WO2020202800A1 - 熱伝導性シリコーン組成物、その製造方法及び半導体装置 - Google Patents

熱伝導性シリコーン組成物、その製造方法及び半導体装置 Download PDF

Info

Publication number
WO2020202800A1
WO2020202800A1 PCT/JP2020/005048 JP2020005048W WO2020202800A1 WO 2020202800 A1 WO2020202800 A1 WO 2020202800A1 JP 2020005048 W JP2020005048 W JP 2020005048W WO 2020202800 A1 WO2020202800 A1 WO 2020202800A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone composition
thermally conductive
conductive silicone
group
less
Prior art date
Application number
PCT/JP2020/005048
Other languages
English (en)
French (fr)
Inventor
亘 戸谷
啓太 北沢
貴大 山口
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to CN202080025483.4A priority Critical patent/CN113632220A/zh
Priority to KR1020217030881A priority patent/KR20210148140A/ko
Priority to EP20782534.0A priority patent/EP3951859A4/en
Priority to US17/440,641 priority patent/US20220162447A1/en
Publication of WO2020202800A1 publication Critical patent/WO2020202800A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to a thermally conductive silicone composition. More specifically, the present invention relates to a thermally conductive silicone composition that efficiently cools electronic components, a method for producing the same, and a semiconductor device.
  • a cooling member heat sink or the like
  • the heat is dissipated by efficiently removing heat from the cooling member after bringing them into close contact with each other. At that time, if there is a gap between the heat generating member and the cooling member, the thermal resistance increases due to the presence of air having poor thermal conductivity, and the temperature of the heat generating member does not drop sufficiently.
  • a heat radiating material having good thermal conductivity and following the surface of the member for example, a liquid heat radiating material or a heat radiating sheet is used.
  • the gap may be as narrow as 10 ⁇ m or less, and liquid heat radiating materials capable of compressing to 10 ⁇ m or less are used (Patent Documents 1 to 13).
  • the heat conductive material may be required to have insulating properties.
  • metal particles such as aluminum, copper, and silver cannot be used as the heat conductive filler, and in many cases, an insulating heat conductive filler such as aluminum hydroxide and alumina (aluminum oxide) is used.
  • aluminum hydroxide and alumina have low thermal conductivity of their own, they must be filled in a large amount in order to obtain a thermally conductive material having high thermal conductivity. As a result, the viscosity of the heat conductive material becomes very high, which causes problems such as difficulty in coating and insufficient compression (Patent Documents 14 and 15).
  • the present invention has been made in view of the above circumstances, and is a thermally conductive silicone composition having a higher thermal conductivity than the conventional thermally conductive silicone composition and being compressible to 10 ⁇ m or less, and a method for producing the same.
  • the purpose is to provide.
  • the present invention The following components (A) and (B): (A) Hydrolyzable organopolysiloxane having an alkoxysilyl group, (B) When the average particle size is 0.5 ⁇ m or more and 2.0 ⁇ m or less, and the content of coarse powder having a particle size of 10 ⁇ m or more in the particles by the laser diffraction type particle size distribution measurement method is 1.0% by volume or less of the whole. Some aluminum nitride particles: 50-70% by volume, To provide a thermally conductive silicone composition having a thermal conductivity of 1.3 W / mK or more in the hot disk method.
  • This thermally conductive silicone composition has a higher thermal conductivity than the conventional thermally conductive silicone composition, and has good compressibility to 10 ⁇ m or less.
  • the oxygen content of the aluminum nitride particles is preferably 1.0% by mass or less.
  • the thermal conductivity of the thermally conductive silicone composition is further increased.
  • the thermal resistance of this thermally conductive silicone composition at 25 ° C. measured by a laser flash method is preferably 5.0 mm 2 ⁇ K / W or less.
  • the thermal conductivity of the thermally conductive silicone composition is further increased.
  • the absolute viscosity of this thermally conductive silicone composition at 25 ° C. and a shear rate of 6S- 1 measured with a spiral viscometer is 3 to 500 Pa ⁇ S.
  • the absolute viscosity is within the above-mentioned predetermined range, the shape of the thermally conductive silicone composition can be easily maintained and discharged, and the workability is good.
  • the present invention also provides a semiconductor device in which the thermally conductive silicone composition is interposed between a heating element and a cooling element in a gap having a thickness of 10 ⁇ m or less.
  • This semiconductor device has a higher thermal conductivity than a conventional heat conductive silicone composition in a narrow gap formed between a heating element and a cooling element, and has good thermal conductivity to 10 ⁇ m or less. Since the silicone composition is interposed, it has high cooling performance.
  • the heating element is preferably an insulated gate bipolar transistor (IGBT).
  • IGBT insulated gate bipolar transistor
  • the present invention provides a production method for producing the thermally conductive silicone composition, which comprises a step of mixing the components (A) and (B) at a temperature of 100 ° C. or higher for 30 minutes or longer.
  • a production method for producing the thermally conductive silicone composition which comprises a step of mixing the components (A) and (B) at a temperature of 100 ° C. or higher for 30 minutes or longer.
  • thermoly conductive silicone composition having a higher thermal conductivity than a conventional thermally conductive silicone composition and having good compressibility to 10 ⁇ m or less.
  • the present inventors have obtained hydrolyzable organopolysiloxane having an alkoxysilyl group and aluminum nitride having an average particle size in a specific range and a low crude powder content.
  • the present invention has been completed by finding that the silicone composition containing the silicone composition has a higher thermal conductivity than the conventional silicone composition and has good compressibility to 10 ⁇ m or less.
  • the present invention The following components (A) and (B): (A) Hydrolyzable organopolysiloxane having an alkoxysilyl group, (B) When the average particle size is 0.5 ⁇ m or more and 2.0 ⁇ m or less, and the content of coarse powder having a particle size of 10 ⁇ m or more in the particles by the laser diffraction type particle size distribution measurement method is 1.0% by volume or less of the whole. Some aluminum nitride particles: 50-70% by volume, A thermally conductive silicone composition having a thermal conductivity of 1.3 W / mK or more in the hot disk method.
  • the component (A) is a hydrolyzable organopolysiloxane having an alkoxysilyl group.
  • the component (A) acts as a surface treatment agent for the thermally conductive filler of the component (B) described later. Therefore, the interaction between the heat conductive filler of the component (A) and the component (B) becomes strong. As a result, even if a large amount of the heat conductive filler of the component (B) is filled in the heat conductive silicone composition, the heat conductive silicone composition can maintain the fluidity. At the same time, it is possible to suppress deterioration of heat dissipation performance due to oil separation and pump out over time.
  • Examples of the component (A) include organopolysiloxane represented by the following general formula (1). Above all, it is preferable to contain a trifunctional hydrolyzable organopolysiloxane.
  • R 1 is an independently unsubstituted or substituted monovalent hydrocarbon group.
  • X 1 , X 2 , X 3 are R 1 or-(R 2 ) n- SiR 3 g (OR 4 ) 3- It is a group represented by g , and may be different from each other, but at least one is-(R 2 ) n- SiR 3 g (OR 4 ) 3-g .
  • R 2 is an oxygen atom or 1 to 4 carbon atoms.
  • the alkylene group R 3 is an unsubstituted or substituted monovalent hydrocarbon group independently containing no aliphatic unsaturated bond
  • R 4 is an alkyl group having 1 to 4 carbon atoms, an alkoxyalkyl group and an alkenyl group independently.
  • n is 0 or 1
  • g is an integer of 0 to 2.
  • a and b are 1 ⁇ a ⁇ 1,000 and 0 ⁇ b ⁇ 1,000, respectively.
  • R 1 is an independently unsubstituted or substituted monovalent hydrocarbon group having preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 3 carbon atoms, and examples thereof.
  • Examples thereof include a linear alkyl group, a branched chain alkyl group, a cyclic alkyl group, an alkenyl group, an aryl group, an aralkyl group, an alkyl halide group and the like.
  • Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group and an octyl group.
  • Examples of the branched-chain alkyl group include an isopropyl group, an isobutyl group, a tert-butyl group, and a 2-ethylhexyl group.
  • Examples of the cyclic alkyl group include a cyclopentyl group and a cyclohexyl group.
  • Examples of the alkenyl group include a vinyl group and an allyl group.
  • Examples of the aryl group include a phenyl group and a tolyl group.
  • Examples of the aralkyl group include a 2-phenylethyl group and a 2-methyl-2-phenylethyl group.
  • alkyl halide group examples include a 3,3,3-trifluoropropyl group, a 2- (nonafluorobutyl) ethyl group, and a 2- (heptadecafluorooctyl) ethyl group.
  • R 1 a methyl group, a phenyl group and a vinyl group are preferable.
  • the alkylene group having 1 to 4 carbon atoms R 2 for example, methylene group, ethylene group, propylene group, butylene group.
  • R 3 is an unsubstituted or substituted monovalent hydrocarbon group independently containing no aliphatic unsaturated bond, preferably having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and further preferably 1 to 3 carbon atoms.
  • Cycloalkyl groups such as alkyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, phenyl group, trill group, xylyl group, naphthyl group, aryl group such as biphenylyl group, benzyl group, phenylethyl group, phenylpropyl group, methylbenzyl
  • Examples thereof include an aralkyl group such as a group, and a group in which a part or all of the hydrogen atom to which the carbon atom of these groups is bonded is substituted with a halogen atom such as fluorine, chlorine or bromine, a cyano group or the like.
  • R 4 is independently an alkyl group having 1 to 4 carbon atoms, an alkoxyalkyl group or an alkenyl group, or an acyl group.
  • alkyl group of R 4 include alkyl groups having 1 to 4 carbon atoms similar to those exemplified for R 1 .
  • alkoxyalkyl group include a methoxyethyl group and a methoxypropyl group.
  • acyl group of R 4 for example, preferably those having 2 to 8 carbon atoms, an acetyl group, octanoyl group and the like.
  • R 4 is preferably an alkyl group, particularly preferably a methyl group or an ethyl group.
  • a and b are as described above, but a + b is preferably 10 to 1000, and more preferably 10 to 300.
  • n is 0 or 1
  • g is an integer of 0 to 2, preferably 0. It is preferable to have 1 to 6 OR 4 groups in the molecule, particularly 3 or 6.
  • the bonding order of each siloxane unit shown in parentheses is not limited to the following. The following can be mentioned as a preferable specific example of the component (A).
  • the component (A) is the main component of the heat conductive silicone composition, and the blending amount thereof is preferably 30 to 50% by volume, more preferably 40 to 50% by volume in the heat conductive silicone composition. By containing the component (A) in this range, it is possible to prevent deterioration of thermal resistance due to oil separation and pump-out while maintaining good compressibility. In addition, the component (A) may be blended alone or in combination of two or more.
  • the thermally conductive silicone composition of the present invention contains (B) aluminum nitride particles as the thermally conductive filler.
  • Aluminum nitride has a higher thermal conductivity than alumina. Therefore, a thermally conductive silicone composition having a higher thermal conductivity can be obtained in a smaller amount as compared with aluminum oxide.
  • the average particle size of the aluminum nitride particles of the component (B) is 0.5 ⁇ m or more and 2.0 ⁇ m or less, preferably 0.5 ⁇ m or more and 1.5 ⁇ m or less.
  • the average particle size of the aluminum nitride particles exceeds 2.0 ⁇ m, the compressibility of the obtained thermally conductive silicone composition is significantly deteriorated. Further, when the average particle diameter of the (B) aluminum nitride particles is less than 0.5 ⁇ m, the viscosity of the thermally conductive silicone composition increases remarkably.
  • the average particle diameter is a volume average particle diameter (cumulative average diameter D 50 (median diameter)) by a microtrack (laser diffraction confusion method), and can be measured by, for example, a microtrack MT330OEX manufactured by Nikkiso Co., Ltd.
  • the content of the coarse powder having a particle diameter of 10 ⁇ m or more in the aluminum nitride particles of the component (B) is 1.0% by volume or less. If the content of the crude powder exceeds 1.0% by volume, the thickness of the thermally conductive silicone composition when compressed cannot be 10 ⁇ m or less.
  • the lower limit is not particularly limited, but the content of the crude powder can be, for example, 0.001% by volume or more from the technical detection limit.
  • the coarse powder in the aluminum nitride particles is preferably as small as possible, and the particle size of the coarse powder is preferably 12 ⁇ m or less.
  • the content of the crude powder can be measured by, for example, Microtrac MT330OEX manufactured by Nikkiso Co., Ltd.
  • the thermally conductive silicone composition of the present invention contains (B) aluminum nitride particles in an amount of 50 to 70% by volume. (B) If the content of the aluminum nitride particles is less than 50% by volume, the thermal conductivity of the thermally conductive silicone composition decreases, and if it exceeds 70% by volume, the thermally conductive silicone composition becomes non-uniform.
  • the oxygen content of the aluminum nitride particles of the component (B) is preferably 1.0% by mass or less, more preferably 0.5% by mass or less.
  • the thermal conductivity of the thermally conductive silicone composition can be improved.
  • the lower limit of the oxygen content is not particularly limited, but may be, for example, 0.13% by mass.
  • the oxygen content can be measured by HORIBA's ENGA-120.
  • the method for producing the aluminum nitride particles of the component (B) may be either a direct nitriding method or a reduction nitriding method, but the reduction nitriding method is preferable. Since the direct nitriding method includes a crushing step, the aluminum nitride particles are indefinite, but the aluminum nitride particles produced by the reduction nitriding method are generally round and have good filling property.
  • the thermally conductive silicone composition of the present invention may contain an organo (poly) siloxane such as methylpolysiloxane in order to adjust the elastic modulus and viscosity of the composition. Further, in order to prevent deterioration of the thermally conductive silicone composition, a conventionally known antioxidant such as 2,6-di-t-butyl-4-methylphenol may be blended, if necessary. Further, a thixophilic imparting agent, a dye, a pigment, a flame retardant, a precipitation inhibitor, a thixotropic property improving agent and the like can be blended as needed.
  • the thermal conductivity of the thermally conductive silicone composition of the present invention in the hot disk method is 1.3 W / mK or more.
  • the details of the method for measuring the thermal conductivity are, for example, the methods of Examples described later.
  • the upper limit is not particularly limited, but the upper limit of the thermal conductivity in the hot disk method can be, for example, 10 W / mK.
  • the thermally conductive silicone composition of the present invention has good compressibility.
  • the thickness of the thermally conductive silicone composition when pressurized to 4.1 MPa for 2 minutes is preferably in the range of 0.5 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m.
  • the method of measuring the thickness when pressurization is performed is, for example, the method of Examples described later.
  • the thermally conductive silicone composition of the present invention has both high thermal conductivity and good compressibility, and thus has low thermal resistance.
  • the thermal resistance of the thermally conductive silicone composition is preferably 5.0 mm 2 ⁇ K / W or less at 25 ° C. measured by a laser flash method, and more preferably 3.0 mm 2 ⁇ K / W or less.
  • the lower limit is not particularly limited, but as a physical problem, it can be set to, for example, 0.1 mm 2 ⁇ K / W.
  • the details of the method for measuring thermal resistance are, for example, the methods of Examples described later.
  • the absolute viscosity of the thermally conductive silicone composition of the present invention measured at 25 ° C. is preferably 3 to 500 Pa ⁇ s, and more preferably 10 to 500 Pa ⁇ s.
  • the absolute viscosity can be adjusted by blending each of the above-mentioned components.
  • the absolute viscosity is, for example, a value measured by a spiral viscometer manufactured by Malcolm Co., Ltd. at 25 ° C. and a slip rate of 6S- 1 .
  • the thermally conductive silicone composition of the present invention is interposed in a gap having a thickness of 10 ⁇ m or less formed between a heating element such as an IGBT and a cooling element.
  • the thermally conductive silicone composition of the present invention is compressed to a thickness of 10 ⁇ m or less.
  • improvement in cooling efficiency can be expected as compared with the conventional heat conductive silicone composition.
  • the lower limit of the gap formed between the heating element and the cooling element is not particularly limited, but may be, for example, 0.2 ⁇ m.
  • a typical structure is shown in FIG. 1, but the present invention is not limited thereto. In the semiconductor device shown in FIG.
  • the heat conductive silicone composition 2 is interposed in the gap between the IGBT 1 which is a heating element and the cooling fins 3 which is a cooling element.
  • the heat generated in the IGBT 1 is transferred to the cooling fins 3 via the heat conductive silicone composition 2 and dissipated to the cooling water 4 in contact with the cooling fins 3.
  • the method for producing the semiconductor device of the present invention is not particularly limited, but in order to reduce the thickness of the thermally conductive silicone composition to 10 ⁇ m or less, the pressure is preferably 0.1 Mpa or more, more preferably 4.0 Mpa or more. Assembled. The time required for compression can be reduced by increasing the pressure during pressurization of the thermally conductive silicone composition.
  • the method for producing the thermally conductive silicone composition of the present invention will be described, but the present invention is not limited thereto.
  • the method for producing the thermally conductive silicone composition of the present invention may follow the conventional method for producing a thermally conductive silicone composition, and is not particularly limited.
  • those including a step of mixing the above-mentioned (A) and (B) components can be mentioned, and specifically, it can be obtained by mixing the above-mentioned (A) and (B) components and other arbitrary components. ..
  • the mixing device is not particularly limited, and Trimix, Twinmix, Planetary Mixer (all registered trademarks of Inoue Seisakusho Co., Ltd.
  • Ultra Mixer registered trademark of Mizuho Kogyo Co., Ltd. mixer
  • a mixer such as Hibis Dispermix (registered trademark of a mixer manufactured by Tokushu Kika Kogyo Co., Ltd.) can be used. Further, a three-roll finishing treatment or the like may be performed in order to crush the agglomeration of the (B) aluminum nitride particles which are the heat conductive filler.
  • the component (B) is sufficiently surface-treated by the component (A) and heat over time. It is possible to suppress the deterioration of resistance.
  • the upper limit of the temperature in the mixing step is not particularly limited, but is preferably 200 ° C. or lower.
  • the upper limit of the time of the mixing step is not particularly limited, but may be, for example, 4 hours.
  • (B) component] (B-1) Aluminum nitride particles having an average particle diameter of 1.0 ⁇ m and 10 ⁇ m or more of coarse powder of 0.1% by volume or less (B-2) An average particle diameter of 1.4 ⁇ m and coarse powder of 10 ⁇ m or more are 0. Aluminum nitride (B-3) with an average particle size of 4% by volume or less and an average particle size of 0.7 ⁇ m, and coarse powder of 10 ⁇ m or more has an average particle size of aluminum (B-4) with 0.1% by volume or less and an average particle size of 10 ⁇ m or more.
  • thermally conductive silicone composition [Examples 1 to 5, Comparative Examples 1 to 4] ⁇ Preparation of thermally conductive silicone composition>
  • the above components (A) and (B) were blended by the methods shown below according to the blending amounts shown in Tables 1 and 2 below to prepare a thermally conductive silicone composition.
  • the components (A) and (B) were added to a 5 liter planetary mixer (manufactured by Inoue Seisakusho Co., Ltd.) and mixed at 170 ° C. for 1 hour. After cooling to room temperature, they were mixed so as to be uniform to prepare a thermally conductive silicone composition.
  • the viscosity, thermal conductivity, compressibility, and thermal resistance were measured according to the following methods. The results are shown in Tables 1 and 2.
  • Thermal conductivity The heat conductive silicone composition was wrapped in a kitchen wrap, and the heat conductivity of the purse-shaped test piece was measured with TPA-501 manufactured by Kyoto Electronics Industry Co., Ltd. under the condition of 25 ° C.
  • the produced thermally conductive silicone composition was sandwiched between silicon wafers cut into circles having a diameter of 1 mm, and the thickness was measured after pressurizing at 4.1 MPa for 2 minutes using an Autograph AG-5KNZPLUS manufactured by SHIMAZU.
  • Thermal resistance Using the above test piece, the measurement was performed at 25 ° C. with a thermal resistance measuring device (xenon flash analyzer manufactured by Nets; LFA447NanoFlash) based on the laser fresh method.
  • a thermal resistance measuring device xenon flash analyzer manufactured by Nets; LFA447NanoFlash
  • Thermal resistance after heat cycle The above test piece was subjected to 1000 cycles of a thermal shock test with a cycle of -40 ° C x 30 minutes ⁇ 150 ° C x 30 minutes using a cold shock tester TSE-11A manufactured by ESPEC CORPORATION, and then the thermal resistance was measured. It was measured at 25 ° C.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本発明は、(A)アルコキシシリル基を有する加水分解性オルガノポリシロキサン、(B)平均粒子径が0.5μm以上2.0μm以下であり、かつレーザー回折型粒度分布測定法による粒子中の粒子径10μm以上の粗粉の含有量が全体の1.0体積%以下である窒化アルミニウム粒子:50~70体積%を含み、ホットディスク法での熱伝導率が1.3W/mK以上のものである熱伝導性シリコーン組成物である。本発明により、高い熱伝導率を有し、10μm以下に圧縮可能である熱伝導性シリコーン組成物及びその製造方法が提供される。

Description

熱伝導性シリコーン組成物、その製造方法及び半導体装置
 本発明は、熱伝導性シリコーン組成物に関する。詳細には、電子部品を効率的に冷却する熱伝導性シリコーン組成物、その製造方法及び半導体装置に関する。
 電子部品は使用中の発熱及びそれによる性能の低下が広く知られており、これを解決するための手段として、様々な放熱技術が用いられている。一般的に、発熱部付近に冷却部材(ヒートシンク等)を配置し、両者を密接させたうえで冷却部材から効率的に除熱することにより放熱を行っている。その際、発熱部材と冷却部材との間に隙間があると、熱伝導性の悪い空気が介在することにより熱抵抗が増大し、発熱部材の温度が十分に下がらなくなってしまう。このような現象を防ぐため、熱伝導率がよく、部材の表面に追随性のある放熱材料、例えば液状放熱材料や放熱シートが用いられている。特に、装置によっては間隙が10μm以下と非常に狭い場合もあり、10μm以下に圧縮することが可能な液状放熱材料が使用される(特許文献1~13)。
 また、発熱部と冷却部材との間は電気的に絶縁状態を確保しなければならない場合が多く、熱伝導性材料に絶縁性が求められることがある。この場合、熱伝導性充填材としてアルミニウムや銅、銀等の金属粒子を用いることができず、多くは水酸化アルミニウム、アルミナ(酸化アルミニウム)等の絶縁性熱伝導性充填材が用いられることが多い。水酸化アルミニウムやアルミナは、それ自体の熱伝導率が低いためにこれらを用いて、高熱伝導性を有する熱伝導性材料を得ようとすると多量に充填しなければならない。その結果、熱伝導性材料の粘度が非常に高くなり塗布が困難である、十分な圧縮ができなくなるなどの問題が生じる(特許文献14、15)。
 さらに、発熱部と冷却部材は発熱・冷却を繰り返すため、部材が熱収縮を繰り返すことが知られている。これによって、熱伝導性シリコーン組成物のオイル成分と熱伝導性充填剤の分離が促される。また、熱伝導性シリコーン組成物が発熱部と冷却部材の間から押し出されるポンプアウトといった現象が起こる。その結果、熱抵抗が上昇し効率的に発熱部を冷やすことができなくなる。このような現象を防ぐために増粘剤を添加して熱伝導性シリコーン組成物の粘度を高める手法が提案されている。しかしながら、粘度が非常に高くなり、塗布が困難であるといった問題があった(特許文献16)。
特許第2938428号公報 特許第2938429号公報 特許第3580366号公報 特許第3952184号公報 特許第4572243号公報 特許第4656340号公報 特許第4913874号公報 特許第4917380号公報 特許第4933094号公報 特開2008-260798号公報 特開2009-209165号公報 特開2012-102283号公報 特開2012-96361号公報 特開2017-226724公報 特開2017-210518公報 特開2004-91743公報
 上述したように、高い熱伝導率と10μm以下への圧縮性を両立する熱伝導性シリコーン組成物の開発が求められている。本発明は、上記事情に鑑みなされたものであり、従来の熱伝導性シリコーン組成物に比べ、高い熱伝導率を有し、10μm以下に圧縮可能である熱伝導性シリコーン組成物及びその製造方法を提供することを目的とする。
 上記課題を達成するために、本発明では、
下記(A)及び(B)成分:
(A)アルコキシシリル基を有する加水分解性オルガノポリシロキサン、
(B)平均粒子径が0.5μm以上2.0μm以下であり、かつレーザー回折型粒度分布測定法による粒子中の粒子径10μm以上の粗粉の含有量が全体の1.0体積%以下である窒化アルミニウム粒子:50~70体積%、
を含み、ホットディスク法での熱伝導率が1.3W/mK以上のものである熱伝導性シリコーン組成物を提供する。
 この熱伝導性シリコーン組成物は、従来の熱伝導性シリコーン組成物に比べ高い熱伝導率を有し、かつ10μm以下への圧縮性が良好なものである。
 前記窒化アルミニウム粒子の酸素含有量は1.0質量%以下であることが好ましい。
 前記酸素含有量が所定の値以下であると、熱伝導性シリコーン組成物の熱伝導率が更に高くなる。
 この熱伝導性シリコーン組成物のレーザーフラッシュ法で測定した25℃での熱抵抗は5.0mm・K/W以下であることが好ましい。
 前記熱抵抗が所定の値以下であると、熱伝導性シリコーン組成物の熱伝導率が更に高くなる。
 この熱伝導性シリコーン組成物のスパイラル粘度計で測定した25℃、ずり速度6S-1での絶対粘度が3~500Pa・Sであることが好ましい。
 前記絶対粘度が上記所定の範囲であると、この熱伝導性シリコーン組成物の形状保持と吐出が容易で作業性が良好である。
 また、本発明は、前記熱伝導性シリコーン組成物が、発熱体と冷却体の間に形成された厚み10μm以下の間隙に介在された半導体装置を提供する。
 この半導体装置は、発熱体と冷却体の間に形成された狭い間隙に従来の熱伝導性シリコーン組成物に比べ高い熱伝導率を有し、かつ10μm以下への圧縮性が良好な熱伝導性シリコーン組成物が介在されたものであることから、高い冷却性能を有するものである。
 前記発熱体は絶縁ゲートバイポーラトランジスタ(IGBT)であることが好ましい。
 前記発熱体がIGBTであると、この半導体装置はIGBTが効率的に冷却されるものとなる。
 さらに、本発明は、前記(A)及び(B)成分を100℃以上の温度で30分以上混合する工程を含む、前記熱伝導性シリコーン組成物を製造する製造方法を提供する。
 この製造方法により、従来の熱伝導性シリコーン組成物に比べ高い熱伝導率を有し、かつ10μm以下への圧縮性が良好な熱伝導性シリコーン組成物を製造できる。
 本発明によれば、従来の熱伝導性シリコーン組成物に比べ高い熱伝導率を有し、かつ10μm以下への圧縮性が良好である熱伝導性シリコーン組成物を得ることができる。
本発明の熱伝導性シリコーン組成物が絶縁ゲートバイポーラストランジスタと冷却フィンの間隙に介在する半導体装置の一例を示す断面図である。
 上述のように、高い熱伝導率を有し、かつ10μm以下への圧縮性が良好であるシリコーン組成物の開発が求められていた。
 本発明者らは、上記課題について鋭意検討を重ねた結果、アルコキシシリル基を有する加水分解性オルガノポリシロキサンと、平均粒子径が特定の範囲にあり、かつ粗粉の含有量が少ない窒化アルミニウムを含むシリコーン組成物が、従来のシリコーン組成物に比べ高い熱伝導率を有し、かつ10μm以下への圧縮性が良好なものであることを見出し、本発明を完成させた。
 即ち、本発明は、
下記(A)及び(B)成分:
(A)アルコキシシリル基を有する加水分解性オルガノポリシロキサン、
(B)平均粒子径が0.5μm以上2.0μm以下であり、かつレーザー回折型粒度分布測定法による粒子中の粒子径10μm以上の粗粉の含有量が全体の1.0体積%以下である窒化アルミニウム粒子:50~70体積%、
を含み、ホットディスク法での熱伝導率が1.3W/mK以上のものである熱伝導性シリコーン組成物である。
 以下、本発明について詳細に説明する。
[(A)成分]
 (A)成分は、アルコキシシリル基を有する加水分解性オルガノポリシロキサンである。(A)成分は、後述する(B)成分の熱伝導性充填材の表面処理剤として作用する。そのため、(A)成分と(B)成分の熱伝導性充填剤の相互作用が強くなる。その結果、(B)成分の熱伝導性充填剤を熱伝導性シリコーン組成物に多量に充填しても、熱伝導性シリコーン組成物が流動性を保つことができる。同時に、経時でのオイル分離やポンプアウトに起因する放熱性能の低下も抑えることができる。(A)成分としては、例えば下記一般式(1)で表されるオルガノポリシロキサンが挙げられる。中でも、3官能の加水分解性オルガノポリシロキサンを含有することが好ましい。
Figure JPOXMLDOC01-appb-C000001
(式中、Rは独立に非置換又は置換の1価炭化水素基である。X、X、XはR又は-(R-SiR (OR3-gで示される基であり、それぞれ異なってもよいが、少なくとも1つは-(R-SiR (OR3-gである。Rは酸素原子又は炭素数1~4のアルキレン基、Rは独立に脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であり、Rは独立に炭素数1~4のアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、nは0又は1、gは0~2の整数である。a及びbはそれぞれ1≦a≦1,000、0≦b≦1,000である。)
 上記式(1)中、Rは独立に非置換又は置換の、好ましくは炭素数1~10、より好ましくは1~6、さらに好ましくは1~3の1価炭化水素基であり、その例としては、直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基等が挙げられる。直鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基が挙げられる。分岐鎖状アルキル基としては、例えば、イソプロピル基、イソブチル基、tert-ブチル基、2-エチルヘキシル基が挙げられる。環状アルキル基としては、例えば、シクロペンチル基、シクロヘキシル基が挙げられる。アルケニル基としては、例えば、ビニル基、アリル基が挙げられる。アリール基としては、例えば、フェニル基、トリル基が挙げられる。アラルキル基としては、例えば、2-フェニルエチル基、2-メチル-2-フェニルエチル基が挙げられる。ハロゲン化アルキル基としては、例えば、3,3,3-トリフルオロプロピル基、2-(ノナフルオロブチル)エチル基、2-(ヘプタデカフルオロオクチル)エチル基が挙げられる。Rとして、メチル基、フェニル基、ビニル基が好ましい。
 Rの炭素数1~4のアルキレン基としては、例えばメチレン基、エチレン基、プロピレン基、ブチレン基等が挙げられる。Rは独立に脂肪族不飽和結合を含有しない、好ましくは炭素数1~10、より好ましくは1~6、さらに好ましくは1~3の非置換又は置換の1価炭化水素基である。例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、ならびにこれらの基の炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換された基等が挙げられる。
 上記Rは独立に炭素数1~4のアルキル基、アルコキシアルキル基もしくはアルケニル基、又はアシル基である。上記Rのアルキル基としては、例えば、Rについて例示したものと同様の、炭素数1~4のアルキル基等が挙げられる。アルコキシアルキル基としては、例えば、メトキシエチル基、メトキシプロピル基等が挙げられる。上記Rのアシル基としては、例えば、炭素数2~8のものが好ましく、アセチル基、オクタノイル基等が挙げられる。Rはアルキル基であることが好ましく、特にはメチル基、エチル基であることが好ましい。
 a、bは上記の通りであるが、好ましくはa+bが10~1000であり、より好ましくは10~300である。nは0又は1であり、gは0~2の整数であり、好ましくは0である。なお、分子中にOR基は1~6個、特に3又は6個有することが好ましい。なお、括弧内に示される各シロキサン単位の結合順序は、下記に制限されるものではない。
 (A)成分の好適な具体例としては、下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000002
 (A)成分は熱伝導性シリコーン組成物の主成分であり、その配合量は熱伝導性シリコーン組成物中30~50体積%が好ましく、さらに好ましくは40~50体積%である。この範囲の(A)成分を含有することで良好な圧縮性を保ちつつ、オイル分離やポンプアウトに起因する熱抵抗の悪化を防ぐことができる。また、(A)成分は、1種単独で又は2種以上を組み合わせて配合してよい。
[(B)成分]
 本発明の熱伝導性シリコーン組成物は、熱伝導性充填材として(B)窒化アルミニウム粒子を含む。窒化アルミニウムはアルミナと比較して高い熱伝導率を有する。したがって、酸化アルミニウムと比較して、より少ない量で高い熱伝導率を有する熱伝導性シリコーン組成物を得ることができる。(B)成分の窒化アルミニウム粒子の平均粒子径は0.5μm以上2.0μm以下であり、好ましくは0.5μm以上1.5μm以下である。(B)窒化アルミニウム粒子の平均粒子径が2.0μm超だと、得られる熱伝導性シリコーン組成物の圧縮性が著しく悪化する。また、(B)窒化アルミニウム粒子の平均粒子径が0.5μm未満だと、熱伝導性シリコーン組成物の粘度が著しく上昇する。
 前記平均粒子径はマイクロトラック(レーザー回折錯乱法)による体積平均粒子径(累積平均径D50(メディアン径)であり、例えば、日機装(株)製マイクロトラックMT330OEXにより測定できる。
 (B)成分の窒化アルミニウム粒子中の粒子径10μm以上の粗粉の含有量は1.0体積%以下である。当該粗粉の含有量が1.0体積%を超えると、熱伝導性シリコーン組成物を圧縮したときの厚みを10μm以下とすることができない。下限については特に制限はないが、技術的な検出限界から当該粗粉の含有量は例えば0.001体積%以上とすることができる。窒化アルミニウム粒子中の粗粉はできるだけ小さい方が好ましく、粗粉の粒子径は12μm以下であることが好ましい。
 当該粗粉の含有量は、例えば、日機装(株)製マイクロトラックMT330OEXにより測定できる。
 本発明の熱伝導性シリコーン組成物は、(B)窒化アルミニウム粒子を50~70体積%含むものである。(B)窒化アルミニウム粒子の含有量が50体積%未満だと熱伝導性シリコーン組成物の熱伝導率が低下し、70体積%を超えると、熱伝導性シリコーン組成物が均一にならない。
 (B)成分の窒化アルミニウム粒子の酸素含有量は1.0質量%以下が好ましく、0.5質量%以下がより好ましい。(B)成分の窒化アルミニウム粒子として酸素含有量を1.0質量%以下としたものを用いることで、熱伝導性シリコーン組成物の熱伝導率を向上させることができる。前記酸素含有量の下限は特に限定されないが、例えば0.13質量%とすることができる。なお、酸素含有量はHORIBA製 ENGA-120によって測定できる。
 (B)成分の窒化アルミニウム粒子の製法は直接窒化法でも還元窒化法でもどちらでもよいが、好ましくは還元窒化法である。直接窒化法は破砕工程を含むため、窒化アルミニウム粒子が不定形のものであるが、還元窒化法で製造された窒化アルミニウム粒子は一般に丸み状のもので充填性がよいものだからである。
[その他の成分]
 本発明の熱伝導性シリコーン組成物には、当該組成物の弾性率や粘度を調整するためにメチルポリシロキサン等のオルガノ(ポリ)シロキサンを配合してもよい。また、熱伝導性シリコーン組成物の劣化を防ぐために、2,6-ジ-t-ブチル-4-メチルフェノール等の従来公知の酸化防止剤を必要に応じて配合してもよい。さらに、チクソ性付与剤、染料、顔料、難燃剤、沈降防止剤、チクソ性向上剤等を必要に応じて配合することができる。
[シリコーン組成物]
 本発明の熱伝導性シリコーン組成物のホットディスク法での熱伝導率は1.3W/mK以上である。なお、熱伝導率の測定方法の詳細は、例えば後述する実施例の方法である。上限については特に限定されないが、当該ホットディスク法での熱伝導率の上限は、例えば、10W/mKとすることができる。
 本発明の熱伝導性シリコーン組成物は、良好な圧縮性を有するものである。4.1MPaの加圧を2分間行った時の熱伝導性シリコーン組成物の厚みは0.5~10μmの範囲にあることが好ましく、0.5~5μmにあることがより好ましい。なお、加圧を行った時の厚みの測定方法は、例えば後述する実施例の方法である。
 本発明の熱伝導性シリコーン組成物は、高い熱伝導率と良好な圧縮性を両立しているため、低い熱抵抗を持つものとなる。熱伝導性シリコーン組成物の熱抵抗はレーザーフラッシュ法で測定した25℃で5.0mm・K/W以下が好ましく、さらに好ましくは3.0mm・K/W以下である。下限については特に制限はないが、物理的な問題として例えば0.1mm・K/Wとすることができる。なお、熱抵抗の測定方法の詳細は、例えば後述する実施例の方法である。
 本発明の熱伝導性シリコーン組成物の25℃にて測定される絶対粘度は3~500Pa・sであることが好ましく、10~500Pa・sであることがより好ましい。絶対粘度が3Pa・s以上であると、形状保持が容易で作業性が良くなる。一方、絶対粘度が500Pa・s以下である場合にも吐出が容易となるため作業性が良くなる。絶対粘度は、上述した各成分の配合により調整できる。本発明において、絶対粘度は例えばマルコム(株)製スパイラル粘度計により測定した25℃、ズリ速度6S-1での値である。
[半導体装置]
 本発明の半導体装置は、IGBTなどの発熱体と冷却体との間に形成された厚み10μm以下の間隙に本発明の熱伝導性シリコーン組成物を介在されたものである。本発明の熱伝導性シリコーン組成物は厚み10μm以下まで圧縮される。これにより従来の熱伝導性シリコーン組成物と比較して、冷却効率の向上が期待できる。発熱体と冷却体との間に形成された前記間隙の下限は、特に制限はないが、例えば0.2μmとすることができる。代表的な構造を図1に示すが、本発明はこれに限定されるものではない。図1に示される半導体装置は、発熱体であるIGBT1と冷却体である冷却フィン3との間の間隙に熱伝導性シリコーン組成物2が介在しているものである。IGBT1で発生した熱は熱伝導性シリコーン組成物2を介して冷却フィン3に伝わり、冷却フィン3と接する冷却水4へ放熱される。
 本発明の半導体装置の製造方法は特に限定されないが、熱伝導性シリコーン組成物の厚さを10μm以下にするため、好ましくは0.1Mpa以上の圧力で、さらに好ましくは4.0Mpa以上の圧力で組み立てられる。熱伝導性シリコーン組成物の加圧時の圧力を上げることで圧縮にかかる時間を低減できる。
[熱伝導性シリコーン組成物の製造方法]
 本発明の熱伝導性シリコーン組成物の製造方法について説明するが、これらに限定されるものではない。
 本発明の熱伝導性シリコーン組成物を製造する方法は、従来の熱伝導性シリコーン組成物の製造方法に従えばよく、特に制限されるものでない。例えば、上記(A)及び(B)成分を混合する工程を含むものが挙げられ、具体的には、上記(A)及び(B)成分、その他の任意成分を混合することにより得ることができる。混合装置としては特に限定されず、トリミックス、ツウィンミックス、プラネタリーミキサー(いずれも井上製作所(株)製混合機の登録商標)、ウルトラミキサー(みずほ工業(株)製混合機の登録商標)、ハイビスディスパーミックス(特殊機化工業(株)製混合機の登録商標)等の混合機を用いることができる。また、熱伝導性充填剤である(B)窒化アルミニウム粒子の凝集を解砕するために3本ロール仕上げ処理などを施してもよい。
 上記(A)及び(B)成分を混合する工程の際に100℃以上の温度で30分以上混合することで、(B)成分が(A)成分によって十分に表面処理され、経時での熱抵抗の悪化を抑えることができる。当該混合工程での温度の上限は、特に制限されないが、200℃以下が好ましい。また、当該混合工程の時間の上限は、特に制限されないが、例えば4時間とすることができる。
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
 使用した成分は以下のとおりである。
[(A)成分]
(A-1)下記式で示される片末端トリメトキシシリル基含有ジメチルポリシロキサン
Figure JPOXMLDOC01-appb-C000003
(A-2)下記式で示される加水性分解性官能基を有さないジメチルポリシロキサン(比較品)
Figure JPOXMLDOC01-appb-C000004
[(B)成分]
(B-1)平均粒子径1.0μmで、10μm以上の粗粉が0.1体積%以下の窒化アルミニウム粒子
(B-2)平均粒子径1.4μmで、10μm以上の粗粉が0.4体積%以下の窒化アルミニウム
(B―3)平均粒子径0.7μmで、10μm以上の粗粉が0.1体積%以下の窒化アルミニウム
(B―4)平均粒子径1.5μmで、10μm以上の粗粒が5.0体積%以上の窒化アルミニウム(比較品)
 [実施例1~5、比較例1~4]
〈熱伝導性シリコーン組成物の調製〉
 上記(A)及び(B)成分を、下記表1及び2に示す配合量に従い、下記に示す方法で配合して熱伝導性シリコーン組成物を調製した。
 5リットルのプラネタリーミキサー(井上製作所(株)製)に(A)及び(B)成分を加え、170℃で1時間混合した。常温になるまで冷却した後、均一になるように混合し、熱伝導性シリコーン組成物を調製した。
 上記方法で得られた各熱伝導性組成物について、下記の方法に従い、粘度、熱伝導率、圧縮性、及び熱抵抗を測定した。結果を表1及び2に示す。
[粘度]
 熱伝導性シリコーン組成物の絶対粘度を(株)マルコム製スパイラル粘度計を用い、25℃、回転数6S-1の条件で測定した。
[熱伝導率]
 熱伝導性シリコーン組成物をキッチンラップに包み、巾着状にした試験片の熱伝導率を京都電子工業(株)製TPA-501で25℃の条件で測定した。
[圧縮性]
 製造した熱伝導性シリコーン組成物を直径1mmの円にカットされたシリコーンウエハに挟み、SHIMAZU製オートグラフAG-5KNZPLUSを用いて4.1MPaで2分間の加圧を行った後に厚みを測定した。
[熱抵抗]
 上記の試験片を用いてレーザーフレッシュ法に基づく熱抵抗測定器(ネッツ社製、キセノンフラッシュアナライザー;LFA447NanoFlash)により25℃にて測定した。
[ヒートサイクル後の熱抵抗]
 上記の試験片を(株)エスペック製冷熱衝撃試験機TSE-11Aを用い、-40℃×30分→150℃×30分を1サイクルとする冷熱衝撃試験を1000サイクル行った後、熱抵抗を25℃にて測定した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1及び2の結果より本発明の要件を満たす実施例1~5では高い熱伝導率を有し、同時に10μm以下への良好な圧縮性を有する熱伝導性シリコーン組成物が得られた。
 一方、本発明の(A)成分を用いていない比較例1では均一な熱伝導性シリコーン組成物が得られなかった。また、熱伝導性充填剤が70体積%より多い比較例2でも均一な熱伝導性シリコーン組成物が得られなかった。さらに熱伝導性充填剤の含有量が50体積%未満の比較例3では熱伝導率が大きく低下した。熱伝導性充填剤として10μm以上の粗粉の含有量が全体の1.0体積%より多い窒化アルミニウム粒子を用いた比較例4では圧縮性が著しく悪化した。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (7)

  1.  下記(A)及び(B)成分:
    (A)アルコキシシリル基を有する加水分解性オルガノポリシロキサン、
    (B)平均粒子径が0.5μm以上2.0μm以下であり、かつレーザー回折型粒度分布測定法による粒子中の粒子径10μm以上の粗粉の含有量が全体の1.0体積%以下である窒化アルミニウム粒子:50~70体積%、
    を含み、ホットディスク法での熱伝導率が1.3W/mK以上のものであることを特徴とする熱伝導性シリコーン組成物。
  2.  前記窒化アルミニウム粒子の酸素含有量が1.0質量%以下であることを特徴とする請求項1に記載の熱伝導性シリコーン組成物。
  3.  レーザーフラッシュ法で測定した25℃での熱抵抗が5.0mm・K/W以下であることを特徴とする請求項1又は2に記載の熱伝導性シリコーン組成物。
  4.  スパイラル粘度計で測定した25℃、ずり速度6S-1での絶対粘度が3~500Pa・Sであることを特徴とする請求項1~3のいずれか1項に記載の熱伝導性シリコーン組成物。
  5.  請求項1~4のいずれか1項に記載の熱伝導性シリコーン組成物が、発熱体と冷却体の間に形成された厚み10μm以下の間隙に介在されたものであることを特徴とする半導体装置。
  6.  前記発熱体が絶縁ゲートバイポーラトランジスタであることを特徴とする請求項5に記載の半導体装置。
  7.  前記(A)及び(B)成分を100℃以上の温度で30分以上混合する工程を含むことを特徴とする、請求項1~4のいずれか1項に記載の熱伝導性シリコーン組成物を製造する製造方法。
PCT/JP2020/005048 2019-04-01 2020-02-10 熱伝導性シリコーン組成物、その製造方法及び半導体装置 WO2020202800A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080025483.4A CN113632220A (zh) 2019-04-01 2020-02-10 导热性有机硅组合物、其制备方法及半导体装置
KR1020217030881A KR20210148140A (ko) 2019-04-01 2020-02-10 열전도성 실리콘 조성물, 그의 제조방법 및 반도체장치
EP20782534.0A EP3951859A4 (en) 2019-04-01 2020-02-10 HEAT-CONDUCTING SILICONE COMPOSITION, METHOD OF MAKING THEREOF AND SEMICONDUCTOR DEVICE
US17/440,641 US20220162447A1 (en) 2019-04-01 2020-02-10 Thermal-conductive silicone composition, production method therefor, and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019069871A JP7027368B2 (ja) 2019-04-01 2019-04-01 熱伝導性シリコーン組成物、その製造方法及び半導体装置
JP2019-069871 2019-04-01

Publications (1)

Publication Number Publication Date
WO2020202800A1 true WO2020202800A1 (ja) 2020-10-08

Family

ID=72668920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005048 WO2020202800A1 (ja) 2019-04-01 2020-02-10 熱伝導性シリコーン組成物、その製造方法及び半導体装置

Country Status (7)

Country Link
US (1) US20220162447A1 (ja)
EP (1) EP3951859A4 (ja)
JP (1) JP7027368B2 (ja)
KR (1) KR20210148140A (ja)
CN (1) CN113632220A (ja)
TW (1) TWI846825B (ja)
WO (1) WO2020202800A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024498A1 (ja) * 2022-07-29 2024-02-01 信越化学工業株式会社 熱伝導性シリコーン組成物及びその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023057347A1 (en) 2021-10-06 2023-04-13 Wacker Chemie Ag Thermally conductive silicone composition and method for producing the same
JP2023061304A (ja) 2021-10-19 2023-05-01 信越化学工業株式会社 熱伝導性シリコーン組成物

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913874B1 (ja) 1969-08-29 1974-04-03
JPS4917380B1 (ja) 1970-07-06 1974-04-30
JPS4933094B1 (ja) 1968-12-31 1974-09-04
JPS58366B2 (ja) 1973-10-06 1983-01-06 ソニー株式会社 表面材貼付方法
JP2938428B1 (ja) 1998-02-27 1999-08-23 信越化学工業株式会社 熱伝導性グリース組成物
JP2938429B1 (ja) 1998-02-27 1999-08-23 信越化学工業株式会社 熱伝導性シリコーン組成物
JP2000109373A (ja) * 1998-10-02 2000-04-18 Shin Etsu Chem Co Ltd 放熱用シリコーングリース組成物及びそれを使用した半導体装置
JP2004091743A (ja) 2002-09-04 2004-03-25 Denki Kagaku Kogyo Kk 熱伝導性グリース
JP3952184B2 (ja) 2002-10-10 2007-08-01 信越化学工業株式会社 熱伝導性シート
JP2008260798A (ja) 2007-04-10 2008-10-30 Shin Etsu Chem Co Ltd 熱伝導性硬化物及びその製造方法
JP2009209165A (ja) 2008-02-29 2009-09-17 Shin Etsu Chem Co Ltd 熱伝導性硬化物及びその製造方法
JP4572243B2 (ja) 2008-03-27 2010-11-04 信越化学工業株式会社 熱伝導性積層体およびその製造方法
JP4656340B2 (ja) 2008-03-03 2011-03-23 信越化学工業株式会社 熱伝導性シリコーングリース組成物
JP2012069783A (ja) * 2010-09-24 2012-04-05 Yokohama Rubber Co Ltd:The 熱伝導性シリコーン組成物およびこれを用いる実装基板
JP2012096361A (ja) 2010-10-29 2012-05-24 Shin-Etsu Chemical Co Ltd シリコーン構造体の製造方法及び半導体装置
JP2012102283A (ja) 2010-11-12 2012-05-31 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーングリース組成物
JP2017031231A (ja) * 2015-07-28 2017-02-09 信越化学工業株式会社 縮合硬化型シリコーン組成物
JP2017210518A (ja) 2016-05-24 2017-11-30 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
JP2017226724A (ja) 2016-06-20 2017-12-28 信越化学工業株式会社 熱伝導性シリコーンパテ組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58366A (ja) 1981-06-23 1983-01-05 Nippon Steel Corp 連続鋳造鋼のモ−ルド焼付き検出方法
JP4933094B2 (ja) * 2005-12-27 2012-05-16 信越化学工業株式会社 熱伝導性シリコーングリース組成物
WO2016190189A1 (ja) * 2015-05-22 2016-12-01 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性組成物
CN111032665A (zh) * 2017-08-10 2020-04-17 信越化学工业株式会社 有机硅化合物及固化性导热性硅酮组合物

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933094B1 (ja) 1968-12-31 1974-09-04
JPS4913874B1 (ja) 1969-08-29 1974-04-03
JPS4917380B1 (ja) 1970-07-06 1974-04-30
JPS58366B2 (ja) 1973-10-06 1983-01-06 ソニー株式会社 表面材貼付方法
JP2938428B1 (ja) 1998-02-27 1999-08-23 信越化学工業株式会社 熱伝導性グリース組成物
JP2938429B1 (ja) 1998-02-27 1999-08-23 信越化学工業株式会社 熱伝導性シリコーン組成物
JP2000109373A (ja) * 1998-10-02 2000-04-18 Shin Etsu Chem Co Ltd 放熱用シリコーングリース組成物及びそれを使用した半導体装置
JP2004091743A (ja) 2002-09-04 2004-03-25 Denki Kagaku Kogyo Kk 熱伝導性グリース
JP3952184B2 (ja) 2002-10-10 2007-08-01 信越化学工業株式会社 熱伝導性シート
JP2008260798A (ja) 2007-04-10 2008-10-30 Shin Etsu Chem Co Ltd 熱伝導性硬化物及びその製造方法
JP2009209165A (ja) 2008-02-29 2009-09-17 Shin Etsu Chem Co Ltd 熱伝導性硬化物及びその製造方法
JP4656340B2 (ja) 2008-03-03 2011-03-23 信越化学工業株式会社 熱伝導性シリコーングリース組成物
JP4572243B2 (ja) 2008-03-27 2010-11-04 信越化学工業株式会社 熱伝導性積層体およびその製造方法
JP2012069783A (ja) * 2010-09-24 2012-04-05 Yokohama Rubber Co Ltd:The 熱伝導性シリコーン組成物およびこれを用いる実装基板
JP2012096361A (ja) 2010-10-29 2012-05-24 Shin-Etsu Chemical Co Ltd シリコーン構造体の製造方法及び半導体装置
JP2012102283A (ja) 2010-11-12 2012-05-31 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーングリース組成物
JP2017031231A (ja) * 2015-07-28 2017-02-09 信越化学工業株式会社 縮合硬化型シリコーン組成物
JP2017210518A (ja) 2016-05-24 2017-11-30 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
JP2017226724A (ja) 2016-06-20 2017-12-28 信越化学工業株式会社 熱伝導性シリコーンパテ組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3951859A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024498A1 (ja) * 2022-07-29 2024-02-01 信越化学工業株式会社 熱伝導性シリコーン組成物及びその製造方法

Also Published As

Publication number Publication date
TWI846825B (zh) 2024-07-01
EP3951859A4 (en) 2023-04-05
TW202104533A (zh) 2021-02-01
JP7027368B2 (ja) 2022-03-01
EP3951859A1 (en) 2022-02-09
JP2020169231A (ja) 2020-10-15
US20220162447A1 (en) 2022-05-26
CN113632220A (zh) 2021-11-09
KR20210148140A (ko) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2020202800A1 (ja) 熱伝導性シリコーン組成物、その製造方法及び半導体装置
TWI736699B (zh) 熱傳導性矽氧組合物、半導體裝置及半導體裝置的製造方法
TWI742051B (zh) 熱傳導性聚矽氧組成物、半導體裝置及半導體裝置的製造方法
TWI454564B (zh) Thermal conductive silicone grease composition
JP5898139B2 (ja) 熱伝導性シリコーン組成物
JP2009096961A (ja) リワーク性に優れた熱伝導性シリコーングリース組成物
JP2015140395A (ja) 熱伝導性シリコーングリース組成物
JP2009138036A (ja) 熱伝導性シリコーングリース組成物
JP5947267B2 (ja) シリコーン組成物及び熱伝導性シリコーン組成物の製造方法
JP5729882B2 (ja) 熱伝導性シリコーングリース組成物
JP7237884B2 (ja) 熱伝導性シリコーン組成物
JP7205554B2 (ja) シリコーン組成物及びその製造方法
JP2011088953A (ja) 放熱用熱伝導性シリコーングリース組成物及びその使用方法
JP2009221310A (ja) 熱伝導性シリコーングリース組成物
WO2006043334A1 (ja) 放熱用シリコーン組成物
WO2021235214A1 (ja) 高熱伝導性シリコーン組成物
JP7060097B2 (ja) 熱伝導性シリコーン組成物及び熱伝導性シート
JP7467017B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP2008255275A (ja) 熱伝導性シリコーングリース組成物及びそれを用いた半導体装置
JP2008291069A (ja) 熱伝導性シリコーングリース組成物
JP2009215362A (ja) 熱伝導性シリコーングリース組成物及びそれを用いた半導体装置
KR101864505B1 (ko) 방열성이 우수한 실리콘 조성물
EP4169984B1 (en) Thermally conductive silicone composition
WO2023203973A1 (ja) 熱伝導性シリコーン組成物
WO2023140006A1 (ja) 熱伝導性シリコーン組成物および半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020782534

Country of ref document: EP

Effective date: 20211102