WO2016190189A1 - 熱伝導性組成物 - Google Patents

熱伝導性組成物 Download PDF

Info

Publication number
WO2016190189A1
WO2016190189A1 PCT/JP2016/064725 JP2016064725W WO2016190189A1 WO 2016190189 A1 WO2016190189 A1 WO 2016190189A1 JP 2016064725 W JP2016064725 W JP 2016064725W WO 2016190189 A1 WO2016190189 A1 WO 2016190189A1
Authority
WO
WIPO (PCT)
Prior art keywords
average particle
component
mass
conductive filler
spherical
Prior art date
Application number
PCT/JP2016/064725
Other languages
English (en)
French (fr)
Inventor
平川大悟
高梨正則
Original Assignee
モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 filed Critical モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社
Priority to CN201680029425.2A priority Critical patent/CN107532001B/zh
Priority to KR1020177031968A priority patent/KR102544366B1/ko
Priority to US15/574,642 priority patent/US20180134938A1/en
Priority to JP2016554300A priority patent/JP6223591B2/ja
Priority to EP16799895.4A priority patent/EP3299420A4/en
Publication of WO2016190189A1 publication Critical patent/WO2016190189A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to a thermally conductive composition that can be used as a heat dissipation material and a heat dissipation material using the same.
  • Japanese Patent Laid-Open No. 62-43493 describes an invention of a heat conductive silicone grease having good heat conductivity and electrical insulation. Although it is described that boron nitride having a particle size of 0.01 to 100 ⁇ m is used as a component imparting thermal conductivity (lower right column on page 2), in the examples, boron nitride having a particle size of 1 to 5 ⁇ m is described. Is used.
  • Japanese Patent Application Laid-Open No. 2003-176414 describes an invention of a thermally conductive silicone composition.
  • (B) low melting point metal powder (paragraph number 0011) having an average particle size of 0.1 to 100 ⁇ m, preferably 20 to 50 ⁇ m, and (D) filler (paragraph number 0014) are described. ing.
  • Japanese Patent Application Laid-Open No. 2003-218296 describes an invention of a silicone resin composition containing a silicone resin and a thermally conductive filler.
  • the heat conductive filler low melting point metal powder, aluminum powder having an average particle size of 0.1 to 100 ⁇ m, preferably 20 to 50 ⁇ m, zinc oxide powder, alumina powder, etc. are described (paragraph numbers 0017 to 0021). .
  • Japanese Patent Application Laid-Open No. 2003-301189 describes an invention of a heat dissipating silicone grease composition. It is described that a heat conductive filler having an average particle size of 0.1 to 100 ⁇ m, preferably 1 to 20 ⁇ m is used (paragraph numbers 0012 and 0013).
  • JP 2005-112961 describes an invention of a curable organopolysiloxane composition. It is described that a heat conductive filler having an average particle size of 0.1 to 100 ⁇ m, preferably 1 to 20 ⁇ m is used (paragraph numbers 0030 to 0032).
  • Japanese Patent Application Laid-Open No. 2007-99821 describes an invention of a thermally conductive silicone grease composition.
  • the metal oxide powder and metal nitride powder of component (B) it is described that an average particle size of 0.1 to 10 ⁇ m, preferably 0.2 to 8 ⁇ m is used in order to obtain desired thermal conductivity. (Paragraph numbers 0016 and 0017).
  • Japanese Patent Application Laid-Open No. 2008-184549 describes an invention of a method for manufacturing a heat dissipation material.
  • aluminum oxide (D-1) having an average particle diameter of 14 ⁇ m, aluminum oxide (D-2) having an average particle diameter of 2 ⁇ m, and zinc oxide (D-3) having an average particle diameter of 0.5 ⁇ m are used in combination. .
  • Japanese Patent Application Laid-Open No. 2009-96961 describes an invention of a thermally conductive silicone grease composition.
  • (B-1) a thermally conductive filler having an average particle size of 12 to 100 ⁇ m (preferably 15 to 30 ⁇ m) and (B-2) an average particle size of 0.1 to 10 ⁇ m (preferably 0.3 to 5 ⁇ m)
  • B-1 a thermally conductive filler having an average particle size of 12 to 100 ⁇ m (preferably 15 to 30 ⁇ m) and
  • B-2) an average particle size of 0.1 to 10 ⁇ m (preferably 0.3 to 5 ⁇ m)
  • the use of a thermally conductive filler is described (claims, paragraphs 0028-0030).
  • Japanese Patent Application Laid-Open No. 2010-13563 describes an invention of a thermally conductive silicone grease. It is described that the heat conductive inorganic filler (A) preferably has an average particle size of 0.1 to 100 ⁇ m, particularly 1 to 70 ⁇ m (paragraph 0025).
  • B-1 zinc oxide powder (indefinite shape, average particle size: 1.0 ⁇ m)
  • B-2 alumina powder (spherical shape, average particle size: 2.0 ⁇ m)
  • B-3 aluminum powder (indefinite Regular, average particle size of 7.0 ⁇ m) is used.
  • Japanese Patent Application Laid-Open No. 2010-126568 describes an invention of a silicone grease composition for heat dissipation.
  • the thermally conductive inorganic filler is required to have an average particle diameter in the range of 0.1 to 100 ⁇ m, and preferably 0.5 to 50 ⁇ m.
  • C-1 alumina powder (average particle size 10 ⁇ m, specific surface area 1.5 m 2 / g)
  • C-2 alumina powder (average particle size 1 ⁇ m, specific surface area 8 m 2 / g)
  • C-3 Zinc oxide powder (average particle size 0.3 ⁇ m, specific surface area 4 m 2 / g)
  • C-4 aluminum powder (average particle size 10 ⁇ m, specific surface area 3 m 2 / g)
  • C-5 alumina powder (average particle size 0) 0.01 ⁇ m and a specific surface area of 160 m 2 / g) are used.
  • Japanese Patent Application Laid-Open No. 2011-122000 describes an invention of a silicone composition for a high thermal conductivity potting material.
  • a heat conductive filler having an average particle size of 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m is used (paragraph number 0018).
  • alumina powder is used as the thermally conductive filler, (B1) spherical alumina having an average particle size of more than 5 ⁇ m to 50 ⁇ m and (B2) spherical or non-spherical particles having an average particle size of 0.1 ⁇ m to 5 ⁇ m. It is described that it is preferable to use regular alumina together (paragraph number 0018).
  • the thermally conductive filler as the component (B) mainly contains alumina, (Ci) amorphous alumina having an average particle diameter of 10 to 30 ⁇ m, and (Cii) average particle diameter of 30 to 85 ⁇ m. (C-iii) It is described that it is made of an insulating inorganic filler having an average particle size of 0.1 to 6 ⁇ m (paragraph number 0032), and amorphous alumina and spherical alumina are combined. In this way, a unique effect can be obtained. Summary of the Invention
  • An object of the present invention is to provide a thermally conductive composition having a low thermal viscosity and good thermal conductivity, and a heat dissipation material using the thermal conductive composition.
  • a thermally conductive composition comprising (A) a spherical thermally conductive filler and (B) an alkoxysilane compound or dimethylpolysiloxane, wherein the component (A)
  • the spherical heat conductive filler is a mixture obtained by blending fillers having different average particle diameters at a specific ratio, and the mixture comprises a spherical heat conductive filler having an average particle diameter of 50 ⁇ m or more made of nitride.
  • a thermally conductive composition comprising 30% by mass or more is provided.
  • a thermally conductive composition containing (A) a spherical thermally conductive filler and (B) an alkoxysilane compound or dimethylpolysiloxane, wherein (A) The spherical heat conductive filler as a component is a mixture formed by blending fillers having different average particle sizes in a specific ratio, and the mixture is a spherical heat conductive filler having an average particle size of 50 ⁇ m or more made of nitride. Is provided at 30% by mass or more, and a thermal conductive composition is provided by adding 10% by mass or more of a spherical thermal conductive filler having an average particle diameter of less than 1 ⁇ m.
  • the present invention provides a heat dissipation material using the composition according to the first or second embodiment.
  • composition of the present invention has a high thermal conductivity, it can have a low viscosity, and therefore, when used as a heat dissipation material, it can be easily applied to an application target.
  • the heat conductive composition of the first embodiment of the present invention contains (A) a spherical heat conductive filler and (B) an alkoxysilane compound or dimethylpolysiloxane.
  • the component (A) is a spherical heat conductive filler and does not include an amorphous heat conductive filler.
  • a sphere does not need to be a perfect sphere, but when a major axis and a minor axis exist, it indicates that the major axis / minor axis is about 1.0 ⁇ 0.2. It is.
  • the spherical heat conductive filler of component (A) is a mixture obtained by blending fillers having different average particle diameters at a specific ratio, and since the heat conductivity can be increased, the mixture has an average particle diameter of 50 ⁇ m or more.
  • the filler is blended in an amount of 30% by mass or more, preferably 40% by mass or more, and more preferably 50% by mass or more.
  • the mixture of the component (A) is formed by blending 50% by mass or more of a spherical heat conductive filler having an average particle diameter of 50 ⁇ m or more, and a spherical heat conductive filler having an average particle diameter of less than 50 ⁇ m. Are preferably blended in an amount of 50% by mass or less.
  • the mixture of the component (A) contains 50 to 70 spherical heat conductive filler having an average particle size of 50 ⁇ m or more, preferably an average particle size of 50 to 100 ⁇ m, more preferably an average particle size of 50 to 80 ⁇ m. 30% by mass, preferably 50 to 60% by mass of a spherical thermally conductive filler having an average particle size of less than 50 ⁇ m, preferably an average particle size of 1 to 10 ⁇ m, more preferably an average particle size of 1 to 5 ⁇ m. More preferably 50% by mass, preferably 40-50% by mass.
  • the spherical thermal conductive filler having an average particle diameter of 50 ⁇ m or more is made of nitride, and the nitride is preferably aluminum nitride or boron nitride from the viewpoint of thermal conductivity.
  • the spherical heat conductive filler having an average particle diameter of 50 ⁇ m or more does not use a metal oxide such as aluminum oxide or zinc oxide, or a metal such as aluminum.
  • Examples of spherical heat conductive fillers having an average particle diameter of 50 ⁇ m or more made of nitride include round aluminum nitride “FAN-f50-J (average particle diameter 50 ⁇ m)” and “FAN-” sold by Tokuyama Corporation. f80 (average particle diameter 80 ⁇ m) ”or the like can be used.
  • the spherical heat conductive filler having an average particle diameter of less than 50 ⁇ m is preferably made of a nitride, and round aluminum nitride “HF-01 (average particle diameter 1 ⁇ m)” sold by Tokuyama Co., Ltd. HF-05 (average particle size 5 ⁇ m) ”or the like can be used.
  • HF-01 average particle diameter 1 ⁇ m
  • HF-05 average particle size 5 ⁇ m
  • other spherical metal oxide powders and metal powders such as those selected from aluminum oxide, zinc oxide, and aluminum can also be used.
  • the spherical heat conductive filler having an average particle diameter of less than 50 ⁇ m can be used by blending two or more kinds having different average particle diameters.
  • Component (B) As the alkoxysilane compound as the component (B), at least the following general formula per molecule: —SiR 11 3-a (OR 12 ) a (II) (Wherein R 11 is an alkyl group having 1 to 6 carbon atoms, preferably a methyl group, R 12 is an alkyl group having 1 to 6 carbon atoms, preferably a methyl group, and a is 1, 2 or 3) A compound having an alkoxysilyl group is preferred.
  • alkoxysilane compound having an alkoxysilyl group of general formula (II) examples include the following compounds of general formula (II-1) and general formula (II-2).
  • alkoxysilane compound as the component (B), a compound represented by the following general formula (III) can also be used.
  • R 21 a R 22 b Si (OR 23 ) 4-ab (III) wherein R 21 is independently an alkyl group having 6 to 15 carbon atoms, R 22 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, and R 23 is independently And an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, provided that a + b is an integer of 1 to 3.)
  • examples of the alkyl group represented by R 21 include a hexyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group, and a tetradecyl group.
  • examples of the unsubstituted or substituted monovalent hydrocarbon group represented by R 22 include a methyl group, an ethyl group, a propyl group, a chloromethyl group, a bromoethyl group, a 3,3,3-trifluoropropyl group, and a cyanoethyl group.
  • R 23 is preferably a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group or the like.
  • R ′ — O— or —CH 2 CH 2 —
  • R 31 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100, preferably 5 to 70, particularly preferably 10 to 50.
  • a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and the like are preferable.
  • a surface treatment agent (wetter) (paragraph numbers 0041 to 0048) of the component (D) described in JP-A-2009-221111 can also be used.
  • component (B) in the composition of the first invention is 1 to 30 parts by weight, preferably 1 to 25 parts by weight, more preferably 5 to 20 parts by weight per 100 parts by weight of component (A). Part.
  • the heat conductive composition of the second embodiment of the present invention also contains (A) a spherical heat conductive filler and (B) an alkoxysilane compound or dimethylpolysiloxane.
  • (A) component The component (A) is a spherical heat conductive filler and does not include an amorphous heat conductive filler.
  • a sphere does not need to be a perfect sphere, but when a major axis and a minor axis exist, it indicates that the major axis / minor axis is about 1.0 ⁇ 0.2. It is.
  • the spherical heat conductive filler of component (A) is a mixture obtained by blending fillers having different average particle diameters at a specific ratio, and since the heat conductivity can be increased, the mixture has an average particle diameter of 50 ⁇ m or more.
  • the filler is blended in an amount of 30% by mass or more, preferably 40% by mass or more, and more preferably 50% by mass or more.
  • the spherical heat conductive filler of component (A) is a filler having a different average particle size, a spherical heat conductive filler having an average particle size of 50 ⁇ m or more and a spherical heat conductive filler having an average particle size of less than 1 ⁇ m. It is a mixture formed by blending the agent at a specific ratio.
  • the blending amount of the spherical heat conductive filler having an average particle diameter of 50 ⁇ m or more can increase the heat conductivity, so that it is 30% by mass or more, preferably 40% by mass or more, more preferably It is 50 mass% or more.
  • the mixture of the component (A) contains 50 to 70% by mass of a spherical heat conductive filler having an average particle size of 50 ⁇ m or more, preferably an average particle size of 50 to 100 ⁇ m, more preferably an average particle size of 50 to 80 ⁇ m.
  • 50 to 60% by mass is blended.
  • the blending amount of the spherical thermal conductive filler having an average particle diameter of less than 1 ⁇ m in the mixture of the component (A) is preferably 10% by mass or more. Is 15% by mass or more. In one example, the blending amount of the spherical heat conductive filler having an average particle diameter of less than 1 ⁇ m in the mixture of the component (A) is preferably 10 to 30% by mass, more preferably 15 to 25% by mass.
  • the mixture of the component (A) has an average particle diameter of 1 ⁇ m or more, with the remainder excluding the spherical heat conductive filler having an average particle diameter of 50 ⁇ m or more and the spherical heat conductive filler having an average particle diameter of less than 1 ⁇ m. It is preferable to blend a spherical heat conductive filler having an average particle size of less than 50 ⁇ m, preferably an average particle size of 1 to 10 ⁇ m, more preferably an average particle size of 1 to 5 ⁇ m.
  • the spherical heat conductive filler having an average particle diameter of 50 ⁇ m or more is made of nitride, and the nitride is preferably aluminum nitride or boron nitride from the viewpoint of heat conductivity.
  • spherical heat conductive fillers having an average particle diameter of 50 ⁇ m or more made of nitride include round aluminum nitride “FAN-f50-J (average particle diameter 50 ⁇ m)” and “FAN-” sold by Tokuyama Corporation. f80 (average particle diameter 80 ⁇ m) ”or the like can be used.
  • the spherical thermal conductive filler having an average particle diameter of 1 ⁇ m or more to an average particle diameter of less than 50 ⁇ m, preferably an average particle diameter of 1 to 10 ⁇ m, more preferably an average particle diameter of 1 to 5 ⁇ m is preferably made of nitride.
  • Round aluminum nitride “HF-01 (average particle size 1 ⁇ m)”, “HF-05 (average particle size 5 ⁇ m)”, etc. sold by Tokuyama can be used.
  • HF-01 average particle size 1 ⁇ m
  • HF-05 average particle size 5 ⁇ m
  • other spherical metal oxide powders and metal powders such as those selected from aluminum oxide, zinc oxide, and aluminum can also be used.
  • Spherical thermally conductive fillers having an average particle diameter of less than 1 ⁇ m are metal oxides such as aluminum oxide (Al 2 O 3 ) and zinc oxide (ZnO), nitrides such as aluminum nitride and boron nitride, aluminum, copper, Those selected from metals such as silver and gold, and core / shell type particles of metal / metal oxide can be used.
  • metal oxides such as aluminum oxide (Al 2 O 3 ) and zinc oxide (ZnO)
  • nitrides such as aluminum nitride and boron nitride, aluminum, copper, Those selected from metals such as silver and gold, and core / shell type particles of metal / metal oxide can be used.
  • Component (B) The same alkoxysilane compound or dimethylpolysiloxane as the component (B) used in the thermally conductive composition of the first embodiment can be used.
  • the content of the component (B) in the composition of the second embodiment is 1 to 20 parts by weight, preferably 1 to 15 parts by weight, and more preferably 3 to 15 parts by weight with respect to 100 parts by weight of the component (A). Part by mass.
  • composition of the first embodiment and the composition of the second embodiment can further contain polyorganosiloxane as the component (C) in addition to the components (A) and (B).
  • the polyorganosiloxane (C) does not include the dimethylpolysiloxane (B).
  • compositional formula (I) As a polyorganosiloxane of a component, what is represented by the following average compositional formula (I) can be used. R 1 a R 2 b SiO [4- (a + b)] / 2 (I)
  • R 1 is an alkenyl group.
  • the alkenyl group preferably has 2 to 8 carbon atoms, and examples thereof include a vinyl group, an allyl group, a propenyl group, a 1-butenyl group, and a 1-hexenyl group, preferably a vinyl group. is there.
  • an alkenyl group is contained, one or more, preferably two or more are contained in one molecule.
  • the component (C) can be adjusted between gel and rubber.
  • the alkenyl group may be bonded to the silicon atom at the end of the molecular chain, may be bonded to the silicon atom in the middle of the molecular chain, or may be bonded to both.
  • R 2 is a substituted or unsubstituted monovalent hydrocarbon group not containing an aliphatic unsaturated bond.
  • the substituted or unsubstituted monovalent hydrocarbon group which does not contain an aliphatic unsaturated bond has 1 to 12 carbon atoms, preferably 1 to 10 carbon atoms, such as a methyl group, an ethyl group, a propyl group, an isopropyl group.
  • Alkyl groups such as butyl, hexyl, octyl, decyl and dodecyl; cycloalkyl groups such as cyclopentyl, cyclohexyl and cyclobutyl; aryl groups such as phenyl, tolyl, xylyl and naphthyl; Aralkyl groups such as benzyl group, phenylethyl group, phenylpropyl group; groups in which some or all of the hydrogen atoms of these hydrocarbon groups are substituted with halogen atoms such as chlorine, fluorine, bromine, and cyan groups, such as chloromethyl Group, trifluoropropyl group, chlorophenyl group, bromophenyl group, dibromophenyl group, tetrachlorophenyl group Group, fluorophenyl group, a halogenated hydrocarbon group or ⁇ - cyanoethyl groups such as difluoroph
  • the total amount of the component (B) and the component (C) is 1.5 to 35 parts by mass, preferably 1.5 to 30 parts per 100 parts by mass of the component (A).
  • the content is preferably 1.5 to 28 parts by mass.
  • the content ratio of the component (C) in the total amount of the component (B) and the component (C) is 15 to 98% by mass, preferably 18 to 98% by mass. More preferably, it is blended so as to be 20 to 98% by mass.
  • composition of the present invention includes, as necessary, a reaction inhibitor, reinforcing silica, flame retardant imparting agent, heat resistance improver, plasticizer, colorant, adhesion imparting agent, diluent and the like. Can be contained in a range that does not impair.
  • compositions of the first and second embodiments of the present invention are in the form of a grease (paste).
  • the component (C) contains an unsaturated group as a substituent.
  • the hardness can be adjusted from a gel-like to a rubber-like by using the following (D) component and (E) component together.
  • rubber-like ones when rubber-like ones are used, they include everything from elastic ones to hard ones such as stones.
  • the component (D) is a polyorganohydrogensiloxane and is a component that serves as a crosslinking agent for the component (C).
  • the polyorganohydrogensiloxane as component (D) has 2 or more, preferably 3 or more hydrogen atoms bonded to silicon atoms in one molecule. This hydrogen atom may be bonded to the silicon atom at the end of the molecular chain, may be bonded to the silicon atom in the middle of the molecular chain, or may be bonded to both.
  • a polyorganohydrogensiloxane having hydrogen atoms bonded to silicon atoms only at both ends may be used in combination.
  • component (D) may be any of linear, branched, cyclic or three-dimensional network, and may be used alone or in combination of two or more.
  • the polyorganohydrogensiloxane of component (D) is known, and for example, component (B) described in JP-A-2008-184549 can be used.
  • the component (E) is a platinum-based catalyst, and is a component that accelerates curing after the components (C) and (D) are kneaded.
  • the well-known catalyst used for hydrosilylation reaction can be used.
  • platinum black, platinum chloride, chloroplatinic acid, a reaction product of chloroplatinic acid and a monohydric alcohol, a complex of chloroplatinic acid and olefins or vinyl siloxane, platinum bisacetoacetate and the like can be mentioned.
  • the content of the component (E) can be adjusted as appropriate according to the desired curing rate, and the content of the component (C) and the component (D) is 0. A range of 1 to 1000 ppm is preferred.
  • the composition of the present invention can be obtained by mixing the components (A) and (B) and, if necessary, other optional components with a mixer such as a planetary mixer. At the time of mixing, mixing may be performed while heating in the range of 50 to 150 ° C. as necessary. Furthermore, for uniform finishing, it is preferable to perform a kneading operation under a high shearing force.
  • a kneading apparatus there are a three roll, a colloid mill, a sand grinder, etc. Among them, a method using a three roll is preferable.
  • composition of the present invention when the composition of the present invention is further in the form of a gel containing the component (D) and the component (E), it can be obtained in the same manner as the method for producing a heat dissipation material described in JP-A-2008-184549. .
  • the heat dissipating material made of the composition of the present invention is made of the heat conductive composition described above.
  • the heat dissipating material comprising the composition of the present invention is a grease-like material that does not contain the component (D) and the component (E)
  • the viscosity viscosity determined by the measuring method described in the examples
  • it is preferably in the range of 10 to 1000 Pa ⁇ s.
  • the heat dissipating material comprising the composition of the present invention has a thermal conductivity at 23 ° C. of 2.0 W / (m ⁇ K) or more, preferably 2.5 W / (m ⁇ K) or more, more preferably measured by a hot wire method. More than 3.0 W / (m ⁇ K).
  • the content ratio of the component (A) in the composition is preferably 80% by mass or more, depending on the required thermal conductivity (A). The content ratio of the components can be increased.
  • the heat-dissipating material of the present invention is not only a PC / server equipped with a CPU that generates a large amount of heat, but also power modules, VLSI, electronic devices equipped with optical components (optical pickups and LEDs), and home appliances (DVD / HDD). It can be used as a heat dissipation material for recorders (players, AV devices such as FPDs), PC peripheral devices, home game machines, automobiles, and industrial devices such as inverters and switching power supplies.
  • the heat dissipating material can have a grease form (paste form), a gel form, a rubber form, or the like.
  • thermoly conductive composition containing a spherical thermally conductive filler and (B) an alkoxysilane compound or dimethylpolysiloxane
  • the spherical thermal conductive filler of the component (A) is a mixture obtained by blending fillers having different average particle diameters at a specific ratio, and the mixture is a spherical heat having an average particle diameter of 50 ⁇ m or more made of nitride.
  • a thermally conductive composition comprising a conductive filler in an amount of 30% by mass or more, preferably 40% by mass or more, and more preferably 50% by mass or more.
  • the mixture of the component (A) is a mixture of 50% by mass or more of a spherical heat conductive filler having an average particle diameter of 50 ⁇ m or more made of nitride, and a spherical heat conductivity having an average particle diameter of less than 50 ⁇ m.
  • a thermally conductive composition containing (A) a spherical thermally conductive filler and (B) an alkoxysilane compound or dimethylpolysiloxane,
  • the spherical thermal conductive filler of the component (A) is a mixture obtained by blending fillers having different average particle sizes at a specific ratio, and the mixture has an average particle size of 50 to 100 ⁇ m, preferably composed of nitride.
  • a heat conductive composition comprising 50 to 70% by mass, preferably 50 to 60% by mass of a spherical heat conductive filler having an average particle size of 50 to 80 ⁇ m.
  • the mixture of the component (A) contains 30 to 50% by mass, preferably 40 to 50% by mass of a spherical heat conductive filler having an average particle size of 1 to 10 ⁇ m, preferably an average particle size of 1 to 5 ⁇ m.
  • a thermally conductive composition preferably a thermally conductive composition.
  • the alkoxysilane compound or dimethylpolysiloxane (B) component is contained in an amount of 1 to 30 parts by weight, preferably 1 to 25 parts by weight, more preferably 5 to 20 parts by weight, based on 100 parts by weight of the component (A).
  • ⁇ 6> (A) a thermally conductive composition containing a spherical thermally conductive filler and (B) an alkoxysilane compound or dimethylpolysiloxane,
  • the spherical heat conductive filler of the component (A) is a mixture formed by blending fillers having different average particle diameters at a specific ratio, The mixture is formed by blending a spherical heat conductive filler made of nitride with an average particle size of 50 ⁇ m or more in an amount of 30% by mass or more, preferably 40% by mass or more, more preferably 50% by mass or more, and an average particle size of 1 ⁇ m.
  • a heat conductive composition comprising a spherical heat conductive filler of less than 10% by mass, preferably 15% by mass or more.
  • the mixture of the component (A) is a mixture of a spherical heat conductive filler having an average particle diameter of 50 ⁇ m or more made of nitride of 30% by mass or more, preferably 40% by mass or more, more preferably 50% by mass or more.
  • a spherical heat conductive filler having an average particle size of less than 1 ⁇ m is blended in an amount of 10% by mass or more, preferably 15% by mass or more, and the balance is a spherical particle having an average particle size of 1 ⁇ m or more and an average particle size of less than 50 ⁇ m.
  • ⁇ 6> a thermally conductive composition comprising a thermally conductive filler.
  • the mixture of the component (A) is 50 to 70% by mass, preferably 50 to 70% by weight of a spherical heat conductive filler composed of a nitride and having an average particle size of 50 to 100 ⁇ m, preferably an average particle size of 50 to 80 ⁇ m.
  • a spherical heat conductive filler composed of a nitride and having an average particle size of 50 to 100 ⁇ m, preferably an average particle size of 50 to 80 ⁇ m.
  • the mixture of the component (A) is blended with 10 to 30% by mass, preferably 15 to 25% by mass of a spherical heat conductive filler having an average particle diameter of less than 1 ⁇ m, ⁇ 6> to ⁇ 8
  • the thermal conductive composition of any of> is blended with 10 to 30% by mass, preferably 15 to 25% by mass of a spherical heat conductive filler having an average particle diameter of less than 1 ⁇ m, ⁇ 6> to ⁇ 8
  • the thermal conductive composition of any of> is blended with 10 to 30% by mass, preferably 15 to 25% by mass of a spherical heat conductive filler having an average particle diameter of less than 1 ⁇ m, ⁇ 6> to ⁇ 8
  • the alkoxysilane compound or dimethylpolysiloxane (B) component is contained in an amount of 1 to 20 parts by weight, preferably 1 to 15 parts by weight, more preferably 3 to 15 parts by weight with respect to 100 parts by weight of the component (A).
  • the heat conductive composition in any one of ⁇ 10>.
  • ⁇ 12> The heat conductive composition according to any one of ⁇ 6> to ⁇ 11>, wherein the spherical heat conductive filler having an average particle diameter of less than 1 ⁇ m is aluminum oxide or zinc oxide.
  • ⁇ 13> The thermally conductive composition according to any one of ⁇ 1> to ⁇ 12>, wherein the nitride is aluminum nitride or boron nitride.
  • a heat dissipation material comprising the thermally conductive composition according to any one of ⁇ 1> to ⁇ 13>.
  • the (A) is a mixture obtained by blending fillers having different average particle sizes in a specific ratio, and the mixture is made of nitride having an average particle size of 50 ⁇ m or more, preferably an average particle size of 50 to 100 ⁇ m, more preferably
  • the (A) is a mixture obtained by blending fillers having different average particle sizes in a specific ratio, and the mixture is made of nitride having an average particle size of 50 ⁇ m or more, preferably an average particle size of 50 to 100 ⁇ m, more preferably A spherical heat conductive filler having an average particle size of 50 to 80 ⁇ m is blended in an amount of 30% by mass or more, preferably 40% by mass or more, and more preferably 50% by mass or more.
  • nitride is aluminum nitride or boron nitride.
  • composition, heat dissipation material or production method according to any one of ⁇ 1> to ⁇ 17>, wherein the component (B) is an alkoxysilane compound having an alkoxysilyl group of the general formula (II).
  • composition, heat dissipation material or production method according to ⁇ 18>, wherein the component (B) is a compound of the general formula (II-1) or the general formula (II-2).
  • composition, heat dissipation material, or production method according to any one of ⁇ 1> to ⁇ 17>, wherein the component (B) is dimethylpolysiloxane represented by the general formula (IV).
  • composition, heat dissipation material, or production method according to any one of ⁇ 1> to ⁇ 17>, further comprising a polyorganosiloxane represented by an average composition formula (I) as component (C).
  • composition, heat dissipation material or production method according to ⁇ 22> further comprising polyorganohydrogensiloxane as the component (D) and a platinum catalyst as the component (E).
  • Component (B) Surface treatment agent (in general formula (II-1), x: 20, Y: Si (CH 3 ) 2 CH ⁇ CH 2 )
  • Thermal conductivity was performed at 23 ° C. using a thermal conductivity meter (QTM-500, manufactured by Kyoto Electronics Industry Co., Ltd.) according to the hot wire method.
  • Examples 1-18 The components (A) and (B) shown in Tables 1 and 2 were charged into a planetary mixer (manufactured by Dalton), stirred and mixed at room temperature for 1 hour, and further stirred and mixed at 120 ° C for 1 hour. A conductive composition was obtained. (B) The quantity of a component is a mass part display with respect to 100 mass parts of (A) component. The viscosity and thermal conductivity of the composition were measured. The results are shown in Tables 1 and 2.
  • Examples 19-22 The components (A) and (B) shown in Table 3 were charged into a planetary mixer (manufactured by Dalton), stirred and mixed at room temperature for 1 hour, and further stirred and mixed at 120 ° C. for 1 hour to obtain a thermally conductive composition. I got a thing.
  • (B) The quantity of a component is a mass part display with respect to 100 mass parts of (A) component. The viscosity and thermal conductivity of the composition were measured by the following methods. The results are shown in Table 3.
  • the heat conductive composition of the present invention can be used as a heat dissipation material for various devices having a heat generating portion such as an electronic device such as a personal computer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

熱伝導率が良く、粘度が低く塗布し易い熱伝導性組成物の提供。 (A)球状の熱伝導性充填剤と(B)アルコキシシラン化合物またはジメチルポリシロキサンを含有する熱伝導性組成物であって、前記(A)成分の球状の熱伝導性充填剤が平均粒子径の異なる充填剤を特定割合で配合してなる混合物であり、前記混合物が、窒化物からなる平均粒子径50μm以上の球状の熱伝導性充填剤を30質量%以上配合してなる、熱伝導性組成物。

Description

熱伝導性組成物
 本発明は、放熱材料として使用できる熱伝導性組成物と、それを使用した放熱材料に関する。
背景技術
 電子機器は、年々高集積化・高速化しており、それに応じて熱対策のための放熱材料の需要が高まっている。
 特開昭62-43493号公報には、熱伝導性と電気絶縁性の良い熱伝導性シリコーングリースの発明が記載されている。熱伝導性を付与する成分として、粒子径が0.01~100μmのボロンナイトライドを使用することが記載されているが(2頁右下欄)、実施例では粒度1~5μmのボロンナイトライドが使用されている。
 特開2003-176414号公報には、熱伝導性シリコーン組成物の発明が記載されている。熱伝導性を付与する成分として、(B)平均粒子径0.1~100μm、好ましくは20~50μmの低融点金属粉末(段落番号0011)、(D)充填剤(段落番号0014)が記載されている。
 特開2003-218296号公報には、シリコーン樹脂、熱伝導性充填剤を含むシリコーン樹脂組成物の発明が記載されている。熱伝導性充填剤としては、低融点金属粉末、平均粒子径0.1~100μm、好ましくは20~50μmのアルミニウム粉末、酸化亜鉛粉末、アルミナ粉末などが記載されている(段落番号0017~0021)。
 特開2003-301189号公報には、放熱性シリコーングリース組成物の発明が記載されている。熱伝導性充填剤として、平均粒子径が0.1~100μm、好ましくは1~20μmの範囲のものを使用することが記載されている(段落番号0012、0013)。
 2005-112961号公報には、硬化性オルガノポリシロキサン組成物の発明が記載されている。平均粒子径が0.1~100μm、好ましくは1~20μmの熱伝導性充填剤を使用することが記載されている(段落番号0030~0032)
 特開2007-99821号公報には、熱伝導性シリコーングリース組成物の発明が記載されている。(B)成分の金属酸化物粉末、金属窒化物粉末として、所望の熱伝導性を得るため、平均粒子径が0.1~10μm、好ましくは0.2~8μmのものを使用することが記載されている(段落番号0016、0017)。
 特開2008-184549号公報には、放熱材の製造方法の発明が記載されている。(D)熱伝導性充填剤として、平均粒子径が100μm以下、好ましくは0.1~80μmのものが使用されている(段落番号0027、0028)。実施例1では、平均粒子径14μmの酸化アルミニウム(D-1)、平均粒子径2μmの酸化アルミニウム(D-2)、平均粒子径0.5μmの酸化亜鉛(D-3)が併用されている。
 特開2009-96961号公報には、熱伝導性シリコーングリース組成物の発明が記載されている。(B-1)平均粒子径が12~100μm(好ましくは15~30μm)の熱伝導性充填剤と、(B-2)平均粒子径が0.1~10μm(好ましくは0.3~5μm)の熱伝導性充填剤を使用することが記載されている(特許請求の範囲、段落番号0028~0030)。
 特開2010-13563号公報には、熱伝導性シリコーングリースの発明が記載されている。(A)の熱伝導性無機充填剤は、平均粒子径0.1~100μm、特に1~70μmの範囲であることが好ましいと記載されている(段落番号0025)。実施例では、B-1:酸化亜鉛粉末(不定形、平均粒子径:1.0μm)、B-2:アルミナ粉末(球形、平均粒子径:2.0μm)、B-3:アルミニウム粉末(不定形、平均粒子径7.0μm)が使用されている。
 特開2010-126568号公報には、放熱用シリコーングリース組成物の発明が記載されている。(B)熱伝導性無機充填剤は、平均粒子径0.1~100μmの範囲であることが必要であり、好ましくは0.5~50μmであると記載されている。
 実施例では、C-1:アルミナ粉末(平均粒子径10μm、比表面積1.5m/g)、C-2:アルミナ粉末(平均粒子径1μm、比表面積8m/g)、C-3:酸化亜鉛粉末(平均粒子径0.3μm、比表面積4m/g)、C-4:アルミ粉末(平均粒子径10μm、比表面積3m/g)、C-5:アルミナ粉末(平均粒子径0.01μm、比表面積160m/g)が使用されている。
 特開2011-122000号公報には、高熱伝導性ポッティング材用シリコーン組成物の発明が記載されている。(A)熱伝導性充填剤として、平均粒子径1~100μm、好ましくは5~50μmのものを使用することが記載されている(段落番号0018)。(A)熱伝導性充填剤としてアルミナ粉末を使用するときは、(B1)平均粒子径が5μm超~50μm以下の球状アルミナと、(B2)平均粒子径が0.1μm~5μmの球状または不定形アルミナを併用することが好ましいことが記載されている(段落番号0018)。
 特開2013-147600号公報には、熱伝導性シリコーン組成物の発明が記載されている。(B)成分である熱伝導性充填材は、主にアルミナを含有するもので、(C-i)平均粒子径10~30μmである不定形アルミナ、(C-ii)平均粒子径30~85μmである球状アルミナ、(C-iii)平均粒子径0.1~6μmである絶縁性無機フィラーからなるものであると記載されており(段落番号0032)、不定形のアルミナと球状のアルミナを組み合わせることで特有の効果が得られるものである。
発明の概要
 本発明は、低粘度にすることができ、熱伝導性の良い熱伝導性組成物、及びそれを使用した放熱材料を提供することを課題とする。
 本発明の第1の実施形態によれば、(A)球状の熱伝導性充填剤と(B)アルコキシシラン化合物またはジメチルポリシロキサンを含有する熱伝導性組成物であって、前記(A)成分の球状の熱伝導性充填剤が平均粒子径の異なる充填剤を特定割合で配合してなる混合物であり、前記混合物が、窒化物からなる平均粒子径50μm以上の球状の熱伝導性充填剤を30質量%以上配合してなりる、熱伝導性組成物が提供される。
 また本発明の第2の実施形態によれば、(A)球状の熱伝導性充填剤と(B)アルコキシシラン化合物またはジメチルポリシロキサンを含有する熱伝導性組成物であって、前記(A)成分の球状の熱伝導性充填剤が平均粒子径の異なる充填剤を特定割合で配合してなる混合物であり、前記混合物が、窒化物からなる平均粒子径50μm以上の球状の熱伝導性充填剤を30質量%以上配合し、平均粒子径1μm未満の球状の熱伝導性充填剤を10質量%以上配合してなる、熱伝導性組成物が提供される。
 さらに本発明は、上記第1又は第2の実施形態による組成物を使用した放熱材料を提供する。
 本発明の組成物は、高い熱伝導率を有しているが、低粘度にすることができるため、放熱材料として使用したとき、適用対象に塗布することが容易になる。
発明を実施するための形態
 <第1実施形態の熱伝導性組成物>
 本発明の第1の実施形態の熱伝導性組成物は、(A)球状の熱伝導性充填剤と(B)アルコキシシラン化合物またはジメチルポリシロキサンを含有する。
 [(A)成分]
 (A)成分は球状の熱伝導性充填剤であり、不定形の熱伝導性充填剤は含まれない。球状は、完全な球であることを要するものではないが、長軸と短軸が存在している場合には、長軸/短軸=1.0±0.2程度であるものを示すものである。
 (A)成分の球状の熱伝導性充填剤は平均粒子径の異なる充填剤を特定割合で配合してなる混合物であり、熱伝導性を高くできることから、前記混合物が、平均粒子径50μm以上の充填剤を30質量%以上配合してなり、40質量%以上配合してなることが好ましく、50質量%以上配合してなることがより好ましい。
 一つの例では、前記(A)成分の混合物は、平均粒子径50μm以上の球状の熱伝導性充填剤を50質量%以上配合してなり、平均粒子径50μm未満の球状の熱伝導性充填剤を50質量%以下配合してなるものが好ましい。
 別の例では、前記(A)成分の混合物は、平均粒子径50μm以上、好ましくは平均粒子径50~100μm、より好ましくは平均粒子径50~80μmの球状の熱伝導性充填剤を50~70質量%、好ましくは50~60質量%配合し、平均粒子径50μm未満、好ましくは平均粒子径が1~10μm、より好ましくは平均粒子径が1~5μmの球状の熱伝導性充填剤を30~50質量%、好ましくは40~50質量%配合してなるものがより好ましい。
 平均粒子径50μm以上の球状の熱伝導性充填剤は窒化物からなるものであり、前記窒化物は熱伝導性の観点から窒化アルミニウムまたは窒化ホウ素が好ましい。平均粒子径50μm以上の球状の熱伝導性充填剤は、酸化アルミニウム、酸化亜鉛などの金属酸化物、アルミニウムなどの金属は使用しない。窒化物からなる平均粒子径50μm以上の球状の熱伝導性充填剤としては、株式会社トクヤマから販売されている丸み状窒化アルミニウム「FAN-f50-J(平均粒子径50μm)」、同「FAN-f80(平均粒子径80μm)」などを使用することができる。
 また、平均粒子径50μm未満の球状の熱伝導性充填剤も窒化物からなるものが好ましく、株式会社トクヤマから販売されている丸み状窒化アルミニウム「HF-01(平均粒子径1μm)」、同「HF-05(平均粒子径5μm)」などを使用することができる。しかしながら、他の球状の金属酸化物粉末や金属粉末、例えば酸化アルミニウム、酸化亜鉛、アルミニウムから選ばれるものも使用可能である。平均粒子径50μm未満の球状の熱伝導性充填剤は、平均粒子径の異なる2種以上を配合して用いることができる。
 [(B)成分]
 (B)成分のアルコキシシラン化合物としては、1分子中に少なくとも次の一般式:-SiR11 3-a(OR12 (II)
(式中、R11は炭素数1~6のアルキル基、好ましくはメチル基、R12は炭素数1~6のアルキル基、好ましくはメチル基、aは1、2または3)で表されるアルコキシシリル基を有している化合物が好ましい。
 一般式(II)のアルコキシシリル基を有するアルコキシシラン化合物としては、次のような一般式(II-1)及び一般式(II-2)の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000001

 式中、
 x=10~500
 Y=Si(CHCH=CHまたはSi(CHである。
 また、(B)成分のアルコキシシラン化合物としては、次の一般式(III)で表される化合物も使用することができる。
  R21 22 Si(OR234-a-b   (III)
(式中、R21は独立に炭素原子数6~15のアルキル基であり、R22は独立に非置換または置換の炭素原子数1~12の1価炭化水素基であり、R23は独立に炭素原子数1~6のアルキル基であり、aは1~3の整数、bは0~2の整数であり、但しa+bは1~3の整数である。)
 一般式(III)において、R21で表されるアルキル基としては、例えば、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基などを挙げることができる。R22で表される非置換または置換の1価炭化水素基としては、メチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3-トリフルオロプロピル基、シアノエチル基等の炭素原子数1~3の非置換または置換のアルキル基、およびフェニル基、クロロフェニル基、フルオロフェニル基などの非置換または置換のフェニル基などが好ましい。R23としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基などが好ましい。
 (B)成分のジメチルポリシロキサンとしては、下記一般式(IV)で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンを挙げることができる。
Figure JPOXMLDOC01-appb-C000002

 R’=-O-または-CHCH
(式中、R31は独立に炭素原子数1~6のアルキル基であり、cは5~100、好ましくは5~70、特に好ましくは10~50の整数である。)
 R31で表されるアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基などが好ましい。
 (B)成分としては、さらに例えば特開2009-221311号公報に記載の(D)成分の表面処理剤(ウェッター)(段落番号0041~0048)を使用することもできる。
 第1発明の組成物中の(B)成分の含有量は、(A)成分100質量部に対して1~30質量部であり、好ましくは1~25質量部、より好ましくは5~20質量部である。
 <第2実施形態の熱伝導性組成物>
 本発明の第2の実施形態の熱伝導性組成物も、(A)球状の熱伝導性充填剤と(B)アルコキシシラン化合物またはジメチルポリシロキサンを含有する。
 [(A)成分]
 (A)成分は球状の熱伝導性充填剤であり、不定形の熱伝導性充填剤は含まれない。球状は、完全な球であることを要するものではないが、長軸と短軸が存在している場合には、長軸/短軸=1.0±0.2程度であるものを示すものである。
 (A)成分の球状の熱伝導性充填剤は平均粒子径の異なる充填剤を特定割合で配合してなる混合物であり、熱伝導性を高くできることから、前記混合物が、平均粒子径50μm以上の充填剤を30質量%以上配合してなり、40質量%以上配合してなることが好ましく、50質量%以上配合してなることがより好ましい。
 (A)成分の球状の熱伝導性充填剤は、平均粒子径50μm以上の球状の熱伝導性充填剤と、平均粒子径1μm未満の球状の熱伝導性充填剤という、平均粒子径の異なる充填剤を特定割合で配合してなる混合物である。
 前記(A)成分の混合物中、平均粒子径50μm以上の球状の熱伝導性充填剤の配合量は、熱伝導性を高くできることから、30質量%以上、好ましくは40質量%以上、より好ましくは50質量%以上である。一例では、前記(A)成分の混合物は、平均粒子径50μm以上、好ましくは平均粒子径50~100μm、より好ましくは平均粒子径50~80μmの球状の熱伝導性充填剤を50~70質量%、好ましくは50~60質量%配合してなる。
 また粘度の上昇を抑制し、熱伝導性を高くする観点から、前記(A)成分の混合物中、平均粒子径1μm未満の球状の熱伝導性充填剤の配合量は、10質量%以上、好ましくは15質量%以上である。一例では、前記(A)成分の混合物中、平均粒子径1μm未満の球状の熱伝導性充填剤の配合量は、好ましくは10~30質量%、より好ましくは15~25質量%である。
 また、前記(A)成分の混合物は、平均粒子径50μm以上の球状の熱伝導性充填剤と平均粒子径1μm未満の球状の熱伝導性充填剤を除いた残部として、平均粒子径1μm以上~平均粒子径50μm未満、好ましくは平均粒子径1~10μm、より好ましくは平均粒子径1~5μmの球状の熱伝導性充填剤を配合してなるものが好ましい。
 前記(A)成分の混合物中、平均粒子径50μm以上の球状の熱伝導性充填剤は窒化物からなるものであり、前記窒化物は熱伝導性の観点から窒化アルミニウムまたは窒化ホウ素が好ましい。窒化物からなる平均粒子径50μm以上の球状の熱伝導性充填剤としては、株式会社トクヤマから販売されている丸み状窒化アルミニウム「FAN-f50-J(平均粒子径50μm)」、同「FAN-f80(平均粒子径80μm)」などを使用することができる。
 平均粒子径1μm以上~平均粒子径50μm未満、好ましくは平均粒子径1~10μm、より好ましくは平均粒子径1~5μmの球状の熱伝導性充填剤は、窒化物からなるものが好ましく、株式会社トクヤマから販売されている丸み状窒化アルミニウム「HF-01(平均粒子径1μm)」、同「HF-05(平均粒子径5μm)」などを使用することができる。しかしながら、他の球状の金属酸化物粉末や金属粉末、例えば酸化アルミニウム、酸化亜鉛、アルミニウムから選ばれるものも使用可能である。
 平均粒子径1μm未満の球状の熱伝導性充填剤は、酸化アルミニウム(Al)、酸化亜鉛(ZnO)などの金属酸化物、窒化アルミニウムや窒化ホウ素のような窒化物、アルミニウム、銅、銀、金などの金属、金属/金属酸化物のコアシェル型粒子などから選ばれるものを使用することができる。
 [(B)成分]
 第1実施形態の熱伝導性組成物で使用した(B)成分と同じアルコキシシラン化合物またはジメチルポリシロキサンを使用することができる。
 第2実施形態の組成物中の(B)成分の含有量は、(A)成分100質量部に対して1~20質量部であり、好ましくは1~15質量部、より好ましくは3~15質量部である。
 [その他の成分]
 第1実施形態の組成物と第2実施形態の組成物は、それぞれの(A)成分と(B)成分に加えて、さらに(C)成分としてポリオルガノシロキサンを含有することができる。(C)成分のポリオルガノシロキサンには、(B)成分のジメチルポリシロキサンは含まれない。
 [(C)成分]
 (C)成分のポリオルガノシロキサンとしては、次の平均組成式(I)で表されるものを使用することができる。
 R SiO[4-(a+b)]/2  (I)
 式中、Rは、アルケニル基である。アルケニル基は、炭素原子数が2~8の範囲にあるものが好ましく、例えばビニル基、アリル基、プロペニル基、1-ブテニル基、1-ヘキセニル基などを挙げることができ、好ましくはビニル基である。アルケニル基を含有するときは、好ましくは1分子中に1個以上、好ましくは2個以上含有される。アルケニル基が1個以上であると、(C)成分をゲル状からゴム状の間で調整することができる。また、アルケニル基は、分子鎖末端のケイ素原子に結合していても、分子鎖途中のケイ素原子に結合していても、両者に結合していてもよい。
 Rは、脂肪族不飽和結合を含まない置換又は非置換の1価炭化水素基である。脂肪族不飽和結合を含まない置換又は非置換の1価炭化水素基は、炭素原子数が1~12、好ましくは1~10のものであり、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基、オクチル基、デシル基、ドデシル基などのアルキル基;シクロペンチル基、シクロヘキシル基、シクロブチル基などのシクロアルキル基;フェニル基、トリル基、キシリル基、ナフチル基などのアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基;これらの炭化水素基の水素原子の一部又は全部を塩素、フッ素、臭素などのハロゲン原子、シアン基などで置換した基、例えばクロロメチル基、トリフルオロプロピル基、クロロフェニル基、ブロモフェニル基、ジブロモフェニル基、テトラクロロフェニル基、フルオロフェニル基、ジフルオロフェニル基などのハロゲン化炭化水素基やα-シアノエチル基、β-シアノプロピル基、γ-シアノプロピル基等のシアノアルキル基などを挙げることができる。これらのなかでも好ましくはアルキル基、アリール基であり、より好ましくはメチル基、フェニル基である。
 a,bは、0≦a<3、0<b<3、1<a+b<3を満足する正数であり、好ましくは0.0005≦a≦1、1.5≦b<2.4、1.5<a+b<2.5であり、より好ましくは0.001≦a≦0.5、1.8≦b≦2.1、1.8<a+b≦2.2を満足する数である。
 (C)成分の分子構造は、直鎖状、分岐状のものが好ましい。
 (C)成分の23℃における粘度は、0.01~10Pa・sであることが好ましい。より好ましくは0.02~1.0Pa・sである。
 (C)成分を含有する場合は、(A)成分100質量部に対して(B)成分と(C)成分を合計量で1.5~35質量部含有し、好ましくは1.5~30質量部、より好ましくは1.5~28質量部含有する。(B)成分と(C)成分は、(B)成分と(C)成分の合計量中の(C)成分の含有割合が15~98質量%であり、好ましくは18~98質量%であり、より好ましくは20~98質量%であるように配合される。
 本発明の組成物は、必要に応じて、反応抑制剤、補強性シリカ、難燃性付与剤、耐熱性向上剤、可塑剤、着色剤、接着性付与材、希釈剤などを本発明の目的を損なわない範囲で含有することができる。
 本発明の第1および第2の実施形態の組成物は、グリース状(ペースト状)のものである。(B)成分としてアルコキシシラン化合物(II-1,2)でY=Si(CHCH=CHのものを使用した場合は、(C)成分の置換基を不飽和基を含むように選択し、下記の(D)成分、(E)成分を併用することによりゲル状のものからゴム状のものまで硬さを調整することができる。ここでゴム状のものにしたときには、弾力性のあるものから、例えば石のように硬いものまでを含むものである。
 [(D)成分]
 (D)成分は、ポリオルガノハイドロジェンシロキサンであり、(C)成分の架橋剤となる成分である。(D)成分のポリオルガノハイドロジェンシロキサンは、1分子中にケイ素原子に結合した水素原子を2個以上、好ましくは3個以上有するものである。この水素原子は、分子鎖末端のケイ素原子に結合していても、分子鎖途中のケイ素原子に結合していても、両方に結合していてもよい。さらに両末端のみにケイ素原子に結合した水素原子を有するポリオルガノハイドロジェンシロキサンを併用してもよい。(D)成分の分子構造は、直鎖状、分岐鎖状、環状あるいは三次元網目状のいずれでもよく、1種単独又は2種以上を併用してもよい。(D)成分のポリオルガノハイドロジェンシロキサンは公知のものであり、例えば特開2008-184549号公報に記載されている(B)成分を使用することができる。
 [(E)成分]
 (E)成分は白金系触媒であり、(C)成分と(D)成分を混練した後の硬化を促進させる成分である。(E)成分としては、ヒドロシリル化反応に用いられる周知の触媒を用いることができる。例えば白金黒、塩化第二白金、塩化白金酸、塩化白金酸と一価アルコールとの反応物、塩化白金酸とオレフィン類やビニルシロキサンとの錯体、白金ビスアセトアセテートなどを挙げることができる。(E)成分の含有量は、所望の硬化速度などに応じて適宜調整することができるものであり、(C)成分と(D)成分の合計量に対し、白金元素に換算して0.1~1000ppmの範囲とすることが好ましい。
 本発明の組成物は、(A)成分および(B)成分、さらに必要に応じて他の任意成分をプラネタリーミキサーなどの混合機で混合することにより得ることができる。混合時には、必要に応じて50~150℃の範囲で加熱しながら混合してもよい。さらに均一仕上げのためには、高剪断力下で混練操作を行うことが好ましい。混練装置としては、3本ロール、コロイドミル、サンドグラインダー等があるが、中でも3本ロールによる方法が好ましい。
 また本発明の組成物がさらに(D)成分と(E)成分を含むゲル状のものであるとき、特開2008-184549号公報に記載の放熱材の製造方法と同様にして得ることができる。
 本発明の組成物からなる放熱材料は、上記した熱伝導性組成物からなるものである。本発明の組成物からなる放熱材料は、(D)成分および(E)成分を含まないグリース状のものであるとき、粘度(実施例に記載の測定方法により求められる粘度)は、発熱部位に対する塗布の容易さから、10~1000Pa・sの範囲であることが好ましい。
 上記したように(B)成分がアルコキシシラン化合物(II-1,2)でY=Si(CHCH=CHを含む組成物からなる放熱材料は、(C)成分、(D)成分および(E)成分を含むゴム状のものであるとき、硬度計TypeE型(JISK6249準拠)で測定した硬さがたとえば5以上のものであることが好ましい。
 本発明の組成物からなる放熱材料は、熱線法で測定した23℃における熱伝導率が2.0W/(m・K)以上、好ましくは2.5W/(m・K)以上、より好ましくは3.0W/(m・K)以上のものである。前記熱伝導率を調整して放熱効果を高めるためには、組成物中の(A)成分の含有割合が80質量%以上であることが好ましく、要求される熱伝導率に応じて(A)成分の含有割合を増加させることができる。
 本発明の放熱材料は、発熱量の多いCPUを搭載しているPC/サーバーの他、パワーモジュール、超LSI、光部品(光ピックアップやLED)を搭載した各電子機器、家電機器(DVD/HDDレコーダー(プレイヤー)、FPDなどのAV機器など)、PC周辺機器、家庭用ゲーム機、自動車のほか、インバーターやスイッチング電源などの産業用機器などの放熱材料として使用することができる。放熱材料はグリース状(ペースト状)、ゲル状、ゴム状等の形態を有することができる。
 以下では本発明の種々の実施態様を示す。
<1>(A)球状の熱伝導性充填剤と(B)アルコキシシラン化合物またはジメチルポリシロキサンを含有する熱伝導性組成物であって、
 前記(A)成分の球状の熱伝導性充填剤が平均粒子径の異なる充填剤を特定割合で配合してなる混合物であり、前記混合物が、窒化物からなる平均粒子径50μm以上の球状の熱伝導性充填剤を30質量%以上、好ましくは40質量%以上、より好ましくは50質量%以上配合してなる、熱伝導性組成物。
<2> 前記(A)成分の混合物が、窒化物からなる平均粒子径50μm以上の球状の熱伝導性充填剤を50質量%以上配合してなり、平均粒子径50μm未満の球状の熱伝導性充填剤を50質量%以下配合してなる、<1>の熱伝導性組成物。
<3>(A)球状の熱伝導性充填剤と(B)アルコキシシラン化合物またはジメチルポリシロキサンを含有する熱伝導性組成物であって、
 前記(A)成分の球状の熱伝導性充填剤が平均粒子径の異なる充填剤を特定割合で配合してなる混合物であり、前記混合物が、窒化物からなる平均粒子径50~100μm、好ましくは平均粒子径50~80μmの球状の熱伝導性充填剤を50~70質量%、好ましくは50~60質量%配合してなる、熱伝導性組成物。
<4> 前記(A)成分の混合物が、平均粒子径1~10μm、好ましくは平均粒子径1~5μmの球状の熱伝導性充填剤を30~50質量、好ましくは40~50質量%配合してなる、<3>の熱伝導性組成物。
<5>(A)成分100質量部に対してアルコキシシラン化合物またはジメチルポリシロキサン(B)成分1~30質量部、好ましくは1~25質量部、より好ましくは5~20質量部を含有する、<1>~<4>のいずれかの熱伝導性組成物。
<6>(A)球状の熱伝導性充填剤と(B)アルコキシシラン化合物またはジメチルポリシロキサンを含有する熱伝導性組成物であって、
 前記(A)成分の球状の熱伝導性充填剤が平均粒子径の異なる充填剤を特定割合で配合してなる混合物であり、
 前記混合物が、窒化物からなる平均粒子径50μm以上の球状の熱伝導性充填剤を30質量%以上、好ましくは40質量%以上、より好ましくは50質量%以上配合してなり、平均粒子径1μm未満の球状の熱伝導性充填剤を10質量%以上、好ましくは15質量%以上配合してなる、熱伝導性組成物。
<7>前記(A)成分の混合物が、窒化物からなる平均粒子径50μm以上の球状の熱伝導性充填剤を30質量%以上、好ましくは40質量%以上、より好ましくは50質量%以上配合してなり、平均粒子径1μm未満の球状の熱伝導性充填剤を10質量%以上、好ましくは15質量%以上配合してなり、残部が平均粒子径1μm以上~平均粒子径50μm未満の球状の熱伝導性充填剤を配合してなる、<6>の熱伝導性組成物。
<8>前記(A)成分の混合物が、窒化物からなる平均粒子径50~100μm、好ましくは平均粒子径50~80μmの球状の熱伝導性充填剤を50~70質量%、好ましくは50~60質量%配合してなる、<6>又は<7>の熱伝導性組成物。
<9>前記(A)成分の混合物が、平均粒子径1μm未満の球状の熱伝導性充填剤を10~30質量%、好ましくは15~25質量%配合してなる、<6>~<8>のいずれかの熱伝導性組成物。
<10>残部が平均粒子径1~10μm、好ましくは平均粒子径1~5μmの球状の熱伝導性充填剤を配合してなる、<6>~<9>のいずれかの熱伝導性組成物。
<11>(A)成分100質量部に対してアルコキシシラン化合物またはジメチルポリシロキサン(B)成分1~20質量部、好ましくは1~15質量部、より好ましくは3~15質量部を含有する、<6>~<10>のいずれかの熱伝導性組成物。
<12>平均粒子径1μm未満の球状の熱伝導性充填剤が酸化アルミニウム又は酸化亜鉛である、<6>~<11>のいずれかの熱伝導性組成物。
<13>前記窒化物が窒化アルミニウムまたは窒化ホウ素である、<1>~<12>のいずれかの熱伝導性組成物。
<14><1>~<13>のいずれかに記載の熱伝導性組成物からなる放熱材料。
<15>(A)球状の熱伝導性充填剤100質量部に対して、(B)アルコキシシラン化合物またはジメチルポリシロキサン1~30質量部、好ましくは1~25質量部、より好ましくは5~20質量部を混合する、熱伝導性組成物の製造方法であって、
 前記(A)が平均粒子径の異なる充填剤を特定割合で配合してなる混合物であり、前記混合物が、窒化物からなる平均粒子径50μm以上、好ましくは平均粒子径50~100μm、より好ましくは平均粒子径50~80μmの充填剤を30質量%以上、好ましくは40質量%以上、より好ましくは50質量%以上配合してなる、熱伝導性組成物の製造方法。
<16>(A)球状の熱伝導性充填剤100質量部に対して、(B)アルコキシシラン化合物またはジメチルポリシロキサン1~20質量部、好ましくは1~15質量部、より好ましくは3~15質量部混合する、熱伝導性組成物の製造方法であって、
 前記(A)が平均粒子径の異なる充填剤を特定割合で配合してなる混合物であり、前記混合物が、窒化物からなる平均粒子径50μm以上、好ましくは平均粒子径50~100μm、より好ましくは平均粒子径50~80μmの充填剤を30質量%以上、好ましくは40質量%以上、より好ましくは50質量%以上配合してなり、また、平均粒子径1μm未満の球状の熱伝導性充填剤を10質量%以上、好ましくは15質量%以上配合してなる、熱伝導性組成物の製造方法。
<17>前記窒化物が窒化アルミニウムまたは窒化ホウ素である、<16>又は<17>の製造方法。
<18>前記(B)成分が一般式(II)のアルコキシシリル基を有するアルコキシシラン化合物である、<1>~<17>の何れかの組成物、放熱材料又は製造方法。
<19>前記(B)成分が一般式(II-1)又は一般式(II-2)の化合物である、<18>の組成物、放熱材料又は製造方法。
<20>前記(B)成分が一般式(III)で表される化合物である、<1>~<17>の何れかの組成物、放熱材料又は製造方法。
<21>前記(B)成分が一般式(IV)で表されるジメチルポリシロキサンである、<1>~<17>の何れかの組成物、放熱材料又は製造方法。
<22>さらに(C)成分として平均組成式(I)で表されるポリオルガノシロキサンを含む、<1>~<17>の何れかの組成物、放熱材料又は製造方法。
<23>さらに(D)成分としてポリオルガノハイドロジェンシロキサンを含み、(E)成分として白金系触媒を含む、<22>の組成物、放熱材料又は製造方法。
実施例
 <使用成分>
 (A)成分
 丸み状窒化アルミニウム「FAN-f80」,平均粒子径80μm,(株)トクヤマ
 丸み状窒化アルミニウム「FAN-f50-J」,平均粒子径50μm,(株)トクヤマ
 丸み状窒化アルミニウム「HF-05」,平均粒子径5μm,(株)トクヤマ
 丸み状窒化アルミニウム「HF-01」,平均粒子径1μm,(株)トクヤマ
 丸み状アルミナ「スミコランダム」,平均粒子径0.4μm,住友化学(株)
 (B)成分
 表面処理剤(一般式(II-1)において、x:20、Y:Si(CHCH=CH
 <測定方法>
[平均粒子径]
 平均粒子径(メジアン径d50)は、コールカウンター法により測定した。
[粘度]
 JIS K6249に準拠。回転粘度計ローターNo.7、回転数20rpm、1分値の粘度を示す。
[熱伝導率]
 23℃において、熱線法に従い、熱伝導率計(京都電子工業社製、QTM-500)を用いて測定した。
実施例1~18
 表1、表2に示す(A)および(B)成分をプラネタリー型ミキサー(ダルトン社製)に仕込み、室温にて1時間撹拌混合し、さらに120℃にて1時間撹拌混合して、熱伝導性組成物を得た。(B)成分の量は、(A)成分100質量部に対する質量部表示である。組成物の粘度、熱伝導率を測定した。結果を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1と表2の対比から、平均粒子径50μmの窒化アルミニウムを含む実施例1~9の組成物と、平均粒子径80μmの窒化アルミニウムを含む実施例10~18の組成物では、粘度は実施例1~9の組成物の方が小さいが、熱伝導率は実施例10~18の組成物の方が高かった。なお、表1、表2中の「纏まる限界」は、成形できるものであることを意味し、成形できずに粉状態のままであるものが含まれないことを意味する。また、「ペースト」はペースト(グリース)状で粘度が測定できなかったことを意味する。
 実施例19~22
 表3に示す(A)および(B)成分をプラネタリー型ミキサー(ダルトン社製)に仕込み、室温にて1時間撹拌混合し、さらに120℃にて1時間撹拌混合して、熱伝導性組成物を得た。(B)成分の量は、(A)成分100質量部に対する質量部表示である。組成物の粘度、熱伝導率を下記の方法で測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000005
 表3と表2の対比から、(A)成分中に平均粒子径が1μm未満のアルミナを10質量%以上含有させることで、粘度の上昇を抑制しつつ、熱伝導率を高めることができた。なお、表3中の「纏まる限界」は、上記と同じ意味である。
 比較例1~16
 表4~表6に示す(A)および(B)成分をプラネタリー型ミキサー(ダルトン社製)に仕込み、室温にて1時間撹拌混合し、さらに120℃にて1時間撹拌混合して、比較用の熱伝導性組成物を得た。(B)成分の量は、(A)成分100質量部に対する質量部表示である。組成物の粘度、熱伝導率を測定した。結果を表4~表6に示す。なお、表5~表6中の「纏まる限界」は、上記と同じ意味である。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表1~表3の実施例と表4の比較例1~4との対比から、(A)成分を平均粒子径の異なる充填剤を特定割合で配合してなる混合物にすることで、粘度と熱伝導率が改善できることが確認できた。
 表1~表3の実施例と表5、6の比較例5~16との対比から、(A)成分として平均粒子径が50μm以上の窒化アルミニウムを含有することで、粘度と熱伝導率が改善できることが確認できた。
 表1の実施例1、2と表5の比較例7、8は、(A)成分と(B)成分の配合量は同じであるが、実施例1、2の方が粘度は低く、熱伝導率は大きかった。
産業上の利用可能性
 本発明の熱伝導性組成物は、パーソナルコンピューターなどの電子機器のような発熱部位を有する各種機器用の放熱材料として使用することができる。

Claims (6)

  1.  (A)球状の熱伝導性充填剤と(B)アルコキシシラン化合物またはジメチルポリシロキサンを含有する熱伝導性組成物であって、
     前記(A)成分の球状の熱伝導性充填剤が平均粒子径の異なる充填剤を特定割合で配合してなる混合物であり、前記混合物が、窒化物からなる平均粒子径50μm以上の球状の熱伝導性充填剤を30質量%以上配合してなる、熱伝導性組成物。
  2.  前記(A)成分の混合物が、窒化物からなる平均粒子径50μm以上の球状の熱伝導性充填剤を50質量%以上配合してなり、平均粒子径50μm未満の球状の熱伝導性充填剤を50質量%以下配合してなる、請求項1記載の熱伝導性組成物。
  3.  (A)球状の熱伝導性充填剤と(B)アルコキシシラン化合物またはジメチルポリシロキサンを含有する熱伝導性組成物であって、
     前記(A)成分の球状の熱伝導性充填剤が平均粒子径の異なる充填剤を特定割合で配合してなる混合物であり、
     前記混合物が、窒化物からなる平均粒子径50μm以上の球状の熱伝導性充填剤を30質量%以上配合してなり、平均粒子径1μm未満の球状の熱伝導性充填剤を10質量%以上配合してなる、熱伝導性組成物。
  4.  前記(A)成分の混合物が、窒化物からなる平均粒子径50μm以上の球状の熱伝導性充填剤を30質量%以上配合してなり、平均粒子径1μm未満の球状の熱伝導性充填剤を10質量%以上配合してなり、残部が平均粒子径1μm以上~平均粒子径50μm未満の球状の熱伝導性充填剤を配合してなる、請求項3記載の熱伝導性組成物。
  5.  前記窒化物が窒化アルミニウムまたは窒化ホウ素である、請求項1~4のいずれか1項に記載の熱伝導性組成物。
  6.  請求項1~5のいずれか1項に記載の熱伝導性組成物からなる放熱材料。
PCT/JP2016/064725 2015-05-22 2016-05-18 熱伝導性組成物 WO2016190189A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680029425.2A CN107532001B (zh) 2015-05-22 2016-05-18 导热性组合物
KR1020177031968A KR102544366B1 (ko) 2015-05-22 2016-05-18 열전도성 조성물
US15/574,642 US20180134938A1 (en) 2015-05-22 2016-05-18 Thermally conductive composition
JP2016554300A JP6223591B2 (ja) 2015-05-22 2016-05-18 熱伝導性組成物
EP16799895.4A EP3299420A4 (en) 2015-05-22 2016-05-18 HEAT-CONDUCTIVE COMPOSITION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-104113 2015-05-22
JP2015104113 2015-05-22

Publications (1)

Publication Number Publication Date
WO2016190189A1 true WO2016190189A1 (ja) 2016-12-01

Family

ID=57394073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064725 WO2016190189A1 (ja) 2015-05-22 2016-05-18 熱伝導性組成物

Country Status (7)

Country Link
US (1) US20180134938A1 (ja)
EP (1) EP3299420A4 (ja)
JP (1) JP6223591B2 (ja)
KR (1) KR102544366B1 (ja)
CN (1) CN107532001B (ja)
TW (1) TWI714587B (ja)
WO (1) WO2016190189A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016566A1 (ja) * 2016-07-22 2018-01-25 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性ポリシロキサン組成物
WO2018074247A1 (ja) * 2016-10-18 2018-04-26 信越化学工業株式会社 熱伝導性シリコーン組成物
JPWO2020262449A1 (ja) * 2019-06-26 2020-12-30
US11254849B2 (en) 2015-11-05 2022-02-22 Momentive Performance Materials Japan Llc Method for producing a thermally conductive polysiloxane composition
US11286349B2 (en) 2016-07-22 2022-03-29 Momentive Performance Materials Japan Llc Surface treatment agent for thermally conductive polyorganosiloxane composition
US11359124B2 (en) 2017-05-31 2022-06-14 Momentive Performance Materials Japan Llc Thermally conductive polysiloxane composition

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10501671B2 (en) * 2016-07-26 2019-12-10 Honeywell International Inc. Gel-type thermal interface material
CN109233287A (zh) * 2018-08-09 2019-01-18 张剑 一种导热型绝缘硅橡胶垫片
WO2020093258A1 (en) * 2018-11-07 2020-05-14 Dow Global Technologies Llc Thermally conductive composition and methods and devices in which said composition is used
JP7027368B2 (ja) * 2019-04-01 2022-03-01 信越化学工業株式会社 熱伝導性シリコーン組成物、その製造方法及び半導体装置
WO2021109051A1 (en) * 2019-12-05 2021-06-10 Dow Silicones Corporation Highly thermally conductive flowable silicone composition
US20230060754A1 (en) * 2020-03-26 2023-03-02 Ddp Specialty Electronics Materials Us, Llc Thermal interface material comprising multimodally distributed spherical fillers
CN111334045A (zh) * 2020-04-26 2020-06-26 苏州矽美科导热科技有限公司 一种单组分快速室温固化导热凝胶及其制作工艺
JP2023062399A (ja) * 2021-10-21 2023-05-08 信越化学工業株式会社 熱伝導性シリコーン組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145351A (ja) * 1997-11-07 1999-05-28 Denki Kagaku Kogyo Kk 放熱スペーサー
JP2001158610A (ja) * 1999-11-29 2001-06-12 Denki Kagaku Kogyo Kk 樹脂充填用窒化アルミニウム粉末及びその用途
JP2002164481A (ja) * 2000-11-13 2002-06-07 Three M Innovative Properties Co 熱伝導性シート
JP2002299533A (ja) * 2001-03-29 2002-10-11 Denki Kagaku Kogyo Kk 放熱スペーサー
JP2010155870A (ja) * 2007-04-20 2010-07-15 Denki Kagaku Kogyo Kk 熱伝導性コンパウンドおよびその製造方法
JP2014208728A (ja) * 2013-04-16 2014-11-06 富士高分子工業株式会社 蓄熱性シリコーン材料及びその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5011870A (en) * 1989-02-08 1991-04-30 Dow Corning Corporation Thermally conductive organosiloxane compositions
JP2000095896A (ja) * 1998-09-24 2000-04-04 Denki Kagaku Kogyo Kk 樹脂添加用粉末、それを用いた樹脂組成物と放熱スペーサ
JP3474839B2 (ja) * 1999-09-01 2003-12-08 北川工業株式会社 熱伝導シート及びその製造方法
JP4369594B2 (ja) * 2000-04-28 2009-11-25 古河電気工業株式会社 熱伝導性成形体
WO2002092693A1 (fr) * 2001-05-14 2002-11-21 Dow Corning Toray Silicone Co., Ltd. Composition de silicone thermoconductrice
JP2004352947A (ja) * 2003-05-30 2004-12-16 Shin Etsu Chem Co Ltd 室温硬化型熱伝導性シリコーンゴム組成物
CN1860181B (zh) * 2003-09-29 2011-08-24 迈图高新材料日本合同公司 导热性有机硅组合物
JP4937494B2 (ja) * 2003-12-05 2012-05-23 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性シリコーン組成物
CN101035876A (zh) * 2004-08-23 2007-09-12 莫门蒂夫性能材料股份有限公司 导热性组合物及其制备方法
KR101261064B1 (ko) * 2004-08-23 2013-05-06 제너럴 일렉트릭 캄파니 열 전도성 조성물 및 그의 제조 방법
CN101044207A (zh) * 2004-10-18 2007-09-26 株式会社日本矿油 散热用有机硅组合物
JP5154010B2 (ja) * 2005-10-27 2013-02-27 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性シリコーンゴム組成物
JP5089908B2 (ja) * 2006-04-06 2012-12-05 株式会社マイクロン 高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート用配合粒子、高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート、および、その製造方法
CN101535176A (zh) * 2006-10-07 2009-09-16 迈图高新材料公司 混合的氮化硼组合物及其制备方法
JP5304588B2 (ja) * 2009-10-26 2013-10-02 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
CN101962528A (zh) * 2010-09-30 2011-02-02 烟台德邦科技有限公司 一种低粘度高导热率的双组分灌封硅胶及其制备方法
JP2012214612A (ja) * 2011-03-31 2012-11-08 Aica Kogyo Co Ltd シリコーン放熱部材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145351A (ja) * 1997-11-07 1999-05-28 Denki Kagaku Kogyo Kk 放熱スペーサー
JP2001158610A (ja) * 1999-11-29 2001-06-12 Denki Kagaku Kogyo Kk 樹脂充填用窒化アルミニウム粉末及びその用途
JP2002164481A (ja) * 2000-11-13 2002-06-07 Three M Innovative Properties Co 熱伝導性シート
JP2002299533A (ja) * 2001-03-29 2002-10-11 Denki Kagaku Kogyo Kk 放熱スペーサー
JP2010155870A (ja) * 2007-04-20 2010-07-15 Denki Kagaku Kogyo Kk 熱伝導性コンパウンドおよびその製造方法
JP2014208728A (ja) * 2013-04-16 2014-11-06 富士高分子工業株式会社 蓄熱性シリコーン材料及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3299420A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11254849B2 (en) 2015-11-05 2022-02-22 Momentive Performance Materials Japan Llc Method for producing a thermally conductive polysiloxane composition
US11118056B2 (en) 2016-07-22 2021-09-14 Momentive Performance Materials Japan Llc Thermally conductive polysiloxane composition
US11286349B2 (en) 2016-07-22 2022-03-29 Momentive Performance Materials Japan Llc Surface treatment agent for thermally conductive polyorganosiloxane composition
WO2018016566A1 (ja) * 2016-07-22 2018-01-25 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性ポリシロキサン組成物
US20210147681A1 (en) 2016-07-22 2021-05-20 Momentive Performance Materials Japan Llc Thermally conductive polysiloxane composition
US11248154B2 (en) 2016-10-18 2022-02-15 Shin-Etsu Chemical Co., Ltd. Thermoconductive silicone composition
WO2018074247A1 (ja) * 2016-10-18 2018-04-26 信越化学工業株式会社 熱伝導性シリコーン組成物
JPWO2018074247A1 (ja) * 2016-10-18 2019-01-17 信越化学工業株式会社 熱伝導性シリコーン組成物
US11359124B2 (en) 2017-05-31 2022-06-14 Momentive Performance Materials Japan Llc Thermally conductive polysiloxane composition
WO2020262449A1 (ja) * 2019-06-26 2020-12-30 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性ポリシロキサン組成物
JPWO2020262449A1 (ja) * 2019-06-26 2020-12-30
CN114008141A (zh) * 2019-06-26 2022-02-01 迈图高新材料日本合同公司 导热性聚硅氧烷组合物
JP7039157B2 (ja) 2019-06-26 2022-03-22 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性ポリシロキサン組成物
EP3992250A4 (en) * 2019-06-26 2023-07-19 Momentive Performance Materials Japan LLC THERMALLY CONDUCTIVE POLYSILOXA COMPOSITION
CN114008141B (zh) * 2019-06-26 2023-09-22 迈图高新材料日本合同公司 导热性聚硅氧烷组合物

Also Published As

Publication number Publication date
JPWO2016190189A1 (ja) 2017-06-15
CN107532001B (zh) 2021-05-25
KR102544366B1 (ko) 2023-06-19
TW201708396A (zh) 2017-03-01
US20180134938A1 (en) 2018-05-17
JP6223591B2 (ja) 2017-11-01
TWI714587B (zh) 2021-01-01
EP3299420A1 (en) 2018-03-28
KR20180011081A (ko) 2018-01-31
CN107532001A (zh) 2018-01-02
EP3299420A4 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
JP6223591B2 (ja) 熱伝導性組成物
JP6223590B2 (ja) 熱伝導性組成物
TWI744361B (zh) 熱傳導性聚矽氧烷組成物
JP5664563B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP6075261B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
TWI746856B (zh) 熱傳導性聚矽氧烷組成物
TWI767007B (zh) 熱傳導性聚有機矽氧烷組成物
JP6246986B1 (ja) 熱伝導性ポリシロキサン組成物
JP2010013521A (ja) 熱伝導性シリコーン組成物
JP2020066713A (ja) 熱伝導性シリコーン組成物及びその硬化物
JP7039157B2 (ja) 熱伝導性ポリシロキサン組成物
WO2021225059A1 (ja) 熱伝導性シリコーン組成物及びその硬化物
WO2021246397A1 (ja) 二液硬化型熱伝導性グリース用組成物、熱伝導性グリース、および電子機器
JP7174197B1 (ja) 熱伝導性ポリシロキサン組成物
WO2022264715A1 (ja) 熱伝導性ポリシロキサン組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016554300

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799895

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177031968

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15574642

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE