脂組成物)を得た。変性ポリオレフィン樹脂水分散体組成物中のトルエン及びエチレングリコールモノブチルエーテルの含有率は、変性ポリオレフィン樹脂水分散体組成物に対して、各々0.02重量%、2.4重量%であった。
 (実施例17)
 製造例22で得た変性ポリオレフィン樹脂を用いたこと以外は、実施例2と同様に行い、変性ポリオレフィン樹脂水分散体組成物(分散樹脂組成物)を得た。変性ポリオレフィン樹脂水分散体組成物中のトルエン及びエチレングリコールモノブチルエーテルの含有率は、変性ポリオレフィン樹脂水分散体組成物に対して、各々0.02重量%、2.7重量%であった。 
 (実施例18)
 製造例23で得た変性ポリオレフィン樹脂を用いたこと以外は、実施例2と同様に行い、変性ポリオレフィン樹脂水分散体組成物(分散樹脂組成物)を得た。変性ポリオレフィン樹脂水分散体組成物中のトルエン及びエチレングリコールモノブチルエーテルの含有率は、変性ポリオレフィン樹脂水分散体組成物に対して、各々0.01重量%、1.8重量%であった。
 (比較例1)
 製造例15で得た変性ポリオレフィン樹脂を用いたこと以外は、実施例1と同様に行い、変性ポリオレフィン樹脂水分散体組成物(分散樹脂組成物)を得た。変性ポリオレフィン樹脂水分散体組成物中のメチルシクロヘキサン及びプロピレングリコールモノプロピルエーテルの含有率は、変性ポリオレフィン樹脂水分散体組成物に対して、各々0.02重量%、2.4重量%であった。
 (比較例2)
 製造例16で得た変性ポリオレフィン樹脂を用いたこと以外は、実施例2と同様に行った。しかしながら、水分散体調製中に変性ポリオレフィン樹脂の凝集物が発生し、変性ポリオレフィン樹脂水分散体を得ることは出来なかった。
 (比較例3)
 製造例17で得た変性ポリオレフィン樹脂を用いたこと以外は、実施例1と同様に行った。しかしながら、水分散体調製中に変性ポリオレフィン樹脂の凝集物が発生し、変性ポリオレフィン樹脂水分散体を得ることは出来なかった。
 (比較例4)
 製造例18で得た変性ポリオレフィン樹脂を用いたこと以外は、実施例2と同様に行った。しかしながら、水分散体調製中に変性ポリオレフィン樹脂の凝集物が発生し、変性ポリオレフィン樹脂水分散体を得ることは出来なかった。
 (比較例5)
 製造例19で得た変性ポリオレフィン樹脂を用いたこと以外は、実施例1と同様に行った。しかしながら、水分散体調製中に変性ポリオレフィン樹脂の凝集物が発生し、変性ポリオレフィン樹脂水分散体を得ることは出来なかった。
 上記実施例1~18及び比較例1~5で得られた分散樹脂組成物について、ベース樹脂の種類、変性ポリオレフィン樹脂の融点、重量平均分子量、変性度K(重量%)、開環率R(%)、開環度、平均粒子径、乳化剤の使用量、濾過性(濾過速度、残渣量)の評価の一覧を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 比較例1~5の結果からわかるように、変性ポリオレフィン樹脂の開環度が70未満であると、平均粒子径が250nm超であるか、乳化不良である。そのため、当該変性ポリオレフィン樹脂から分散樹脂組成物を製造すると、分散性に劣ることがわかる。一方、実施例1~18の結果からわかるように、変性ポリオレフィン樹脂の開環度が70以上であると、平均粒子径が250nm以下である。そのため、変性ポリオレフィン樹脂から分散樹脂組成物を製造すると、ベース樹脂の種類によらず、また乳化剤の配合量が10重量%未満であっても、分散性に優れる。従って、本発明の分散樹脂組成物は、乳化剤の添加量を低減しても、分散安定性を保持し得るといえる。
 さらに、実施例7と実施例14の結果を比較するとわかるように、開環率を60%以上とした分散樹脂組成物は、開環率が60%未満の分散樹脂組成物と比較して、平均粒子径が小さく、濾過性が良い傾向が認められる。そのため、より良好な分散樹脂組成物を得ることが出来る。
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、本発明の分散樹脂組成物は、遠心分離時の安定性の評価が、「A」又は「B」であり、分散安定性を保持していた。通常基材を使用した耐水性の評価は、外観評価に異常がなく、付着性も優れている。また、難付着性基材を使用した耐水性の評価は、外観評価に異常がないか、ブリスターが発生しても2mm以下であり、実用可能なレベルの付着性も確保できている。
 一方、比較例1では遠心分離時の安定性の評価が、「C」であり、分散安定性が劣っていた。通常基材を使用した耐水性の評価は、外観評価に2mm以下のブリスターが発生しており、本発明の分散樹脂組成物に比較して付着性が劣っていた。また、難付着性基材を使用した耐水性の評価は、2mm超のブリスターが発生し、付着性も発現しなかった。

Claims (6)

  1.  ポリオレフィン樹脂に環状構造を有するα,β-不飽和カルボン酸誘導体を含む変性成分を導入した変性ポリオレフィン樹脂と、
     水系分散媒と、を少なくとも含有し、
     前記変性ポリオレフィン樹脂の下記式(1)で表される開環度が70以上である、分散樹脂組成物。
    (1):開環度=変性度K×開環率R
     (前記式(1)中、前記変性度Kは、前記ポリオレフィン樹脂に対する前記α,β-不飽和カルボン酸誘導体の含有率(重量%)を表し、前記開環率Rは、前記α,β-不飽和カルボン酸誘導体における環状構造の開環率(%)を表す。)
  2.  乳化剤の含有量が、10重量%未満である、請求項1に記載の分散樹脂組成物。
  3.  前記開環率Rが、60%以上である、請求項1又は2に記載の分散樹脂組成物。
  4.  前記変性ポリオレフィン樹脂の融点が、50℃以上である、請求項1~3のいずれか1項に記載の分散樹脂組成物。
  5.  前記変性ポリオレフィン樹脂の重量平均分子量が、1万以上である、請求項1~4のいずれか1項に記載の分散樹脂組成物。
  6.  前記ポリオレフィン樹脂が、エチレン-プロピレン共重合体、プロピレン-1-ブテン共重合体、及びエチレン-プロピレン-1-ブテン共重合体からなる群から選択される少なくとも1種を含む、請求項1~5のいずれか1項に記載の分散樹脂組成物。
PCT/JP2020/010407 2019-03-29 2020-03-10 分散樹脂組成物 WO2020203103A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3134807A CA3134807A1 (en) 2019-03-29 2020-03-10 Dispersion resin composition
CN202080026299.1A CN113614166B (zh) 2019-03-29 2020-03-10 分散树脂组合物
EP20783013.4A EP3950820A4 (en) 2019-03-29 2020-03-10 DISPERSION RESIN COMPOSITION
KR1020217031205A KR20210148145A (ko) 2019-03-29 2020-03-10 분산 수지 조성물
JP2021511326A JPWO2020203103A1 (ja) 2019-03-29 2020-03-10
US17/598,484 US20220186014A1 (en) 2019-03-29 2020-03-10 Dispersion resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019067270 2019-03-29
JP2019-067270 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203103A1 true WO2020203103A1 (ja) 2020-10-08

Family

ID=72668674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010407 WO2020203103A1 (ja) 2019-03-29 2020-03-10 分散樹脂組成物

Country Status (7)

Country Link
US (1) US20220186014A1 (ja)
EP (1) EP3950820A4 (ja)
JP (1) JPWO2020203103A1 (ja)
KR (1) KR20210148145A (ja)
CN (1) CN113614166B (ja)
CA (1) CA3134807A1 (ja)
WO (1) WO2020203103A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031472A (ja) 2005-07-22 2007-02-08 Toyo Kasei Kogyo Co Ltd 水性樹脂組成物およびその製造方法
JP2007039645A (ja) 2005-07-07 2007-02-15 Mitsubishi Chemicals Corp 水性樹脂分散体及びその製造方法、塗料、積層体及びその製造方法
JP2008222896A (ja) * 2007-03-14 2008-09-25 Seiko Pmc Corp 変性ポリオレフィン樹脂の製造方法及び変性ポリオレフィン樹脂水性分散体組成物
JP2009040920A (ja) 2007-08-09 2009-02-26 Seiko Pmc Corp 変性ポリオレフィン樹脂水性分散体組成物
JP2009209181A (ja) * 2008-02-29 2009-09-17 Dic Corp 水性樹脂組成物、その製造方法および塗装物
JP2011148871A (ja) * 2010-01-20 2011-08-04 Seiko Pmc Corp 変性ポリオレフィン樹脂水性分散体の製造方法
WO2015186733A1 (ja) * 2014-06-03 2015-12-10 ユニチカ株式会社 水性分散体および積層体
JP2018076428A (ja) * 2016-11-09 2018-05-17 三洋化成工業株式会社 変性ポリオレフィン樹脂組成物
JP2018172223A (ja) * 2017-03-31 2018-11-08 ユニチカ株式会社 コンクリート構造体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104090A (ja) 1999-09-30 2004-04-02 Nomura Micro Sci Co Ltd 表面付着汚染物質の除去方法及び除去装置
US6914097B2 (en) * 2002-12-17 2005-07-05 Equistar Chemicals Lp Process for producing acid functionalized polyolefins and products
CN101384645B (zh) * 2006-03-10 2013-06-05 三菱化学株式会社 树脂分散体、涂料、层积体及其制造方法
JP6597025B2 (ja) * 2014-08-01 2019-10-30 三菱ケミカル株式会社 水性樹脂分散体、塗料、接着剤及び積層体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039645A (ja) 2005-07-07 2007-02-15 Mitsubishi Chemicals Corp 水性樹脂分散体及びその製造方法、塗料、積層体及びその製造方法
JP2007031472A (ja) 2005-07-22 2007-02-08 Toyo Kasei Kogyo Co Ltd 水性樹脂組成物およびその製造方法
JP2008222896A (ja) * 2007-03-14 2008-09-25 Seiko Pmc Corp 変性ポリオレフィン樹脂の製造方法及び変性ポリオレフィン樹脂水性分散体組成物
JP2009040920A (ja) 2007-08-09 2009-02-26 Seiko Pmc Corp 変性ポリオレフィン樹脂水性分散体組成物
JP2009209181A (ja) * 2008-02-29 2009-09-17 Dic Corp 水性樹脂組成物、その製造方法および塗装物
JP2011148871A (ja) * 2010-01-20 2011-08-04 Seiko Pmc Corp 変性ポリオレフィン樹脂水性分散体の製造方法
WO2015186733A1 (ja) * 2014-06-03 2015-12-10 ユニチカ株式会社 水性分散体および積層体
JP2018076428A (ja) * 2016-11-09 2018-05-17 三洋化成工業株式会社 変性ポリオレフィン樹脂組成物
JP2018172223A (ja) * 2017-03-31 2018-11-08 ユニチカ株式会社 コンクリート構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3950820A4

Also Published As

Publication number Publication date
CA3134807A1 (en) 2020-10-08
TW202102558A (zh) 2021-01-16
US20220186014A1 (en) 2022-06-16
KR20210148145A (ko) 2021-12-07
EP3950820A4 (en) 2022-12-28
CN113614166B (zh) 2023-06-13
CN113614166A (zh) 2021-11-05
JPWO2020203103A1 (ja) 2020-10-08
EP3950820A1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
WO2006011402A1 (ja) 水性樹脂組成物、その製造方法、塗料、インキ、接着剤、シール剤およびプライマー
WO2008072689A1 (ja) ポリオレフィン樹脂分散組成物およびその製造方法
JP6902885B2 (ja) 変性ポリオレフィン樹脂
JP2008214414A (ja) 変性ポリオレフィン分散樹脂組成物およびそれを含有するプライマー
US20060235160A1 (en) Water-borne resin composition for polyolefin and method of preparing the same
WO2018128111A1 (ja) 変性ポリオレフィン系樹脂
WO2020203103A1 (ja) 分散樹脂組成物
TWI830890B (zh) 分散樹脂組合物
JP7412159B2 (ja) 変性ポリオレフィン樹脂の分散体組成物及びその製造方法
US20210221926A1 (en) Modified polyolefin resin, and use and production method of same
JP7451118B2 (ja) 変性ポリオレフィン樹脂
JP7258061B2 (ja) 変性ポリオレフィン樹脂
TWI824076B (zh) 改質聚烯烴樹脂
US20220017671A1 (en) Modified polyolefin resin
JP7175183B2 (ja) 変性ポリオレフィン樹脂
JP2019210359A (ja) 変性ポリオレフィン系樹脂及びその製造方法
JP2022126372A (ja) 分散樹脂組成物
JP2022115493A (ja) 分散体組成物
WO2023190213A1 (ja) 水性分散体組成物
JP2020143181A (ja) 変性ポリオレフィン樹脂
JP2022032386A (ja) 変性ポリオレフィン樹脂組成物
JP2015067785A (ja) 変性ポリオレフィン樹脂水分散体組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511326

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3134807

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020783013

Country of ref document: EP

Effective date: 20211029